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Abstract

We report on the observation of quantum coherence of Bose—Einstein condensed photons in an
optically pumped, dye-filled microcavity. We find that coherence is long-range in space and time
above condensation threshold, but short-range below threshold, compatible with thermal-
equilibrium theory. Far above threshold, the condensate is no longer at thermal equilibrium and is
fragmented over non-degenerate, spatially overlapping modes. A microscopic theory including cavity
loss, molecular structure and relaxation shows that this multimode condensation is similar to
multimode lasing induced by imperfect gain clamping.

1. Introduction

Quantum condensation and coherence are intimately linked for ensembles of identical particles. Condensation,
defined by a macroscopically large fraction of all particles being in a single state (usually the ground state [1, 2]),
is typically associated with coherence as seen in the first-order correlation function, which is proportional to the
visibility of fringes of an interference measurement [3].

While observation of thermal equilibrium and macroscopic occupancy of the ground state are sometimes
considered sufficient proof of Bose—Einstein condensation (BEC), the enhancement of coherence brought by
BEC means that interferometry is one of the most urgent measurements to be made with a condensate [4, 5].
Where thermal equilibrium is not completely reached, coherence is the defining characteristic of non-BEC
quantum condensation, e.g for semiconductor exciton-polaritons [6—9] and organic polaritons [10, 11]. In non-
ideal Bose gases, such as ultracold atoms, interactions tend to reduce but not destroy the coherence [12—14].

The long range coherence behaviour of two-dimensional (2D) microcavity condensates is currently an open
question. The coherence of interacting, equilibrium 2D Bose gases decays with a power law at large distances.
The exponent is no greater than 1/4, which is reached at the threshold for the Berezinskii—Kosterlitz—Thouless
transition [15]. Itis known that the equation of motion for the local phase of a non-equilibrium driven-
dissipative 2D condensate is in the universality class of the Kardar—Parisi-Zhang (KPZ) equation [16], and non-
power-law decays are possible. Since the long-range coherence only shows non-equilibrium behaviour for
systems which are very large compared to interaction length scales (such as the healing length), it has proven
difficult to observe the true long-range behaviour, mainly due to unavoidable pumping inhomogeneities [17].

Photon condensates in dye-filled microcavities are weakly interacting [ 18—21], inhomogeneous [22, 23],
dissipative Bose gases close to thermal equilibrium at room temperature [24—28]. It is worth noting that the
physical system has some similarities to a dye laser, with the decisive difference being that lasing is necessarily a
non-equilibrium effect whereas photons can also undergo BEC in thermal equilibrium. Consequently BEC
implies macroscopic occupation of the ground state independently of the loss and gain properties, whereas a
laser is characterised by a large occupation of exactly the mode that has the most gain [29].

Unique among physical realisations of BEC, in dye-microcavity photon BEC the particles thermalise only
with a bath and not directly among themselves. This implies that the establishment of phase coherence in the
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condensation process is effectively mediated via indirect interactions (such as stimulated emission) through the
dye, i.e. a system whose fast relaxation renders all mediated interaction incoherent. Nevertheless, spontaneous
selection of a condensate phase has recently been observed in the time domain [30]. Given the extremely weak
interactions and substantial driving and dissipation required for the creation of a large condensate, little is
known about the expected long-range behaviour of spatial coherence.

Condensates with macroscopic occupation of two or more states without phase relation are called
fragmented [31]. Whereas strong, attractive interactions favour fragmentation, repulsive interactions stabilise a
single condensate mode [2, 32, 33]. Fragmentation has been observed using ultracold atoms in multiple spin
states [34], or separated spatial modes [35, 36]. Fragmented, dissipative condensates with spatially separated
states have been seen in polaritons in semiconductors [37, 38] and in organic solids [39]. It has been proposed
that for driven, dissipative bosonic systems, multimode condensation is a general non-equilibrium
phenomenon [40], when the driving rates exceed the dissipation rates (such as loss, thermal equilibration or
spatial re-distribution).

Far below threshold pump power, Py, the coherence time T'and length L of the thermalised light are
expected to be of order h/kz© =~ 0.15 psand \gg = \/hAoc / 2mkgOnf ~ 1.5 pm where Ay ~ 590 nm is the
wavelength of the lowest-energy cavity mode, © = 300 K the temperature, c the speed of light in free space, and
ny the refractive index of the solvent filling the cavity [41-43]. The coherence time is predicted to be much
greater above threshold than below [28, 43], increasing further as the number of particles in the condensate
increases, and above threshold the coherence length is expected to be at least as large as the whole condensate
[44]. Multimode condensation may occur but its effect on coherence is not predicted [23].

In this manuscript we present measurements of the coherence properties of thermalised photons with both
time delays and position shifts between the two arms of an interferometer. We describe how the controls and
outputs of our imaging interferometer correspond to the underlying first-order correlation function,
gW(r, ¥/, 7),asafunction of positions r and t’ and time delay 7. We characterise the coherence time and length
of the photon condensate as a function of pump power. Below and just above threshold, the measurements are
compatible with thermal equilibrium theory neglecting dissipation. Far above threshold, the condensate
fragments into multiple, spatially distinct but overlapping, non-degenerate modes accompanied by a decrease of
both spatial and temporal coherence. We explain the multimode condensation with a microscopic non-
equilibrium model, and argue that the phenomenon is similar to gain saturation in lasers.

2. Experimental system

Our experiment starts by pumping a fluorescent dye in a plano-concave, 250 mm radius of curvature, high-
finesse microcavity [22, 25] in quasi-continuous conditions. We use the 8th longitudinal mode of the cavity with
a cutoff wavelength (corresponding to the lowest-energy cavity mode) of 590 nm. The pump spot is elliptical
with an aspect ratio near unity and a minor axis of typically 50-60 pm diameter. These parameters are known to
produce near thermal-equilibrium conditions [23]. The pump pulses last 500 ns, which is much longer than any
thermalisation (about 300 ps) or cavity loss (about 1 ns) time scale in the system. The pulse repetition rate is
varied so that the product of pump power and repetition rate is kept constant to maintain acceptable signal-to-
noise over a very large range of pump powers, while avoiding a large dye triplet population. Images are typically
integrated over 50-2000 ms (compared to 0.5-10 kHz pulse repetition rates).

The cavity photoluminescence is imaged to infinity, then split. Half is split again and imaged onto an
auxiliary camera and a spectrometer whose spectral resolution, about 0.2 nm, is insufficient to resolve the bare
cavity modes which are separated by 0.05 nm. The other halfis sent to an imaging Mach—Zehnder
interferometer, as shown in figure 1. Each of the two arms of the interferometer has a delay line: one controlled
by a piezo for the fine motion to scan over a fringe, the other controlled by a motor for coarse motion. The
horizontal axis, x, of the last adjustable mirror in one arm is controlled by a motor, whose motion is converted to
ashift in position of the image at the camera. Both outputs of the interferometer are sent onto a camera through
asingle imaging optic, imaged to two separate locations on the sensor. There is a linear-polarising filter in front
of the camera, which increases the visibility of fringes.

2.1. Data acquisition and analysis

The interferometer camera records a spatially resolved intensity distribution. If one arm of the interferometer is
blocked, this corresponds to the intensity I (r) emitted from the cavity, i.e. the spatial profile of the
photoluminescence, where r = (x, y) is the position on the camera. Since pumping and detection in this
experiment are quasi-continuous, all processes are stationary, but temporal resolution comes in terms of the path
delay of the interferometer. The detected interferometer signal depends on r, ' and 7, where v’ = (x + &, ¥),
where the displacement introduced by one arm of the interferometer is 6, and 7is the temporal delay
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Figure 1. Top: diagram of interferometer. The fine delay for scanning phase is controlled by a piezo actuator. Large-scale time delays 7
are controlled by a motor. The image passing through one arm of the interferometer is shifted by a motorised mirror mount. Bottom:
various levels of abstraction of the data just above threshold pump power, with overlapped images (6; = 0). From left to right: araw
image at 7 = 0, a visibility image (inferred from a set of 41 images at varying fine delay times, for 7 >~ 0), a coherence-time image
(inferred from a set of 29 visibility images for varying 7).

corresponding to the path-length difference between the two arms of the interferometer. The Michelson visibility
of fringes V'is directly related to the coherence gV via the relation V (r, v/, 7) = 2|gV(x, ¥/, 7)|JI (¥)I (') /
[I(x) + 1))

To measure the visibility, we vary the voltage of the piezo controlling one of the delay lines while maintaining
all other parameters fixed, so that the fine-scale delay time which we call 77 covers about 3 periods of oscillation
of the light (6 fs) at typically 41 discrete positions. At each 7 we take an image. Coarse-scale delays, 7, up to
300 ps are achieved with the motor on the other delay line. The total delayis 7¢ + 7, butwe treat 77 and 7as
independent, since they vary over very different magnitudes, | 7| < |7|. Since the microscopic description of
dye-microcavity photon condensates requires no processes faster than about 100 fs [20, 27,42, 45, 46], the
coherence is expected to vary only slowly compared to the oscillations of the light.

A full set of data for measuring the spatio-temporal coherence consists of images in (x, y) for a variety of 7¢, 7
and ,. For data sets where the pump power is varied, the exposure and gain of the camera and spectrometer are
adjusted automatically to maximise dynamic range. Both output ports of the interferometer are directed to the
same sensor. To allow us to align the two images in post-processing, for each set of data there is one image taken
with one arm of the interferometer blocked.

All colour values from our camera are converted to monochrome by summing red and green channels. For
590 nm the sensor of our camera is equally sensitive in both red and green channels. Often 4-by-4 pixel blocks
are combined to reduce computational effort in analysis. In the analysis of data sets where the control
parameters of the condensate (e.g. pump power P,,) vary, anarray I (x, y, éx, 7, 7f, B,) of values for each control
parameter is constructed. The full six-dimensional data consists of as many as 25 000 images.

Extraction of the visibility over the set of fine delays is the most important processing we do on the data. Our
estimator for the visibility is based on the Fourier transform of the data as a function of fine delay. It is designed
to minimise the effects of sampling, amplitude and phase noise. Because we use so few fringe cycles, we sub-
sample frequencies more precisely than the Nyquist criterion, improving the accuracy of the estimator.

3



10P Publishing

NewJ. Phys. 18 (2016) 103012 ] Marelic et al

40 40
30 30
—~ 20 —~ 20
g 10 | € 1
< 0 <~ 0 m -
£ -10 £ -10
< = |
n -20 n -20
-30 -30
4050 -10 0 10 20 ~40%0 -10 0 10 20
Delay 7 (ps) Delay 7 (ps)
0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6 0.8 1.0
Visibility Visibility
Figure 2. Visibility for a specific pixel, far below (left) and just above (right) threshold for condensation as delay and shift are varied,
V (7, 8x)xq,y,- The coherence times (lengths) are 0.2 ps (4.5 um) for the thermal cloud and 10 ps (14 pm) for the condensate. To
highlight just how low the visibility is below threshold, we have used different colour scales in the two panels.

Amplitude noise is intrinsic to the photon condensate [47], and we negate its effects by analysing the arctangent
of the ratio of quadratures. Phase noise is largely due to cavity length fluctuations. We have tested the estimator
against a noise model of our system and found that the estimator is unbiased except for very small (<0.05) or
verylarge (>0.8) visibilities. Unlike the Michelson visibility criterion, our estimator is robust against amplitude
noise and converts phase noise to a reduction in visibility.

For any pixel location (x, y) we can extract a characteristic coherence time T (or length L), with a fit to the
visibility, usually to a Gaussian, in 7 (or , respectively). In figure 1 (bottom, from left to right) we see an image of
the photon condensate I (x, y), an image of the visibility V (x, y)s —¢,-~0 of the same condensate and an image of
its coherence time, T (x, y)s.—o. V (x, y) shows evidence of partial coherence of the thermal component
surrounding the condensate despite the slightly imperfect image alignment. Visibility Vand coherence gV are
identically the same quantities for 6, = 0 and, experimentally 6, is much smaller than the length scale on which
intensity varies, i.e. the images are nearly overlapped. Therefore there is no discernible difference between
visibility and coherence, and only V'is shown in figure 1.

3. Thermal-equilibrium spatiotemporal coherence

We have measured the spatiotemporal coherence of thermalised photons far below and just above threshold, as
depicted in figure 2. We choose a single pixel x, y, and measure the visibility V (7, 6;)x,,, as a function of long-
range delay and image shift. The differences between Vand gV were not noticeable, so we have presented V.
Coherence time and length are inferred from a 2D Gaussian fit to the data. Far below threshold, the length and
time scales of coherence, 4.5 pmand 0.2 ps, are compatible with thermal scales taking into account finite spatial
resolution (see appendix B).

The coherence is strikingly longer range in both space and time above threshold, indicative of BEC. Above
threshold the measured length of the coherence, 14 pm, is comparable to the size of the condensate itself,
implying that the whole condensate shares one phase, as expected. The measured coherence time of 10 psis
limited by condensate emission frequency fluctuations on timescales equal to the time between images, 200 ms.
The condensate emission frequency is determined by the cavity cutoff wavelength, whose variations are
dominated by the variation of the cavity length at the limits of our locking scheme, which has a bandwidth of
20 Hzand resolution equivalent to about 0.05 nm in cavity cutoff wavelength. These cavity length fluctuations
relate directly to the mechanical stability of the cavity. We optimise the mechanical stability through
reinforcement screws, whose precise adjustment affects the maximum coherence time we observe from one
experimental data set to another. We interpret all coherence times above 2 ps as ‘large’ since, because of this
mechanical limitation, we cannot repeatably detect longer coherence times.

3.1. Thermal equilibrium theory

The theory of correlations of a non-interacting trapped Bose gas at thermal equilibrium in the absence of
dissipation is well established [48, 49], and can be extended from spatial to temporal correlations [50]. Our
plano-spherical microcavity provides a symmetric, 2D, harmonic trapping potential for photons. The theory is
based on a series expansion in the fugacity, where fugacity is defined as { = exp(u/kg©), with 1 the chemical
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Figure 3. Coherence length as a function of pump power. Top: at pixel (xo, J;), for two powers P, visibility as a function of shift
between images V (&, P)x,y, =0 and intensity distribution I (x, P), are shown, together with Gaussian fits. Bottom: width of the
intensity distribution and coherence length obtained from the fits. Solid lines are thermal-equilibrium theory with no adjustable
parameters. Dashed lines are the same theory where it is only approximately valid.

potential and © the temperature, so that 3 = 1/kzO. The non-normalised first-order correlation function reads

G(l)(r> 1‘/, t— t/) = i(k H Ks(k) (5> 5/> t> [t/ - 1kﬁﬂ])> (1)
k=1

S=X,y

where the kth term in the expansion corresponds to occupancy of up to k particles in any given mode. The
function K®(s, s/, t, t') is an unwieldy analytic function representing the propagator along the s direction,
which depends on the trapping frequency (equivalent to the mode spacing), and is given in [50] equation (20).
The normalised correlation function is given by its usual expression gV (r, v/, t — t/) = GV(r, v/, t — t)/

\/ GO(r, r, 0)GV(, ¥/, 0) for stationary processes. Arbitrarily large phase-space density can be obtained for
negative chemical potential, i.e. { < 1, so the infinite series will always converge. The finite series also converges
for large numbers of terms, albeit with a small positive chemical potential (( — 1 < 1), for large particle
numbers.

To test the convergence of the theory, we have calculated coherence length and time, and the size of the cloud
of photons, for varying particle numbers and numbers of terms in the expansion. Far below threshold, the series
converges as expected. Above threshold, the spatial scales of intensity and coherence converge when the series
has a number of terms of the same order as the condensate population. The temporal coherence diverges above
threshold, which is consistent with the non-dissipative assumptions of the theory. The calculated results
qualitatively agree with exact calculations [49]. The correlation function in space matches well to a Gaussian, but
the density does not due to the presence of the condensate.

While there are no adjustable parameters in the theory, the theoretical photon number does not directly
correspond to the experimental pump power. Below threshold, photon number and pump power are
experimentally seen and theoretically expected [28] to be linearly proportional. Likewise, far above threshold,
but not so just above threshold. We can therefore directly compare our calculations to experiment only below
threshold.

3.2. Variation of coherence with pump power

In figure 2 we demonstrated the coherence for two regimes, far below and just above threshold. We now present
a quantitative exploration of coherence for all powers from far below to far above threshold. Visibility V (6,) and
a cut through of the photoluminescence intensity I(x) are shown in figure 3 (top), for two pump powers, one far
below and one just above threshold. Since background light has not been subtracted, the Gaussian fits have a
constant offset for all x. The fact that for large x the intensity sometimes dips below the fitted offset indicates that
the background light is not uniform. In figure 3 (bottom), we compare experiments to the thermal equilibrium
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Figure 4. Coherence time as a function of pump power from Gaussian fits to V (7, P)y,;,,6,=0- Solid line (dashed line) is the prediction
assuming thermal equilibrium below threshold (and its approximate continuation above threshold).

theory without dissipation (using 999 terms in the expansion). There are no free parameters below threshold
(solid lines), but the scaling of the horizontal axis is imprecise above threshold (shown as dashed lines).

Within the theory’s range of validity (P < Py,) there is quantitative agreement with the experiment. Far
below threshold, the coherence length is much shorter than the characteristic size of photoluminescence,
limited only by imaging resolution (see appendix B). With increasing power close to threshold, coherence length
grows, as the width of the emitted light decreases. At even higher powers the intensity distribution broadens but
the coherence length decreases to around 6 pm (approximately the harmonic oscillator length scale). In this
regime, the condensate is thus only partially coherent, in contradiction to the dissipative, thermal-equilibrium
prediction of [44]. Spatial coherence V (8,) is well described by a Gaussian. The power-law decay of correlations
that is predicted for interacting 2D equilibrium condensates is observable only for displacements 0, that are large
compared to the interaction length scale (the healing length) [16]. Given the rather weak interactions in photon
BECs [21], the healing length is likely to be larger than 10 pim, which is larger than the condensate. If coherence
in photon BECs does follow a power-law decay, then a substantially larger condensate than currently existing
will be required to observe it.

In figure 4, we show the coherence time. Far below threshold, the shortest measured coherence time is
limited by spatial resolution and marginal undersampling of the data. Above threshold, an upper bound for
coherence time is set by the vibrations of the cavity. At higher pump powers, coherence time decreases,
suggesting partial coherence between modes, in agreement with the spatial coherence data. Even though
thermal-equilibrium theory (black lines, solid below threshold, dashed above) does not describe the coherence
time as accurately as spatial coherence and intensity, it captures qualitatively the increase of temporal coherence
as the threshold pump power is reached.

4. Multimode non-equilibrium condensates

The change from full coherence just above threshold to partial coherence at high pump powers can be explained
by the appearance of an unexpected multimode condensate phase. Figure 5 depicts the spectrum, image I (r)
and visibility image V (r) for various pump powers above threshold. With increasing pump power the
condensate peak in the spectrum breaks up into multiple peaks, i.e. the condensate splits into multiple non-
degenerate modes. Figure 5 shows three peaks, but we have seen up to five distinct peaks in some experimental
runs where we used reduced pump spot sizes to lower the pump threshold.

Along with this non-degenerate multimode behaviour, the condensate broadens in space and the measured
visibility develops a fragmented structure. At the highest powers, the most occupied mode need not be the
ground state, which is related to the imperfect alignment of a smaller pump spot for this data than for most of
our other data. The spatial structures are stable over time, but change when the cavity mirrors are moved or
when the dye is replaced. Because of optical imperfections (especially dye clumps but sometimes also scratches
on the mirrors) the shapes of the modes of the cavity are not necessarily the Hermite—Gauss modes expected for
an ideal resonator. The mode occupancies, however, are not affected by these imperfections, and it is always the
lowest energy mode that shows the lowest threshold for macroscopic occupancy, i.e. BEC.

With a poorer spatial and spectral resolution, the spatial broadening could be taken as an indication of
repulsive interactions. Ref [25] uses different parameters to this work (e.g. pump spot size), so itis not clear
whether or not those experiments should have shown multimode condensation. Repulsive interactions strong
enough to broaden the condensate by more than its initial size would also be accompanied by changes in the
many-body states of the system, which would show up as a blue shift much larger than the bare-cavity mode
spacing. However, since we detect no blue-shift in the spectrum apart from variations of the cavity length,
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reduce threshold pump power.

figure 5 gives clear evidence of the condensation of non-interacting photons in several modes, rather than

quantum depletion reducing the condensate fraction. Since the multimode condensate is accompanied by a

reduction in coherence, we conclude that the modes are incoherent, i.e. this state is a ‘fragmented’ condensate.

4.1.Non-equilibrium theory
Condensate fragmentation cannot be explained by thermal-equilibrium processes, which produce a single
condensate, always in the lowest-energy mode. In [20] it is suggested that the multimode behaviour might occur
due to imperfect clamping of the excited-state fraction of dye molecules. To explain the multimode behaviour
we are thus obliged to treat the spatial dependence of dye excitation and the spatial dependence of the interaction
between the dye molecules and different cavity modes. Since the thermal-equilibrium theory clearly breaks
down in the multimode regime, we have implemented a non-equilibrium model [23, 27, 28]:

dn,,

- = pdDF(_ém)fm(nm +1) — [k + pdDF(ém)(l - fm)]nm’

dt

(@)
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where 1, is the occupancy of the mth mode which is detuned by ¢, from the molecular resonance (the zero-
phononline). I'(§) and I'(— 6) are the absorption and emission spectra and g, the density of the dye molecules,
in d dimensions. f (r) and f,, represent the excited-state occupancy of the molecules in spatial and mode bases.
Thelocal emission and pumping rates are I3 and I}. Solving for the stationary solutions readily yields mode
occupations which demonstrate multiple condensed modes, as in figure 5.

A crucial quantity in those equations is the absolute maximum value of light—matter coupling I'™#* . The
light-molecule coupling strength can be approximately derived from measured quantities, noting that the

typical timescale for population variations is

Typ = NIop(6) = piplin(6) = pyplan(6), (€]

where Nis the number of molecules, I};p and g, are the light-matter coupling and molecular density in d
dimensions. In three-dimensions, the mean time between scattering events for photons moving at speed ¢* from
molecules at volume density p; is Ty, = 1 /Lpsp c*0 (8)]. Here o (6) is the scattering cross-section with its
maximum op,,, found at 534 nm, the peak wavelength for absorption. Equating the timescales we find

P — Omax¢* = 5.1 x 1072 m’ s, The variation of light-matter coupling with wavelength is known by
interpolating experimental measurements and enforcing the Kennard—Stepanov relation [23]. In lower
dimensions, the density is scaled typically by the cavity physical length and/or the harmonic oscillator length of
the transverse cavity modes ljjo, which is 6 pm for our cavity. For computational efficiency, the model is
restricted to one dimension, and only 15 modes are used, which is sufficient to ensure that the results converge,
and is good enough for a qualitative comparison with experimental data. We assume a cavity decay rate of
10° s . Other parameters for the model are measured for our experiment.

In figure 6 we show the results of the model. With increasing pump power, condensation occurs first in the
lowest mode, then subsequently in higher modes (left panel). When one mode reaches threshold, it locally
clamps the excited state population of dye molecules, but sufficient gain remains at the edges that more modes
can reach threshold. The minimum of power required to reach the multimode regime occurs when the pump
spot is large enough to overlap with several spatial modes of the resonator (right panel).

The linewidth theory of [28] takes into account only the single mode into which condensation occurs. Such a
truncation is only appropriate when mode filtering optics are used. Instead, here we make the approximation
that dissipative processes are negligible, and the inhomogeneous broadening is responsible for the observed
finite coherence. We consider the classical electric field of the light in the cavity as a coherent sum over electric
fields from the many modes whose associated eigenfunction and angular frequency are known. The
interferometer detectors can be used to measure the first-order correlation function remembering that only
stationary processes are observed. The coherence lengths and times inferred from Gaussian fits show good
qualitative agreement is in all regimes, below, near and far-above threshold.
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5. Conclusions and outlook

In conclusion, we have observed first-order coherence of thermalised photons in a dye-filled microcavity, at
pump powers below and above condensation threshold. Spatiotemporal correlations are longer-range for the
condensed than non-condensed state, and show increases in range even below threshold, in broad agreement
with thermal-equilibrium theory. Above threshold we have seen multiple condensed modes, consistent with a
microscopic model that explains this fragmentation in terms of imperfect gain clamping, which is a signal of
non-equilibrium, driven, dissipative processes [40].

Since there is no discernable coherence between modes, the coherence length does not always increase with
pump power. This identifies a clear obstacle in the creation of large condensates, to be overcome to access the
long-range coherence decay that is typical of driven-dissipative (KPZ) physics. In realising condensates that are
large both in density and spatial extent, specific care needs to be taken to avoid the observed fragmentation into
mutually incoherent modes. A viable route towards condensates with a size of several 10 s of microns is using
cavity mirrors of large radii. To retain large particle numbers while avoiding the multimode regime, the optimal
pump spot size would be matched to the condensate size.

The multimode condensation phenomenon is a result of inhomogeneous driving and dissipation. Net gain
(the difference between drive and dissipation) saturates only locally, leaving gain available for modes which have
not already condensed. Since those conditions are natural for trapped polaritons [9, 51] or might be engineered
even for atoms [52], the observed fragmentation is by no means specific to the system at hand, but rather is
expected to be observable in a variety of condensates. Since photons interact only indirectly and incoherently,
but many other condensed particles have direct coherent interactions, coherence properties are a feature in
which fragmented photon condensates might deviate from other condensates. In particular multimode
condensation might not always result in mutually incoherent fragments as observed here, and coherence
between modes is conceivable.
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Appendix A. Uncertainties

There are two major sources of uncertainty in our experiments: fluctuations of threshold, and intrinsic visibility
variability. The fluctuations are slightly faster than the typical time to acquire a data set, 1-5 h.

In figure A1 , we vary the pump power (in a randomised order) and measure the output light intensity
averaged over a small region at the centre of the image. The pump spot was smaller than used for most of our
data, to reduce threshold here. Pulse repetition rate was held constant at 500 Hz for this specific data set. Camera
exposure and gain were set automatically for each power to avoid saturation, always atleast 2 ms. A bi-linear
least-squares fit gives that the pump source power at threshold is 260 mW (compared to around 1200 mW for
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Figure Al. Threshold behaviour. A bilinear fit shows threshold around 260 mW, but many points in the range 180-250 mW show
condensation. This variability in threshold limits how reliably the experiment can operate close to threshold.
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Figure A2. Limiting uncertainty in the visibility, significantly above threshold. Left: visibility variation with delay for overlapped
images as a specific pixel. Grey dots are individual data points. Points with error bars are averages over 13 points centred on the
marker, with error bar being the standard deviation of that sample. Right: standard deviation of visibility as a function of mean
visibility. Maximum visibility inferred is 0.7. Our estimator is low-biased for the largest visibilities, and high-biased for the smallest
visibility values.

most of our data). However, many points below threshold show a condensate. In the range 180-250 mW, there
may be a condensate or not. This variability may be related to polymerisation of the dye, which we know
occasionally forms clumps requiring cleaning of the cavity, or to pump power drifts. Alternatively, the output
power from the cavity may vary during each 500 ns pump pulse due to the evolving triplet state population.
Where power is varied, we reject data which are below threshold when they are expected to be above it, and

vice versa. We accept only data that follow an approximately monotonic increase in output intensity as a
function of pump power.

Standard-deviation errors are of limited use near threshold as there is no reason to believe that visibility
measurements for a given set of parameters are drawn from a normal distribution. They are as likely to be drawn
from a bimodal distribution, corresponding to below- and above-threshold behaviour. We have tried to
ascertain the limiting uncertainties in visibility away from threshold, by measuring a large sample of visibilities as
afunction of delay above threshold: see figure A2.

By oversampling, we can build sub-samples and evaluate their standard deviations. The highest sub-sample-
averaged visibility measured is about 0.7, although our estimator is low-biased for such large visibilities. The
largest shot-to-shot uncertainty in visibility is 0.15. For lower average visibility, the uncertainty in the visibility is
lower. For example, we can measure non-zero visibility of 0.04 with a signal-to-noise of unity in a single
measurement. Our noise model produces a similar pattern only with unrealistically large phase noise. We
conclude that there is intrinsic noise in the visibility which does not come from our measurement apparatus or
visibility estimator.

Appendix B. Finite spatial resolution

The effect of finite imaging resolution and numerical aperture on measured interference patterns can be taken
into account, by convolving the electric field at a point, E (r) with a point-spread function F (R):

Er 1) = deRE(r R, )F(R). (B.1)

The overline indicates that finite resolution has been applied. The effect of finite numerical aperture is equivalent
to applying the Fourier transform, applying a cutoff (multiplying by a top-hat function) and then inverse
transforming, i.e. convolution with a cardinal sine, sin(x)/x. This function can then simply be absorbed in the
definition of the point-spread function, F.

The lightat one output port of the interferometer is Ep (r, ¥/, 7) = % [E (r, t) + E (v, t')], where as usual

T = t — t’. Because we are dealing with nearly coherent light, the effects of finite resolution are applied before
the interference. The other output, Q, takes a minus instead of a plus. Then the intensity is:
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Figure B1. Calculated effect of finite imaging resolution on g’ for the non-condensed photons, equivalentto P ~ 5 x 107°P,,
usinga 3 pm imaging resolution. The series expansion used 5 terms, which was sufficient for convergence so far below threshold. Top:
effect on measured spatial coherence. Bottom: effect on measured temporal coherence.

2p(r, v/, ) =([ET(xr, t) + ET(/, HI[E(r, t) + E(X, t)])
—(ET(t, DE(r, 1)) + (BT, HE (@, t)) + 2Re[(ET(r, HE (', t))]. (B.2)

The first two terms are the intensities as seen with finite resolution. The last term written more explicitly, using
GO(r, v/, t — t) = (ET(x, t))E(X/, '), is:

(Ei@r, NE(, 1)) = GO (x, ¥, 7) = ( f #RE (r — R, £)F¥R) f PRE{ — R, 1')F(R)
= [[ #RER FFRFR)GO(r — R, 1/ — R/, t — 1), (B.3)
Using equation (1):

- 00
GO, => ¢ T] / dS dS' FXS)E(S) x K® (s — S, s — &, t, [t — ik/B]), (B.4)
k=1 s=x,y

where we have also assumed that point-spread function is separable: F (R) = F, (X)FE, (Y). This expression can
be evaluated numerically, either by direct integration or via Fourier transforms The finite-resolution correlation
functionis normalised: ¢V (r, v/, 7) = GY(r, 1/, 7) / \/ GO (r, r, 0) GV (¢, r/, 0). The results are shown
infigure B1 for a thermal cloud with pump power far below threshold (P ~ 5 x 1073By,). The point correlation
functions show shorter range coherence than those integrated over a finite resolution (a rotationally symmetric,
3 pm Gaussian point-spread function, which is roughly the resolution of our imaging setup). Finite-resolution
results are consistent with the experimental results seen at low pump powers in figures 2—4.
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