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BUBBLES AND CRASHES

A simple procedure to incorporate predictive models in a continuous time asset allocation
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Stochastic optimisation has found a fertile ground for applications in finance. One of the greatest challenges remains to
incorporate a set of scenarios that accurately model the behaviour of financial markets, and in particular their behaviour
during crashes and crises, without sacrificing the tractability of the optimal investment policy. This paper shows how to
incorporate return predictions and crash predictions as views into continuous time asset allocation models.
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1. Introduction
Stochastic optimisation has advanced at a remarkable pace
over the past 40 years. One of the greatest challenge
in stochastic optimisation is to incorporate a set of sce-
narios that accurately models the behaviour of financial
markets without sacrificing the tractability of the optimal
investment policy.

Stochastic control, the branch of stochastic optimi-
sation solving problems set in continuous time, often
has tractable analytical or numerical solutions. However,
most stochastic control models are limited by unrealistic
assumptions that fail to capture adequately the behaviour
of financial markets.

Recent progress in stochastic controls has created new
opportunities to build more realistic models. For example,
the development of viscosity solutions has made it possible
to develop models with jumps and stochastic volatility. In
some instances, viscosity solutions provide the key argu-
ment to prove that jump-diffusion models admit a smooth
solution (Davis et al. 2010, Davis and Lleo 2013b).

Another important milestone is the development of
stochastic control models inspired by the Black–Litterman
model (Black and Litterman 1990, 1991, 1992). These
stochastic control models incorporate views formulated
by securities and market analysts into the parameter
estimation process to produce forward-looking scenar-
ios that a simple historical analysis would not consider
(see Frey et al. 2012, Davis and Lleo 2013a, Gabih
et al. 2014a,b, Davis and Lleo 2015, 2016).

Berge et al. (2008) showed that the ability to forecast
market corrections and crashes improves significantly the
risk-adjusted performance of long-term investors. Incorpo-
rating views on whether crashes are likely to occur is there-
fore highly relevant to investment managers. In this paper,
we show how to incorporate return prediction and crash
prediction models as views in the Black–Litterman model

in continuous time proposed by Davis and Lleo (2013a).
We look at two specific examples of return prediction and
crash prediction models: the Cyclically Adjusted Price-to-
Earnings ratio (CAPE) and the Bond-Stock Earnings Yield
Differential (BSEYD) model.

2. Black–Litterman in continuous time
Developed by Davis and Lleo, the Black–Litterman model
in continuous time uses linear filtering to incorporate ana-
lyst views and expert opinions in a continuous time asset
allocation. The key to the approach is that the filtering
problem and the stochastic control problem are effectively
separable. The continuous time model uses this insight
to incorporate analyst views and non-investable assets as
observations in the filter even though they are not present
in the portfolio optimisation.

The model has four key components: (i) the financial
market, (ii) the views, (iii) the linear filter and (iv) the
stochastic control problem.

In this paper, we focus only on a market with investable
assets in order to keep the discussion clear and concise.
The extension to non-investable assets is straightforward,
and we refer the reader to Davis and Lleo (2013a) for the
details.

2.1. The financial market: asset prices are driven by
unobservable factors

Start with a financial market comprising m ≥ 1 risky secu-
rities Si, i = 1, . . . m, and a money market account process
S0. The growth rates of the assets depend on n unob-
servable factors X1(t), . . . , Xn(t) which follow the affine
dynamics given in Equation (1).

Let (�,F , P) be the underlying probability space.
On this space, define an R

N -valued (Ft)-Brownian
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motion W(t) with components Wj (t), j = 1, . . . , N , and
N : = n + m + k. This is an incomplete market setting with
n sources of risks corresponding to the factors, m sources
of risks related to the assets and k sources of uncertainty
related to the analyst views.

The asset returns and risk premia are subject to the evo-
lution of the n-dimensional vector of unobservable factors
X (t) modelled as an affine process

dX (t) = (b + BX (t)) dt + � dW(t), X (0) = x. (1)

The dynamics of the money market asset S0 is given by

dS0(t)
S0(t)

= (a0 + A′
0X (t)) dt, S0(0) = s0, (2)

and that of the m risky assets follows the Stochastic
Differential Equations (SDEs)

dSi(t)
Si(t)

= (a + AX (t))i dt +
N∑

j =1

σik dWk(t),

Si(0) = si, i = 1, . . . , m. (3)

For convenience, we denote by � the matrix (σij ).
The approach assumes that no two assets have the same

risk profile:

ASSUMPTION 2.1 The matrix ��′ is positive-definite.

The discounted asset price S̃i(t) is

S̃i(t) = Si(t)
S0(t)

, i = 1, . . . , m, S̃i(0) = si

s0
.

The risk premium si(t) is si(t) = log(S̃i(t)), i = 1, . . . , m.
Hence, si(t) solves the SDE

dsi(t) =
[
(ã + ÃX (t))i − 1

2
��′

ii

]
dt +

N∑
k=1

σik dWk(t),

si(0) = log
si

s0
, i = 1, . . . , m, (4)

where ã = a − a01, Ã = A − A01 and 1 ∈ R
m denotes the

m-element column vector with entries equal to 1. The
dynamics of the risk premia is Gaussian (conditional on
X (t)). We can use risk premia as an observation in a linear
filtering.

2.2. Analyst views
Analysts formulate views about risk premia or the spread
between risk premia over a time horizon. A typical analyst
statement would be:

my research leads me to believe that the spread between 10-year
Treasury Notes and 3-month Treasury Bills will remain low over
the next year before gradually widening over the following two
years to 200 basis points in response to improving macroeconomic
conditions. I am 90% confident that the spread will be within a
range of 180 bps to 220 bps in two years.

Mathematically, these statements translate the k views
into a system of stochastic differential equations

dZ(t) = (aZ(t) + AZ(t)X (t)) dt

+ �(t) dW(t), Z(0) = z, (5)

where W(t) is the N -dimensional Brownian motion and �

is a k × N matrix with zeros on its first (n + m) rows. Cal-
ibrate the drift aZ(t) + AZ(t)X (t) to the central view, and
the diffusion matrix � to the confidence interval around
the view. This entire construction takes place at initial
time t = 0. It involves neither modelling the arrival of new
opinions nor the evolution of the views over time.

In the filtering step, we will need to invert the matrix
�� ′. We therefore require the following:

ASSUMPTION 2.2 The matrix �� ′ has full rank.

2.3. Filter the views and asset prices to estimate the
factors

We refer the reader to Davis and Lleo (2013a) for the gen-
eral case r(t) = a0 + A0X (t). Here, we outline the solution
when A0 = 0.

There are two sources of observations for the risk
premia:

(i) m investable risky assets S1(t), . . . , Sm(t);
(ii) k analyst views Z1(t), . . . , Zk(t).

The pair of processes (X (t), Y(t)), where

Yi(t) =
⎧⎨
⎩si(t) = log

Si(t)
S0(t)

, i = 1, . . . , m,

Zi−M (t), i = m + 1, . . . , m + k
(6)

takes the form of the ‘signal’ and ‘observation’ processes
in a Kalman filter system, and consequently the conditional
distribution of X (t) is normal N (X̂ (t), P(t)), where X̂ (t) =
E[X (t)|FY

t ] satisfies the Kalman filter equation and P(t) is
a deterministic matrix-valued function.

Express the dynamics of Y(t) succinctly as

dY(t) = (aY(t) + AY(t)X (t)) dt + �(t) dW(t),

Y(0) = y0, (7)

where the (m + k)-element vector aY, (m + k) × n matrix
AY and the (m + k) × N matrix � are given by

aY(t) =
(

ã − 1
2
��

aZ(t)

)
, AY(t) =

(
Ã

AZ(t)

)
,

�(t) =
(

�

�(t)

)
.

Next, define two processes Y1(t), Y2(t) ∈ R
m+k as

follows:

Y1(t) = AY(t)X (t) dt + �(t) dW(t), Y1(0) = 0, (8)

Y2(t) = aY(t) · dt, Y2(0) = y0, (9)

so that Y(t) = Y1(t) + Y2(t).
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In the present case, assume that X0 is a normal random
vector N (m0, P0) with known mean m0 and covariance P0,
and that X0 is independent of the Brownian motion W. The
processes (X (t), Y1(t)) satisfying Equations (1) and (8) and
the filtering equations, which are standard, are stated in the
following proposition.

PROPOSITION 2.3 (Kalman filter) The conditional dis-
tribution of X (t) given FY

t is N (X̂ (t), P(t)), which is
calculated as follows.

(i) The innovations process U(t) ∈ R
m+k defined by

dU(t) = (��′)−1/2(dY(t) − AYX̂ (t) dt),

U(0) = 0 (10)

is a vector Brownian motion.
(ii) X̂ (t) is the unique solution of the SDE

dX̂ (t) = (b + BX̂ (t)) dt + �̌(t) dU(t),

X̂ (0) = m0, (11)

where �̌(t) = (��′ + P(t)A′
Y)(��′)−1/2.

(iii) P(t) is the unique non-negative definite symmetric
solution of the matrix Riccati equation

Ṗ(t) = �p⊥(p⊥)′�′ − P(t)A′
Y(��′)−1AYP(t)

+ (B − ��′(��′)−1AY)P(t)

+ P(t)(B′ − A′
Y(��′)−1��′), P(0) = P0,

where p⊥ := I − �′(�′�)−1�.

Now, the Kalman filter has replaced the initial state
process X (t) by an estimate X̂ (t) with dynamics given in
Equation (10). To recover the asset price process, we use
Equations (6)–(11) together with Equation (9) to obtain the
dynamics of Y(t)

dY(t) = dY1(t) + dY2(t)

= (aY + AYX (t)) dt + (��′)1/2 dU(t),

Y(0) = y0, (12)

and from there, we recover the dynamics of Z(t) and S(t).
Observe that ��′ := (

��′ �� ′
��′ �� ′

)
and define the (m +

k) × (m + k) matrix (��′)1/2 as (��′)1/2 := (�̌, �̌)′. As
a result

dZ(t) = (aZ + AZX̂ (t)) dt + �̌ dU(t), Z(0) = z,

dSi(t) = (a + ÃX̂ (t))i dt +
M+k∑
k=1

σ̌ik dUk(t),

Si(0) = si. (13)

The filtering problem is unrelated to the subsequent
stochastic control problem: the dynamics of X̂ (t) will be

the same for all investors regardless of their risk aversion
or time horizon.

2.4. Solve the stochastic control problem
The key is to express and solve a stochastic control prob-
lem in which X (t) is replaced by X̂ (t) and the dynamic
equation (1) by the Kalman filter. Optimal strategies take
the form h(t, X̂ (t)).

Davis and Lleo solve a risk-sensitive asset management
problem, where the investor’s objective is to maximise the
criterion

J (t, x, h; T, θ) = −1
θ

ln E[e−θ ln VT ]

= −1
θ

ln E[V−θ
T ]. (14)

This criterion relates the evolution of the investor’s wealth,
V(t), with the investor’s risk sensitivity θ ∈ (−1, 0) ∪
(0, ∞).

The optimal asset allocation h∗(t) for this stochastic
control problem is

h∗(t) = 1
1 + θ

(�̌�̌′)−1[â + ÃX̂ (t) − θ�̌�̌′(t)D	)], (15)

where the value function 	 has the form 	̃(t, x) =
1
2 x′Q(t)x + x′q(t) + k(t). Here, Q(t) satisfies a Riccati
equation, q(t) solves a system of linear Ordinary Dif-
ferential Equations and k(t) can be calculated by direct
integration.

3. Including predictive models in the
Black–Litterman model in continuous time

Most analysts formulate their views and confidence inter-
vals based on the output of macroeconomic models or of
valuation models. We discuss how to incorporate the out-
put of predictive models in the Black–Litterman model
in continuous time. The general idea is to treat the out-
put of a predictive model as a views, and to model it
with a stochastic differential equation of the same form as
Equation (5). We use the model’s prediction to calibrate the
drift of the view, and the model’s error to estimate the diffu-
sion term. Because the Kalman filter gives more weight to
more credible observations and less weight to less credible
observations, more accurate predictive models will have
more influence on the asset allocation.

We select specific examples of predictive models: the
CAPE and the BSEYD.

3.1. The Campbell–Shiller model and the CAPE
Campbell and Shiller (1988) initially proposed a vector-
autoregressive model relating the log return on the S&P
500 with the log dividend-price ratio, lagged dividend
growth rate and average annual earnings over the previous
30 years. They performed a regression of the log returns on
the S&P 500 over 1 year, 3 years and 10 years against each
of these variables and over the average annual earnings
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over the previous 10 years. Using average earnings rather
than current earnings to compute the price-to-earnings
(P/E) ratio reduces its sensitivity to current economic and
market conditions.†

To perform the regression, Campbell and Shiller
defined the one-period total return on the stock as hbeg

1t :=
ln((Pbeg

t+1 + Dt)/Pbeg
t ), where Pbeg

t is the level of the S&P
500 at the beginning of period t and Dt is the dividend
received during period t. The i period total return on the
stock is hbeg

it := ∑i−1
j =0 h1,t+j . The regression is

hbeg
it = a + b ln

⎛
⎝ Pbeg

t

Ebeg
t,−n

⎞
⎠+ εt, (16)

where Pt is the level of the S&P 500 index at time t and
Ebeg

t,−n is the average of past annual earnings over the last

n years, namely Ebeg
t,−n = (1/n)

∑n−1
i=0 Ebeg

t−i . The R2 com-
puted by Campbell and Shiller (1988) for n = 30 is 0.566,
which is higher than the 0.401 computed for n = 10 and
higher than the R2 of regressions against the log dividend-
price ratio and lagged dividend growth rate. Hence, the
regression based on 30-year average earnings has a greater
explanatory power than the regression based on 10 years of
earnings.

The CAPE is a direct descendant of this research. It
is the P/E ratio computed using 10-year average earnings
(see Shiller 2015).

We can use the CAPE to create a view about the future
evolution of the equity risk premium. Using historical data,
we perform a regression of the equity risk premium at an
horizon h against the logarithm of the CAPE

yh
t = a + bxn

t + εt, (17)

where yh
t = ln(P̃t,h/P̃t) is the risk premium at a horizon of

h years; x10
t = ln(Pt/Et,−10) is the logarithm of the CAPE;

P̃t = P(t)/S0(t) and P̃t,h = P(t + h)/S0(t + h) are, respec-
tively, the discounted value of the S&P 500 at time t and
t + h.

For clarity, we have dropped the beg superscript and
consider the S&P 500 with all dividends reinvested (S&P
500 Total Return Index).

By varying the time horizon h from 1 year to 10 years,
we can use the regressions to predict the evolution of the
equity risk premium at various points over a 10-year hori-
zon. The point estimates for h = 1, . . . , 10 provide the data
to fit the functions aZ(t) and AZ(t) in the view process (5).
Then we use the distribution of the error term εt to fit the
diffusion term �(t).

3.2. Crash prediction models and the BSEYD
Prediction models for equity market crashes generate a sig-
nal to indicate a downturn in the equity market at a given

horizon h. Example of crash prediction models include
the BSEYD discussed in Ziemba and Schwartz (1991),
the high P/E model (Lleo and Ziemba in press), the
variations on Warren Buffett’s market value-to-the-Gross
National Product measure (Lleo and Ziemba 2015a) or
the continuous time disorder detection model (Shiryaev
et al. 2014, 2015).

The signal occurs whenever the value of a crash mea-
sure crosses a threshold. Given a prediction measure M (t),
a crash signal occurs whenever

SIGNAL(t) = M (t) − K(t) > 0, (18)

where K(t) is a time-varying threshold for the signal. Three
key parameters define the signal: (i) the choice of measure
M (t); (ii) the definition of threshold K(t) and (iii) the spec-
ification of a time interval H between the occurrence of the
signal and that of an equity market downturn.

The BSEYD relates the yield on the S&P 500 (mea-
sured by the earnings yield, which is the reciprocal of the
P/E ratio) to the yield on nominal Treasury bonds

BSEYD(t) = r(t) − ρ(t) = r(t) − E(t)
P(t)

, (19)

where ρ(t) is the earnings yield at time t and r(t) is
the most liquid (10- or 30-year) Treasury bond rate r(t).
The BSEYD was initially developed for the Japanese
market shortly before the crash of 1990 (Ziemba and
Schwartz 1991), and it has since been used success-
fully on a number of international markets (Lleo and
Ziemba 2015b).

The threshold K depends on a confidence interval, cal-
culated using a moving average and standard deviation of
the BSEYD measure. Usually, the one-tailed confidence
interval is established at a 95% level. This corresponds
to 1.645 standard deviations above the mean for a normal
distribution.

The time horizon is generally set to one year (252
trading days).

Lleo and Ziemba (in press) tested the accuracy of 32
model specifications of the P/E ratio and BSEYD measures
over more than 50 years, from 1962 to 2014. Over this
period, the S&P 500 experienced 21 downturns, defined as
declines of at least 10% peak-to-trough over a maximum of
one year. On average, these downturns lasted for 265 days
and resulted in a 21.87% decline in the index. The authors
found that the BSEYD produced 38 signals, of which 29
signals were followed by an equity market downturn. At
76.32%, the BSEYD’s accuracy is statistically significant.
Figure 1 displays the cumulative return on the S&P 500 for
the two years following a crash signal.

To illustrate the procedure, we consider the case where
the BSEYD is currently producing a crash signal. Here,

†Graham and Dodd (1934) already warned against this shortcoming and advocated the use of a P/E ratio based on average earnings over 10 years.



44 M. Davis and S. Lleo

Figure 1. Cumulative return on the S&P 500 after a crash signal.

we model the view with a generalised Ornstein–Uhlenbeck
process (see Hull and White 1994)

dZ(t) = (aZ(t) − AZZ(t)) dt + � dWn+m+1(t). (20)

The solution to this SDE is

Z(t) = z e−AZ t +
∫ t

0
e−AZ (t−s)aZ(s) ds

+ �

∫ t

0
e−AZ (t−s)� dWn+m+1(s), (21)

with

E[Z(t)] = z e−AZ t +
∫ t

0
e−AZ (t−s)aZ(s) ds,

Var[Z(t)] = �2

2AZ
(1 − e−2AZ t). (22)

This process gives us enough flexibility to incorporate
crash predictions, while keeping the affine form necessary
for an efficient resolution of the filtering and optimisation
problems.

A crash prediction model produces a binary signal:
either it predicts a crash or it does not. As a result, we can-
not map a crash prediction directly into a view. We need to
turn the crash prediction into a return prediction by look-
ing at the evolution of the risk premium conditional on the
crash signal. The signals produced by the BSEYD provide
us with 38 paths for the risk premium conditional on a

crash signal. We can use these paths to calibrate the param-
eters of the view process by matching the moments of
the stochastic process in Equation (22) with the empirical
moments inferred from these historical paths.

A typical downturn lasts for slightly more than one cal-
endar year. Out of the 21 downturns, only 4 downturns
lasted more than two years, and none lasted more than
two years and a half. To capture the evolution of the risk
premium during these downturns, we need to consider at
least a two-year time horizon from the signal. On the other
hand, we have 38 signals in 50 years; so we cannot have a
time horizon of more than a couple of years without hav-
ing a risk that the signals will interfere with each other.
This leads us to concentrate on the evolution of the risk
premium (conditional on a crash signal) over two years
exactly.

If the horizon t of the optimisation is longer, say
T = 5 years, we will need to make an assumption on the
behaviour of the risk premium between the two-year hori-
zon of the crash prediction model and the five-year horizon
of the optimisation. For simplicity, we assume in this paper
that the risk premium converges linearity to a long-term
average of 4%.

We calibrate the mean evolution of the view process
to the mean path of the risk premium conditional on a
crash signal. To make the calibration easier, we look for
a polynomial function. This choice is convenient because
polynomial functions have the advantage of being smooth
and bounded over a bounded domain. They can also be
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Figure 2. Polynomial calibration function.

viewed as a Taylor expansion of the true functional rela-
tionship between the view and time. Figure 2 suggests that
the sixth-order polynomial function

P(t) = 0.0006t6 − 0.0107t5 + 0.0671t4 − 0.1994t3

+ 0.2725t2 − 0.1105t − 0.0406

provides a close fit to the actual data. To fit this polyno-
mial function, we express the function aZ as a fifth-order
polynomial

aZ(t) = β0 + β1t + β2t2 + β3t3 + β4t4. (23)

Selecting AZ = 1
2 ln 2 = 0.3466 implies a half life of two

years. To finish the calibration, we perform a Taylor
expansion of E[Z(t)] around t = 0. Matching the terms
of the Taylor expansion with the polynomial given in
Equation (23), we get z = −4.06%, β0 = −0.1246, β1 =
0.5067, β2 = −0.5038, β3 = 0.1993, β4 = −0.0302
and β5 = 0.0006.

To get the diffusion parameter �, we match the vari-
ance of Z(t) to the highest annualised variance across the
38 historical paths, equal to 29.74%. From Equation (22),
we get � = 29.74% ×

√
2AZ/1 − e2AZ = 31.82%.

4. Conclusion
The ability to include predictive models alongside ana-
lyst views and historical data addresses one of the main
challenges of stochastic optimisation: how to incorporate

scenarios while retaining a tractable solution. It also con-
tributes to significantly lowering the downside risk of port-
folios and increase their long-term risk-adjusted returns. In
this paper, we showed how to incorporate return prediction
and crash prediction models as views into the Black–
Litterman model in continuous time. Including return pre-
diction models, such as the CAPE is straightforward: we
can use the point estimates and model error directly to
calibrate the view. Crash prediction models require an
extra step: they need to be converted into return prediction
models first.
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