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1. Introduction

Optimal control of a dynamic system involves cost effective
operation of the system through constrained control effort. The
particular case of optimal control in which system dynamics are
described by linear differential equations, and the associated cost is
a quadratic function of system states and control-effort, is termed
as linear quadratic (LQ) problem (Kwakernaak & Sivan, 1972; Ogata
& Yang, 2001). Solution to the LQ problem is provided by linear
quadratic regulator (LQR), a state feedback controller (Kalman,
1960).

It is assumed in the LQ problem that all of the inputs given to
the system are control inputs, which means that each of the input
can be manipulated by the controller. But, this may not be the case
for a general LTI system, and some of the inputs to the system
may be external disturbances, which means that such inputs can
neither be disabled nor be manipulated by the controller. Such
inputs are also termed as exogenous inputs, and the terms ‘external
disturbance’ and ‘exogenous input’ are used interchangeably in
this paper. Some examples of dynamic systems with exogenous
inputs can be found in control literature in Menguy, Boimond,
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Hardouin, and Ferrier (2000) and Yang and Kwak (2010, 2011),
wherein such inputs are called ‘uncontrollable inputs’. Another
recent example of exogenous inputs can be found in power system
literature in Singh and Pal (2014), wherein they are referred to as
‘pseudo-inputs’.

The problem of linear quadratic control of LTI systems
with external disturbances has been studied in past (see, for
instance, Cheok & Loh, 1987; Johnson, 1968, 1971; Ostertag, 2011).
In these studies it is assumed that the controller can either
measure or estimate the external disturbances using information
of the model which governs these disturbances. Thereby, the
disturbances are eliminated using a control input which has two
components; one component exactly cancels out the disturbance,
while the other provides optimal state feedback. In case the
disturbance cannot be exactly canceled out (and this is practically
the most likely case), such a component of the control input
is found which is smallest in magnitude and also minimizes
the effect of the disturbance on the system. This technique of
accommodating the external disturbance in the LQ problem by
minimizing its effect has a drawback: it does not guarantee the
minimization of the net costs associated with control-efforts and
state-deviations. This drawback is also demonstrated in Section 5
of this paper. Thus, this technique fails to achieve the main
objective of linear quadratic control.

This paper proposes a new solution to the problem of optimal
control of LTI systems with external disturbances or exogenous
inputs, and the solution not only optimally accommodates the
disturbance, but also minimizes the overall quadratic costs of
control-efforts and state deviations. The solution does not make
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Nomenclature

k Denotes the kth time sample

T Denotes the transpose of a matrix or a vector

To The sampling period for the system in s

(1 99 Denotes a zero matrix of size (a x b)

N The final time sample at which a closed-loop system

with LQR or ELQR reaches steady state

The vector of states of the system

The vector of control inputs to the system

The vector of exogenous inputs to the system

The state matrix

The input matrix corresponding to control inputs

The input matrix corresponding to exogenous

inputs

The state-feedback gain in the LQR and the ELQR

solutions

G The feedback gain corresponding to u’ in the ELQR
solution

G The supplementary feedback quantity in the ELQR

solution

Denotes an identity matrix of size (¢ x c)

The quadratic cost function for a discrete LTI system

without any exogenous input

The quadratic cost function for a discrete LTI system

with both control inputs and exogenous inputs

P The positive-definite matrix corresponding to F

Q The cost weighting matrix corresponding to x

R The cost weighting matrix corresponding to u

R/

S

S/

WW B e

"

Ll S
~ S

The cost weighting matrix corresponding to u’
The matrix corresponding to G in the ELQR solution
The matrix corresponding to G’ in the ELQR solution

any assumption on the availability of a priori knowledge of the
model or the statistics of the exogenous input, and it remains valid
for any sequence of exogenous inputs.

Rest of the paper is organized as follows. Section 2 formally
states the linear quadratic problem. Section 3 explains the classical
LQR solution, while Section 4 describes the ELQR solution. This
solution is demonstrated on an example system in Section 5; and
Section 6 concludes the paper.

2. Problem statement
Some preliminary definitions:

Definition 1. A ‘control input’ given to an LTI system is an input
whose magnitude can be decided and changed as per any required
control scheme. This is the input in the traditional sense of system
theory.

Definition 2. An ‘exogenous input’ given to an LTI system is an
input which cannot be removed from the system and whose
magnitude cannot be decided or changed. This input is an
unavoidable quantity which cannot be used as a control input in
corrective actions, although it may be possible to find a control
input which cancels out or minimizes the effect of the exogenous
input.

Using the above two definitions, the control problem is stated as
follows:

For a discrete-time open-loop LTI system in which both control inputs
and exogenous inputs are present, find an optimal control law such
that the sum of the quadratic costs associated with the system state
deviations, the exogenous inputs and the control inputs is minimized.

Thus, the aim of the above problem is to control the system via
its control inputs under the constraints of exogenous inputs. This
problem is termed as the extended linear quadratic (ELQ) problem
in this paper.

3. Classical LQR control

A discrete-time open-loop LTI system without any exogenous
input is represented by the following equation.
Xi+1 = AX, + Buy. (1)
The quadratic cost function for (1) for N + 1 samples is given by:

N
J= Z[x{ka + ujRu;] whereQ >0, R > 0. (2)
k=0

Minimizing J with respect to u; gives the following LQR solution.

w=-Fx, k=0,1,...,(N—1), uy = 0; where, (3)
Fi-1 = (R+B'PB) 'B'P,A, Py =Q and, (4)
Pi_; = Q+ A"[P; — P;B(R + B'P;B) 'B'P;]A. (5)

If N is finite then the above optimal control policy is called as finite
horizon LQR; otherwise it is infinite horizon LQR. Moreover, P, and
F; for the infinite horizon case are bounded and have a steady-
state solution iff the pair (A, B) is stabilizable, and the steady-state
solution is found by solving the following discrete-time algebraic
Riccati equation (ARE).

P=Q+AT[P — PB(R + B'PB)"'B'P]A; (6)
F = (R+B'PB)"'B'PA. (7)

4. Linear quadratic control for systems with exogenous inputs

A discrete-time open-loop LTI system with both control inputs
and exogenous inputs is given by the following equation.

Xit1 = AXy + Bu, + B'uy,. (8)

As explained in Section 1, many solutions have been proposed
for linear quadratic control of the above system using disturbance
accommodation (such as in Cheok & Loh, 1987; Johnson, 1968,
1971; Ostertag, 2011). In these solutions, the component of
the control input which accommodates the exogenous inputs,
uj, is given by —B*B'uj. Here, B" denotes the Moore-Penrose
pseudoinverse of B. The net control input is given by:

uw, = —Fx, — BTB'u}; where (4)-(5) give Fy. (9)

The above control solution in (9) does not consider the quadratic-
cost for the discrete system given by (8). This system has an extra
term (corresponding to the exogenous inputs) as compared to the
system given by (1). Thus the quadratic-cost for this system gets
modified. For N + 1 samples it is given by:

N
J =[x Qx¢ + ujRu; + u R'uj ],
k=0

where,Q >0, R> 0, R’ > 0. (10)
In order to find the optimal control policy for (8),J in (10) needs

to be minimized with respect to u,. This minimization gives the
following theorem.
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Theorem 1. For an LTI system with pseudo-inputs (as given by (8)),
provided w, = 0V k > N, the optimal control policy for 0 < k < N
is given by (11)-(13) (and for k > N, u;, = 0).

w, = —(FeXy + Geuy, + G); (11)
G=FP—-Q 'S, G =F®P.—Q'S; (12)
Sv=0, S;=0, S =(A—BF) (Prs1B +Sii1).

S = (A—BF)" (Sy1 (U, — W) + Sy ). (13)

Fy and Py remain same as the LQR case (given by (4)—(5)).

Proof. A preliminary modification needs to be done in the system
given by (8) for the derivation of Theorem 1, by adding a constant
pseudo-input at the end of the column vector u, as:

X1 = AXy + Buy + By

!
where, v, = [‘;"] , B =[B 0,]. (14)
/
Also, vy = Lyvi_;, where,L; = [le A]u "] , and,
1xb
A = —w_y; (15)
/

B =8 0] ] =i o =m (16

Here a is the number of elements in X, and b is the number of
elements in ;. It should be understood that because of (16), the
above modification has no effect on the dynamics of the original
system. The modification is needed to get an iterative expression
for the optimal control policy. On its own, u, cannot be expressed
in terms of u,_,. But when a new pseudo-input vector vy is defined
by appending a constant value 1 at the end of u,, then v; can be
expressed in terms of v,_; using (15). The quadratic-cost for the
modified system (given by (14)) for N + 1 samples is given by:

N

V=) X Qxc + uRuy + Vi Ryv], (17)
k=0

/
where, R; = [OR Obo“], Q>0,R>0,R >0 (18)
1xb
T R 0p ||y Tyl st
viRiv = [uf 1] [leb 5 } []"] =uRu,. (19)

Eq. (19) and the definition of Ry (given by (18)) ensure that the
constant pseudo-input 1 in v, has zero cost, so that the quadratic-
costs for the modified system and the original system (as given
by (10) and (17), respectively) are identical. As it is given that
u, = 0V k > N, and the system reaches its final steady state,
Xy, at k = N, hence the optimal input required isuy, = 0V k > N.
The optimal cost for k = N is therefore J\* = x},Qxy = x| PyXy.
The combined quadratic cost for k = N — 1 and k = N, provided
that the cost for k = N is optimal (which is ]ﬁpt), is given by J,_,
as:

Jy_y = x4 Qxy_1 +ul_Ruy_; +vi_ Ryvy_q + 37" (20)

Substituting J**

(20):

= XIT\-JPNXN and Xy = AXy_1+Buy_1+Bqvy_qin

Jyoy =X\ _4Qxv_1 +uy_Ruy_; + vy Ryvy 4
+ (AXy_1 + Buy_; + Byvy_1) Py (Axy_
+Buy_1 +Byvy_1). (21)

Finding the partial derivative of J,,_; in above equation with
respect to uy_1, a_l;\,fl/aqu comes as:

Jy_1/0uy_1

= 2[Ruy_; + B'Py(Axy_; + Buy_; + Byvy_1)] (22)
-y, /duy_1 =0, foruy_; =uy", (23)
S RuY" |+ B'Py(Axy_; + BuY" | + Byvy_1) =0, (24)

= U;?,pil = —(Fy_1Xy—1 + Hy_1Vn_1), 25)

(
where, Fy_; = (R + B"PyB) " 'B'PyA, (26)
Hy_: = (R + B'PyB) 'B'PyB;. (27)

Also, as 3%, _,/(duy_1)*> = (R+ B"PyB) > 0(asR > 0, Py > 0),
and Jj,_, is quadratic function of uy_;, thus, uy", gives global
minimum for Jj,_,. Substituting ujy" , from (25) for uy_; in (20):

N = Xh_ PyoiXno1 + 22Xy Uy_ Wy
+ Vi W1y (28)
where, Py_; = Q+ F_,RFy_;
+ (A — BFy_1)"Py(A — BFy_), (29)
Uy_1 = Fy_;RHy_; + (A — BEy_)"Py(B; — BHy_1), (30)
Wy_1 =Ry + H{_;RHy_; + (B; — BHy_1)"Py(B; — BHy_,).
(31)

Again, the combined quadratic cost fork = (N —2), (N—1) and N,
provided that the combined cost for k = (N — 1) and N is optimal
(which is J¢™,), is given by Jj,_, = X4 _,Qxy_2 + u},_,Ruy_, +

v ,Rivy_, + ], and following the same aforementioned steps

applied to find Jy™",, the values of uj", and Jy™, come as:

N7
UoNpiz = —(Fy_2Xy—2 + Hy_2Vn_2), (32)
where, Fy_, = (R+ B"Py_;B)"'B'Py_;A, (33)
Hy_» = (R+ B'Py_B) 'B" (Py_1B; + Uy_iLy_1); (34)
(35)

ropt T T T
INDo = Xy o PyvaXn—2 + 2Xy_,Un_2VN—2 + Vy Wy _2Vn—2, (35

where, Py_ = (A —BFy_;)"Py_1(A — BFy_5)

+Fy_,REy_> + Q, (36)
Uy—> = (A—BFy_5)"Py_;(B; — BHy_)
+ (A — BFy_2)"Uy_1Ly_1 + Fy_,RHy_,, (37)
Wy_> = (B; — BHy_5)" [Py_(B; — BHy_,)
+Uy_1Ly_1] + L Wy_1Ly_1 +Hy ,RHy , +R;. (38)

Next, when the terms uj , and Jv, are evaluated, their

expressions are similar to (32) and (35), respectively, with the only
change that N — 2 is replaced by N — 3, and N — 1 is replaced by
N — 2. Similar expressions come for the rest of u}”" and J;* (that is
for k < N — 3). Thus, using initial conditions Uy = 01y and
Py = Q, and applying induction for k < N, the optimal cost for
J in (17) comes as ]8"’ ‘ (and is found by iteratively evaluating the
sequence Ju7, JV7, -, JYP, J5P) and the corresponding optimal
control policy required to arrive at this optimal cost is given by:

u? = —(Fxy + Hevy), 0 < k < N;

(39)
where, F, = R+ B'P;,1B)"'B'P, ;A (40)
H, = (R+B'P;1B) 'B' (Pi1By + Upy1Lit1) (41)
P, = Q-+ F;RF, + (A — BF,)'P; 1 (A — BF)) (42)

(43)

U, = F,RH, + (A — BF,)" [Py (B; — BHY) + UpLigq]. (43
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It may be noted that Wy, has no role in deciding uzp ‘. Also, P, (using
(42)) can be rewritten as:

P, = Q+F,(R+B'P, B)F, — F,B'P;, 1A
+A"P,, (A — BFy) (44)

- FL(R+ B'P,1B)F, = F,B'P,, ;A (from (40))

~ Py =Q+ AP, 1(A—BF). (45)
Substituting F;, from (40) in (45) gives:

P, = Q+ AT (P, ;B(R +B'P,.;B)"'B"P,,)A. (46)
Similarly, Uy (using (43)) can be rewritten as:

Uy = (A—BF)" (Py1B1 + UggqLig1)
+F; (R + B'P,B)H, — AP {BH,, (47)

~ FL(R+ B"P{B)H; = ATP,;1BH, (using (40)),

U= (A = BF)' (Piy1B1 + UpgaLics ). (48)
Also, from (45):

(A—BF)" = (P, — QA 'P,},. (49)
Substituting (A — BF,)T from (49) in (48):

Ui = (P — QA ' (B + P} UpyiLig ). (50)
Using (40), H, in (41) can be rewritten as:

H, = F A" (B; 4 P ,Uiy1Liy1):  and using (50),

= H; = F(P, — Q 'Ug. (51)
Partitioning U in (48) as [Sk  S;]. Sk € R”P, S € R™1:

[S« Si]=(A—BF) (Pry1Bi + [Sks1 Siyq]Lir1)

= [Sk SL] = (A_BFk)T<Pk+1 [B, Oax]]

I Au,
+ [Sk+l S;<+1] |:01ib 1k+1:|> (52)
= S, = (A — BF)" (P41B' + Si11),  and, (53)
S, = (A —BF)" (Sir1 (W, —w) + S ). (54)

Partitioning Hy in (39) as [Gr G|, Gx € R™?, G}, € R"™!, where |
is the number of elements in uy:

/
llzpt = — (Fkxk + [Gk G;(] |:l;I<i|) ,

=0 = —(Fx + G, + Gp) (55)
and using (51), [G G]=FP—Q ' [S S]=
G =F(Py —Q7'S; G, =F(P,— Q'S (56)

Hence, with (40), (46), (53)-(56), Theorem 1 stands proved.

The optimal control solution in Theorem 1 is termed as the
extended linear quadratic regulator (ELQR) solution. In this
solution, finite horizon case is applicable only when the sequence
of exogenous inputs is known to be finite, otherwise if the
sequence is not known or if it is infinite then infinite horizon case
is applicable. If the pair (A, B) is stabilizable, then infinite horizon

solutions for Py, Fy, Gy and Sy exist, and are given by F, P as in
(6)-(7),and S, Gas in (57)-(58).

S=A—-BF) (PR +S)=P-QA (B +Ps),
(since (A — BF)T = (P — Q) A~ 'P~! from (49))

=S=AP-Q '—PH B (57)
G =F(P — Q)'S, substituting S from (57) :
=G=FA-P (P-Q)'B. (58)

Although the terms F, and P, for the ELQR case remain same
as the LQR case, this needs to be mathematically derived and
hence this derivation is an important contribution of this paper.
The other terms G, and S, are independent of the sequence of
u,, and hence they can be easily calculated if A, B, B’,Q and R
are known. On the other hand, the terms G, and S;, require the
knowledge of the sequence of wj for all the future and present
samples. Thus, if the sequence of exogenous inputs is not known,
only the terms Fi, Py, Gy and S; can be accurately calculated,
and the terms G, and S can only be estimated/predicted
based on the estimated/predicted values of w;. If u, cannot be
estimated/predicted then the term G should be ignored while
finding the ELQR policy.

5. Implementation example: A third-order LTI system

The ELQR control can be implemented on any system whose
equations can be reduced to the form given by (8). An illustrative
example has been presented as follows, in which a simple third-
order LTI system is controlled using the ELQR methodology.

The various state-space matrices of the test system, the
equation of which is given by (8), are as follows.

1.4 02 -0.1 0.1 0.8
A=|(-02 08 —-03{, B=|11 03| and

0.1 0.1 09 09 05

1.2
B =|0.1].
0.2

Hence, the above system has three states, two control inputs and
one exogenous input. Initially, all the states and inputs are zero,
that is, Xo = 0341, g = 0,41, and uy = 0. Following three cases
are considered for the exogenous input.

5.1. Known and deterministic model of the exogenous input

In this case, the exogenous input can be predicted and its model
is known. For k > 1, it is given as follows:

u, = (0.95% k=>1. (59)

Although in the above example system a vanishing exogenous
input has been given (which vanishes when k — ©0), any other
sequence of exogenous input(s) can be given to the system (which
may or may not vanish) and subsequently ELQR solution can be
applied.

5.1.1. ELQR policy

As uj, in (59) is an exponentially decreasing function of time-
sample, and it becomes zero only when k — oo, therefore
the infinite horizon case of ELQR needs to be used to optimally
control this system. Using equations (6),(7), (57) and (58), and cost
weighting matrices Q and R as Is and I,, respectively, the following
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infinite horizon values of P, F, S and G are evaluated (rounded-off
to two decimal places).

[3.60 055 —1.26

P=| 055 228 -237|,
|-1.26 —2.37 6.32

Fo [-0.42 0.11 0.60

—| 114 012 005

6.11

S=| 546 |, and c=[_]1£8.] (60)
| —11.95 '

Also, S}, can be evaluated by substituting P and S for Py (or Py )
and Sy, respectively, in (13), and solving for S, iteratively. S, is then
substituted in (12) to find G,. The final solutions for S}, and G, are
given as (rounded-off to two decimal places):

—0.67 —0.67
S, =|—1.11] x (0.95) = | —1.11 | w, and,

2.46 2.46

0.27 ,
G = [—o.oz} Y
Substituting the values of F, G, and G from (60) and (61) in (11),
the optimal control policy for ELQR comes as:

_ _[-042 o011 oe0] [-148], [o0277,
We = 1.14 0.12 0.05 X 1.62 |M ~ | —0.02 | %

_ [-042 o0.11 060 ~1.21]

= _[ 114 012 0.05] "’f‘[ 1.60 ]“k' (62)

5.1.2. Classical LQR policy

The classical LQR control is also applied on the test system for
performance comparison with ELQR control, and as only the state-
feedback gain F is required for classical LQR, and it is same as
the state-feedback gain for ELQR control, the classical LQR control
policy comes as:

LOR [—0.42 0.11 0.60:|
= — X.

(61)

W = 1.14 0.12 0.05 (63)

5.1.3. Disturbance accommodating LQR policy

The disturbance accommodating LQR (DALQR) policy given by
(9) is also applied on the test system. After substituting the values
for F, Band B’ in (9), the DALQR policy comes as:

DALQR _ —0.42 0.11 0.60 —0.43]|
Y —_[1.14 0.12 0.05|% 7| 1.49 |[Y (64)

5.1.4. Comparison of control performance

The weighted norms of the states and the control inputs (given
by x!Qx, and u]Ruy, respectively) can be used as measures of
control performance of a control method. These weighted norms
are also the quadratic costs associated with the control method
for the kth sample, as can be inferred from the constituent terms
of J in (10). The cost associated with the exogenous inputs, given
by u;R'wj, remains independent of the control method. This is
because u; is not dependent on the control method.

The test system has been simulated in MATLAB, and the
weighted norms of states and control inputs have been plotted in
Fig. 1. It should be noted that X/ Qx, = X.x, and ufRu, = uluy
for the test system. Table 1 presents a comparison of quadratic
costs associated with the states and the control inputs for the three
methods. It may be inferred from Fig. 1 and Table 1 that ELQR is
much more efficient than both DALQR and classical LQR in presence

4 T T T

o [ With classical LQR
35r i1 — — = With DALQR 1
With ELQR

T
u.u, (p.u.)

,
0 10 20 30 40 50 60 70 80 90 100
Sample (k)

Fig. 1. Control performance comparison of ELQR with classical LQR and DALQR for
Case A.

Table 1

Comparison of net quadratic costs for Case A.
Quadratic costs (p.u.) ELQR DALQR LQR
State-cost (3 x{ka) 11.76 19.17 54.97
Control-cost ()_ uf Ruy) 33.28 47.05 79.37
Total costs 45.04 66.22 13434

of exogenous inputs, and for the test system the total quadratic cost
for the states and the control inputs is reduced by 66.5% as com-
pared to the classical LQR, and by 32.0% as compared to DALQR.

5.2. Known and stochastic model of the exogenous input

In this case, the exogenous input is stochastic with known
model, and the rest of the system is same as in Case A. For k > 1,
the exogenous input is given as follows:

u, = X% X, ~ N(0.9,0.01); X, € (0.85,0.95). (65)

Thus, X in the above model is a random variable with a truncated
normal distribution with mean = 0.9, variance = 0.01, upper limit
= 0.95, and lower limit = 0.85.

As A, B and B’ remain same as in Case A, the values of P, F, S
and G also remain unchanged and are given by (60). An exact value
of S}, for this case cannot be found as the sequence of u is non-
deterministic. But the expected value of S, can be evaluated by
substituting Auj<+1 with its expected value (which is —0.1(0.9)%)
and replacing P, and Sy with P and S, respectively, in (13). Finally,
S, is solved iteratively and substituted in (12) to find G;. The final
solutions for the expected values of S, and G, are given as:

-1.16 0.46
S, = |:—1.87:| x (0.9)% G, = [_(‘, 06} x (0.9) . (66)
4.15 :
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Fig. 2. Mean control performance for 1000 simulations for Case B.

Table 2

Comparison of mean quadratic costs for 1000 simulations for Case B.
Mean costs (p.u.) ELQR DALQR LQR
State-cost (3 X} Qx) 6.8 9.0 28.5
Control-cost (> u} Ruy) 21.8 243 40.8
Total costs 28.6 333 69.3

Substituting the values of F, G, and G, from (60) and (66) in (11),
the optimal control policy for ELQR is obtained as follows.

w — _ [~042 0.11 0.60
k= 1.14 0.12 0.05|"*

_ [ 1?628] u, — [—0(.)[.1(()36] x (0.9)%. (67)
The optimal control policies for DALQR and classical LQR remain
same as in Case A. As random inputs are used in simulation,
multiple simulations need to be run to get statistics of the quadratic
costs. Fig. 2 and Table 2 show the mean values of quadratic costs for
1000 simulations. It can be observed that in this case as well, the
control performance of ELQR is better as compared to the other
two methods, and the net mean quadratic cost for the states and
the control inputs is reduced by 58.7% as compared to the classical
LQR, and by 14.1% as compared to DALQR.

5.3. Unknown model for the exogenous input

In the third case, it is assumed that any knowledge about the
model of the exogenous input is not available, and the exogenous
inputs cannot be predicted/estimated. The term G in the ELQR
policy is not a function of exogenous inputs, and hence it can still be
used for control, while the term G, must be ignored as it depends
on the sequence of exogenous inputs. Substituting the values of F,
and G from (60) in (11), the optimal control policy for ELQR comes
as follows, while those for DALQR and classical LQR remain same
as in Case A.

u —_[-042 011 o060]  [-148] (68)
k= 1.14 0.12 0.05|*k 1.62 |

4 . . ‘ ‘ — . .
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Fig. 3. Mean control performance for 1000 simulations for Case C.

Table 3

Comparison of mean quadratic costs for 1000 simulations for Case C.
Mean costs (p.u.) ELQR DALQR LQR
State-cost (3 X} Qx) 93.8 145.4 366.5
Control-cost (3} u,fRuk) 163.4 338.6 534.8
Total costs 257.2 484.0 901.3

For simulation, a uniform random number between 0.5 and 1 is
given as an exogenous input at each sample (in the above ELQR
law, it is assumed that even this information about the randomness
of the exogenous inputs is not available). As random inputs are
used in this case as well, multiple simulations need to be run to get
statistics of the quadratic costs. Fig. 3 and Table 3 show the mean
values of quadratic costs for 1000 simulations. It can be observed
that in this case also the control performance of ELQR is much
better as compared to the other two methods, and the net mean
quadratic cost for the states and the control inputs is reduced by
71.5% as compared to the classical LQR, and by 46.9% as compared
to DALQR.

6. Conclusions

A control scheme has been presented for the optimal control
of a special case of LTI systems in which both control inputs and
exogenous inputs are present. The scheme is termed as extended
LQR, and it is shown to be significantly more cost effective than
available LQR schemes. The applicability of the scheme has been
shown on a simple model LTI system.
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