
Crystal structure optimisation using an auxiliary equation of state
Adam J. Jackson, Jonathan M. Skelton, Christopher H. Hendon, Keith T. Butler, and Aron Walsh 
 
Citation: The Journal of Chemical Physics 143, 184101 (2015); doi: 10.1063/1.4934716 
View online: http://dx.doi.org/10.1063/1.4934716 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/143/18?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Solar Absorber Cu2ZnSnS4 and its Parent Multilayers ZnS/SnS2/Cu2S Synthesized by Atomic Layer
Deposition and Analyzed by X-ray Photoelectron Spectroscopy 
Surf. Sci. Spectra 22, 81 (2015); 10.1116/1.4922822 
 
First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamino-3, 5-
dinitropyrazine-1-oxide (LLM-105) 
J. Chem. Phys. 141, 064702 (2014); 10.1063/1.4891933 
 
Direct measurement of band offset at the interface between CdS and Cu2ZnSnS4 using hard X-ray
photoelectron spectroscopy 
Appl. Phys. Lett. 103, 243906 (2013); 10.1063/1.4850235 
 
Quantum confinement in two dimensional layers of PbSe/ZnSe multiple quantum well structures 
Appl. Phys. Lett. 102, 242110 (2013); 10.1063/1.4811763 
 
Cu2ZnSnSe4 films from binary precursors 
J. Renewable Sustainable Energy 5, 031618 (2013); 10.1063/1.4811242 
 
 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.198.8.192 On: Fri, 14 Oct

2016 15:00:35

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1624400372/x01/AIP-PT/JCP_ArticleDL_091416/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Adam+J.+Jackson&option1=author
http://scitation.aip.org/search?value1=Jonathan+M.+Skelton&option1=author
http://scitation.aip.org/search?value1=Christopher+H.+Hendon&option1=author
http://scitation.aip.org/search?value1=Keith+T.+Butler&option1=author
http://scitation.aip.org/search?value1=Aron+Walsh&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4934716
http://scitation.aip.org/content/aip/journal/jcp/143/18?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/avs/journal/sss/22/1/10.1116/1.4922822?ver=pdfcov
http://scitation.aip.org/content/avs/journal/sss/22/1/10.1116/1.4922822?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/6/10.1063/1.4891933?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/6/10.1063/1.4891933?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/103/24/10.1063/1.4850235?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/103/24/10.1063/1.4850235?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/102/24/10.1063/1.4811763?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jrse/5/3/10.1063/1.4811242?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 143, 184101 (2015)

Crystal structure optimisation using an auxiliary equation of state
Adam J. Jackson,1 Jonathan M. Skelton,1 Christopher H. Hendon,1 Keith T. Butler,1
and Aron Walsh1,2,a)
1Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath,
Claverton Down, Bath BA2 7AY, United Kingdom
2Global E3 Institute and Department of Materials Science and Engineering, Yonsei University,
Seoul 120-749, South Korea

(Received 29 July 2015; accepted 13 October 2015; published online 9 November 2015)

Standard procedures for local crystal-structure optimisation involve numerous energy and force
calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the
equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry
crystal structures where each isochoric optimisation involves energy minimisation over many degrees
of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or
other “beyond” density functional theory electronic structure techniques, particularly where analytical
gradients are not available. We present a simple approach for efficient optimisation of crystal
structures based on a known equation of state. The equilibrium volume can be predicted from one
single-point calculation and refined with successive calculations if required. The approach is validated
for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semi-
conductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4934716]

I. INTRODUCTION

The standard operating procedure for computational
investigations in solid-state chemistry is to begin with a
crystal structure — obtained either from diffraction studies
or through chemical analogy — and to optimise the lattice
shape, volume, and internal positions to minimise all forces.
It is from this equilibrium crystal structure (athermal for
the majority of electronic-structure approaches) that the full
range of material response functions (e.g., elastic, dielectric,
magnetic) is calculated.1

The optimisation of a crystal structure may require
hundreds of self-consistent field iterations across a series
of ionic configurations.2 The most robust approach to
optimisation is the calculation of an equation of state (EoS) for
the material, relating the unit cell dimensions to energy and
pressure.3 This is based on a series of calculations at differing
volumes, where ideally the shape and internal positions are
optimised at each point. The simplest case is a cubic lattice
with high internal symmetry, e.g., rocksalt, where the only
degree of freedom is the volume and computing the EoS
reduces to a series of single-point calculations. For a triclinic
cell, the lengths, angles, and internal positions in principle all
require optimisation. While it is sometimes possible to directly
optimise the cell volume by simultaneously minimising the
stress tensor of the unit cell, this approach can run into artifacts
when using plane-wave basis sets (i.e., Pulay forces) unless an
iterative procedure is employed.4

a)a.walsh@bath.ac.uk

It has become commonplace to use an “equilibrium”
crystal geometry, determined using one exchange-correlation
functional within density functional theory, for a “single-shot”
higher-level calculation performed to give a more accurate
electronic structure. This methodology has been applied to
the calculation of properties as diverse as workfunctions,
electronic bandgaps, optical properties, and defect formation
energies.5–12 The implicit assumption is that the qualitative
behaviour is insensitive to small differences in the local
structure. The approximation will fail where the electronic
structure (chemical bonding) of a system is poorly described at
the initial level of theory, e.g., the treatment of Mott insulators
such as NiO within the local-density approximation (LDA).13

In this contribution, we outline a simple procedure for
the rapid volume optimisation (RVO) of crystal structures.
It takes advantage of the similarity in the pressure-volume
relationship for a given material between different theoretical
approaches, here being exchange-correlation (XC) functionals
within density functional theory. Where an EoS is known for
one functional, the equilibrium volume for another functional
can be predicted with reasonable accuracy using a single calcu-
lation and further refined following an iterative procedure. The
approach has particular utility for studies assessing material
properties using a range of electronic-structure methods, and
for studies employing methods with high computational cost
(e.g., hybrid, meta-hybrid, and double-hybrid treatments of
electron exchange and correlation). We validate the approach
for four Zn and Pb chalcogenides and demonstrate its utility
in describing the electronic structure and magnetic structure
of one complex semiconductor (Cu2ZnSnS4) and one metal-
organic framework (HKUST-1), respectively.

0021-9606/2015/143(18)/184101/10 143, 184101-1 © Author(s) 2015
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II. OUTLINE OF PROCEDURE

The goal of local crystal-structure optimisation is to
minimise all degrees of freedom (cell size, shape, and
positions) with respect to the total energy of the system.
It is convenient to employ an EoS based on an energy-
volume (E-V) curve, where the remaining degrees of freedom
(i.e., shape and positions) are minimised for each volume
using standard numerical minimisation approaches (e.g., the
conjugate-gradient method). Kohn-Sham density functional
theory (DFT)14 is one of the most widely used electronic
structure techniques for modelling solid-state materials. Most
DFT codes provide optimisation algorithms for this purpose,
e.g., the ISIF=4 setting in the Vienna Ab initio Simulations
Package (VASP),15 the cell_dofree=‘shape’ setting in
Quantum-Espresso16 or the CVOLOPT setting in CRYSTAL.17

A superficial resemblance is clear between E-V curves
obtained with different exchange-correlation functionals, with
similar shapes but different minima (Figure 1(a)). The extent
of the similarity becomes apparent when using pressure-
volume (P-V) curves (Figure 1(b)), where “pressure” refers
to the scalar hydrostatic pressure on the periodic system. As
this pressure P = − dE

dV , the optimal geometries dE
dV = 0 are

now those intersecting the P = 0 line. We note that while
these still differ depending on the chosen XC functional, the
P-V curves have similar curvature, with the same approximate
slopes about their zero-crossing points. From these we make
our key assumption: the slope of one P-V curve may be used
to estimate the crossing point of another.

For certain beyond-DFT calculation methods, the stress
tensor is not computed directly. However, where the energy
is available the hydrostatic pressure may always be estimated
with a finite difference,

P(V ) ≈ −E(V + δ) − E(V )
(V + δ) − V

. (1)

The procedure, outlined in Figure 2, is as follows.

1. Form a P-V curve using one description of the interatomic
interactions (method A). This can be achieved by fitting an
EoS to an energy-volume curve. If a system-specific set of

classical potentials is available, this would be expected to
perform very well as they are often fitted to the experimental
lattice parameters and elastic properties. Within DFT,
descriptions of electron exchange and correlation within the
generalised-gradient approximation (GGA) are suitable,18

given their low cost and the availability of analytical gradi-
ents for the rapid calculation of forces. Comparative studies
suggest that PBEsol19 gives especially good estimates for
the lattice parameters and elastic properties of crystals.20,21

2. Calculate the slope about P = 0 for method A. This will
form our linear approximation,

m =
dPA

dV
���PA=0

. (2)

3. Perform a calculation using a second approach (method B),
e.g., hybrid DFT with the screened HSE06 functional,22

using an estimated initial volume; this may be the equilib-
rium volume (V0) for method A. Convert the resulting stress
tensor to a hydrostatic pressure P0. (If no analytical stress
tensor is available, use a finite difference as in Eq. (1).)

4. Estimate the corrected volume for method B,

V1 = V0 +
P0

m
. (3)

5. Generate a unit cell with volume V1 (e.g., by interpolating
between the previous calculations with method A) and
recalculate the desired properties with method B.

6. Iterate steps 4 and 5 until P is acceptably low,

Vn+1 = Vn +
Pn

m
, Pn = f (Vn). (4)

III. ERROR ESTIMATION

A. Accuracy of linear approximation

In this approach, a linear fit is used for the pressure-volume
relationship,

Pest = aV + b, (5)
dPest

dV
= a. (6)

FIG. 1. Energy-volume and pressure-volume curves computed for PbS using a variety of DFT exchange-correlation functionals. Markers indicate calculated
values, while smooth lines are fits to the Murnaghan equation of state.
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FIG. 2. Flow chart for the rapid volume optimisation procedure.

This is by no means a conventional equation of state but may
provide a useful approximation when close to the minimum
volume. The standard definition of the bulk modulus,

B = −V
dP
dV

, (7)

yields the static bulk modulus B0 when evaluated at the
equilibrium volume V0,

B0 = −V0 ·
dP
dV

���V=V0
. (8)

As we have assumed this derivative to be constant, we combine
with Eq. (6) to give a physically meaningful expression of our
assumption,

dPest

dV
= a = −B0

V0
. (9)

It is now straightforward to compare this approximate EoS
with a more conventional form for solid materials, estimating
an associated error (ϵ). The simplest case is a system with
constant bulk modulus,

dP
dV
= −B0

V
, (10)

ϵ = P − Pest, (11)
dϵ
dV
=

dP
dV
− dPest

dV
=
−B0

V
− −B0

V0

= B0

(
1
V0
− 1

V

)
, (12)

ϵ(V ) =
 V

V0

dϵ
dV

dV = B0


V
V0
− ln V

V

V0

, (13)
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TABLE I. Equilibrium properties of PbS from the Murnaghan EoS, fitting
over a range of functionals: lattice parameter a; unit cell volume V0; volume
difference ϵV from experimental value; Murnaghan EoS parameters k0 and
k ′0. k0 is equivalent to bulk modulus at zero pressure. The experimental lattice
constant was obtained from low-temperature neutron powder diffraction data
fitted and extrapolated to zero temperature by Knight.23

XC functional a/Å V0/Å3 ϵV /% k0 k ′0

LDA 5.84 199.01 −3.47 65.71 4.42
PW91 5.99 215.21 4.38 55.26 3.98
PBE 5.98 214.18 3.88 54.64 4.00
PBEsol 5.88 203.43 −1.33 61.13 4.25
TPSS 5.96 211.76 2.71 57.33 4.01
revTPSS 5.94 209.05 1.39 57.85 4.00
PBE+D2 5.84 199.19 −3.39 59.93 5.02
B3LYP 6.06 223.02 8.17 53.20 4.07
HSE06 5.96 210.09 1.90 59.29 4.32

Experiment23 5.91 206.17 . . . . . . . . .

ϵ(V ) = B0

(
V
V0
− 1 + ln

(
V0

V

))
= B0

(
V − V0

V0
− ln

(
V
V0

))
. (14)

At a typical volume deviation of 5% (Table I),

ϵ(1.05V0) = B0

(
1.05V0 − V0

V0
− ln

(
1.05V0

V0

))
(15)

= B0(0.05 − ln(1.05)), (16)

where the pressure

P =
 1.05V0

V0

−B0

V
dV = −B0 ln

(
1.05V0

V0

)
(17)

and hence the fractional error ϵ
P

is −2.5%.
Moving to an improved, while still relatively simple, EoS,

the Murnaghan EoS adds a parameter, effectively giving a
linear volume dependence to B0.24 Taking its derivative form
(Eq. (18)), we improve our error estimate,

dP
dV
= − k0

V

(
V0

V

)k′0
, (18)

dϵ
dV
=

dP
dV
− dPest

dV
=

k0

V

(
V0

V

)k′0
− −B0

V0
. (19)

We can relate B0 to the Murnaghan parameters k0, k ′0 by finding
the slope at V0,

B0 = −V0 ·
dP
dV

���V=V0
=

V0

V0
k0

(
V0

V0

)k′0
= k0, (20)

dϵ
dV
= k0

*.
,

1
V0
−

V
k′0

0

V k′0+1
+/
-
, (21)

ϵ(V ) =
 V

V0

k0
*.
,

1
V0
−

V
k′0

0

V k′0+1
+/
-

dV (22)

= k0



V
V0
+

1
k ′0

(
V0

V

)k′0
V

V0

(23)

FIG. 3. Divergence of the linear approximation from more complex equa-
tions of state. The error ϵ = Pest−PEOS is given in units of the static bulk
modulus.

= k0 *
,

V
V0
+

1
k ′0

(
V
V0

)−k′0
− 1 − 1

k ′0
+
-

(24)

= k0

(
V
V0
− 1

)
+

k0

k ′0
*
,

(
V
V0

)−k′0
− 1+

-
. (25)

Plotting these error estimates in Figure 3, we find that the
error in pressure is less than 10% of the static bulk modulus
for volumes 10% from the optimum, given a material that
obeys the Murnaghan EoS with a typical value k ′0 = 5. For
smaller values of k ′0 (i.e., closer to the fixed-bulk-modulus
model), the errors are greatly reduced. In any case, the linear
approximation appears to be sufficiently accurate for a stable
optimisation process.

B. Dependence on accuracy of EoS

Returning to the simplistic EoS of Eq. (10),

P = −
 V

V0

B0

V
dV (26)

= B0 ln
(

V0

V

)
, (27)

we examine the residual pressure P1 following a single step of
RVO from an initial volume Vi,

V1 = Vi +
PB(Vi)

mA
= Vi − PB(Vi)V0,A

B0,A
(28)

= Vi − B0,B ln
(

V0,B

Vi

)
·

V0,A

B0,A
, (29)

P1 = B0,B ln
(

V0,B

V1

)
, (30)

P1

B0,B
= − ln


Vi

V0,B
−

B0,BV0,A

B0,AV0,B
ln

(
V0,B

Vi

)
. (31)

We note that ln(x) ≈ x − 1 for x close to 1, and hence the
residual pressure is approximately linear with respect to the
error in initial volume estimate. The term B0,BV0,A

B0,AV0,B
indicates

a smaller linear dependence on the similarity of the EoS for
method A and method B. Moving to the Murnaghan EoS,

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.198.8.192 On: Fri, 14 Oct

2016 15:00:35



184101-5 Jackson et al. J. Chem. Phys. 143, 184101 (2015)

P1 =
k0,B

k ′0,B
*
,

(
V0,B

V1

)k′0,B
− 1+

-
(32)

=
k0,B

k ′0,B



*.
,

V0,B

Vi + PB(Vi) V0,A
−k0,A

+/
-

k′0,B

− 1


, (33)

P1
k0,B
k′0,B

=
*...
,

V0,B

Vi −
V0,A
k0,A
· k0,B
k′0,B

((
V0,B
Vi

)k′0,B − 1
) +///
-

k′0,B

− 1, (34)

P1
k0,B
k′0,B

= *
,

Vi

V0,B
−

V0,Ak0,B

V0,Bk0,A
· 1

k ′
B,0

*
,

(
V0,B

Vi

)k′0,B
− 1+

-
+
-

−k′0,B
− 1.

(35)

Again, the pressure is dominated by the initial position,
with a smaller contribution from the difference between EoS
“stiffness” and volume minima. The non-linearity of this
relationship follows the non-linearity of the true EoS through
the exponent k ′0,B. We conclude therefore that the performance
of the first step is equally sensitive to percentage differences in
equilibrium volume and bulk modulus between method A and
method B. Convergence is impacted by the non-linearity of the
EoS but not by how accurately this non-linearity is reproduced
by method A.

IV. METHODS

A. Electronic structure calculations

Studies have been carried out on the binary chalcogenides
PbS, PbTe, ZnS, and ZnTe as well as the quaternary
semiconductor Cu2ZnSnS4 and an organic-inorganic hybrid
material HKUST-1.

All DFT calculations on the binary chalcogenides were
carried out with VASP25 using the two-atom primitive face-
centred cubic unit cells. We employed projector-augmented
wave (PAW) frozen-core potentials26,27 treating the outermost
s and p electrons of S, Te, and Pb and the outermost s, p,
and d electrons of Zn explicitly as valence. For consistency,
we used the LDA PAW potential set. The PAW potentials are
highly transferable and tests showed a very weak dependence
of the resulting optimised electronic and crystal structures.
A plane-wave kinetic-energy cutoff of 550 eV was employed
in all these calculations, and the Brillouin zone was sampled
with an 8 × 8 × 8 Γ-centered Monkhorst-Pack mesh.28 During
electronic minimisation, the wavefunctions were optimised to
an energy tolerance of 10−8 eV. These parameters were found to
be sufficient to converge the absolute total energies to within
1 meV atom−1, and the stress tensors to well within 1 kbar
(0.1 GPa).

The simplicity of the binary systems allowed us to test
a wide range of functionals, spanning different “levels” of
approximations to the exchange-correlation potential.29 As a
baseline, we took the LDA with the Perdew-Zunger param-
eterisation of the correlation energy.30 Calculations using the
GGA were performed with the Perdew-Wang 91 (PW91)18,31,32

and Perdew-Burke-Enzerhof (PBE)33 functionals, plus the
variant of PBE revised for solids (PBEsol).19 To complement

this set of functionals, we also tested the Grimme D2
dispersion correction to PBE.34 Meta-GGA calculations were
carried out using the Tao-Perdew-Staroverov-Scuseria (TPSS)
functional35 and the subsequent revision of Perdew et al.
(revTPSS).36 Finally, we tested two hybrids, viz., the popular
HSE0622 and B3LYP37 functionals. For each material and
functional, we calculated an E-V curve by adjusting the lattice
parameter to yield 21 volumes about the experimental 300 K
lattice parameters reported in Refs. 38 and 39 covering a range
of approximately. ±5%. We note that, as a result of the high
symmetry of these systems, the lattice parameter is the only
degree of freedom, and thus relaxation of the cell shape and
internal positions was not required.

For Cu2ZnSnS4 (Section V B), energy-volume curves
were formed from all-electron DFT calculations using the
FHI-aims code.40,41 These calculations employed numerically
tabulated atom-centered basis functions (the “tight” defaults
were used, which correspond to expected convergence of
<10 meV per atom) and evenly spaced k-point grids.
Additional hybrid (HSE06) DFT calculations and primitive-
cell optimisations used VASP with the PAW-PBE potential
set and a 500 eV cutoff for the plane wave basis set. All
calculations on Cu2ZnSnS4 sampled the Brillouin zone with
6 × 6 × 6 Γ-centered k-point grids.

For the Cu-based metal-organic framework HKUST-1,
calculations were again performed with the VASP code,
considering only the point Γ in reciprocal space due to the large
size of unit cell. Owing to the presence of the open-shell Cu(II)
ion (d9 configuration) all calculations were spin-polarised,
and a range of magnetic structures were tested as discussed
in Section V C. The PBEsol and HSEsol functionals were
used along with the PAW-PBE potential set. Here “HSEsol”
refers to a modification of HSE06, with PBEsol replacing
PBE as the local exchange-correlation functional.42 Due to the
complexity of the crystal structure, only three energy-volume
points were included in the EoS and a single iteration of RVO
was performed to recover the ground-state HSEsol structure.
A slightly different procedure was followed in this case: a
quadratic E-V curve was fitted to the three PBEsol points. The
initial HSEsol calculation was carried out at the fully optimised
PBEsol point, and the E-V curve was followed assuming a
constant pressure offset to estimate the equilibrium volume
for HSEsol. (This application was the first chronologically,
and led to the development of the fitting procedure based on
the Murnaghan EoS.) Calculation data and E-V curves are
made available in the supplementary material.68

B. Implementation

The RVO method was implemented and tested with
code written in Python 2.7.3, using the standard library and
Numpy/Scipy/Matplotlib.43–45 (The code is freely available;
details in the supplementary material.68) Non-linear fitting
to the Murnaghan EoS uses the curve_fit routine in the
Scipy Python library, which accesses Minpack, an open-
source Fortran library.44 This implements least-squares fitting
with the Levenberg-Marquardt algorithm.46 Initial guesses of
50.0 eV Å

−3
and 5.0 were used for the k ′ and k ′0 parameters,

respectively.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.198.8.192 On: Fri, 14 Oct

2016 15:00:35



184101-6 Jackson et al. J. Chem. Phys. 143, 184101 (2015)

V. RESULTS

A. II-VI binary chalcogenide semiconductors

1. Simulated application across a range of methods

For PbS there is a significant range in equilibrium lattice
parameters for different exchange-correlation functionals,
corresponding to a maximum volume difference of over 10%,
between the LDA and B3LYP calculations (Figure 1). Values
are tabulated in Table I and compared to a recent low-
temperature study by Knight.23 The computed values are
similar, but slightly different, to the computational results
reported by Hummer et al.47 Direct bandgaps were also
calculated at each volume expansion, at the special k-point
X for the lead compounds and at Γ for the zinc compounds.
(Note that PbS and PbTe have another, smaller direct bandgap
at the L point.) It can be seen in Figure 4 that over the
lattice-parameter expansion and contraction of up to 5%,
the bandgaps vary by around 1 eV, with the direction of

FIG. 4. Volume-dependence of calculated direct bandgaps at Γ (ZnS, ZnTe)
and X (PbS, PbTe) with the HSE06 and B3LYP hybrid DFT functionals.
Results as a function of volume (temperature) for PbTe have previously
been reported in Ref. 48. The behaviour is characteristic of a positive and
negative bandgap deformation potential for the Pb and Zn semiconductors,
respectively. The volume expansion range of 0.86–1.16 corresponds to lattice
parameter expansions and contractions of 5% in each dimension. Markers
indicate the calculated values.

change depending on the structure type and chemistry. In
this case, using a LDA-predicted geometry for a “single-shot”
B3LYP calculation would lead to a difference in bandgap of
∼0.4 eV compared to that at the equilibrium geometry for
B3LYP.

An iterative application of the RVO procedure was then
simulated from the data. The Murnaghan EoS (Eq. (36)) in
its integrated form (Eq. (37)) was fitted to each E-V curve
from DFT calculations. This allowed energy and pressure
to be calculated for arbitrary volumes without carrying out
additional DFT calculations,

P =
k0

k ′0
*
,

(
V0

V

)k′0
− 1+

-
, (36)

E = E0 + k0V0

(( V
V0

)1−k′0
· 1

k ′0(k ′0 − 1) +
V

k ′0V0
− 1

k ′0 − 1

)
.

(37)

The quality of these fits was sufficient for this exercise, with
RMS fitting errors of <1 meV. Fitting parameters and full
data are included in ESI. For each “test functional”-“reference
functional” pair, the minimum volume (corresponding to the
fitting parameter V0) of the reference functional was taken as
the initial volume guess, and an external pressure calculation
modelled by evaluating the pressure at this volume using the
EoS for the test functional. This refined pressure and volume
was then used as the basis for further iterations. The external
pressure over successive iterations is shown for PbS in Figure 5
for each combination of functionals; convergence is rapid with
the residual pressure dropping almost logarithmically with
subsequent steps, typically by a factor of ∼103 in three steps.

2. Comparison with a standard
optimisation procedure

In general terms, a direct optimisation with method B will
take Nopt,B steps, each requiring an average computing time
tB, to converge to the equilibrium volume. Constructing an
EoS for RVO using method A requires NEoS,A optimisations,
which, as for method B, take Nopt,A steps of time tA. We note
that in most cases Nopt,B will be larger than Nopt,A, since the
direct optimisation with method B must adjust the internal
coordinates, cell shape, and volume, while the optimisation
with method A needs only to optimise the internal coordinates
and the shape. Subsequent application of NRVO iterations of
the algorithm then requires 1 + NRVO single-point calculations
using method B, each again requiring tB time. RVO is expected
to be more efficient than a direct optimisation with method B
if the following inequality holds:

NEoS,ANopt,AtA + (1 + NRVO) tB < Nopt,BtB. (38)

The cubic systems considered in this section, for which
the cell volume is the only degree of freedom, represent
a special case where Nopt,A = 1. We assume that energy
gradients are available with method B and that the optimisation
algorithm would converge in three steps, i.e., Nopt,B = 3. This
is reasonable if a good estimate of the starting volume is
available, such as a room-temperature lattice constant. The
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FIG. 5. Residual pressures following six iterations of volume optimisation of PbS using different “reference”/“test” combinations of exchange-correlation
functionals. The “reference” refers to the functional used for the EoS (“method A”), while the groups of bars correspond to the functionals used in simulated
single-point calculations (“method B”). Note that the pressure is presented on a logarithmic scale.

inequality simplifies to

NEoS,AtA + (1 + NRVO) tB < 3tB; (39)

it can be seen that RVO will outperform a direct optimisation
if a suitable pressure is obtained after one iteration while
tA < tB

NEoS,A
.

As a concrete example, we compared a direct optimisation
of PbS with HSE06 to an optimisation with RVO using PBEsol
and HSE06 as method A and method B, respectively. The
initial structure for both optimisations was the experimentally
measured room temperature volume, and an 11-point EoS
for RVO was computed about this value using PBEsol. The
direct optimisation used a quasi-Newtonian algorithm as
implemented by VASP (with the input tag "IBRION=1"). Both
sets of calculations were performed on a dual-CPU Intel Xeon
workstation with 12 physical cores and 64 Gb RAM, allowing
the timings to be compared directly. The comparison is given
in Table II.

In this test, a single-point calculation with HSE06 was
on average 150 times more expensive than a calculation with
PBEsol; this is both due to the higher complexity of non-local
hybrid functionals compared to semi-local GGA methods, and
to the different scaling properties with the number of k-points
used to sample the Brillouin zone. With the force convergence
criterion of 10−2 eV Å−1 for direct optimisation, the pressure
was reduced to −0.1 kbar from an initial pressure of 3.42 kbar

in three steps, taking 4.75 h on our test hardware. A single
iteration of RVO yielded a pressure of 0.15 kbar in 4.18 h,
while a second iteration yielded 0.03 kbar in a total time of
6 h.

TABLE II. Comparison of a direct HSE06 volume optimisation and one and
two iterations of the RVO algorithm in determining the equilibrium volume
of PbS. For each step, the total time for each step is recorded alongside the
cell volume and pressure after the cycle where appropriate. For the direct
optimisation, the timings of the three steps are printed alongside the total
for the complete calculation, so the latter includes additional operations such
as setup time and is slightly longer than the sum of the three electronic
minimisations.

Algorithm Step t /s V /Å3 p/kbar

Direct (HSE06)

1 6 669 52.21 3.42
2 5 808 52.63 −1.45
3 4 509 52.50 −0.10

Total 17 038

RVO

PBEsol EoS 47
HSE06 1 8 234 52.21 3.39
HSE06 2 6 754 52.49 0.15

Total (1 iter) 15 035
HSE06 3 6 701 52.50 0.03

Total (2 iters) 21 736
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It can be seen from the data in Table II that the direct
optimisation takes on average less time per force calculation
than RVO; the procedure implemented in VASP re-uses
calculated wavefunctions to speed up the convergence of the
second and third steps. In this case, we found that one of the
conjugate-gradient electronic-minimisation cycles during the
first single-point calculation for the RVO algorithm took some
1500 s longer than both the other steps in this series and the
first step of the quasi-Newtonian volume optimisation, despite
the latter being notionally an identical calculation. This artefact
contributes significantly to the cost of the single-iteration RVO
calculation.

Nonetheless, even for this relatively simple test case,
useful savings in computing time could potentially be obtained
in practice with RVO. Given the poor scaling of computational
cost with system size when using advanced electronic-
structure methods, we would expect more substantial savings
for more complex unit cells. This would also be true in systems
where direct optimisation requires the minimisation of a larger
number of degrees of freedom, leading a larger number of
steps with method B, which is the subject of the following
case studies.

B. Quaternary sulfide Cu2ZnSnS4

Cu2ZnSnS4 (CZTS) is an attractive light-absorbing mate-
rial for thin-film photovoltaics, with a direct bandgap and
consisting of earth-abundant components, which has attracted
significant experimental49–53 and computational54–58 research
effort. In the search for new materials for solar energy
conversion, the prediction of accurate bandgaps from first-
principles is a serious challenge and CZTS represents a suitable
case for probing the effect of crystal structure.

An initial structure for CZTS in the kesterite phase,
optimised with PBEsol, was obtained during previous work.59

This was reduced from a conventional 16-atom body-centered-
tetragonal cell with Ī4 symmetry to the corresponding 8-atom
primitive cell using Spglib.60 A set of seven structures was
obtained for both cells by multiplying each lattice vector by
a scale factor from 0.97 to 1.03 and performing a local opti-
misation of the atomic positions, this forming the “method A”
energy-volume curves. In addition to this isotropic scaling,

an additional set of structures were calculated including
optimisation of the cell shape (i.e., the tetragonal c/a ratio) for
each volume point. The iterative RVO procedure was followed
in order to minimise the pressure and obtain a more accurate
electronic structure using the HSE06 functional. The results
are given in Table III; pressure minimisation was rapid in all
cases, decreasing logarithmically with each step.

We note that the resulting lattice parameters from these
calculations, especially those using the primitive cell, are very
close to both the experimental lattice parameter a = 5.427 Å
and theoretical lattice parameter a = 5.448 Å reported by Paier
et al. following a conventional optimisation procedure with a
variant of the HSE functional.61 We also note a bandgap shift
of almost 0.1 eV when the E-V curve was provided by a
non-isotropic set of primitive lattices.

This case also highlights the importance of internal
structure optimisation. After two steps of optimisation using
the E-V curve further calculations were carried out, employing
the HSE06 exchange-correlation functional, where the internal
atomic positions were relaxed while fixing the unit cell. As
shown in the table, these lead to an increase in the absolute
pressure, but also a considerable improvement in the bandgap
estimation compared to experimental measurements. Previous
electronic structure studies have shown that the bandgap of
CZTS is highly sensitive to the S positions, which correspond
to deviations away from the ideal tetrahedral coordination
environment.55 In the ideal kesterite crystal structure, the metal
nuclei all occupy high symmetry Wyckoff positions (2a and
2c by Cu, 2d by Zn, and 2b by Sn). However, the sulfur
anions occupy the lower symmetry 8g positions, with x, y ,
and z displacement parameters. The change of ∼0.3 eV in the
bandgap following further optimisation (Table III) emphasises
the importance of internal relaxations for quantitative studies
of electronic structure.

C. Metal-organic framework HKUST-1

In 1999, Williams and co-workers isolated Cu3(btc)2
(HKUST-1).62 Since then this material has been widely studied
in the field of metal-organic frameworks (MOFs), with possi-
ble applications in catalysis, ionic, and electrical conductivity,
photovoltaics, batteries, and gas capture.63 First-principles

TABLE III. Results from application of RVO to Cu2ZnSnS4, using the HSE06 functional and a PBEsol-derived
E-V curve. The unit of pressure P is kbar (108 Pa) and volumes V are given in Å3. a is the lattice parameter in Å;
these are calculated as a mean over the a and b vectors (crystal symmetry is not enforced in FHI-AIMS). Eg is
the electronic bandgap in eV taken from the Kohn-Sham eigenvalues at the Γ-point. The methods in parentheses
refer to the process by which the E-V curve was generated; isotropic expansion energies with FHI-aims and
volume-conserving relaxations with VASP. Iteration “2*” is the data from a final set of calculations, where the
internal atomic positions are relaxed while maintaining the unit cell from iteration 2.

Conventional cell Primitive cell Primitive cell
(isotropic expansion) (isotropic expansion) (constrained relaxation)

Iteration P V a Eg P V a Eg P V a Eg

0 22.82 309.12 5.38 1.26 17.49 155.43 5.38 1.23 17.49 155.43 5.38 1.23
1 −1.23 318.03 5.40 1.18 −0.64 158.87 5.42 1.15 −1.35 159.00 5.44 1.13
2 0.00 317.56 5.40 1.19 −0.01 158.74 5.42 1.15 0.02 158.73 5.43 1.14

2* 7.46 317.56 5.40 1.49 10.17 158.74 5.42 1.48 10.31 158.73 5.43 1.47
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FIG. 6. (a) HKUST-1 features a peri-
odic array of 32 Cu(II)-Cu(II) paddle-
wheels per crystallographic unit cell.
(b) The favoured magnetic structure de-
pends on the Cu-Cu separation: antifer-
romagnetic (AFM) and ferromagnetic
(FM) states are accessible. (c) The va-
lence band energy (ionisation poten-
tial) is sensitive to the magnetic struc-
ture (calculated using the procedure
outlined in Ref. 66). A “single-shot”
HSE06 calculation on the PBEsol struc-
ture favours the FM state (blue), whilst
the corrected structure favours the ex-
perimentally observed AFM state (red).

calculations of MOF properties have traditionally posed chal-
lenges for computational chemists because they combine large
unit cells with complex organic and inorganic components.

HKUST-1 features an additional layer of complexity: it is
composed of Cu-Cu “paddlewheel” inorganic regions, where
each Cu(II) atom is associated with an unpaired electron and
each paddlewheel is antiferromagnetically (AFM) coupled in
the ground state configuration.64,65 The magnetic interactions
are highly sensitive to the Cu-Cu separation. Moreover,
previous studies66,67 have shown that the ionisation potentials
and bandgaps of porous materials are sensitive to cell pressure
and volume, similar to some of their inorganic counterparts.
HKUST-1 represents an extreme case, where deviations from
the equilibrium Cu-Cu distance result in spin flipping and
formation of a ferromagnetic (FM) state, which impacts the
electronic structure.

Typically, PBEsol-optimised structures agree with low-
temperature experimental measurements of MOFs to within
1%. This is the case here, and PBEsol also reproduces the
correct AFM state. However, a single-point HSE06 calculation
on the PBEsol structure yields an incorrect FM ground-state,
as shown in Fig. 6, with an associated HSE06 cell pressure
of −13.98 kbar (Table IV). In order to recover an accurate
HSE06 crystal structure (and the associated correct magnetic
structure), a single iteration of RVO was required. Notably,
there is not only a magnetic difference but also a significant
difference in predicted electronic bandgap and workfunction.

TABLE IV. Results from volume optimisation of HKUST-1. Residual pres-
sure P at each step, energies of valence band maximum (VBM) and conduc-
tion band minimum (CBM) with respect to the vacuum level, and the bandgap
(Eg ). All energies are given in eV and the pressures are in kbar (108 Pa).

Iteration P VBM CBM Eg

0 −13.98 −7.5 −3.7 3.8
1 −1.09 −7.0 −3.5 3.5

VI. CONCLUSIONS

The RVO approach presented here uses information from
an inexpensive energy-volume curve to obtain a useful estimate
of the optimal unit cell volume for a different level of
theory. Our focus was in bridging between different exchange-
correlation functionals within density functional theory, but a
measured bulk modulus or classical interatomic potential could
also be used to construct the reference energy-volume data. In
sensitive systems the volume change can lead to qualitative
differences in the electronic and magnetic properties. The
results depend on the initial volume estimate and are relatively
insensitive to the accuracy of the E-V curve. The RVO
method is expected to be competitive with conventional
optimisation approaches for simple symmetric unit cells, as
demonstrated for rocksalt structured PbS. For materials such
as Cu2ZnSnS4 that are sensitive to the atomic positions within
the unit cell, RVO may form part of the optimisation approach
but direct optimisation of internal positions is still needed.
More significantly, it allows for the improved estimation of
properties for large unit cells as demonstrated for HKUST-1,
where conventional optimisation methods may be infeasible.
As the only property used is the hydrostatic pressure, it is
possible to employ calculation methods which return a total
energy without analytical gradients by evaluating the energy
of a single finite difference. In this case, an improvement over
the “single-shot” may be obtained with two additional high-
level calculations and an inexpensive E-V curve; a fourth high-
level calculation would give an estimate of the convergence.
We expect that in many cases this will prove an economical
approach for the application of state-of-the-art electronic
structure calculations in the solid state.
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