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Abstract

The present work deals with the general contact problem for coupled magneto-
electro-elastic materials. Despite of the relevant technological applications,
this topic of research has been treated only in some analytical works. But
analytical solutions lack the generality of numerical methodologies, being
restricted typically to simple geometries, loading conditions, idealized con-
tact conditions and mostly taking into account transversely isotropic mate-
rial symmetry with the symmetry axis normal to the contact surface. In
this work, a numerical procedure for the three-dimensional frictional contact
modelling of anisotropic coupled magneto-electro-elastic materials in pres-
ence of both electric and magnetic fields is presented for the first time. An
orthotropic frictional law is considered, so anisotropy is present both in the
bulk and in the surface. The methodology uses the boundary element method
with explicit evaluation of the fundamental solutions in order to compute the
magneto-electro-elastic influence coefficients. The contact model is based on
an augmented Lagrangian formulation and it uses an iterative Uzawa scheme
of resolution. Conducting, semi-conducting and insulated electric and/or
magnetic indentation conditions, as well as orthotropic frictional contact
conditions are considered. The methodology is validated by comparison with
benchmark analytical solutions. Then, additional exploration examples are
presented and discussed in detail, revealing that magneto-electric material
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coupling, conductivity contact conditions lead to a significant effect on the
indentation force and contact pressure distributions. The influence of friction
in electric and magnetic potential responses has been also proved to be very
significant. Moreover, tangential loads exhibit an important influence both
on the maximum values of the electric and magnetic potentials as well as on
their distributions.

Key words: Multifield contact, Contact mechanics, Magneto-electro-elastic
materials, Friction, Indentation, Boundary Element Method

1. Introduction

The Magneto-Electro-Elastic (MEE) coupling present in multiferroic com-
posites consisting of Piezoelectric (PE) and Piezomagnetic (PM) phases has
been focus of intensive research in last years, due to its wide and impor-
tant technological applications at multiple scales, such as sensors, actuators,
filters, oscillators, phase shifters, memory devices, and general smart struc-
tures [1]. On the other hand, the study of the contact problem is necessary
in order to address problems like positioning of micro- and nano-mechanisms
and various functional devices, as well as in experimental testing and char-
acterization of this kind of materials. Therefore, in this emerging topic of
research, the pursuit of powerful and efficient capabilities for modelling this
coupled multifield contact problem become crucial in order to predict and
understand the underlying physics in the interaction of electro-magnetic and
mechanical processes.

Because of the mentioned interest, several analytical works devoted to
model the contact problem in coupled MEE materials have recently appeared.
One of the first works which study this problem was due to Hou et al. [2], who
obtain the Boussinesq and Cerruti solutions and apply them to the frictional
Hertz problem in transversely isotropic materials. Analytical solutions for
the half-space indentation by rigid flat-ended, conical, and spherical punches
in transversely isotropic MEE materials have been presented and discussed in
detail by Chen et al. [3]. Indenters may be in any combination of conducting
and insulating for both electric and magnetic fields. Both works are based
on Fabrikant’s method of potential theory for elastic materials [4]. Moving
rigid punch solutions in two-dimensions (2D) have been considered by Zhou
et al., both for frictionless [5, 6] and frictional contact [7, 8, 9, 10, 11]. 2D
graded materials are further considered in [12].
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Most of the analytical works modelling the MEE problem are extensions
of previous efforts related to the modelling of the contact problem for mate-
rials with electro-mechanical coupling. For instance some of those mentioned
above are based on the works by Ding et al. [13, 14, 15]. It should be men-
tioned also the work by Giannakopoulos and Suresh [16] who presented a
theory of indentation of piezoelectric materials by using the Hankel trans-
form for the three typical indenters (i.e. flat, conical, and spherical). See
also further references in Rodríguez-Tembleque et al. [17]. For transversely
isotropic PM materials, the frictionless axisymmetric indentation by flat rigid
punch has been studied by Giannakopoulos and Parmaklis [18]; and the 2D
exact solution of the singular integral equation corresponding to the indenta-
tion by a sliding rigid punch with flat or cylindrical profile has been presented
by Zhou and Lee [19].

But all these works lack the generality of numerical methodologies, be-
ing restricted to simple geometries (a few axisymmetric indenters on a half-
space), loading conditions, idealized contact conditions and taking into ac-
count almost uniquely transversely isotropic material symmetry with the
material symmetry axis being normal to the contact surface. These limita-
tions can be overtaken with advanced numerical formulations. Mathematical
models in variational form for coupled electro-elastic frictional contact prob-
lems have been proposed (e.g. [20, 21]); and some numerical schemes based
in the Finite Element Method (FEM) have been implemented. Quasistatic
2D contact problems between solid-foundation and a PE material and an
electro-visco-elastic material have been studied, for instance, by Sofonea et
al. [22, 23, 24, 25] under frictionless conditions; and by Sofonea et al. [26]
incorporating isotropic frictional contact conditions. Recently, Rodríguez-
Tembleque et al. [17] presented a Boundary Element Method (BEM) formu-
lation to study 3D frictional contact of piezoelectric bodies in the presence of
electric fields. However, to the best of the authors’ knowledge, no numerical
formulation for solving the coupled MEE contact problem is available in the
literature.

BEM is an alternative particularly advantageous over other numerical
techniques when it is used for solving the contact problem in finite, semi-
finite or infinite domains. The ability of the BEM to accurately represent
steep solution gradients is well-known and the reduction in the degrees of
freedom becomes particularly attractive to handle the concerning problem,
since for multifield materials the number of degrees of freedom per node
notably increases.
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The aim of this work is to present and to implement a BEM formula-
tion for the 3D coupled modelling of the sliding contact interaction between
anisotropic magneto-electro-elastic materials in presence of both electric and
magnetic fields. An orthotropic frictional law is considered, so anisotropy is
present both in the bulk and in the surface. The paper is organized as fol-
lows: In Section 2, the basic governing equations are presented. Non-linear
mechanical and magneto-electrical contact conditions are presented in Sec-
tions 3 and 4. The literature on BEM formulations is quite extensive, so in
Section 5.1 we briefly present the basic ideas of the BEM with emphasis in the
explicit evaluation procedure for the fundamental solutions. MEE contact
discrete equations are presented as an algebraic equation system in Section
5.2. Then, the solution method is presented in Section 6. The methodology
is validated by comparison with benchmark analytical solutions in Section 7,
where additional exploration examples are presented and discussed in detail.
We close the paper with some concluding remarks.

2. Coupled magneto-electro-elastic equations

Let consider a 3D region Ω ⊂ R
3 with a piecewise smooth boundary

∂Ω occupied by a homogeneous MEE anisotropic material, in reference at a
Cartesian coordinate system (xi) (i = 1, 2, 3). Small deformations are consid-
ered, so the infinitesimal strain tensor γ, the electric fieldE and the magnetic
field H are obtained, respectively, from derivatives of the displacements u,
the electric potential ϕ and the magnetic potential ψ as

γij = (ui,j + uj,i)/2 in Ω,
Ei = −ϕ,i in Ω,
Hi = −ψ,i in Ω.

(1)

In the absence of any body sources, the mechanical stress σ, the electric
displacement D and the magnetic induction B are divergence-free fields,
that is,

σij,j = 0 in Ω, (2)

Di,i = 0 in Ω, (3)

Bi,i = 0 in Ω, (4)

where repeated dummy indices indicate summation. In linear MEE materi-
als, the elastic, electric and magnetic fields are coupled through the consti-
tutive law

σij = cijklγkl − elijEl − qlijHl in Ω, (5)

4
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Di = eiklγkl + εilEl + λilHl in Ω, (6)

Bi = qiklγkl + λilEl + µilHl in Ω, (7)

where c, ε and µ denote the components of the elastic stiffness tensor, the
dielectric permittivity tensor and the magnetic permeabilities tensor, respec-
tively; e, q and λ are the PE, PM and ME coupling coefficients, respectively.
These tensors satisfy the following symmetries

cijkl = cjikl = cijlk = cklij, ekij = ekji, qkij = qkji, (8)

εkl = εlk, λkl = λlk, µkl = µlk.

Moreover, the elastic constant, dielectric permittivity, magnetic permeability
tensors are positive definite; and the PE, PM and ME coupling tensor are
positive semi-definite.

Given a MEE region Ω, three partitions of the boundary ∂Ω are con-
sidered to define the mechanical, the electrical and the magnetic boundary
conditions (see Fig. 1). The first one divides ∂Ω into three disjoint parts
such that ∂Ω = ∂Ωu ∪ ∂Ωt ∪ ∂Ωc. Here, ∂Ωu denotes the boundary on which
displacements ũi are prescribed; ∂Ωt denotes the boundary on which the
tractions t̃i = σijνj are imposed, being νj the components of the outward
unit normal vector to the boundary ∂Ωt; and ∂Ωc represents the potential
contact surface, which have outward unit normal vector with components
νci . The second partition of ∂Ω is such that ∂Ω = ∂Ωϕ ∪ ∂Ωq ∪ ∂Ωc, being
the electrical potential ϕ̃ prescribed on ∂Ωϕ, and the electrical charge flux
q̃ = Diνi known on ∂Ωq, where νi is the outward unit normal vector on this
part of the boundary. Last partition of ∂Ω regards to the magnetic bound-
ary conditions, so ∂Ω = ∂Ωψ ∪ ∂Ωs ∪ ∂Ωc is satisfied. In this case, magnetic
potential ψ̃ is prescribed on ∂Ωψ and the normal magnetic flux s̃ = Biνi on
the boundary ∂Ωs, with outward unit normal components νi.

For a well-posed problem either Dirichlet or Neumann boundary condi-
tions must be prescribed at each boundary point outside the contact zone
∂Ωc.

Under small displacement assumption, a common unit normal vector νci
can be considered in ∂Ωc. So the nonlinear boundary contact conditions are:

σijν
c
j = pi on ∂Ωc,

Diν
c
i = −κe(ϕ− ϕo) on ∂Ωc,

Biν
c
i = −κm(ψ − ψo) on ∂Ωc,

(9)
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Figure 1: The physical setting.

where pi is the contact traction: pν = p · νc is the normal contact pressure
and pτ = p − pνν

c is the tangential contact traction; κe and κm are the
electrical and magnetic conductivity coefficients, respectively; and ϕo and ψo
denote, respectively, the electric and magnetic potentials of the foundation
or the indenter.

3. Mechanical contact conditions

The unilateral contact law involves Signorini’s contact conditions in ∂Ωc:

gν ≥ 0, pν ≤ 0, gν pν = 0, (10)

where gν = (go − uν), being go the initial gap between the bodies and uν =
u · νc.

The normal contact constraints presented in (10) can be formulated as:

pν − PR
−

(p∗ν) = 0, (11)

where PR
−

(•) is the normal projection function (PR
−

(•) = min(0, •)) and
p∗ν = pν + rνgν is the augmented normal traction. The parameters rν is the
normal dimensional penalization parameter (rν ∈ R

+).
In general, an orthotropic frictional constitutive law is considered for

anisotropic MEE materials: ||pτ ||µ ≤ |pν |. According to [29, 30], this
Coulomb friction restriction can be summarized as:

||pτ ||µ < |pν | ⇒ ġτ = 0 on ∂Ωc,
||pτ ||µ = |pν | ⇒ pτ = −|pν |M2ġτ/||ġτ ||∗µ on ∂Ωc.

(12)

6
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In the expressions above, the tangential slip can be assumed for quasistatic
contact problems as ġτ ≈ ∆gτ = go,τ − uτ (i.e. go,τ is the tangential trans-
lation and uτ = u − uννc), M is a diagonal matrix (i.e. M = diag(µ1, µ2)),
|| • ||µ denotes the elliptic norm

||pτ ||µ =

√
(pe1/µ1)

2 + (pe2/µ2)
2 (13)

and the norm || • ||∗µ is dual of || • ||µ

||ġτ ||∗µ =
√

(µ1ġe1)
2 + (µ2ġe2)

2, (14)

being µ1 and µ2 the principal friction coefficients in the tangential direc-
tions {e1, e2}. In this work {e1, e2} are coincident with the x1 and x2 axis,
respectively.

The frictional contact constraints (12) can be also formulated using con-
tact operators as:

pτ − PEρ(p
∗
τ ) = 0, (15)

where p∗τ = pτ −rτM2ġτ (rτ ∈ R
+) is the augmented tangential traction and

PEρ(•) : R
2 −→ R

2 is the tangential projection function defined in [30] as

PEρ(p
∗
τ ) =

{
p∗τ if ||p∗τ ||µ < ρ,
ρ p∗τ/||p∗τ ||µ if ||p∗τ ||µ ≥ ρ,

(16)

with ρ = |PR
−

(p∗ν)|.

4. Magneto-electrical contact conditions

The electrical and magnetic conductivity coefficients in (9) can be defined
as: κe = κe(pν) and κm = κm(pν), being

κe(pν) =

{
0 if pν = 0,
κ∗e if pν < 0,

(17)

and

κm(pν) =

{
0 if pν = 0,
κ∗m if pν < 0,

(18)

what allows to describe perfect electrical and magnetic contact conditions
similarly to the Signorini’s contact conditions. In the expressions (17) and

7
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(18), κ∗e and κ∗m are the conductivity parameter similar to [17]. So, according
to (17) and (18), the electric and magnetic contact conditions (9) show that
when there is no contact (i.e. pν = 0) on ∂Ωc the normal electric and mag-
netic fluxes vanish, and when there is contact, electric and magnetic charges
appear.

5. Boundary element formuation

5.1. Discretized MEE boundary integral equations

In this section, the matricial Barnett-Lothe representation for MEE ma-
terials, summarized in Appendix A, is used, so upper-case sub-indices range
from 1 to 5. This representation allow us to write the discretized boundary
integral equation for extended displacements at the source point x′ ∈ ∂Ω in
a compact form, and similar to its well-known purely mechanical counterpart
as

cJK(x
′)uJ(x

′)+
Ne∑

e=1

{
−
∫

∂Ωe

ŤJK(x
′ | x)uJ(x)dS(x)

}

=
Ne∑

e=1

{∫

∂Ωe

ǓJK(x
′ | x)tJ(x)dS(x)

}
.

(19)

In equation (19), uJ is the extended displacement vector containing the dis-
placements and the electric and magnetic potentials (see Appendix A for its
definition); tJ is the extended tractions vector containing the tractions, the
normal electric charge flux and the normal magnetic flux (see also Appendix
A). The matrix cJK depends on the local geometry of the boundary ∂Ω at the
point x′. Particularly, for a smooth boundary at x′ is equal to 1

2
δJK (being

δJK the extended Kronecker delta). Tensors ǓJK and ŤJK are the extended
displacement fundamental solution and the extended traction fundamental
solution at a boundary point x due to a unit extended source applied at
point x′, respectively. A key point in boundary integral formulations is the
availability and subsequent implementation of these fundamental solutions.
In this work, the scheme for the evaluation of the extended fundamental so-
lution proposed by Buroni and Sáez [32] has been implemented, which posses
the remarkable characteristics that it is exact, explicit and valid for math-
ematical degenerate and non-degenerate materials in the Stroh formalism
context. Appendix B presents a summary of these fundamental solutions for

8
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completeness. The strongly singular integral on the left-hand side in (19)
is evaluated in the Cauchy principal value sense, whereas the weakly singu-
lar integral on the right-hand side is evaluated as an improper integral. As
usual in this methodology, the boundary ∂Ω has been discretized into Ne

quadrilateral elements of surface ∂Ωe. The physical variables uJ and tJ are
approximated over each element ∂Ωe using linear shape functions in terms of
the nodal values. Applying a collocation procedure at each one of the bound-
ary nodes located at x′, equation (19) leads to a system of equations, that,
adding the boundary conditions, can be arranged such that the resulting
system of algebraic equations is

[
Axe Auc Aϕc Aψc Apc Aqc Asc

]





xe
uc
ϕc
ψc
pc
qc
sc





= F. (20)

In expression (20), xe collects the nodal external unknowns (i.e. the nodal
unknowns which are outside the contact zone); uc, ϕc andψc collect the nodal
contact displacements, and electric and magnetic potentials, respectively; pc
contains the normal and tangential nodal contact tractions (i.e. pν and
pτ ); and, qc and sc contains the nodal electric charges and magnetic fluxes,
respectively. MatricesAxe , Auc , Aϕc , Aψc , Apc , Aqc andAsc contain the free-
terms and corresponding integrals in equation (19) and vector F contains the
terms corresponding to the prescribed boundary conditions.

5.2. MEE contact discrete equations

The electric charge and the magnetic flux on every contact node i can be
expressed in terms of the electric and magnetic potential according to the
magneto-electric contact condition (9), (17) and (18), as:

(qc)i = −κe((pν)i)((ϕc)i − (ϕo)i), (21)

(sc)i = −κm((pν)i)((ψc)i − (ψo)i). (22)

9
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So equation (20) can be written as

[
Axe Auc Ãϕc Ãψc Apc

]





xe
uc
ϕc
ψc
pc





= F̃, (23)

being Ãϕc = Aϕc − κe(pν)Aqc , Ãψc = Aψc − κm(pν)Asc ,

F̃ = F− κe(pν)Aqcϕo − κm(pν)Ascψo (24)

and κe(pν) and κe(pν) diagonal matrices, i.e.:

κe(pν) = diag [ κe((pν)1), · · · , κe((pν)i), · · · , κe((pν)Nc
) ] , (25)

κm(pν) = diag [ κm((pν)1), · · · , κm((pν)i), · · · , κm((pν)Nc
) ] . (26)

Finally, the mechanical contact restrictions (11) and (15) are defined on
every contact node i as:

(pν)i − PR
−

( (pν)i + rν(gν)i ) = 0, (27)

(pτ )i − PEρ( (pτ )i − rτM
2(gτ )i ) = 0, (28)

where pν and pτ contain the normal and tangential contact tractions of every
contact node i and gν and gτ contain the normal and tangential mechanical
gap vectors, respectively.

Equations (23), (27) and (28) define the quasi-static MEE contact prob-
lem which can now be written in the following form

Θ(z) =

{
Axexe +Aucuc + Ãϕcϕc + Ãψcψc +Apcpc − F̃

pc − PCf
(p∗c)

}
= 0, (29)

being z = (xe,uc,ϕc,ψc,pc) a vector which collects the unknowns variables
and PCf

the contact operator: PCf
( (p∗c)i ) =

{
PR

−

( (p∗ν)i ),PEρ( (p
∗
τ )i )

}
.

10
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6. Solution method

The quasi-static MEE contact system (29) is solved using the Uzawa’s
method [27, 28, 29, 30]. To compute the variables at the load step (k), z(k) =

(x
(k)
e ,u

(k)
c ,ϕ

(k)
c ,ψ

(k)
c ,p

(k)
c ), we iterate using (n = 0, 1, 2, ...) index, initializing

z(0) = z(k−1) (i.e. p
(0)
c = p

(k−1)
c ).

First, we solve the following system:

[
Axe Auc Ãϕc Ãψc

]





xe
uc
ϕc
ψc





(n+1)

= −Apc p
(n)
c + F̃, (30)

being Ãϕc = Aϕc − κe(p(n)ν )Aqc , Ãψc = Aψc − κm(p(n)ν )Asc and F̃ = F −
κe(p

(n)
ν )Aqcϕo − κm(p(n)ν )Ascψo.

After solving the system of equations (30), contact tractions for every
contact node i are updated:

(p(n+1)ν )i = PR
−

( (p(n)ν )i + rν(g
(n+1)
ν )i ), (31)

(p(n+1)τ )i = PEρ( (p
(n)
τ )i − rτ M

2(∆g(n+1)τ )i ), (32)

where (g
(n+1)
ν )i = (g

(k)
o,ν)i − (u

(n)
ν )i, (∆g

(n+1)
τ )i = (g

(k)
o,τ )i − (u

(n)
τ )i and ρ =

|(p(n+1)ν )i|.
Finally, if Ψ(z(n+1)) ≤ ε (being Ψ(z(n+1)) = max{‖u(n+1)c −u(n)c ‖, ‖ϕ(n+1)c −

ϕ
(n)
c ‖, ‖ψ(n+1)c − ψ(n)c ‖, ‖p(n+1)c − p(n)c ‖}), the solution for the instant (k) is

reached, i.e. z(k) = z(n+1). Otherwise, return to (30) evaluating p
(n)
c = p

(n+1)
c .

7. Numerical results

The capabilities of the proposed multifield contact formulation and some
numerical results are shown in this section. First, the methodology is vali-
dated by comparison with the analytical results presented in [3], where the
indentation response of a transversely isotropic MEE solid is considered.
Then a fully orthotropic MEE solid indentation is solved under frictional
and non-isolated MEE indentation conditions. Finally, the tangential load
response of an orthotropic MEE solid is studied.
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Table 1: Transversely isotropic MEE properties for (BaTiO3-CoFe2O4).

Elastic coefficients (GPa)
c1111 226.00
c1122 125.00
c1133 124.25
c3333 216.00
c2323 44.15
Piezoelectric coefficients (C/m2)
e113 5.80
e333 9.30
e311 −2.20
Piezomagnetic coefficients (N/Am)
q113 275.00
q333 350.00
q311 290.15
Dielectric constants (10−9 F/m)
ε11 5.64
ε33 6.35
Magnetic constants (10−6 Ns2/C2)
µ11 297.50
µ33 83.50

7.1. Indentation response of a transversely isotropic MEE solid

The problem illustrated in Fig. 2(a) presents a spherical indentation of
a transversely isotropic MEE block, whose dimensions are 2L1 × 2L1 × L2,
being L1 = 50 × 10−3 m and L2 = 120 × 10−3 m. The block is discretized
by 1088 linear quadrilateral boundary elements, using 16 × 16 elements on
the Lo × Lo potential contact zone (Lo = 5 × 10−3 m), as Fig. 2(b) shows.
The material considered in this example was presented in [3] and it presents
no coupling between the electric and magnetic field. It is a MEE compos-
ite material made of piezoelectric (BaTiO3) and magnetostrictive (CoFe2O4)
phases, whose material properties were estimated using the rule of mixture
according to the volume fraction: χ = 0.5. The resulting MEE composite
material has a symmetry axis coinciding with x3-direction, being its proper-
ties presented in Table 1.

The rigid sphere of radius R = 100 × 10−3 m is subjected to a normal

12
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(a)

(b)

Figure 2: (a) The physical setting: rigid indenter over a magneto-electro-elastic domain.
(b) Boundary element mesh details.

indentation of gν,o = 5 × 10−5 m (gτ,o = 0) and the MEE block is assumed
to be ideally bonded at the base (x3 = −L2). Different frictionless indenta-
tion conditions are considered, e.g.: electrically and magnetically insulating
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Table 2: Basic indentation parameters presented in [3] for the MEE composite material.

[ξij]




2.08613 1.77480 1.93900
−2.35928 2.85507

sym. −1.00418




η = |ξij| 5.14794

[ηij]




2.08613 1.77480 1.93900
−2.35928 2.85507

sym. −1.00418




indentation (EMII), electrically conducting and magnetically insulating in-
dentation (ECMII), electrically insulating and magnetically conducting in-
dentation (EIMCI) or electrically and magnetically conducting indentation
(EMCI). Chen et al. [3] present the analytical solutions for a transversely
isotropic MEE under all these spherical indentation conditions. For example,
the resultant indentation force are expressed as:

P
EMII

=
4a3

3πξ11R

(
a =

√
gν,oR

)
, (33)

P
ECMII

=
4ξ22a

3

3πη33R

(
a =

√
gν,oR− ξ12ϕo/ξ22

)
, (34)

P
EIMCI

=
4ξ33a

3

3πη22R

(
a =

√
gν,oR− ξ13ψo/ξ33

)
, (35)

and

P
EMCI

=
4a

3πη
(η11gν,o + η21ϕo + η31ψo), (36)

being a =
√
gν,oR + (η21ϕo + η31ψo)/η11. In the expressions (33-36), a is the

contact radius, ξij and ηij are the MEE composite material parameters listed
in Table 2 and φo and ψo are the indenter prescribed electric and magnetic
potential, respectively. Similar expressions can be found in [3] for the total
electric charge (Q), the total magnetic charge (M), the electric potential
distribution or the magnetic potential distribution.

Boundary element results (namely the resultant indentation force and the
total electric charge) for a electrically conducting and magnetically insulating

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

indentation (i.e. κ∗e 6= 0 and κ∗m = 0) are shown in Fig. 3 (a). We can
appreciate how, when the conductivity parameter κ∗e increases (κ∗e → ∞),
the computed resultant indentation force and the total electric charge values
converge to the analytic values P

ECMII
and Q

ECMII
, presented in [3]. In

those cases, the prescribed electric potential was ϕo = 0. Same behavior
can be observed in Fig. 3 (b) for the total magnetic charge, in an electrically
insulating and magnetically conducting indentation (i.e. κ∗e = 0 and κ∗m 6= 0):
when the conductivity parameter κ∗m increases (κ∗m → ∞), the computed
resultant indentation force and the total magnetic charge values converge
to the analytic values P

EIMCI
and M

EIMCI
. In those cases, the prescribed

magnetic potential was ψo = 0. The examples have been solved using the
proposed algorithm, considering rν = 5 · 103 for the augmented Lagrangian,
and ε = 10−6 as a termination limit.

Normalized indentation response distributions as function of conductivity
parameters for ECMII and EIMCI are presented in Fig. 4. Contact pressure
distributions are presented in Fig. 4 (a) and electric and magnetic potential
distributions are shown in Fig. 4 (b) and Fig. 4 (c), respectively. An excellent
agreement between analytic and numerical solutions can be observed. For
κ∗e = 0 and κ∗m = 0, perfectly insulating indentation responses (i.e., po,EMII

,
ϕo,EMII

and ψo,EMII
) are obtained by the boundary elements formulation. We

observe in Fig. 4 (b) (left) that, for higher values of κ∗e (κ∗e → ∞, κ∗m = 0),
the value of the electric potential at the contact region tends to the prescribed
electric potential ϕo = 0. However, the magnetic potential remains unaltered
(see Fig. 4 (c) (left)). This is due to fact that the MEE composite material
(Table 1) considered for validation in [3] presents no coupling between the
electric and magnetic fields. As expected, the opposite behavior is observed
when κ∗m →∞ and κ∗e = 0: the value of the magnetic potential at the contact
region tends to the prescribed potential ψo = 0 (see Fig. 4 (c) (right)) and
the electric potential remains unaltered (see Fig. 4 (b) (right)).

7.2. Indentation response of an orthotropic MEE solid

In order to illustrate the capabilities of the proposed boundary element
formulation, we next study the indentation response of an orthotropic MEE
material whose MEE properties are presented in Table 3. We can appreciate
a fully coupling between the magnetic, electric and elastic fields.

The influence of the conductivity boundary conditions on the MEE vari-
ables are studied in figure 5 and 6. The indentation response for resultant
indentation force and total electric and magnetic charges under ECMII and

15
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(a)

(b)

Figure 3: (a) Influence of the electrical conductivity parameter in electrically conducting
and magnetically insulating indentation (ECMII) (i.e. κ∗

e
6= 0 and κ∗

m
= 0). (b) Influ-

ence of the magnetic conductivity parameter in electrically insulating and magnetically
conducting indentation (EIMCI) (i.e. κ∗

e
= 0 and κ∗

m
6= 0).

EIMCI are presented in Fig. 5 and normalized indentation response distri-
butions for normal contact pressure and electric and magnetic potentials are
presented in Fig. 6. Numerical examples have been solved for rν = 5 · 102
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Table 3: Orthotropic MEE properties for orthotropic MEE material.

Elastic coefficients (GPa)
c1111 3.61
c1122 1.61
c1133 1.42
c2222 3.13
c2233 1.31
c3333 1.63
c2323 0.55
c1313 0.59
c1212 0.69
Piezoelectric coefficients (C/m2)
e113 −0.016
e223 −0.013
e333 −0.021
e311 0.032
e322 −0.004
Piezomagnetic coefficients (N/Am)
q113 550.00
q223 570.00
q333 699.70
q311 580.30
q322 590.00
Magneto-electric coefficients (Ns/Am)
λ11 0.60
λ22 0.80
λ33 0.10
Dielectric constants (10−9 C/V m)
ε11 0.054
ε22 0.066
ε33 0.059
Magnetic constants (10−9 Ns2/C2)
µ11 5000
µ22 7000
µ33 10000
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and ε = 10−6. For a ECMII (see Fig. 5 (a) and Fig. 6 (left)), the conduc-
tivity parameter increments (κ∗e →∞) only affect the electric variables (i.e.
Q and ϕ), due to the low value of magneto-electric coefficient λ33. However,
for a EIMCI (see Fig. 5 (b) and Fig. 6 (right)), the conductivity incre-
ments (κ∗m → ∞) clearly modify all the MEE variables. Fig. 5 (b) shows
that normal resultant indentation force for insulated indentation conditions
(i.e. κ∗m ' 0) is reduced by half when conducting indentation conditions (i.e
κ∗m →∞) are considered.

So normal contact compliance can be modified by the conductivity bound-
ary conditions. This can be a key aspect when addressing technological ap-
plications in smart structures and systems.

7.3. Frictional indentation response of an orthotropic MEE solid

Now, the problem presented in Section 7.2 is studied under frictional
contact conditions, considering both isotropic and orthotropic friction laws.
Assuming an isotropic friction law (µ1 = µ2 = µ), Fig. 7 (a) and Fig. 7
(b) present the influence of friction under EMII and EMCI, respectively, for
different values of µ = {0, 0.1, 0.3, 0.6, 0.9}. Fig. 7 (a) shows the influence
of friction on the normalized resultant force, the maximum electric potential
and the maximum magnetic potential. Their values increase with the value
of µ, exhibiting an increment of 65% in the maximum electric potential or
30% in the maximum magnetic potential for µ = 0.9. These increments are
consequence of the stress state increment inside the bulk due to the frictional
tangential contact tractions presence. Fig. 8(a) shows the normal and tan-
gential contact tractions distribution for different values of µ and relative to
maximum frictionless contact pressure po and 8(b) and 8(c) show the relative
electric potential and the magnetic potential distributions, respectively. Fig.
7 (b) shows the influence of friction on the normalized resultant force, the
total electric charge and the total magnetic charge. In the EMCI, their values
are not significantly affected by the increment of µ values. These numerical
results have been solved considering rν = 5 · 103, rτ = 3 · 103 and ε = 10−6.

Finally, in this section, orthotropic frictional EMII conditions influence
is considered. Fig. 9 (a) shows the normalized electric potential distribution
and Fig. 9 (b) presents the normalized magnetic potential relative to the
frictionless EMII. Both results reveal that not only their values are affected
by the orthotropic friction law, but also the electric and magnetic potential
distribution shape.
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7.4. Tangential load response of an orthotropic MEE solid

The influence of tangential load in the indentation response is studied
in this section. In this case, the EMII presented in Section 7.3 is also sub-
jected to a tangential displacement go,τ that generates a tangential load. The
indentation response is studied under different values of tangential load (in
particular, from tangential loading applying the full stick contact condition
to tangential loading applying the full slip contact on ∂Ωc).

Fig. 10 shows the normalized indentation and tangential load response
distributions as function of the friction coefficient for EMII. In this results,
tangential load direction is θ = 0o (see Fig. 2). Fig. 10 (a), Fig. 10 (b) and
Fig. 10 (c) present the influence of tangential load in the contact tractions, in
the magnetic potential distribution and in the electric potential distribution,
respectively, for low friction µ = 0.1 (left) and high friction µ = 0.6 (right)
conditions. Fig. 10(a) shows normal and tangential contact tractions distri-
butions for different values of the normalized tangential load Fx1

/µP . We
can see in Fig. 10 (a) that the stick zone decreases and it is moved to the left
side of the contact zone (opposite to the tangential load direction) when the
normalized tangential load increases, as it is expected [33]. Meanwhile, Fig.
10 (b) and Fig. 10 (c) show that the maximum of the electric and magnetic
potential distribution is also moved in the same direction as the tangential
load is applied, but its value exhibits a decrement when the normalized tan-
gential load increases until full slip contact distribution is developed. This
behavior is more pronounced when tangential loads occur under high friction
conditions. Same results can be observed in Fig. 11 and Fig. 12 for the
electric and magnetic potential distribution on the contact zone.

Finally, the influence of tangential load direction (θ) under orthotropic
frictional contact conditions is considered in this example. Assuming µ1 = 0.1
and µ2 = 0.6, Fig. 13 shows the normalized electric potential distribution
(top), normalized magnetic potential distribution (mid) and normalized con-
tact traction distribution (bottom) for: (a) θ = 0o, (b) θ = 45o and (c)
θ = 90o. In the same way, Fig. 14 presents same results for µ1 = 0.6 and
µ2 = 0.1. It is clear how the orthotropic frictional conditions and tangential
load direction affect the MEE contact variables, not only in the intensity,
but also in the distribution shape.

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8. Conclusions

A boundary element formulation has been presented and applied to study
3D coupled multifield MEE contact under orthotropic frictional conditions.
The proposed formulation has been applied for the analysis of a MEE half
space configuration under different frictional indentation conditions. The
main conclusions and findings of this work are the following:

• The boundary element formulation proves to be a very interesting nu-
merical methodology to analyze these multifield systems with a high
accuracy: the indentation results of a transversely isotropic MEE solid
(Section 7.1) show an excellent agreement with the analytical solution
presented in [3].

• The formulation is versatile, being able to consider conducting, semi-
conducting and insulated electric and magnetic indentation conditions,
as well as orthotropic frictional indentation conditions.

• Numerical results reveal that the conductivity parameters (i.e. κ∗e and
κ∗m) and the coupling between the elastic, electric and magnetic fields
have a significant effect on the indentation force and the contact pres-
sure. So normal contact compliance can be modified by the conductiv-
ity boundary conditions.

• The influence of friction in electric and magnetic potential response
has been proved to be also very significant (i.e. an increment of 65%
in the maximum electric potential can be observed for a half space
indentation under high value of friction coefficient). This increment is
a consequence of the stress state increment inside the bulk due to the
frictional tangential contact tractions presence.

• Tangential loads have also an important influence not only in the values
of the electric and magnetic potential but also on their distributions
and the maximum of electric and magnetic potential values.

So all these aspect should be considered in coupled multifield contact
modelling. In other case, we could over- or underestimate MEE contact
magnitudes and its distribution over the contact zone, as it was shown in the
numerical examples.
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Finally, it is important to mention that the proposed BEM formulation
can be extended to consider thermal field coupling in this multifield coupling
and contact problems. Work in this direction is under way.
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A. Barnett-Lothe representation

As proposed by Barnett & Lothe [31] for PE materials, the linear MEE
problem may be formulated in an elastic-like fashion by considering a gen-
eralized displacement vector extended with the electric potential and the
magnetic potential as

uJ =





uj J 6 3
ϕ J = 4
ψ J = 5,

(37)

a traction vector extended with normal electric charge flux and normal mag-
netic flux

tJ =





tj J 6 3
q J = 4
s J = 5,

(38)

a stress tensor extended with the electric displacements and the magnetic
inductions as

σiJ =





σij J 6 3
Di J = 4
Bi J = 5,

(39)

and an extended elasticity tensor with the following components

CiJKm =





cijkm J,K 6 3
emij J 6 3; K = 4
eikm J = 4; K 6 3
qmij J 6 3; K = 5
qikm J = 5; K 6 3
−λim J = 4; K = 5 or J = 5; K = 4
−εim J,K = 4
−µim J,K = 5.

(40)
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By virtue of symmetries (8), CiJKm = CmKJi is satisfied. In the above
definitions the lower-case (elastic) and upper-case (extended) sub-indices take
values 1, 2, 3 and 1, 2, 3 (elastic), 4 (electric), 5 (magnetic), respectively.
Then, with the introduced representation the constitutive equations (5), (6)
and (7) can be rewritten together as

σiJ = CiJKmuK,m. (41)

B. Fundamental solutions

The explicit fundamental solutions proposed by Buroni & Sáez [32] are
briefly described in this appendix. In homogeneous media they depend on
the relative vector x−x′, henceforth, for simplicity, it is considered that the
Cartesian coordinate system (xi) (i = 1, 2, 3) has the origin at the collocation
point x′.

Extended displacement fundamental solution can be expressed as a sin-
gular term by a modulation function H as

ǓJK(x) =
1

4πr
HJK(x) (42)

where x = rê with r = |x| 6= 0. The symmetric modulation function HJK(x)
depends on the direction of x but not on its modulus, so HJK(x) = HJK(ê)
and is known as one of the three extended Barnett-Lothe tensors. A general
expression of the extended Barnett-Lothe tensor HJK is obtained as [32]

HJK(ê) =
2i

|T|

N∑

α=1

1

(mα − 1)!
×




dmα−1

dpmα−1
{ Γ̂JK(p)

(p− p̄α)mα

N∏
ξ=1
ξ 6=α

[(p− pξ)(p− p̄ξ)]mξ

}




at p=pα

.

(43)

In equation (43), i =
√
−1. Γ̂JK is the adjoint of ΓJK defined as ΓPJ(p)Γ̂JK(p) =

|Γ(p)|δPK where δPK is the extended Kronecker delta and

ΓJK(p) = QJK + (RJK +RKJ)p+ TJKp
2, (44)
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being

QJK = CiJKmninm, RJK = CiJKmnimm, TJK = CiJKmmimm, (45)

where ni and mi are the components of any two mutually orthogonal unit
vectors such that (n,m, ê) is a right-handed triad. The determinant of T
can be computed from equation (45). In the Stroh formalism context, pξ are
known as the Stroh’s eigenvalues and corresponds to the five roots of the
tenth-order polynomial characteristic equation

|Γ(p)| = 0 (46)

with positive imaginary part. The bar over pξ denotes its complex conjugate.
At most, there are N (1 5 N 5 5) distinct Stroh’s eigenvalues pα of mα-
multiplicity.

The extended traction fundamental solution follows from the derivative
of the extended displacement fundamental solution as

ŤJK = CiJMlǓMK,lνi (47)

where νi are the components of the external unit normal vector to the bound-
ary ∂Ω at point x. In similar way to equation (42), the derivative of the
displacement fundamental solution may be expressed as

ǓPJ,q(x) =
1

4πr2
ŨPJq(ê) (48)

where the modulation function is

ŨPJq(ê) = −êqHPJ +
CrKMs

π
(MqsPKMJ êr +MqrPKMJ ês) , (49)

that only depends on the orientation of x (ê) but not on its modulus r. The
MijPKMN components have the following general expression [32]

MijPKMN(ê) =

2πi

|T|2
N∑

α=1

1

(2mα − 1)!




d2mα−1

dp2mα−1
{ ΦijPKMN (p)

N∏
ξ=1
ξ 6=α

[(p− pξ)]2mξ

}




at p=pα

(50)
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where the function

ΦijPKMN(p) :=
B̃ij(p)Γ̂PK(p)Γ̂MN(p)

(p− p̄1)2(p− p̄2)2(p− p̄3)2(p− p̄4)2(p− p̄5)2
(51)

has been introduced together with definition

B̃ij := ninj + (nimj +minj)p+mimjp
2. (52)

It can be shown that the components MqsPKMJ satisfy the following sym-
metry conditions [32]

MqsPKMJ =MqsMJPK =MqsKPMJ =MqsPKJM , (53)

MqsPKMJ =MsqPKMJ . (54)

These symmetries allow considerable reduction in the number of components
MqsPKMJ to be calculated, and must be considered in the numerical imple-
mentation.

It is important to note that this scheme for the evaluation of fundamental
solutions is general and valid for any kind of mathematical degeneracy, that
is, when there exist repeated Stroh’s eigenvalues of any multiplicity.
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(a)

(b)

(c)

Figure 4: Normalized indentation response distributions as function of conductivity param-
eters for ECMII and EIMCI: (a) contact pressure, (b) electric potential and (c) magnetic
potential.
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(a)

(b)

Figure 5: Influence of conductivity parameters in normalized resultant force, total electric
charge and total magnetic charge for: (a) ECMII and (b) EIMCI.
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(a)

(b)

(c)

Figure 6: Normalized indentation response of a fully coupled MEE material as function of
conductivity parameters for ECMII and EIMCI: (a) contact pressure, (b) electric potential
and (c) magnetic potential.
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(a)

(b)

Figure 7: (a) Influence of friction on the normalized resultant force, maximum electric
potential and maximum magnetic potential for a EMII. (b) Influence of friction on the
normalized resultant force, total electric charge and total magnetic charge for a EMCI.
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(a)

(b)

(c)

Figure 8: Influence of friction on the normalized resultant force (a), maximum electric
potential (b) and maximum magnetic potential (c) for a EMII.
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(a) (b)

Figure 9: (a) Normalized electric potential distribution. (b) Normalized magnetic potential
distribution.
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(a)

(b)

(c)

Figure 10: Normalized indentation and tangential load response distributions as function
of the friction coefficient for EMII: (a) contact tractions, (b) electric potential and (c)
magnetic potential.
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(a) (b)

Figure 11: Normalized electric potential (a) and normalized magnetic potential (b) for
EMII under low friction conditions (µ = 0.1).
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(a) (b)

Figure 12: Normalized electric potential (a) and normalized magnetic potential (b) for
EMII under high friction conditions (µ = 0.6).
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(a) (b) (c)

Figure 13: Normalized electric potential distribution (top), normalized magnetic potential
distribution (mid) and normalized contact traction distribution (bottom) for: (a) θ = 0

o,
(b) θ = 45

o and (c) θ = 90
o, under orthotropic friction conditions (µ1 = 0.1 and µ2 = 0.6).
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(a) (b) (c)

Figure 14: Normalized electric potential distribution (top), normalized magnetic potential
distribution (mid) and normalized contact traction distribution (bottom) for: (a) θ = 0

o,
(b) θ = 45

o and (c) θ = 90
o, under orthotropic friction conditions (µ1 = 0.6 and µ2 = 0.1).
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