
A treecode to simulate dust-plasma interactions†

D M Thomas1 and J T Holgate1‡
1 Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom

E-mail: dmt107@imperial.ac.uk, j.holgate14@imperial.ac.uk

Abstract. The interaction of a small object with surrounding plasma is an area
of plasma-physics research with a multitude of applications. This paper introduces
the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a
plasma. pot uses the Barnes-Hut treecode algorithm to perform N -body simulations
of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris
particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a
description of the implementation of all three algorithms is provided. We present
results from pot simulations of the charging of spheres in magnetized plasmas, and of
spheroids in unmagnetized plasmas. The results call into question the validity of using
the Boltzmann relation in hybrid PIC codes.
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1. Introduction

The study of dusty plasmas is concerned with objects, usually on the micro- or nano-

scale, immersed in a hot ionized gas known as a plasma. These objects, referred

to as dust grains, may be either solid or liquid and are ubiquitous in plasmas. As

such, the instances and applications of dusty plasmas are too numerous to elaborate

on fully here; they include interstellar dust, planetary rings, noctilucent clouds,

plasma spraying, contamination in semiconductor processing plasmas and impurities

in magnetic confinement fusion devices, to list but a few [1].

The collective behaviour of a pure plasma is highly complex, and depends on the

interactions between vast numbers of individual ions and electrons. This complexity is

increased further by the inclusion of dust grains; not only do they represent an additional

charged species, but they act as sources and sinks for electrons and ions. Therefore the

† Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD
dissertation.
‡ Corresponding author.
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charge on the dust may fluctuate [2], but this charge depends additionally on non-

plasma processes such as thermionic, field-induced and photonic emission of electrons

[3]. The shape and size of dust is also variable, as they can grow through aggregation

[4] or shrink through evaporation and violent processes such as electrostatic breakup [5].

The co-dependence of these processes, and many others, in a dusty plasma has led to

their alternative name of “complex plasmas”, and is manifest in surprising phenomena

such as the self-organization of dust grains into crystal-like structures [6]. Although

some approximate analytic theories exist to describe fundamental processes in a dusty

plasma, the inherent complexity of these systems necessitates computer simulations to

resolve their full detail.

As an illustration of the difficulty in modelling dust-plasma interactions, consider

the most fundamental process in a dusty plasma: the charging of grains by ion and

electron currents drawn from the plasma. The most widely used theory to describe

these currents is the orbit-motion-limited (OML) theory [7], which gives simple algebraic

expressions for the currents but assumes a small, spherical grain, no potential barrier

to ions reaching the grain, a stationary and Maxwellian plasma far from the grain, no

applied electric or magnetic fields, no trapped ions, no ionization, and no collisions

between particles. The OML assumptions have provoked some criticism [8], but for

small grains the theory works remarkably, even surprisingly [9], well. OML theory has

been extended to more realistic cases, such as the shifted orbit-motion-limited (SOML)

theory, which applies to drifting Maxwellian plasmas [10]. The inclusion of ion collisions

with neutrals, which trap ions in orbits around the dust and increase the ion current to

the grain, have also been studied [11]. A more controversial extension to OML theory

has been the addition of magnetic fields by assuming that only the electrons become

magnetized [12]; that is to say that the electrons follow helical trajectories due to the

magnetic Lorentz force, while the heavier ions are unaffected on the scale of the dust.

While these extended theories improve on the OML model, they still omit

several important features of real plasmas. Similar complexity is faced in all other

aspects of dust-plasma interactions; for example in calculating the drag force of the

plasma on the dust, the plasma response to the dust, and wave propagation in dusty

plasmas. Only computer simulations can provide complete models of the dust-plasma

interactions, and to this end several particle-in cell (PIC) codes have been developed

[13, 14, 15, 16, 17, 18, 19]. The most widely used of these, SCEPTIC, shows excellent

agreement with the OML and SOML models in the appropriate limits [20]. However,

PIC codes incorporate only some of the microscopic detail of the plasma, because the

fields are interpolated from grid points and the inter-particle forces are underestimated

within cells. Collisions between particles must therefore be artificially imposed on the

simulation to be included at all, despite the fact that they can be crucial to many aspects

of the dust-plasma interaction [11]. Furthermore, hybrid codes such as SCEPTIC employ

the Boltzmann relation for electrons, which may be invalid when a magnetic field

is present [21], and which dispenses completely with microscopic information about

the electrons. A sceptic might therefore suppose that the analytic theories and PIC
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codes agree only because they share systematic biases arising from the details they both

omitted.

To preempt this criticism one could calculate the motion of every single particle

in the plasma in order to maximize the faithfulness of a simulation. Insofar as such

a simulation successfully approximated the motion of every ion and electron, it would

necessarily produce results like those of a real plasma. However, given a plasma of N

particles, computing the field felt by one particle requires iteration over the remaining

N−1 particles, and repeating this for all of the particles results in a computational time

proportional to N(N−1). The runtime of an exact simulation is therefore O(N2), which

becomes prohibitively large as N is increased to that required for a realistic simulation.

The treecode algorithm developed by Barnes and Hut for galactic simulations

allows this formidable runtime cost to be avoided by calculating approximate, rather

than exact, values for the field in O(N logN) time [22]. This algorithm has already

demonstrated its utility in simulations of laser-plasma interactions [23] and of some 1D

and 2D low-temperature plasma applications [24]. This paper describes the development

of the fully microscopic plasma octree code pot, which implements the Barnes-Hut

algorithm for a plasma in the vicinity of a dust grain. The term “octree” here refers to

the algorithm’s eightfold splits of the 3D space within the simulation.

pot has several novel features to commend it to the computational physicist: it is

the first 3D implementation of the Barnes-Hut algorithm in a low-temperature or dusty

plasma environment, it provides a rare example of the Boris particle-motion integration

scheme [25] outside particle-in-cell (PIC) codes, and it contains the first successful re-

implementation of Hutchinson’s particle-injection algorithm beyond SCEPTIC [26].

An overview of the implementation and scope of pot is given in section 2. It would

be tedious to describe the source code of pot in its entirety but there are three algorithms

which, being vital to pot’s successful implementation, deserve elucidation. These are

the Boris particle-motion integrator [25], the Barnes-Hut treecode [22], and Hutchinson’s

reinjection algorithm [26], and section 3 provides their specifications. However it is not

enough to have just a computer program which simulates the dust-plasma interaction;

one has to have some grounds for trusting its output, and section 4 gives details of

some tests of pot to check that it gives physically realistic results. In particular the

charging behaviour of pot is compared against the predictions of the OML, SOML, and

magnetized-electron theories, and of SCEPTIC. The first new results from pot, for the

charging of spherical grains in a strong magnetic field and the charging of non-spherical

grains in unmagnetized plasmas, are also presented. Section 5 provides a brief summary

of this work, with a look towards the future applications of pot.

2. The plasma octree code pot

The plasma octree code pot, in its present form, simulates a lone collecting spheroid

(the dust grain) in a spherical region of wholly ionized plasma, with the user able to

choose the size of both the collecting spheroid and the simulation region. The plasma
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consists solely of dN/2e electrons and bN/2c ions of one pre-defined species, where N is

selected by the user subject to runtime and memory constraints. The program simulates

the plasma by approximately solving the trajectories of every particle using the Boris

integrator [25], the precise specification of which is given in section 3.1. The electrons

and ions are modelled as classical, non-relativistic point charges of constant mass while

the dust grain is taken to be a perfectly conducting spheroid. These particles interact

with each other through their electrostatic fields. Coulomb collisions are therefore

inherent and need not be artificially imposed on the simulation.

The user determines the values of the plasma parameters: pot accepts the electron

and ion temperatures as command-line arguments while the electron and ion masses and

ion charge may be adjusted by changing compile-time constants in pot’s source code.

The plasma density cannot be set directly, but is implied by the user’s choice of N and

the simulation domain’s size.

To save processing time, pot assumes that the time-varying magnetic interactions

between particles due to their motion are negligible compared to their electrostatic

interactions; this is consistent with the fact that pot simulates non-relativistic plasmas.

However, the user is able to impose an arbitrary space- and time-independent magnetic

field on the plasma. Each simulated particle experiences the usual Lorentz force, with

the time-varying electric field computed from the system’s charge distribution via the

treecode algorithm as specified in section 3.2.

Each simulation begins with the electrons and ions distributed randomly with their

positions sampled from a uniform distribution and their velocities sampled from a

drifting Maxwell-Boltzmann distribution with a user-specified flow speed. The dust

begins with no charge but rapidly acquires it through the collection of electrons and

ions, the trajectories of which are interpolated between timesteps to ensure accurate

collection. Ions or electrons which leave the simulation, either by colliding with the

dust grain or by breaching the simulation region’s boundary, are reinjected at a random

point on the simulation region’s boundary (q.v. section 3.3). One might expect that the

particles can simply be reinjected according to the Maxwell-Boltzmann distribution;

however, this fails to account for the geometry of the simulation domain. Any smooth,

contiguous region of the simulation’s boundary faces in a particular direction, and this

anisotropy causes the velocity distribution of particles entering the domain to differ from

a Maxwell-Boltzmann distribution. The reinjection algorithm developed by Hutchinson

for SCEPTIC takes this effect into account [26], but it lacks a comprehensive written

exposition. A detailed review of this method, and the differences in its implementation

between pot and SCEPTIC, is provided in section 3.3.

pot is a parallel program, written in C, which uses the Message Passing Interface

(MPI) to divide tasks across multiple processes. It can be compiled to display the

simulated particles’ motion and trajectories (figure 1), live, using the OpenGL graphical

library, which has proved a valuable visualization and debugging tool. The program is

available online at https://github.com/drewthomas/pot.
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Figure 1. An example of pot’s graphical user interface (GUI) for a simulation
containing 2500 (blue) electrons, 2500 (red) ions and a single (green) dust grain with an
applied magnetic field of 1 T; full-scale simulations have been performed with 150000
particles in total. The particles’ helical trajectories and the dust grain are shown to
scale while the ions and electrons, being microscopic and invisible on this scale, are
represented by spheres much larger than their physical size. The GUI can be initialized
by compiling pot using a flag definable in pot’s source code. It has been particularly
useful in testing for sensible particle collection and reinjection and for ensuring steady
particle gyro-orbits.

3. Core algorithms

The successful operation of pot relies on several interlocking algorithms. The Boris

particle-motion integrator [25], the Barnes-Hut treecode [22] and Hutchinson’s particle-

reinjection algorithm [26] are particularly vital to pot. Because it can be inconvenient to

locate lucid, precise specifications of these algorithms, and because their implementation

in pot may differ from elsewhere, the following subsections describe their implementation

in pot.

3.1. Boris particle-motion integrator

The equation of motion for a non-relativistic plasma particle is simply Newton’s second

law with the Lorentz force substituted into it,

dr(t)

dt
= v(t)

dv(t)

dt
=

q

m
[E(r(t), t) + v(t)×B],

 (1)
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where r(t) and v(t) are the time-varying position and velocity of the particle, which has

mass m and charge q and is subjected to the electric and magnetic fields E(r(t), t) and

B. It would be impossible to solve these equations analytically for every particle, so a

range of integrators have been devised which, given the values r(t0) and v(t0), progress

the simulation through a timestep of length δt to give the updated values r(t0 + δt) and

v(t0 + δt). The trajectories of all the particles can be evaluated over time by executing

the integrator iteratively. The time step must be small enough to resolve the motion of

the particles, so is constrained by the following conditions.

(i) Particles with temperature T , and hence average thermal velocity vth =

(kBT/m)1/2, must not be able to traverse the grain, of radius a, in one time

step, which imposes the requirement δt � a/vth. For a non-spherical grain the

appropriate value of a is the smallest radius of curvature at any point on the surface,

for example at the needle-like tips of an elongated prolate spheroid.

(ii) As the simulation must resolve collective motion of the particles, the timestep must

be shorter than the period of an electron plasma oscillation. Therefore δt � ω−1
pe ,

where ωpe = (nee
2/meε0)

1/2 for a plasma with electron density ne.

(iii) The integrator must resolve the gyromotion of a particle around the magnetic field

lines, which occurs with frequency ωg = |q|B/m and hence δt� ω−1
g .

δt is left to the pot user’s discretion, who must keep these constraints in mind. Criterion

(i) is generally the most stringent. For example, taking the default parameters listed in

table 1 gives δt� 43.3 ps and δt� 6.66 ns for the first two conditions respectively. The

default timestep of 1 ps is therefore appropriate and this additionally satisfies condition

(iii) provided B < 5.69 T or, as defined in equation 7, βi < 0.81. The ions, being much

heavier and slower than the electrons, may have a longer integration timestep than the

electrons, so the positions and velocities of the ions are updated every (Temi/Time)
1/2

steps (rounded down to the nearest integer) while the electrons are updated at every

step.

pot implements the Boris integrator according to the concise specification of

Patacchini and Hutchinson [27], rather than the specification in Boris’s original paper

[25], as

r(t0 + δt/2) = r(t0) +
δt

2
v(t0)

v(t0 + δt) = Rδϕ

[
v(t0) +

δt

2

qE(r(t0 + δt/2), t0 + δt/2)

2m

]
+
δt

2

qE(r(t0 + δt/2), t0 + δt/2)

2m

r(t0 + δt) = r(t0 + δt/2) +
δt

2
v(t0 + δt)


(2)

where Rδϕ is an operator representing a rotation with magnitude and axis defined by

the characteristic vector

δϕ ≡ 2B

|B|
tan−1

(
δt

2
ωg

)
. (3)
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This scheme physically represents a drift followed by a kick, followed by another drift.

The kick step itself comprises three parts: a half-step of acceleration due to E, a full step

of gyrorotation around B, and another half-step of acceleration by E. A shrewd feature

of the algorithm is that the electric field must be evaluated only once, in the middle of a

time step, which reduces runtime and gives the method second-order accuracy. The time

symmetry of the drift-kick-drift and E-B-E sequences also gives the Boris algorithm

time reversibility, so that the error in the total energy of the simulation remains bounded

indefinitely [28].

3.2. Barnes-Hut treecode

Although the Boris integrator provides a method for updating particle positions, it does

not specify how to evaluate the electric field required for the kick step. Evaluating the

electric field by applying Coulomb’s law to every particle in turn leads toO(N2) runtime;

the Barnes-Hut treecode algorithm cuts this to O(N logN). The algorithm achieves this

by replacing distant clusters of particles with a single charge, and computing the electric

field due to this effective charge rather than each individual particle. This reduces the

number of interactions and accelerates the simulation. However the interactions with

nearby particles must still be calculated with high precision, so these must still be treated

individually; only long-range interactions, being weak and tending to cancel out, can

be clustered. The treecode provides a method of formally defining particle clusters, but

avoids completely recomputing them at every position where the electric field is being

evaluated.

The algorithm begins by dividing the simulation domain into 2D cells by splitting

it in half along each of its D dimensions. If a cell contains more than one particle

then it is split again into 2D smaller cells, and this process is repeated until each of

the smallest cells contains at most one particle. The resulting hierarchy of cells has a

natural representation as a tree, whence the treecode method’s name. Specifically, pot,

being a 3D simulator, splits each cell into eight cubic cells which motivates the term

“octree”. The simulation visits every cell of every size, recording each cell’s total charge

and its centre of charge

rc =

∑
j |Qj|rj∑
j |Qj|

(4)

where the sums are over all of the particles in the cell, the denominator is nonzero, and

Qj and rj are the charge and position of particle j. The simulation then refers to to

the tree to rapidly define clusters for calculating the electric field felt by each particle.

It does this by applying an opening angle criterion to each cell, which decides

whether the cell is far enough away that the precise charge distribution of its contents

can be replaced by its total charge located at its centre of charge, as already calculated

by the treecode. If a particle is at distance d from a cell’s centre of charge, and that cell

has sides of length l, then this criterion is simply whether l/d < θ, where θ is a fixed

opening angle parameter. The default value of θ is 1 in pot, but this can be changed by
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the user to modify the severity of the clustering approximation; for large values of θ the

treecode will group charges into a small number of large clusters. The simulator steps

down each branch of the tree hierarchy until the opening angle criterion is satisfied, at

which point no smaller sub-cells need to be considered. The number of cells visited in

order to estimate the field at a particle is of order logN , so the time to estimate the field

at all N particles is O(N logN). Building the tree also requires O(N logN) time, but it

is only built once for all particles so this does not affect the asymptotic N dependence

of the algorithm.

The treecode may be modified to improve the accuracy of the approximation; one

such modification is to include the dipole moment of each cell in the calculation of the

field felt by a particle, as suggested in Barnes and Hut’s original paper. (Indeed, another

treecode-like computational method, the fast multipole method, can perform N -body

simulations in O(N) time by including such higher-order multipole expansions, but the

method calls for implementing a more involved algorithm [29].) This does not impose

particularly onerous additional runtime costs as the number of interactions remains the

same. pot’s implementation of the treecode algorithm offers the compile-time option of

including cells’ electric dipole moments to compute particle-cluster interactions.

3.3. Hutchinson’s particle-reinjection algorithm

When an electron or ion is collected on the dust or leaves the simulation domain it

must be reinjected into the simulation in order to conserve the particle number density.

However, as previously mentioned, simply reinjecting the particle at a random point on

the simulation domain boundary with a velocity sampled from a Maxwell-Boltzmann

distribution is insufficient to maintain the desired particle velocity distribution of the

entire plasma; tests of this naive reinjection method during pot’s early development

showed that it made the plasma’s equilibrium velocity distribution leptokurtic, with a

temperature roughly a third less than the injection distribution’s temperature. This

arose from the combination of the simulation domain losing fast-moving particles faster

than slow-moving particles, and the geometric fact that a small surface element of the

simulation boundary presents a smaller cross-section to particles approaching it nearly

tangentially than to particles approaching it nearly perpendicularly (thus particles

passing through a boundary surface element are relatively likely to have their velocity

aligned towards the surface element’s normal).

The reinjection algorithm must therefore account for the shape of the simulation

domain boundary and the hypothetical motion of particles outside it, so that the

reinjected particles have velocities as if sampled from an undistorted Maxwell-Boltzmann

distribution at infinity. Hutchinson, when designing SCEPTIC, solved this problem

for a spherical domain and pot implements the published description of his reinjection

algorithm [26]. Hutchinson’s exposition is not comprehensive so, as well as paraphrasing

it, the description given here aims to fill some gaps for the convenience of anyone wishing

to understand the method’s implementation in SCEPTIC and pot, or anyone wishing to



A treecode to simulate dust-plasma interactions 9

develop another simulation using this method. The notation in this subsection follows

Hutchinson by writing a particle’s velocity at infinity as u, the plasma’s flow velocity at

infinity as U , their speeds as u and U respectively, and the cosine of the angle between

u and U as c.

Making the assumptions that the potential φ(r) is spherically symmetric and

contains no barriers outside the simulation domain, Hutchinson writes a formula for the

flux into the spherical simulation domain “in the velocity element du from a distant solid

angle element” [26, p. 1482]. The only anisotropy in the distant velocity distribution is

due to the plasma flow, so this flux may be written in terms of u, U and c.

Hutchinson, using his expression for the differential flux, then deduces cumulative

distribution functions (CDFs) of the probability distributions of c and u for a particle

entering the simulation domain [26, p. 1483]. c’s CDF depends only on c, u and U , and

once u has been sampled it is trivial to generate c values by inverse transform sampling.

The CDF for u is more complicated, depending on the normalized electric potential

χb = qφ(rb)/(kBT ) at the simulation boundary r = rb. Nonetheless, this CDF may

also be inverted numerically, and u sampled, by interpolation (as SCEPTIC does) or

Newton-Raphson iteration (as pot does).

Once u and c have been sampled, the next stage is to sample a value for the

particle’s distant impact parameter b. A particle entering the simulation domain with

given values of u and c must have had a b value between 0 and bmax = rb(1− χb/u2)1/2,

so b2 is sampled uniformly from the range [0, b2max].

Having sampled u and b, the algorithm must determine where the particle enters

the simulation. This is achieved by first calculating “the angle α in the plane of impact

between the position of impact [where the particle reaches the simulation’s boundary]

and the direction of the [initial particle] position at infinity” by evaluating the orbit

integral

α ≡
∫ 1

0

[
r2
b

b2

(
1− χ(rb/r)

u2

)
−
(rb
r

)2
]− 1

2

d
(rb
r

)
(5)

where χ(rb/r) denotes the dimensionless potential qφ(r)/(kBT ) [26, p. 1484]. The

solution of this integral requires knowledge of χ(rb/r) outside the simulation domain,

in the range 0 ≤ rb/r ≤ 1. pot assumes χ(rb/r) to be the electron-only form of

the Debye-Hückel potential [30] and solves for α with an adaptive Simpson’s rule, while

SCEPTIC uses a more elaborate version of the Debye-Hückel profile, which incorporates

ion depletion due to absorption on the dust, and evaluates the integral by the trapezium

rule [26, p. 1481 & 1484].

These calculations do not fully determine the injected particle’s initial position

and velocity; it remains to “[c]hoose the ignorable angles of the position and impact

parameter from 0 to 2π” [26, p. 1484], although Hutchinson does not provide a concrete

procedure to accomplish this. pot’s procedure is instead described here.

The vector u is determined first. In pot the plasma flow U is always in the x̂-

direction, so ux = u · x̂ = uc. The magnitude of u perpendicular to x̂ is therefore

u(1−c2)1/2, which is oriented in the ŷ-ẑ plane with a polar angle chosen randomly from
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a uniform distribution over the range 0 to 2π. Specifically, pot achieves the desired

value of u with a rotation of the vector (0, 0, u) about ŷ by an angle (π/2 − cos−1 c),

followed by a rotation about x̂ by the randomly selected polar angle.

The position of reinjection can now be deduced; a position vector of length rb with

zenith angle α and azimuthal angle ψ, where ψ is sampled from a uniform distribution

over 0 and 2π, is rotated about u × ẑ by an angle cos−1(u · ẑ/u). The motivation for

this is that the randomly generated position vector would have the correct values of α

and b if u were parallel to ẑ, and the rotation maps ẑ onto û to generate the required

injection position r for any given u.

Finally pot computes the velocity v with which the particle enters the domain

at r if its velocity at infinity is u. This is done by assuming u is parallel to ẑ and

using conservation of energy and angular momentum to deduce vr = −[u2(1− b2/r2
b )−

2qφ(rb)/m]1/2, vϕ = 0 and vθ = ub/rb. The rotation by angle cos−1(u · ẑ/u) around

u× ẑ is then applied to give v in the general case where u is not parallel to ẑ.

Several random numbers must be generated to execute the reinjection algorithm and

to give the distribution of particles at the beginning of the simulation. Each process in a

pot run generates its pseudorandom numbers with a WELL512 pseudorandom number

generator [31, 32], where each process uses its own 64-byte seed read from /dev/urandom

(a special file provided on many Unix-like operating systems to produce pseudorandom

bytes).

4. Simulation results

The plasma octree code pot, built to the specifications outlined in sections 2 and 3, was

tested to confirm its results’ physical correctness. Sections 4.1 and 4.2 describe these

tests. In summary, these tests gave credible results, opening the way to investigating

the effects of magnetization and grain non-sphericity with pot. Section 4.3 presents

pot results on the charging of a spherical dust grain in a magnetic field, while section

4.4 presents more recent results on the charging of a non-spherical dust grain in

unmagnetized plasma. All of these simulations used pot’s default values (table 1),

unless otherwise stated.

pot is typically run on 16 cores of Imperial College’s CX1 cluster for several million

timesteps, such that several microseconds elapse within each simulation. On the µs

timescale of the simulations the dust grain is essentially immobile. Each simulation

required a week to two months (depending on whether particle-particle interactions

were calculated) of real time with the use of a realistic hydrogenic ion-to-electron mass

ratio. Results could be obtained more quickly were a smaller mass ratio used.

4.1. Validation of core algorithms

The most basic test of the particle-motion integrator is to simulate a two-body system.

Accordingly, pot has been used to simulate the very nearly circular Kepler orbit of an
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description flag name default value

plasma particle count -N N 150000

time step -d δt 10−12 s

electron temperature -E Te 220 K

ion temperature -I Ti 220 K

x̂ flow/drift speed -x U 0 ms−1

simulation radius -m R 4× 10−4 m

sphere radius -a a 2.5× 10−6 m

aspect ratio -A A 1

opening angle parameter θ 1

ion-to-electron mass ratio mi/me 1836.15

magnetic field B (0, 0, 0) T

ion charge state Z +1

multipole expansion order monopole

Table 1. The default parameter values of pot, which have been used to produce the
results shown in this paper except in those cases where it is explicitly stated otherwise.
The user may supply the first eight parameters at run-time with the given flags, while
adjusting the other parameters necessitates recompiling the program.

electron around a singly charged ion of mass 1015me. The electron’s trajectory drifted

by less than 0.001% compared with its expected orbital path over 2× 109 timesteps of

length 10 ps, confirming that the Boris integrator is suitable for the simulation.

The particle-reinjection algorithm also requires validation. A test for this is to

simulate a gas of non-interacting particles without a collecting sphere. The particles

coast through the simulation domain in straight lines, placing minimal strain on the

particle-motion integrator, so any variation in their mean energy or velocity distributions

is solely due to the reinjection algorithm. pot has been run in this mode using its default

values for a simulation of 6 µs duration. The mean kinetic energy remained close to

(3/2)kBT for both species as expected from kinetic theory. Figure 2 shows histograms

of the distributions of the velocity components and total velocity for each species at the

end of the simulation, with the theoretically predicted Maxwell-Boltzmann distributions

overlaid as black, dashed curves. Applying Anderson-Darling statistical tests [33] to the

six velocity component distributions gives p-values over 0.5 in all six cases, rigorously

supporting the hypothesis that they are Gaussian as required. The implementation of

Hutchinson’s reinjection algorithm therefore passes this test with flying colours.

Finally the treecode must be tested to check whether it accurately calculates

particle interactions. The treecode must be able to predict collective phenomena arising

from these interactions, so pot is run without a collecting sphere but with interacting

particles. The simulation is initialized in a non-equilibrium state, by distributing the

initial distances of particles from the simulation centre according to the square root of
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Figure 2. Histograms of the electrons’ and protons’ speed and velocity
components at equilibrium in a pot test run without a collecting sphere. The
black, dashed curves represent the theoretical equilibrium distributions and
excellent agreement is observed, indicating that the reinjection algorithm is
operating as required.

uniformly sampled variates rather than the correct cube root distribution, to see whether

plasma oscillations are reproduced. The simulation therefore begins with an excess of

particles near the centre. The electrons, having higher thermal velocity than the ions,

are expected to rush into the low-density region near the simulation boundary ahead

of the ions. This sets up a separation of charge, pulling the electrons back towards the

centre, causing the particles to undergo damped plasma oscillations until an equilibrium

state is reached. This oscillatory behaviour is indeed seen in figure 3, which shows the

variation in the mean electron potential energy, V (t), from the start of the simulation.

Two modes of oscillations, on different timescales, are seen which correspond to fast

electron and slow ion oscillations. Oscillation parameters were extracted from these

results by fitting the formula for exponentially decaying oscillations,

V (t) = Va exp

(
−t
τd

)
cos(ωt+ ϕ) + C +

[
t2

τ 2
s

]
, (6)

where Va is the oscillation amplitude, τd is the decay time, ω is the oscillation frequency,

and ϕ and C are constants for initial phase and offset. The term in square brackets

is an optional quadratic time trend, with time scale τs, which is included for the fast

oscillation to account for the slow oscillation superimposed on it. Table 2 summarizes the

estimates of equation (6)’s parameters and figure 3 includes the corresponding curves.

pot reproduces plasma oscillations with frequencies similar to those expected, evidence

that its treecode-algorithm implementation functions properly.
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Figure 3. The time evolution of mean electron potential energy for a pot simulation
with non-equilibrium initial state. Oscillations are seen on the short timescale of
electron plasma oscillations (left) and on the longer timescale of ion plasma oscillations
(right). The overlaid non-linear oscillation curves, from equation (6) with the least-
squares-fitted parameters shown in table 2, are shown as thick grey lines.

parameter estimate

fast oscillation slow oscillation

C (kBT ) −0.1970 ± 0.0003 −0.0035 ± 0.0001

τs (ns) −157 ± 2 omitted

Va (kBT ) 0.1925 ± 0.0007 0.252 ± 0.001

τd (ns) 2.61 ± 0.03 63.3 ± 0.3

ω (rad·ns−1) 1.293 ± 0.003 0.0247 ± 0.0001

phase (rad) −0.37 ± 0.01 2.374 ± 0.007

ωpe and ωpi
(
rad · ns−1

)
0.94 0.0220

Table 2. Estimates of the parameters in equation (6) for the fast and slow oscillations
shown in figure 3. The last two lines give the undamped, linear-oscillation plasma
frequencies ωpi and ωpe.

4.2. Validation against SOML theory

The previous section’s tests, although encouraging, neglected the presence of a collecting

sphere. The purpose of pot is to simulate a plasma in the vicinity of such an object, so

pot simulated a flowing plasma with inter-particle interactions and a collecting sphere

at the centre of the simulation domain. The SOML theory [10] provides a benchmark by
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Figure 4. The charge q, in
units of e, of an absorbing
sphere for a pot run with no
external fields or plasma flows.
The OML-theory prediction [7]
is overlaid as a thick dashed
line. The region where the
charge fluctuations are within 1σ
of the equilibrium value, with σ

provided by stochastic modelling
[2], is shaded grey. Both
theoretical predictions agree well
with pot’s results.

describing the charging of a sphere under pot’s default conditions where the dust grain

radius is much smaller than the Debye length. The charging of larger dust grains, where

a becomes comparable to the Debye length, is deferred to later studies. In contrast to

the tests of the previous section, a disagreement between pot and the theory here would

not necessarily be a reproach to pot as discrepancies might instead be attributable to a

violation of the SOML theory’s assumptions.

The specific case of zero plasma flow velocity is considered first. The central sphere

is initialized with no charge and allowed to collect charge from the plasma; the evolution

of this charge over the course of the simulation is plotted in figure 4. The charge evolution

predicted by OML theory [7] has been added to the plot along with a shaded region

to represent the charge’s standard deviation σ predicted by stochastic modelling [2].

The charge of the sphere as calculated by pot is consistent with both of these theories;

applying a χ2 goodness-of-fit test to the variance σ2 from the stochastic model and pot’s

results gives a p-value of 0.66, indicating statistically insignificant disagreement.

pot has been run under these conditions seven additional times and the median

charge calculated for the period after 5 µs, after which point all the simulations had

equilibrated, for each run. This charge can be converted to the sphere’s surface potential,

φa, by dividing by the capacitance of a conducting sphere, 4πε0a. The normalized

surface potential of the sphere, ηa = eφa/(kBTe), has a mean and standard deviation

of −2.56 and 0.070 respectively across all eight runs. This mean is 2% less than the

OML-predicted value of −2.50, albeit with a random error of 3%. Similar discrepancies

of around 2% have previously been reported between the OML theory and PIC codes;

this effect has been tentatively attributed to the development of an absorption barrier

for the ions [18].

We now consider the more general case of flowing plasmas. Figure 5 plots the

equilibrium floating potential’s median value against the drift speed of the plasma,

along with curves representing SOML theory’s predictions. So far the ion-to-electron
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temperature ratio, Θ ≡ Ti/Te, has been 1; we now add the case of Θ = 0.1. While pot’s

results follow the general trends of the SOML model, the calculated floating potential is

systematically more negative than the SOML value. This difference may be attributable

to pot’s inclusion of Coulomb collisions or the fact the SOML is only strictly valid for

vanishingly small dust grains.

4.3. Charging of spherical dust in magnetic fields

The behaviour of dust in magnetized plasmas is of vital importance to studies of dust

transport in magnetic fusion devices [34] and alignment of dust grains in the interstellar

medium [35]. Recent results from pot summarize the calculation of the normalized

floating potential ηa of a collecting sphere in a static, homogeneous magnetic field.

This has been a contentious area of recent research, as section 1 alluded to, following

Tsytovich et al.’s hypothesis of a regime where electrons are fully magnetized but ions

unmagnetized on the length scale of the dust grain [12]. SCEPTIC has already been

applied to test this hypothesis and finds that it holds only at very weak magnetic fields

[36]. However the floating potentials computed by SCEPTIC must be subject to some

doubt because SCEPTIC assumes a Boltzmann relation for the electrons, which may

be invalid in the presence of a magnetic field [21]. pot makes no dubious assumptions

regarding the Boltzmann relation and, as a fully microscopic simulator, is ideal for

testing Tsytovich’s hypothesis.

Figure 6 shows results for ηa, obtained as the median of the equilibrated surface

potential, of a sphere in a stationary plasma (with pot’s default parameters) plotted

against varying magnetic field strength. The field strength is parameterized by the mean

ratio of the dust grain radius to the ion gyroradius

βi ≡
〈
a

rgi

〉
= a

(
πkBTimi

2Z2e2B2

)− 1
2

(7)
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Figure 6. ηa as a function of βi, as estimated using: SCEPTIC [27],
median equilibrium values in pot runs, and the assumption that ions remain
unmagnetized [12]. pot’s results support rejection of the unmagnetized-ion
hypothesis. pot does not assume the Boltzmann relation for electrons, so its
results can be reliably extended to high magnetic field strengths.

and the magnetic field is always in the x̂-direction such thatB = Bx̂; this still represents

an arbitrary direction due to the spherical symmetry of the system. The results obtained

from SCEPTIC and the unmagnetized-ion theory have been added to the left panel and

show that pot’s results support the rejection of the unmagnetized-ion theory. The

results of pot and SCEPTIC both show ηa depending only weekly on βi when βi is

small, but pot consistently gives floating potentials 7% more negative than SCEPTIC.

This is much larger than the 2% systematic offset between pot and the SOML theory.

The probable reason for this is suggested by comparison with the recent publication,

earlier this year, of new PIC-code results with fully simulated, rather than Boltzmann,

electrons [19]. That work also calculates the dust grain’s floating potential as being

more negative than SCEPTIC; its main text states a 5% difference but the graphically

presented results suggest it is slightly higher. Although the PIC code is collisionless

and calculates macroscopic electric fields only, it suggests that discrepancies between

pot and SCEPTIC are due to SCEPTIC’s incorrect assumption that the Boltzmann

relation for electrons is valid in a magnetic field.

The treecode results have been extended to higher magnetic fields as shown by the

right panel of figure 6. These results show the floating potential of the grain tending

towards the fully-magnetized-ion-and-electron limit of ηa = −3.76 and corroborate the

PIC-code results in [19].
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4.4. Charging of non-spherical dust grains

In spite of natural dust grains having a wide variety of shapes, almost all existing theories

of dust grain charging, including those considered in the preceding sections of this paper,

address only spherical grains. Because it is important to know how the charging of non-

spherical grains differs from that of spheres, Holgate and Coppins recently extended

OML theory to calculate the floating potentials of spheroids and quantify the effect of

a grain’s oblateness on its charge [37]. pot is an ideal code to test this spheroidal-OML

theory, because pot’s treecode algorithm is a mesh-free computational method which

can accommodate simulation domains with complicated geometries without needing

cumbersome changes to its remeshing algorithm.

The source code of pot includes options to compile pot with either an oblate or

prolate spheroid in place of the central sphere. In these cases the analytical vacuum

solution of a conducting spheroid gives the grain’s electric field, and the algorithm

for collection of electrons and ions is modified to account for the grain’s spheroidal

surface. A simulation runs in the same basic manner as in the spherical case: the

initially uncharged grain collects electrons and ions from the plasma until obtaining its

equilibrium charge.

The simulations in this subsection ran with Te = Ti = 1 eV to reduce the effect of

fluctuations on the equilibrium charge value. In itself, however, the higher temperature

would have increased the Debye length, so the simulation domain’s radius R was

simultaneously cut to 262 µm, increasing the plasma density and ensuring the Debye

length did not exceed R. All of the other simulation parameters retained their default

values (table 1). A timestep of 1 ps continued to satisfy the requirements section 3.1

details.

Figure 7 compares the pot results for the equilibrium floating potential of spheroids

to the spheroidal-OML theory for a range of aspect ratios, A, with the volume of the

spheroids kept constant. The aspect ratio is the ratio of the lengths of the symmetric

axis of the spheroid to the equatorial axes of the spheroid; elongated prolate spheroids

therefore have A > 1 while flattened oblate spheroids have A < 1. Both pot and the

spheroidal-OML theory show that spheroids have floating potentials of slightly larger

magnitude than spheres, and in absolute terms the disagreement between pot and theory

is modest. This offset is not affected by the temperature and density of the particles in

the simulation, nor by the size of the simulation domain. However the offset worsens

for highly deformed spheroids; the probable cause is inadequate resolution of particles’

motion near the sharp edges of the spheroids. The tips of a prolate spheroid have radii

of curvature aA−4/3, where a is the radius of a sphere with the same volume, which is

0.002a when A = 100. Such small effective radii can lead to violation of condition (i) in

section 3.1; a shorter simulation timestep should provide more accurate results at the

expense of longer runtimes.
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son of the floating potentials
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5. Summary

The plasma octree code pot has been developed to examine the validity of prevailing

theories of dust-plasma interactions and to predict new dust-plasma behaviours. As a

fully microscopic simulation of a plasma in the vicinity of a dust grain, this treecode

has advantages over the methods currently used; for example, it does not assume the

Boltzmann relation for electrons, and Coulomb collisions between particles are inherent

and are not artificially imposed. As a mesh-free code, pot can also handle non-symmetric

simulation domains with relative ease. pot has been tested against existing theories and

simulations; this mutually verifies not only the accuracy of pot, but also the validity of

the assumptions made in these existing works. The results obtained thus far support the

widely used OML and SOML charging theories, and the more recent spheroidal-OML

theory, but call into question the validity of using a Boltzmann relation in hybrid PIC

codes, particularly in the presence of a magnetic field.

pot employs several noteworthy algorithms. It provides the first implementation

of the Barnes-Hut treecode algorithm in a low-temperature plasma environment and

represents the first time that Hutchinson’s particle-reinjection algorithm has been used

outside SCEPTIC. It is also unusual in its use of the Boris particle-motion integrator

outside a particle-in-cell context. A review of all three algorithms has been provided for

the benefit of researchers wishing to understand the operation of pot or develop their

own treecode simulation.

The treecode method can be used to model various aspects of dust grains in a

plasma beyond those discussed in this paper; examples include the drag force exerted

by the plasma on the dust grains [38], the torque applied to the dust grains by the

plasma [12], and the interactions between two or more dust grains [39]. As such the
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treecode method, and its implementation in the plasma octree code pot, could well

become a vital tool in the future study of dusty plasmas.
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