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The PT -symmetric optical grating with index profile e2iβz has been shown to

have the interesting property of being essentially invisible for light incident from

one side, while possessing greatly enhanced reflection at a particular wavelength for

light incident from the other side. We extend a previous analysis of this grating to

obtain an analytic solution for the case when the grating is embedded on a substrate,

with different refractive indices on either side. We also generalize the previous case

of normal incidence to incidence at an arbitrary angle. In that case the enhanced

reflection occurs at a particular angle of incidence for a given wavelength. Finally

we discuss how the grating may be used to give lasing.

PACS numbers: 42.25.Bs, 02.30.Gp, 11.30.Er, 42.82.Et

I. INTRODUCTION

The ideas of PT symmetry, originally introduced in the context of quantum mechanics[1]-
[6], have recently led to rapid developments in the apparently unconnected field of classical
optics[7]-[16]. The connection arises from the fact that when one makes the paraxial approx-
imation for the equation of propagation of an electromagnetic wave the resulting equation
is formally identical to the Schrödinger equation, but with different interpretations for the
symbols appearing therein. In particular, the role of time in the Schrödinger equation is
taken by the longitudinal coordinate z, while that of the quantum-mechanical potential is
taken by variations of the refractive index of the medium in the transverse x direction. PT -
symmetry deals with potentials that are not Hermitian, which translates in optics to complex
refractive indices. It is extremely common for the refractive index to have a positive imagi-
nary part, corresponding to loss, but a negative imaginary part can also be implemented by
optical pumping, leading to gain. PT -symmetry requires that loss and gain be balanced in a
particular way, namely that n∗(−x) = n(x), or equivalently that Re(n) be an even function
and Im(n) an odd function of x. When the PT symmetry is unbroken this leads to real
propagation constants, i.e. no exponential growth or decay even in the presence of gain and
loss.

Although this connection was first made explicit in Ref. [7], the exotic properties of
materials with combined gain and loss were previously explored in Refs. [17] and [18]. In
those papers the index modulation was in the z direction rather than the transverse x
direction. In that case, if we consider H-mode polarization, in which the electric field is
transverse, the equation of propagation for a given component of the electric field is just the
scalar Helmholtz equation [

d2/dz2 + k2(n(z)/n0)
2
]
E(z) = 0, (1)

which can be compared to the time-independent Schrödinger equation.



2

Of particular interest is the PT -symmetric profile n(z) ∝ cos(βz) + iλ sin(βz), discussed
by Lin et al.[19]. The symmetry is preserved in the spectrum for λ < 1, in which case
a similarity transformation can be made to the Hermitian Mathieu potential[20, 21], but
broken for λ ≥ 1. The non-linear version of this potential, with Kerr nonlinearity, has also
been considered, and analytic solitonic solutions obtained[22].

Precisely at the symmetry-breaking point λ = 1, the variation in n(z) becomes a pure
complex exponential proportional to eiβz. This potential, which had been previously consid-
ered by Kulishov et al.[23], exhibits to a good approximation the intriguing phenomenon of
“unidirectional invisibility” for normal incidence, with perfect transmission from left or right
and zero reflection from the left. On the other hand, for right incidence, the concomitant
property is a greatly enhanced reflectivity, sharply peaked at k = β. An experimental set-up
demonstrating invisibility, albeit for a “passive” situation, whereby only the lossy part of
the potential is used, was subsequently given by Feng et al. [24].

In Refs. [25] and [26] an analytic solution was found for the scattering coefficients in
terms of Bessel functions, showing the limitations of the coupled-mode approximation used
in Refs. [19, 23]. It was shown that for the parameters used in that paper there were
small deviations from invisibility, and that the property broke down completely for much
longer lengths of the grating, when the straightforward coupled-wave approximation becomes
unreliable[25, 27].

These papers were concerned with the one-dimensional situation described by Eq. (1),
that is, for normal incidence on the lattice (as shown in Figs. 1 and 2 below). However,
it is of interest to generalize this situation in two ways. First one can consider incidence
at an angle, and secondly the situation when the grating is superimposed on a material
of different refractive index than those on either side. This problem has recently been
addressed in Ref. [28], but in the context of the Bragg approximation method, with analytic
expressions obtained for the first three Bragg orders. In the present paper we demonstrate
that the method of Ref. [26] can be extended to deal with both these generalizations, yielding
analytic expressions for the reflection and transmission coefficients in terms of modified
Bessel functions. Our results can be used to check the approximations used in Ref. [28], but
are applicable for a much wider range of parameters.

In the following Sec. II we briefly review the methodology and results of Ref. [26]. Then in
Sec. III we generalize the analysis to include non-normal incidence and different refractive
indices on either side of the grating. These results are then used in Sec. IV to produce
graphs of transmission and reflection coefficients, as a function of angle, in a variety of
different configurations. In Sec. V we revert to the one-dimensional situation and consider
placing a mirror at one end of the grating, showing that, because of the enhanced reflectivity
of the grating, the cavity can lase when its strength exceeds a certain critical value. Finally,
in Sec. VI, we give our conclusions.

II. ANALYTIC SOLUTION FOR RESTRICTED CASE

The set-up dealt with in Refs. [19], [25], [26] is shown in Fig. 1 (for left incidence). We
recall here the results of Ref. [26] for completeness and comparison with the results in the
more general case.
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FIG. 1: Set-up for propagation from the left

The situation is essentially one-dimensional, and Eq. (1) reduces to

d2E

dz2
+ k2(1 + 2v(z))E = 0, (2)

where v(z) has the special form v(z) = 1
2
α2e2iβz.

Changing variables to y = (kα/β)eiβz, the equation becomes

y2
d2E

dy2
+ y

dE

dy
− (y2 + k2/β2)E = 0, (3)

which is the modified Bessel equation, with solution E = CIν(y) +DKν(y), where ν = k/β.
In the language of quantum mechanics (ψ ≡ E),

ψ(z) = CIν(y) +DKν(y) (4)

This has to be matched on to ψ = A±e
ikz +B±e

−ikz at z = ±L/2.

A. Left Incidence

By requiring that ψ(L/2) = eikL/2 and ψ′(L/2) = ikeikL/2 we find that

C = y+Kν+1(y+)eikL/2

D = y+Iν+1(y+)eikL/2,

where y± ≡ να e±iβL/2, so that

ψ(z) = y+ [Kν+1(y+)Iν(y) + Iν+1(y+)Kν(y)] eikL/2 (5)

Both initial conditions are satisfied by virtue of the various recursion relations among the
modified Bessel functions and the Wronskian identity[29]

Kν+1(y)Iν(y) + Iν+1(y)Kν(y) = 1/y . (6)

At z = −L/2 we have to match ψ with ALe
−ikL/2 +BLe

ikL/2. The general formulas are

ALe
ikz =

1

2
[ψ(z)− (i/k)ψ′(z)]
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BLe
−ikz =

1

2
[ψ(z) + (i/k)ψ′(z)]

which give, after some algebra,

AL = (
1

2
α2ν)eikL[Kν+1(y+)Iν−1(y−)− Iν+1(y+)Kν−1(y−)]

(7)

BL = (
1

2
α2ν)e−ikL[−Kν+1(y+)Iν+1(y−) + Iν+1(y+)Kν+1(y−)]

B. Right Incidence

The set-up is shown in Fig. 2, with the transmitted amplitude again normalized to 1.

ARe-i k z
e-i k z

BRei k z

L

FIG. 2: Set-up for propagation from the right

The initial conditions are now ψ(−L/2) = eikL/2 and ψ′(−L/2) = −ikeikL/2, which give

C = y−Kν−1(y−)eikL/2

D = y−Iν−1(y−)eikL/2,

so that

ψ(z) = y− [Kν−1(y−)Iν(y) + Iν−1(y−)Kν(y)] eikL/2 (8)

Again, the initial conditions are satisfied by virtue of Eq. (6).
At z = L/2 we have to match ψ with ARe

−ikL/2 +BRe
ikL/2. The general formulas are

ARe
−ikz =

1

2
[ψ(z) + (i/k)ψ′(z)]

BRe
ikz =

1

2
[ψ(z)− (i/k)ψ′(z)]

giving

AR = (
1

2
α2ν)eikL[ Iν−1(y−)Kν+1(y+)−Kν−1(y−)Iν+1(y+)]

(9)

BR = (
1

2
α2ν)e−ikL[−Iν−1(y−)Kν−1(y+) +Kν−1(y−)Iν−1(y+)]
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Note that the reflection amplitude BR can be obtained from BL by the transformations y+ ↔
y− and ν ↔ −ν, which is a consequence of PT symmetry. Under those same transformations
the transmission amplitude AL ≡ AR is invariant. The equality of AL and AR is a general
result, obtained most easily by evaluating the Wronskian of the two solutions ψL(z) and
ψR(z) for z < −L/2 and z > L/2.

It is important to note that in the evaluation of Eqs. (7) and (9) the argument y of the
Bessel functions encircles the origin and crosses the cut on the negative real axis many times
as z goes from −L/2 to L/2. Thus it is important to know how to continue onto subsequent
sheets. The relevant formulas (incorrectly quoted in Ref. [26]) are

Iν(ye
imπ) = eimπνIν(y)

(10)

Kν(ye
imπ) = e−imπνKν(y)− iπ sin(mπν)

sin(πν)
Iν(y),

where m is an integer. Once these are implemented the resulting functions are smooth
functions of z, with no discontinuities.

It is interesting to see how these exact results go over to the approximate results of

the coupled-wave approximation, namely T = 1, RL = 0 and RR =
(
1
2
kα2 sin(Lδ)/δ

)2
.

For a grating containing an even number of periods, L = 2mΛ ≡ 2mπ/β, we use the
preceding connection formulas to write Iν(y±) and Kν(y±) in terms of Iν(y0) and Kν(y0),
where y0 = να. Then the result for AL is

AL =
1

2
α2νeikL

{
e−2imπνKν+1(y0)Iν−1(y0)− e2imπνKν−1(y0)Iν+1(y0)

(11)

+iπ
sin(2mπν)

sin(πν)
Iν+1(y0)Iν−1(y0)

}
The coupled-wave approximation amounts to weak coupling, i.e. taking α � 1 and small
detuning, i.e. δ � 1, which corresponds to ν ∼ 1. In that case the functions Iν(y0) and
Kν(y0) can be approximated as

Iν(y0) ∼ yν0 and Kν(y0) ∼ y−ν0 (12)

The leading term in the expression for AL is then the first one, which simply gives AL ∼ eikL.
The second and third terms are of order α4.

A similar analysis for BL gives

BL =
1

2
iα2νe−ikLIν+1(y0)

{
2 sin(2mπν)Kν+1(y0) + iπ

sin[2mπ(ν + 1)]

sin(πν)
Iν+1(y0)

}
, (13)

which vanishes in the above approximation.
Finally BR becomes

BR =
1

2
iα2νe−ikLIν−1(y0)

{
2 sin(2mπν)Kν−1(y0) + iπ

sin[2mπ(ν − 1)]

sin(πν)
Iν−1(y0)

}
. (14)
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The dominant contribution comes from the last term, yielding

BR ∼ ±
1

2
iα2e−ikL

sin(2mπν)

sin(πν)
∼ ±1

2
ikα2e−ikL

sin(Lδ)

δ
. (15)

near δ = 0, in agreement with the coupled-wave result, with RR = |BR/A|2. It is interesting
to note that the characteristic sinc2 shape of RR arises precisely from the additional term
proportional to Iν(y) in the continuation formula for Kν(ye

imπ).

III. ANALYTIC SOLUTION IN GENERAL CASE

In this section we generalize the previous results in two ways, by considering non-normal
incidence allowing for different background refractive indices on either side of the grating.

A. Left Incidence

The set-up for left incidence is shown in Fig. 3.

Ε1
Ε3Ε2

L/2-L/2

AL e
iHkx x+k1 z zL

BL e
iHkx x - k1 z zL

e
iHkx x+k3 z zL

FIG. 3: Generalized set-up for propagation from the left

For incidence at an angle, there is an overall component of the wave, in, say, the x-direction,
of the form eikxx. So in Eq. (1) we can write E as E(x, z) = eikxxψ(z), and the equation for
ψ(z) becomes

d2ψ

dz2
+
[
k22(1 + α2e2iβz)− k2x

]
ψ = 0. (16)

Here k2 =
√
ε2k0, where k0 = 2π/λ is the free-space wave-vector. The appropriate definition

of y is now y = (k2α/β)eiβz, which again results in the modified Bessel equation

y2
d2ψ

dy2
+ y

dψ

dy
− (y2 + ν2)ψ = 0, (17)

with the difference that ν is now defined by

ν2 =
k22 − k2x
β2

(18)
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or in other words ν = k2z/β = (k2 cos θ)/β, where θ is the internal angle of refraction. Thus
y can be written as

y =
( να

cos θ

)
eiβz. (19)

When considering non-normal incidence the boundary conditions depend on the polarization
state of the input radiation. In this paper we will restrict ourselves to the simplest case of
H-mode polarization, in which the E-field is in the y-direction, and so parallel to the two
interfaces at z = ±L/2. In general the boundary conditions require that the tangential
electric and magnetic fields be continuous across a boundary. In this case Hx is proportional
to ψ′, so the conditions are that ψ and ψ′ be continuous, as before. The difference is that, for
ε2 6= ε1 and/or ε2 6= ε3 the longitudinal wave-vectors in the three regions are unequal. Thus,
given that k1 sin θ′ = k2 sin θ, it is straightforward to show that k1z = γ1νβ and k3z = γ3νβ,

where γr =
(
εr/ε2 − sin2 θ

) 1
2 / cos θ. In the previous case of equal background permittivities

these reduced to γ1 = γ2 = 1.
Applying the boundary conditions of continuity for both ψ and ψ′ we obtain, after some

algebra, the following expressions for AL and BL:

ALe
−ik1zL =

(
y+y−
2γ1ν

)
[Iν−1(y−)Kν+1(y+)− Iν+1(y+)Kν−1(y−)]

+

(
δ1y+
2γ1

)
[Iν(y−)Kν+1(y+) + Iν+1(y+)Kν(y−)]

+

(
δ3y−
2γ1

)
[Iν−1(y−)Kν(y+) + Iν(y+)Kν−1(y−)]

+

(
δ1δ3ν

2γ1

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]

(20)

BLe
ik1zL = −

(
y+y−
2γ1ν

)
[Iν+1(y−)Kν+1(y+)− Iν+1(y+)Kν+1(y−)]

+

(
δ1y+
2γ1

)
[Iν(y−)Kν+1(y+) + Iν+1(y+)Kν(y−)]

−
(
δ3y−
2γ1

)
[Iν+1(y−)Kν(y+) + Iν(y+)Kν+1(y−)]

+

(
δ1δ3ν

2γ1

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]

where δr = γr − 1. Each expression now has potentially three additional terms due to the
fact that in the general case δr 6= 0.

B. Right Incidence

The set-up for right incidence is shown in Fig. 4.

The algebra follows on similar lines and results in the following expression for AR, BR:

ARe
−ik3zL =

(
y+y−
2γ3ν

)
[Iν−1(y−)Kν+1(y+)− Iν+1(y+)Kν−1(y−)]
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Ε1
Ε3Ε2

L/2-L/2

e
iHkx x-k1 z zL BR e

iHkx x + k3 z zL

AR e
iHkx x - k3 z zL

FIG. 4: Generalized set-up for propagation from the right

+

(
δ3y−
2γ3

)
[Iν(y+)Kν−1(y−) + Iν−1(y−)Kν(y+)]

−
(
δ1y+
2γ3

)
[Iν−1(y+)Kν(y−) + Iν(y−)Kν−1(y+)]

+

(
δ1δ3ν

2γ3

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]

(21)

BRe
ik3zL =

(
y+y−
2γ3ν

)
[Iν−1(y+)Kν−1(y−)− Iν−1(y−)Kν−1(y+)]

+

(
δ3y−
2γ3

)
[Iν−1(y−)Kν(y+) + Iν(y+)Kν−1(y−)]

−
(
δ1y+
2γ3

)
[Iν(y−)Kν−1(y+) + Iν−1(y+)Kν(y−)]

+

(
δ1δ3ν

2γ3

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]

Note that, with different background permittivities ε1 and ε3, the relation between AR and
AL is now |AL| = (γ3/γ1)|AR| = (k3z/k1z)|AR|. This relation can again be obtained by
considering the Wronskian of ψL(z) and ψR(z).

IV. NUMERICAL RESULTS

In this section we explore a variety of different configurations. It should be stressed
again that these are configurations which have previously been considered within the Bragg
approximation scheme in Ref. [28]. The results can be directly compared1, and are broadly
similar but differ in some details. This is to expected, given the relatively small strength
(α2) of the grating. For larger grating strengths only the present method can be expected
to give reliable results, unless several more orders in the Bragg series can be included.

1 However, the reader should be aware that the convention for a plane wave used in that paper, e−jkz, is

opposite to the one used here, namely eikz, so that left and right are effectively interchanged.



9

A. Filled-space grating

As the first application of the equations we have derived, we consider oblique incidence
on the grating, but keeping the background relative permittivities the same, as in Ref. [26].
In Fig. 5 (left panel) we show the transmission coefficient, which, as already remarked, is
the same for left or right incidence. The same characteristic shape that was seen in Ref. [26]
is seen again here, but this time as a function of θ rather than k. The transition occurs near
θB = arccos(β/(k

√
ε2)) = arccos(λ/(2Λ

√
ε2)) ≈ 1.06, the angle for which ν = 1. Recall

that Λ = π/β, the periodicity of the grating. In the right panel we show the left reflection
coefficient RL, which is small, although it increases with larger |θ|, and shows no transition
near θ = ±θB. Thus invisibility from the left is preserved to a large extent, with a small
reflection coefficient and a transmission coefficient very close to 1.

-1.0 -0.5 0.5 1.0
Θ

0.98

1.00

1.02

1.04

T

-1.0 -0.5 0.5 1.0
Θ

0.001

0.002

0.003

0.004

0.005

0.006

RL

FIG. 5: Transmission coefficient TL (= TR) and reflection coefficient RL as functions of the internal

angle of refraction θ for the case ε1 = ε2 = ε3 = 2.4. The other parameters are α2 = 0.02, L = 8.4,

Λ = 0.42 and λ = 0.633.

In Fig. 6 we show the right reflection coefficient RR for the same set of parameters. As
a function of θ the right reflection coefficient displays the same high narrow peak that
occurs for normal incidence when k is varied. It should be mentioned that these reflection
and transmission coefficients satisfy the modified unitarity relation T − 1 = ±

√
RLRR of

Ref. [30] to a high degree of accuracy, which provides a stringent test of our formulas. Note
that T ≷ 1 for |θ| ≷ |θB|.

B. Grating on a slab in air

A rather natural set-up would be for the optical lattice/grating to be implemented on a
slab of material with background permittivity ε2 different from the permittivities on either
side. As an example, in this subsection we consider a slab in air, with ε1 = ε3 = 1. It
is only to be expected that the reflection and transmission properties will be significantly
modified in this case, due to reflections at the interfaces between the different materials.
This is indeed borne out by Fig. 7, for the transmission coefficient and the left reflection
coefficient.
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FIG. 6: Right reflection coefficient as a function of the internal angle of refraction θ for the

parameters of Fig. 5
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1.6
T

-0.6 -0.4 -0.2 0.2 0.4 0.6
Θ

0.2

0.4

0.6

0.8

RL

FIG. 7: Transmission coefficient TL (= TR) and reflection coefficient RL as functions of the internal

angle of refraction θ for the case ε1 = ε3 = 1, ε2 = 2.4. The other parameters are α2 = 0.02,

L = 8.28, Λ = 0.23 and λ = 0.633.

However, a more relevant quantity as far as unidirectional invisibility is concerned is the
contrast, i.e. the differences ∆T ≡ T − T0 and ∆RL ≡ RL − R0 where T0 and R0 are the
transmission coefficients in the absence of the grating, i.e. with α = 0. These quantities are
shown in Fig. 8, which reveals that ∆T is rather small for |θ| . 0.3, but becomes appreciable
for larger values, and indeed becomes of O(1) in the vicinity of |θ| = θB. The contrast ∆RL

is quite small overall, particularly for |θ| . 0.3, but shows a significant peak in the vicinity
of |θ| = θB.

In Fig. 9 we show the right reflection coefficient, which still shows a characteristic peak near
|θ| = θB, but other structure arising from reflection from the boundaries besides.

C. Grating on a substrate

Another natural situation in practice could be for the grating to be implemented on a
substrate with a different background permittivity. So, for example, we could have ε1 = 1,
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FIG. 8: Contrasts ∆TL (= ∆TR) and ∆RL as functions of the internal angle of refraction θ for the

parameters of Fig. 7.

-0.6 -0.4 -0.2 0.2 0.4 0.6
Θ

0.5

1.0

1.5

2.0

RR

FIG. 9: Right reflection coefficient RR as a function of the internal angle of refraction θ for the

parameters of Fig. 7.

ε2 = 2.4 and ε3 = 2, in which case the reflective side of the grating would be attached
to the substrate. We could also have the non-reflective side of the grating attached to the
substrate, a situation that was considered in Ref. [28], but which we will not discuss here.
In this asymmetric case, when ε1 6= ε3, the set-up is no longer PT symmetric, so that the
test of generalized unitarity cannot be applied, and also the relation TL = TR no longer
holds, as has been previously remarked. One therefore defines the diffraction efficiency for
transmission from the left as T̂L = (k3z/k1z)TL and similarly T̂R = (k1z/k3z)TL, so that

T̂L = T̂R.
Again the reflection and transmission properties are modified, although rather less than

in Case B. In Fig. 10 we show the diffaction efficiency for transmission and the left reflection
coefficient.

The corresponding contrasts ∆T̂ ≡ T̂ − T̂0 and ∆RL ≡ RL −R0 are shown in Fig. 11, from
which it can be seen that |∆T̂ | . 0.1, and is considerably smaller in the region |θ| . 0.3.
The contrast ∆RL is an order of magnitude smaller.

In Fig. 12 we show the right reflection coefficient, which now has a fairly clean peak near
|θ| = θB, with some additional structure for larger |θ|.
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FIG. 10: Diffraction efficiency for transmission T̂L (= T̂R) and reflection coefficient RL as functions

of the internal angle of refraction θ for the case ε1 = 1, ε2 = 2.4, ε3 = 2,. The other parameters

are as in Fig. 7.
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FIG. 11: Contrasts ∆T̂L (= ∆T̂R) and ∆RL as functions of the internal angle of refraction θ for

the parameters of Fig. 10.
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FIG. 12: Right reflection coefficient RR as a function of the internal angle of refraction θ for the

parameters of Fig. 10.
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V. MIRROR SET-UP

In this case we revert to normal incidence from the left and take ε3 →∞, corresponding
to a perfect dielectric mirror. Then both AL and BL tend to infinity because of the terms
containing the factor δ3. We can take out this factor and define ÂL = AL/δ3 and B̂L = BL/δ3,
which in this limit are given by

ÂLe
ikL =

(
y−
2γ1

)
[Iν−1(y−)Kν(y+) + Iν(y+)Kν−1(y−)]

+

(
δ1ν

2γ1

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)] (22)

and

B̂Le
ikL = −

(
y−
2γ1

)
[Iν+1(y−)Kν(y+) + Iν(y+)Kν+1(y−)]

+

(
δ1ν

2γ1

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)] (23)

Because of the enhanced reflectivity of the grating for right incidence narrowly peaked
around k2 = β, it seems likely that we will have a resonant cavity near the corresponding
frequency, which might well support lasing. For lasing we are looking for a reflection coeffi-
cient |BL/AL| = |B̂L/ÂL| going to infinity, so we are looking for a zero of ÂL, or equivalently
of AR. In Fig. 13 we show RL as a function of k (= 2π/λ) for the value of α we have been
using throughout the paper. As we can see, this exhibits an extremely sharp peak at a
certain value of k, indicating that for that value of k we are very near a zero of ÂL. By
fine-tuning α we can find a zero of ÂL for real k. In fact, the complex zero in k migrates
from the lower half-plane to the upper half-plane as α increases, crossing the real axis at
the critical value, the lasing threshold. In terms of the transfer matrix, the lasing threshold
corresponds as usual to a zero of the element M22.

6 8 10 12
k

5

10

15

RL

FIG. 13: Left reflection coefficient RL for normal incidence as a function of k for ε1 = 1, ε2 = 2.4

and ε3 →∞. The other parameters are α2 = 0.02, L = 8.28 and Λ = 0.23.
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We have analyzed this lasing set-up in more detail in [31] using an extended version of the
coupled-wave approximation, and checked the results using the exact formulae presented
here. Using the same techniques that were used in Section II we can show that the expression
for ÂLe

ikL can be approximated as

ÂLe
ikL ∼ 1

4γ1

[
(1− γ1)eik2L + (1 + γ1)

(
e−ik2L +

1

2
ik2α

2 sin(Lδ)

δ

)]
. (24)

If α is real, as has been assumed up to now, the lasing condition on k2, given by equating the
real part of Eq. (24) to zero, is cos k2L = 0, which turns out be to exact, but gives multiple
competing modes. In order to achieve single-mode lasing we need to shift the overall phase
of the grating by π/2, making α2 effectively pure imaginary. In that case the lasing condition
on k2, still exact, is given by the imaginary part of the equation, i.e. sin k2L = 0, but the
real part can only vanish for δ = 0 because of the the zeros of the sinc function. Thus in
this configuration the cavity supports single-mode, highly directional, lasing. Both of these
properties arise from the particular form of the right reflection coefficient, which to a very
good approximation is a sinc function, and is the other side of the coin of the unidirectional
invisibility property of the PT -symmetric index profile at the symmetry-breaking point.

The proposed set-up is complementary to other ways of achieving single-mode lasing, ex-
ploiting differential PT -symmetry breaking in either a single microring laser[32], or two cou-
pled microring lasers[33]. These set-ups are not unidirectional, however. Yet another way of
achieving single-mode unidirectional lasing, in a PT -symmetric chain of disk resonators[34],
is to engineer a coincidence of singularities, so that M12 →∞ rather than the usual M22 = 0.

VI. CONCLUSIONS

We have shown how the exact analytic solutions previously obtained for the one-
dimensional grating with index profile proportional to eiβz can be generalized to the case of
different refractive indices on either side of the grating as well as to non-normal incidence.
The resulting formulas for the reflection and transmission amplitudes, Eqs. (20) and (21),
contain three additional terms, of the same general form as in the restricted case, but with
different indices on the modified Bessel functions I and K. These formulas were used to
explore the transmission and reflection characteristics of the grating as a function of inci-
dent angle in a variety of situations previously considered within the Bragg approximation
scheme, with particular emphasis on the extent to which unidirectional invisibility survives.

The narrow-beam enhanced reflection of the grating for right incidence leads one to
suppose that when a mirror is placed to the right of the cavity, the arrangement might
support lasing, which calculation using our generalized formulas shows to be indeed the
case. More details are given in Ref. [31].
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