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1. Introduction

Recall the following weighted Hardy–Sobolev-type inequalities due to Caffarelli,
Kohn and Nirenberg [6]: For all f ∈ C∞

0 (Rn) we have the estimate

(∫
Rn

‖x‖−pβ|f |pdx

) 2
p

≤ Cα,β

∫
Rn

‖x‖−2α|∇f |2dx, (1.1)

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
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where for n ≥ 3:

−∞ < α <
n − 2

2
, α ≤ β ≤ α + 1, and p =

2n

n − 2 + 2(β − α)
,

and for n = 2:

−∞ < α < 0, α < β ≤ α + 1, and p =
2

β − α
,

and where ‖x‖ =
√

x2
1 + · · · + x2

n. Inequality (1.1) is now known as the Caffarelli–
Kohn–Nirenberg inequality.

Nowadays there exists an extensive literature on Caffarelli–Kohn–Nirenberg-
type inequalities and their applications. We refer to [7,25,15] and a recent paper [8]
for further discussions and references on this subject. We also note that the analysis
of the remainder terms in different inequalities has a long history, initiated by Brezis
and Nirenberg in [4, Corollary 1.1 and Remark 1.4] and then Brezis and Lieb [2]
for Sobolev inequalities, Brezis and Vázquez in [5, Sec. 4] for Hardy inequalities,
see also [3], with many subsequent works in this subject, see e.g., [1, 25] and many
others, and a more recent literature review in [14]. Here we will be interested in
also obtaining some formulae for the remainder terms in the appearing inequalities.

In this paper, we are interested in the L2 case (p = 2) of (1.1), that is, for all
f ∈ C∞

0 (Rn), ∫
Rn

‖x‖−2(α+1)|f |2dx ≤ C̃α

∫
Rn

‖x‖−2α|∇f |2dx, (1.2)

with any n ≥ 2 and −∞ < α < n−2
2 , which in turn can be presented for any

f ∈ C∞
0 (Rn\{0}) as∥∥∥∥ 1

‖x‖α+1
|f |

∥∥∥∥
L2(Rn)

≤ Cα

∥∥∥∥ 1
‖x‖α

|∇f |
∥∥∥∥

L2(Rn)

, (1.3)

for all α ∈ R.
The main goal of this paper is to show analogues of (1.3) on homogeneous (Lie)

groups. We use some techniques from our recent preprint [22]. Although there is
a certain overlap between these settings here we aim to explain that the obtained
homogeneous group results are not only analogues of the known Euclidean results,
but also they give new inequalities even in Abelian cases with arbitrary quasi-norms.
We also shall note that our main result (see Theorem 2.1) is an anisotropic gen-
eralization of the classical L2-weighted Hardy and L2-Caffarelli–Kohn–Nirenberg
inequalities, but it is not what should be called a “genuine” subelliptic version of
the classical inequalities since we will not use a horizontal gradient. Indeed, since
we do not ask for the group to be stratified, there may be neither sub-Laplacian
in this generality nor any “horizontal” gradients. We refer to [24] for horizontal
versions of these inequalities.

To the best of our knowledge, there is no example of a nilpotent Lie group that
does not allow for any compatible family of dilations if the (topological) dimension

1750014-2

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
01

7.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
09

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 26, 2017 9:56 WSPC/S0219-1997 152-CCM 1750014

L2-Caffarelli–Kohn–Nirenberg inequalities

of a nilpotent Lie group is less than nine. At the same time, it is known that the
class of the homogeneous groups is one of the most general subclasses of the class
of nilpotent Lie groups. However, it is also known that these classes are not equal
since an example of a nine-dimensional nilpotent Lie group, which does not allow
for any compatible family of dilations, was constructed by Dyer [11]. Most popu-
lar special cases of homogeneous groups are the isotropic and anisotropic Abelian
groups (Rn; +), H-type groups, stratified groups, graded Lie groups and so on.

Before presenting our main results we discuss some necessary basic concepts of
the homogeneous groups. We refer to the book [13] by Folland and Stein as well
as to the recent monograph [12] by Fischer and the first named author for further
discussions in this direction.

A Lie group (on R
n) G with the dilation

Dλ(x) := (λν1x1, . . . , λ
νnxn), ν1, . . . , νn > 0, Dλ : R

n → R
n,

which is an automorphism of the group G for each λ > 0, is called a homogeneous
(Lie) group. Throughout this paper instead of Dλ(x) we will use the simpler and
shorter notation λx.

A continuous non-negative function

G � x 	→ |x| ∈ [0,∞)

is called a homogeneous quasi-norm on a homogeneous group G if it has the prop-
erties:

• |x−1| = |x| for all x ∈ G,
• |Dλ(x)| = λ|x| for all x ∈ G and λ > 0,
• |x| = 0 if and only if x = 0.

Note that a family of linear mappings of the form

Dλ = Exp(A lnλ) =
∞∑

k=0

1
k!

(ln(λ)A)k ,

where A is a diagonalizable linear operator on the Lie algebra g (of G) with eigen-
values νk is a morphism of the Lie algebra g (of G), that is, a linear mapping from
g to itself which respects the Lie bracket:

∀X, Y ∈ g, λ > 0, [DλX, DλY ] = Dλ[X, Y ].

The Haar measure on G is denoted by dx. Recall that the Lebesque measure on Rn

gives the Haar measure for G (see, for example, [12, Proposition 1.6.6]). If |S| is
the corresponding volume of a measurable set S ⊂ G, then we have the equalities

|Dλ(S)| = λQ|S| and
∫

G

f(Dλ(x))dx = λ−Q

∫
G

f(x)dx. (1.4)

Here Q is the homogeneous dimension (see (1.8)) of the homogeneous group G.
Moreover, there is a (unique) positive Borel measure σ on the unit sphere

℘ := {x ∈ G : |x| = 1}, (1.5)

1750014-3

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
01

7.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
09

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 26, 2017 9:56 WSPC/S0219-1997 152-CCM 1750014

M. Ruzhansky & D. Suragan

such that for all f ∈ L1(G) we have the polar decomposition∫
G

f(x)dx =
∫ ∞

0

∫
℘

f(ry)rQ−1dσ(y)dr. (1.6)

We refer to Folland and Stein [13] for the proof, which can be also found in [12,
Sec. 3.1.7]. Let us fix a basis {X1, . . . , Xn} of the Lie algebra g of the homogeneous
group G such that

AXk = νkXk

for each 1 ≤ k ≤ n, so that A can be taken to be

A = diag(ν1, . . . , νn). (1.7)

Then each Xk is homogeneous of degree νk and also

Q = ν1 + · · · + νn, (1.8)

which is called a homogeneous dimension of G. Homogeneous groups are necessarily
nilpotent and hence, in particular, the exponential mapping expG : g → G is a
global diffeomorphism. The decomposition of exp−1

G
(x) in the Lie algebra g defines

the vector

e(x) = (e1(x), . . . , en(x))

with

exp−1
G

(x) = e(x) · ∇X ≡
n∑

j=1

ej(x)Xj ,

where ∇X = (X1, . . . , Xn). On the other hand, it says that

x = expG(e1(x)X1 + · · · + en(x)Xn).

By the homogeneity property this implies

rx ≡ Dr(x) = expG(rν1e1(x)X1 + · · · + rνnen(x)Xn),

that is,

e(rx) = (rν1e1(x), . . . , rνnen(x)).

Thus, since r > 0 is arbitrary, without loss of generality taking |x| = 1, we obtain

d

d|rx|f(rx) =
d

dr
f(expG(rν1e1(x)X1 + · · · + rνnen(x)Xn)). (1.9)

Denoting by

R :=
d

dr
, (1.10)

for all x ∈ G this gives the equality

d

d|x|f(x) = Rf(x), (1.11)
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for each homogeneous quasi-norm |x| on a homogeneous group G. Thus, the oper-
ator R plays the role of the radial derivative on G. It is not difficult to see that R
is homogeneous of order −1.

In Sec. 2, we give our main results and their proofs. In Sec. 3, we discuss some
special cases.

2. Main Results and their Proofs

In this section, we establish the L2 version of the Caffarelli–Kohn–Nirenberg
inequality on the homogeneous group G. This will be the consequence of the fol-
lowing exact remainder formula which we believe to be new already in the setting
of the Euclidean space. As we will observe, this equality readily implies an L2-
weighted version of the Hardy inequality which in this context coincides with the
L2-Caffarelli–Kohn–Nirenberg inequality. We also note that the results below hold
for arbitrary homogeneous quasi-norms on G, this yielding new insights already in
the Euclidean setting of G = Rn.

Theorem 2.1. Let G be a homogeneous group of homogeneous dimension Q ≥ 3.
Then for every complex-valued function f ∈ C∞

0 (G\{0}) and any homogeneous
quasi-norm | · | on G we have∥∥∥∥ 1

|x|αRf

∥∥∥∥
2

L2(G)

−
(

Q − 2
2

− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥
2

L2(G)

=
∥∥∥∥ 1
|x|αRf +

Q − 2 − 2α

2|x|α+1
f

∥∥∥∥
2

L2(G)

(2.1)

for all α ∈ R.

As a consequence, we obtain the L2-Caffarelli–Kohn–Nirenberg-type inequality
on the homogeneous group G, with the sharp constant:

Corollary 2.2. Let G be a homogeneous group of homogeneous dimension Q ≥ 3.
Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have

|Q − 2 − 2α|
2

∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(G)

≤
∥∥∥∥ 1
|x|αRf

∥∥∥∥
L2(G)

, ∀α ∈ R. (2.2)

If α = Q−2
2 , then constant in (2.2) is sharp for any homogeneous quasi-norm | · |

on G, and the inequality (2.2) is attained if and only if f = 0.

In the Abelian case G = (Rn, +), n ≥ 3, we have Q = n, e(x) = x = (x1, . . . , xn),
so for any homogeneous quasi-norm | · | on Rn, (2.2) implies a new inequality with
the optimal constant:

|n − 2 − 2α|
2

∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1
|x|α

df

d|x|
∥∥∥∥

L2(Rn)

, (2.3)

for all α ∈ R. We observe that this inequality holds for any homogeneous quasi-
norm on Rn. For the standard Euclidean distance ‖x‖ =

√
x2

1 + · · · + x2
n, by using
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Schwarz’s inequality, this implies the L2-Caffarelli–Kohn–Nirenberg inequality [6]
for G ≡ Rn with the optimal constant:

|n − 2 − 2α|
2

∥∥∥∥ f

‖x‖α+1

∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1
‖x‖α

∇f

∥∥∥∥
L2(Rn)

, ∀α ∈ R, (2.4)

for all f ∈ C∞
0 (Rn\{0}). Here optimality |n−2−2α|

2 of the constant in (2.4) was
proved in [7, Theorem 1.1(ii)] for α < n−2

2 and f ∈ H1
0 (Rn\{0}). Note in the case

of the Hardy inequality α = 0, inequality (2.3) with the Euclidean distance, i.e.
|x| = ‖x‖, can be also obtained as a direct consequence of supersolution construction
and Agmon–Allegretto–Piepenbrink theory (see [10, Proposition 4.2 and Lemma
5.1]).

Proof of Theorem 2.1. First let us prove the case when α = 0. Namely, if
f ∈ C∞

0 (G\{0}) is a complex-valued function then, for Q ≥ 3, we have

‖Rf‖2
L2(G) =

(
Q − 2

2

)2 ∥∥∥∥ f

|x|
∥∥∥∥

2

L2(G)

+
∥∥∥∥Rf +

Q − 2
2

f

|x|
∥∥∥∥

2

L2(G)

. (2.5)

Introducing polar coordinates (r, y) = (|x|, x
|x|) ∈ (0,∞) × ℘ on G, where ℘ is the

pseudo-sphere in (1.5), and using the integration formula (1.6) one calculates∫
G

|f(x)|2
|x|2 dx =

∫ ∞

0

∫
℘

|f(ry)|2
r2

rQ−1dσ(y)dr

= − 2
Q − 2

∫ ∞

0

rQ−2 Re
∫

℘

f(ry)
df(ry)

dr
dσ(y)dr

= − 2
Q − 2

Re
∫

G

f(x)
|x|

d

d|x|f(x)dx. (2.6)

Using notations

u := u(x) = − 2
Q − 2

Rf,

and

v := v(x) =
f

|x| ,

formula (2.6) can be restated as

‖v‖2
L2(G) = Re

∫
G

vudx. (2.7)

Then we have

‖u‖2
L2(G) − ‖v‖2

L2(G) = ‖u‖2
L2(G) − ‖v‖2

L2(G) + 2
∫

G

(|v|2 − Re vu)dx

=
∫

G

(|u|2 + |v|2 − 2Re vu)dx =
∫

G

|u − v|2dx, (2.8)

which gives (2.5).
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Now we note the equality, for any α ∈ R,

1
|x|αRf = R f

|x|α + α
f

|x|α+1
. (2.9)

Indeed, this follows from

R f

|x|α =
1

|x|αRf + fR 1
|x|α

and using (1.11),

R 1
|x|α =

d

dr

1
rα

= −α
1

rα+1
= −α

1
|x|α+1

, r = |x|.

Then we can write∥∥∥∥ 1
|x|αRf

∥∥∥∥
2

L2(G)

=
∥∥∥∥R f

|x|α +
αf

|x|α+1

∥∥∥∥
2

L2(G)

=
∥∥∥∥R f

|x|α
∥∥∥∥

2

L2(G)

+ 2αRe
∫

G

R
(

f

|x|α
)

f

|x|α+1
dx +

∥∥∥∥ αf

|x|α+1

∥∥∥∥
2

L2(G)

.

(2.10)

By (2.5) with f replaced by f
|x|α , we have using (2.9) that∥∥∥∥R f

|x|α
∥∥∥∥

2

L2(G)

=
(

Q − 2
2

)2 ∥∥∥∥ f

|x|1+α

∥∥∥∥
2

L2(G)

+
∥∥∥∥ 1
|x|αRf +

Q − 2 − 2α

2|x|α+1
f

∥∥∥∥
2

L2(G)

. (2.11)

Introducing polar coordinates (r, y) = (|x|, x
|x|) ∈ (0,∞) × ℘ on G and using for-

mula (1.6) for polar coordinates, we calculate

2αRe
∫

G

R
(

f

|x|α
)

f

|x|α+1
dx = 2αRe

∫ ∞

0

rQ−2

∫
℘

d

dr

(
f(ry)
rα

)
f(ry)
rα

dσ(y)dr

= α

∫ ∞

0

rQ−2

∫
℘

d

dr

( |f(ry)|2
r2α

)
dσ(y)dr

= −α(Q − 2)
∥∥∥∥ f

|x|α+1

∥∥∥∥
2

L2(G)

.

Summing up all above we obtain∥∥∥∥ 1
|x|αRf

∥∥∥∥
2

L2(G)

=
(

Q − 2
2

− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥
2

L2(G)

+
∥∥∥∥ 1
|x|αRf +

Q − 2 − 2α

2|x|α+1
f

∥∥∥∥
2

L2(G)

, (2.12)

yielding (2.1).
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Before we start proof of Corollary 2.2 let us record the version of the Euler
operator on homogeneous groups.

Lemma 2.3. Define the Euler operator

E := |x|R. (2.13)

If f : G\{0} → R is continuously differentiable, then

Ef = νf if and only if f(Drx) = rνf(x) (∀r > 0, x = 0).

Proof. If f is positively homogeneous of order ν, i.e. if f(rx) = rνf(x) holds for
all r > 0 and x = 0, then applying (1.11) to such f we get

Ef = νf(x).

Conversely, let us fix x = 0 and define g(r) := f(rx). Using (1.11), the equality
Ef(rx) = νf(rx) means that

g′(r) =
d

dr
f(rx) =

1
r
Ef(rx) =

ν

r
f(rx) =

ν

r
g(r).

Consequently, g(r) = g(1)rν , i.e. f(rx) = rνf(x) and thus f is positively homoge-
neous of order r.

Proof of Corollary 2.2. Let us argue that the constant |Q−2−2α|
2 is sharp and

never attained unless f = 0. If the equality in (2.2) is attained, it follows that the
terms on the left-hand side of (2.1) are zero. That is, it means that

1
|x|αRf +

Q − 2 − 2α

2|x|α+1
f = 0 (2.14)

and hence Ef = −Q−2−2α
2 f . In view of Lemma 2.3 the function f must be positively

homogeneous of order −Q
2 + 1 + α, that is, f

|x|1+α must be positively homogeneous

of order −Q
2 which is impossible, so that the constant is not attained unless f = 0.

Therefore, the constant |Q−2−2α|
2 in (2.2) is sharp.

3. Cases α = −1, 0, 1

In this section, we consider special cases of (2.1) when α = −1, 0, 1 to illustrate
importance of this general equality in different settings.

3.1. The case α = −1

We have the following relation for the Euler operator

Proposition 3.1. For any f ∈ L2(G) with Ef ∈ L2(G) we have

‖Ef‖2
L2(G) =

(
Q

2

)2

‖f‖2
L2(G) +

∥∥∥∥Ef +
Q

2
f

∥∥∥∥
2

L2(G)

. (3.1)

1750014-8

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
01

7.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
09

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 26, 2017 9:56 WSPC/S0219-1997 152-CCM 1750014

L2-Caffarelli–Kohn–Nirenberg inequalities

Proof. Taking α = −1, from (2.1) we obtain (3.1) for any f ∈ C∞
0 (G\{0}). Since

C∞
0 (G\{0}) is dense in L2(G), this implies that (3.1) is also true on L2(G) by

density. The proof is complete.

Simply by dropping the positive term in the right-hand side, (3.1) implies the
following.

Corollary 3.2. For any f ∈ L2(G) with Ef ∈ L2(G)

‖f‖L2(G) ≤ 2
Q
‖Ef‖L2(G), (3.2)

with the best constant 2
Q .

3.2. The case α = 0

In this case (2.1) gives the equality

‖Rf‖2
L2(G) =

(
Q − 2

2

)2 ∥∥∥∥ 1
|x|f

∥∥∥∥
2

L2(G)

+
∥∥∥∥Rf +

Q − 2
2|x| f

∥∥∥∥
2

L2(G)

. (3.3)

Now by dropping the non-negative last term in (3.3) we immediately obtain a
version of Hardy’s inequality on G (see [19–23] for weighted Lp, critical, higher
order cases and their applications in different settings):∥∥∥∥ 1

|x|f
∥∥∥∥

L2(G)

≤ 2
Q − 2

‖Rf‖L2(G) , (3.4)

again with 2
Q−2 being the best constant. Note that in comparison to stratified

(Carnot) group versions, here the constant is best for any homogeneous quasi-norm
| · |.

In the Abelian case G = (Rn, +), n ≥ 3, we have Q = n, e(x) = x = (x1, . . . , xn),
so for any quasi-norm | · | on R

n it implies the new inequality:∥∥∥∥ f

|x|
∥∥∥∥

L2(Rn)

≤ 2
n − 2

∥∥∥∥ df

d|x|
∥∥∥∥

L2(Rn)

, (3.5)

which in turn, by using Schwarz’s inequality with the standard Euclidean distance
‖x‖ =

√
x2

1 + · · · + x2
n, implies the classical Hardy inequality for G ≡ Rn:∥∥∥∥ f

‖x‖
∥∥∥∥

L2(Rn)

≤ 2
n − 2

‖∇f‖L2(Rn),

for all f ∈ C∞
0 (Rn\{0}). When |x| ≡ ‖x‖ the remainder terms for (3.5) have been

analyzed by Ioku, Ishiwata and Ozawa [16], see also [18, 17].
The inequality (3.4) implies the following Heisenberg–Pauli–Weyl type uncer-

tainly principle on homogeneous groups (see e.g., [9, 21, 19] for versions of Abelian
and stratified groups).

Proposition 3.3. Let G be a homogeneous group of homogeneous dimension
Q ≥ 3. Then for each f ∈ C∞

0 (G\{0}) and any homogeneous quasi-norm | · | on G

1750014-9
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we have

‖f‖2
L2(G) ≤

2
Q − 2

‖Rf‖L2(G)‖|x|f‖L2(G). (3.6)

Proof. From the inequality (3.4) we get(∫
G

|Rf |2 dx

) 1
2

(∫
G

|x|2|f |2dx

) 1
2

≥ Q − 2
2

(∫
G

|f |2
|x|2 dx

) 1
2

(∫
G

|x|2|f |2dx

) 1
2

≥ Q − 2
2

∫
G

|f |2dx,

where we have used the Hölder inequality in the last line. This shows (3.6).

In the Abelian case G = (Rn, +), we have Q = n, e(x) = x, so that (3.6) implies
the uncertaintly principle with any quasi-norm |x|:(∫

Rn

|u(x)|2dx

)2

≤
(

2
n − 2

)2 ∫
Rn

∣∣∣∣du(x)
d|x|

∣∣∣∣
2

dx

∫
Rn

|x|2|u(x)|2dx, (3.7)

which in turn implies the classical uncertainty principle for G ≡ Rn with the stan-
dard Euclidean distance ‖x‖:(∫

Rn

|u(x)|2dx

)2

≤
(

2
n − 2

)2 ∫
Rn

|∇u(x)|2dx

∫
Rn

‖x‖2|u(x)|2dx, (3.8)

which is the Heisenberg–Pauli–Weyl uncertaintly principle on Rn.

3.3. The case α = 1

If α = 1, (2.1) gives the equality∥∥∥∥ 1
|x|Rf

∥∥∥∥
2

L2(G)

=
(

Q − 4
2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥

2

L2(G)

+
∥∥∥∥ 1
|x|Rf +

Q − 4
2|x|2 f

∥∥∥∥
2

L2(G)

. (3.9)

Then (3.9) implies the estimate∥∥∥∥ f

|x|2
∥∥∥∥

L2(G)

≤ 2
Q − 4

∥∥∥∥ 1
|x|Rf

∥∥∥∥
L2(G)

, Q ≥ 5, (3.10)

again with 2
Q−4 being the best constant.

In the Abelian case G = (Rn, +), n ≥ 5, we have Q = n, e(x) = x = (x1, . . . , xn),
so for any homogeneous quasi-norm | · | on Rn it implies the new inequality:∥∥∥∥ f

|x|2
∥∥∥∥

L2(Rn)

≤ 2
n − 4

∥∥∥∥ 1
|x|

df

d|x|
∥∥∥∥

L2(Rn)

, (3.11)

which in turn, again by using Schwarz’s inequality with the standard Euclidean
distance ‖x‖ =

√
x2

1 + · · · + x2
n, implies the weighted Hardy inequality for G ≡ Rn:∥∥∥∥ f

‖x‖2

∥∥∥∥
L2(Rn)

≤ 2
n − 4

∥∥∥∥ 1
‖x‖∇f

∥∥∥∥
L2(Rn)

,

for all f ∈ C∞
0 (Rn\{0}).
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