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We compare the entanglement of formation with a measure defined as the modulus of the negative
eigenvalue of the partial transpose. In particular we investigate whether both measures give the same
ordering of density operators with respect to the amount of entanglement.
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I. INTRODUCTION

Entanglement is a key property that makes quantum
information theory different from its classical counter-
part [1]. Maximally entangled states, for example, are
the basis of quantum state teleportation which has re-
cently been demonstrated [2–4]. Under realistic condi-
tions, however, one will only be able to generate par-
tially entangled mixed states. It is then of interest to
be able quantify the amount of entanglement in such
states. Some measures of entanglement for mixed states
have been suggested recently [5–8]. They are useful, for
example, as upper bounds to entanglement purification
protocols [9–13] and to the quantum channel capacity of
certain quantum communication channels [5,8,14].

Unfortunately entanglement measures for mixed states
(which are relevant in the presence of noise) are usually
quite hard to calculate analytically, although an analytic
expression for the entanglement of formation of two spin-
1/2 particles is now known [15]. The general case remains
unsolved. For some problems, however, it is not so im-
portant to know the exact amount of entanglement (a
quantity that is not unique anyway). It would be com-
pletely sufficient if one knew which state of a family of
states has the most entanglement. To answer this ques-
tion it would be sufficient to find a (hopefully as simple
as possible) quantity that preserves the ordering of den-
sity operators with respect to entanglement, i.e. that for
two measures E1 and E2 and any two density operators
ρ1 and ρ2 we have that E1(ρ1) > (<)E1(ρ2) is equivalent
to E2(ρ1) > (<)E2(ρ2).

In this paper we will compare the entanglement of for-
mation for two spin-1/2 particles, for which a closed an-
alytical form is known, with a quantity which was pro-
posed in [16] as a way to quantify the degree of entan-
glement of a mixed state. The basis of this ‘measure
of entanglement’ is the Peres-Horodecki criterion for the
separability of bipartite systems [16,17]. Given a state
of, for example, two spin-1/2 systems one calculates the
partial transpose of the density operator. The state is
separable exactly if the partial transpose is again a pos-
itive operator. If, however, one of the eigenvalues of the
partial transpose is negative then the state is entangled.
One can now imagine that the amount of entanglement

is quantified by the modulus of this negative eigenvalue,
i.e. the larger it is, the larger the entanglement of the
state.

It is important to check whether this measure indeed
preserves the ordering of density operators as it has been
used for this purpose in some publications.

In section II we will explain the entanglement of for-
mation and subsequently we summarize some properties
of the negative eigenvalue measure of entanglement. Fi-
nally, we present in section III both a numerical and an
analytical comparison of the two measures of entangle-
ment with respect to the ordering of density operators
induced by them. In section IV we sum up the results of
this paper.

II. ENTANGLEMENT MEASURES

In this section we briefly describe some entanglement
measures in particular the entanglement of formation and
the negative eigenvalue measure of entanglement.

There are not very many good measures of entangle-
ment. One example is the relative entropy of entangle-
ment [6–8]. In fact, it gives rise to the most restrictive
upper bound on the channel capacity of the depolariz-
ing channel [8,14]. Unfortunately, even for two spin-1/2
particles no general analytical expression has been found
for it so far although many special cases can be solved
analytically.

A second measure of entanglement and actually the
first measure of entanglement that has been proposed for
mixed states is the entanglement of formation [5]. It ba-
sically describes the amount of entanglement that needs
to be shared previously in order to be able to create a
particular ensemble in a given state ρ by local opera-
tions. Mathematically, this means that we find that pure
state ensemble that realizes the state ρ and which has
the smallest amount of entanglement, i.e.,

EF (ρ) = min
ρ=
∑

i
pi|ψi〉〈ψi|

∑

i

piEvN (|ψi〉〈ψi|) , (1)

where {|ψi〉} is a set of not necessarily orthogonal pure
states. The entanglement of formation is known to be
larger than the relative entropy of entanglement which
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proves that in general quantum state purification meth-
ods cannot recover all the entanglement that has been
invested in the creation of the quantum state [8].

A nice feature of the entanglement of formation is the
fact that it can be solved analytically for a system of
two spin-1/2 particles [15]. This allows for fast numeri-
cal studies as the cumbersome minimization Eq. (1) can
be avoided.

The entanglement of formation can be expressed in
terms of the function

E(C) = h

(

1 +
√

(1 − C2)

2

)

(2)

where

h(x) = −x log2 x− (1 − x) log2(1 − x) . (3)

For a density operator ρ one defines the spin flipped state

ρ̃ = (ρy ⊗ ρy)ρ
∗(ρy ⊗ ρy) (4)

where the ∗ denotes the complex conjugate in the stan-
dard computational basis |00〉, |01〉, |10〉, |11〉. One then
finds the entanglement of formation to be

EF (ρ) = E(C(ρ)) (5)

where the so called concurrence is defined by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (6)

Here, λ1, ..., λ4 are the eigenvalues, in decreasing order,
of the Hermitean matrix R =

√√
ρρ̃

√
ρ. For properties

of this measure of entanglement the reader should con-
sult the literature [5,15]. It is interesting to note that
since E as a function of the concurrence C is a strictly
monotonous function and maps the interval [0, 1] on [0, 1]
C can in fact also be regarded as a measure for entangle-
ment.

We will now consider the negative eigenvalue of the
partial transpose of a density operator as a measure of
entanglement. In the next section we will then compare
it to the entanglement of formation.

For two spin-1/2 particles (which form the two systems
A and B) any disentangled state ρ can be written as the
convex sum of product states

ρ =
∑

i

piρ
A
i ⊗ ρBi . (7)

States which permit a representation of the form Eq. (7)
are also called separable. For two spin-1/2 particles there
is a simple criterion to decide whether a given state is sep-
arable or not [17,16]. One calculates the partial transpose
ρTB of the density operator ρ in the computational ba-
sis. This means that we transpose only one subsystem,
either subsystem A or B. If the resulting matrix is posi-
tive semidefinite then the density operator ρ is separable;

otherwise it is not. Therefore the partial transpose of an
entangled state has a negative eigenvalue and the idea of
the negative eigenvalue measure is to use the modulus of
the negative eigenvalue to quantify the entanglement of
the state ρ. In a mathematical form this reads as

EN (ρ) = |min{0, λTB

1 , λTB

2 , λTB

3 , λTB

4 }| (8)

where the λTB

i are the eigenvalues of the partial transpose
ρTB . However, we do not know whether this way of quan-
tifying the entanglement constitutes a proper measure of
entanglement. Therefore we will investigate in the next
section numerically whether the entanglement of forma-
tion and the negative eigenvalue measure are compatible
from a different point of view.

III. ORDERING INDUCED BY

ENTANGLEMENT MEASURES

We would expect that any two ‘good’ entanglement
measures should generate the same ordering of the den-
sity operators. This means that for two entanglement
measures E1 and E2 and any two density operators ρ1

and ρ2 we have that

E1(ρ1) > E1(ρ2) ⇔ E2(ρ1) > E2(ρ2) . (9)

Why do we expect this relation to be true? If in one
measure of entanglement ρ1 contains more entanglement
than ρ2 then we would expect that a quantum state pu-
rification method would generate more singlets from an
ensemble in state ρ1 than ensemble ρ2. If E2 is also a
measure of entanglement then we would expect that ρ2

would yield more singlets than ρ1. While this reasoning
is not strict, it nevertheless indicates that Eq. (9) should
be true for two ‘good’ measures of entanglement.

In the next two subsections we will now check whether
Eq. (9) is satisfied for the entanglement of formation EF
and the negative eigenvalue measure of entanglementEN .

A. An analytical comparison

For some classes of density operators we can easily
check analytically whether the relation Eq. (9) is true.
For pure states it is sufficient to consider states of the
form |ψ〉 = α|00〉 + β|11〉 as it follows from the Schmidt
decomposition [18]. The entanglement of formation EF
then reduces to the von Neumann entropy of entangle-
ment while the negative eigenvalue measure yields

EN (|ψ〉〈ψ|) = αβ = α
√

1 − α2. (10)

Both measures decrease monotonically with α so that for
pure states Eq. (9) is satisfied. It should be mentioned
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that for pure states |ψ〉〈ψ| with |ψ〉 = α|00〉 + β|11〉 the
concurrence C is given by

C(|ψ〉〈ψ|) = 2α
√

1 − α2; (11)

hence, also for arbitrary pure states ρ = |ψ〉〈ψ| the neg-
ative eigenvalue measure and the concurrence are con-
nected by the simple equation

C(ρ) = 2EN (ρ). (12)

Werner states are defined as

ρF =
4F − 1

3
|ψ−1〉〈ψ−1| + 1 − F

3
1, (13)

where |ψ〉 = (|01〉 − |10〉)/
√

2 is the singlet state and
F ∈ [1/4, 1]. The concurrence of Werner states is given
by C(ρF ) = 2F − 1 for F ≥ 1/2 (otherwise ρF is a sepa-
rable state) while the entanglement of formation is found
to be

EF (ρF ) = −µ log2 µ− (1 − µ) log2(1 − µ) (14)

with µ = 1/2 +
√

F (1 − F ). The negative eigenvalue
measure simply gives

EN (ρF ) = F − 1

2
, (15)

which means that Eq. (12) is also valid for Werner states.
Again, both measures decrease monotonically with F and
therefore Eq. (9) is satisfied.

Moreover, no counterexample to Eq. (9) can be con-
structed from pure states and Werner states, i.e. no two
density operators ρ1 and ρ2 can be found which violate
Eq. (9) when ρ1 is assumed to be a pure state and ρ2

corresponds to a Werner state. Because of the monotony
of E in Eq. (2) this can already be seen when comparing
the concurrences of ρ1 and ρ2 with the negative eigen-
value measure of the respective states: from Eq. (12) it
then immediately follows that

C(ρ1) > C(ρ2) ∧ EN (ρ1) < EN (ρ2) (16)

cannot be fulfilled for any value of F .

One may therefore suspect that Eq. (9) also holds for
arbitrary mixed states. To tackle the question whether
Eq. (9) is generally satisfied and hence the two entan-
glement measures induce the same ordering we have em-
ployed Monte Carlo simulations. If Eq. (9) is violated at
all, it is - roughly speaking - also of interest to investigate
how ‘badly’ it is violated after all. In the following sub-
section we present the results of the numerical test that
we have performed.

B. A numerical comparison

In order to test the ordering induced by the two entan-
glement measures under consideration we have numeri-
cally generated a million pairs of random density matri-
ces with respect to a certain well defined distribution. In
the case of two spin-1/2 particles, which is the case of in-
terest in this paper, one has to generate random density
operators - i.e. linear, self adjoint, positive semidefinite
operators ρ of finite trace (= 1) - acting on the four di-
mensional Hilbert space isomorphic to C

2⊗C
2 . One can

represent ρ by the decomposition

ρ =

4
∑

i=1

pi|ψi〉〈ψi| (17)

with pairwise orthogonal projections, where pi ≥ 0 and
∑

i pi = 1. This in turn corresponds to a 4× 4 matrix of
the form

ρ = UDU †, (18)

where the diagonal matrix D is defined by Dij = δijpi.
A plausible choice for the ensemble of unitary 4×4 ma-

trices which can be used to construct density matrices ac-
cording to Eq. (18) is the one with the normalized Haar
measure on the group of unitary matrices U(4) which
is called the circular unitary ensemble [19]. It has been
shown in [20] that random unitary matrices representa-
tive for the circular unitary ensemble can be obtained as
follows: Let us set

U= U (1,2)(φ12, ψ12, χ12) (19)

×U (2,3)(φ23, ψ23, 0)U (1,3)(φ13, ψ13, χ13)

×U (3,4)(φ34, ψ34, 0)U (2,4)(φ24, ψ24, 0)U (1,4)(φ14, ψ14, χ14),

where the complex 4 × 4 matrices U (i,j), i, j = 1, ..., 4,
with three real parameters φ, χ, and ψ are given by

U
(i,j)
kl (φ, ψ, χ) =































1, k = l, k 6= i, j,
sinφeiχ, k = i, l = j,
cosφeiψ , k = l = i,
cosφe−iψ , k = l = j,
− sinφe−iχ, k = j, l = i,
0, otherwise.

(20)

We now take ψij and χij to be independent random vari-
ables with a uniform distribution in the interval [0, 2π),
and for a given random number ξ distributed uniformly
in the interval [0, 1) we choose φij to be arcsin(ξ1/(2i))
for i = 1, ..., 3. Matrices generated in this way are
then random unitary matrices of the wanted type (ex-
cept for a random phase which is of no significance for
our purposes). Finally, a set of random density matri-
ces can be obtained by appropriately choosing the di-
agonal matrices D. More precisely, the random vector
with entries p1, ..., p4 should be uniformly distributed on
the manifold defined by

∑

i pi = 1. According to [21]

this can be achieved, e.g., by setting p1 = 1 − ξ
1/3
1 ,

3



p2 = (1 − ξ
1/2
2 )(1 − p1), p3 = (1 − ξ3)(1 − p1 − p2), and

p4 = 1 − p1 − p2 − p3, where again, ξ1, ξ2, and ξ3 are
random numbers drawn with respect to a uniform distri-
bution in the interval [0, 1).

To investigate whether Eq. (9) is satisfied we now
draw random density matrices from the previously de-
scribed ensemble and calculate the eigenvalues of the par-
tial transposes and the eigenvalues of the products of the
respective density operators with the spin flipped states.
After discarding those density matrices which correspond
to separable states we then determine values for EN and
EF as described in section II. Finally, we check for pairs
(ρ1, ρ2) whether the sign of

∆EF (ρ1, ρ2) =
EF (ρ1) − EF (ρ2)

EF (ρ1) + EF (ρ2)
(21)

and

∆EN (ρ1, ρ2) =
EN (ρ1) − EN (ρ2)

EN (ρ1) + EN (ρ2)
(22)

is identical. Fig. 1 shows a diagram in which ∆EF (ρ1, ρ2)
is plotted versus ∆EN (ρ1, ρ2) for 104 pairs (ρ1, ρ2) of ran-
dom density matrices. Although there is obviously a cer-
tain correlation between ∆EF and ∆EN , there are dots
in the second and the fourth quadrant of the diagram
which are associated with pairs of states which do not
satisfy Eq. (9). One can therefore conclude that in the
case of two spin-1/2 systems this relation is not satisfied
for arbitrary mixed states, and hence, the ordering in-
duced by the entanglement of formation EF and the one
induced by the negative eigenvalue measure EN is not
the same.

∆EF (ρ1, ρ2)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

∆EN (ρ1, ρ2)

FIG. 1. ∆EF (ρ1, ρ2) versus ∆EN (ρ1, ρ2) for 104 pairs
of entangled states (ρ1, ρ2). Pairs of states with
∆EF (ρ1, ρ2)∆EN(ρ1, ρ2) < 0 are represented by dots in the
second and fourth quadrant.

It is interesting to note that most of the randomly
drawn density operators do not correspond to entangled
but to separable states; so more density matrices have to
be discarded than can be kept for the investigation. In
fact, from the numerical simulations we can estimate the
probability PE that a created mixed state is entangled as
PE ≈ 0.365±0.001, which is in complete agreement with
the analytical and numerical findings presented in [21].

From the Monte Carlo simulation we can also give a
rather accurate estimate of how likely it is to find a pair
of states which violates Eq. (9), given that both states
are entangled. From the relative frequency of a violation
for a million pairs of density matrices we obtain for the
estimate of this probability PV

PV ≈ 0.047± 0.001. (23)

EN

0

0.25

0.5

0 0.25 0.5 0.75 1

EF
FIG. 2. Distribution of states: EN versus EF .

Now that we know that the ordering is different it is
interesting to see to what extent the values of EN (ρ) and
EF (ρ) differ for a given state ρ, or how these random
states are distributed in a diagram where EF is plotted
versus EN . Fig. 2 shows such a plot. Since the order-
ing induced by EF and EN is not the same, there is no
strictly monotonous function f : [0, 1] → [0, 1/2] such
that EN (ρ) = f(EF (ρ)) for all states ρ. This is also
obvious from Fig. 2. In Fig. 3 again the distribution
of states is shown, but this time the negative eigenvalue
measure is plotted versus the concurrence C. We can see
that most of the dots are located close to the diagonal
connecting (0, 0) and (1/2, 1); this diagonal corresponds
to states satisfying Eq. (12). Note that the numerical
simulation also strongly suggests that for a state ρ with
a certain value of C(ρ) the upper bound for the possible
values of the negative eigenvalue measure EN (ρ) is given
by C(ρ)/2, that is, that in general C(ρ) ≥ 2EN (ρ) holds
for any state ρ.
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Furthermore, since for pure states the ordering induced
by the two entanglement measures is the same but in gen-
eral it is not, it is of interest to investigate the dependence
of the probability that Eq. (9) is violated for a pair of
entangled states (ρ1, ρ2) on the ‘purity of those states’
with respect to a certain characterization of the purity.
In Fig. 4 we show the relative number of pairs (ρ1, ρ2) of
states which do not satisfy Eq. (9) versus S = S1 + S2

based on a million pairs of entangled states. Here, S1

and S2 are the linear entropies

Si = tr(ρi − ρ2
i ), i = 1, 2, (24)

of ρ1 and ρ2, respectively, as commonly employed, e.g.,
in decoherence studies [22]. Obviously, pure states cor-
respond to a vanishing linear entropy.

EN

0

0.25

0.5

0 0.25 0.5 0.75 1

C
FIG. 3. Same as Fig. 2 with EN versus C.

We observe that the fraction of pairs (ρ1, ρ2) of states
with ∆EN (ρ1, ρ2)∆EF (ρ1, ρ2) < 0 increases monotoni-
cally with the sum of the linear entropies of the respec-
tive states. This indicates that the more mixed the two
states are with respect to the arithmetic mean of their
linear entropies, the larger is the probability that this
pair violates Eq. (9). Above a certain cut off no pairs of
entangles states can be found at all - the numerical data
shown in Fig. 4 give an estimate for the probability den-
sity of finding a pair of entangled states with a certain
value of S (compare also [21]).

It should finally be mentioned that in [21] yet an-
other measure of entanglement incorporating the partial
transpose is proposed: For a given state ρ the quantity
E =

∑4
i=1 |λTB

i | − 1 is taken as a measure, where again,

the λTB

i denote the eigenvalues of the partial transpose
ρTB of ρ. While the actual value of E for a given state
is of course different from that of EN , from numerical
simulations we come to the same conclusion that the or-
dering induced by this measure is different from the one
induced by the entanglement of formation EF .

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2
0

1

2

3

4

5

S
FIG. 4. Estimate for the probability density of finding a

pair of states (ρ1, ρ2) with a certain value of S = S1 + S2

(+). The solid line is a cubic spline interpolation. Appar-
ently, above a certain cut off there are no pairs of entangled
states any more. The histogram shows the relative number
of pairs violating Eq. (9) compared to the total number of
pairs of entangled states for a given value of S. Note that the
scaling is different for both plots: the right axis belongs to
the estimate for the probability density (+), the left one to
the relative number of violating pairs (histogram).

IV. SUMMARY

We have compared the entanglement of formation with
a potential measure of entanglement that is given by the
negative eigenvalue of the partial transpose of the den-
sity operator of the system. In particular the ordering of
density operators with respect to the amount of entan-
glement induced by the two measures has been compared
both numerically and analytically. We have shown that
the negative eigenvalue measure does not induce the same
ordering as the entanglement of formation. Therefore we
do not expect it to be a ‘good’ measure of entanglement.
In particular it cannot, in general, be used to determine
the most entangled state for a given family of density
operators as it has been used previously.
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