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Abstract. We consider the use of game theory in an arms control inspection planning scenario. Specifically
we develop a case study that games the number of inspections available against an ideal treaty length.
Normal game theoretic techniques struggle to justify pay-off values to use for certain events, limiting the
usefulness of such techniques. In order to improve the value of using game theory for decision making, we
introduce a methodology for under-specifying the game theoretic models through a mixture of regression
techniques and Satisfiability Modulo Theory (SMT) constraint solving programs. Our approach allows a
user to under-specify pay-offs in games, and to check, in a manner akin to robust optimisation, for how
such under-specifications affect the ‘solution’ of a game. We analyse the Nash equilibria and the mixed
strategy sets that would lead to such equilibria - and explore how to maximise expected pay-offs and use
of individual pure strategies for all possible values of an under-specification. Through this approach, we
gain an insight into how - irrespective of uncertainty - we can still compute with game theoretic models,
and present the types and kinds of analysis we can run that benefit from this uncertainty.

1 Introduction

Arms control agreements - and the verification processes that are often dictated by them - are im-
portant tools that help nations manage their security relationships with each other. It is possible for
agreements to operate without a verification mechanism. Indeed the design and implementation of
these processes can be complicated, intrusive and expensive - but the absence of such a deterrent to
cheaters clearly limits the potential effectiveness of agreements. It is normally accepted that some level
of inspection regime is a necessary element of any such regime.

Research into the effectiveness of different technologies and procedures to support nuclear arms
control inspections is being pursued increasingly widely - the UK-Norway Initiative [19], ongoing
UK/US collaboration [14], and the International Partnership for Nuclear Disarmament Verification
(IPNDV) [15] are a few examples of contemporary efforts. Reciprocity is often a key principle of these
processes; in this circumstance a nation must balance the potential added value from a particular
technique against any potential detriment to its national security interests from a reciprocal inspection
utilising the same technique.

All of these tensions - cost, value added, reciprocity - motivate the need for tools that model,
analyse and optimise verification processes in this domain. Given that the stakes for arms control
decisions are particularly high and the circumstances in which they are made can be very complex, we
are additionally motivated to examine ways in which those decisions can be supported by robust and
algorithmic analytical tools. If the output of these tools can be in some sense provably correct – which
might be difficult to check analytically for all but the most trivial cases – then that would be an
additional valuable benefit.

Game-theoretic frameworks were heavily developed for general arms control, and have been em-
ployed in the past to analyse aspects of the nuclear problem space. For example, see the normal form
games of [20, 21]. Their main limitation is that conventionally, a modeller must attach pay-off values
to events, which in practice can be difficult to justify. Bayesian Belief Networks (BBNs) have been
used to consider particular inspection scenarios [5,6], and to see how the uncertainty inherent in them
can be modelled as their use in probabilistic reasoning can incorporate subjective as well as objective
evidence or beliefs - which work in [5, 6] sought to justify. Meanwhile, the work in [7] uses dynamical



systems to model the uncertain, temporal interactions and human decision making of parties subject
to an arms control process.

In this case study, we have two parties that are negotiating the length of a treaty and the number
of inspections that will be held during it. In our model this reduces to a consideration of the number
of inspections per unit time. We focus on how to best choose an apt maximum number of inspections
allowed for a treaty of an undetermined length. Too few inspections leads to increased risks of treaty
collapse through insufficient deterrent to cheating or insufficient confidence that the other party is
complying with its obligations; too many inspections and the cost of verification becomes too much to
bear. We thus model the “number of inspections:treaty length” ratio in a game-theoretic manner. The
pay-offs for the games will be based on those used in an inspection game introduced by Dresher [10],
discussed further in Section 4, that addresses the issue of how many inspections to run in a fixed length
treaty. We will allow these pay-offs to be underspecified and show how we can thus reason about a
whole set of games with identical structure so that any insights gained (e.g. Nash equilibria) will be
robust under changes of pay-off values within specified uncertainties. We hope that this will illustrate
how our approach can improve the methodological value of game theory for this application domain.

2 An overview of game theory

Game theory - the ‘study of mathematical models of conflict and cooperation between intelligent,
rational decision makers’ [13] - has an established history in defence analysis, perhaps most famously
in the context of nuclear deterrence (see for example [18]). In an arms control context, an inspecting
party seeks data to support an assessment of another party’s compliance with an agreed set of rules.
Whilst both parties have an interest in being seen to comply with this set of rules, other national
interests may differ. This in turn leads to different objectives for the parties involved, the pursuit of
which can be analysed by studying mathematical representations of inspections in a non-cooperative
two-player game.

Games are generally characterised by whether they have zero-sum or non-zero-sum pay-offs to
players, and whether they are non-cooperative or cooperative (in the latter case, coalitions of players
against others may form). Games are often given in ‘normal form’: as an array of matrices (representing
an N-dimensional matrix) storing the pay-offs to players for the ’pure’ strategies of each of the N-
players (as in Figure 1). ’Extensive form’ games represent the sequence of players’ moves and decisions
in a tree-like graph (as in Figure 2).

In reality, the players will more often than not have to choose ‘mixed strategies’: probabilistic
combinations of their pure strategies - to achieve optimum results. This probability distribution on
the set of pure strategies for a player therefore becomes for us a focus of interest as we seek the (possibly
multiple) equilibrium solutions to games. Other variables of interest might include the expected pay-
offs for each player, and the stability or otherwise of the equilibria to changes in the parameters of
the game. These may either be derived for the equilibrium or, in the case of the latter, may need to
be calculated separately in the model.

We recall key concepts of game theory (rather informally) below:

Normal Form Games written in a pay-off matrix, with the strategies of each player denoted along
the rows, columns (or in cases of more than 2 players, other N dimensions of the matrix). See
Figure 1.

Extensive Form A game specification that shows the decisions available to players based on other
players’ moves, or moves at random, and their associated pay-offs. See Figure 2.

Pure strategy A complete description of the move made in a game (played once, or played many
times) and is a distinct strategy.

Mixed strategy A probabilistic mixture between multiple pure strategies, in the ratio of which these
are executed at random when the game is played repeatedly.

Value of a game The expected average pay-off to the player should infinitely many copies of the
game be played. Note that there is a subtle difference between studying multiple independent
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runs of a game with no player learning between games, and studying repeated games with player
learning. The value of a game is derived from an analysis of the former case.

Solution A mixed strategy for each player that forms a ‘set’ of strategies for the respective player.
Many different choices (or ‘best’ choices), of which the Nash equilibrium is one.

Nash equilibrium The ‘solution’ of a game in which no player can achieve a higher value by changing
their strategy while other player strategies remain unchanged, and therefore no player has an
incentive to change strategy.

When we allow games to contain symbolic rather than numeric information it is not immediately
clear how the above notions all generalise, or can be computed. The main issue arises around how to
handle under-specifications with respect to what we refer to here as ‘boundary points’. The boundary
points are the numerical or symbolic values that affect players’ decision making, and therefore com-
putation of the Nash equilibrium and value of a game. All such computations are based on taking the
maximum or minimum pay-offs in a row or column. This means the relative value of the pay-offs is
important and affects the result. Taking the case of the game represented in Figure 1, the points at
which, for instance, a maximisation function maxpai1j1 , ai1j2 , ai1j3 , xq changes values (as x varies) are
our important boundary points.

We can explain the issue of boundary points as analogous to the situation of having a Control
Flow Graph that switches cases as x lies in between other pay-off values. Any tool that offered a
solution would have to respect these boundaries and present results for symbolic under-specifications
that spanned ‘boundaries’. There is value in under-specifying games to symbolic computations though.
Solving such games - often known as ‘parametrised games’ - can be done analytically, by considering
the cases in which each of the pay-offs interact on a boundary point. This approach is not efficient,
however, and becomes cumbersome for games of increasing sizes (for instance, for many strategies,
or many players). We seek a tool that can automate the “logical switches” associated with the above
boundary cases and can answer queries about such games of interest to inspection regimes.

A “
»

—

—

–

a11 a12 a13

a21 x a23

a31 a32 a33

fi

ffi

ffi

fl

Fig. 1. For pay-off matrix A, the value of pay-off x relative to pay-offs a12, a32, a21 and a23 (those in the same rows or
columns) will determine the equilibria of the game (i.e. for the columns, if a12 ď x ď a32 or if a12, a32 ď x etc) . In our
approach, we would like to, and we will determine the equilibria for all such cases.

The capabilities that we developed for our approach are captured in a Python package that can
handle N -players with any finite number of strategies for each player, and multiple under-specifications
of the pay-off values, with different symbolic values. Our tool has the ability to compute all Nash
equilibria of a game (or some, if only some are required), the ability to compute (mixed) strategies
that realise such equilibria, the expected pay-offs to players, and the ability to determine how an
under-specification impacts the sensitivity of a game’s solutions.

3 Implementation

There are currently two widely used game theory software tools, The Gambit Project (known as
Gambit) [11] and Sage [17].

Gambit is designed for N player non-cooperative games, and can handle neither cooperative games,
nor symbolic games. It can calculate Nash equilibria, and the strategies required to build those equi-
libria. Sage implements Gambit for 2-player games only (and uses this to power its solution engine
for non-cooperative normal form games). It additionally includes characteristic form games and im-
plements code to find the solution of these when cooperative games are presented in characteristic
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function form. Sage provides no means to go from cooperative normal form to characteristic function
form. Neither tool supports symbolic (parametric) games.

We automate this ‘symbolic solving’ part of this work by computing Nash equilibrium results
numerically (using Gambit) at intervals l` tˆ u´l

10 across our symbolic area of interest l ď x ď u, (for
t in t0, 1, 2, ....10u ) and then using the computed solutions to come up with a (regression) formula that
faithfully represents the numerical results from these intervals in an approximated symbolic manner.
We decide to accept a regression when the r2 value hits a modeller’s acceptable threshold (a regression
metric indicating a good fit), and bisect and split the problem over any range that doesn’t meet this
threshold (which normally coincides with crossing a boundary point). This will partition intervals into
units of possibly varying length that all provide a good enough fit. Once a regression formula is found
for the whole under-specified interval, it is asserted into the SMT Solver as a mathematical statement,
as described below.

Satisfiability modulo theories (SMT) [3,12] is an approach to automated deduction that checks the
satisfiability of logical statements. We choose Z3 [3] as our SMT solver, though it would be relatively
easy to replace it with another solver such as CVC3 [4]. Z3 reasons with mathematical statements
that we assert as constraints and seeks to find satisfiability witnesses for cases where all constraints
are met. For instance, we could define a variable x and say 5x2 ` 6x ` 1 “ 0, and Z3 might return
x “ ´1, which is a solution to the equation. We could additionally say x ‰ ´1, and Z3 would return
x “ ´0.2; but stating that that isn’t true either would make Z3 determine that the current system of
constraints is not satisfiable.

We utilise Gambit ’s Python API to interact with the N -player Nash equilibrium solver engine.
The rest of our code is in pure Python, utilising the Z3 SMT Solver API to handle symbolic decision
making, and we have made these available as two Python classes, which we have called: SymbolicGames
and ExtensiveGames. ExtensiveGames is an implementation of the Dresher models. SymbolicGames
(which will deal with non-cooperative games in general - for any N ą 1 player, normal form games)
is concerned with the regression procedure itself and answers the queries posed in this paper.

We move on to showcase how our methodologies, as described, can then be employed by and benefit
those who advise decision makers in an arms control scenario case study.

4 Scenario of interest

The extensive form ‘Dresher game’, Ipn,mq, [1, 2], and seen in Figure 2, is a model that sought to
assess the expected utility of having m inspections over a n time step period.

Ipn,mq Inspect?

Legal?

-1

No

Ipn´ 1,mqYes
No

Legal?

1

No

Ipn´ 1,m´ 1qYes

Yes

Fig. 2. Extensive form game of how to best schedule inspections. This is based on the model of Dresher and assigns
payoffs based on whether an inspection was used wisely to detect cheating, or not. The modeller decides whether to
inspect or not based on the maximal utility of the system, and the the legality of the inspected nation’s behaviour is left
to chance (the probability of which can be the same throughout the model, set explicitly for different values of n and m,
or can be assigned different probabilities randomly [1, 2]).

In these models, if we optimise our inspection decision for greatest reward (circular node), and
take expectations over the legality of how the other nation state acts (rectangular node), then the
output from this model is a maximum utility over treaty length n, for a certain initial number of
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allowed inspection, m. If we vary n and m independently we generate multiple strategies that could
potentially be incorporated into a treaty, and through which to choose from - or, potentially, for which
scenarios to plan for.

The utility from this extensive game could then be processed as a pay-off and played as a normal
form game to identify what are the best strategy options for different objectives. Running this model
for varying probabilities of legality at each inspection stage, we generate a normal form example game,
A (Figure 3), where the pay-offs correspond to the expected utility for an inspecting nation for varying
values of n (rows) and m (columns). We under-specify the perceived pay-off when the inspector runs
out of inspections and m ą n with ´x for 0.5 ď x ď 0.9 to model that the inspector would likely
want to conduct more inspections and so feel an overall detriment, but that the magnitude of this
detriment is not readily specified, but resides in the interval r0.5, 0.9s.

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

31
50

41
50

´x ´x ´x ´x ´x ´x

229
500

329
500

419
500

´x ´x ´x ´x ´x

1561
5000

2561
5000

3461
5000

4271
5000

´x ´x ´x ´x

9049
50000

19049
50000

28049
50000

36149
50000

43439
50000

´x ´x ´x

31441
500000

131441
500000

221441
500000

302441
500000

375341
500000

440951
500000

´x ´x

´217031
5000000

782969
5000000

1682969
5000000

2492969
5000000

3221969
5000000

3878069
5000000

4468559
5000000

´x

´6953279
50000000

3046721
50000000

12046721
50000000

20146721
50000000

27436721
50000000

33997721
50000000

39902621
50000000

45217031
50000000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Fig. 3. Pay-off matrix for a player inspecting a nation state for varying treaty length strategies (rows - conventionally
the second player’s strategies - representing treaty lengths 2 to 8) and varying inspections (columns - the first player’s
strategies - representing inspection numbers 1 to 8). We are unsure over what probabilities to assign to events where
m ą n without knowing if the inspecting nation would wish to hold more inspections. For simplicity, we model this as
the same pay-off, x, throughout, though this could be extended in future work.

Negating this pay-off matrix and replacing under-specification x with z, for 0.5 ď z ď 0.9, we create
a pay-off matrix for the host nation (to add a second under-specification and form a non-zero-sum
game). We call this pay-off matrix B. The game is ‘zero-sum’ for valid inspection routines, m ă n,
but for under-specifications ´x ă 0 in A (and under-specifications ´z ă 0 respectively in B), reflects
that no nation wins (or potentially their trust is reduced) if they are unable to carry out any more
inspections: it gives no opportunity to check or prove compliance, and so is assumed to be definitely
a negative pay-off to both. The game is therefore non-zero-sum overall.

We noted above that reciprocity is a key feature of arms control processes. Thus, in our game the
parties swap roles at various points; whilst ’players’ in a normal form game normally would refer to
different parties, here we use the game-theoretic approach as a way to solve a synthesis problem of
how to choose best strategies for the host and inspectors. We refer to player A as the inspecting party
using pay-off matrix A, and player B as the inspected (host) nation using matrix B. A and B are thus
distinct from the nations party to the treaty. Each player has pay-off matrices as described above with
under-specifications x and z respectively, and it is in the best interests of both nations that A and B
are satisfied with the result of the game (and achieve a Nash equilibrium).

For this normal form game, there are questions whose answers would aid in decision support:

1) Given uncertainty x and z in the Dresher model over pay-offs to A and B, maximise the use of 1
inspection only and determine the values of x and z for which this would hold true. What other
strategies involving 1 inspection form a Nash equilibrium?

2) For which x and z would player B wish to engage in the treaty for longest, with highest probability?
How much can x and z vary to remain being within 0.05 of this highest probability?

3) Identify which pure strategies are redundant for all values of x and z (i.e., never participate in an
equilibrium, and thus never have to be considered).

4) Which mixed strategies maximise the utility to player A?
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5) What is the most sensitive ratio of strategies to be affected by changes in x and z? Use a metric
of abspaq ` abspbq ` abspcq where a, b, c are coefficients in the regression of x, z and xˆ z.

A reader will note that we treat the under-specifications x and z in different capacities for the five
questions. Questions 1, 4 and 5 imply that a modeller has some level of control over the values of x
and z, and seeks answers for specific values. Question 2, in a similar manner seeks an exact x and z,
but these are the objects of optimisation in order to achieve a result. Question 3 on the other hand
seeks an answer irrespective of the under-specification (indicating, potentially, that a modeller has no
control over the parameters).

5 Results of our approach for this case study

For our case study and sample queries of Section 4, we employ our approach using the constraints
0.5 ď x ď 0.9 and 0.5 ď z ď 0.9. We have chosen these global constraints after testing and seeing
that such a range is achievable by the model, and that we should expect some meaningful, non-trivial
results (they are not meant to be indicative of any real scenario). There also happen to be up to 10
mixed Nash equilibrium points in total for each concrete px, zq pair, over the ranges of acceptable x
and z. For sake of argument, we fix the ‘treaty length’ time unit (player B’s strategies depend on) as
one year.

Question 1 We ask Z3 to seek the maximum use of 1 inspection only (strategy 1 for player A)
across all equilibrium points, and allow x and z to vary independently within their bounds. Ten such
equilibria exist.

In the analysis of these five questions, FunIjx (for some letter, I and number j) denotes the
regression function in SMT for each strategy that contributes towards a Nash equilibrium. The letter
I represents the player (either A, the inspector or B, inspected nation) and the number j denotes the
strategy of that player. A witness for a satisfiable model is evaluated for the variables of interest at
the x and z values given below. We have edited out variables of non-importance (pure strategies used
none of the time in this equilibrium, for instance) to save space. We find that 10 such equilibria occur
if z “ 0.75 and x “ 0.9, maximising the inspector’s strategy 1 (the use of 1 inspection only - FunA1x)
in each instance to around 48% of the time:

[x = 9/10,

z = 3/4,

FunA7x = 4273636400000007368771/8192000000000000000000,

FunA1x = 3918363599999992690167/8192000000000000000000,

FunB7x = 15833087999999994471/81920000000000000000,

FunB1x = 33043456000000002408801/40960000000000000000000]

Due to space constraints we (arbitrarily) focus on the first equilibrium, for this and all subsequent
questions (if applicable).

In the 10 equilibria, player A only ever forms a mixed strategy comprising of pure strategies for
1 inspection and either 7 (as seen here - FunA7x) or 8 inspections. The remainder of the variation
between the different Nash equilibria that are of maximum use of 1 inspection are due to variety in
the treaty length (i.e. change mixed strategies for player B). B can vary mixed strategies between
either 2,3,4,5 and 6 year treaty lengths or the full 8 year pure strategy to form the equilibrium.

This sort of analysis could be useful to a decision maker if, for instance, A and B have some
control over x and z, and are able to determine their values (perhaps they model ‘costs’ that are
incurred, or requirements or commitments to other arms negotiations they can use to trade off against
intrusive/expensive inspections). Knowing how these change the structure of the equilibrium formed
would give the nations something to negotiate towards in any potential treaty.
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Question 2 We maximise the use of running the treaty for 8 years (player B’s strategy 7), over
uncertainty x and z, and find that this could occur with probability 0.34 (i.e. 34% of the time), if
x “ z “ 0.5. This time, we achieved this in 9 equilibrium points; the first of which is shown and
discussed for sake of illustration:

[FunB1x = 13125000000000003191/20000000000000000000,

FunA1x = 1354200000000005389/4000000000000000000,

FunA7x = 2645799999999994571/4000000000000000000,

FunB7x = 687499999999999521/2000000000000000000,

z = 1/2,

x = 1/2]

If the nations don’t wish for the treaty to run for 8 years (FunB7x - recall from Figure 3 that
their possible strategies start at time unit 2, not 1, hence the 7), their other optimum strategy in this
equilibrium would be to run the treaty for either of 2,3,4,5 or 6 years (dependent on the equilibrium and
number of inspections, which are determined by the different strategies of A). In the first equilibrium,
they would agree on a treaty for 2 years (FunB1x) 66% of the time.

To determine the possible values of x and z such that we are still within 0.05 probability of
maintaining this maximum treaty run time of 0.34 (i.e., checking all x and z such that B can go
down to using the strategy only 29% of the time), we constrain the solver to look for models with
FunB7x “ 0.29, and find that this returns a model with x “ z “ 0.585. Running a satisfiability check
to confirm that FunB7x’s value does not fall to less than 0.29 within the range 0.5 ď x ď 0.585 or
0.5 ď z ď 0.585, we confirm that this range is acceptable for x and z.

Knowing a range of ‘acceptable’ values of x and z could help negotiators with working towards
a treaty between the two nations that is acceptable to both for carrying out the roles of A and B.
Although not modelled here, x and z could refer to other ‘sweeteners’ in the treaty that could be used
to build confidence in each other in the absence of an available inspection.

Question 3 Here we allow x and z to vary and aim to find a probability greater than 0 that a pure
strategy will be included in the mixed strategy, for all equilibria and for all pure strategies. If the SMT
solver tells us that this is impossible then the pure strategy’s use ratio has a maximum of 0, and it is
never used, for any x and z, and so is thus redundant.

Table 1. Maximum usages of strategies over all 0.5 ď x ď 0.9, 0.5 ď z ď 0.9 for all equilibrium points, highlighting the
pure strategies that are redundant - those whose row entries 1-10 are all zeros.
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Player A’s 1st, 7th and 8th pure strategies are the only ones that lead to equilibrium points within
the specified ranges of parameters x and z (so pure strategies 2-6 are redundant). Player B’s 6th pure
strategy (a treaty that runs for 7 years) is redundant as it never leads to an equilibrium point.

The redundant strategies observed seem to reflect that, given these parameters, the advice to
decision makers should be either to push for very many inspections (leading to high assurance, but
at high cost) or very few (more trusting, but with lower expense). Our new methodology shows that
both approaches to arms control regimes outperform the alternative of seeking a middle ground.

Question 4 We have written a function, calcpayoffs(), that calculates payoffs from mixed strate-
gies. It takes the results of a Z3 model (which, themselves are the product of regressions from the
Gambit models) and calculates the game’s expected payoff with those strategies; essentially calculating
the perceived utility of the extensive game over the equilibria strategies of the normal game.

We compute that the max utility for player A to arise from any of the equilibria is -0.513281683224.
This can occur in a few equilibria, but one example is the following mix of strategies, where x and z
were again allowed to vary:

[x = 3/4,

z = 3/4,

FunA7x = 9185199999999996787/16000000000000000000,

FunA1x = 1362960000000000639/3200000000000000000,

FunB7x = 30923999999999991/160000000000000000,

FunB1x = 64538000000000003921/80000000000000000000]

Maximising the utilities over all equilibria and over all possible x and z helps a decision maker
choose which equilibrium to strive for in a treaty negotiation, but also gives insight into how x and z
affect the utility of the inspection regime. If it is known that they have a relatively higher actual ‘cost’
(negative pay-off) than x “ z “ 0.75 - where our maximum utility is obtained - it may be useful to
know that under these circumstances the maximum utility of the regime won’t be attained.

The nations - with the ability to model the utility to A and B explicitly - will be able to ‘choose’
which is the most important role for them (inspecting or being inspected) and vary strategies accord-
ingly to reflect. Such a decision may be based on whether they trust the other nation going in to the
treaty.

Question 5 We allow x and z to vary, whilst maximising each Sensitivity function for all pure
strategies of A and B.

The most sensitive this can be is 0.6019, using a metric of abspaq ` abspbq ` abspcq where a, b, c
are the regression coefficients of ‘regression features’ x, z and xˆ z. These features (plus an intercept)
are all those that are possible in a linear regression model of x and z, and are all deemed important
enough to be included in the model by testing the effect of removing them from the model one-by-one.
This most sensitive value occurs in many equilibria, though x and z both equal 0.5 for all of them.
Many other equilibria had much smaller sensitivities.

Sensitivity to variations in x and z highlights the most risky of strategies to a decision maker.
Small changes to the true pay-off under these circumstances will have the greatest effect on the choice
of strategies, and might change the position of an equilibrium. Knowing such maximal sensitivities is
useful to a decision maker as it highlights circumstances where the use of certain pure strategies may
be problematic.

6 Future Work

We could explore alternative methods of implementing our linear regression approach, or, indeed
replace it completely with an alternative method of capturing the symbolic nature of the under-
specified solutions. For instance, bisecting the problem may not be the optimal way of achieving a
termination condition in the acceptable regression fitting computation. It may turn out that ‘splitting’
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the regressions over the ‘boundary points’ is less computationally intensive. Such potential needs
exploring.

The study of solution concepts of games that don’t rely on Nash equilibria may be advantageous in
this domain. The concept of ‘secure equilibria’ [9], ‘Pandora’s rule’ [22] or any other solution concept
may change our ‘solution’ standard. For example, secure equilibria are such that neither player has
any incentive to choose a different equilibrium and could add trust between two parties in this domain.

Recent work on Bayesian Belief Networks [5,6] and dynamical systems [7] cover related modelling
problems, and said work has focussed on engineering scalable solutions to these complex computations.
These approaches could be integrated. In particular, it is clear that a BBN or game theoretic model
could sit comfortably within an otherwise deterministic dynamical system, with the possibility of
results and workings from the dynamical system driving modelling aspects of the probabilistic models
embedded within it. Overall, this could lead to models that encompass more aspects and nuances of
real-world arms control regimes.

We are also interested in exploring alternative approaches to uncertainty in game theoretic models;
particularly epistemic game theory [16], where there appears to be great overlap in aims as pursued
in this paper - although wholly different approaches - to resolving unknowns in models.

7 Conclusions

In this paper, we have explored the analysis of inspection regime models in a game theoretic setting
to determine its potential uses in supporting decision making.

We have presented a methodology for dealing with uncertainty in pay-offs assigned to players
in non-cooperative, normal form, game theoretic models. This approach generates symbolic results
for expected pay-off’s and mixed strategy profiles required to generate Nash equilibria that can be
reasoned by a SMT constraint solver. The result is an automated approach that could allow a decision
maker to ask pertinent questions of a game theoretic model under uncertainty with some of the data
in the model.

Our core contribution has been a methodology to compute with symbolic pay-offs through forming
regressions of mixed strategies used to form Nash equilibria. We have established the key concepts
behind this methodology and described how it allows us to generalise results: using linear regression of
numerical values captured at points over an interval of interest. Encapsulating these results in SMT,
which solves these arithmetic and symbolic computations (as well as any other logical constraints the
model may have), allows us to check the satisfiability of scenarios overall.

Overall, we have shown how we can generalise models of historic importance in the study of
nuclear arms dynamics, whilst effectively addressing the modelling concerns of selecting ‘correct’ pay-
off values, and automatically analysing questions of interest for a range of possible values. This allows
us to support decision making in particular in our scenario of interest.

We can now provide answers to questions such as Given uncertainty in what would happen when
an inspecting nation wished to hold more inspections than they were permitted to by the host, how
long can a treaty be beneficial for both parties in such circumstances?, and can identify which pure
strategies are redundant for all cases even under uncertainty. We can also assess which pure strategies
are the most sensitive to changes in such under-specifications, providing support to a decision maker
on potential strategies to avoid. We believe that analysis of this type was not previously supported;
and the capability to do this is useful for scenarios such as the one discussed here as a case study; in
supporting decision making, but also more broadly - in gambling, choice games or strategy optimising.
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