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Abstract.
Non-linear molecules undergo distortions when the orbital degeneracy of the

highest occupied level is lifted by the Jahn-Teller effect. If such molecules or
clusters of atoms are coupled to one another, the system may experience a
cooperative Jahn-Teller effect (CJTE). In this paper, we describe a model of
how the CJTE leads to the crystallization of the disordered phase. The model
Hamiltonian is based on a normal mode decomposition of the clusters in order
to maintain the symmetry labels. We take account of the electron-strain and the
electron-phonon couplings and, by displacing the coordinates of the oscillators,
obtain a term that explicitly couples the Jahn-Teller centers, enabling us to
perform a mean-field analysis. The calculation of the free energy then becomes
straightforward, and obtaining phase diagrams in various regimes follows from the
minimization of this free energy. The results show that the character of the phase
transition may change from strong to weak first order and even to second-order,
depending on the coupling to the vibrational modes. Taken together, these results
may serve as a paradigm for crystallization near the transition temperature, where
the atoms tend to form clusters of icosahedral symmetry.

PACS numbers: 71.70.Ej,33.20.Wr,31.30.-i,31.15.xh
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1. Introduction

The Jahn-Teller theorem states that a non-linear
molecule that has electronic degeneracy at the highest
occupied molecular orbital (HOMO) is unstable and
will distort to remove the degeneracy. This effect
originates with the interactions between electrons
and atomic vibrations, called vibronic interactions,
resulting in a lowering of the symmetry of the molecule
to reduce the degeneracy of the highest occupied states.

In the Taylor expansion of the molecular potential
energy about equilibrium, the higher-order terms
determine the vibronic interaction operator [?, ?]. In
the adiabatic approximation, the off-diagonal terms are
set to zero and the vibronic interaction can be treated
as a perturbation, with the correction to the energy
obtained by using degenerate perturbation theory.
This distorts the adiabatic potential energy surface
(APES), causing minima to be at points other than
the equilibrium configuration. Hence, the molecule is
unstable at the equilibrium point and will distort to
minimize its potential energy. This is called the Jahn-
Teller effect (JTE) [?].

In a collection of coupled Jahn-Teller centers,
the distortions are aligned below some transition
temperature. In a crystal, this effect would lower the
symmetry of the lattice. This is called the cooperative
Jahn-Teller effect (CJTE). Dunitz and Orget [?] and
McClure [?] were the first to propose the possibility of
a cooperative Jahn-Teller phenomenon. Wojtowikz [?]
and Kanamori [?] were among the first to establish a
theory of the CJTE, with later work by Elliott et al.
[?, ?, ?], Englman and Halperin [?], Pytte [?], Kino et
al. [?], completing the picture.

Early work in this area was concerned largely
with doubly- or triply-degenerate orbitals that were
coupled to single or doubly-degenerate normal modes.
This enabled the analytic determination of physical
quantities, such as the free energy, the transition
temperature, and the strain [?]. The computational
complexity increases for greater numbers of degenerate
electronic states, with the Jahn-Teller effect of a
molecule with icosahedral symmetry being one of the
most computationally challenging scenarios because
there can be three- four-, or five-fold degenerate
electronic states that can be coupled to four- and five-
fold degenerate modes.

The static Jahn-Teller effect for icosahedral
molecules was first discussed by Khlopin et al.,[?] and
later by Pooler [?], who emphasized the symmetry and
group theoretical aspects of such systems. Ceulemans
and Fowler [?] and Cullerne et al.[?, ?] were concerned
with the potential energy surface and Ham reduction
factors of the static G ⊗ (g ⊕ h) problem, where four-
fold degenerate electronic states (G) couple with four-
and five-fold degenerate vibrational states (g) and (h),

respectively. Dunn et al.[?, ?] and O’Brien [?] focussed
on the potential energy surface and the corresponding
minima of the static T⊗h problem, in which three-fold
degenerate electronic states (T ) couple with five-fold
degenerate vibrational states (h).

In this paper, we investigate the most complex of
the cooperative Jahn–Teller systems, those involving
interacting icosahedral clusters, the H⊗(g⊕2h) CJTE.
The static H ⊗ (g⊕ 2h) problem was first investigated
with the calculation of the APES extremal points by
Ceulemans and Fowler [?], with additional work by
Rios et al. [?] and Moate et al.[?] Despite this work,
little attention has been devoted to the cooperative
effect of icosahedral molecules. Dunn [?] and Moujaes
and Dunn et al.[?] were among the few who examined
the CJTE of icosahedral clusters. However, unlike the
present work, their main concern was the CJTE due
to triply-degenerate orbitals. This effect is exhibited
by the excited states of C60 and its anions because the
lowest unoccupied molecular orbital (LUMO) of C60 is
three-fold degenerate. [?]

The H ⊗ (g ⊕ 2h) CJTE is concerned with
five-fold degenerate electronic states (H). From
group theory [?, ?], these states can be vibronically
coupled to the A1g, Gg and 2Hg normal modes.
The A1g is the fully symmetric normal mode and,
hence, does not correspond to any distortions of the
symmetry. The complication arises because of the
double appearance of Hg in the decomposition. This
does not necessarily imply that there are couplings to
two different vibrational modes of Hg symmetry [?],
but the Wigner–Eckart theorem does not take its usual
form [?] and there are two different ways to couple to
a vibrational mode, and hence two independent sets of
Clebsch–Gordan coefficients are needed. This means
that we need two coupling constants and two matrices
to separate the matrix elements into reduced elements
and coefficients [?]. The choice of the Clebsch-Gordan
coefficients in this case is free as long as any pair of
linear combinations of the two will do equally well
[?].This is effectively the same as the coupling to
two Hg modes, but the complication can be partially
alleviated by a multi-mode analysis, which reduces the
number of coupled coordinates from fourteen to nine.

Determining the free energy of this system necessi-
tates finding the eigenvalues of a five-dimensional ma-
trix composed of nine coordinates and three coupling
constants. Equations for the distortions in each coor-
dinate are obtained by minimizing the free energy with
respect to all nine coordinates and solving the resulting
equations simultaneously at a variable temperature.

Phase diagrams are determined by minimizing
the free energy for specific thermodynamic conditions.
There are two main factors that affect the phase
diagrams. One is the minimum of the potential
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surface. Essentially the Jahn-Teller effect warps the
nine-dimensional APES into one with several potential
minima instead of only one. Hence, we can have as
many phase diagrams as there are minima of the APES,
each corresponding to a particular distortion of the
icosahedral clusters. The second factor is the absolute
and relative values of the three coupling constants of
the electronic states to the vibrational modes. These
can affect the character of the phase diagrams as well
as the transition temperatures. More specifically, for
the D5d minima of the APES, the transition changes
from strongly first order to second order, depending on
the parameter that represents the coupling to the Hg

modes.
The HOMO of C60 is five-fold degenerate [?], so

a system of interacting cations of C60 may undergo
such a transition. Si12 is another example of a cluster
that can experience such a JTE [?]. The H ⊗ (g ⊕ 2h)
CJTE may also be relevant to the metallic glasses near
the glass transition temperature [?], where the atoms
tend to form clusters of icosahedral symmetry. This
will be discussed in more details in the conclusions.

The organization of our paper is as follows. In
Sec. ?? we describe the basic formalism we use,
including the passage from the single cluster to the
coupled-cluster Hamiltonian, and the application of
mean-field theory to the free energy obtained from
the partition function. Our formulation is general and
can be applied to a coupled Jahn–Teller system with
any symmetry. Section ?? applies the formulation
in Sec. ?? to icosahedral clusters, focussing on the
application of symmetry principles to the formulation
of the free energy and the computation of phase
diagrams for coupled Jahn–Teller systems. Phase
diagrams are presented in Sec. ?? in increasing order
of complexity. We discuss how the various couplings
affect the transition temperature, the order of the
transition, and other aspects of the phase diagram.
Section ?? summarizes our work and provides an
outlook to other applications of our formulation.
Details of the calculations in the following sections,
including figures of the vibrational normal modes, may
be found in [?].

2. Basic Formulation

2.1. Single-Cluster Hamiltonian

The vibronic operator contains the molecular coordi-
nates in a power series, though, for simplicity, we will
work only up to the linear term. Normal coordinates
are convenient for Jahn–Teller problems, with each
such coordinate corresponding to an irreducible repre-
sentation of the symmetry group of the molecule. The
vibronic operator up to the linear order is the JT part

of the total Hamiltonian:

HJT =
∑
Γγ

FΓQΓγÔΓγ . (1)

Here, FΓ are the coupling coefficients, QΓγ the normal

coordinates and ÔΓγ the corresponding matrices.
Including the kinetic and potential energies of the
normal modes yields the total Hamiltonian of the
molecule:

H =
∑
Γγ

(
P 2

Γγ

2M
+

1

2
Mω2

ΓQ
2
Γγ + FΓQΓγÔΓγ

)
, (2)

where M is the effective mass, PΓγ the momentum,
and ωΓ the natural frequency of the normal modes.

2.2. Coupled-cluster Hamiltonian

The passage from a single Jahn-Teller center to the
CJTE is obtained by summing the single-molecule
Hamiltonians and adding an intermolecular interaction
term. There are several ways to couple the vibrations
to the orbitals in a system of interacting JT centers.
Although the k = 0 limit of the acoustic phonon modes
leads to macroscopic strain, treating them separately is
useful due to the problem of applying proper boundary
conditions to the strained crystal [?]. Kanamori [?] was
primarily concerned with the coupling to the elastic
strain because his calculations were in the limit k = 0,
where the acoustic phonons are simple translations
and, hence, do not couple to the orbitals. Pytte [?] used
a similar model, assuming that the dominant coupling
is to the strains. Englman and Halperin [?] and Feiner
[?] coupled the coordinates of the JT centers directly,
whereas Elliott [?] considered the coupling to optical
phonon modes at k = 0, although elastic strains were
taken into account as well.

After considering the lattice-orbit coupling in a
system of interacting JT centers, the centers must
be coupled to each other. Gehring and Gehring
[?] discuss four mechanisms for this interaction. (i)
Perturbation theory, where the ions are coupled
through the vibronic matrices [?]. (ii) Displaced
oscillators, based on a transformation of the phonon
creation and annihilation operators [?]. This results in
essentially the same interaction term as perturbation
theory, and is the method used here. (iii) Factorization
of the partition function, which does not seem very
promising. (iv) Canonical transformations, which are
similar to displaced operators.

Here, we take a somewhat different approach.
We begin with the assumption that the inter-
cluster interactions are weaker than the intra-cluster
interactions. Hence, we absorb the ion-ion interactions
into the strain energy and allow the clusters to
maintain their normal modes. In addition, we couple
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the uniform strains to the electrons. This leads to the
Hamiltonian:

H =
∑
RΓγ

[
1

2
ΩηΓe

2
Γγ +

P 2
Γγ(R)

2M
+

1

2
Mω2

ΓQ
2
Γγ(R)

+ VΓeΓγÔΓγ(R) + FΓQΓγ(R)ÔΓγ(R)

]
, (3)

where R is the mean position of the center of the
atomic clusters, and Ω, ηΓ, VΓ and e are the volume,
elastic constant, electron-strain coupling constant, and
the strain, respectively.

Although ours is an approximate approach, we
are able to maintain the symmetry representations
of the JT distortion of the clusters. We are also
able to transform into displaced coordinates while
maintaining the same operator commutation relations.
If more than one type of normal coordinate is coupled
to the orbitals, the displaced coordinates will not
satisfy the commutation relations. However, in our
approach, instead of relating the normal coordinates
of the clusters to the phonons in an approximate way,

QΓγ ≈
√

h̄

2MωΓ
(a†(k) + a(k)) , (4)

we define the ladder operators in terms of the
symmetries of the normal coordinates, leaving no
ambiguity in relating the two. This allows us to
transform the operators even if there are vibronically
coupled normal coordinates of different symmetries.
The only cost is that the inter-cluster interaction
appears only after determining the values of the strains
and transformation of the ladder operators.

We proceed by substituting the uniform strain
with the value obtained from the minimization of the
Hamiltonian. We also write the coordinates, conjugate
momenta and the matrices as Fourier series and define
ladder operators in the usual way and substitute into
the Hamiltonian. Transforming the operators into
displaced coordinates makes the Hamiltonian free of
any linear terms in matrices.

Finally, transforming the matrices back to spatial
coordinates produces,

H = H0 +
∑
Γ,γ

{∑
k

[
h̄ωΓ(k)

(
γ†Γγ(k)γΓγ(k) +

1

2

)]

− 1

2

∑
R′ 6=R

[
JΓ(R,R′) +

V 2
Γ

ΩηΓ

]
ÔΓγ(R)ÔΓγ(R′)

}
,

(5)

where

JΓ(R,R′) =
1

N

∑
k

2(ξΓ
k)2

h̄ωΓ(k)
eik·(R−R

′) . (6)

The explicit derivation of this CJTE Hamiltonian is
shown in Appendix A. Note that the term for R = R′

is the self-energy and can be included in H0, along with

other non-dynamical terms, such as the crystal energy.
The terms with R 6= R′ represent the interaction
between local distortions at R and R′ mediated by
the JT effect which drive the phase transition [?].

3. Mean-field approximation

We have made two approximations. First, we included
only the linear term of the vibronic operator and
neglected the higher-order terms. Although the
second-order terms can be important, they are difficult
to compute for complex systems. Second, we assumed
that the intra-cluster are stronger than the inter-cluster
interactions, so that the clusters will maintain their
normal modes and the inter-cluster interactions were
considered to be part of the uniform strain energy.
However, this should not be a problem because the
way that the ladder operators and their transformation
to displaced coordinates were defined, made the inter-
cluster interaction explicit at the end. Hence, we are
able to perform a mean-field approximation at this
stage, which is the third approximation.

The general idea of the mean-field approximation
is to reduce the many-body problem to a single-body
problem by assuming that each unit cell is affected only
by the average of the fields from all other cells. This
average field will play the role of the order parameter
which vanishes in the high-temperature phase. In the
case of the CJTE, the mean-field is the average order
of the local distorted clusters or, in other words, the
extent to which the distorted clusters are aligned with
each other.

In our Hamiltonian (??), the last term is an

indication of a coupling between the operators ÔΓγ(R).
We allow the matrices to fluctuate around their
thermal average values:

ÔΓγ(R) = 〈ÔΓγ〉+ ∆ÔΓγ(R) , (7)

where,

〈ÔΓγ〉 =
1

Z
Tr
(
ÔΓγe

−βĤ) , (8)

and Z is the partition function and β = (kBT )−1,
where kB is Boltzmann’s constant and T is the absolute
temperature. The mean-field correlation term is,

− 1

2

∑
R′ 6=R

ÔΓγ(R)ÔΓγ(R′)

= −1

2

∑
R′ 6=R

[〈ÔΓγ〉+ ∆ÔΓγ(R)][〈ÔΓγ〉+ ∆ÔΓγ(R′)]

= −1

2
〈ÔΓγ〉2 −

∑
R

〈ÔΓγ〉∆ÔΓγ(R) +O(∆ÔΓγ)2

=
1

2
〈ÔΓγ〉2 −

∑
R

〈ÔΓγ〉ÔΓγ(R) +O(∆ÔΓγ)2. (9)
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In the last equality we substituted equation (??)
into the second term. The resulting Hamiltonian
consists of a second-order term in the average fields,
a term linear in the matrices and a second-order term
in thermal fluctuations which will be ignored in the
spirit of the mean-field approximation.

The glory of this approximation is that we do
not need to calculate every single pair interaction,
but instead we only need to calculate the potential
of a single site affected by the average field from all
other sites. Note that we are not trying to calculate
the correlation function

∑
〈ÔΓγ(R)ÔΓγ(R′)〉 which

measures how microscopic variables are related and co-
vary with each other across space, but we are merely
simplifying part of the Hamiltonian (??) using mean-
field approximation.

The thermal averages are taken to be site-
independent because we are assuming that the system
is invariant under translations. This assumption
will not be valid if the system is not homogeneous
throughout the space, or in other words, the symmetry
of the system is lower than that of the Hamiltonian
[?]. Since we are mainly concerned with the CJTE in
crystalline structures and isotropic supercooled liquid
phases, this assumption is perfectly valid.

In general, mean-field approximation is more ac-
curate for longer range of interactions, smaller fluctu-
ations and higher dimensions where the coordination
number is higher [?]. In fact, the theory becomes ex-
act for infinite interaction range and number of near-
est neighbors [?]. As can be seen from equation (??),
the electron-strain coupling radius is infinite. More-
over the atoms interact in a three-dimensional environ-
ment with an average coordination number of twelve
for icosahedral clusters. Hence for high contribution of
electron-strain coupling to the inter-cluster interaction
and a strong vibronic coupling (where the correlation
length is longer than the lattice constant), the mean-
field approach can be quite reliable. Nevertheless,
mean-field theory can still give a reasonable qualita-
tive picture of the problem. A good quantitative mea-
sure of the validity of the theory is the Ginzburg crite-
rion which considers the theory to be valid as long as
the correlation between thermal fluctuations over a co-
herence volume is much less than the order parameter
itself, i.e, 〈(∆ÔΓγ)2

coh〉 � 〈ÔΓγ〉2 [?]. The systematic
calculation of the correlation function is quite challeng-
ing because we are dealing with a three-dimensional
quantum system with large non-commutative matrix
operators. However, for the reasons noted above, we
expect agreement with the mean-field result for the
first-order transitions.

Proceeding with the theory, H0 and the phonon
energy term (the operators γΓγ(k) have zero averages
[?]) only add a non-dynamical constant term to the free

energy which do not affect the phase diagrams and thus
we ignore them from this point onwards. The mean-
field Hamiltonian is

H =
∑
Γγ

[
1

2
λΓ〈ÔΓγ〉2 −

∑
R

λΓ〈ÔΓγ〉ÔΓγ(R)

]
, (10)

where,

λΓ =
∑

R′ 6=R

JΓ(R,R′) +
V 2

Γ

ΩηΓ
, (11)

and λΓ is site-independent because we are treating all
units as the same. Thus, no matter what site R is
chosen,

∑
R′ 6=R JΓ(R,R′) will always return the same

value.
The partition function Z is calculated from from

the Hamiltonian (??) as

Z = Tr
(
e−βĤ

)
= exp

(
−β

2

∑
Γγ

λΓ〈ÔΓγ〉2
)∑

i

eβwi ,(12)

in which the wi are the eigenvalues of∑
R,Γ,γ

λΓ〈ÔΓγ〉ÔΓγ(R) . (13)

The mean-field approximation to the free energy F of
a system of interacting JT centers is then given by

F = −N
β

lnZ =
∑
Γ,γ

N

2
λΓ〈ÔΓγ〉2 −

N

β
ln
∑
i

eβwi . (14)

The stable phase in systems at constant pressure
and temperature is that which has a lower Gibbs free
energy. However, we may only derive the Helmholtz
free energy (which requires the system to be at
constant volume and temperature), not the Gibbs
free energy, from the statistical partition function
through equation (??) [?]. Nonetheless, since we are
mainly concerned with condensed phases of matter
that undergo CJTE (mainly solids, but could be liquid
as well), the volume and pressure changes in such
transitions are of negligible amount. Thus we may
assume that the two thermodynamic potentials are
approximately equal and use them interchangeably
[?, ?].

4. Icosahedral Clusters

The symmetry group of an icosahedral molecule is Ih.
We are concerned here with the electronic d-orbitals,
which are not split by the icosahedral crystal field.
Hence, these states all transform according to the five-
fold degenerate representation Hg of Ih.

According to the matrix element method, only the
vibrational modes that transform according to Ag, Gg
and Hg representations are coupled to the d-orbitals.
For notational simplicity, we will henceforth omit the
subscript g for irreducible representations, as odd
representations are not involved in the interactions.
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As discussed in the introduction, there is the
complication of the multiplicity of the representation
H in the decomposition [H ⊗H] = A+G+ 2H. This
means that the coupling to the five-fold degenerate
vibrational mode (H⊗h) involves a sum of interaction
matrices with two coupling constants because the
Wigner–Eckart theorem does not take its usual form.
Thus, to represent a general JT interaction, two
families of matrices must be multiplied by independent
coupling constants [?]. We are free to choose these
matrices insofar as any linear combination will do
equally well.

Neglecting the totally symmetric normal mode,
which does not result in a distortion, there are 9 modes
coupled to the d-orbitals in an icosahedral molecule.
We denote the five-fold symmetric normal modes by h
and the four-fold modes by g.

4.1. The free energy

We decompose the vibronic matrices into a sum of the
operators for each normal mode so we can make use
of the mean-field Hamiltonian (??). The most general
form of the mean-field operator of vibronic interactions
that couples the five-fold degenerate electronic orbitals
to the 9 normal modes of vibration is,

W =
∑
R,γ

{
λg〈Ôgγ〉Ôgγ(R) + λh

[
〈Ôahγ〉Ôahγ(R) sinα

+ 〈Ôbhγ〉Ôbhγ(R) cosα
]}

, (15)

where α can take values from 0 to 2π. With the
following substitutions:

λg = λg2 ,

λh sinα = λa2 ,

λh cosα = λb2 ,

(16)

we may factor out the coupling strength λ and absorb
the numbers g, a and b into the matrices (we may take
the negative root of these numbers depending on α).
The mean-field vibronic matrix becomes,

W =
∑
R,γ

λ
[
〈Ôgγ〉Ôgγ(R) + 〈Ôhγ〉Ôhγ(R)

]
, (17)

and the corresponding free energy is:

F =
∑
Γ,γ

N

2

(
λ〈Ôgγ〉2 + 〈Ôhγ〉2

)
− N

β
ln
∑
i

eβw
′
i (18)

where w′i are the eigenvalues of (??).
We may write the free energy as a dimensionless

density with a reduced temperature with the following
substitutions:

f =
F

Nλ
, t =

1

βλ
, wi =

w′i
λ
. (19)

Note that λ has dimensions of energy. Therefore, the
dimensionless free energy density is,

f =
∑
γ

1

2

(
〈Ôgγ〉2 + 〈Ôhγ〉2

)
− t ln

∑
i

ewi/t (20)

4.2. Coordinates and electronic parameters

The method of Öpik and Pryce [?] enables us to
find the coordinates of the extrema of the adiabatic
potential without diagonalizing the vibronic matrix
to find its eigenvalues. We use this method to
write the JT-induced coordinates in terms of five
electronic parameters. Hence, the extremal points
are determined in a space of 5 dimensions instead
of 9. This method simplifies the determination of
the coordinates of the potential minima, but not the
eigenvalues of the vibronic matrix. The calculation has
been done by Ceulemans and Fowler [?] and is shown
in appendix B.

We use these coordinates to simplify the minimiza-
tion of the free energy and the determination of phase
diagrams. The coordinates of some extremal points
of the potential surface are calculated from the five-
dimensional coordinates (taken from [?]) and listed in
Table ??. These points can be either local minimum
or maximum, depending on the JT stabilization ener-
gies. These energies depend on the vibronic coupling
constants and the vibrational frequencies of the nor-
mal. The explicit expressions for JT energies of a single
icosahedral molecule can be found in [?].

5. Phase Diagrams of cooperative Jahn-Teller
phase transitions

The phase diagrams may be obtained by simultane-
ously minimizing the dimensionless free energy density
(??) with respect to the average distortions 〈ÔΓγ〉:
∂f

∂〈ÔΓγ〉
= 0 , (21)

for all 〈ÔΓγ〉 6= 0.
In calculating phase diagrams, we use the matrices

of Ceulemans and Fowler [?], where we replace the
coupling constants Fg, FHa and FHb by g, a and
b. The calculations are based on the minimization
of the dimensionless free energy density (??) using
Mathematica [?].

5.1. H ⊗
[
g + h(hε, hζ)

]
The simplest cooperative Jahn-Teller system distorts
only the coordinates hε and hζ . The solutions are the

values of the order parameters 〈Ôhε〉and 〈Ôhζ〉 in terms
of the reduced temperature t. These have been solved
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Table 1. The extrema of the APES of an icosahedral H ⊗ (g + h) Jahn–Teller system. Only the top three extrema are used in our
analysis.

Symmetry (θ, ε, ξ, η, ζ) ga gx gy gz hθ hε hξ hη hζ

D5d
1√
5

(0,
√

2, 0, 0,±
√

3) 0 0 0 0 0 2
√
2

5
b 0 0 ± 2

√
3

5
b

D5d
1√
10

(
√

3,−1, 0,±
√

6, 0) 0 0 0 0
√
6
5
b −

√
2

5
b 0 ± 2

√
3

5
b 0

D3d
1√
3

(
√

2, 0, 0, 0,±1) −
√
6

9
g 0 0 ∓

√
30
9
g − 2

√
6

9
a 0 0 0 ∓ 2

√
3

9
a

D3d
1√
6

(1,−
√

3,±
√

2, 0, 0) −
√
6

9
g ± 3

5
g 0 0

√
6

9
a −

√
2
3
a ± 2

√
3

9
a 0 0

D3d
1√
3

(0, 0, 1, 1, 1) 1√
6
g − 3

10
g − 3

10
g −

√
30

18
g 0 0 2

√
3

9
a 2

√
3

9
a 2

√
3

9
a

...
...

...
...

...

(a)

(b)

(c)

Figure 1. (Color online) Phase diagrams of a cooperative Jahn-
Teller phase transition in coordinates hε and hζ of interacting
icosahedral clusters. (a) α = 0, λh/λ = 1, (b) α = π/4, λh/λ =
1, and (c) α = π/4, λh/λ = 2.

computationally for different values of α and λh/λ in
equation (??) and the results are shown in Fig. ??.

Note that the values of 〈Ôh〉 at t = 0 match the
values from Table ?? once we substitute for b from the
relations (??). The factor α does not affect the critical
temperature, but greatly affects the sharpness of the
transition. When α = 0, the transition is of the first
kind, whereas for α = π/4, it is a continuous second-
order transition. In fact, the transition continuously
changes from strongly first-order at α = 0 to second-
order at exactly α = π/4. In the theory of the
H ⊗ (g ⊕ 2h) Jahn–Teller effect the α = π/4 is special
because the D5d and D3d minima of the APES become
degenerate at this point and the D3d minima becomes
preferable above this value [?].

On the other hand, λh/λ only affects the critical
temperature but not the overall shape of the phase
diagram.

5.2. H ⊗ [g + h(hθ, hε, hη)]

The next simplest cooperative Jahn-Teller phase
transition is along the three coordinates hθ, hε and
hη and the phase diagrams are shown in Fig. ??.
Each additional distorted coordinate adds to the
computational complexity of the problem where the
vibronic matrix will have an additional non-zero
variable entry and there is an additional simultaneous
equation to solve. In fact, being a D5d minimum of
the APES, the behavior of this transition is similar to
that discussed above, where it becomes second-order
at α = π/4.

5.3. H ⊗ [g(ga, gz) + h(hθ, hζ)]

In this phase transition, the d-orbitals are coupled to
both the Gg and the Hg vibrational modes. This
means we have an extra coupling coefficient g. What
is important here is the ratio of the coupling strengths
λg/λh, which tells us how strongly the modes are
coupled to the orbitals. Three phase diagrams are
shown in Fig. ?? for different values of g and α.
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(a)

(b)

Figure 2. (Color online) The phase diagrams of a cooperative
Jahn-Teller phase transition in coordinates hθ, hε and hη of
interacting icosahedral clusters. (a) α = 0 and (b) α = 1

4
π.

5.4. Validity of the mean field theory

We already discussed that the mean field theory is
more valid when the fluctuations are small compared
to the order parameter or when the interactions are
stronger. From the phase diagrams it can be seen that
the transitions can be first or second-order depending
on the value of α which represents the relative strength
of the vibronic coupling. The first-order transitions
are those that have stronger vibronic coupling and
we expect the mean-field theory to be relatively more
valid for these transitions because the fluctuations are
small compared to the order parameter near the phase
transition and the couplings are stronger [?]. On the
other hand, we do not expect high validity of the
second-order phase diagrams for to the same reasons.

6. Conclusion

We have provided a framework for calculating the char-
acteristics of the cooperative Jahn-Teller phase transi-
tion of interacting icosahedral clusters. The formula-
tion of the theory holds for any system of interact-
ing Jahn–Teller centers, although we have specifically
calculated the phase diagrams of interacting clusters
of icosahedral symmetry. The vibrational modes of
molecules of icosahedral symmetry can be coupled to
three, four or five-fold degenerate orbitals and we have

(a)

(b)

(c)

Figure 3. (Color online) Phase diagrams of a cooperative
Jahn-Teller phase transition in coordinates ga, gz , hθ and hζ
of interacting icosahedral clusters. (a) g = 1, α = 1

2
π, (b)

g = 1, α = 1
4
π and (c) g = 0.3, α = 1

2
π

.

specifically investigated the coupling to five-fold degen-
erate orbitals, i.e H ⊗ (g ⊕ 2h).

An interesting outcome of this work is that the
character of the phase transitions depends strongly on
the value of the paramater α. To recall, because of
the double appearance of the Hg representation in the
decomposition of [Hg ⊗ Hg], two families of matrices
with independent coupling constants are needed to
represent the Jahn–Teller effect in such systems. The
parameter α measures the relative coupling strength
to the two families of matrices. For transitions along
the D5d minima, as we increase α from 0 to π/4,
the transition becomes more weakly first-order until
it becomes secondcorder at β = π/4. This observation
holds only for the H ⊗ (g⊕ 2h) case of the icosahedral
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Jahn–Teller phase transitions because of the double
appearance of the h representation.

This is the most complicated of all three cases
due to the larger size of the vibronic matrix and the
double appearance of the representation Hg in the
decomposition of the symmetrical direct product ofHg.
The T ⊗ H is the most studied case, partly because
analytical work is more convenient and partly because
the anions of C60 can undergo such a distortion. The
LUMO of C60 is three-fold degenerate and, therefore,
the excited states and anions of C60 have three-fold
degeneracy at the Fermi level. The H ⊗ (g ⊕ 2h) JTE
applies to cations of C60 since the HOMO of C60 is
five-fold degenerate. Si12 too has five-fold degenerate
orbitals at the Fermi level and is distorted by this type
of Jahn–Teller effect.

In addition to being able to describe the phase
transitions in such systems, this work also serves as
a platform for the theory of metallic glass transition
and crystallization of metals, where in the liquid phase
near the transition temperature the atoms tend to form
small non-space-filling clusters of almost icosahedral
configuration [?]. These clusters can be treated as
Jahn-Teller units with d-orbitals being the highest
occupied molecular orbitals. These Jahn-Teller units
distort and orient in random directions [?]. Figure
?? shows some of the possible Jahn-Teller distortions
of an icosahedral molecular unit. The CJTE is
the mechanism by which the distorted clusters align
to produce an average order below the transition
temperature which can aid the crystallization of the
material. On the other hand, the tendency of atoms
in forming local icosahedral order will prevent the
formation of a crystal due to geometrical frustration.
Therefore whether a liquid makes a transition to the
crystalline or amorphous phase is really a competition
between local and global order.

The geometrical frustration means that there is
no single configuration of atoms that minimizes the
potential energy [?]. This applies to regular icosahedra
because they do not tile the three-dimensional flat
space. It is possible that the distorted clusters may
be able to tile the space the same way that non-regular
pentagons do on a flat surface. However this is difficult
to investigate because of the multi-mode nature of the
problem. The reduction to one Hg mode means that
the new coordinates are not normal any more, but are
a linear combination of normal modes [?]. This of
course does not apply to the Gg modes which remain
normal and their geometrical shapes are simply found
by computing the vibrational modes from group theory
(by applying projection operators on a vector that
initiates from an atom).

Another potential future work is to investigate
the geometrical frustration of regular icosahedral units.

(a)

(b)

(c)

(d)

Figure 4. Some of the possible static Jahn-Teller distortions
of an icosahedral atomic cluster. The left column shows
the actual distorted clusters and the right column is the
corresponding direction of movement of atoms from the
undistorted configuration.(a) a1g mode (undistorted regular
icosahedron), (b) gg mode, (c and d) hg modes.

Regular icosahedra can tile on the surface of a four-
dimensional hypersphere (polytope {3,3,5}) [?] and
these can be projected on the flat surface which leads
to derivation of Landau theories for glasses [?, ?].
They can also be described by disclination which are
rotational defects as opposed to dislocations which are
translational defects [?].

The Jahn-Teller model derived in this work will
be able to describe glasses once the effects of the
geometrical frustration of the icosahedral clusters is
taken into the model.
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Appendix A. CJTE Hamiltonian

The uniform strain minimizes the Hamiltonian, which
yields

eΓγ = −
∑
R

VΓÔΓγ(R)

ΩηΓ
. (A.1)

Substituting this into Hamiltonian (??) yields,

H =
∑
RΓγ

[
P 2

Γγ(R)

2M
+

1

2
Mω2

ΓQ
2
Γγ(R)

+ FΓQΓγ(R)ÔΓγ(R)

−
∑
R′

V 2
Γ

2ΩηΓ
ÔΓγ(R)ÔΓγ(R′)

]
. (A.2)

The coupling to the strains results in an infinite-range
coupling between the clusters.

We now write the coordinates, the conjugate
momenta, and the matrices as Fourier series,

QΓγ(R) =
1√
N

∑
k

qΓγ(k)eik·R . (A.3)

PΓγ(R) =
1√
N

∑
k

pΓγ(k)eik·R , (A.4)

ÔΓγ(R) =
1√
N

∑
k

ÔΓγ(k)eik·R , (A.5)

and define the transformed ladder operators and
coupling constant as:

aΓγ(k) =

√
MωΓ(k)

2h̄
qΓγ(k) + i

pΓγ(k)√
2h̄MωΓ(k)

,

a†Γγ(−k) =

√
MωΓ(k)

2h̄
qΓγ(k)− i pΓγ(k)√

2h̄MωΓ(k)
,

ξΓ
k = FΓ

√
h̄

2MωΓ(k)
.

(A.6)

Substituting the ladder operators into the Hamiltonian
and using the fact that ω(−k) = ω(k) due to the
symmetry of the system yields,

H =
∑
Γ,γ

[∑
k

{
h̄ωΓ(k)

(
a†Γγ(k)aΓγ(k) +

1

2

)
+ ξΓ

k

[
a†Γγ(−k) + aΓγ(k)

]
ÔΓγ(−k)

}
−
∑
RR′

V 2
Γ

2ΩηΓ
ÔΓγ(R)ÔΓγ(R′)

]
. (A.7)

We now transform to displaced coordinates:

γ†Γγ(k) =

[
a†Γγ(k) +

ξΓ
k

h̄ωΓ(k)
ÔΓγ(−k)

]
, (A.8)

γΓγ(k) =

[
aΓγ(k) +

ξΓ
k

h̄ωΓ(k)
ÔΓγ(k)

]
. (A.9)

This is similar to a canonical transformation and has
been widely used in the literature [?, ?]. Note that,
since the ladder operators are defined in terms of
the normal modes of the clusters, the commutation
relations are preserved. Inserting the transformed
operators into the Hamiltonian yields

H =
∑
Γ,γ

{∑
k

[
h̄ωΓ(k)

(
γ†Γγ(k)γΓγ(k) +

1

2

)
− (ξΓ

k)2

h̄ωΓ(k)
ÔΓγ(k)ÔΓγ(−k)

]
−
∑
RR′

V 2
Γ

2ΩηΓ
ÔΓγ(R)ÔΓγ(R′)

}
. (A.10)

Appendix B. Coordinates and electronic
parameters

We take the vibronic interaction as a perturbation to
the Hamiltonian. Thus, in a stationary system without
displacements, we have,

Ĥφ0
m = E0

mφ
0
m , (B.1)

which, with a vibronic interaction, becomes(
Ĥ + λŴ

)
φm = Emφm . (B.2)

As λ → 0, the solution is expressed as a linear
combination of the zeroth-order f -fold degenerate wave
functions:

lim
λ→0

φm =

f∑
i=1

ciφ
0
i . (B.3)

Degenerate perturbation theory yields the first-order
perturbed energy E(1) as,

ŴC = E(1)C , (B.4)

where C is the f -dimensional column vector of ci, from
which we obtain

E(1) = CTŴC .

Thus, we may write the general normalized d-orbital
wave function as,

|φ〉 = θ |θ〉+ ε |ε〉+ ξ |ξ〉+ η |η〉+ ζ |ζ〉 , (B.5)

and the total potential energy to first-order in
perturbation theory is [?],

E = E0 + E(1)

=
∑
Γγ

1

2
Mω2

ΓQ
2
Γγ + ΦT

[∑
Γγ

Ŵ (QΓγ)

]
Φ , (B.6)
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where Φ = (θ, ε, ξ, η, ζ)T. By differentiating the
potential energy with respect to each coordinate and
setting the result to zero, the extremal coordinates are
obtained in terms of the electronic coordinates:

||QΓγ || = −
1

Mω2
Γ

ΦT

(
∂Ŵ

∂QΓγ

)
Φ . (B.7)

We substitute the equations for extremal coordinates
into the potential energy (??) to obtain an expression
in terms of only the five electronic parameters.
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