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Abstract
The interaction of a small object with surrounding plasma is an area of plasma-physics research
with a multitude of applications. This paper introduces the plasma octree code pot, a
microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes–Hut treecode
algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable
spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection
algorithm from SCEPTIC; a description of the implementation of all three algorithms is
provided. We present results from pot simulations of the charging of spheres in magnetised
plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of
using the Boltzmann relation in hybrid PIC codes.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The study of dusty plasmas is concerned with objects, usually
on the micro- or nano-scale, immersed in a hot ionised gas
known as a plasma. These objects, referred to as dust grains,
may be either solid or liquid and are ubiquitous in plasmas.
As such, the instances and applications of dusty plasmas are
too numerous to elaborate on fully here; they include inter-
stellar dust, planetary rings, noctilucent clouds, plasma
spraying, contamination in semiconductor processing plasmas
and impurities in magnetic confinement fusion devices, to list
but a few [1].

The collective behaviour of a pure plasma is highly
complex, and depends on the interactions between vast
numbers of individual ions and electrons. This complexity is
increased further by the inclusion of dust grains; not only do

they represent an additional charged species, but they act as
sources and sinks for electrons and ions. Therefore the charge
on the dust may fluctuate [2], but this charge depends addi-
tionally on non-plasma processes such as thermionic, field-
induced and photonic emission of electrons [3]. The shape
and size of dust is also variable, as they can grow through
aggregation [4] or shrink through evaporation and violent
processes such as electrostatic breakup [5]. The co-depend-
ence of these processes, and many others, in a dusty plasma
has led to their alternative name of ‘complex plasmas’, and is
manifest in surprising phenomena such as the self-organisa-
tion of dust grains into crystal-like structures [6]. Although
some approximate analytic theories exist to describe funda-
mental processes in a dusty plasma, the inherent complexity
of these systems necessitates computer simulations to resolve
their full detail.

As an illustration of the difficulty in modelling dust-
plasma interactions, consider the most fundamental process in
a dusty plasma: the charging of grains by ion and electron
currents drawn from the plasma. The most widely used theory
to describe these currents is the orbit-motion-limited (OML)
theory [7], which gives simple algebraic expressions for the
currents but assumes a small, spherical grain, no potential
barrier to ions reaching the grain, a stationary and Maxwellian
plasma far from the grain, no applied electric or magnetic
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fields, no trapped ions, no ionisation, and no collisions
between particles. The OML assumptions have provoked
some criticism [8], but for small grains the theory works
remarkably, even surprisingly [9], well. OML theory has been
extended to more realistic cases, such as the shifted OML
(SOML) theory, which applies to drifting Maxwellian plas-
mas [10]. The inclusion of ion collisions with neutrals, which
trap ions in orbits around the dust and increase the ion current
to the grain, have also been studied [11]. A more con-
troversial extension to OML theory has been the addition of
magnetic fields by assuming that only the electrons become
magnetised [12]; that is to say that the electrons follow helical
trajectories due to the magnetic Lorentz force, while the
heavier ions are unaffected on the scale of the dust.

While these extended theories improve on the OML
model, they still omit several important features of real
plasmas. Similar complexity is faced in all other aspects of
dust–plasma interactions; for example in calculating the drag
force of the plasma on the dust, the plasma response to the
dust, and wave propagation in dusty plasmas. Only computer
simulations can provide complete models of the dust-plasma
interactions, and to this end several particle-in cell (PIC)
codes have been developed [13–19]. The most widely used of
these, SCEPTIC, shows excellent agreement with the OML
and SOML models in the appropriate limits [20]. However,
PIC codes incorporate only some of the microscopic detail of
the plasma, because the fields are interpolated from grid
points and the inter-particle forces are underestimated within
cells. Collisions between particles must therefore be artifi-
cially imposed on the simulation to be included at all, despite
the fact that they can be crucial to many aspects of the dust–
plasma interaction [11]. Furthermore, hybrid codes such as
SCEPTIC employ the Boltzmann relation for electrons, which
may be invalid when a magnetic field is present [21], and
which dispenses completely with microscopic information
about the electrons. A sceptic might therefore suppose that the
analytic theories and PIC codes agree only because they share
systematic biases arising from the details they both omitted.

To preempt this criticism one could calculate the motion
of every single particle in the plasma in order to maximise the
faithfulness of a simulation. Insofar as such a simulation
successfully approximated the motion of every ion and
electron, it would necessarily produce results like those of a
real plasma. However, given a plasma of N particles, com-
puting the field felt by one particle requires iteration over the
remaining -N 1 particles, and repeating this for all of the
particles results in a computational time proportional to

-N N 1( ). The runtime of an exact simulation is therefore
 N 2( ), which becomes prohibitively large as N is increased to
that required for a realistic simulation.

The treecode algorithm developed by Barnes and Hut for
galactic simulations allows this formidable runtime cost to be
avoided by calculating approximate, rather than exact, values
for the field in  N Nlog( ) time [22]. This algorithm has
already demonstrated its utility in simulations of laser-plasma
interactions [23] and of some 1D and 2D low-temperature
plasma applications [24]. This paper describes the develop-
ment of the fully microscopic plasma octree code pot, which

implements the Barnes–Hut algorithm for a plasma in the
vicinity of a dust grain. The term ‘octree’ here refers to the
algorithm’s eightfold splits of the 3D space within the
simulation.

pot has several novel features to commend it to the
computational physicist: it is the first 3D implementation of
the Barnes–Hut algorithm in a low-temperature or dusty
plasma environment, it provides a rare example of the Boris
particle-motion integration scheme [25] outside particle-in-
cell (PIC) codes, and it contains the first successful re-
implementation of Hutchinson’s particle-injection algorithm
beyond SCEPTIC [26].

An overview of the implementation and scope of pot is
given in section 2. It would be tedious to describe the source
code of pot in its entirety but there are three algorithms
which, being vital to potʼs successful implementation,
deserve elucidation. These are the Boris particle-motion
integrator [25], the Barnes–Hut treecode [22], and Hutch-
inson’s reinjection algorithm [26], and section 3 provides
their specifications. However it is not enough to have just a
computer programme which simulates the dust–plasma
interaction; one has to have some grounds for trusting its
output, and section 4 gives details of some tests of pot to
check that it gives physically realistic results. In particular the
charging behaviour of pot is compared against the predic-
tions of the OML, SOML, and magnetised-electron theories,
and of SCEPTIC. The first new results from pot, for the
charging of spherical grains in a strong magnetic field and the
charging of non-spherical grains in unmagnetized plasmas,
are also presented. Section 5 provides a brief summary of this
work, with a look towards the future applications of pot.

2. The plasma octree code pot

The plasma octree code pot, in its present form, simulates a
lone collecting spheroid (the dust grain) in a spherical region
of wholly ionised plasma, with the user able to choose the size
of both the collecting spheroid and the simulation region. The
plasma consists solely of N 2⌈ ⌉ electrons and N 2⌊ ⌋ ions of
one pre-defined species, where N is selected by the user
subject to runtime and memory constraints. The programme
simulates the plasma by approximately solving the trajectories
of every particle using the Boris integrator [25], the precise
specification of which is given in section 3.1. The electrons
and ions are modelled as classical, non-relativistic point
charges of constant mass while the dust grain is taken to be a
perfectly conducting spheroid. These particles interact with
each other through their electrostatic fields. Coulomb colli-
sions are therefore inherent and need not be artificially
imposed on the simulation.

The user determines the values of the plasma parameters:
pot accepts the electron and ion temperatures as command-
line arguments while the electron and ion masses and ion
charge may be adjusted by changing compile-time constants
in potʼs source code. The plasma density cannot be set
directly, but is implied by the user’s choice of N and the
simulation domain’s size.
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To save processing time, pot assumes that the time-
varying magnetic interactions between particles due to their
motion are negligible compared to their electrostatic interac-
tions; this is consistent with the fact that pot simulates non-
relativistic plasmas. However, the user is able to impose an
arbitrary space- and time-independent magnetic field on the
plasma. Each simulated particle experiences the usual Lorentz
force, with the time-varying electric field computed from the
system’s charge distribution via the treecode algorithm as
specified in section 3.2.

Each simulation begins with the electrons and ions dis-
tributed randomly with their positions sampled from a uni-
form distribution and their velocities sampled from a drifting
Maxwell–Boltzmann distribution with a user-specified flow
speed. The dust begins with no charge but rapidly acquires it
through the collection of electrons and ions, the trajectories of
which are interpolated between timesteps to ensure accurate
collection. Ions or electrons which leave the simulation, either
by colliding with the dust grain or by breaching the simula-
tion region’s boundary, are reinjected at a random point on
the simulation region’s boundary (q.v. section 3.3). One
might expect that the particles can simply be reinjected
according to the Maxwell–Boltzmann distribution; however,
this fails to account for the geometry of the simulation
domain. Any smooth, contiguous region of the simulation’s
boundary faces in a particular direction, and this anisotropy
causes the velocity distribution of particles entering the
domain to differ from a Maxwell–Boltzmann distribution.
The reinjection algorithm developed by Hutchinson for
SCEPTIC takes this effect into account [26], but it lacks a
comprehensive written exposition. A detailed review of this
method, and the differences in its implementation between
pot and SCEPTIC, is provided in section 3.3.

pot is a parallel programme, written in C, which uses the
message passing interface (MPI) to divide tasks across mul-
tiple processes. It can be compiled to display the simulated
particles’ motion and trajectories (figure 1), live, using the
OpenGL graphical library, which has proved a valuable
visualisation and debugging tool. The programme is available
online at https://github.com/drewthomas/pot.

3. Core algorithms

The successful operation of pot relies on several interlocking
algorithms. The Boris particle-motion integrator [25], the
Barnes–Hut treecode [22] and Hutchinson’s particle-reinjec-
tion algorithm [26] are particularly vital to pot. Because it
can be inconvenient to locate lucid, precise specifications of
these algorithms, and because their implementation in pot
may differ from elsewhere, the following subsections describe
their implementation in pot.

3.1. Boris particle-motion integrator

The equation of motion for a non-relativistic plasma particle
is simply Newton’s second law with the Lorentz force

substituted into it
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where r t( ) and v t( ) are the time-varying position and velocity
of the particle, which has mass m and charge q and is sub-
jected to the electric and magnetic fields E r t t,( ( ) ) and B. It
would be impossible to solve these equations analytically for
every particle, so a range of integrators have been devised
which, given the values r t0( ) and v t0( ), progress the simu-
lation through a timestep of length dt to give the updated
values d+r t t0( ) and d+v t t0( ). The trajectories of all the
particles can be evaluated over time by executing the inte-
grator iteratively. The time step must be small enough to
resolve the motion of the particles, so is constrained by the
following conditions.

(i) Particles with temperature T, and hence average thermal
velocity =v k T mth B

1 2( ) , must not be able to traverse
the grain, of radius a, in one time step, which imposes
the requirement d t a vth. For a non-spherical grain
the appropriate value of a is the smallest radius of
curvature at any point on the surface, for example at the
needle-like tips of an elongated prolate spheroid.

Figure 1. An example of potʼs graphical user interface (GUI) for a
simulation containing 2500 (blue) electrons, 2500 (red) ions and a
single (green) dust grain with an applied magnetic field of 1 T; full-
scale simulations have been performed with 150 000 particles in
total. The particles’ helical trajectories and the dust grain are shown
to scale while the ions and electrons, being microscopic and invisible
on this scale, are represented by spheres much larger than their
physical size. The GUI can be initialised by compiling pot using a
flag definable in potʼs source code. It has been particularly useful in
testing for sensible particle collection and reinjection and for
ensuring steady particle gyro-orbits.
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(ii) As the simulation must resolve collective motion of the
particles, the timestep must be shorter than the period of
an electron plasma oscillation. Therefore d w-t pe

1,
where w = n e mpe e

2
e 0

1 2( ) for a plasma with electron
density ne.

(iii) The integrator must resolve the gyromotion of a particle
around the magnetic field lines, which occurs with
frequency w = q B mg ∣ ∣ and hence d w-t g

1.

dt is left to the pot user’s discretion, who must keep these
constraints in mind. Criterion (i) is generally the most
stringent. For example, taking the default parameters listed in
table 1 gives d t 43.3 ps and d t 6.66 ns for the first two
conditions respectively. The default timestep of 1 ps is
therefore appropriate and this additionally satisfies condition
(iii) provided <B 5.69 T or, as defined in equation (7),
b < 0.81i . The ions, being much heavier and slower than the
electrons, may have a longer integration timestep than the
electrons, so the positions and velocities of the ions are
updated every T m T me i i e

1 2( ) steps (rounded down to the
nearest integer) while the electrons are updated at every step.

pot implements the Boris integrator according to the
concise specification of Patacchini and Hutchinson [27],
rather than the specification in Boris’s original paper [25], as

⎡
⎣⎢

⎤
⎦⎥

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

d
d

d

d d d

d d d

d d
d

d

+ = +

+ =

´ +
+ +

+
+ +

+ = + + +

dj

r r v

v

v
E r

E r

r r v

t t t
t

t

t t

t
t q t t t t

m
t q t t t t

m

t t t t
t

t t

R

2
2

2

2 , 2

2

2

2 , 2

2

2
2

, 2

0 0 0

0

0
0 0

0 0

0 0 0

( ) ( ) ( )

( )

( ) ( ( ) )

( ( ) )

( ) ( ) ( )

( )

where djR is an operator representing a rotation with

magnitude and axis defined by the characteristic vector
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This scheme physically represents a drift followed by a kick,
followed by another drift. The kick step itself comprises three
parts: a half-step of acceleration due to E, a full step of
gyrorotation around B, and another half-step of acceleration
by E. A shrewd feature of the algorithm is that the electric
field must be evaluated only once, in the middle of a time
step, which reduces runtime and gives the method second-
order accuracy. The time symmetry of the drift–kick–drift and
E–B–E sequences also gives the Boris algorithm time
reversibility, so that the error in the total energy of the
simulation remains bounded indefinitely [28].

3.2. Barnes–Hut treecode

Although the Boris integrator provides a method for updating
particle positions, it does not specify how to evaluate the
electric field required for the kick step. Evaluating the electric
field by applying Coulomb’s law to every particle in turn
leads to  N 2( ) runtime; the Barnes–Hut treecode algorithm
cuts this to  N Nlog( ). The algorithm achieves this by
replacing distant clusters of particles with a single charge, and
computing the electric field due to this effective charge rather
than each individual particle. This reduces the number of
interactions and accelerates the simulation. However the
interactions with nearby particles must still be calculated with
high precision, so these must still be treated individually; only
long-range interactions, being weak and tending to cancel out,
can be clustered. The treecode provides a method of formally
defining particle clusters, but avoids completely recomputing
them at every position where the electric field is being
evaluated.

The algorithm begins by dividing the simulation domain
into 2D cells by splitting it in half along each of its D-
dimensions. If a cell contains more than one particle then it is
split again into 2D smaller cells, and this process is repeated
until each of the smallest cells contains at most one particle.
The resulting hierarchy of cells has a natural representation as
a tree, whence the treecode method’s name. Specifically,
pot, being a 3D simulator, splits each cell into eight cubic
cells which motivates the term ‘octree’. The simulation visits
every cell of every size, recording each cell’s total charge and
its centre of charge

å
å

=r
rQ

Q
, 4

j j j

j j
c

∣ ∣
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( )

where the sums are over all of the particles in the cell, the
denominator is nonzero, and Qj and rj are the charge and
position of particle j. The simulation then refers to to the tree
to rapidly define clusters for calculating the electric field felt
by each particle.

It does this by applying an opening angle criterion to
each cell, which decides whether the cell is far enough away
that the precise charge distribution of its contents can be
replaced by its total charge located at its centre of charge, as

Table 1. The default parameter values of pot, which have been used
to produce the results shown in this paper except in those cases
where it is explicitly stated otherwise. The user may supply the first
eight parameters at run-time with the given flags, while adjusting the
other parameters necessitates recompiling the programme.

Description Flag Name Default value

Plasma particle count –N N 150 000
Time step –d dt 10−12 s
electron temperature –E Te 220 K
Ion temperature –I Ti 220 K
x̂ flow/drift speed –x U 0 ms−1

Simulation radius –m R ´ -4 10 4 m
Sphere radius –a a ´ -2.5 10 6 m
Aspect ratio –A A 1

Opening angle parameter θ 1
Ion-to-electron mass ratio m mi e 1836.15
Magnetic field B (0, 0, 0) T
Ion charge state Z +1
Multipole expansion order Monopole
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already calculated by the treecode. If a particle is at distance d
from a cell’s centre of charge, and that cell has sides of length
l, then this criterion is simply whether q<l d , where θ is a
fixed opening angle parameter. The default value of θ is 1 in
pot, but this can be changed by the user to modify the
severity of the clustering approximation; for large values of θ
the treecode will group charges into a small number of large
clusters. The simulator steps down each branch of the tree
hierarchy until the opening angle criterion is satisfied, at
which point no smaller sub-cells need to be considered. The
number of cells visited in order to estimate the field at a
particle is of order Nlog , so the time to estimate the field at all
N particles is  N Nlog( ). Building the tree also requires
 N Nlog( ) time, but it is only built once for all particles so
this does not affect the asymptotic N dependence of the
algorithm.

The treecode may be modified to improve the accuracy of
the approximation; one such modification is to include the
dipole moment of each cell in the calculation of the field felt
by a particle, as suggested in Barnes and Hut’s original paper.
(Indeed, another treecode-like computational method, the fast
multipole method, can perform N-body simulations in  N( )
time by including such higher-order multipole expansions,
but the method calls for implementing a more involved
algorithm [29].) This does not impose particularly onerous
additional runtime costs as the number of interactions remains
the same. potʼs implementation of the treecode algorithm
offers the compile-time option of including cells’ electric
dipole moments to compute particle–cluster interactions.

3.3. Hutchinson’s particle-reinjection algorithm

When an electron or ion is collected on the dust or leaves the
simulation domain it must be reinjected into the simulation in
order to conserve the particle number density. However, as
previously mentioned, simply reinjecting the particle at a
random point on the simulation domain boundary with a
velocity sampled from a Maxwell–Boltzmann distribution is
insufficient to maintain the desired particle velocity distribu-
tion of the entire plasma; tests of this naive reinjection method
during potʼs early development showed that it made the
plasma’s equilibrium velocity distribution leptokurtic, with a
temperature roughly a third less than the injection distribu-
tion’s temperature. This arose from the combination of the
simulation domain losing fast-moving particles faster than
slow-moving particles, and the geometric fact that a small
surface element of the simulation boundary presents a smaller
cross-section to particles approaching it nearly tangentially
than to particles approaching it nearly perpendicularly (thus
particles passing through a boundary surface element are
relatively likely to have their velocity aligned towards the
surface element’s normal).

The reinjection algorithm must therefore account for the
shape of the simulation domain boundary and the hypothe-
tical motion of particles outside it, so that the reinjected
particles have velocities as if sampled from an undistorted
Maxwell–Boltzmann distribution at infinity. Hutchinson,

when designing SCEPTIC, solved this problem for a spherical
domain and pot implements the published description of his
reinjection algorithm [26]. Hutchinson’s exposition is not
comprehensive so, as well as paraphrasing it, the description
given here aims to fill some gaps for the convenience of
anyone wishing to understand the method’s implementation
in SCEPTIC and pot, or anyone wishing to develop another
simulation using this method. The notation in this subsection
follows Hutchinson by writing a particle’s velocity at infinity
as u, the plasma’s flow velocity at infinity as U, their speeds
as u and U respectively, and the cosine of the angle between u
and U as c.

Making the assumptions that the potential f r( ) is
spherically symmetric and contains no barriers outside the
simulation domain, Hutchinson writes a formula for the flux
into the spherical simulation domain ‘in the velocity element
ud from a distant solid angle element’ [26, p 1482]. The only
anisotropy in the distant velocity distribution is due to the
plasma flow, so this flux may be written in terms of u, U
and c.

Hutchinson, using his expression for the differential flux,
then deduces cumulative distribution functions (CDFs) of the
probability distributions of c and u for a particle entering the
simulation domain [26, p 1483]. cʼs CDF depends only on c,
u and U, and once u has been sampled it is trivial to generate c
values by inverse transform sampling. The CDF for u is more
complicated, depending on the normalised electric potential
c f= q r k Tb b B( ) ( ) at the simulation boundary =r rb.
Nonetheless, this CDF may also be inverted numerically, and
u sampled, by interpolation (as SCEPTIC does) or Newton–
Raphson iteration (as pot does).

Once u and c have been sampled, the next stage is to
sample a value for the particle’s distant impact parameter b. A
particle entering the simulation domain with given values of u
and c must have had a b value between 0 and

c= -b r u1max b b
2 1 2( ) , so b2 is sampled uniformly from

the range b0, max
2[ ].

Having sampled u and b, the algorithm must determine
where the particle enters the simulation. This is achieved by
first calculating ‘the angle α in the plane of impact between
the position of impact (where the particle reaches the simu-
lation’s boundary) and the direction of the (initial particle)
position at infinity’ by evaluating the orbit integral
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where c r rb( ) denotes the dimensionless potential
fq r k TB( ) ( ) [26, p 1484]. The solution of this integral
requires knowledge of c r rb( ) outside the simulation
domain, in the range  r r0 1b . pot assumes c r rb( ) to
be the electron-only form of the Debye–Hückel potential [30]
and solves for α with an adaptive Simpson’s rule, while
SCEPTIC uses a more elaborate version of the Debye–Hückel
profile, which incorporates ion depletion due to absorption on
the dust, and evaluates the integral by the trapezium rule [26,
p 1481 and 1484].
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These calculations do not fully determine the injected
particle’s initial position and velocity; it remains to ‘[c]hoose
the ignorable angles of the position and impact parameter
from 0 to p2 ’ [26, p 1484], although Hutchinson does not
provide a concrete procedure to accomplish this. potʼs pro-
cedure is instead described here.

The vector u is determined first. In pot the plasma flow
U is always in the x̂-direction, so = =u xu ucx · ˆ . The
magnitude of u perpendicular to x̂ is therefore -u c1 2 1 2( ) ,
which is oriented in the ŷ–ẑ plane with a polar angle chosen
randomly from a uniform distribution over the range 0 to p2 .
Specifically, pot achieves the desired value of u with a
rotation of the vector u0, 0,( ) about ŷ by an angle
p - - c2 cos 1( ), followed by a rotation about x̂ by the ran-
domly selected polar angle.

The position of reinjection can now be deduced; a
position vector of length rb with zenith angle α and azimuthal
angle ψ, where ψ is sampled from a uniform distribution over
0 and p2 , is rotated about ´u ẑ by an angle - u z ucos 1( · ˆ ).
The motivation for this is that the randomly generated posi-
tion vector would have the correct values of α and b if u were
parallel to ẑ, and the rotation maps ẑ onto û to generate the
required injection position r for any given u.

Finally pot computes the velocity v with which
the particle enters the domain at r if its velocity at infinity
is u. This is done by assuming u is parallel to ẑ and
using conservation of energy and angular momentum to
deduce f= - - -v u b r q r m1 2r

2 2
b
2

b
1 2[ ( ) ( ) ] , =jv 0 and

=qv ub rb. The rotation by angle - u z ucos 1( · ˆ ) around
´u ẑ is then applied to give v in the general case where u is

not parallel to ẑ.
Several random numbers must be generated to execute

the reinjection algorithm and to give the distribution of par-
ticles at the beginning of the simulation. Each process in a
pot run generates its pseudorandom numbers with a
WELL512 pseudorandom number generator [31, 32], where
each process uses its own 64-byte seed read from /dev/
urandom (a special file provided on many Unix-like oper-
ating systems to produce pseudorandom bytes).

4. Simulation results

The plasma octree code pot, built to the specifications out-
lined in sections 2 and 3, was tested to confirm its results’
physical correctness. Sections 4.1 and 4.2 describe these tests.
In summary, these tests gave credible results, opening the way
to investigating the effects of magnetisation and grain non-
sphericity with pot. Section 4.3 presents pot results on the
charging of a spherical dust grain in a magnetic field, while
section 4.4 presents more recent results on the charging of a
non-spherical dust grain in unmagnetized plasma. All of these
simulations used potʼs default values (table 1), unless
otherwise stated.

pot is typically run on 16 cores of Imperial College’s
CX1 cluster for several million timesteps, such that several
microseconds elapse within each simulation. On the μs
timescale of the simulations the dust grain is essentially

immobile. Each simulation required a week to two months
(depending on whether particle–particle interactions were
calculated) of real time with the use of a realistic hydrogenic
ion-to-electron mass ratio. Results could be obtained more
quickly were a smaller mass ratio used.

4.1. Validation of core algorithms

The most basic test of the particle-motion integrator is to
simulate a two-body system. Accordingly, pot has been used
to simulate the very nearly circular Kepler orbit of an electron
around a singly charged ion of mass m1015

e. The electron’s
trajectory drifted by less than 0.001% compared with its
expected orbital path over ´2 109 timesteps of length 10 ps,
confirming that the Boris integrator is suitable for the
simulation.

The particle-reinjection algorithm also requires valida-
tion. A test for this is to simulate a gas of non-interacting
particles without a collecting sphere. The particles coast
through the simulation domain in straight lines, placing
minimal strain on the particle-motion integrator, so any var-
iation in their mean energy or velocity distributions is solely
due to the reinjection algorithm. pot has been run in this
mode using its default values for a simulation of 6 μs dura-
tion. The mean kinetic energy remained close to k T3 2 B( ) for
both species as expected from kinetic theory. Figure 2 shows
histograms of the distributions of the velocity components
and total velocity for each species at the end of the simulation,
with the theoretically predicted Maxwell–Boltzmann dis-
tributions overlaid as black, dashed curves. Applying
Anderson–Darling statistical tests [33] to the six velocity
component distributions gives p-values over 0.5 in all six
cases, rigorously supporting the hypothesis that they are
Gaussian as required. The implementation of Hutchinson’s
reinjection algorithm therefore passes this test with flying
colours.

Finally the treecode must be tested to check whether it
accurately calculates particle interactions. The treecode must
be able to predict collective phenomena arising from these
interactions, so pot is run without a collecting sphere but
with interacting particles. The simulation is initialised in a
non-equilibrium state, by distributing the initial distances of
particles from the simulation centre according to the square
root of uniformly sampled variates rather than the correct
cube root distribution, to see whether plasma oscillations are
reproduced. The simulation therefore begins with an excess of
particles near the centre. The electrons, having higher thermal
velocity than the ions, are expected to rush into the low-
density region near the simulation boundary ahead of the ions.
This sets up a separation of charge, pulling the electrons back
towards the centre, causing the particles to undergo damped
plasma oscillations until an equilibrium state is reached. This
oscillatory behaviour is indeed seen in figure 3, which shows
the variation in the mean electron potential energy,V t( ), from
the start of the simulation. Two modes of oscillations, on
different timescales, are seen which correspond to fast elec-
tron and slow ion oscillations. Oscillation parameters were
extracted from these results by fitting the formula for
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Figure 2. Histograms of the electrons’ and protons’ speed and velocity components at equilibrium in a pot test run without a collecting
sphere. The black, dashed curves represent the theoretical equilibrium distributions and excellent agreement is observed, indicating that the
reinjection algorithm is operating as required.

Figure 3. The time evolution of mean electron potential energy for a pot simulation with non-equilibrium initial state. Oscillations are seen
on the short timescale of electron plasma oscillations (left) and on the longer timescale of ion plasma oscillations (right). The overlaid non-
linear oscillation curves, from equation (6) with the least-squares-fitted parameters shown in table 2, are shown as thick grey lines.
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whereVa is the oscillation amplitude, td is the decay time, ω is
the oscillation frequency, andj Cand are constants for initial
phase and offset. The term in square brackets is an optional
quadratic time trend, with time scale ts, which is included for
the fast oscillation to account for the slow oscillation super-
imposed on it. Table 2 summarises the estimates of
equation (6)ʼs parameters and figure 3 includes the corresp-
onding curves. pot reproduces plasma oscillations with fre-
quencies similar to those expected, evidence that its treecode-
algorithm implementation functions properly.

4.2. Validation against SOML theory

The previous section’s tests, although encouraging, neglected
the presence of a collecting sphere. The purpose of pot is to
simulate a plasma in the vicinity of such an object, so pot
simulated a flowing plasma with inter-particle interactions
and a collecting sphere at the centre of the simulation domain.
The SOML theory [10] provides a benchmark by describing
the charging of a sphere under potʼs default conditions
where the dust grain radius is much smaller than the Debye
length. The charging of larger dust grains, where a becomes
comparable to the Debye length, is deferred to later studies. In
contrast to the tests of the previous section, a disagreement
between pot and the theory here would not necessarily be a
reproach to pot as discrepancies might instead be attributable
to a violation of the SOML theory’s assumptions.

The specific case of zero plasma flow velocity is con-
sidered first. The central sphere is initialised with no charge
and allowed to collect charge from the plasma; the evolution
of this charge over the course of the simulation is plotted in
figure 4. The charge evolution predicted by OML theory [7]
has been added to the plot along with a shaded region to
represent the charge’s standard deviation s predicted by
stochastic modelling [2]. The charge of the sphere as calcu-
lated by pot is consistent with both of these theories;

applying a c2 goodness-of-fit test to the variance s2 from the
stochastic model and potʼs results gives a p-value of 0.66,
indicating statistically insignificant disagreement.

pot has been run under these conditions seven addi-
tional times and the median charge calculated for the period
after 5 μs, after which point all the simulations had equili-
brated, for each run. This charge can be converted to the
sphere’s surface potential, fa, by dividing by the capacitance
of a conducting sphere, p a4 0 . The normalised surface
potential of the sphere, h f= e k Ta a B e( ), has a mean and
standard deviation of-2.56 and 0.070 respectively across all
eight runs. This mean is 2% less than the OML-predicted
value of −2.50, albeit with a random error of 3%. Similar
discrepancies of around 2% have previously been reported
between the OML theory and PIC codes; this effect has been
tentatively attributed to the development of an absorption
barrier for the ions [18].

We now consider the more general case of flowing
plasmas. Figure 5 plots the equilibrium floating potential’s
median value against the drift speed of the plasma, along with
curves representing SOML theory’s predictions. So far the
ion-to-electron temperature ratio, Q º T Ti e, has been 1; we
now add the case ofQ = 0.1. While potʼs results follow the
general trends of the SOML model, the calculated floating
potential is systematically more negative than the SOML
value. This difference may be attributable to potʼs inclusion
of Coulomb collisions or the fact the SOML is only strictly
valid for vanishingly small dust grains.

Table 2. Estimates of the parameters in equation (6) for the fast and
slow oscillations shown in figure 3. The last two lines give the
undamped, linear-oscillation plasma frequencies wpi and wpe.

Parameter Estimate

Fast oscillation Slow oscillation

C k TB( ) −0.1970±0.0003 −0.0035±0.0001
ts (ns) −157±2 Omitted
V k Ta B( ) 0.1925±0.0007 0.252±0.001
td (ns) 2.61±0.03 63.3±0.3
w (rad ns–1) 1.293±0.003 0.0247±0.0001
Phase (rad) −0.37±0.01 2.374±0.007

w wandpe pi (rad ns–1) 0.94 0.0220

Figure 4. The charge q, in units of e, of an absorbing sphere for a
pot run with no external fields or plasma flows. The OML-theory
prediction [7] is overlaid as a thick dashed line. The region where the
charge fluctuations are within s1 of the equilibrium value, with σ
provided by stochastic modelling [2], is shaded grey. Both
theoretical predictions agree well with potʼs results.
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4.3. Charging of spherical dust in magnetic fields

The behaviour of dust in magnetised plasmas is of vital
importance to studies of dust transport in magnetic fusion
devices [34] and alignment of dust grains in the interstellar
medium [35]. Recent results from pot summarise the calc-
ulation of the normalised floating potential ha of a collecting
sphere in a static, homogeneous magnetic field. This has been
a contentious area of recent research, as section 1 alluded to,
following Tsytovich et alʼs hypothesis of a regime where
electrons are fully magnetised but ions unmagnetized on the
length scale of the dust grain [12]. SCEPTIC has already been
applied to test this hypothesis and finds that it holds only at
very weak magnetic fields [36]. However the floating poten-
tials computed by SCEPTIC must be subject to some doubt
because SCEPTIC assumes a Boltzmann relation for the
electrons, which may be invalid in the presence of a magnetic
field [21]. pot makes no dubious assumptions regarding the
Boltzmann relation and, as a fully microscopic simulator, is
ideal for testing Tsytovich’s hypothesis.

Figure 6 shows results for ha, obtained as the median of
the equilibrated surface potential, of a sphere in a stationary
plasma (with potʼs default parameters) plotted against
varying magnetic field strength. The field strength is para-
meterised by the mean ratio of the dust grain radius to the ion
gyroradius

⎜ ⎟⎛
⎝

⎞
⎠b

p
º á ñ =

-a

r
a

k T m

Z e B2
7i

gi

B i i
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and the magnetic field is always in the x̂-direction such that
=B xB ;ˆ this still represents an arbitrary direction due to the

spherical symmetry of the system. The results obtained from
SCEPTIC and the unmagnetized-ion theory have been added
to the left panel and show that potʼs results support the
rejection of the unmagnetized-ion theory. The results of pot
and SCEPTIC both show ha depending only weekly on bi
when bi is small, but pot consistently gives floating poten-
tials 7% more negative than SCEPTIC. This is much larger
than the 2% systematic offset between pot and the SOML
theory. The probable reason for this is suggested by com-
parison with the recent publication, earlier this year, of new
PIC-code results with fully simulated, rather than Boltzmann,
electrons [19]. That work also calculates the dust grain’s
floating potential as being more negative than SCEPTIC; its
main text states a 5% difference but the graphically presented
results suggest it is slightly higher. Although the PIC code is
collisionless and calculates macroscopic electric fields only, it
suggests that discrepancies between pot and SCEPTIC are
due to SCEPTIC’s incorrect assumption that the Boltzmann
relation for electrons is valid in a magnetic field.

The treecode results have been extended to higher
magnetic fields as shown by the right panel of figure 6. These
results show the floating potential of the grain tending
towards the fully magnetised-ion-and-electron limit of
h = -3.76a and corroborate the PIC-code results in [19].

4.4. Charging of non-spherical dust grains

In spite of natural dust grains having a wide variety of shapes,
almost all existing theories of dust grain charging, including
those considered in the preceding sections of this paper,
address only spherical grains. Because it is important to know
how the charging of non-spherical grains differs from that of
spheres, Holgate and Coppins recently extended OML theory
to calculate the floating potentials of spheroids and quantify
the effect of a grain’s oblateness on its charge [37]. pot is an
ideal code to test this spheroidal-OML theory, because potʼs
treecode algorithm is a mesh-free computational method
which can accommodate simulation domains with compli-
cated geometries without needing cumbersome changes to its
remeshing algorithm.

The source code of pot includes options to compile pot
with either an oblate or prolate spheroid in place of the central
sphere. In these cases the analytical vacuum solution of a
conducting spheroid gives the grain’s electric field, and the
algorithm for collection of electrons and ions is modified to
account for the grain’s spheroidal surface. A simulation runs
in the same basic manner as in the spherical case: the initially
uncharged grain collects electrons and ions from the plasma
until obtaining its equilibrium charge.

The simulations in this subsection ran with
= =T T 1 eVe i to reduce the effect of fluctuations on the

equilibrium charge value. In itself, however, the higher
temperature would have increased the Debye length, so the
simulation domain’s radius R was simultaneously cut to 262
μm, increasing the plasma density and ensuring the Debye
length did not exceed R. All of the other simulation para-
meters retained their default values (table 1). A timestep of 1
ps continued to satisfy the requirements section 3.1 details.

Figure 5. potʼs median equilibrium ha as a function of plasma flow
speed, versus SOML theory’s ha predictions [10], for Q = 1 (solid
curve) and Q = 0.1 (dashed curve). The pot results follow the
SOML trends, although the former show a systematic overcharging
by 2% and a random error of 3%.
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Figure 7 compares the pot results for the equilibrium
floating potential of spheroids to the spheroidal-OML theory
for a range of aspect ratios, A, with the volume of the
spheroids kept constant. The aspect ratio is the ratio of the

lengths of the symmetric axis of the spheroid to the equatorial
axes of the spheroid; elongated prolate spheroids therefore
have >A 1 while flattened oblate spheroids have <A 1.
Both pot and the spheroidal-OML theory show that spher-
oids have floating potentials of slightly larger magnitude than
spheres, and in absolute terms the disagreement between pot
and theory is modest. This offset is not affected by the
temperature and density of the particles in the simulation, nor
by the size of the simulation domain. However the offset
worsens for highly deformed spheroids; the probable cause is
inadequate resolution of particles’ motion near the sharp
edges of the spheroids. The tips of a prolate spheroid have
radii of curvature -aA 4 3, where a is the radius of a sphere
with the same volume, which is a0.002 when A=100. Such
small effective radii can lead to violation of condition (i) in
section 3.1; a shorter simulation timestep should provide
more accurate results at the expense of longer runtimes.

5. Summary

The plasma octree code pot has been developed to examine
the validity of prevailing theories of dust–plasma interactions
and to predict new dust–plasma behaviours. As a fully
microscopic simulation of a plasma in the vicinity of a dust
grain, this treecode has advantages over the methods currently
used; for example, it does not assume the Boltzmann relation
for electrons, and Coulomb collisions between particles are
inherent and are not artificially imposed. As a mesh-free code,
pot can also handle non-symmetric simulation domains with
relative ease. pot has been tested against existing theories
and simulations; this mutually verifies not only the accuracy
of pot, but also the validity of the assumptions made in these

Figure 6. ha as a function of bi, as estimated using: SCEPTIC [27], median equilibrium values in pot runs, and the assumption that ions
remain unmagnetized [12]. potʼs results support rejection of the unmagnetized-ion hypothesis. pot does not assume the Boltzmann relation
for electrons, so its results can be reliably extended to high magnetic field strengths.

Figure 7. A comparison of the floating potentials of spheroidal dust
grains in a hydrogen plasma according to the spheroidal-OML
theory [37], represented as a curve, and the mean equilibrium values
of pot simulations, represented by circles with standard deviations
of ha shown by error bars. When the systematic offset is taken into
account pot agrees well with OML theory for ~A 1, but pot
predicts that highly deformed spheroids deviate further from the
spherical value of ha than the spheroidal-OML theory predicts.
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existing works. The results obtained thus far support the
widely used OML and SOML charging theories, and the more
recent spheroidal-OML theory, but call into question the
validity of using a Boltzmann relation in hybrid PIC codes,
particularly in the presence of a magnetic field.

pot employs several noteworthy algorithms. It provides
the first implementation of the Barnes–Hut treecode algorithm
in a low-temperature plasma environment and represents the
first time that Hutchinson’s particle-reinjection algorithm has
been used outside SCEPTIC. It is also unusual in its use of the
Boris particle-motion integrator outside a particle-in-cell
context. A review of all three algorithms has been provided
for the benefit of researchers wishing to understand the
operation of pot or develop their own treecode simulation.

The treecode method can be used to model various
aspects of dust grains in a plasma beyond those discussed in
this paper; examples include the drag force exerted by the
plasma on the dust grains [38], the torque applied to the dust
grains by the plasma [12], and the interactions between two or
more dust grains [39]. As such the treecode method, and its
implementation in the plasma octree code pot, could well
become a vital tool in the future study of dusty plasmas.
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