Satellite based estimates underestimate the effect of CO₂ fertilisation on NPP

Martin G. De Kauwe¹, Trevor F. Keenan¹, Belinda E. Medlyn², I. Colin Prentice¹,³ and Cesar Terrer³

¹Macquarie University, Department of Biological Sciences, North Ryde, New South Wales 2109, Australia; ²Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia; ³AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK.

Smith et al.¹ (hereafter S15) compared global estimates of net primary production (NPP) derived from satellites and earth system models (ESMs). They concluded that ESMs over-estimate the effect of CO₂ fertilisation on NPP. An overestimation by ESMs is possible², but here we draw attention to the fact that the satellite-derived NPP estimates used in S15 are likely to underestimate the CO₂ fertilisation effect because they do not account for the primary effect of CO₂ on the biochemistry of photosynthesis. We also show that the calculation in S15 of the sensitivity of NPP to atmospheric CO₂ is misleading, invalidating the comparison with Free Air CO₂ Enrichment (FACE) data.

Global NPP cannot be measured; however, by exploiting the observed linear relationship between NPP and absorbed photosynthetically active radiation (APAR)³, light use efficiency (LUE) models use satellite data to estimate NPP on a pixel basis. Although satellite-derived NPP estimates have often been treated as observations⁴, they are not⁵. S15 used three independent satellite-based proxies for NPP: a LUE model, a model tree ensemble (MTE⁶) constrained by ecosystem carbon flux measurements, and remotely sensed vegetation optical depth (VOD⁷). The LUE and MTE models assume that CO₂ affects NPP solely through changes in the observed fraction of absorbed radiation (fAPAR), which is closely related to leaf area. However, the primary biochemical effect of CO₂, which both these models ignore, is an increase in photosynthesis with rising CO₂ due to increased LUE⁸ (although alternative LUE models account for this effect⁹,¹⁰). At the two longest-running forest
FACE sites, we calculated the change in LUE due to CO₂ using NPP, growing season photosynthetically active radiation, and the Beer-Lambert Law relating annual maximum LAI to fAPAR. We found a large increase in LUE due to CO₂ across all years: mean = 17.4 % (range = 8.9 – 32.6 %) and 24.3 % (range = 8.0 – 35.9 %), at Oak Ridge (1998–2008) and Duke (1996–2007), respectively. By contrast, we found the indirect change due to CO₂ (i.e. via changes in fAPAR), which is accounted for in the satellite models, to be small across all years: mean = 0.3 % (range = −1.3 – 2.0 %) and 2.9 % (range = −0.3 – 6.0 %), at Oak Ridge and Duke, respectively. Whilst it is true that other, more open, canopies may experience larger changes in fAPAR due to CO₂ fertilisation, such open canopies will still experience the large direct effect of CO₂ on LUE that is incorrectly ignored by the LUE and the MTE models used by S15. Consequently, theses approaches are unsuitable for studying the effect of elevated CO₂ on NPP.

The third remote-sensing based proxy for global NPP used in S15 was based on VOD, which is closely related to above-ground biomass. However, above-ground biomass (a state) is not the same thing as NPP (a flux). Biomass is the result of the long-term allocation of NPP and the turnover of plant tissues. Standing biomass, particularly in long-lived forest stands, will not fully reflect increases in NPP until many years after the rise in CO₂ causing stimulation. In addition, above-ground biomass excludes below-ground allocation, which contributes to total NPP; and it has commonly been observed that plants increase below-ground allocation under elevated CO₂. As a result, VOD will systematically under-estimate the effect of CO₂ on whole-ecosystem NPP.

The conclusions of S15 were bolstered by comparing model results with data from FACE experiments. S15 defined β as the percentage enhancement of NPP per 100 ppm increase in CO₂. Values of β estimated from FACE experiments appeared to be consistent with the modelled NPP estimates derived from satellite data. However, this definition of β ignores the fact that there is a saturating response to CO₂. This saturating response means that values of β estimated from a low CO₂ concentration range (e.g. the range for the satellite record, which is ~350 to 400 ppm) should be higher than values estimated over a higher CO₂ concentration range (e.g. the range for
the FACE experiments, which typically increase CO$_2$ from ~370 to ~550 ppm) (Figure 1). Furthermore, S15’s synthesis of FACE data is incomplete as it omits several years of published data13,14, and incorrectly estimates an overall effect size by taking the median across experiments, species and years, rather than calculating a more appropriate response ratio15.

S15 conclude that CESM1-BGC, the ESM most consistent with the satellite NPP estimates, represents an improvement over other ESMs, likely due to its inclusion of explicit carbon-nitrogen interactions. We agree that the inclusion of such interactions in ESMs is a desirable objective, and that neglect of these interactions in “carbon only” ESMs risks over-estimating long-term CO$_2$ effects on NPP by neglect of nutrient limitations on plant growth2. However, it is premature to conclude that CESM1-BGC represents an improvement on previous models, given its inability to capture the magnitude of recent CO$_2$ uptake16 or even (uniquely among models tested) the sign of the relationship between tropical land temperatures and CO$_2$ uptake17. The land surface model (CLM4) in CESM1-BGC also under-estimated the measured NPP response to elevated CO$_2$ from the two longest-running FACE experiments, and predicted a smaller response than ten other ecosystem models that included nutrient limitations on NPP18.

In summary, the remote-sensing based proxies for NPP used in S15 are not appropriate to examine the effect of CO$_2$ fertilisation on global NPP. They do not account for the direct effect of CO$_2$ on photosynthesis, nor the commonly observed increase in belowground allocation of NPP under elevated CO$_2$11. The comparison of satellite and FACE estimates of CO$_2$ fertilisation is invalid, and the discussion of nitrogen limitations is based on a single model that poorly represents the response of NPP to CO$_2$.
Figure 1: Illustration of the effect of different measurement \(C_a \) ranges on estimation of \(\beta \), defined as the relative change in net primary productivity (NPP) for a 100-ppm change in \(C_a \). The overall response to \(C_a \) is a saturating function (green line; here illustrated as the response of RuBP-regeneration-limited photosynthesis to \(C_a \), taken from Franks et al.12). The red point indicates the value of \(\beta \) that would be estimated from measurements over the \(C_a \) range 360 – 400 ppm (corresponding to satellite measurements, indicated with solid red line). The blue point indicates the value of \(\beta \) that would be estimated from measurements over the \(C_a \) range 360 – 600 ppm (corresponding to FACE experiments, indicated with solid blue line).
References

