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Abstract

Linear algebra methods for determining modes of kinematic and static indeter-

minacy in jointed frames are extended to reveal modes of compliance in oth-

erwise rigid assemblies. These modes are extracted from a structural model,

based on finite elements, via a singular value decomposition and yield the ways

in which a structure can be most easily deformed. This modal approach also

allows for the formulation of a reduced-order structural model, whereby relevant

modes are selected and used as the basis for the optimisation of a complaint

structure. The method detailed is shown to be a useful design tool, demon-

strated by its application to a structure based on the Kagome lattice geometry.

For certain frameworks, first order effects produce tightening under actuation.

As a result, a scheme to adjust the modes to take nonlinear effects into account

is also given.
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1. Introduction

Compliant mechanisms offer elegant engineering solutions to problems that are

typically tackled with conventional components. In a compliant mechanism the

modes of displacement produced by joints, bearings and sliders can be repli-

cated by allowing modes of compliance in an otherwise rigid assembly [1]. This5

approach has wide ranging applications, from deployable space structures [2] to

morphing aircraft wings [3] as well as everyday household products [1].

By having no complex moving parts, compliant structures are generally easier

to maintain and manufacture than the mechanisms which they emulate. They

offer a solution when manufacturing small sizes or large quantities of joints is10

impractical or the cost prohibitive. A systematic method for the determination

of modes of deformation in compliant structures is currently lacking. In this

paper, we take linear algebra methods which have traditionally been used to

analyse pin-jointed frames for determinacy, and adapt them to find orthogonal

modes of compliance in rigid-jointed frameworks. In this way, structures can15

be designed such that modes of deformation correspond with desired paths of

actuation, while regions that are required to have structural stiffness are bol-

stered. This is akin to a pin-jointed structure, with a single mode of kinematic

indeterminacy corresponding to a desired inextensible mechanism.

In this paper we take existing methods used for analysing pin-jointed frames, and20

extend them to continuous assemblies. A general method for determining modes

of compliance from a finite element discretisation is presented, and examples are

provided using beam elements. A scheme to account for geometrically nonlinear

effects is also detailed. Finally, using these tools, the design of a compliant

structure based on the Kagome lattice geometry is presented. The process25

illustrates how a structure with many degrees of freedom can be reduced to a

small number of key modes, which are then used as the basis of an efficient

optimisation routine for the design of adaptive compliant structures.
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(a) A structure with a

mode of kinematic inde-

terminacy.

(b) A structure which is

both kinematically and

statically determinate.

(c) A structure which is

statically indeterminate.

Figure 1: Three pin-jointed structures showing how different configurations of members can

produce structures which are determinate, mechanisms or capable of sustaining self-stress.

2. Evaluation of compliant modes using the SVD

In this section, the construction of a quasi-stiffness matrix β for a continuous30

structure is detailed. This matrix is then factorised using a singular value de-

composition (SVD), and physically relevant modes of compliance are extracted.

Algebraic analysis of pin-jointed frames to determine their structural character-

istics is well established, and forms the basis of our method. We begin with a

recap of this approach.35

2.1. Pin-jointed frame analysis

Maxwell [4] showed that a three dimensional frame can be considered ‘simply

stiff’, with no redundant elements or mechanisms, if the number of elements m

is related to the number of frictionless joints j by

m = 3j − 6 (1)
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If the frame is two dimensional, the relation becomes40

m = 2j − 3 (2)

Maxwell’s rule originates from the idea that in order for the stress-state of the

structure to be unique, the number of equations relating the elongations of the

members to the displacements at the nodes has to match the number of degrees

of freedom of the system.

This principle is demonstrated in Figure 1, illustrating how the determinacy45

of a four noded structure can be altered with different connections. Figure 1a

shows a pin-jointed structure with modes of kinematic indeterminacy. In this

case, the number of compatibility equations is less than the number of degrees of

freedom, and hence nodes are able to move freely, observed as an inextensional

mechanism. In Figure 1b, Maxwell’s rule in equation 2 is satisfied, and the50

structure is ‘simply stiff’. The nodal displacements can be equated uniquely

to the elongation of the bars, and similarly, any extension of members does

(a) A framework which obeys Maxwell’s

rule yet has both regions of self stress,

and a finite inextensional mechanism

(b) A structure possessing a mode

of static and kinematic indeterminacy.

These modes then interact to cause the

inextensible mechanism to tighten with

displacement, resulting in an infinitesi-

mal mechanism

Figure 2: Two configurations of pin-jointed frames which obey Maxwell’s rule, but behave

unexpectedly.
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not result in axial strains in other members. An illustration of the results

from a change of the length of the diagonal member is shown. If the number of

equations exceeds the degrees of freedom they represent, statically indeterminate55

modes of self-stress are observed. This is illustrated in Figure 1c. The stresses

within the bars are not unique to the nodal displacements, which are over-

defined. In terms of creating a stiff structure, one or more of the bars can be

considered redundant.

While Maxwell’s rule holds true in the majority of cases, it is relatively straight-60

forward to conceive configurations of elements which obey the relations in Equa-

tions 1 and 2, but behave unexpectedly. Figure 2 illustrates two such examples.

The first, Figure 2a has both regions of static and kinematic indeterminacy

while still satisfying equation 2. Figure 2b also obeys Maxwell’s rule but has an

infinitesimal mechanism, and is only stiff as the structure undergoes displace-65

ment. The infinitesimal nature of this mechanism can be shown to be caused by

the interaction between the modes of kinematic and static indeterminacy within

the structure [5].

Pellegrino and Calladine [5] showed that to fully understand the properties of

a framework, the whole geometry needs to be considered, rather than just the70

number of the elements and connections. By analysing the four vector subspaces

of the equilibrium matrix A, which relates tensions in the bars t to external nodal

forces f as

At = f (3)

and also by inspection of its transpose, the kinematic matrix B which relates

the nodal displacements u to bar elongations g as75

Bu = ATu = g (4)

it is possible to find modes of kinematic and static indeterminacy. The nullspace
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of A corresponds to modes of tension in the structure (states of self-stress)

which require no external nodal forces. The left-nullspace of A indicates nodal

displacements which do not result in any elongations of bars – inextensional

mechanisms. Pellegrino and Calladine also present a technique for determining80

whether mechanisms found are finite or if they tighten with displacement [5].

This tightening is clearly detrimental when trying to conceive adaptive struc-

tures, and is therefore an important consideration. This structural analysis can

be unified under a single framework [6] using a singular value decomposition

(SVD) to extract the four linear vector subspaces of A.85

3. Extension for rigid-jointed assemblies

All the analysis detailed in the previous section has been performed on pin-

jointed assemblies. However, frames of this nature are uncommon in practice

mostly being seen in the form of tensegrity, cable-net, and civil engineering

structures. If the joints are made rigid, there can be no mechanisms. However,90

there can still be modes of deformation which require a minimum amount of

effort to achieve. These modes of structural compliance in rigid-jointed frames

can be thought of as being analogous to mechanisms in their pin-jointed equiva-

lent. Similarly, modes in both cases can be excited through actuation to create

predetermined displacements. These modes of compliance also indicate various95

paths to stable (non-buckling) structural collapse, the implications of which are

not discussed in this paper.

A rigid-jointed frame is inherently statically indeterminate, and therefore a full

finite element representation is used to determine its properties. The technique

used to extract the modes in this paper is general, and is suitable for any finite100

element discretisation. The method presented uses a well known linear elastic fi-

nite element formulation, with shear deformable, one dimensional, ‘Timoshenko’

beam elements. This discretisation suits our need to construct slender frames,

and also facilitates analogies with existing frame analysis being drawn. The
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details of the implementation can be found in Appendix A.1. The derivation105

is well documented, and can be found in full in Hughes’, ‘The Finite Element

Method’ [7].

The standard finite element approach is to construct a stiffness matrix K which

relates nodal displacements u to external forces f by

Ku = f (5)

We define compliance informally as the amount of effort needed to create a110

displacement in a structure. Although compliance is typically the inverse of

stiffness, K is not suitable for analysis to extract modes of compliance as the

values in the vector f are not comparable. In our discretisation, for example, it

contains moments and torques as well as forces. To address this, a new approach

is proposed that assembles a quasi-stiffness matrix β. This matrix is similar in115

function to B in the pin-jointed case, but it is expanded to include the effects

of bending, torsion and shear, as well as the axial strains. Unlike K, this quasi-

stiffness matrix relates nodal displacements and rotations to a single measure of

strain energy. In this way, the effort required to produce different displacements

can be directly compared.120

3.1. Assembly of the quasi-stiffness matrix

Equation 4 relates nodal displacement solely to the axial extension of the ele-

ments. In order to account for all the sources of strain, an energy-based approach

is used. The strain energy density Uden of a pin-jointed structure, is typically

expressed as125

Uden =
1

2
Dε2 (6)

where ε is the axial strain and D denotes the material and geometric properties,

as detailed in Appendix A.1. In a similar fashion to B, the quasi-stiffness matrix
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β should relate the nodal displacements to a metric representing the amount of

strain in the structure, R. This is expressed as

βu = R (7)

The quasi-stiffness matrix β can be seen as the natural extension of the kine-130

matic matrix – rather than linking nodal displacements solely to axial extension,

it relates the displacements to the geometric and material weighted effects of all

the strain. An expression for R can be found by taking the square root of the

strain energy. Physically, this is the integral of strain in the structure, weighted

by the material moduli, D. The density of this function for axial strains is135

Rden =

(
1

2
D

)0.5

ε (8)

An integration is performed over the entire element which is then divided by

square root of the element length, thus ensuring whole element is taken into

account while preserving physically meaningful dimensions for R, i.e. the square

root of strain energy. The derivation of R and hence β for a shear deformable

beam element are given in Equations A.9, A.10 and A.11.140

If the displacements are separated into a vector, R can be expressed in terms

of nodal displacements u and the quasi-stiffness matrix β. For a single beam

element this is

βu =


βb

βs

βa

βt

u = R (9)

where b, s, a and t correspond to bending, shear, axial and torsional components,

respectively. The matrices β for every element can then be assembled into a145

large matrix describing the whole structure, with m elements, and n degrees of
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freedom. Each component of strain is assigned a row to prevent negative and

positive contributions of strain values from cancelling. The result is a large, but

sparse, matrix β, with each element on subsequent series of columns, and the

values in columns corresponding to global degrees of freedom.150

6m×n︷ ︸︸ ︷

6×12︷ ︸︸ ︷
βb1

βs1

βa1

βt1

 0 · · · 0

0


βb2

βs2

βa2

βt2

 · · · 0

...
...

. . . 0

0 0 0


βbm

βsm

βam

βtm





n×1︷ ︸︸ ︷

u1

u2
...
...

un


=

6m×1︷ ︸︸ ︷{
R
}

(10)

Once the matrix β is assembled, the modes of compliance can be extracted

through a singular value decomposition.

3.2. Singular Value Decomposition

The implementation and the derivation of the SVD is beyond the scope of this

paper, but it is well documented in other sources [8]. For the work presented155

in this paper, the decomposition was carried out using the ‘svd’ function in
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MATLAB [9]. The matrix β is factorised into three matrices

6m×n︷︸︸︷[
β
]

=

6m×6m︷︸︸︷[
Q
] 6m×n︷︸︸︷[

S
] n×n︷ ︸︸ ︷[

V T
]

(11)

Where Q and V are unitary matrices, and S is an ordered diagonal matrix of

non-negative numbers . The columns of Q and V are orthogonal. In the context

of β, the columns of Q are the basis vectors which span the structural strain160

space of the structure, and the columns of V are basis vectors which span the

nodal displacement space. As the basis vectors are unit vectors, the values in

S indicate the effort needed to produce each orthogonal displacement. As S is

ordered, so too are the modes of deformation of the structure. The formulation

of R in Equation A.10 results in the values in S indicating the square root of165

the energy required to produce a given mode.

This process is similar to finding the inextensible mechanisms and states of self-

stress from the nullspace and left-nullspace of A. Instead of finding vectors of

nodal displacement that result in zero bar elongations or vectors of bar ten-

sions with no external forces, unit vectors of nodal displacement which result in170

minimum effort are found.

4. Linear compliant modes

For example, if a two dimensional portal frame, as illustrated in Figure 3, is

pin-jointed there is a clear mode of kinematic indeterminacy. When the joints

become rigid, the various modes of compliance can be extracted, according to the175

procedure in the previous section. In this example, the structure is comprised

of slender members of 1 unit in length, and each having a square cross section

with an edge length of 1× 10−3 units.

Figure 3b clearly shows how a mode of compliance in a slender structure can

be a facsimile of an inextensible mechanism. The rotations at the joints have180
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been replaced with bending of the bars – by far the most energy efficient way to

achieve a displacement, discounting any distal effects of torsion. This effect is

pronounced due to the slender nature of the structure. This pattern is continued

into the higher modes, with an increase in the total curvature of the structure

leading to the higher strain energies.185

While this example is straightforward, and the mode-shapes are intuitive, the

same principles can be applied to more complex structures giving crucial insight

into how mechanisms can be directly and efficiently replaced by compliance, with

the nodal rotations imitated by bending deformation. The associated energy

cost of this substitution, for a given material and geometry and can also be190

easily quantified from the values in S. Crucially, an appreciation for the other,

potentially undesirable, modes of compliance which are being introduced is also

(a) (b) (c)

(d) (e) (f)

Figure 3: A mode of kinematic indeterminacy when the structure is pin-jointed is shown in

3a. Figures 3b to 3f show the five modes of greatest compliance when the joints are rigid, for

a two dimensional portal frame.
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gained. By altering the geometry, certain modes can be prioritised. A simple

example of this would be to change the aspect ratio of the sections of a planar

structure to increase the energy required to produce out-of-plane modes, and195

therefore ensure an in-plane mode is excited under actuation, or vice-versa.

All the modes considered so far have been linear, which is reasonable for small

displacements, however, for many practical adaptive structure applications large

displacements are required. These larger displacement can mean geometric non-

linearities become relevant, leading to undesired tightening or self-stiffening of200

the structure.

5. Accounting for nonlinearities

The structure shown in Figure 3, and its associated mode shapes, are not heavily

influenced by any geometric nonlinearity. However, all linear bending analysis

results in elongation of members, the energy cost of which is not taken into205

account. This results in an under-prediction of the total effort required to

generate the displacement mode shapes, when the displacements are large. For

true deformations to be determined, for a given input, these effects need to be

captured.

An appreciation of the impact of these second order effects is also important210

when considering a structure for actuation. By drawing an analogy with pin-

jointed frames, this is equivalent to differentiating between finite and infinitesi-

mal modes of kinematic indeterminacy. If the mechanisms tighten with displace-

ment, they do not make efficient modes of actuation. For pin-jointed frames,

this first order stiffening can be found by looking at the interactions between215

modes of kinematic and static indeterminacy [5]. However, if the framework

is rigid jointed it is inherently indeterminate, with many irrelevant modes of

self-stress, and therefore another approach is needed.

In order to account for the nonlinearities, an iterative approach is used. A

schematic illustration of this method for a one-degree-of-freedom case is shown220
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in Figure 4. The aim is to find the nonlinear displacements, which are achieved

using the same vector R as the initial linear mode, indicated by the star. Rlinear

is found using equation 9, and the linear displacement mode of interest, a column

of the matrix V , is obtained through factorisation of β. The linear analysis

does not capture higher order effects, such as the elongation of members due225

to bending. This is addressed by recalculating β using an updated geometry

half-way between the deformed and undeformed case (β2). R2 is then found as

twice of the square-root of the energy required to return the structure to the

undeformed case from the geometry used to calculate (β2). This is equivalent to

finding the square-root of the strain energy required to move to the deformation230

ulinear using the average linear approximation to the tangential quasi-stiffness.

The second order effects are captured by taking into account the changing quasi-

stiffness over the deflection. As Rlinear is known, the root energy vector R3 can

then be found to return to the same energy state as the linear mode, where

R3 = (Rlinear −R2). To find the displacements, an SVD of β2 is taken235

1

2

3 4

True response of the structure

R

Displacement u

Rlinear

R2

u3 ulinear

Figure 4: A schematic illustration of the iterative process used to account for nonlinear effects,

in a one-degree-of-freedom system. The displacement of the structure is found, indicated by

the star, where the nonlinear deformation takes the same energy as predicted by the linear

mode. This energy vector is denoted by Rlinear.
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β2 = Q2S2V
T
2 (12)

This decomposition is then used to find the pseudo-inverse of β2, and hence the

displacements u3 at point 3 in Figure 4 are found when the root energy vector

R3 is applied to β+
2 , expressed as

u3 = β+
2 R3 = V2S

+
2 Q

T
2 R3 (13)

The new displacement u3 is then used to apply an improvement to the linear

displacement ulinear, and point 4 in Figure 4 is found. This process is then240

repeated until a satisfactory level of convergence is achieved. It is often not

possible for the nonlinear correction to converge to a solution that has the

same energy as Rlinear, indicating an irreparable under-prediction of energy

expenditure by the linear deformation, indicative of tightening of the structure

under actuation. A fully converged solution results in deflections u which take245

the same magnitude ofR to produce as required to return the deformed structure

back to its initial configuration.

6. Compliant modes examples

The matrix analysis detailed above, as well as the correction for the effects of

strain stiffening caused by nonlinear deformations can be applied to find the250

most efficient way to actuate a structure. A simple test case is a three dimen-

sional ‘h-frame’, with built in boundary conditions at either end, as displayed

in Figure 5.

6.1. Built in h-frame

The spherical-jointed h-frame has three modes of kinematic indeterminacy, as255

illustrated in Figures 6i, 6j and 6k. Two of these modes tighten with displace-

ment, and one can move freely. The structure considered is 3 units in length,

14



with a square cross section of 1× 10−2, resulting in a slender frame. This

slenderness in turn results in bending dominated modes of compliance being

‘inherited’ from the spherical-jointed case, when the joints are made rigid. This260

occurs as the result of rotations previously produced at the nodes being gener-

ated instead through rotation via bending. It is clear that, in practice, many

of these modes would not be suitable for actuation. The deformations shown in

Figures 6b, 6c and 6d require significant elongation of the bars. By implement-

ing the nonlinear correction, it is shown that only the first mode can achieve265

any significant displacement. This is to be expected, as the first mode has par-

allels with the finite inextensible mechanism. The h-frame is a simple structure,

and although the most efficient way to create a deformation is intuitive, it illus-

trates the importance of considering nonlinearities, while ratifying the general

approach. The same process can be applied to a more complex geometry, with270

a greater scope as an adaptive structure.

6.2. Finite Kagome lattice

The Kagome lattice geometry is well known for possessing some unique and

useful actuation properties. It has been used previously to create optimal ac-

tuated sandwich-like structures, capable of producing out-of-plane [10, 11] and275

in-plane [12] waveforms, with members of the framework replaced by, or at-

3

1

1

X

YZ

Figure 5: A simple ‘h’ shaped structure, fixed in place with built in boundary conditions.

The dimensions of the structure are displayed. The cross-section is square with a width of

1 × 10−2, producing a slender structure.
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(e)
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(f)
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(g)

Y
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Z

(h)

Y

X

Z

(i)

Y

X

Z

(j)

Y

X

Z

(k)

Figure 6: The first 4 linear modes of compliance of the structure in Figure 5 are shown in

Figures 6a, 6b, 6c and 6d while Figures 6e, 6f, 6g and 6h show the same modes corrected for

nonlinear effects. If the structure is assumed have spherical-joints and rotation permitting

boundary conditions, then Figure 6i displays the only mode of finite kinematic indeterminacy.

The two modes representing infinitesimal mechanisms are shown in Figures 6j and 6k.
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d3 d2

d1

Figure 7: A finite rigid-jointed kagome lattice structure, with a fixed number of unit cells.

The internal geometry is parametrised in terms of bar height d1, thickness d2, and length d3.

tached to, actuators. The geometry has also been considered numerically as

an infinite, or large, planar lattice [13, 14]. In this configuration, it has been

shown that macroscopic deformations can be produced efficiently within the

structure, with the actuation of a single bar. The modes of kinematic indeter-280

minacy lead to a structure which transmits actuations along discrete ‘corridors’.

This has practical applications for creating efficient adaptive structures, as large

controlled fields of deformation can be created with very few actuators.

If the pin-jointed Kagome lattice is considered infinite, it can not be both kine-

matically and statically determinate [15]. In this case,the modes of self-stress285

impinge on the modes of kinematic indeterminacy, causing them to become in-

finitesimal. This interaction naturally reduces the ability of the structure to

propagate an actuation. If the structure is finite and free-floating it becomes

statically determinate, and with careful selection of boundary conditions it can

be supported while preventing self-stress within the structure.290

For a practical application, a finite free-floating structure is considered, and

illustrated in Figure 7. With pin joints at the nodes, this structure has 93

modes of kinematic indeterminacy, and 6 rigid body modes. With no boundary

conditions there are no states of self stress, and consequently all inextensible

mechanisms are finite [5]. Four of these modes of kinematic indeterminacy are295

displayed in Figure 8. These orthogonal modes illustrate how the pin-jointed

structure can produce discrete areas of in-plane displacement, under actuation.
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In order to create a rigid structure with the propensity to produce this in-plane

displacement, the structure was parametrised as indicated in Figure 7, in terms

of characteristic lengths d1, d2 and d3. The general geometry of the structure300

was unaltered. A brief parametric study was performed, and linear modes of

compliance were extracted, and the actuation effort was found. The aspect

ratio, defined as d1

d2
and the stockiness of the structure, defined as

√
d1d2

d3
were

varied. The actuation effort, taken from the matrix S in Equation 11 and scaled

with d3, is displayed in Figure 9.305

As the structure becomes less stocky, the actuation requirements for a given

aspect ratio decreases. The increasingly efficient bar bending with slenderness

causes the structure to tend towards the pin-jointed case, with the nodal ro-

tations being replaced with rotation through bending. For a given stockiness,

as aspect ratio increases, so does the energy required to deform the structure.310

In this case, this trend continues until the aspect ratio ≈ 11. While the aspect

ratio is less than this value, out-of-plane modes are easier to produce, but above

this threshold, the structure is easier to deform in-plane. This property is en-

hanced with increased aspect ratio. Interestingly, the flip between in-plane and

out-of-plane displacements is independent of stockiness, and is only a function315

of the aspect ratio of the cross-section.

Two such modes are shown in Figure 10. The first is an out-of-plane mode when

the aspect ratio is 1. The second is an in-plane mode when the aspect ratio

is ≈ 160. Also shown is the in-plane mode with the correction for nonlinear

effects applied. Figure 10a illustrates that the out-of-plane mode is similar320

(a) (b) (c) (d)

Figure 8: Four modes of kinematic indeterminacy, indicating finite inextensible mechanisms

for a finite free floating Kagome structure.
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Figure 9: A graph illustrating how actuation effort varies with aspect ratio and stockiness for

a finite Kagome lattice structure, as displayed in Figure 7. In-plane modes dominate above

an aspect ratio of 10

.

(a) Aspect ratio 1, linear (b) Aspect ratio 160, lin-

ear solution

(c) Aspect ratio 160, with

nonlinear correction

Figure 10: Three low actuation effort mode shapes with varying aspect ratio, showing transi-

tion between out-of-plane and in-plane preferred modes.

to plate bending, and the internal geometry of the structure appears to have

little bearing on the deformation. The in-plane displacements in Figure 10b

are similar to the mechanisms seen in Figure 8. When the nonlinearities are

taken into account, shown in Figure 10c the displacements are preserved. The

lack of boundary conditions prevents the ‘corridors’ of displacement from being325

hindered, as predicted by the lack of infinitesimal mechanisms in the pin-joined

analysis. The nonlinear correction shows how the structure is pulled in towards

the center, and therefore indicates that any boundary conditions applied to the

structure must facilitate these motions to allow for easy actuation.
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The study also yields other useful information when designing this structure for330

in-plane actuation. For example, the bars should be as slender as feasible, with

an aspect ratio greater than 11. Analysing the structure in terms of modes of

compliance is a natural way of designing for actuation, as it yields the innate

behaviour of a given structural geometry. The same kind of parametric study

could be performed by applying a force to the structure and assessing the fidelity335

of the deformation and associated stresses, or by calculating the various bucking

modes. However, in both these cases, a location for the forces needs to be

prescribed or treated as variables, as do the boundary conditions. The response

to a load would also not capture the propensity of the structure to deform out-

of-plane, or in an unexpected way, at least not without some structural defects340

being imposed a priori. A buckling analysis, in many cases, would also be

inappropriate as deformation even under large actuation displacements, is often

governed by nonlinear bending rather than an instability. By considering the

nature of the structure, and designing it such that certain modes are encouraged,

an efficient active structure can be created.345

This process can be refined through manipulation of certain modes, rather than

a computationally-expensive parametric study or optimisation routine. By look-

ing at the modes, the properties of individual bars can be chosen to facilitate

the desired deformation, without having to treat each as a variable in an opti-

misation routine. The Kagome geometry, as illustrated in Figure 7 is used again350

as a test case, but in practice this method is most powerful when the structure

considered is irregular, and can not be parameterised efficiently.

7. Modal optimisation

In the case of the Kagome lattice structure, we aim to produce a continu-

ous structure capable of imitating the four pin-jointed mechanisms shown in355

Figure 8. Importantly, a structure which inhibits out-of-plane deformations is

also required. The initial structure, as displayed Figure 7, with feasible but
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essentially arbitrary values for u, and material properties is factorised, as in

Equation 11.

The matrix V yields the modes of compliance of the structure, ranked in order360

of how easily they are produced. The modes relevant to the application can

be selected in a number of ways, through physical intuition if the problem is

straightforward, or through numerical comparison to a desired deformation for

more complex cases. As the columns of V span the displacement space of the

structure, a weighted sum of modes will be able to replicate any deformation.365

As the desired deformations are known, and only low energy modes are of inter-

est, an approximation using a reduced modal model to approximate the target

displacements ut can be expressed as

n×c︷︸︸︷[
Vr

] c×1︷︸︸︷{
ω
}

=

n×1︷ ︸︸ ︷{
ut

}
(14)

where Vr is a sub-set of V , comprising the low energy modes, and ω is the

proportion each of the modes contribute to the displacements in ut. The number370

of modes selected is indicated by c, typically the ones corresponding to the

lowest values in S. In this way, by setting ut to various desired displacements

it is possible to see which modes need to be encouraged, and conversely, which

modes need to be suppressed and to what degree. Producing a reduced version

of V both makes finding ω easier, and also means that only low-energy modes are375

considered. By using only these modes, the number of degrees of freedom upon

which ω is selected can also be reduced, as irrelevant structural deformations of

high wave number will not be considered.

For each of the displacement modes in V , there is a corresponding stress mode

as a column in Q. This column is equivalent to the normalised vector of β380

multiplied by that displacement mode. Qr is a matrix consisting of the stress

states of the displacements modes in Vr. If there are p desired and q undesired
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displacements vectors ut, the cumulative effect can be expressed as

e =
hp
p

p∑
i=1

Qr|ωi|+
hq
q

q∑
j=1

Qr|ωj | (15)

where e, the stiffness improvement vector, describes how the stiffness of each

element of the structure needs to change to reflect the modes enhanced and sup-385

pressed. Constants hp and hq determine how the modes selected are enhanced

or attenuated, respectively. By having hp = 0.1 and hq = 10, for example,

would result in 2 orders of magnitude difference in ease of actuation between

the unwanted and the favoured mode shapes for actuation. β is constructed in

such a way that e can be broken down into values for each element, as well as390

for each source of stiffness as

e =
{ element 1︷ ︸︸ ︷{(

eb1

)(
es1

)(
ea1

)(
et1

)} element 2︷ ︸︸ ︷{(
eb2

)(
es2

)(
ea2

)(
et2

)}

. . .

element m︷ ︸︸ ︷{(
ebm

)(
esm

)(
eam

)(
etm

)}}
(16)

where the subscripts relate to source of the stress (bending, shear, axial and

torsional), as well as the element number. The element properties, the values

in matrix D given in Equation A.5, can then be adjusted for each element.

Sometimes it might not be feasible to alter the material properties, or certain395

element dimensions, leading to a trade off between components of stiffness. For

example, if the out-of-plane height of the elements, d1 were kept constant, axial

stiffness might have to decrease to allow in-plane bending stiffness to decrease,

even if this change is not explicitly prescribed in e. The improved geometric

and material properties, Dnew can be found from e, and the initial values of D400

by solving
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Dnew = De (17)

where D is calculated for the initial structure.

When the structure in Figure 7 with an aspect ratio of 1, and a stockiness of

0.016, is analysed using this method, four key modes displayed in Figure 11 are

selected, as their weighted sum replicates all of the modes in Figure 8. The405

modal number corresponds to their ranking, in terms of ease to produce as

deformations in the original structure. It is clear that the inital stucture has

no propensity to mimic the modes in Figure 10, as the in-plane modes fall high

up in the rank. Dnew was found by altering only the element thickness, using

hp = 0.1 and hq = 10. Consequently, the in-plane thickness of the members410

of the structure are reduced considerably, producing a mean aspect ratio of

≈ 90. This corroborates with the results of the parametric study, displayed

in Figure 9. Furthermore, when the weighting to the modes is applied to Q,

and reassembled into a new β, with S and V and re-factorised, the modes

displayed in Figure 11 are found to be ranked as the four easiest to produce,415

indicating that the nature of the structure has changed favorably. Reordering

specific modes of compliance through manipulating the structural properties of

the elements, by producing a reduced-model, is a very efficient way to design

compliant structures. Performing the SVD has by far the largest computational

cost, but only needs to be done once as the basis vectors extracted offer a420

complete description of the geometry. In this way, the structure can be efficiently

honed to have the desired compliance and performance under actuation.

8. Conclusions

Considering structures for actuation is typically done in terms of applied forces,

boundary conditions and displacements. In this paper, we have proposed a new425

method using a modal decomposition of the structure to extract inherent modes

23



(a) Mode 1505 (b) Mode 1510 (c) Mode 1514 (d) Mode 1549

Figure 11: Four modes which can be summed to give a good approximation to the four

‘corridors’ of actuation in Figure 8. The mode number corresponds to the ranking of the

mode, in terms of actuation effort, in the original structural design.

of compliance. These modes are found through a singular value decomposition

of a quasi-stiffness matrix β, assembled using a strain energy approach. A

reduced model of the structure, using only of relevant orthogonal modes, is then

constructed. By enhancing or attenuating certain modes, an efficient process430

for optimising compliant structures is outlined. The Kagome lattice geometry,

known for its favourable actuation characteristics, is used to demonstrate the

approach. The method is implemented throughout with a beam-element model.

Nonlinear effects known to inhibit mechanisms in pin-jointed frames are shown

to display similar effects in the analysis of compliant structures. Both tightening435

of the structure under finite displacements, due to the structure impinging upon

itself, as well as the first order effects of bending under large deflections is not

captured with the linear analysis. An iterative scheme is presented to adjust

the linear modes to take these nonlinear phenomena into account.

The processes detailed in this paper give a new way to consider adaptive struc-440

tures in terms of innate modes of compliance. It also demonstrates how the

manipulation of these modes can form the basis of an efficient structural opti-

misation routine.
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Appendix A. Beam element description

Appendix A.1. Finite element discretisation

As the finite element scheme used is well known, well documented, and quite

simple only the salient details are presented. One-dimensional prismatic beam

elements are used, with linear basis functions, as in Equation A.1. The element

and associated coordinate systems are defined in Figure A.12. A superscript

e indicates that the variables apply to the element, rather than global system.

x1−3 signify the coordinate systems, θ1−6 rotations, and w1−6 displacements.

The dimensions of the element are expressed with the variable d1−3. The two

basis functions in terms of xe and denoted by N are

N1 = 1− xe3
d3

N2 =
xe3
d3

(A.1)

Using these shape functions, and following the procedure laid out in Hughes [7],

element deformation matrices for bending Pb, shear Ps, axial Pa, and torsional450

Pt strain can be composed

x1

x2

x3

d3
d1

d2

xe1

xe3
xe2

θe1

θe2

θe3

Figure A.12: A single prismatic beam element illustrating the global and elemental coordinate

systems x, the dimensions of the element d, and the nodal displacements and rotations, w and

θ, respectively.
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Pb =

0 0 0 dN1

dx3
0 0 0 0 0 dN2

dx3
0 0

0 0 0 0 dN1

dx3
0 0 0 0 0 dN2

dx3
0


Ps =

dN1

dx3
0 0 0 −N1

dx3
0 dN2

dx3
0 0 0 −N2

dx3
0

0 dN1

dx3
0 N1

dx3
0 0 0 dN2

dx3
0 N2

dx3
0 0


Pa =

[
0 0 dN1

dx3
0 0 0 0 0 dN2

dx3
0 0 0

]
Pt =

[
0 0 0 0 0 dN1

dx3
0 0 0 0 0 dN2

dx3

]
(A.2)

The 12 degrees of freedom for each element, in the element coordinate system,

can be assembled into the vector ue with the subscripts 1− 3 corresponding to

the first node, and 4− 6 the second.

ue =
{
we

1 we
2 we

3 θe1 θe2 θe3 we
4 we

5 we
6 θe4 θe5 θe6

}T

(A.3)

The various strains within an element for a given nodal displacement, ue can455

be found from the element deformation matrices by

κe =Pbu
e

γe =Psu
e

εe =Pau
e

ψe =Ptu
e

(A.4)

where κ, γ, ε and ψ represent the bending, shear, axial and torsional strains,

respectively. The standard finite element approach is to integrate the element

deformation matrices, multiplied by the material moduli matrices D which can

be expressed as460
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Db =

EI1 0

0 EI2


Ds =

µaφ 0

0 µaφ


Da =

[
Ea
]

Dt =
[
µI3

]
(A.5)

in order to construct an elemental stiffness matrix ke. Where E is the Young’s

modulus and I1−2 refer to the second moment of area, calculated from d1 and

d2. The cross- sectional area is denoted by a, with a correction factor φ [16]

required to correct for the distribution of shear strain across the section, with µ

being the shear modulus. I3 is the polar moment of inertia of the beam around465

xe3. Hence, ke can be found as

ke =

∫ d3

0

PT
b DbPb + PT

s DsPs + PT
a DaPa + PT

t DtPt dx
e
3 (A.6)

In order to move between the coordinate system of an element, and the global

coordinate system of the structure, a rotation matrix T e is required. If te is

the 3 × 3 matrix which transforms the basis vectors xe to x as illustrated in

Figure A.12, then for the 12 degrees of freedom of the element, T e can be470

expressed as

T e =


te 0 0 0

0 te 0 0

0 0 te 0

0 0 0 te

 (A.7)

such that k = T ekeT eT , and W = T eW e, for example. The construction of the

global stiffness matrix K forms the backbone of linear finite element analysis,
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relating the displacements u with nodal forces f as

Ku = f (A.8)

Appendix A.2. Assembly of the quasi-stiffness matrix475

While the goal of the previous section is the assembly of the matrix K, a quasi-

stiffness matrix β is needed to determine modes of compliance. As in Equation 7,

βu = R can be found as

Re
b =

(
Db

2d3

)0.5 ∫ d3

0

κ dx3 =

(
Db

2d3

)0.5 ∫ d3

0

(Pbu
e) dx3

Re
s =

(
Ds

2d3

)0.5 ∫ d3

0

γ dx3 =

(
Ds

2d3

)0.5 ∫ d3

0

(Psu
e) dx3

Re
a =

(
Da

2d3

)0.5 ∫ d3

0

ε dx3 =

(
Da

2d3

)0.5 ∫ d3

0

(Pau
e) dx3

Re
t =

(
Dt

2d3

)0.5 ∫ d3

0

ψ dx3 =

(
Dt

2d3

)0.5 ∫ d3

0

(Ptu
e) dx3

(A.9)

which when expressed in the global coordinate system becomes

Rb =

(
Db

2d3

)0.5 ∫ d3

0

(
Pb (T e)

T
u
)
dx3

Rs =

(
Ds

2d3

)0.5 ∫ d3

0

(
Ps (T e)

T
u
)
dx3

Ra =

(
Da

2d3

)0.5 ∫ d3

0

(
Pa (T e)

T
u
)
dx3

Rt =

(
Dt

2d3

)0.5 ∫ d3

0

(
Pt (T e)

T
u
)
dx3

(A.10)

in which the subscripts b, s, a and t correspond to bending, shear, axial and

torsional contributions to R, respectively.480

If the integration is performed analytically, and linear shape functions are used,

the individual element components of the quasi-stiffness matrix become
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βb =

(
Db

2

)0.5
0 0 0 −1√

d3
0 0 0 0 0 1√

d3
0 0

0 0 0 0 −1√
d3

0 0 0 0 0 1√
d3

0

 (T e)
T

βs =

(
Ds

2

)0.5
 −1√d3

0 0 0 −
√
d3

2 0 1√
d3

0 0 0 −
√
d3

2 0

0 −1√
d3

0 −
√
d3

2 0 0 0 1√
d3

0
√
d3

2 0 0

 (T e)
T

βa =

(
Da

2

)0.5 [
0 0 −1√

d3
0 0 0 0 0 1√

d3
0 0 0

]
(T e)

T

βt =

(
Dt

2

)0.5 [
0 0 0 0 0 −1√

d3
0 0 0 0 0 1√

d3

]
(T e)

T

(A.11)

These individual components are then assembled into a larger matrix, as in

Equation 10, which then forms the basis of the analysis.

29



References485

[1] L. L. Howell, Compliant mechanisms, John Wiley & Sons, 2001.

[2] S. D. Guest, S. Pellegrino, The Folding of Triangulated Cylinders, Part II:

The Folding Process, Journal of Applied Mechanics 61 (4) (1994) 778.

[3] M. Santer, S. Pellegrino, Topological Optimization of Compliant Adaptive

Wing Structure, AIAA Journal 47 (3) (2009) 523–534.490

[4] J. C. Maxwell, On the calculation of the equilibrium and stiffness of frames,

Philosophical Magazine Series 4 27 (182) (1864) 294–299.

[5] S. Pellegrino, C. Calladine, Matrix analysis of statically and kinematically

indeterminate frameworks, International Journal of Solids and Structures

22 (4) (1986) 409–428.495

[6] S. Pellegrino, Analysis of prestressed mechanisms, International Journal of

Solids and Structures 26 (I) (1990) 1329–1350.

[7] T. J. R. Hughes, The finite element method: linear static and dynamic

finite element analysis, Courier Dover Publications, 2012.

[8] K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical methods for physics500

and engineering: a comprehensive guide, Cambridge University Press, 2006.

[9] MATLAB, Version: 8.3.0.532 (R2014a), The MathWorks Inc., 2014.

[10] D. Symons, R. Hutchinson, N. Fleck, Actuation of the Kagome Double-

Layer Grid. Part 1: Prediction of performance of the perfect structure,

Journal of the Mechanics and Physics of Solids 53 (8) (2005) 1855–1874.505

[11] D. D. Symons, J. Shiek, N. Fleck, Actuation of the Kagome Double-Layer

Grid. Part 2: Effect of imperfections on the measured and predicted actua-

tion stiffness, Journal of the Mechanics and Physics of Solids 53 (8) (2005)

1875–1891.

30



[12] J. W. Bird, M. J. Santer, J. F. Morrison, Adaptive Kagome Lattices for510

Near Wall Turbulence Suppression, in: 23rd AIAA/AHS Adaptive Struc-

tures Conference, no. 1, American Institute of Aeronautics and Astronau-

tics, Reston, Virginia, 2015, pp. 1–20.

[13] A. Leung, Actuation of kagome lattice structures, Proceedings of the 45th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Ma-515

terials Conference (2004) 19–22.

[14] A. Leung, S. Guest, Single member actuation of kagome lattice structures,

Journal of Mechanics of Materials and Structures 2 (2) (2007) 303–317.

[15] S. Guest, On the determinacy of repetitive structures, Journal of the Me-

chanics and Physics of Solids 51 (3) (2003) 383–391.520

[16] G. R. Cowper, The Shear Coefficient in Timoshenko’s Beam Theory, Jour-

nal of Applied Mechanics 33 (2) (1966) 335.

31


	Introduction
	Evaluation of compliant modes using the SVD
	Pin-jointed frame analysis

	Extension for rigid-jointed assemblies
	Assembly of the quasi-stiffness matrix
	Singular Value Decomposition

	Linear compliant modes
	Accounting for nonlinearities
	Compliant modes examples
	Built in h-frame
	Finite Kagome lattice

	Modal optimisation
	Conclusions
	Acknowledgements
	Beam element description
	Finite element discretisation
	Assembly of the quasi-stiffness matrix


