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A Frequency Domain Test for Propriety of
Complex-Valued Vector Time Series
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Abstract—This paper proposes a frequency domain approach
to test the hypothesis that a stationary complex-valued vector
time series is proper, i.e., for testing whether the vector time series
is uncorrelated with its complex conjugate. If the hypothesis is
rejected, frequency bands causing the rejection will be identified
and might usefully be related to known properties of the physical
processes. The test needs the associated spectral matrix which
can be estimated by multitaper methods using, say, K tapers.
Standard asymptotic distributions for the test statistic are of no
use since they would require K → ∞, but, as K increases so does
resolution bandwidth which causes spectral blurring. In many
analyses K is necessarily kept small, and hence our efforts are
directed at practical and accurate methodology for hypothesis
testing for small K. Our generalized likelihood ratio statistic
combined with exact cumulant matching gives very accurate
rejection percentages. We also prove that the statistic on which
the test is based is comprised of canonical coherencies arising
from our complex-valued vector time series. Frequency specific
tests are combined using multiple hypothesis testing to give an
overall test. Our methodology is demonstrated on ocean current
data collected at different depths in the Labrador Sea. Overall
this work extends results on propriety testing for complex-valued
vectors to the complex-valued vector time series setting.

Index Terms—Generalized likelihood ratio test (GLRT), im-
proper complex time series, multichannel signal, multiple hy-
pothesis test, spectral analysis.

I. INTRODUCTION

There has long been an interest in time series motions on the
complex plane: the rotary analysis method decomposes such
motions into counter-rotating components which have proved
particularly useful in the study of geophysical flows influenced
by the rotation of the Earth [11], [12], [23], [37], [38].

Let a complex-valued p-vector-valued discrete time series be
denoted {Zt}. This has as t-th element, (t ∈ Z), the column
vector Zt = [Z1,t, . . . , Zp,t]T . A length-N realization of {Zt}
namely z0, . . . , zN−1 has zt ∈ Cp. In this paper we assume
the p processes are jointly second-order stationary.

We propose a frequency domain approach to testing the
hypothesis that a complex-valued p-vector-valued time series
is proper, i.e., for testing whether the vector time series
{Zt} is uncorrelated with its complex conjugate {Z∗

t }. If
we denote the covariance sequence between these terms by
{rZ,τ} then propriety corresponds to rZ,τ = 0 for all τ ∈ Z,
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or RZ(f) = 0 over the Nyquist frequency range, where
RZ(f) is the Fourier transform of {rZ,τ}. Otherwise the
time series is said to be improper; the practical importance
and occurrence of improper processes is discussed in, e.g.,
[1], [23], [26], [27] and [32].

In this paper we take as an example a multi-component
complex-valued ocean current time series recorded in the
Labrador Sea. Frequency domain analysis is particularly useful
in a scientific setting: if the hypothesis is rejected, frequency
bands causing the rejection can be identified and quite possibly
related to known properties of the physical processes.

Analogous tests applicable to complex-valued random vec-
tors — rather than time series — are given by, e.g., [33] and
[39]. However, we must consider new methodology suitable
for very limited degrees of freedom. Our test uses the asso-
ciated spectral matrix which can be estimated by multitaper
methods using, say, K tapers. Standard asymptotic distribu-
tions for the test statistic are useless as they require K → ∞,
but, as K increases so does resolution bandwidth which causes
spectral blurring. In many analyses K is necessarily kept
small, and hence our efforts are directed at practical and
accurate methodology for hypothesis testing for small K.
Our generalized likelihood ratio statistic combined with exact
cumulant matching gives very accurate rejection percentages.

For the scalar case, (p = 1), a parametric hypothesis test
for propriety of complex time series is given in [34], [35].
This is based on the series being well-modelled by a Matérn
process in [34] or complex autoregressive process of order one
in [35], and utilises the χ2 distribution for the test statistic, an
asymptotic result. This is in contrast to our approach which
(i) is suitable for p > 1, (ii) is nonparametric, so does not
rely on a good fit to a parametric model, and (iii) develops a
suitable non-asymptotic distribution for the test statistic.

Our frequency-specific test statistic is comprised of canon-
ical coherencies arising from the complex-valued vector time
series, analogous to the situation for complex-valued ran-
dom vectors. Canonical analysis of real-valued vector time
series has been extensively studied and utilised (e.g., [24],
[31]), mostly in the context of parametric autoregressive
moving-average (ARMA) models. Miyata [25] looked at real-
valued vector time series, and developed canonical correlations
through linear functions of discrete vector Fourier transforms
of two sets of time series. Rather than work with the Fourier
transforms, which are sample values, we instead work with
the orthogonal processes underlying the complex-valued vec-
tor time series, and whose variances and cross-covariances
correspond exactly to the spectral components. We are thus
able to define population — as well as sample — canonical
coherencies for complex-valued vector time series.
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We use multiple hypothesis testing to develop an overall —
rather than frequency-specific — test of propriety for the time
series. Our methodology is demonstrated on ocean current data
collected at different depths in the Labrador Sea.

At the refereeing stage our attention was drawn to the con-
temporaneous conference paper [36]. Unlike [36] the current
paper shows that our test statistic — which appeared first in
[7, Chapter 5] — is comprised of canonical coherencies and
we give a simple scaled F distribution (obtained via cumulant
matching) for deriving rejection percentages. The way the tests
are constructed and used in the two cases are also different,
and this is discussed in Section IX.

A. Contributions
Following some background in Section II on complex-

valued time series, and the statistical properties of their spec-
tral matrix estimators under the Gaussian stationary assump-
tion for {Zt}, the contributions of this paper are as follows:

1) In Section III we formally derive the canonical coheren-
cies for {Zt} and {Z∗

t } and show in Section IV how a
test statistic T (f) for testing RZ(f) = 0 arises from the
sample canonical coherencies.

2) After giving further research context in Section V, we
carefully study the statistical properties of M(f) =
−2K log T (f) in Section VI, concentrating on the small
K case. We show that Box’s scaled chi-square approx-
imation is exact for p = 1 but not for p > 1, and we
derive the cumulants of M(f).

3) In Section VII we show that for p > 1 and small
K matching the first three cumulants of M(f) exactly
to a scaled F distribution performs at least as well as
competitor methods.

4) A simulation study is given in Section VIII which sup-
ports the use of the scaled F approximation for M(f)
for the complex-valued vector time series setting.

5) In Section IX we describe the use of multiple hypothesis
tests for developing an overall — rather than frequency-
specific — test of propriety for the time series. Simula-
tions show good behaviour under both the null hypothesis
(Section IX-D) and under alternatives (Section IX-E).

6) A data analysis using vector valued oceanographic time
series is given in Section X which shows that when pro-
priety is rejected, the frequency domain approach usefully
shows which frequency bands cause the rejection, which
may be linked to the physical processes involved.

II. BACKGROUND

We will first show how propriety is linked to matrices in
the frequency domain and then discuss the estimation of these
matrices from complex vector-valued Gaussian stationary time
series.

A. Some Definitions
We consider a complex-valued p-vector-valued discrete

time stochastic process {Zt} whose tth element, t ∈ Z,
is the column vector Zt = [Z1,t, . . . , Zp,t]T , and without

loss of generality take each component process to have
zero mean. The sample interval is ∆t and the Nyquist
frequency is fN = 1/(2∆t). We assume the p processes
are jointly second-order stationary (SOS), i.e., the covariance
cov{Zl,t+τ , Zm,t}

def
=E{Zl,t+τZ∗

m,t} and the complementary-

covariance ccov{Zl,t+τ , Zm,t}
def
=E{Zl,t+τZm,t}, 1 ≤ l,m ≤

p, are functions of τ only. Note that ccov{Zl,t+τ , Zm,t} =
cov{Zl,t+τ , Z∗

m,t}, the covariance between one process and
the complex conjugate of the other.

A matrix covariance sequence is then given by sZ,τ =
E{Zt+τZ

H
t }, τ ∈ Z, where superscript H denotes Hermitian

(complex-conjugate) transpose; we define the (l,m)th element
as sZ,lm,τ

def
=(sZ,τ )lm. A matrix complementary-covariance

follows as rZ,τ = E{Zt+τZ
T
t }, τ ∈ Z, with (l,m)th

element rZ,lm,τ
def
=(rZ,τ )lm. From their definitions we see that

sZ,lm,τ = s∗Z,ml,−τ ; rZ,lm,τ = rZ,ml,−τ , 1 ≤ l,m ≤ p.

We assume
∑∞

τ=−∞ |sZ,lm,τ | < ∞ and
∑∞

τ=−∞ |rZ,lm,τ | <
∞, for 1 ≤ l ≤ m ≤ p, which means that the Fourier
transforms SZ,lm(f) and RZ,lm(f) for 1 ≤ l,m ≤ p, exist
and are bounded and continuous. For |f | ≤ fN , the corre-
sponding matrices are SZ(f) = ∆t

∑∞
τ=−∞ sZ,τ e−i2πfτ ∆t

and RZ(f) = ∆t
∑∞

τ=−∞ rZ,τe−i2πfτ∆t , respectively. Then

rZ,τ = rTZ,−τ =⇒ RZ(f) = RT
Z(−f). (1)

The covariance stationarity means that there exists an or-
thogonal process Z(f) such that Zt =

∫ 1/2
−1/2 e

i2πftdZ(f)

[41, p. 317] and Z∗
t =

∫ 1/2
−1/2 e

i2πftdZ∗(−f), with [38]

E{dZ(f)dZH(f ′)} =

{
SZ(f)df, f = f ′

0, otherwise,

and

E{dZ(f)dZT (f ′)} =

{
RZ(f)df, f = −f ′

0, otherwise.

B. Proper Processes
If rZ,τ = 0 for all τ ∈ Z, or RZ(f) = 0 for all |f | ≤ fN ,

then the process {Zt} is said to be proper. Equivalently we see
that if {Zt} is uncorrelated with its complex conjugate {Z∗

t },
then the vector-valued process is proper. This paper considers
the problem of testing that the vector process is proper. From
(1) we see that if RZ(f) = 0 for f > 0 then it is also 0 for
f < 0. Hence we need to test:

H0 : RZ(f) = 0 for all f ≤ fN . (2)

Remark 1: Based on the naming convention adopted in [32,
p. 41] for complex-valued vectors, an alternative would be to
call the component processes ‘jointly proper.’

C. Spectral Matrices
Here we define spectral matrices for both the so-called

composite real and augmented complex representations of the
series. Let

Zl,t = Xl,t + iYl,t, (3)
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with {Xl,t} and {Yl,t} real-valued, for l = 1, . . . , p. The
composite real representation of the series is given by V t =
[XT

t ,Y
T
t ]

T = [X1,t, . . . , Xp,t, Y1,t, . . . , Yp,t]T , a real 2p-
dimensional vector-valued Gaussian stationary process. If

T
def
=

[
Ip iIp

Ip −iIp

]
, (4)

we see that

TV t =

[
Xt + iY t

Xt − iY t

]
=

[
Zt

Z∗
t

]
= U t, (5)

where U t = [ZT
t ,Z

H
t ]T = [Z1,t, . . . , Zp,t, Z∗

1,t, . . . , Z
∗
p,t]

T is
the augmented complex representation of the series, a complex
2p-dimensional vector-valued Gaussian stationary process.

The spectral matrix for V t is given by

SV (f) =

[
SXX(f) SXY (f)
SY X(f) SY Y (f)

]
∈ C2p×2p. (6)

The spectral matrix for U t is SU (f) = TSV (f)TH and has
the form

SU (f) =

[
SZ(f) RZ(f)
RH

Z (f) ST
Z(−f)

]
∈ C2p×2p. (7)

The matrix SU (f) can be written in the alternative covariance
matrix form E{U(f)UH(f)} = SU (f)df, where

U(f)
def
= [dZT (f), dZH(−f)]T . (8)

Remark 2: Consider (7). We see that testing RZ(f) = 0
is the same as testing the independence of the two complex
Gaussian p-vectors, dZ(f) and dZ∗(−f). This simple fact
enables us to utilize results from the propriety testing of
complex-valued vectors.

D. Estimation
With SU (f) in (7) seen to be of central importance we now

turn to its estimation and related statistical properties.
Given a length-N sample V 0, . . . ,V N−1, form hk,tV t

using a suitable set of K length-N orthonormal data taper
sequences {hk,t}, k = 0, . . . ,K−1, and compute JV ,k(f) =
∆1/2

t

∑N−1
t=0 hk,tV te−i2πft∆t . In this work we use sine tapers

(e.g., [40]).
As N → ∞, with the number of degrees of freedom, K

fixed, and with the given taper properties, {JV ,k(f), k =
0, 1, . . . ,K − 1} are proper, independent and identically dis-
tributed random vectors distributed as

JV ,k(f)
d
= NC

2p(0,SV (f)), 0 < |f | < fN , (9)

for k = 0, . . . ,K−1 (e.g., [8]). As JU ,k(f) = TJV ,k(f), as
N → ∞, with K fixed, {JU ,k(f), k = 0, 1, . . . ,K − 1} are
also a set of proper, independent and identically distributed
random vectors each of which are distributed as

JU ,k(f)
d
= NC

2p(0,SU (f)), 0 < |f | < fN . (10)

The probability density function (PDF) of JU ,k(f) — a
proper Gaussian vector in C2p is given by [29]

π−p[det{SU (f)}]−1 exp
{
−JH

U ,k(f)S
−1
U (f)JU ,k(f)

}
.

(11)

The independence of JU ,k(f)’s allows us to write the
joint PDF of JU ,0(f), . . . ,JU ,K−1(f) as the product of their
marginal densities given by (11). So the likelihood func-
tion, gJ (SU (f)|JU ,0(f), . . . ,JU ,K−1(f)), of SU (f) given
JU ,0(f), . . . ,JU ,K−1(f), is given by

[πp det{SU (f)}]−K exp

{
−

K−1∑

k=0

JH
U ,k(f)S

−1
U (f)JU ,k(f)

}
.

(12)
Now ŜU (f) is the sample covariance matrix of {JU ,k(f); k =
0, 1, . . . ,K − 1}, i.e.,

ŜU (f) =
1

K

K−1∑

k=0

JU ,k(f)J
H
U ,k(f) =

[
ŜZ(f) R̂Z(f)

R̂
H

Z (f) Ŝ
T

Z(−f)

]
.

(13)
Noting that the argument of exp{·} in (12) is scalar, and so is
equal to its trace, and recalling the linearity and cyclicity of
the trace operator, we can write

gJ = [πp det{SU (f)}]−K exp
{
−Ktr{S−1

U (f)ŜU (f)}
}
;

(14)
dependence of gJ on its arguments are not shown explicitly.

For a finite value of N , {JU ,k(f); k = 0, 1, . . . ,K−1} are
proper random variables with

JU ,k(f)
d
= NC

2p(0,SU (f)), WN < |f | < fN −WN , (15)

where [−WN ,WN ] is the extent of the spectral window
induced by tapering [8]. For sine tapers

WN = (K + 1)/[2(N + 1)∆t], (16)

(e.g., [40]). Therefore, in practice, we have to restrict interest
to frequencies in the range WN < |f | < fN −WN .

III. CANONICAL COHERENCIES

From Remark 2 we know that the structure of the testing
problem will be related to measures of coherence between
vector-valued processes, and so we next turn our attention to
the idea of canonical coherence. We start by developing the
framework required for complex-valued time series.

Let {ξt} be the cross-correlation of complex-valued deter-
ministic matrix sequence {At} with time series {Zt} :

ξt = A∗ $Zt
def
=

∞∑

u=−∞
A∗

uZt+u.

Next let {ηt} be the cross-correlation of complex-valued
deterministic matrix sequence {Bt} with time series {Z∗

t } :

ηt = B∗ $Z∗
t

def
=

∞∑

u=−∞
B∗

uZ
∗
t+u.

Component-wise we have




ξ1,t
ξ2,t

...
ξp,t




=

∑

u





a∗11,u . . . . . . a∗1p,u
a∗21,u . . . . . . a∗2p,u

...
...

a∗p1,u . . . . . . a∗pp,u









Z1,t+u

Z2,t+u
...

Zp,t+u




. (17)
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So, for j = 1, . . . , p,

ξj,t =
∑

u

a∗j1,uZ1,t+u + · · ·+
∑

u

a∗jp,uZp,t+u. (18)

The spectral representation theorem allows us to write ξj,t, j =
1, . . . , p and Zl,t, l = 1, . . . , p, as

ξj,t =

∫ fN

−fN

ei2πft∆tdZξj (f); Zl,t =

∫ fN

−fN

ei2πft∆tdZl(f).

Substituting the spectral representation for Zl,t in the lth sum
on the right of (18), we get

∑

u

a∗jl,uZl,t+u =

∫ fN

−fN

ei2πft∆tA∗
jl(f) dZl(f),

where Ajl(f) =
∑

u ajl,ue
−i2πfu∆t . Proceeding in analogous

fashion, and using the fact that the orthogonal process in a
spectral representation is unique [10, p. 34], we obtain

dZξj (f) = A∗
j1(f)dZ1(f) + . . .+A∗

jp(f)dZp(f)
def
= AH

j (f)dZ(f).

So

ξj,t =

∫ fN

−fN

ei2πft∆tAH
j (f)dZ(f). (19)

For {ηt} a similar procedure gives

dZηj (f) = B∗
j1(f)dZ

∗
1 (−f) + . . .+B∗

jp(f)dZ
∗
p (−f)

def
= BH

j (f)dZ∗(−f),

and

ηj,t =

∫ fN

−fN

ei2πft∆tBH
j (f)dZ∗(−f). (20)

The usual definition of the (magnitude squared) coherencies
γ2j (f) between series {ξj,t} and {ηj,t} is

γ2j (f) =
|E{dZξj (f)dZH

ηj (f)}|
2

E{|dZξj (f)|2}E{|dZηj (f)|2}
= |corr{dZξj (f), dZηj (f)}|2.

Remark 3: It should be emphasized that throughout we
use the usual definition of coherence as a magnitude squared
quantity, basically a squared correlation coefficient.

Consider the following procedure. Find A1(f) and
B1(f) such that |K11(f)| = |corr{dZξ1(f), dZη1(f)}|
is maximized. Next find A2(f) and B2(f) such that
|K22(f)| = |corr{dZξ2(f), dZη2(f)}| is maximized,
subject to dZξ2(f), dZη2(f) being uncorrelated
with dZξ1(f), dZη1(f). In general, at step j for
j = 2, . . . , p, Aj(f) and Bj(f) are found such that
|Kjj(f)| = |corr{dZξj (f), dZηj (f)}| is maximized subject to
dZξj (f), dZηj (f) being uncorrelated with dZξk(f), dZηk(f)
for 1 ≤ k < j.

Lemma 1: The canonical coherencies
l2j (f)

def
= |Kjj(f))|2, j = 1, . . . , p and Aj(f) and Bj(f) for

j = 1, . . . , p, defined above are eigenvalues and eigenvectors
as follows:

S−1
Z (f)RZ(f)S

−T
Z (−f)RH

Z (f)Aj(f) = l2j (f)Aj(f) (21)

S−T
Z (−f)RH

Z (f)S−1
Z (f)RZ(f)Bj(f) = l2j (f)Bj(f).

Moreover we have that as a result,

corr{dZξj (f), dZηk(f)} = 0, for j, k = 1, . . . , p; j '= k.
(22)

Proof: With notational changes the result follows from
[5, Theorem 10.3.2].

Remark 4: From Lemma 1 the optimal Aj(f) and Bj(f)
give rise to the jth pair of canonical series via (19) and (20).

IV. GENERALIZED LIKELIHOOD RATIO TEST (GLRT)

To develop a GLRT for testing RZ(f) = 0 at a specific
frequency, we will make use of the structure of the covariance
matrix (13).

A. Formulation

The GLRT statistic for the frequency-specific test

H0f : RZ(f) = 0 versus H1f : RZ(f) '= 0, (23)

is given by ratio of the likelihood function (14) with SU (f)
constrained to have zero off-diagonal blocks (RZ(f) = 0) to
the likelihood function with SU (f) unconstrained, i.e.,

max
SU (f):RZ(f)=0

gJ

max
SU (f)

gJ

def
= LG(f). (24)

The unconstrained maximum likelihood estimate of the co-
variance matrix SU (f) is given by the corresponding sample
covariance matrix ŜU (f) in (13), thus maximum likelihood
estimate of SU (f) under the constraint RZ(f) = 0 is,

S̆U (f) =

[
ŜZ(f) 0

0 Ŝ
T

Z(−f)

]
. (25)

Following (2) we will only calculate T (f) def
= L1/K

G (f) over
the positive frequency range WN < f < fN −WN .

By analogy to [33, eqn. (13)]

T (f) = det{Ip − Ŝ
−1

Z (f)R̂Z(f)Ŝ
−T

Z (−f)R̂
H

Z (f)}. (26)

Again, by analogy to [33, p. 434],

T (f) =
det{ŜU (f)}
det{S̆U (f)}

=
det{ŜU (f)}

det{ŜZ(f)} det{ŜZ(−f)}
, (27)

which is a convenient form for computation. Other forms are
given in [7, Section 5.1].

By definition of the GLR test statistic (24), we shall reject
the null hypothesis of RZ(f) = 0, for small values of T (f).
For a given size α, the rule is to reject H0f iff

T (f ;N,K, p) ≤ c, (28)

where Pr(T (f ;N,K, p) ≤ c|H0) = α. Here we have used
the more precise notation T (f ;N,K, p) which emphasizes the
dependence of the GLR test on (i) the sample size N , (ii) the
number of tapers K (also the number of complex degrees of
freedom), and (iii) dimension p of the complex time series.
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B. Invariance
We now consider transformations under which the test

statistic T (f) is invariant. These follow from [33, p. 434] with
some modification. Now RZ(f)df

def
= E{dZ(f)dZT (−f)}.

Apply L(f) ∈ Cp×p to dZ(f) so that dZ(f) → L(f)dZ(f),
and therefore dZT (−f) → L∗(−f)dZT (−f). Then

RZ(f) = 0 =⇒ E{L(f)dZ(f)[L∗(−f)dZT (−f)]H}
= L(f)RZ(f)dfL

T (−f) = 0,

i.e., RZ(f) = 0 is invariant to the linear transformation
dZ(f) → L(f)dZ(f). So the decision rule for our GLR test
must be likewise invariant.

Under this transformation,

U(f) →
[
L(f) 0
0 L∗(−f)

]
U(f)

def
= Q(f)U(f),

so that we require invariance under the group action SU (f) →
Q(f)SU (f)QH(f).

Under the null hypothesis the choice L(f) = S−1/2
Z (f)

(which exists for SZ(f) positive definite) renders the matrix
SU (f) equal to I2p and so under the null hypothesis we can
always replace SU (f) by I2p without loss of generality.

From Lemma 1 we know that the eigenvalues l2j (f)
of S−1

Z (f)RZ(f)S
−T
Z (−f)RH

Z (f) are canonical coherencies
which are invariant under the group action specified above;
moreover, the corresponding empirical or sample canonical
coherencies are maximal invariant and the GLR statistic —
which requires this invariance — must be a function of them.

Let )2j (f), j = 1, . . . , p, be the sample versions
of the canonical coherencies l2j (f) between dZ(f) and
dZ∗(−f). From (21) they are the sample eigenvalues of
Ŝ

−1

Z (f)R̂Z(f)Ŝ
−T

Z (−f)R̂
H

Z (f). From (26) it follows that for
WN < f < fN −WN , (compare with [33, eqn. (21)]),

T (f) =
p∏

j=1

(1− )2j (f)). (29)

V. RESEARCH CONTEXT

In view of Remark 2, the GLR test based on (27) falls
in the class of multiple independence tests in multivariate
statistics theory. Some distributional results for the complex
case were given in [19] but did not include the case of
interest here, namely two p-vectors. A later paper [13] gave
the exact distribution of a power of T (f) but this involves
an infinite sum with very complicated components; small K
approximations were not discussed. Other relevant results can
be found in [16] and [20], and these are discussed in detail in
Section VII-A.

The statistic T (f) is the frequency-domain time series
analogue to those used in [28], [33] and [39] to examine inde-
pendence between a Gaussian random vector and its complex
conjugate. In [28], [33] a complex formulation was maintained
but only an asymptotic approach to testing was considered. In
[39] a real-valued representation of the problem was used and
Box’s scaled chi-square method was used to improve on the
asymptotic critical values. In the rest of this paper we adopt

the complex formulation, derive Box’s refinement, but also
improve on it for p > 1 by exactly matching the first three
cumulants to a scaled F -distribution. (We point out that Box’s
refinement is exact for p = 1.) This latter F -method is very
simple to implement practically, involving only the first three
polygamma functions.

We emphasize that our efforts are directed at practical and
accurate methodology for small K. This is important in a
time series setting where as K increases so does resolution
bandwidth which potentially causes spectral blurring. In many
analyses K must necessarily be kept small. In the remainder
of this paper we will always assume any frequency under
consideration to lie in the interval WN < f < fN − WN

unless stated otherwise.

VI. BASIC PROPERTIES OF TEST STATISTIC

We now derive some statistical properties for simple func-
tions of the test statistic under the null hypothesis H0f . We
start with the asymptotic K → ∞ case, and then look at results
suitable for the practically useful case of small K.

A. Asymptotic Behaviour
The application of Wilks’ theorem [42, p. 132] gives that

under H0f , as K → ∞,

M(f)
def
= −2 logLG(f) = −2K log T (f)

d→ χ2ν (30)

where d→ denotes convergence in distribution and χ2ν denotes
the chi-square distribution with ν degrees of freedom. Here ν
is the difference between the number of free real parameters
under H0f and H1f . Comparing S̆U (f) in (25) (for H0f ) and
SU (f) in (7) (for H1f ) we note that RH

Z (f) follows directly
from RZ(f) so that there is only an additional 2p2 degrees
of freedom, i.e., those contributed by RZ(f). Hence we have
ν = 2p2.

While (30) is a very useful and convenient result when
the exact distribution of the GLR test statistic is analytically
intractable, K here denotes the number of tapers used for
multitaper spectral estimation and not the sample size N . For a
given value of N , K could be around 10 or less. Since (30) is
an asymptotic result, K must be sufficiently large to expect a
reasonable χ2ν approximation to −2K log T (f). Since K may
not be large in a time series setting, a small-K approximation
to the distribution of the test statistic under the null hypothesis
is imperative.

B. Moments
Since JU ,k(f), k = 0, . . . ,K − 1, are Gaussian distributed

random vectors, from (13) it follows that

A(f)
def
= KŜU (f)

d
= WC

2p(K,SU (f)), (31)

i.e., A(f) is distributed as a 2p-dimensional complex Wishart
distribution with K complex degrees of freedom and mean
KSU (f). Given the form of ŜU (f), we partition A(f)
analogously in terms of sub-matrices as

A(f) =

[
A11(f) A12(f)
A21(f) A22(f)

]
. (32)
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Then the GLR test statistic in (27) can be expressed as

T (f) = L1/K
G (f) =

det{A(f)}
det{A11(f)} det{A22(f)}

. (33)

Lemma 2: The rth moment of LG(f), namely E{Lr
G(f)},

is given by
∏p

j=1 Γ(K − j + 1)
∏p

j=1 Γ(K − j − p+ 1)

∏p
j=1 Γ(K[1 + r]− j − p+ 1)
∏p

j=1 Γ(K[1 + r]− j + 1)
.

(34)
Proof: This is given in Appendix A.

A random variable 0 ≤ W ≤ 1 is said to be of Box-type [4,
eqn. (70)] if for all r ∈ N,

E{W r} = C0

[∏l
j=1 b

bj
j∏m

i=1 a
ai
i

]r ∏m
i=1 Γ(ai[1 + r] + ϑi)∏l
j=1 Γ(bj [1 + r] + ζj)

, (35)

where
∑m

i=1 ai =
∑l

j=1 bj , and the constant term C0 is

C0 =

∏l
j=1 Γ(bj + ζj)∏m
i=1 Γ(ai + ϑi)

,

so that its zero’th moment is unity.
We see that LG(f) is a random variable of Box-type with

m = l = p; ai = K; bj = K; ϑi = 1− i− p, ζj = 1− j,

and C0 is

C0 =
p∏

j=1

Γ(K − j + 1)

Γ(K − j − p+ 1)
.

C. Cumulants
The moment generating function for M(f) = −2 logLG(f)

is given by (with f suppressed), φM (s) = E{esM} =
E{L−2s

G } so using (34),

φM (s) = C0

p∏

j=1

Γ(K[1− 2s]− j − p+ 1)

Γ(K[1− 2s]− j + 1)
.

The Gamma functions will be valid if −2Ks+K−j−p+1 > 0
for all j = 1, . . . , p, which requires −2s > (2p− 1−K)/K.

The cumulants κi of M can be easily obtained from the
cumulant generating function by successively differentiating
log φM (s) and setting s = 0. Notice that the requirement
−2s > (2p− 1−K)/K corresponds to K ≥ 2p when s = 0.
Then, for i ≥ 1,

κi =
di log φM (s)

(ds)i

∣∣∣∣
s=0

so that κi is

[−2K]i
p∑

j=1

[
ψ(i−1)(K − j − p+ 1)− ψ(i−1)(K − j + 1)

]
.

(36)
Here for i = 1, ψ(x) = [d logΓ(x)]/dx is the digamma
function, while for i = 2 and 3, ψ(1)(x) and ψ(2)(x) are the
trigamma and tetragamma functions respectively; these are all
‘polygamma functions.’ κ1 is the mean, κ2 is the variance,
κ3/κ

3/2
2 is the skewness and κ4/κ22 is the excess kurtosis.

D. Scaled chi-square approximation
Box [4] provides a scaled chi-squared approximation for M

of the form M(f)
d
= cBχ2d. The constant cB is chosen so that

the cumulants of cBχ2d match those of M(f) up to an error
of order O(K−2). The degrees of freedom d associated with
the chi-square approximation for M(f) is given by Box [4]

d = −2




p∑

i=1

ϑi −
p∑

j=1

ζj





= −2




p∑

i=1

(1− i− p)−
p∑

j=1

(1− j)





= −2



−
p∑

i=1

i−
p∑

i=1

p+
p∑

j=1

j



 = 2p2 = ν,

as expected. The scaling factor cB is a constant determined as
follows [4, p. 338]. Define

ωn =
(−1)n+1

n(n+ 1)




p∑

i=1

Bn+1(ϑi)

ani
−

p∑

j=1

Bn+1(ζj)

bnj



 (37)

where Bn(x) is the Bernoulli polynomial of degree n and
order unity, with

B2(x) = x2 − x+
1

6
; B3(x) = x3 − 3

2
x2 +

1

2
x.

Subsequently, let W1 = 2ω1/d and W2 = 4ω2/d, then cB is
chosen according to the following rule:

cB =

{
(1−W1)−1 if W2 ≥ W 2

1

1 +W1 otherwise.

Using (37) we find that

W1 =
p

K
; W2 =

(7p2 − 1)

6K2
.

It is straightforward to see that W2 ≥ W 2
1 for all (K, p)

combinations, implying that cB = K/(K − p), giving Box’s
finite sample approximation as

M(f)
d
=

K

K − p
χ22p2 . (38)

(This agrees with (30) asymptotically as K → ∞ for a fixed
dimension p.)
T (f) in (29) is det(Ip− Ŝ

−1

Z (f)R̂Z(f)Ŝ
−T

Z (−f)R̂
H

Z (f)),
so for the case p = 1,

T (f) = 1− |R̂Z(f)|2

ŜZ(f)ŜZ(−f)
= 1− γ̂2∗(f)

where γ̂2∗(f) is the ‘conjugate coherence,’ i.e., the ordinary
coherence between {Zt} and {Z∗

t } (e.g., [8]). Then M(f) =
−2K log(1 − γ̂2∗(f)). Under the null hypothesis it is known
that

γ̂2∗(f)
d
= beta(1,K − 1), (39)

i.e., coherence has the beta(1,K − 1) distribution. It then
follows readily that M(f) has PDF

fM (x) =
K − 1

2K
e−x[K−1

2K ],
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so that M(f)
d
= K

K−1χ
2
2 and Box’s approximation (38) is in

fact exact for the case p = 1. When p = 1 we note that
W2 = W 2

1 .
Remark 5: For small values of K, matching cumulants of

M(f) up to an error of order O(K−2) could be problematic
for p > 1 [4, p. 329]. This leads us to consider other
approaches.

VII. OTHER STATISTICAL APPROACHES

Using our results in Section VI-C, our aim here is to
develop a cumulant matching approach which results in a
scaled F approximation for M(f). We contrast the simplicity
of this approach with other existing methods and illustrate its
accuracy.

A. Product of Independent Beta Random Variables
Lemma 3: Under the null hypothesis the distribution of T (f)

can be expressed as a product of independent beta random
variables:

T (f)
d
=

p∏

j=1

Bj , (40)

where Bj
d
= beta(K + 1− j − p, p), independently.

Proof: This is given in Appendix B.
Remark 6: If p = 1, (40) gives T (f)

d
= beta(K − 1, 1), as

it should since T (f) = 1− γ̂2∗(f), and (39) holds.
In a different context Gupta [16] developed the distribution

of the product of p independent beta distributions: a likeli-
hood ratio criterion for testing a hypothesis about regression
coefficients in a multivariate normal setting takes the form
Λ = det{V 1}/det{V 1 + V 2} under the corresponding null
hypothesis, with V 1 and V 2 independently distributed as

V 1
d
= WC

p (f1,Σ), V 2
d
= WC

p (f2,Σ),

for integer parameters f1, f2 and covariance matrix Σ. Then
Λ has the three-parameter complex U distribution U(p, f2, f1)
which is distributed as a product of p beta variables with
Bj

d
= beta(f1 − j + 1, f2). So setting Gupta’s parameters f1

and f2 to K − p and p, respectively, shows that T (f) has the
three-parameter complex U distribution U(p, p,K − p). This
helps only a little because there are no simple expressions for
this distribution’s PDF or quantiles etc. However, by using
convolution techniques Gupta did obtain some exact results
for the case p = 2. In fact it turns out that for p = 2 the
right-side of (38) can be improved to

K

K − 2
G(1− α)χ28(1− α) (41)

where G(1 − α) is an exact (tabulated) correction factor and
χ28(1−α) is the 100(1−α)% point of the chi-square distribu-
tion with 8 degrees of freedom. For example for p = 2,K = 6
and α = (0.05, 0.01) the factors are (1.043, 1.051) [16, Table
1]. The work of Gupta was extended as part of [20, p. 5]
who produced tables of approximate correction factors for the
right-side of (38) for p ≥ 3 so that M(f) is compared to

K

K − p
G(1− α)χ22p2(1− α). (42)

Setting their parameters n and q to K − p and p respectively,
shows that for example for p = 3,K = 8 and α = (0.05, 0.01)
the factors are (1.076, 1.087) [20, Table 7]. The effect of these
correction factors will be discussed shortly.

Remark 7: The result (40) is very nice, and quantiles of
T (f) could be found through, say, successive convolution
techniques, but this is very complicated — see [6], [17] who
develop this approach for a related statistic.

B. Matching the first three cumulants exactly

The look-up tables of [16] and [20] are not convenient and
so we now develop a simple and fast method for approximating
the percentage points of the distribution of M(f). Box [4]
considered using the very flexible Pearson system for approx-
imating the distribution of likelihood ratios. Box [4, p. 330]
introduced a discriminant D = (κ1κ3)/(2κ22), such that if
D > 1 a Pearson type VI should be fitted; this corresponds
to W2 > W 2

1 . For p = 2 : 20,K = 1 : 100, with K ≥ 2p
we always found D > 1 using (36). (Note p = 1 is excluded
since W2 = W 2

1 in that case.)
Box [4] considered distributions of the form bFν1,ν2 , i.e., a

scaled F distribution (Pearson type VI) with parameters ν1, ν2,
and suggested matching cumulants approximately.

We have chosen to match the first three cumulants of the
form (36) exactly ; the parameters of bFν1,ν2 are related to the
cumulants via [14]

b =
2κ1

(
κ21κ2 − κ22 + κ1κ3

)

2κ21κ2 − 4κ22 + 3κ1κ3
,

ν1 =
4κ1

(
κ21κ2 − κ22 + κ1κ3

)

4κ1κ22 − κ21κ3 + κ2κ3
, (43)

ν2 =
4κ21κ2 − 8κ22 + 6κ1κ3

κ1κ3 − 2κ22
.

Then to carry out the test M(f) would be compared to

bFν1,ν2(1− α), (44)

where Fν1,ν2(1 − α) is the 100(1 − α)% point of the F
distribution with parameters b, ν1, ν2 given by (43).

C. Comparison of Approximations

For some combinations of (p,K) the asymptotic result (30)
is compared to Box’s basic approximation (38), the adjusted
Box method (41), (42) and the scaled F method (44) in Table I
which gives the 95% and 99% points of the distribution of
M(f) according to the four approaches. There is very good
agreement between the adjusted Box method and the scaled
F method, the latter being quick and simple to compute.
Box’s basic approximation is a massive improvement on the
asymptotic result. For p = 2 the adjusted Box approximation
due to [16] is exact and we see that the scaled F approximation
is therefore very accurate. Other combinations of p and small
K lead to similar results. The agreement of the scaled F
approximation with the previous historically tabulated results
(adjusted Box approximation) leads us to the following rec-
ommendation.
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(p,K) Method α = 0.05 α = 0.01

(2, 6) Asymptotic 15.51 20.09
Box 23.26 30.14

Adjusted Box 24.26 31.67
scaledF 24.26 31.68

(3, 8) Asymptotic 28.87 34.81
Box 46.19 55.69

Adjusted Box 49.70 60.53
scaledF 49.71 60.54

(4, 10) Asymptotic 46.19 53.49
Box 76.99 89.14

Adjusted Box 84.84 99.31
scaledF 84.85 99.30

(5, 12) Asymptotic 67.50 76.15
Box 115.72 130.55

Adjusted Box 129.96 148.17
scaledF 129.94 148.18

TABLE I
COMPARISON OF PERCENTAGE POINTS OF M(f) ACCORDING TO THE

ASYMPTOTIC RESULT (30), BOX’S APPROXIMATION (38), ADJUSTED BOX
METHOD (41), (42) AND THE SCALED F METHOD (44).

0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

frequency

(a)

0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

frequency

(b)

Fig. 1. (a) SZ(f) and (b) RZ(f). The vertical dotted line marks the
frequency f = 0.2.

D. Recommended testing approach

In view of the discusssions and results above, the following
is recommended for a given choice of α :

• If p = 1, reject H0f in (23) if

M(f) >
K

K − 1
χ22(1− α). (45)

This test is distributionally exact.
• If p ≥ 2, reject H0f in (23) if

M(f) > bFν1,ν2(1− α). (46)

The accuracy of the scaled F approximation for our time
series test (23) is now confirmed by simulation.

VIII. SIMULATION RESULTS

For p ≥ 2 we will show that using the scaled F approxima-
tion test where we reject H0f in (23) if (46) holds brings about
a worthwhile accuracy improvement over Box’s approximation
test where we reject H0f if

M(f) >
K

K − p
χ22p2(1− α). (47)

To be able to do this we need to simulate from a model
such that SU (f) in (7) has RZ(f) = 0 for some frequency
range. We can proceed as follows.

We know [30] that any complex second-order stationary
scalar process (assumed zero mean here), whether proper or
improper, can be written as the output of a widely linear filter
driven by proper white noise, i.e.,

Zt =
∞∑

l=−∞
glεt−l +

∞∑

l=−∞
hlε

∗
t−l, (48)

where {gl} and {hl} are sequence of complex constants,
and {εt} is proper white noise for which cov{εt+τ , εt} =
σ2ε δτ,0 and cov{εt+τ , ε∗t } = 0, for τ ∈ Z, where δj,k is the
Kronecker delta. For simulation purposes it is convenient to
set σ2ε = 1. Then [30]

SZ(f) = |G(f)|2 + |H(f)|2 (49)
RZ(f) = G(f)H(−f) +G(−f)H(f), (50)

where G(f) is the frequency response function of {gl} given
by G(f) =

∑∞
l=−∞ gle−i2πfl and H(f) is the frequency

response function of {hl}.
For p ≥ 2 we generate processes {Zj,t}, j = 1, . . . , p, such

that

Zj,t =
∞∑

l=−∞
glεj,t−l +

∞∑

l=−∞
hlε

∗
j,t−l

+
∞∑

l=−∞
alε̄j,t−l +

∞∑

l=−∞
alε̄

∗
j,t−l, (51)

where the 2p processes {{εj,t}, {ε̄j,t}, j = 1, . . . , p} are all
independent of each other. The filter {gl} was chosen to be
low-pass with a frequency transition zone [0.125, 0.15]. The
filter {hl} was of ‘Hilbert-type’ or all-pass in the frequency
zone [0.05, 0.45]. Thus G(f) is real and symmetric while
H(f) is imaginary and skew-symmetric. According to (50),
if using just these two filters, the resulting RZ(f) is zero for
f ∈ [−0.5, 0.5]. However, the filter {al} was chosen to be
high-pass above f = 0.2 and therefore generates non-zero
RZ(f) values at these high frequencies. The resulting SZ(f)
and RZ(f) are shown in Fig. 1.

The matrix SZ(f) is thus of the form SZ(f) = SZ(f)Ip

with frequency dependence as shown in Fig. 1(a) while RZ(f)
is of the form RZ(f) = RZ(f)Ip with frequency dependence
as shown in Fig. 1(b). We can thus simulate from this model
to evaluate our hypothesis tests, knowing that for frequencies
where RZ(f) = 0 in fact SZ(f) '= 0 and thus (27) is well-
defined.

Sample results are shown in Table II for (p,K) = (2, 6) and
(3, 8). So here K = 6 and 8 are indeed small. Here N = 512
but smaller time series lengths such as 128 produced very
similar results. Shown are rejection percentages for H0f over
10 000 independent repetitions. The nominal rates are shown
in the second column. The first three columns of rejection
percentages are for frequencies where RZ(f) = 0, (H0f

in (23) is true) and the latter two are for frequencies where
RZ(f) '= 0 (H0f is false) — see Fig. 1(b). The top line
of each entry is for Box’s χ2 approximation (47) and the
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f
(p,K) 100α% 0.06 0.12 0.18 0.24 0.42

(2, 6) 1% 1.5 1.5 1.4 31.1 35.4
1.1 1.1 0.9 25.8 30.0

5% 6.1 6.2 6.3 60.0 63.6
5.0 5.1 5.2 55.3 59.3

(3, 8) 1% 2.0 2.1 2.2 55.7 58.9
0.9 1.1 1.1 42.3 45.5

5% 8.2 8.3 8.3 81.0 82.9
4.9 5.1 5.2 72.6 75.2

TABLE II
REJECTION PERCENTAGES OVER 10 000 REPETITIONS. THE TOP LINE OF

EACH ENTRY IS FOR BOX’S χ2 APPROXIMATION (38) AND THE LOWER
LINE IS FOR THE F APPROXIMATION OF (46).

lower line is for the F approximation of (46). We see that,
proportionately, the latter has a much more accurate rejection
rate than Box’s approximation when H0f is true, but is slightly
less accurate when H0f is false.

IX. OVERALL TEST

A. Background

Plotting M(f) against f and identifying frequencies where
the critical value is exceeded is potentially quite informative.
Of course, by the definition of propriety, for an overall test
we need to test H0 in (2). Here the test domain is finite, while
for the alternative rZ,τ = 0 for all τ ∈ Z, the test domain is
infinite. However, f ∈ [0, fN ] is still a continuum.

The approach taken in [36] is to construct a single test
statistic from GLRTs conducted at frequencies where the
spectral estimators are approximately independent, (spaced
apart by the frequency bandwidth of the spectral estimator).
However if, say, RZ(f) '= 0 for a narrow band of frequencies
midway between two of the testing frequencies, i.e., on the
edge of the bandwidths for two of the independent statistics,
the test would be expected to be quite problematic.

Rather than requiring independent statistics we prefer the
flexibility of a multiple hypothesis testing approach. As a
proxy for the formal overall test we consider testing the set of
L null hypotheses

Hl : RZ(fl) = 0 for f1, . . . , fL, (52)

where {fl} is a set of frequencies densely sampling the
positive Nyquist range.

B. Controlling the FWER

The familywise error rate (FWER) is defined as Pr(V ≥ 1)
where V is the number of false rejections. Following [18], let
P(1) < · · · < P(L) denote the ordered p-values corresponding
to the L tests defined by (52). Let H(1), . . . , H(L) be the
associated null hypotheses. Let J be the minimal index such
that P(j) > α/[L + 1 − j]. Reject only the null hypotheses
H(1), . . . , H(J−1). If J = 1 then do not reject any hypotheses;
if no such J exists, reject all hypotheses. Then FWER ≤ α.
The tests need not be independent.

α = 0.05 frequency interval
0.005 0.01 0.02

FWER 4.7 5.0 4.8
FDRi 4.8 5.2 4.9
FDRd 1.0 1.2 1.2

TABLE III
RATES ACHIEVED (PERCENTAGES) OVER 10 000 REPETITIONS.

C. Controlling the FDR
Controlling the FWER is equivalent to making it unlikely

that even one false rejection is made. A less stringent approach
is to control the false discovery rate (FDR); see [2], [3]. Let
FDP denote the proportion of rejections that are incorrect.
Then FDR

def
= E{FDP}. As before let P(1) < · · · < P(L)

denote the ordered p-values. Define li = iα/[CLL] and
R = max{i : P(i) < li}. Here CL = 1 for independent
tests and CL =

∑L
i=1 1/i, for dependent tests. Let ) = P(R),

and

reject all null hypotheses Hi for which Pi ≤ ), (53)

then FDR ≤ α. The independent tests approach is also valid
for some forms of positive correlation [3]. The non-unity
adjustment CL for dependent tests is general: the level of
dependency does not matter; as a result, this procedure is rather
conservative. Nevertheless [3], the dependent tests approach
can still prove much more powerful than the comparable
FWER. Note that CL changes as more/less tests are made
(L increases/decreases) or the sampling rate of the frequency
range is increased/decreased.

D. Simulation of overall test for true null
Here we will look at an example of when the null hypothesis

(2) is true. We use the simulation set-up of Section VIII
for p = 2 but setting the coefficients {al} to zero in (51).
Hence RZ(f) = 0 for f ∈ [−0.5, 0.5]. With N = 512
and K = 6 the bandwidth of the spectral window (16) is
about 0.014. Over the range f ∈ [0.02, 0.48] we consider three
frequency samplings: steps of 0.005, 0.01 and 0.02; the first
two are within the spectral window bandwidth and the latter
outside, so we would expect the tests to be dependent for the
first two cases, and independent for the third. We carry out
10 000 independent repetitions with α = 0.05 and from these
calculate (a) the FWER, and (b) the FDR under assumptions of
(i) independence (FDRi) and (ii) dependence (FDRd). p-values
are calculated via the scaled F approximation. The results are
given in Table III. We see that FWER ≤ α, as required.
(The test does not require independence.) For FDRi there is
variation about 5% in line with the assumed independence
being false for frequency intervals 0.01 and 0.005. FDRd can
be seen to be always quite conservative.

E. Simulation of overall test for false null (ROC curve)
We now consider behaviour when the null hypothesis (2) is

false. To illustrate the receiver operating characteristic (ROC)
we use a signal structure used in [27] and [33]. Consider the
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Fig. 2. The ROC curve for the model of Section IX-E. On the x-axis is
α and we are using FDRd. The y-axis gives the probability of detection of
impropriety. The curves are for σ2

λ = 0.4 (solid), 0.5 (dashed) and 0.6 (dash-
dot).

scalar process Zt = Xteiλt + ξt where {Xt} is a real-valued
stationary zero mean Gaussian process with autocovariance
sX,τ = e−τ

2/5, λt is a random sequence drawn from a
Gaussian distribution with mean zero and variance σ2

λ, and
{ξt} is proper complex-valued Gaussian noise with variance
unity. All three random sequences are independent. So the
signal-to-noise ratio is unity and the signal is improper [27],
[33] while the noise is proper, as in [36]. A p = 2 vector-
valued process was created from two independent copies of
{Zt}. Fig. 2 shows the probability of detection of impropriety
(constructed from 10 000 repetitions) as a function of α using
FDRd. With N = 1000 and K = 12 the bandwidth of
the spectral window (16) is about 0.013, and we sampled
the frequencies at an interval of 0.005. The curves are for
σ2
λ = 0.4, 0.5 and 0.6. As σ2

λ increases, |RZ(f)| decreases
towards zero, and impropriety is increasingly hard to detect.

X. DATA ANALYSIS

A. Background
We apply our results to ocean current speed and direction

time series recorded at a mooring in the Labrador Sea [8],
[21], [22]. We associate the eastward (zonal) measurement
of current speed with {Xt} and the northward (meridional)
measurement with {Yt} and thus obtain the complex-valued
series from (3). We consider series recorded at the three depths
110, 760 and 1260m. The series are labelled 1 to 3 with
increasing depth, giving Zt = [Z1,t, Z2,t, Z3,t]T . We used
N = 1600 observations for the 3-vector-valued complex time
series, with a sampling interval of ∆t = 1hr. In the spectral
analysis K = 12 sine tapers were applied. Since WN in (16)
is 0.004c/hr, the validity range WN ≤ |f | ≤ fN − WN

for our statistical results for a finite-N sample is given by
0.004 ≤ |f | ≤ 0.496c/hr. For this data there was no evidence
to reject stationarity [7, p. 49], [8] or Gaussianity [9].

Of great interest to oceanographers are deep ocean motions
well away from boundaries, especially in the internal wave
frequency band. We pay special attention to low frequencies
f ∈ [0.02, 0.14]c/hr within which interesting rotational effects
have been observed in previous studies [8], [38]. The very
dominant semi-diurnal tide at around f = 0.08c/hr was
estimated and removed to avoid spectral leakage.
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Fig. 3. Upper plot: the spectrum SZ(f), in dB, for one of the three current
series. Thin line: the counterclockwise (positive) frequencies; thick line:
clockwise (negative) frequencies. Middle plot: |Re{RZ(f)}| on 10 log10
scale. Lower plot: |Im{RZ(f)}| on 10 log10 scale. The dashed line marks
the semi-diurnal tidal frequency.

By way of example Fig. 3 shows the scalar quantities
SZ(f) and RZ(f) for one of the series. We see that SZ(f) is
asymmetric about f = 0 as expected. For frequencies around
f = 0.04c/hr, we see that |Im{RZ(f)}| is noticeably larger
than |Re{RZ(f)}|; these frequencies are of interest later (see
Fig. 4).

B. Testing for Propriety
Fig. 4 shows propriety-testing results for our region of inter-

est f ∈ [0.02, 0.14]c/hr. The upper plot shows the test statistic
M(f) and the critical value for α = 0.05 for the frequency-
specific propriety test for the vector Zt = [Z1,t, Z2,t, Z3,t]T .
On a frequency-by-frequency basis rejection occurs at all
frequencies where M(f) exceeds the critical value; these
frequencies are shown by heavy dots. The lower plot shows the
results from the overall FDRd approach. Frequencies causing
rejection according to (53) are also marked by heavy dots.
As might be expected, the frequencies leading to the overall
rejection of propriety — those around f = 0.04c/hr — are a
subset of those causing rejection on a frequency-by-frequency
basis.

We also implemented the testing approach of [36] using —
in order to get independent statistics — multitaper estimates
spaced apart by the bandwidth, 0.008c/hr, of the spectral
window. Again, with α = 0.05, overall propriety was rejected,
as would be expected given that our test identified the band
of frequencies around 0.04c/hr as responsible for rejection,
and this would be easily ‘seen’ with a frequency spacing of
0.008c/hr. Note, the information conveyed in Fig. 4 is clearly
useful in specifying the frequencies causing rejection, whereas
the approach in [36] provides only a decision on propriety. In
situations where isolated narrow bands of frequencies might
cause rejection the approach in [36] could be problematic, as
explained in Section IX-A.

XI. SUMMARY AND CONCLUSION

We have developed a frequency domain approach to test
for propriety of complex-valued vector time series. For the
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Fig. 4. The test statistic M(f) (solid) and the critical value (dotted line)
for α = 0.05 for the frequency-specific propriety test for the vector Zt =
[Z1,t, Z2,t, Z3,t]T . Upper: test at individual frequencies; rejection occurs at
all frequencies where M(f) exceeds the critical value, such frequencies being
marked by heavy dots. Lower: overall test results using FDRd with α = 0.05.
Frequencies causing rejection are again marked by heavy dots. The dashed
line marks the semi-diurnal tidal frequency.

vector case (p ≥ 2) we have justified use of the rule that
the frequency-specific hypothesis H0f in (23) is rejected if
M(f) = −2K log T (f) > bFν1,ν2(1 − α). There is no
assumption that K is large, and indeed this would rarely
be expected in practice. We have shown in detail how the
statistic T (f) arises by consideration of canonical coherencies
for complex-valued vector time series. The frequency-specific
tests can be combined using multiple hypothesis testing to give
an overall test of H0 in (2).

When propriety is invalid, the frequency domain approach
has the scientific advantage of showing which frequency bands
are causing rejection, possibly allowing linkage to known or
hypothesized properties of the physical processes involved.

APPENDIX

A. Proof of Lemma 2
To simplify notation we drop explicit frequency dependence.

Consider the distribution of T = L1/K
G , given by (33), under

the null hypothesis. From [19, eqn. (2.6)]

E{T r}=
∏2p

j=1 Γ(K+r + 1− j)[
∏p

j=1 Γ(K+1− j)]2
∏2p

j=1 Γ(K+1− j)[
∏p

j=1 Γ(K+r + 1− j)]2
.

(54)
Now T r = Lr/K

G so if we let r → rK, then T rK = Lr
G. So

E{Lr
G}=

∏2p
j=1 Γ(K[1 + r] + 1− j)

∏p
j=1 Γ(K+1−j)

∏2p
j=1 Γ(K+1−j)

∏p
j=1 Γ(K[1 + r] + 1− j)

×
[ ∏p

j=1 Γ(K+1−j)
∏p

j=1 Γ(K[1 + r] + 1− j)

]

=

∏p
j=1 Γ(K[1 + r] + 1− j − p)
∏p

j=1 Γ(K + 1− j − p)

×
[ ∏p

j=1 Γ(K+1−j)
∏p

j=1 Γ(K[1 + r] + 1− j)

]

=

[ ∏p
j=1 Γ(K+1−j)

∏p
j=1 Γ(K + 1− j − p)

]

×
∏p

j=1 Γ(K[1 + r] + 1− j − p)
∏p

j=1 Γ(K[1 + r] + 1− j)
,

which is (34).

B. Proof of Lemma 3
Under the null hypothesis the rth moment of T (f) is

E{T r(f)} =
p∏

j=1

Γ(K + r + 1− j − p)Γ(K + 1− j)

Γ(K + r + 1− j)Γ(K + 1− j − p)
.

(55)
To see this start with (54) and proceeed in analogous vein
to the proof of Lemma 2; since we are continuing to look
at E{T r} the step r → rK is not made. Note that when
j = p the critical gamma function argument is still positive:
K + r+ 1− j − p = K + r+ 1− 2p > 0 since K ≥ 2p with
r ≥ 0.

A real scalar random variable X is said to have a (type-1)
beta distribution, X d

= beta(α,β), if the PDF is

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1−x)β−1, 0 < x < 1,α > 0,β > 0.

The rth moment for this distribution is

E{Xr} =
Γ(α+ r)Γ(α+ β)

Γ(α+ β + r)Γ(α)
, α+ r > 0. (56)

Comparing (55) and (56) we see for a fixed j that α = K +
1− j − p and β = p which gives the required result.
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