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Abstract
We report on the observation of quantum coherence of Bose–Einstein condensed photons in an
optically pumped, dye-filledmicrocavity.Wefind that coherence is long-range in space and time
above condensation threshold, but short-range below threshold, compatible with thermal-
equilibrium theory. Far above threshold, the condensate is no longer at thermal equilibrium and is
fragmented over non-degenerate, spatially overlappingmodes. Amicroscopic theory including cavity
loss,molecular structure and relaxation shows that thismultimode condensation is similar to
multimode lasing induced by imperfect gain clamping.

1. Introduction

Quantumcondensation and coherence are intimately linked for ensembles of identical particles. Condensation,
defined by amacroscopically large fraction of all particles being in a single state (usually the ground state [1, 2]),
is typically associatedwith coherence as seen in thefirst-order correlation function, which is proportional to the
visibility of fringes of an interferencemeasurement [3].

While observation of thermal equilibrium andmacroscopic occupancy of the ground state are sometimes
considered sufficient proof of Bose–Einstein condensation (BEC), the enhancement of coherence brought by
BECmeans that interferometry is one of themost urgentmeasurements to bemadewith a condensate [4, 5].
Where thermal equilibrium is not completely reached, coherence is the defining characteristic of non-BEC
quantum condensation, e.g for semiconductor exciton-polaritons [6–9] and organic polaritons [10, 11]. In non-
ideal Bose gases, such as ultracold atoms, interactions tend to reduce but not destroy the coherence [12–14].

The long range coherence behaviour of two-dimensional (2D)microcavity condensates is currently an open
question. The coherence of interacting, equilibrium 2DBose gases decays with a power law at large distances.
The exponent is no greater than 1/4, which is reached at the threshold for the Berezinskii–Kosterlitz–Thouless
transition [15]. It is known that the equation ofmotion for the local phase of a non-equilibriumdriven-
dissipative 2D condensate is in the universality class of the Kardar–Parisi–Zhang (KPZ) equation [16], and non-
power-law decays are possible. Since the long-range coherence only shows non-equilibriumbehaviour for
systemswhich are very large compared to interaction length scales (such as the healing length), it has proven
difficult to observe the true long-range behaviour,mainly due to unavoidable pumping inhomogeneities [17].

Photon condensates in dye-filledmicrocavities areweakly interacting [18–21], inhomogeneous [22, 23],
dissipative Bose gases close to thermal equilibrium at room temperature [24–28]. It is worth noting that the
physical systemhas some similarities to a dye laser, with the decisive difference being that lasing is necessarily a
non-equilibrium effect whereas photons can also undergo BEC in thermal equilibrium.Consequently BEC
impliesmacroscopic occupation of the ground state independently of the loss and gain properties, whereas a
laser is characterised by a large occupation of exactly themode that has themost gain [29].

Unique among physical realisations of BEC, in dye-microcavity photon BEC the particles thermalise only
with a bath andnot directly among themselves. This implies that the establishment of phase coherence in the
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condensation process is effectivelymediated via indirect interactions (such as stimulated emission) through the
dye, i.e. a systemwhose fast relaxation renders allmediated interaction incoherent. Nevertheless, spontaneous
selection of a condensate phase has recently been observed in the time domain [30]. Given the extremelyweak
interactions and substantial driving and dissipation required for the creation of a large condensate, little is
known about the expected long-range behaviour of spatial coherence.

Condensates withmacroscopic occupation of two ormore states without phase relation are called
fragmented [31].Whereas strong, attractive interactions favour fragmentation, repulsive interactions stabilise a
single condensatemode [2, 32, 33]. Fragmentation has been observed using ultracold atoms inmultiple spin
states [34], or separated spatialmodes [35, 36]. Fragmented, dissipative condensates with spatially separated
states have been seen in polaritons in semiconductors [37, 38] and in organic solids [39]. It has been proposed
that for driven, dissipative bosonic systems,multimode condensation is a general non-equilibrium
phenomenon [40], when the driving rates exceed the dissipation rates (such as loss, thermal equilibration or
spatial re-distribution).

Far below threshold pump power,Pth, the coherence timeT and length L of the thermalised light are

expected to be of order Qh k 0.15B  ps and l l p m= Qh c k n2 1.5 mdB B L0
2  where l 590 nm0  is the

wavelength of the lowest-energy cavitymode,Q = 300 K the temperature, c the speed of light in free space, and
nL the refractive index of the solventfilling the cavity [41–43]. The coherence time is predicted to bemuch
greater above threshold than below [28, 43], increasing further as the number of particles in the condensate
increases, and above threshold the coherence length is expected to be at least as large as thewhole condensate
[44].Multimode condensationmay occur but its effect on coherence is not predicted [23].

In thismanuscript we presentmeasurements of the coherence properties of thermalised photonswith both
time delays and position shifts between the two arms of an interferometer.We describe how the controls and
outputs of our imaging interferometer correspond to the underlyingfirst-order correlation function,

t¢( )( )g r r, ,1 , as a function of positions r and ¢r and time delay τ.We characterise the coherence time and length
of the photon condensate as a function of pump power. Below and just above threshold, themeasurements are
compatible with thermal equilibrium theory neglecting dissipation. Far above threshold, the condensate
fragments intomultiple, spatially distinct but overlapping, non-degeneratemodes accompanied by a decrease of
both spatial and temporal coherence.We explain themultimode condensationwith amicroscopic non-
equilibriummodel, and argue that the phenomenon is similar to gain saturation in lasers.

2. Experimental system

Our experiment starts by pumping afluorescent dye in a plano-concave, 250mmradius of curvature, high-
finessemicrocavity [22, 25] in quasi-continuous conditions.We use the 8th longitudinalmode of the cavitywith
a cutoff wavelength (corresponding to the lowest-energy cavitymode) of 590nm. The pump spot is elliptical
with an aspect ratio near unity and aminor axis of typically 50–60μmdiameter. These parameters are known to
produce near thermal-equilibrium conditions [23]. The pumppulses last 500ns, which ismuch longer than any
thermalisation (about 300 ps) or cavity loss (about 1 ns) time scale in the system. The pulse repetition rate is
varied so that the product of pumppower and repetition rate is kept constant tomaintain acceptable signal-to-
noise over a very large range of pump powers, while avoiding a large dye triplet population. Images are typically
integrated over 50–2000ms (compared to 0.5–10 kHz pulse repetition rates).

The cavity photoluminescence is imaged to infinity, then split. Half is split again and imaged onto an
auxiliary camera and a spectrometer whose spectral resolution, about 0.2nm, is insufficient to resolve the bare
cavitymodeswhich are separated by 0.05nm. The other half is sent to an imagingMach–Zehnder
interferometer, as shown infigure 1. Each of the two arms of the interferometer has a delay line: one controlled
by a piezo for thefinemotion to scan over a fringe, the other controlled by amotor for coarsemotion. The
horizontal axis, x, of the last adjustablemirror in one arm is controlled by amotor, whosemotion is converted to
a shift in position of the image at the camera. Both outputs of the interferometer are sent onto a camera through
a single imaging optic, imaged to two separate locations on the sensor. There is a linear-polarising filter in front
of the camera, which increases the visibility of fringes.

2.1.Data acquisition and analysis
The interferometer camera records a spatially resolved intensity distribution. If one armof the interferometer is
blocked, this corresponds to the intensity ( )I r emitted from the cavity, i.e. the spatial profile of the
photoluminescence,where = ( )x yr , is the position on the camera. Since pumping anddetection in this
experiment are quasi-continuous, all processes are stationary, but temporal resolution comes in termsof the path
delay of the interferometer. The detected interferometer signal depends on r, ¢r and τ, where d¢ = +( )x yr ,x ,
where thedisplacement introduced byone armof the interferometer is dx and τ is the temporal delay
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corresponding to the path-length difference between the twoarmsof the interferometer. TheMichelsonvisibility
of fringesV is directly related to the coherence ( )g 1 via the relation t t¢ = ¢( ) ∣ ( )∣( )V gr r r r, , 2 , ,1 ¢( ) ( )I Ir r

+ ¢[ ( ) ( )]I Ir r .
Tomeasure the visibility, we vary the voltage of the piezo controlling one of the delay lines whilemaintaining

all other parameters fixed, so that thefine-scale delay timewhichwe call tf covers about 3 periods of oscillation
of the light (6 fs) at typically 41 discrete positions. At each tf we take an image. Coarse-scale delays, τ, up to
300ps are achievedwith themotor on the other delay line. The total delay is t t+f , but we treat tf and τ as
independent, since they vary over very differentmagnitudes, t t∣ ∣ ∣ ∣f  . Since themicroscopic description of
dye-microcavity photon condensates requires no processes faster than about 100fs [20, 27, 42, 45, 46], the
coherence is expected to vary only slowly compared to the oscillations of the light.

A full set of data formeasuring the spatio-temporal coherence consists of images in (x, y) for a variety of tf , τ
and dx. For data sets where the pumppower is varied, the exposure and gain of the camera and spectrometer are
adjusted automatically tomaximise dynamic range. Both output ports of the interferometer are directed to the
same sensor. To allow us to align the two images in post-processing, for each set of data there is one image taken
with one armof the interferometer blocked.

All colour values fromour camera are converted tomonochrome by summing red and green channels. For
590nm the sensor of our camera is equally sensitive in both red and green channels. Often 4-by-4 pixel blocks
are combined to reduce computational effort in analysis. In the analysis of data sets where the control
parameters of the condensate (e.g. pumppowerPp) vary, an array d t t( )I x y P, , , , ,x f p of values for each control
parameter is constructed. The full six-dimensional data consists of asmany as 25 000 images.

Extraction of the visibility over the set offine delays is themost important processingwe do on the data. Our
estimator for the visibility is based on the Fourier transformof the data as a function of fine delay. It is designed
tominimise the effects of sampling, amplitude and phase noise. Becausewe use so few fringe cycles, we sub-
sample frequenciesmore precisely than theNyquist criterion, improving the accuracy of the estimator.

Figure 1.Top: diagramof interferometer. The fine delay for scanning phase is controlled by a piezo actuator. Large-scale time delays τ
are controlled by amotor. The image passing through one armof the interferometer is shifted by amotorisedmirrormount. Bottom:
various levels of abstraction of the data just above threshold pump power, with overlapped images (d = 0x ). From left to right: a raw
image at t 0 , a visibility image (inferred from a set of 41 images at varying fine delay times, for t 0 ), a coherence-time image
(inferred from a set of 29 visibility images for varying τ).
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Amplitude noise is intrinsic to the photon condensate [47], andwe negate its effects by analysing the arctangent
of the ratio of quadratures. Phase noise is largely due to cavity lengthfluctuations.We have tested the estimator
against a noisemodel of our system and found that the estimator is unbiased except for very small (<0.05) or
very large (>0.8) visibilities. Unlike theMichelson visibility criterion, our estimator is robust against amplitude
noise and converts phase noise to a reduction in visibility.

For any pixel location (x, y)we can extract a characteristic coherence timeT (or length L), with afit to the
visibility, usually to aGaussian, in τ (or dx respectively). Infigure 1 (bottom, from left to right)we see an image of
the photon condensate ( )I x y, , an image of the visibility d t=( )V x y, 0, 0x  of the same condensate and an image of
its coherence time, d =( )T x y, 0x

. ( )V x y, shows evidence of partial coherence of the thermal component
surrounding the condensate despite the slightly imperfect image alignment. VisibilityV and coherence ( )g 1 are
identically the same quantities for d = 0x and, experimentally dx ismuch smaller than the length scale onwhich
intensity varies, i.e. the images are nearly overlapped. Therefore there is no discernible difference between
visibility and coherence, and onlyV is shown infigure 1.

3. Thermal-equilibrium spatiotemporal coherence

Wehavemeasured the spatiotemporal coherence of thermalised photons far below and just above threshold, as
depicted infigure 2.We choose a single pixel x y,0 0 andmeasure the visibility t d( )V , x x y,0 0

as a function of long-

range delay and image shift. The differences betweenV and ( )g 1 were not noticeable, sowe have presentedV.
Coherence time and length are inferred froma 2DGaussian fit to the data. Far below threshold, the length and
time scales of coherence, 4.5μmand 0.2ps, are compatible with thermal scales taking into account finite spatial
resolution (see appendix B).

The coherence is strikingly longer range in both space and time above threshold, indicative of BEC. Above
threshold themeasured length of the coherence, 14μm, is comparable to the size of the condensate itself,
implying that thewhole condensate shares one phase, as expected. Themeasured coherence time of 10ps is
limited by condensate emission frequency fluctuations on timescales equal to the time between images, 200ms.
The condensate emission frequency is determined by the cavity cutoff wavelength, whose variations are
dominated by the variation of the cavity length at the limits of our locking scheme, which has a bandwidth of
20Hz and resolution equivalent to about 0.05nm in cavity cutoff wavelength. These cavity lengthfluctuations
relate directly to themechanical stability of the cavity.We optimise themechanical stability through
reinforcement screws, whose precise adjustment affects themaximum coherence timewe observe fromone
experimental data set to another.We interpret all coherence times above 2ps as ‘large’ since, because of this
mechanical limitation, we cannot repeatably detect longer coherence times.

3.1. Thermal equilibrium theory
The theory of correlations of a non-interacting trapped Bose gas at thermal equilibrium in the absence of
dissipation is well established [48, 49], and can be extended from spatial to temporal correlations [50]. Our
plano-sphericalmicrocavity provides a symmetric, 2D, harmonic trapping potential for photons. The theory is
based on a series expansion in the fugacity, where fugacity is defined as z m= Q( )kexp B , withμ the chemical

Figure 2.Visibility for a specific pixel, far below (left) and just above (right) threshold for condensation as delay and shift are varied,
t d( )V , x x y,0 0

. The coherence times (lengths) are 0.2ps (4.5 μm) for the thermal cloud and 10ps (14 μm) for the condensate. To
highlight just how low the visibility is below threshold, we have used different colour scales in the two panels.
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potential andΘ the temperature, so thatβ= 1/kBϴ. The non-normalised first-order correlation function reads

å z b¢ - ¢ = ¢ ¢ -
=

¥

=

( ) ( [ ]) ( )( ) ( ) G t t K s s t t kr r, , , , , i , 1
k

k

s x y
s
k1

1 ,

where the kth term in the expansion corresponds to occupancy of up to k particles in any givenmode. The
function ¢ ¢( )( )K s s t t, , ,s

k is an unwieldy analytic function representing the propagator along the s direction,
which depends on the trapping frequency (equivalent to themode spacing), and is given in [50] equation (20).
The normalised correlation function is given by its usual expression ¢ - ¢ = ¢ - ¢( ) ( )( ) ( )g t t G t tr r r r, , , ,1 1

¢ ¢( ) ( )( ) ( )G Gr r r r, , 0 , , 01 1 for stationary processes. Arbitrarily large phase-space density can be obtained for
negative chemical potential, i.e. z < 1, so the infinite series will always converge. Thefinite series also converges
for large numbers of terms, albeit with a small positive chemical potential (z - 1 1 ), for large particle
numbers.

To test the convergence of the theory, we have calculated coherence length and time, and the size of the cloud
of photons, for varying particle numbers and numbers of terms in the expansion. Far below threshold, the series
converges as expected. Above threshold, the spatial scales of intensity and coherence converge when the series
has a number of terms of the same order as the condensate population. The temporal coherence diverges above
threshold, which is consistent with the non-dissipative assumptions of the theory. The calculated results
qualitatively agree with exact calculations [49]. The correlation function in spacematches well to aGaussian, but
the density does not due to the presence of the condensate.

While there are no adjustable parameters in the theory, the theoretical photon number does not directly
correspond to the experimental pumppower. Below threshold, photon number and pumppower are
experimentally seen and theoretically expected [28] to be linearly proportional. Likewise, far above threshold,
but not so just above threshold.We can therefore directly compare our calculations to experiment only below
threshold.

3.2. Variation of coherencewith pumppower
Infigure 2we demonstrated the coherence for two regimes, far below and just above threshold.We nowpresent
a quantitative exploration of coherence for all powers from far below to far above threshold. Visibility d( )V x and
a cut through of the photoluminescence intensity I(x) are shown infigure 3 (top), for two pumppowers, one far
below and one just above threshold. Since background light has not been subtracted, theGaussianfits have a
constant offset for all x. The fact that for large x the intensity sometimes dips below the fitted offset indicates that
the background light is not uniform. Infigure 3 (bottom), we compare experiments to the thermal equilibrium

Figure 3.Coherence length as a function of pumppower. Top: at pixel ( )x y,0 0 , for two powersP, visibility as a function of shift
between images d t=( )V P,x x y, , 00 0

and intensity distribution ( )I x P, y0
are shown, together withGaussian fits. Bottom: width of the

intensity distribution and coherence length obtained from thefits. Solid lines are thermal-equilibrium theorywith no adjustable
parameters. Dashed lines are the same theorywhere it is only approximately valid.
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theorywithout dissipation (using 999 terms in the expansion). There are no free parameters below threshold
(solid lines), but the scaling of the horizontal axis is imprecise above threshold (shown as dashed lines).

Within the theory’s range of validity ( P Pth) there is quantitative agreement with the experiment. Far
below threshold, the coherence length ismuch shorter than the characteristic size of photoluminescence,
limited only by imaging resolution (see appendix B).With increasing power close to threshold, coherence length
grows, as thewidth of the emitted light decreases. At even higher powers the intensity distribution broadens but
the coherence length decreases to around 6μm (approximately the harmonic oscillator length scale). In this
regime, the condensate is thus only partially coherent, in contradiction to the dissipative, thermal-equilibrium
prediction of [44]. Spatial coherence d( )V x is well described by aGaussian. The power-law decay of correlations
that is predicted for interacting 2D equilibrium condensates is observable only for displacements dx that are large
compared to the interaction length scale (the healing length) [16]. Given the rather weak interactions in photon
BECs [21], the healing length is likely to be larger than 10μm,which is larger than the condensate. If coherence
in photonBECs does follow a power-law decay, then a substantially larger condensate than currently existing
will be required to observe it.

Infigure 4, we show the coherence time. Far below threshold, the shortestmeasured coherence time is
limited by spatial resolution andmarginal undersampling of the data. Above threshold, an upper bound for
coherence time is set by the vibrations of the cavity. At higher pumppowers, coherence time decreases,
suggesting partial coherence betweenmodes, in agreement with the spatial coherence data. Even though
thermal-equilibrium theory (black lines, solid below threshold, dashed above) does not describe the coherence
time as accurately as spatial coherence and intensity, it captures qualitatively the increase of temporal coherence
as the threshold pumppower is reached.

4.Multimode non-equilibrium condensates

The change from full coherence just above threshold to partial coherence at high pumppowers can be explained
by the appearance of an unexpectedmultimode condensate phase. Figure 5 depicts the spectrum, image ( )I r
and visibility image ( )V r for various pump powers above threshold.With increasing pumppower the
condensate peak in the spectrumbreaks up intomultiple peaks, i.e. the condensate splits intomultiple non-
degeneratemodes. Figure 5 shows three peaks, butwe have seen up tofive distinct peaks in some experimental
runswherewe used reduced pump spot sizes to lower the pump threshold.

Alongwith this non-degeneratemultimode behaviour, the condensate broadens in space and themeasured
visibility develops a fragmented structure. At the highest powers, themost occupiedmode need not be the
ground state, which is related to the imperfect alignment of a smaller pump spot for this data than formost of
our other data. The spatial structures are stable over time, but changewhen the cavitymirrors aremoved or
when the dye is replaced. Because of optical imperfections (especially dye clumps but sometimes also scratches
on themirrors) the shapes of themodes of the cavity are not necessarily theHermite–Gaussmodes expected for
an ideal resonator. Themode occupancies, however, are not affected by these imperfections, and it is always the
lowest energymode that shows the lowest threshold formacroscopic occupancy, i.e. BEC.

With a poorer spatial and spectral resolution, the spatial broadening could be taken as an indication of
repulsive interactions. Ref [25] uses different parameters to this work (e.g. pump spot size), so it is not clear
whether or not those experiments should have shownmultimode condensation. Repulsive interactions strong
enough to broaden the condensate bymore than its initial size would also be accompanied by changes in the
many-body states of the system, whichwould showup as a blue shiftmuch larger than the bare-cavitymode
spacing.However, sincewe detect no blue-shift in the spectrum apart from variations of the cavity length,

Figure 4.Coherence time as a function of pumppower fromGaussianfits to t d =( )V P, x y, , 0x0 0
. Solid line (dashed line) is the prediction

assuming thermal equilibriumbelow threshold (and its approximate continuation above threshold).
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figure 5 gives clear evidence of the condensation of non-interacting photons in severalmodes, rather than
quantumdepletion reducing the condensate fraction. Since themultimode condensate is accompanied by a
reduction in coherence, we conclude that themodes are incoherent, i.e. this state is a ‘fragmented’ condensate.

4.1. Non-equilibrium theory
Condensate fragmentation cannot be explained by thermal-equilibriumprocesses, which produce a single
condensate, always in the lowest-energymode. In [20] it is suggested that themultimode behaviourmight occur
due to imperfect clamping of the excited-state fraction of dyemolecules. To explain themultimode behaviour
we are thus obliged to treat the spatial dependence of dye excitation and the spatial dependence of the interaction
between the dyemolecules and different cavitymodes. Since the thermal-equilibrium theory clearly breaks
down in themultimode regime, we have implemented a non-equilibriummodel [23, 27, 28]:

r d k r d= G - + - + G -( ) ( ) [ ( )( )] ( )n

t
f n f n

d

d
1 1 , 2m

d m m m d m m mD D

Figure 5.Normalised photoluminescence spectrum (left column), normalised image (middle column) and visibility image (right
column) for various pump powers (rows, as labelled on the graph) above threshold Pth. The spectrum splits intomultiplemodes, the
condensate broadens in space and the visibility image fragments at higher powers. A small pump spot (30 ± 10 μm)was used to
reduce threshold pumppower.
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= -G + G - 
( ) ({ } ) ( ) ({ } )[ ( )] ( )f

t
n f n f

r
r r r r

d

d
, , 1 . 3m m

tot tot

where nm is the occupancy of themthmodewhich is detuned by dm from themolecular resonance (the zero-
phonon line). dG( ) and dG -( ) are the absorption and emission spectra and rdD the density of the dyemolecules,
in d dimensions. ( )f r and fm represent the excited-state occupancy of themolecules in spatial andmode bases.
The local emission and pumping rates are G and G. Solving for the stationary solutions readily yieldsmode
occupationswhich demonstratemultiple condensedmodes, as infigure 5.

A crucial quantity in those equations is the absolutemaximumvalue of light–matter coupling Gmax . The
light-molecule coupling strength can be approximately derived frommeasured quantities, noting that the
typical timescale for population variations is

t d r d r d= G = G = G( ) ( ) ( ) ( )N , 4typ 0D 1D 1D 2D 2D

whereN is the number ofmolecules, GdD and rdD are the light–matter coupling andmolecular density in d
dimensions. In three-dimensions, themean time between scattering events for photonsmoving at speed c* from
molecules at volume density r3D is t r s d= [ ( )]*c1typ 3D . Here s d( ) is the scattering cross-sectionwith its
maximum smax found at 534nm, the peakwavelength for absorption. Equating the timescales wefind

sG = = ´ -*c 5.1 103D
max

max
12 m3 s–1. The variation of light–matter couplingwithwavelength is known by

interpolating experimentalmeasurements and enforcing theKennard–Stepanov relation [23]. In lower
dimensions, the density is scaled typically by the cavity physical length and/or the harmonic oscillator length of
the transverse cavitymodes lHO,which is 6μmfor our cavity. For computational efficiency, themodel is
restricted to one dimension, and only 15modes are used, which is sufficient to ensure that the results converge,
and is good enough for a qualitative comparisonwith experimental data.We assume a cavity decay rate of
109s−1. Other parameters for themodel aremeasured for our experiment.

Infigure 6we show the results of themodel.With increasing pumppower, condensation occursfirst in the
lowestmode, then subsequently in highermodes (left panel).When onemode reaches threshold, it locally
clamps the excited state population of dyemolecules, but sufficient gain remains at the edges thatmoremodes
can reach threshold. Theminimumof power required to reach themultimode regime occurs when the pump
spot is large enough to overlapwith several spatialmodes of the resonator (right panel).

The linewidth theory of [28] takes into account only the singlemode intowhich condensation occurs. Such a
truncation is only appropriate whenmodefiltering optics are used. Instead, herewemake the approximation
that dissipative processes are negligible, and the inhomogeneous broadening is responsible for the observed
finite coherence.We consider the classical electricfield of the light in the cavity as a coherent sumover electric
fields from themanymodes whose associated eigenfunction and angular frequency are known. The
interferometer detectors can be used tomeasure the first-order correlation function remembering that only
stationary processes are observed. The coherence lengths and times inferred fromGaussian fits show good
qualitative agreement is in all regimes, below, near and far-above threshold.

Figure 6.Amicroscopicmodel of dyemolecules, cavitymodes and dissipation explains themultimode behaviour. Left: for increasing
pump power,first the ground state reaches threshold, thenmore excitedmodes. Right: threshold for differentmodes depends on the
size of the pump spot, given in units of harmonic oscillator length lHO. In the left panel, the pump spot size is 2.2lHO.
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5. Conclusions and outlook

In conclusion, we have observed first-order coherence of thermalised photons in a dye-filledmicrocavity, at
pumppowers below and above condensation threshold. Spatiotemporal correlations are longer-range for the
condensed than non-condensed state, and show increases in range even below threshold, in broad agreement
with thermal-equilibrium theory. Above thresholdwe have seenmultiple condensedmodes, consistent with a
microscopicmodel that explains this fragmentation in terms of imperfect gain clamping, which is a signal of
non-equilibrium, driven, dissipative processes [40].

Since there is no discernable coherence betweenmodes, the coherence length does not always increase with
pumppower. This identifies a clear obstacle in the creation of large condensates, to be overcome to access the
long-range coherence decay that is typical of driven-dissipative (KPZ)physics. In realising condensates that are
large both in density and spatial extent, specific care needs to be taken to avoid the observed fragmentation into
mutually incoherentmodes. A viable route towards condensates with a size of several 10 s ofmicrons is using
cavitymirrors of large radii. To retain large particle numbers while avoiding themultimode regime, the optimal
pump spot sizewould bematched to the condensate size.

Themultimode condensation phenomenon is a result of inhomogeneous driving and dissipation. Net gain
(the difference between drive and dissipation) saturates only locally, leaving gain available formodes which have
not already condensed. Since those conditions are natural for trapped polaritons [9, 51] ormight be engineered
even for atoms [52], the observed fragmentation is by nomeans specific to the system at hand, but rather is
expected to be observable in a variety of condensates. Since photons interact only indirectly and incoherently,
butmany other condensed particles have direct coherent interactions, coherence properties are a feature in
which fragmented photon condensatesmight deviate fromother condensates. In particularmultimode
condensationmight not always result inmutually incoherent fragments as observed here, and coherence
betweenmodes is conceivable.
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AppendixA.Uncertainties

There are twomajor sources of uncertainty in our experiments: fluctuations of threshold, and intrinsic visibility
variability. Thefluctuations are slightly faster than the typical time to acquire a data set, 1–5 h.

Infigure A1 , we vary the pumppower (in a randomised order) andmeasure the output light intensity
averaged over a small region at the centre of the image. The pump spotwas smaller than used formost of our
data, to reduce threshold here. Pulse repetition ratewas held constant at 500Hz for this specific data set. Camera
exposure and gainwere set automatically for each power to avoid saturation, always at least 2ms. A bi-linear
least-squaresfit gives that the pump source power at threshold is 260mW (compared to around 1200 mWfor

Figure A1.Threshold behaviour. A bilinear fit shows threshold around 260mW,butmany points in the range 180–250mWshow
condensation. This variability in threshold limits how reliably the experiment can operate close to threshold.
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most of our data). However,many points below threshold show a condensate. In the range 180–250mW, there
may be a condensate or not. This variabilitymay be related to polymerisation of the dye, whichwe know
occasionally forms clumps requiring cleaning of the cavity, or to pumppower drifts. Alternatively, the output
power from the cavitymay vary during each 500ns pumppulse due to the evolving triplet state population.
Where power is varied, we reject data which are below thresholdwhen they are expected to be above it, and
vice versa.We accept only data that follow an approximatelymonotonic increase in output intensity as a
function of pumppower.

Standard-deviation errors are of limited use near threshold as there is no reason to believe that visibility
measurements for a given set of parameters are drawn from anormal distribution. They are as likely to be drawn
froma bimodal distribution, corresponding to below- and above-threshold behaviour.We have tried to
ascertain the limiting uncertainties in visibility away from threshold, bymeasuring a large sample of visibilities as
a function of delay above threshold: see figure A2.

By oversampling, we can build sub-samples and evaluate their standard deviations. The highest sub-sample-
averaged visibilitymeasured is about 0.7, although our estimator is low-biased for such large visibilities. The
largest shot-to-shot uncertainty in visibility is 0.15. For lower average visibility, the uncertainty in the visibility is
lower. For example, we canmeasure non-zero visibility of 0.04with a signal-to-noise of unity in a single
measurement. Our noisemodel produces a similar pattern onlywith unrealistically large phase noise.We
conclude that there is intrinsic noise in the visibility which does not come fromourmeasurement apparatus or
visibility estimator.

Appendix B. Finite spatial resolution

The effect offinite imaging resolution and numerical aperture onmeasured interference patterns can be taken
into account, by convolving the electric field at a point, ( )E r with a point-spread function ( )F R :

ò= -( ) ( ) ( ) ( )E t E t Fr R r R R, d , . B.12

The overline indicates thatfinite resolution has been applied. The effect of finite numerical aperture is equivalent
to applying the Fourier transform, applying a cutoff (multiplying by a top-hat function) and then inverse
transforming, i.e. convolutionwith a cardinal sine, ( )x xsin . This function can then simply be absorbed in the
definition of the point-spread function, F.

The light at one output port of the interferometer is t¢ = + ¢ ¢( ) [ ( ) ( )]E E t E tr r r r, , , ,P
1

2
, where as usual

t = - ¢t t . Becausewe are dealingwith nearly coherent light, the effects offinite resolution are applied before
the interference. The other output,Q, takes aminus instead of a plus. Then the intensity is:

Figure A2. Limiting uncertainty in the visibility, significantly above threshold. Left: visibility variationwith delay for overlapped
images as a specific pixel. Grey dots are individual data points. Points with error bars are averages over 13 points centred on the
marker, with error bar being the standard deviation of that sample. Right: standard deviation of visibility as a function ofmean
visibility.Maximumvisibility inferred is 0.7.Our estimator is low-biased for the largest visibilities, and high-biased for the smallest
visibility values.
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Re
t¢ = á + ¢ ¢ + ¢ ¢ ñ

= á ñ + á ¢ ¢ ¢ ¢ ñ + á ¢ ¢ ñ
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( ) ( ) ( ) ( ) [ ( ) ( ) ] ( )

† †

† † †
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r r r r r r

r r r r r r
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, , , , 2 , , . B.2

P

Thefirst two terms are the intensities as seenwithfinite resolution. The last termwrittenmore explicitly, using
¢ - ¢ = á ñ ¢ ¢( ) ( ) ( )( ) †G t t E t E tr r r r, , , ,1 , is:

ò òtá ¢ ¢ ñ = ¢ = á - ¢ ¢ - ¢ ¢ ¢ ñ

= ¢ ¢ - ¢ - ¢ - ¢∬

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

† ( ) †

( )

*

*

E t E t G E t F E t F

F F G t t

r r r r R r R R R r R R

R R R R r R r R
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d d , , . B.3

1 2 2
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Using equation (1):

å t z b¢ = ¢ ¢ ´ - ¢ - ¢ ¢ -
=

¥

=
∬( ) ( ) ( ) ( [ ]) ( )( ) ( )* G S S F S F S K s S s S t t kr r, , d d , , , i , B.4

k

k

s x y
s s s

k1

1 ,

wherewe have also assumed that point-spread function is separable: =( ) ( ) ( )F F X F YR x y . This expression can
be evaluated numerically, either by direct integration or via Fourier transforms The finite-resolution correlation

function is normalised: t t¢ = ¢ ¢ ¢( ) ( ) ( ) ( )( ) ( ) ( ) ( )g G G Gr r r r r r r r, , , , , , 0 , , 01 1 1 1 . The results are shown
infigure B1 for a thermal cloudwith pumppower far below threshold ( ´ -P P5 10 3

th ). The point correlation
functions show shorter range coherence than those integrated over afinite resolution (a rotationally symmetric,
3 μmGaussian point-spread function, which is roughly the resolution of our imaging setup). Finite-resolution
results are consistent with the experimental results seen at low pumppowers infigures 2–4.
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