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We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light,

taking place only in the cylinder’s outer region. In the steady state, both the outer and inner regions

contain a plasma, with that in the inner region being uniform and field-free. At the interface

between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching

zero in the quasi-neutral (kD ! 0) limit. The system offers the possibility of producing a uniform

stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4926529]

I. INTRODUCTION

In two recent papers, we have presented models of a

plasma split into two regions of equal width, with ionization

by ultraviolet light taking place only in the inner region and

not in the outer.1,2 At the interface between the two regions,

a double layer was formed, the ion velocity entering the

outer plasma being greater than the Bohm (or ion-acoustic)

velocity. In the present paper, we study the inverse case, i.e.,

ionization due to photo-violet irradiation only in the outer

region. A uniform plasma fills the inner region, but instead

of a double layer at the interface between the regions, there

is an infinitesimal jump in ion density; quasi-neutrality then

holds up to the formation of a sheath at the wall. In this case,

the ion velocity on entering the wall sheath is about equal to

the Bohm velocity. The model predicts a uniform stationary

plasma in the inner region. Such a state of plasma is

extremely rare; the only case known to us is that of a ther-

mally produced alkali plasma.3 We can note that these two

different situations have the common feature that the ions

and electrons, which constitute the plasma, have entered the

plasma from outside. The system offers the possibility of

interesting experimental work, since it is difficult to make

measurements on thermally produced plasmas.

II. THEORETICAL MODEL

Figure 1 illustrates the plasma modelled here, which

four steady-state equations describe. Two are fluid equations,

namely, the continuity equation

r � ðnivÞ ¼ g (1)

and the ion momentum equation

miniðv � rÞvþ mivg ¼ �nierV; (2)

while the other two equations are Poisson’s equation,

r2V ¼ e

e0

ne � nið Þ (3)

and the Boltzmann relation for electrons

ne ¼ n0 exp
eV

kBTe

� �
; (4)

where ni and ne are the ion and electron densities, respec-

tively, v is the ion velocity, g is the net generation rate, mi is

the ion mass, V is the electric potential, Te is the electron

temperature, and n0 is the electron density at the system’s

centre. The generation rate g is nil in the inner region I but

equals gII> 0 in the outer region II.

Substituting the Boltzmann relation into the other equa-

tions reduces the system to three equations in three

unknowns (ni, v, and V). Doing so, and applying the r oper-

ator’s definition in cylindrical coordinates,

d nivð Þ
dr
þ niv

r
¼ g; (5)

FIG. 1. The cylindrical system we analyze. The system comprises two

regions of plasma, the central region I (0� r< a) and the outer region II

(a� r� 2a). Generation by photoionization occurs in region II with intensity

gII, and not at all in region I.
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miniv
dv

dr
þ mivg ¼ �nie

dV

dr
; (6)

d2V

dr2
þ 1

r

dV

dr
¼ e

e0

n0 exp
eV

kBTe

� �
� ni

� �
; (7)

using the fact that, by cylindrical symmetry, v ¼ vr̂ and

rV ¼ ðdV=drÞr̂.

Supplementing these equations with boundary condi-

tions determines specific solutions. Cylindrical symmetry

dictates that all vector observables, including niv and rV,

vanish at r¼ 0. V is zero too at r¼ 0, for otherwise, the defi-

nition of n0 would be inconsistent with Eq. (4). The outer-

most boundary condition comes from the demand that

solutions be steady states: when the system is at a steady

state, ions and electrons must leave through the outer wall at

equal rates, so at r¼ 2a

niv ¼ n0 exp
eV

kBTe

� � ffiffiffiffiffiffiffiffiffiffiffi
kBTe

2pme

s
; (8)

where 2a is the radius of the entire system. At the interface at

r¼ a, we require continuity of V (a feature of models employ-

ing the electron Boltzmann relation) and the ion flux niv.

We nondimensionalize the equations with several char-

acteristic quantities: a generation intensity, g0; the Bohm

speed, cs � ðkBTe=miÞ1=2
; an ionization length, Li� n0cs/g0;

and an electric potential, VT� kBTe/e. We may then rewrite

the above equations in normalized form with the dimension-

less quantities U � v=cs; G � g=g0; R � r=Li; A � a=Li;
U ¼ �V=VT , and N� ni/n0

d NUð Þ
dR

þ NU

R
¼ G; (9)

U
dU

dR
þ G

U

N
¼ dU

dR
; (10)

d2U
dR2
þ 1

R

dU
dR
¼ N � exp �Uð Þ

K2
; (11)

where K� kD/Li, kD being the plasma’s (electron) Debye

length. The boundary conditions are then

NU ¼ dU
dR
¼ U ¼ 0 (12)

at R¼ 0, continuity of U and NU at R¼A, and at the wall at

R¼ 2A

NU ¼
ffiffiffiffiffiffiffiffiffiffiffi

mi

2pme

r
exp �Uð Þ: (13)

The continuity of NU at R¼A does not imply continuity

of N or U individually. A priori, N and U may have jump dis-

continuities at R¼A. It is similarly important to note that in

the quasi-neutral approximation, which takes K ! 0 and

ni¼ ne, Eq. (11) becomes superfluous and the wall sheath,

being infinitely thin, coincides with the wall itself; the

R¼ 2A boundary condition is then given by the singularity at

which dU/dR !þ1 and U ! 1, the (normalized) Bohm

velocity.

III. SOLUTION FOR REGION I

The inner region’s solution is trivial because G¼ 0,

reducing the continuity and momentum equations to

d NUð Þ
dR

þ NU

R
¼ 0 (14)

and

U
dU

dR
¼ dU

dR
; (15)

respectively. Given Eq. (12) at R¼ 0, the continuity equa-

tion’s solution is NU¼ 0 everywhere in region I, and invok-

ing the physical condition that N be everywhere finite

implies U¼ 0 throughout region I. With U constantly zero,

the momentum equation means U is constant in region

I—so, U¼ 0 everywhere in region I, not only at R¼ 0. From

the Boltzmann relation, we then have N¼ 1 through all of

region I. Every variable is therefore constant in region I:

N¼ 1 and U¼U¼ 0.

IV. QUASI-NEUTRAL SOLUTION FOR REGION II

The outer region II, where generation takes place, is

rather less tractable. There appears to be no closed-form so-

lution for Eqs. (9)–(11) here. We may simplify things by

assuming quasi-neutrality, where we take ni¼ ne and replace

Eq. (11) with N ¼ expð�UÞ. This leaves two equations to

solve for N and U. Eq. (9), the continuity equation, is

unchanged but the ion momentum equation becomes

U
dU

dR
þ G

U

N
¼ � 1

N

dN

dR
: (16)

As in region I, the continuity equation has a simple gen-

eral solution for NU. With NU continuous at the interface of

the two regions, region I’s solution implies NU¼ 0 at R¼A
and the specific solution

NU ¼ GII

2

R2 � A2

R
(17)

in region II. The natural choice of g0 is gII, making GII¼ 1

and

N ¼ 1

U

R2 � A2

2R
: (18)

Substituting into Eq. (16),

1

U
� U

� �
dU

dR
¼ 2R2U2 þ R2 þ A2

R R2 � A2ð Þ ; (19)

solving which gives U as a function of A and R. Again, there

is no closed-form solution, but we can make some inferences

about the solution’s behaviour. Rearranging,

dU

dR
¼ U

1� U2

2R2U2 þ R2 þ A2

R R2 � A2ð Þ ; (20)

which is evidently positive, where R>A and 0<U< 1. At

R¼A itself, dU/dR¼ 1, as shown by rearranging Eq. (18) for

073507-2 D. M. Thomas and J. E. Allen Phys. Plasmas 22, 073507 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.198.208.178 On: Tue, 14 Jul 2015 20:03:02



U, substituting into Eq. (20)’s right-hand side, and observing

that N ¼ expð0Þ ¼ 1 at R¼A, because U¼ 0 in region I and

is continuous at R¼A.

As such, U strictly monotonically increases with R until

U¼ 1, at which point dU/dR! þ1 and there is a singular-

ity. We thus reproduce the usual quasi-neutral behaviour: the

ion speed tends to the Bohm speed4 as the electric field tends

to infinity.

Lacking an analytic solution, we solve Eq. (19) numeri-

cally. To accelerate the numerical computation, we exploit

the fact that given U¼U0 at some position, Eq. (19) may be

approximated as

1

U
� U

� �
dU

dR
¼ 2R2U2

0 þ R2 þ A2

R R2 � A2ð Þ ; (21)

where U remains a function of R, but U0 is constant.

Applying the condition U¼U0 at R¼R0, this (now separa-

ble) differential equation has the solution

U¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W �R2

0

R2
U2

0 exp �U2
0

� � A2�R2

A2�R2
0

 !2 1þU2
0ð Þ

0
@

1
A

vuuut ; (22)

where W is the Lambert W function’s principal branch. This

solution is valid for any interval [R0, R] over which U�U0.

We may then obtain the quasi-neutral solution over all of

region II by chopping region II into subregions, all so narrow

that U is virtually constant within each, and applying

Eq. (22) to each subregion in turn to compute U.

We simultaneously compute N from Eq. (18), and U as

ln (1/N). Given the boundary condition that U¼ 1 at R¼ 2A,

the choice of A determines N and hence U at the interface.

Since U¼ 0 there, we must then choose A to make N¼ 1 at

R¼A. By numerical trial and improvement, we find this crit-

ical A value is 0.62542, so the total radius of the quasi-

neutral system is 1.251Li, and N at its outermost edge is

0.468. Figure 2 presents this canonical solution for U and N.

The quasi-neutral solution does not hold near the sys-

tem’s outer wall, where the plasma approximation fails—in

reality, a sheath must form there, so ni ceases to be approxi-

mately ne. However, in the K! 0 limit, the sheath is vanish-

ingly thin, and the quasi-neutral solution gives excellent

results almost everywhere. The quasi-neutral solution

therefore provides a rough check on numerical solutions

with small K.

V. NUMERICAL SOLUTION FOR REGION II
WITH FINITE DEBYE LENGTH

Because K is nonzero in practice, realistic solutions of

Eqs. (9)–(11) differ from the quasi-neutral solutions, and the

equations must be re-solved numerically. To accomplish

this, we apply the shooting method. For each iteration of the

shooting method, we solve the three differential equations

by integrating outwards from near the interface with the

midpoint method.

The normalized system has the four dimensionless

parameters mi/me, GII, K, and A; once any three are set, the

fourth is then constrained to a particular value by the outer

wall boundary condition. We fix mi/me¼ 736744 (corre-

sponding to Hgþ2 ions, the ion species considered in our pre-

vious papers), GII¼ 1, and K¼ 0.003, then find A by trial

and improvement, converging to an A for which Eq. (13) is

approximately satisfied. Figure 3 presents this solution of the

system. We find that the region II plasma has a sheath adja-

cent to the outer wall, but has minimal net space charge

closer to the plasma’s central axis. Near the interface

(R�A), the numerical solution is similar to the quasi-neutral

solution, but the two solutions gradually deviate farther out.

A subtle but important feature is a discontinuity in N at

the interface. In region I, N is exactly unity. However, for

our current parameters, N discontinuously jumps from 1 to

1.000018 at the beginning of region II. The electron density

is continuous at the interface because it is given by the

Boltzmann relation, and we cannot have discontinuities of

potential. This argument does not apply to the cold positive

ions. The ion density must change in order to produce a very

small space charge density (a divergence of the electric field)

in the outer plasma. We can note that this does not imply a

layer of charge on the boundary, the electric field is continu-

ous. Consequently, all of region II is a positive space charge

region, not just its sheath, but that space charge is too subtle

to be visible near the interface unless one looks closely

(Figure 3, inset).

N’s discontinuity is not an artifact. Even under quasi-

neutrality, N and U have nonzero curvature at the interface,

which in physical terms implies a nonzero space charge

FIG. 2. Numerical quasi-neutral solu-

tions for U (left panel, solid curve), U
(left panel, dashed curve), and N (right

panel) with A¼ 0.6254204.
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density. To estimate that density, we rearrange Eq. (17) for

U and substitute into the quasi-neutral ion momentum equa-

tion. After some algebra that gives

�N
dN

dR
¼R2�A2

2R
þR2�A2

4R3N
R2þA2ð ÞN� R2�A2ð ÞRdN

dR

� �
:

(23)

At R¼A, dN/dR¼ 0 and R2 – A2¼ 0, so at that R all terms in

Eq. (23) are nil. But the terms do not all have the same

dependence on R–A. Unlike the other terms, the very last

term is a product of dN/dR and of (R2 – A2) squared, so for

0< (R�A) � 1, it is negligible relative to the other terms.

We therefore drop this term to get

�N
dN

dR
� R2 � A2

2R
þ R4 � A4

4R3
; (24)

which has the specific solution

N � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 N2

0 þ A2
� �

� 3R2 � A4

R2
þ 4A2 ln

R

A

r
; (25)

where N0 is N’s value at the interface (R¼A). Under quasi-

neutrality, U¼�ln N, so we substitute the N solution into

that expression for U and take U’s Taylor series about R¼A
to second order

U � �ln N0 þ
R� Að Þ2

N2
0

; (26)

) d2U
dR2
� 2

N2
0

: (27)

U’s curvature is not going to be much different for suffi-

ciently small K, so we now let K be finite and reintroduce

Poisson’s equation

d2U
dR2
¼ N � exp �Uð Þ

K2
� 1

R

dU
dR
� 2

N2
0

: (28)

At the interface, N¼N0 and U¼ dU/dR¼ 0, so

N0 � 1

K2
� 2

N2
0

; (29)

a cubic equation with the solution

N0 �
1þ � þ 1=�

3
; (30)

where

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 81K2

p
þ 27K2

3

q
: (31)

For all K> 0, � and hence N0 are greater than 1. It follows

that N jumps discontinuously from 1 to N0, where region I

becomes region II, and the size of the jump is the net space

charge density at the interface. (Our numerical solver uses

this fact to compute boundary conditions for the region II

equations.) When kD � Li, N0� 1þ 2K2, so the net space

charge density at the interface is �2K2 (Figure 4).

FIG. 3. Numerical region II solution

for K¼ 0.003 (thin curves) compared

to the canonical quasi-neutral solution

(thick dotted curves). We augment the

default choice of axis scale (R, on the

lower axes) with the alternative choice

(on the upper axes) of r normalized by

a’s value when K¼ 0.003. In plot (b),

the thin solid curve represents the ion

density while the thin dashed curve

represents the electron density

expð�UÞ.
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It is straightforward to consider the solution’s spatial de-

pendence near the interface rather than its K dependence.

Taking Taylor series of Eq. (25) about R¼A

N ¼ N0 �
R� Að Þ2

N0

þO
�
ðR� AÞ3

�
: (32)

In the limit of K vanishing outright, N0 ! 1. We then have

N� 1� (R�A)2, U� (R�A)2 from Eq. (26), and combin-

ing the continuity equation with the fact that U¼ 0 and G
jumps to 1 at the interface, dU/dR� 1/N� 1, so U� (R�A).

This matches the behaviour of the curves in Figure 2 just

beyond the interface: N falls parabolically, U grows paraboli-

cally, and U rises nearly linearly.

Just as the quasi-neutral case casts light on systems with

0<K � 1, our numerical solutions of the latter support our

quasi-neutral result. Computing A for assorted small values

of K (with G and mi/me fixed at 1 and 736744, respectively),

it is evident that as K shrinks, the resulting A values con-

verge on 0.62542 (Figure 5), the canonical A value found

earlier by solving the quasi-neutral equations. For K � 1, A
is greater than the canonical quasi-neutral A by about 4K4=5.

Figure 6 displays the same information in a different

manner. The quantity 1/A illustrates that the ionization

length is comparable to the plasma dimension, but depends

on kD’s magnitude in comparison with the latter.

VI. CONCLUSION

An interesting result of the present investigation is that a

uniform field-free plasma forms in the inner region. This is

an extremely rare occurrence in plasma physics, the other

example known to us being that of a thermally produced cae-

sium plasma in a cavity.3 It is clear that further calculations

could readily be carried out. An example would be to use a

Tonks-Langmuir model5 in which the positive ions have a

distribution of velocities in the radial direction. Collisions

with neutral atoms could also be included in the analysis. A

process not included in the model is that electrons produced

by irradiation may then contribute to further ionization in

collisions with neutral atoms.

We have also confined ourselves in this paper to the sys-

tem’s steady-state solutions, but one could carry out a tran-

sient analysis which accounted for the initial flow of

electrons into region I as the plasma establishes equilibrium.

This electron flow would produce an electric field drawing

the ions in after the electrons, a phenomenon akin to the

expansion of a plasma into a vacuum.6 Modelling transient

effects could also quantify how the plasma’s behaviour

adjusts the fundamental, observable plasma parameters (n0,

Te, and gII) to move K to its steady-state value, even if the

experimenter’s initial conditions give K a different starting

value.

FIG. 4. Detail of the ion density discontinuity at the interface between

regions I and II in the K¼ 0.003 case with Hgþ2 ions and G¼ 1.

FIG. 5. A as a function of K given G¼ 1 and Hgþ2 ions.

FIG. 6. 1/A as a function of K/A given G¼ 1 and Hgþ2 ions. The dashed line

is 1/A in the K! 0 limit.
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Calculations could be carried out for a less abrupt

change between regions I and II as briefly discussed in our

earlier paper,1 and for different ratios of the two regions’

radii. We made our choice of positive ion, i.e., Hgþ2 , for his-

torical reasons given in the same paper.1 The ratio of this ion

mass to the electron mass enters the theory through the

boundary condition at the wall. In effect, it determines only

the width of the sheath and the voltage across it. It is of inter-

est to note that the ion velocity on entering the sheath is

about equal to the Bohm velocity, whereas in our earlier

model, which had ionization in the inner region, consider-

ably higher velocities were found.1 An even more striking

difference between that model and the current model is the

behaviour of their solutions near the interface. Our earlier

model produced a double layer centred on the interface,

while our current model has a jump discontinuity in density.

Our previous paper gave an indication of the equipment

needed for experimental work in this field.1 The model sys-

tem we present here should be relatively easy to realize in

the laboratory, especially compared to our original model

system, and could be a way to make uniform, stationary plas-

mas on command. To accomplish this, annular UV illumina-

tion of a cylindrical container of mercury gas should suffice.

We are hopeful that both experimental work and further the-

oretical work shall be carried out to make further progress in

this vein.
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