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Abstract.—Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources
of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species
tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage
sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus,
genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to
identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML)
supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted
for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior
distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution
of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in
comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method
ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as
being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining
better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under
complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast
to more sophisticated models. [hierarchical Bayesian model; phylogenomics; reconciliation; supertree; tree distance]

The evolutionary history of a gene family is not an
exact representation of the evolution of the species
embedding it, due to the effects of gene duplication,
deep coalescences—also called incomplete lineage
sorting (ILS)—and horizontal gene transfer (HGT)
(Goodman et al. 1979; Maddison 1997). In recent years,
the rapid accumulation of phylogenomic data has
highlighted the need for specific methods to infer species
phylogenies. Methods of species tree inference based
on collection of gene alignments/trees can be broadly
classified into supermatrix, supertree, and model-
based approaches. The supermatrix strategy consists
in concatenating different genes into a single large
alignment, assuming that minor conflicting phylogenetic
signals will cancel out and a common phylogenetic
trend—the species history—will emerge. Departures
from this assumption must be handled by subjectively
removing columns or whole regions (Wu et al. 2012;
Lanier et al. 2014). The supermatrix approach relies on
the correct inference of the orthologous sets, such that
the sequences from a single species can be concatenated
into a single ’supergene’ (Degiorgio and Degnan 2010).

Alternatively, phylogenetic inference can be
conducted independently for each gene alignment,
and then in a second step the species tree is inferred
from the resulting gene trees. In this case, the alignments
are used indirectly, through summary statistics like ML
trees, to build a ’supertree’ (for a review, see Bininda-
Emonds et al. 2002; Cotton and Wilkinson 2009). Under
the supertree umbrella, some methods try to find the
species tree that minimizes its overall disagreement
with the gene tree collection without explicitly—taking
into account the biological phenomena behind the

incongruence, like the Robinson-Foulds (RF) supertree
(Bansal et al. 2010; Chaudhary et al. 2012) and the
Matrix Representation with Parsimony approaches
(Ragan 1992; Bininda-Emonds 2004). Other supertree
approaches aim for the most parsimonious scenario by
assuming that the disagreement between the species
tree and the gene trees is due to HGT (Whidden et al.
2014), duplications and losses (DL) or deep coalescences
(Bansal and Eulenstein 2013). The problem of finding
the species tree that minimizes the reconciliation cost is
called gene tree parsimony (GTP) (Guigó et al. 1996).

Most supertree approaches neglect the gene tree
branch lengths, but there is another class of species
tree methods closely related to the supertree methods
which are based on the multispecies coalescent. These
methods try to reconstruct the species tree from a matrix
of distances between species, which in turn is built
based on distance matrices from the individual gene
trees (reviewed in Liu et al. 2009a; Helmkamp et al.
2012). These methods are based on the observation that
the coalescence time of two genes from distinct species
always precedes the speciation event. In general they
assume that the gene trees are known without error
(Kubatko et al. 2009; Liu and Yu 2010). Some of these
methods also can take into account hybridization (Meng
and Kubatko 2009) or HGT (Yu et al. 2011).

In principle, the most powerful species tree methods
are based on an explicit probabilistic modeling of the
incongruence between species and gene trees. Together
with the phylogenetic likelihood that takes into account
the stochastic uncertainty in the gene tree inference,
these models also describe the probability of such gene
tree being generated by a given species tree. If we

397



398 SYSTEMATIC BIOLOGY VOL. 65

assume that the sequences represent individuals from
a given orthologous region, then this probability is
given by the multispecies coalescent, that describes
how lineages coalesce conditioned on a species tree
(Rannala and Yang 2003). Under this model, Bayesian
methods have already been implemented to estimate
the posterior distribution of species trees, together
with ancestral population sizes and divergence times
(Edwards et al. 2007; Heled and Drummond 2010).
If, however, we assume that each alignment represents
a set of paralogous gene copies from a gene family,
then we can model DL inside each gene family through
a birth–death process (Arvestad et al. 2003). Although
theoretically it is possible to estimate the distribution
of species trees while integrating over the particular
birth–death histories, current implementations assume
that the species tree is known (Akerborg et al. 2009;
Rasmussen and Kellis 2011; Sjostrand et al. 2012) or try
to find it by ML (Boussau et al. 2013). Under the fixed
tree assumption, it is furthermore possible to add HGT
to the birth–death model (Szollosi et al. 2013). Fully
probabilistic models, although more realistic, tend to be
slow. Furthermore, they are usually limited to particular
sources of gene tree / species tree disagreement. Under
the multispecies coalescent, it is assumed that all genes
from same species are orthologous, neglecting the
possibility of duplication, whereas duplication and loss
models assume that sequences mapped to one species
are necessarily the product of a duplication (Rasmussen
and Kellis 2012).

Recently a ML supertree approach has been proposed,
such that probabilities are associated to errors in the
gene trees (Steel and Rodrigo 2008; Cotton and
Wilkinson 2009). That is, given a supertree the
probability will reflect a penalty against incongruent
input trees, regardless of the evolutionary process
responsible for the incongruence. The model assumes
that a true supertree generates trees with error,
such that their probabilities decrease exponentially
according to the distance from the original supertree.
The incorporation of supertree approaches into a
likelihood framework allows us to compare alternative
solutions statistically and to be more explicit about
our assumptions, incorporating model selection
and hypothesis testing. The probability P(Ti |�,�) of
supertree � generating tree Ti is given by

P(Ti |�,�)∝e−d(Ti,�)/� (1)

where the scale parameter � controls how strongly
discordant trees are penalized. The distance d() is
usually a discrete tree-to-tree metric that does not take
branch lengths into account, and therefore the original
ML supertree approach is based on tree topologies
only. Furthermore, it is assumed that each input tree
contains a subset of the species, as is commonplace for
supertree methods. The particular distance employed
will depend on the problem at hand, as for example,
the RF distance will lead to a supertree in agreement
with the largest number of clusters (or clades) from the

input trees (Bansal et al. 2010). Likewise, the subtree
prune-regraft (SPR) distance (Beiko and Hamilton 2006)
has been used in an exponential model of phylogenetic
recombination, where the penalty is against trees in
adjacent alignment segments that can only be reconciled
through several recombination events, as estimated by
the SPR distance between them (de Oliveira Martins et al.
2008; de Oliveira Martins and Kishino 2010).

Probabilistic supertree approaches like ML supertrees
have a lot of potential, as they can leverage statistical
sophistication with computational tractability, being
able to deal with several processes of incongruence at
once (Cotton and Wilkinson 2009). In this work, we
further extended the ML supertree approach in several
notable ways, creating a hierarchical Bayesian supertree
model. We notice that an estimation method called
“Bayesian supertree” was proposed by Ronquist et al.
(2004), but it is quite different from our model since
it is based on frequencies of bipartitions only. First,
we use a multivariate description of the disagreement
between each input tree and the supertree, such that
several distances can be used at once. Importantly,
among the distances we use jointly are the most
parsimonious reconciliation costs under the DL and the
ILS models (Guigó et al. 1996; Than and Nakhleh 2009.
This multivariate distribution acts as a penalty against
dissimilar input tree/supertree pairs according to any of
the distances, such that input gene trees less penalized
with respect to all distances from a given supertree are
more likely.

In our model, the input trees represent gene families
and the supertree is the species phylogeny. This allows
us to work with more general data sets than traditional
supertree methods usually handle, since we can work
with input trees with several leaves representing the
same species (in fact, input trees can have more leaves
than the supertree itself), as well as nonoverlapping
species subsets for distinct gene families. Furthermore,
we incorporate this multivariate distribution of tree-
supertree distances into a hierarchical Bayesian model,
such that the uncertainty of the gene trees as well as
the strength of the penalties — represented by the scale
parameter � — are taken into account.

Our full model can include the phylogenetic likelihood
describing how gene trees are supported by the
alignments, but in this manuscript we adopted an
importance sampling step such that any Bayesian
phylogenetic program can provide the individual
distribution of gene trees. That is why we call our method
a supertree, in connection to the ML supertree (Steel and
Rodrigo 2008), despite the fact that our full model could
in principle work with sequence alignments as well. Our
model accounts then for the uncertainty within each
gene family to estimate the posterior distribution of all
compatible species trees. Unlike the fully probabilistic
models described above, our approach is based on
the simplifying assumption that summaries based on
the most parsimonious reconciliation scenarios are
sufficient to explain the disagreement between gene and
species trees, regardless of its causes. Yet we do not rely
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on known gene trees, as with most supertree approaches.
Instead, we work with marginal gene tree distributions
such as those resulting from independent Bayesian
phylogenetic analyses of multilocus alignments. We
implemented this model in a program called guenomu
(see below), that receives as input a set of unrooted gene
tree distributions, one per gene family, as well as a list of
species names, and returns the posterior distribution of
rooted species trees as well as a posterior distribution of
gene trees for each gene family.

In this manuscript, we evaluate our method under
simulated scenarios in which gene trees evolve inside
species tree with gene DL as well as ILS, and considering
gene tree uncertainty. Usually, different sources of
gene tree disagreement are considered separately,
although unrecognized processes can have a detrimental
effect on the species tree estimation, since even a
single ancestral duplication can mimic the effect of
several deep coalescences (Rasmussen and Kellis 2012).
We circumvent this by favoring species trees that
are compatible with different phenomena at once, as
dictated by our multivariate distance distribution. Each
gene family is allowed to have different contributions
in each regard, since we do not expect the rates of
DL, for instance, to be uniform along the genome.
Our simulations suggest that our Bayesian hierarchical
model is able to reduce gene tree uncertainty and
results in accurate species trees estimates, considering
the complexity of the simulation scenario. Unexpectedly,
we also found that GTP methods can be quite precise
as well, whereas coalescent summary statistics methods
performed badly under the scenarios considered.

MATERIALS AND METHODS

Definitions
We define gene family i as the set of homologous

sequences that compose an alignment Di, which
can comprise paralogs and orthologs belonging to
the same or distinct individuals from one or more
diverged populations, that we will call species. The
only information needed is a mapping between each
member of this gene family and the species which
it belongs to (species are thus defined as the entities
whose phylogenies we are interested in). Importantly, we
assume that we do not know beforehand which members
of a gene family are related through a duplication
and which diverged through coalescences. That is,
we map the leaves from the gene tree directly to the
species tree. We will then call gene tree any phylogenetic
tree connecting all sampled members of a gene family,
whose corresponding random variable for gene family
i will be represented by Gi. The inputs are posterior
distributions of gene trees such as those estimated by
Bayesian phylogenetic inference programs like MrBayes
or PhyloBayes (Lartillot and Philippe 2004; Ronquist
et al. 2012). These will be our input gene tree distributions,
one per gene family, and for each input distribution

we will have an associated posterior distribution, in a
manner analogous to the BUCKy model (Ané et al. 2007).
Although we will mostly use the term tree, the input and
output distributions contain only the tree topologies.
That is, in the current implementation of our model
we do not use the branch length information, unless
otherwise stated. We will resort to the terms phylogeny
and topology when we want to be explicit about the
presence or absence, respectively, of branch lengths.

Bayesian Hierarchical Model for Species Trees
To gain some intuition about our model, we start by

observing that a Bayesian model is comprised of the
product between the likelihood (the probability terms
containing the data D) and the prior for the parameters,
divided by the (marginal) probability of the data. The
latter usually cannot be computed analytically, and one
typically resorts to Markov chain Monte Carlo (MCMC)
algorithms to avoid its calculation. Whenever the data
can be partitioned into independent components, each
partition is included as a likelihood term in the posterior
distribution. The parameters from each likelihood term
can be shared across components or be specific to a
partition. When the parameters are the same for all
partitions it is enough to describe their shared prior, that
will depend on a single hyperparameter (which can be
multidimensional). But usually it is more reasonable to
assume that each partition has its own set of parameters
and therefore its own prior. These priors can, again,
have independent hyperparameters of their own, or
share them at least partially with other partitions. A
hierarchical Bayesian model is one where other layers of
priors are added to control how the different parameters
are related, assuming that parameters from one partition
can inform the others through their common underlying
structure. The latter is done through the incorporation
of hyperpriors, that describe the distribution of the
hyperparameters and which, in turn, might depend
on so-called hyperhyperparameters—parameters from the
hyperprior—that can be fixed or follow a hyperhyperprior,
and so forth. The hierarchical model is completed once
it can be assumed that adding more layers will not affect
the inference of parameters. Each parameter can in fact
be a matrix of arbitrary dimensions, and each component
can be partitioned in its own way, according to what
information is believed to be shared across partitions and
what information is particular to a given partition. An
excellent description of hierarchical Bayesian models in
phylogenetics is given by Suchard et al. (2003).

In our model, the phylogenetic likelihood is given
by the probability of the alignment D given the
phylogenetic tree G and the substitution parameters, as
usual (Felsenstein 1981). The priors will describe the
probability distributions for the substitution parameters
(base frequencies, transition rates, rate variation across
sites, etc.) and for the phylogenetic tree. Assuming
that the alignment represents a gene family, its
corresponding gene tree will represent the evolution
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of its members—ortholog/paralog gene copies from
different individuals and/or loci, assumed to share
a common ancestry. We consider that every gene
tree is embedded in a species tree, so the prior
probability for each possible gene tree generating
the observed alignment must take into account the
evolutionary history of the species represented. This is
where the error-based probability of Steel and Rodrigo
(2008) enters into our model: it tells that the prior
probability of a gene tree is proportional to how it
resembles the underlying species tree. We however
demand that this resemblance takes into account several
biologically sensible measures of disagreement, which
can contribute distinctively through different penalty
parameters. These measures of gene tree/species tree
disagreement can be the number of DL or the number of
deep coalescences, and the penalty parameters describe
how strictly we penalize dissimilar gene/species tree
pairs. Note that in our model the species tree becomes
then a hyperparameter, that we furthermore assume
to come from a fixed uniform hyperprior over all
possible species trees with the same number of taxa.
The penalty parameters are also hyperparameters, but
whose hyperpriors are not fixed. This is because if
several gene families are available, then it is natural to
partition them since they can obviously have distinct
gene trees, as well as their own substitution parameters.
However, their prior distributions of gene trees should
share the same species tree, even if they have their
own penalties. Our intuition tells us that the more
gene families we include, the more information about
the species tree we can obtain. The same cannot be
said about the penalty parameters, because for every
gene family we must add a set of parameters. To
avoid overparameterization we assume that, for each
given gene tree/species tree disagreement measure,
the penalties from all gene families come from a
common hyperprior, that represents the genome-wide
effect of the biological phenomenon causing the gene
tree/species tree disagreement. These genome-wide
associated hyperhyperparameters, however, must be
allowed to vary if we want the amount of duplications
or deep coalescences inferred from one gene family to be
able to inform other gene families through their shared
hyperprior.

To summarize our intuition, our model assumes that
each gene family (represented by an alignment) was
generated by an independent gene tree, but that these
trees from different gene families all share the same
species tree. Furthermore each gene family tree cannot
be too different from the species tree according to several
distances, and while the penalties are specific to a gene
family, they also share a common prior for each distance.

We have then devised a Bayesian hierarchical model
in which the posterior distribution of the species tree
S and all other parameters �= (θ,G,λ,λ0) given a set
of N gene family alignments D= (D1,...,DN) can be
described by

P(S,� |D)∝P(D,θ |G)P(G |λ,S)P(λ |λ0)P(λ0)P(S) (2)

where G= (G1,...,GN) are the gene trees and λ= (�ij) is
a matrix with penalty parameters j for gene family i,
which depend on the (hyperhyper)parameters λ0. The
term P(D,θ |G) is the joint probability of alignments D
and parameters θ related to the substitution model, given
the gene trees—it is the product of the likelihood and the
prior for θ. As we will see this calculation is delegated
to the user, so our model works equally for DNA, codon,
and protein alignments. All species trees S are equally
probable a priori, leading to the uniform prior P(S)=
|S|−1 over all possible rooted trees S∈S. Equation 2 can
be further decomposed into

P(S,�|D)∝P(λ0)P(S)×
N∏

i=1

P(Di,θi|Gi)P(Gi|�i·,S)P(�i·|λ0)

where we see that the scale parameters λ0 and the
species tree S are shared among all gene families,
whereas other parameters are allowed to vary between
families.

Steel and Rodrigo (2008) assumed that the probability
P(Gi |S) of a gene tree Gi given the species tree S followed
an exponential distribution that depended solely on the
dissimilarity between Gi and S, which can be represented
by a distance d(Gi,S) and a penalty parameter �i.
We generalize this distribution and assume that this
probability depends on the disagreement between
Gi and S with respect to several distances d(Gi,S)=
(d1(Gi,S),...,dJ(Gi,S)) (explained in detail below) where
each measure dj (j=1,...,J) represents a distinct distance.
Therefore, the distribution P(Gi |S) can be written as

P(Gi |S)= e−∑J
j=1 dj(Gi,S)/(mij�ij)

∑
g∈Gi

e−∑J
j=1 dj(g,S)/(mij�ij)

= e−∑J
j=1 dj(Gi,S)/(mij�ij)

Zi(S,�i·)

(3)
where Zi(S,�i·) is the normalization constant (also called
partition function; see below) over the set Gi of all
possible topologies for gene family i, and the mij are fixed
constants.

Each gene family i has a vector �i· = (�i1,...,�iJ), where
each parameter �ij is associated to a distance dj. Our
model allows for different parameterizations depending
on which distances we want to consider for a specific
analysis.

Our hierarchical model is completed by specifying
the priors for the distance penalty parameters. For each
distance j, the penalty parameter �ij of gene family i
follows an exponential hyperprior distribution

P(�ij |λ0)= e−�ij/�0j

�0j
(4)

where the penalty parameter �0j is the j-th element of
the vector λ0, which is shared among gene families.

As mentioned in Steel and Rodrigo (2008) a naive
estimation of the �i· penalty parameters will lead to very
permissive values, and thus we employ an informative
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hierarchical exponential model for them—that is, we
explicitly inform the model that we prefer small
distances overall. The �0j variables themselves come
from exponential distributions with a fixed parameter.
Because distinct gene families will usually have a
different number of members, we must ensure that
penalty parameters �ij can be comparable across gene
families. This is achieved through the scaling parameters
mij, which are equivalent to a standardization of all
distances dj(·,·) to the interval [0,1]. The choice of
a common prior parameter �0j shared across gene
families helps to avoid overparameterization. But more
importantly, it assumes that the underlying biological
process reflected by the distance j—like the duplication
rate, for instance—acts on the whole genome, whereas
at the same time the �ij parameters for the observed
distances are particular to each gene family i.

Measures of Disagreement
In our current implementation, we have explored two

groups of distances, which we will call reconciliation
distances and nonparametric distances (although they are
not proper metrics because they do not satisfy the
symmetry condition). The reconciliation distances are
based on the most parsimonious reconciliations between
the rooted species tree and gene trees (Page 1994;
Maddison 1997), which can be calculated using the last
common ancestor (LCA) mapping between each node
g of the gene tree and a corresponding node M(g) of
the species tree (Zmasek and Eddy 2001; Bansal and
Eulenstein 2013). This mapping can thus be used in
two independent ways: to find the minimum number
of DL needed to explain the disagreement (Guigó et al.
1996; Zhang 1997), or to find the minimum number of
deep coalescences necessary to make the gene tree be
congruent with the species tree (Than and Nakhleh 2009;
Wu and Zhang 2011).

Under the duplication-loss reconciliation model and
given the mapping M(·) between nodes of the gene tree
Gi rooted at r, denoted Gr

i , and the rooted species tree
S, a gene tree node g will represent a duplication if
M(g)=M(g1) or M(g)=M(g2), where g1 and g2 are the
two children of node g. The number of duplications
DUPS(Gr

i ,S) will be the number of such nodes, and the
number of losses LOSS(Gr

i ,S) is calculated in postorder
based on the LCA mapping and the duplication nodes.
Likewise, under the reconciliation coalescent model we
assume all gene tree nodes are coalescences, and we
associate to each node s on the species tree the number
of extra lineages, which is the number of branches from
the gene tree passing through s minus one. The number
of deep coalescences ILS(Gr

i ,S)—also called ILS events—
is the sum of extra lineages over all species tree nodes.
Since we are using the LCA mapping these numbers
will be minimal over all possible reconciliations—for
more details, see Wu and Zhang (2011); Bansal and
Eulenstein (2013). Because we do not know the root

location of the gene trees, we apply the LCA mapping
and calculate the minimum costs over all possible roots r
to define the optimal root location. From the duplication-
loss model we will then have d1(Gi,S)=DUPS(Gr∗

i ,S)
and d2(Gi,S)=LOSS(Gr∗

i ,S) which will be the smallest
amongst all r, and for the coalescent model we will have
d3(Gi,S)= ILS(Gr∗∗

i ,S), where the optimal root r∗∗ might
be the same as r∗ or not.

As for the nonparametric distances, in theory they
can be any estimate of disagreement between rooted or
unrooted trees, of which the most popular example is
the RF (or symmetric) distance (Robinson and Foulds
1981). Other examples include the SPR distance (Beiko
and Hamilton 2006) and minimum weight matchings
between tree branches (Nye et al. 2006; Bogdanowicz
2008). They are nonparametric in the sense that they
do not try to model the biological reason for the
disagreement, only the outcome. The RF distance can be
calculated only when each leaf from one tree is mapped
to at most one leaf from the other, restricting therefore
the gene families that can be considered. However, very
recently a generalization of the RF distance called mulRF
was introduced that relaxes this constraint, allowing
for one of the two trees in the distance calculation to
have several leaves with the same label (Chaudhary
et al. 2013). This multilabelled tree, or multree, is
the gene tree. Although the original RF distance is
between unrooted topologies, the RF distance can be
used to compare a rooted tree to another one, rooted
or unrooted (Day 1985; Górecki and Eulenstein 2012).
Both the RF and the mulRF distances are calculated as
the sum of bipartitions present in one tree but not in
the other, but for the mulRF distance the species tree
is extended such that all leaves representing a species
labeled more than once in the gene tree are replaced
by a multifurcation with same number of leaves as
in the gene tree (Chaudhary et al. 2013). Therefore
we have that d4(Gi,S)=mulRF(Gi,S), noting that this
value is the same for any rooting of Gi and S since
we use the unrooted version of the trees. Like the
reconciliation distances, the nonparametric ones ignore
branch lengths, because they measure the disagreement
between the topologies only.

Sampling from the Posterior Distribution
Sampling directly from the above hierarchical model

is very hard, so we employ a MCMC sampling (Liu
2001) where variables are updated one by one using
Generalized Multiple-try Metropolis (GMTM) updates
(Liu et al. 2000; Pandolfi et al. 2010). The GMTM
algorithm for proposing an update of current state x to
a new state y can be described as

1. Given current state x, draw k samples y1,...,yk
independently from the proposal distribution
p(· | x)
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2. Calculate the weights wi(yi;x)= wi(yi;x)∑k
l=1 wl(yl;x)

, where

wi(yi;x) can be any bounded, positive function

3. Select y=yj ∈y1,...,yk according to wi(yi;x) i=
1,...,k and set Wy =wj(y;x) (assuming j is the
chosen index)

4. Similarly, draw x∗
i ∼p(· | y) for i=1,...,j−1,j+

1,...,k, and let x∗
j =x (i.e., using same index j as

before). Calculate wi(x∗
i ;y)= wi(x∗

i ;y)∑k
l=1 wl(x∗

l ;y)
and set

Wx =wj(x;y)

5. Accept yj as new state with probability

min

(
1,

�(yj)p(x |yj)

�(x)p(yj |x)
Wx

Wy

)
(5)

where �(y) is the posterior distribution under y. A
common choice for the weight w(y;x) is the posterior
distribution �(y) (terms independent from y will cancel
out). This is how the vector λ0 is updated.

In the current implementation, when updating the
gene trees we avoid direct calculation of the joint
probability P(D,θ |G) of alignments D and models θ,
as mentioned before. This joint probability P(D,θ |G)
is assumed to be independent between gene families
and can be expanded as the product of the phylogenetic
likelihood and the prior of the substitution model (Yang
and Rannala 1997; Larget and Simon 1999)

P(D,θ |G)=
N∏

i=1

P(Di,θi |Gi)=
N∏

i=1

P(Di |θi,Gi)P(θi) (6)

We furthermore assume that for each gene family i we
have a posterior distribution of trees P(Gi |Di,θi) (e.g.,
estimated by some state-of-the-art Bayesian phylogenetic
inference program) and use the posterior frequency of
tree Ĝ as a resampling weight gi(Ĝ)=P(Gi = Ĝ |Di,θi)∝
P(Di,θi | Ĝ) (Smith and Gelfand 1992). This procedure is
similar to the two-stage MCMC approach implemented
in BUCKy (Ané et al. 2007), and in practice means
that by using the resampling weights as the proposal
distribution p(· | ·) in the GMTM updates the terms
P(Di,θi |Gi) will cancel out. Under this approach the
substitution parameters θi and the branch lengths are
nuisance parameters and can be ignored. At every
iteration we propose a new species tree by applying
one or several branch swaps on the current one, and we
also have a rerooting proposal that does not change the
topological information.

The Normalization Constant
When updating the species tree S or the distance

penalty parameters �i·, we must also update the
normalization constant—also called the partition

function (Murray et al. 2012; Chung et al. 2013).
This constant is the denominator of our multivariate
exponential distribution for tree distances, and ensures
that this distribution sums up to one over all possible
gene topologies with the same leaf set. It must be taken
into account if we want to interpret probabilistically the
resulting distances, and neglecting it can even change
the relative score of species trees under some distances
and parameter values (Bryant and Steel 2008). This
function changes with the species tree and �i., and
computing it is impractical for gene trees with more
than a few leaves. With the GMTM algorithm the weight
function is not restricted to probability measures from
the model. Hence we could postpone the partition
function calculation to step (5) of the GMTM algorithm
by employing the unscaled distance distribution as the
weight function. However, the acceptance probability
will depend on the ratio between the partition functions
Zi(S∗,�∗

i·)/Zi(S,�i·) which do not cancel out.
Our solution is to use an exchange algorithm, where

the proposal of a parameter that affects the partition
function is always accompanied by the proposal of an
auxiliary gene tree, therefore, canceling out the partition
functions (Atchade et al. 2008; Liang 2010; Caimo and
Friel 2012; Murray et al. 2012). This auxiliary gene tree
is an augmented variable which is unrelated to our
resampled estimates—it is sampled through a secondary
MCMC given the proposed (S∗,�∗

i·) and is discarded
immediately after calculating the exchange ratio (Caimo
and Friel 2010; Caimo and Friel 2012).

Namely, given the unscaled distance distribution

fi(G,S,�i·)=e−∑J
j=1 dj(G,S)/(mij�ij) then the joint distance

probability can be written as

P(G |λ,S)=
∏N

j=1 fi(Gi,S,�i·)∏N
i=1Zi(S,�i·)

= f (G,S,λ)∏N
i=1Zi(S,�i·)

(7)

Then the GMTM exchange algorithm proceeds as
follows, remembering that each state is composed of the
species tree S and the vector λ, but in practice we update
just S or just a block of �i· for a gene family i at a time.

1. Given current state x, draw k samples y1,...,yk
independently from the proposal distribution
p(· | x)

2. Calculate the weights wi(yi;x)= wi(yi;x)∑k
l=1 wl(yl;x)

,

where wi(yi;x)= f (G,S(i),λ(i)) is the joint unscaled
distribution

3. Select y=yj ∈y1,...,yk according to wi(yi;x) i=
1,...,k and set Wy =wj(y;x)

4. Draw x∗
i ∼p(· | y) for i=1,...,j−1,j+1,...,k, and

let x∗
j =x Calculate wi(x∗

i ;y)= wi(x∗
i ;y)∑k

l=1 wl(x∗
l ;y)

and set

Wx =wj(x;y)
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5. Assuming that the proposed state is yj = (S∗,λ∗),
then draw a set of auxiliary gene trees A=
(A1,...,AN) from P(· |λ∗,S∗). This can be achieved
by MCMC starting at the current G (notice that
within this MCMC the partition functions cancel
out.)

6. Accept yj = (S∗,λ∗) as new state with probability

min

(
1,

P(λ∗ |λ0)p(x |yj)

P(λ |λ0)p(yj |x)
f (G |λ∗,S∗)f (A |λ,S)
f (A |λ∗,S∗)f (G |λ,S)

Wx

Wy

)

(8)

Importantly, our preliminary results suggested that
point estimates from the posterior distribution of species
trees are not affected by neglecting the partition function,
at least when using multiple distances as we did.
Therefore, to reduce the computational workload here
we will show results where this normalization constant
has been neglected.

ML Estimation of Species Trees
We furthermore implemented a ML version of

our model, where instead of sampling from the
posterior distribution P(S,� |D) we try to find only the
optimal values Ŝ and �̂ by incrementally decreasing
the temperature kT of the distribution P(S,� |D)1/kT .
Therefore, we can use the same algorithms as before,
since as the temperature kT decreases only updates
that improve the posterior distribution are accepted
(Rubenthaler et al. 2009). The final state of this modified
MCMC sampler is then its simulated annealing estimate,
which can be interpreted as a ML supertree estimate
under the arbitrary set of distances chosen by the user.

Software Implementation: Guenomu
We implemented our Bayesian supertree model

into the program guenomu (http://bitbucket.org/
leomrtns/guenomu), where the user can choose which
distances will be taken into account by the multivariate
exponential distribution. In this manuscript, we work
with two parameterizations: one considering only the
reconciliation distances, which we will call the DLI
model since it employs the minimum number of
Duplications, Losses, and ILS; and another adding
the mulRF distance, called the DLIR model. The
program guenomu is parallelized at the gene family level,
whereby the communication between computing nodes
is minimized through the implementation of shared
pseudo-random generation streams (Feng et al. 2003;
Feng et al. 2006). It also allows for implementing other
distances without compromising the model. Besides the
files with the input gene tree distributions, the user just
needs to provide a list with species names, under the
assumption that the leaves from the gene families contain
these species names. The mapping between each leaf

from the gene trees and its corresponding species is then
done automatically.

Besides sampling from the posterior distributions
of genes and species trees, guenomu also outputs
a formatted text file with the sampled continuous
parameters together with the posterior probability (apart
from a constant) for each iteration, after a burn-in period.
This file can be used, among other things, in convergence
diagnostics programs like Tracer (Rambaut et al. 2013) or
coda (Plummer et al. 2006).

Assessment of Accuracy Using Computer Simulations
To assess the performance of our implementation, we

carried out a simulation study to compare guenomu’s
posterior species tree distribution with the true
species trees and with other similar supertree methods
described below. We generated 7089 replicate data
sets using SimPhy (Mallo et al. 2014). This simulation
environment takes into account the birth and death of
(paralogous) loci inside a species tree as well as the
coalescent process describing the gene tree within each
locus , as in Rasmussen and Kellis (2012). SimPhy can
take a species tree with information about effective
population size and number of generations for each
branch, and simulate the evolution of new loci through
a birth–death process followed by the multispecies
coalescent simulation of population samples (i.e, gene
copies belonging to multiple individuals) inside each
locus.

For each replicate data set, a species tree was
generated under the Kingman coalescent process using
the software Dendropy (Sukumaran and Holder 2010)
such that the number of species was between 10
and 80 and the length from the root to tips was
between 102 and 104 generations. We assumed that
the effective population size was constant and that the
species tree length in coalescent units was between
0.05 and 5, guaranteeing low to high levels of ILS
(Leaché and Rannala 2011). Then we used SimPhy to
simulate the evolution of a number of gene families
inside each species tree, generating gene trees with
branch lengths in substitution units. Input parameters
for each replicate were sampled stochastically from the
distributions summarized in Table 1. In short, for each
gene family the number of individuals per species varied
between 1 and 10 whereas the number of gene families
ranged from between 2 and 50. Furthermore, each gene
family differed from the species tree through a birth–
death process of DL such that the average number of
duplications was between 10−3 and 4. In the end, each
replicate had gene trees with average sizes ranging from
35 to 1380 leaves. We furthermore assumed that different
gene families from the same simulated data set can have
distinct rates for the birth and death of new loci.

Both the generated species tree and each gene family
tree were initially ultrametric, with lengths given in
generation times. But we used SimPhy to further simulate
substitution rate heterogeneities at several levels, by

http://bitbucket.org/leomrtns/guenomu
http://bitbucket.org/leomrtns/guenomu
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TABLE 1. Parameter values used in the simulations

Description Symbol Distribution
Species tree
(Dendropy) Number of species Uniform(10, 80)

Number of generations (total tree height) Uniform(102, 104)
Expected number of duplications Edup Uniform(10−3, 4)
Number of gene families N Uniform(2, 50)
Rate heterogeneity multiplier Hs Gamma(1, 1)

Locus treea

(SimPhy) Gene duplication rate b � Exponential(Edup/�)
Gene loss rate Uniform(0, 0.75×�)
Rate heterogeneity multiplier Hl Gamma(1, 1)

Gene treea

(SimPhy) Effective population size Ne 2000× LogNormal(0, 0.25)
Number of individuals per species c Uniform(1, 10)
Substitution rate (per time unit) 0.001
Rate heterogeneity multiplier Hg Gamma(1, 1)

Gene tree
Uncertainty Maximum number of generated trees 160
(in-house) Tree dispersion term LT Uniform(2, 5)

Tree location term DT Uniform(3, 6)
Frequency of trees with uncertainty pT 1.1× Beta(LT ×DT , DT )
Branch location term LB Uniform(1, 5)
Branch-wise error probability pB 1.5× Beta(LB, 1)

Notes: Each simulation replicate was parameterized with values sampled from predefined statistical distributions. Given a species tree, simulated
with Dendropy, the program SimPhy was used to simulate gene family trees. An in-house program was then used to mimic gene tree uncertainty,
transforming each gene tree in a distribution of gene tree topologies in an attempt to emulate the effect of alignment-based phylogenetic inference
in practice.
a terminology used by SimPhy
b the term � is the total sum of branch lengths (in generations) in the species tree
c common for all gene families, emulating perfect sampling of individuals

applying gamma-distributed rate multipliers at the
branches of each of the simulated trees from the three-
tree model, namely the species tree, the locus tree, and
the gene tree (Mallo et al. 2014). As a result, the gene
family trees did not follow a molecular clock. Although,
currently our model for species tree inference do not take
into account this branch length information, it is relevant
to simulate gene tree uncertainty (i.e., tree inference
error), as we will see below.

Gene Tree Uncertainty
The simulation procedure just described provides

us with the single, true tree underlying each gene
family. However, our model explicitly considers gene
tree uncertainty, relying as input on a sample of the
posterior distribution of trees for each gene family. To
obtain these we could simulate sequences along the
true gene trees (Yang 2007; Fletcher and Yang 2009),
and then infer posterior gene tree distributions using
popular Bayesian phylogenetics programs like MrBayes
(Ronquist et al. 2012), PhyloBayes (Lartillot and Philippe
2004) or BEAST (Drummond et al. 2012). Unfortunately
this “parametric” approach is extremely slow, limiting
the scope of our simulations, so we carried out only
a small simulation experiment under this strategy (see
section below). Instead, for our main simulation study
we devised a nonparametric way of directly building

gene tree distributions for each gene family in an attempt
to recreate gene tree uncertainty.

For each true gene tree we generated a population
of topologies that may differ from the original by one
or more nearest-neighbor interchanges (Waterman and
Smith 1978), assuming a probability pT of applying
branch swaps to each tree, and a probability of branch
swap per branch inversely proportional to its length,
bounded by the maximum swap probability PB. The
latter accounts for the observation that shorter branches
are harder to reconstruct, and generally are where most
of the uncertainty in the phylogenetic estimation is
concentrated. A branch swap means that a bipartition
on the tree is replaced by one of its two alternatives.
In this way, a proportion (1−PT) of resulting trees
are expected to be identical to the original gene tree,
whereas the others should differ by at least one branch.
Values for PB larger than 1 are allowed, meaning that
even larger branches will have high uncertainty. For
low levels of uncertainty the most frequent topologies
will match the true gene family trees, although for the
parameter values employed in our simulations almost all
data sets contained at least one most frequent gene tree
distinct from the true one. The pseudocode for applying
uncertainty to a gene tree is described in the Appendix.

The general workflow of the simulation study is
represented in Figure 1. Each replicate data set was
composed by a species tree and a set of 2–50 gene
families, where phylogenetic uncertainty around each
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FIGURE 1. Simulation workflow. On the left a single data set is produced using Dendropy and SimPhy. The true species tree (rooted, with branch
lengths) simulated by Dendropy is used as input by SimPhy to generate several (rooted) phylogenies, one per gene family. Then, uncertainty is
added such that we have a distribution of topologies (unrooted, no branch lengths) per gene family. These collections will be used as input to
the inference programs in the right panel. Our software guenomu estimates the posterior distribution of species trees (rooted, without branch
lengths) and the posterior distributions of gene family topologies, based on all input gene tree distributions. The software iGTP also uses the
input gene trees after transforming the frequencies into integer values representing weights, and estimates two rooted species trees: one under
the Duplication and Loss cost, and another under the Deep Coalescence cost. For the distance-based species tree inference algorithms only one
tree per gene family is used, and two alternative choices were attempted: one was to use the true gene families, with branch lengths; and the
other was to use the most frequent gene trees (topologies only) after introducing phylogenetic uncertainty. In the later case it was assumed that
all branches had the same length.

gene family is represented by a tree collection with up to
160 distinct topologies. As a result of the introduction
of uncertainty, in 6% of simulations all gene tree
topology distributions showed as the most frequent tree
the original, true tree. In the remaining 94% at least
one distribution had a gene tree more frequent than
the true tree. From these, wrong trees had on average
a cumulative frequency 17% higher than the true tree,
although in all cases the true topology could be found
amongst the input gene trees, even if at a low frequency.
These gene tree frequencies were assumed by guenomu
to be the resampling weights (posterior frequencies from
independent analysis) of each tree.

Simulations with INDELible and MrBayes
To estimate whether the above procedure was a

good approximation to the empirical estimation of gene
trees from biological sequences, we also employed a
parametric simulation of input gene tree distributions
for a few scenarios: given the true gene family tree
generated by SimPhy, we used INDELible (Fletcher and
Yang 2009) to generate an alignment from which the
posterior distribution of trees was sampled by MrBayes
(Ronquist et al. 2012). For INDELible we simulated an
alignment of 103 amino acid sites under the WAG model
(Whelan and Goldman 2001) and without indels where
the total tree length was rescaled to 1 (such that each site
will have on average one replacement). Two independent

runs of four chains each (one cold and three heated) were
simulated for 5×105 iterations by MrBayes using the true
WAG model.

Due to heavy computational requirements of MrBayes
for large data sets (Supplementary Fig. SF6 available
on Dryad; http://dx.doi.org/10.5061/dryad.74922), we
constrained the simulation parameters: each replicate
data set had at most 10 gene families, with up to two
individuals per species, and with no more than 50
species. Therefore a typical data set had gene families
with an average of 33 leaves, and in total 1362 replicates
were generated under this parametric approach. Unless
otherwise stated, our results refer to the nonparametric
simulation of gene tree uncertainty.

Comparison with Other Species Tree Approaches
For each simulated data set two Bayesian guenomu

runs were conducted for 2×105 iterations each, under
both the DLI and DLIR parameterizations. The number
of iterations was decided based on the apparent
convergence of the posterior probability sequences
of a few samples, using the coda library for R
(Plummer et al. 2006). We also did a preliminary
analysis with the mulRF parameterization only, but
pilot experiments showed bad performance and we did
not explored it further. Each guenomu run generates
a (posterior) distribution of rooted species trees, and
their equivalent posterior distribution of unrooted

http://dx.doi.org/10.5061/dryad.74922
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trees. We used as point estimates of this distribution
both the maximum a posteriori (MAP) tree and the
50% majority rule consensus tree—remembering that
they contain only the topological information and no
branch lengths. Furthermore, under the DLIR model
we conducted another run of our model to estimate
a ML species tree using simulated annealing, as
described above. Each guenomu run took on average
1.5 hours to complete, using the serial version on a
single processor. Most runs completed in less than 3
hours, with the longest data set taking 9 hours to
finish (see Supplementary Fig. SF1 available on Dryad;
http://dx.doi.org/10.5061/dryad.74922).

For the same simulated data sets, and for comparison
purposes, we also employed several other supertree-
related models to reconstruct the species tree, namely
GTP (Bansal and Eulenstein 2013) and coalescent
distance matrix methods (Liu et al. 2009a), also
called coalescent summary statistics methods (see
below). Because in this study we consider gene trees
evolving inside a species tree under duplications,
losses, and ILS, we did not consider species tree
methods that cannot deal with multilabelled gene
trees, like the supermatrix approaches or consensus
methods like those implemented in BUCKy (Ané et al.
2007).

GTP aims to find species tree that minimizes its total
reconciliation cost with a given collection of gene tree
topologies. Here we used the software iGTP (Chaudhary
et al. 2010), which assumes that the disagreement
between gene trees and the species tree is either due to
DL, or to ILS. An independent analysis was conducted
under each assumption. iGTP allows for each gene
tree to have a weight associated with it, and therefore
we used the topology frequencies resulting after the
introduction of phylogenetic uncertainty (see above).
However, for computational feasibility we limited the
input gene trees to the most frequent quartile, which
should inflate its accuracy compared with using all
samples.

We implemented in-house several summary-statistic
coalescent species tree reconstruction methods based on
gene-wise distance matrices, as described in Helmkamp
et al. (2012). This class of methods start by creating
a matrix of distances between species for each gene
phylogeny. Such matrices are then merged into a single
one, from which a species tree is built using a clustering
algorithm. The four procedures implemented were
GLASS (Mossel and Roch 2008), STEAC (Liu et al.
2009b), SD (Maddison and Knowles 2006), and MAC
(Helmkamp et al. 2012), which differ on how they handle
contradicting distances for the same pair of species.
This distinction stems from the fact that when there is
more than one individual from the same species in a
given gene family, its tree will have more than one path
for the same pair of species. In such cases the GLASS
and SD methods will choose the minimum distance
between the pair as the element gene-wise distance
matrix, whereas the MAC and STEAC methods will take

the average between all distances for the same pair of
species. However when there are several gene families
each matrix might have a distinct distance between a
given pair of species. In this case, the GLASS and the
MAC methods use the minimum value, whereas the
SD and STEAC use the mean distance across matrices.
The species tree is then reconstructed based on this
final distance matrix, where SD and STEAC employ an
UPGMA, and GLASS and MAC use a single-linkage
clustering algorithm (Helmkamp et al. 2012).

These distance matrix methods are grounded on
the divergence times between species, and thus rely
heavily on the individual branch lengths. Moreover,
these methods assume a single gene tree for each gene
family. We used the true gene trees with the true branch
lengths as input to these methods, since those are
available to us. However, this is not a fair comparison
with guenomu and iGTP since for these approaches we
assumed that there is gene tree uncertainty. To make a
fair comparison, we in addition estimated species trees
with these methods but using only the most frequent
gene topology from the input gene tree distributions,
assuming that all branches had a length of 1.0 (since
our input distributions contain only the topologies but
no branch lengths). The latter corresponds to using the
path length (number of nodes) between leaves as the
pairwise distances (Steel and Penny 1993). From each
of these methods we obtained a single estimate of the
species tree.

Due to their computational complexity, we did
not evaluate sequence-based approaches like *BEAST
(Heled and Drummond 2010) as each simulated gene
family had hundreds of taxa, on average. Indeed, it
would have been very interesting to compare our
model with the recently developed software Phyldog,
which implements a probabilistic model to estimate
the ML species tree given a set of gene families
(Boussau et al. 2013). Unfortunately in our experience
this software is very difficult to install and run, and we
were not successful in designing a pipeline that could
systematically execute Phyldog with our simulated data
sets.

Performance Measures
We calculated tree accuracy as the number of splits

(bipartitions or branches) from the true unrooted species
tree that were successfully recovered in the inferred
species tree, divided by the total number of splits on the
true unrooted species tree. This accuracy measure will go
from zero when no true splits are recovered to one when
the true species tree topology is completely recovered.
We also recorded the proportion of simulations where
the true unrooted species tree was perfectly recovered
(i.e., the proportion of replicates where tree accuracy was
one, or true tree recovery.) In addition, from the analyses
where we had a sample from the posterior distribution
we also calculated the proportion of credible sets (at the

http://dx.doi.org/10.5061/dryad.74922
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FIGURE 2. Species tree accuracy of several inference methods. Each violin plot (kernel density curves plus a boxplot) represents the
distribution of tree accuracy values for the different methods evaluated. From each posterior distribution estimated by guenomu under the DLIR
parameterization we obtained two point estimates of the species tree: the MAP tree and the consensus tree (labeled ’MAP’ and “cons”). We also
obtained two estimates of species trees using iGTP, running the program under the DL cost and under the ILS cost (“iGTP-DL” and “iGTP-ILS”).
We also ran four distance matrix approaches (GLASS, SD, STEAC, and MAC) using two types of data sets, just the topologies with uncertainty
(’topo’) or the true simulated gene family trees with branch lengths (“true”). At the top, we show the hierarchical clustering of the different
methods based on their tree accuracy values for all replicates.

95% level) that contained the true unrooted species, or
true tree coverage.

Empirical Benchmark
To test our model on real data, we downloaded

all ML gene family trees from the TreeFam database
(Schreiber et al. 2014) and then pruned all data outside
the 12 Drosophila species subtree. We considered all
the gene families with more than 3 species. Within
these we identified 4591 single-copy gene families
(i.e., just orthologs), and from the remaining 2562
gene families with at least one paralog, we arbitrarily
selected the 43 largest ones, with number of leaves
between 102 and 295. As in the simulations, we added
phylogenetic uncertainty around the TreeFam gene
families as described above, generating a distribution of
gene trees for each gene family.

RESULTS

Species Tree Aaccuracy
In the simulation scenarios considered, guenomu

performed best regardless of its parameterization,
showing median tree accuracies around 0.7 (Fig. 2).
In fact, we could not distinguish between the
species tree accuracies estimated through the DLI
and DLIR parameterizations (Wilcoxon Signed-Rank
P>0.5). Guenomu was however followed very closely
by iGTP, which was slightly more accurate with DL
costs than when ILS costs were used. The average
increase in accuracy between guenomu and iGTP was
of only 1% when considering all replicates, and of 2%
when considering only data sets with more than 30
species under the DL cost for iGTP (the increase was
of 6% when compared to the ILS version of iGTP).
However, these differences were highly significant
using a paired-difference test (one-tailed Wilcoxon
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FIGURE 3. Guenomu’s tree accuracy with respect to simulation parameters. Here, the species tree was estimated as the consensus tree from
the posterior distribution assuming a DLIR parameterization. Based on a multiple linear regression analysis, these are the parameters that most
significantly affected tree accuracy: at the top we have, from left to right, the total number of gene families, the total species tree length (in
coalescent units), the expected number of duplications per gene family and the average number of species represented by gene family; at the
bottom we have the length of the smallest branch in the species tree (in coalescent units), the height of the species tree from root to tips (scaled
by the effective population size), the total number of species on the species tree and the average number of individuals from same species per
gene family. Over each panel we show the regression line overlaid.

Signed-Rank P<10−15). Guenomu’s ML estimates were
very similar to iGTP under DL cost (KS test P>0.5),
however, slightly more accurate according to a paired test
(one-tailed Wilcoxon Signed-Rank P=2×10−3). When
given the true trees, the GLASS method ranked next,
but performed badly when gene trees were uncertain.
The SD method did worse, performing equally well on
true and observed gene family trees. By far, the worst
methods were STEAC and in particular MAC, even when
the true gene trees were given.

To better understand the effect of different parameter
values used in the simulation, we fitted a multiple
linear regression model to the tree accuracies obtained
with guenomu’s consensus tree under the DLIR model
(Fig. 3). Several explanatory variables were significantly
and positively correlated with tree accuracy (P-value
<10−15 unless otherwise stated), including the sum
of species tree branch lengths in coalescent units, the
expected number of duplications per gene family on the
species tree, the average number of individuals from the
same species per gene family, and the average number
of distinct species per gene family (P-value <10−8). The
species tree height (length from root to tips) and the
smallest branch length, both in coalescent units, were
also significantly correlated with tree accuracy with
P-values, respectively, smaller than 10−9 and 10−4. In any

case, the most influential parameter was apparently the
number of species, which was negatively correlated with
tree accuracy (P-value<10−15).

Neither guenomu nor iGTP were able to recover the
true species tree for more than 40 species (Fig. 4). Under
guenomu, the true tree could be found within the 95%
coverage on data sets with up to 40 species. Nonetheless,
even when the true species tree could not be found,
guenomu found trees consistently more accurate than
iGTP for large trees (Fig. 5). In these cases, the consensus
tree from the posterior samples under guenomu was
in any case the best estimate. For example, for the
simulations with more than 60 species, 64% of the
species trees reconstructed from guenomu found at least
60% of the true splits, against only 59% of the trees
inferred by iGTP (Fig. 5). About 15.7% of trees from
guenomu reconstructed more than 80% of the true splits
for the same large data sets, against 12% when iGTP was
used.

To obtain more details on this slightly increased
performance of guenomu, we fit another multiple
linear regression model over all replicates where
the dependent variable was the difference in tree
accuracy between guenomu’s consensus estimate from
the DLIR model and iGTP under the DL cost. This
indicated that guenomu significantly outperformed iGTP
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95% credible set). Each line is actually a smooth regression line over the individual values. For iGTP the species tree was estimated under the
DL cost, whereas for guenomu we plot the Bayesian consensus under the DLIR parameterization.
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FIGURE 5. Tree accuracies of iGTP and guenomu for large data sets. On the left we have all data sets where the number of species was between
40 and 60, and on the right we have the pooled replicates with species tree sizes between 61 and 80 leaves. Each bar represents the proportion of
data sets with tree accuracies between the ranges described in the middle, such that at the top we have the fraction of simulations where more
than 80% of the splits were recovered, while the inferences whereas less than 20% of the true splits were found are the bottom.

(p-values <10−5) for data sets with more and larger
gene families, with shorter species trees (as measured
by the sum of its branch lengths in coalescent units). The
improvement was also significant (P-values <10−3) for
MAP input gene trees with low frequency and for lower
levels of gene tree uncertainty as measured by PT .

Simulations with INDELible and MrBayes
Similar performance trends were observed for the

small data sets where we simulated sequences with
INDELible and obtained posterior gene distributions
with MrBayes, although the accuracies were overall
lower (Supplementary Fig. SF3 available on Dryad;
http://dx.doi.org/10.5061/dryad.74922). This may be

a reflection of the lower accuracy in the input
gene tree distributions themselves, as estimated
by MrBayes when compared to our nonparametric
algorithm (Supplementary Fig. SF2 available on Dryad;
http://dx.doi.org/10.5061/dryad.74922). Furthermore
the simulation scenarios under which we could apply
parametric gene tree uncertainty—few gene families
with small number of taxa, spanning fewer species—are
those where by chance the advantage of guenomu is less
visible, as described in previous section.

Gene Tree Accuracy
Our software guenomu not only estimates the

distribution of species trees but also resamples the

http://dx.doi.org/10.5061/dryad.74922
http://dx.doi.org/10.5061/dryad.74922
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FIGURE 6. Input and posterior gene tree distributions. Each panel shows the distribution of input gene trees (after generation of tree uncertainty
using our algorithm) and their posterior counterparts (resampled by guenomu) for several ranges of species tree sizes, together with a smooth
regression line over all samples. The panels at the top show the accuracies of the consensus (a) and MAP (b) estimates, when compared to the
true gene trees simulated by SimPhy, whereas the bottom panels display the frequencies of the MAP (c) and true (d) gene trees. All values are
averages over all gene families from each replicate.

input gene trees, providing a posterior distribution of
gene trees for each gene family. For each replicate, we
compared the input gene tree distributions generated
nonparametrically with their posterior gene tree
distributions output by guenomu (Fig. 6). Compared with
the original input gene tree distributions, guenomu’s
gene tree posterior distributions included the true tree
most frequently, besides resulting in much more accurate
consensus trees, and in more accurate MAP trees when
the number of species was larger.

The main difference between our tree
uncertainty algorithm and the parametric approach
(INDELible+MrBayes) was the distance between the
consensus and MAP estimates (Supplementary Fig.
SF2 available on Dryad; http://dx.doi.org/10.5061/
dryad.74922). With our method the consensus tree
of each gene family was much less accurate than the
MAP tree, reflecting the presence of a lot of noise
around the true tree that, however, was always present.
Under the more realistic simulation using MrBayes
both the consensus and MAP estimates had similarly
good accuracies, even when the true tree was not
included in the sample of gene trees. Therefore, the
input gene tree distributions described here seem to

be a good, although imperfect, proxy to posterior gene
tree distributions estimated by Bayesian phylogenetics
methods.

For input gene tree distributions generated
parametrically, guenomu was similarly capable
of reducing the uncertainty from the gene tree
distributions, with the caveat that we did not observe the
increase in the consensus gene tree accuracies estimated
by guenomu for larger data sets (Supplementary Fig.
SF2 available on Dryad; http://dx.doi.org/10.5061/
dryad.74922).

TreeFam Drosophila Gene Families
As for the TreeFam data, guenomu reconstructed the

known Drosophila species tree (Stark et al. 2007) as well
as the root location for the data set with few large
gene families (43 genes with more than 100 members
each). The correct root location could be found even
in the absence of an outgroup. The rooted species tree
estimation from this data set was robust to gene tree
uncertainty. That is, even after replacing each ML tree by
a distribution of topologies as described before, guenomu

http://dx.doi.org/10.5061/dryad.74922
http://dx.doi.org/10.5061/dryad.74922
http://dx.doi.org/10.5061/dryad.74922
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was capable of finding the known species tree with
posterior probability equal to one.

However, for the large data set composed of single-
copy gene families (4591 gene families with up to 12
members each), although the unrooted topology could
be found in the absence of gene uncertainty, the rooted
location was not correctly inferred. In the presence
of gene uncertainty, even the reconstructed topology
missed one or two splits.

DISCUSSION

Reconstructing Species Trees from Gene Families with
Lineage Sorting

Most phylogenomic analyses start with the
identification of ortholog sequences, after some
process of sequence collection and pruning of paralogs
(e.g., Koonin and Wolf 2008; Dunn et al. 2008; Medina
et al. 2011; Sanderson et al. 2011; Bininda-Emonds
2011; Williams et al. 2012; Lang et al. 2013; Romiguier
et al. 2013; Salichos and Rokas 2013). Much less
often, alternative species tree analyses focus on gene
duplication and loss (Katz et al. 2012), or consider
paralogs at all (Holton and Pisani 2010). The common
practice of removing data (sequences or whole genes)
before analyzing the reduced data sets is sometimes
needed, in order to conform to model assumptions or
due to computational limitations of the methods. This
process of data selection is also rooted on the elusive
idea of removing uncertainty and improving resolution,
which is anathema to the Bayesian paradigm. Here we
propose a Bayesian supertree model that does not need
to separate homologs from paralogs, that can work with
multiple gene families and that is also able to deal with
multiple individuals per species. It also minimizes the
pre-processing of data to conform to strict standards of
resolution, since the model can cope with uncertainty
in the phylogenetic inference. Therefore our approach,
implemented in the program guenomu, is able to work
with all the available data at hand.

Our simulations suggest that guenomu is able
to reconstruct reasonably accurate species trees in
the presence of gene duplications, losses, and deep
coalescences, even though right now it uses relatively
simple distances that do not take into account
branch lengths. Although this is not a panacea, it
suggests that exploring these apparently naïve models
of disagreement may be an attractive alternative to
biologically realistic frameworks, specially once we aim
for a consilience of methods. We hope that more analyses
are conducted under broadly usable frameworks like the
one we offer, at least as a starting point before embarking
into other ones with additional assumptions.

Both DLI and DLIR parameterizations of guenomu
performed almost identically in recovering the species
tree, but the DLIR model, which includes the mulRF
distance (Chaudhary et al. 2013), helped to reduce the
uncertainty from the posterior gene tree distributions.

This might be due to the “coarseness” of the distances
employed: even when there are several gene trees
equidistant to the species tree under a given metric, they
may be distinguishable under another metric. Since the
computational overhead of the DLIR parameterization
over DLI is minimal, it seems worthwhile to use DLIR.
The similarity of posterior distributions between the
two parameterizations for each replicate suggests the
convergence of the chains, but we recommend the use
of proper convergence diagnostics (Rambaut et al. 2013;
Plummer et al. 2006) based on independent runs for real
analyses using empirical data sets. The user can also
decide how the initial state of the chain is chosen based
on an annealing algorithm—by “heating” the chain
before sampling, we can ensure that the original states
are random, and thus accurate convergence analyses can
be pursued.

In the simulations, the true species tree became
more and more difficult to recover as the number of
species increased. However, even in these cases the
majority of true splits were recovered through the
consensus or MAP estimates, suggesting that our model
can be applied to relatively large species trees. We
notice however that for the largest species trees the
true species tree was not covered in the 95% credible
interval. We also applied the same analysis for species
trees simulated under a pure-birth (Yule) process,
obtaining better accuracies even for a large number of
species (Supplementary Fig. SF4 available on Dryad;
http://dx.doi.org/10.5061/dryad.74922).

As expected, the length in coalescent units of the
smallest branch of the species tree and the overall
species tree length had a great influence on species
tree accuracy, together with the number of species.
Indeed, we expect more ILS and consequently more
disagreement between gene and species trees next to
short branches, and also over a short generation span
within large effective population sizes. In Figure 3,
the simulated smallest branches on the species tree
comprise scenarios with high probability of ILS, once
we recall that the probability of failure to coalesce for
two nodes inside a branch of length t (in coalescent
units) equals 2/3e−t (Hudson 1983). The range of species
tree heights scaled by the effective population size
is also concentrated around values smaller than 4Ne,
considered “difficult demographic scenarios” (Leaché
and Rannala 2011). Species trees simulated under a
pure-birth process show less variability between branch
lengths than those simulated under the coalescent,
and a comparison of guenomu’s performance between
data sets simulated under both scenarios confirm the
considerations above (Supplementary Fig. SF5 available
on Dryad; http://dx.doi.org/10.5061/dryad.74922).
Under the conditions simulated, our model performed
better on data sets with more and larger gene families,
but representing fewer species. Small gene families over
a large number of species proved more challenging to
the methods compared.

Surprisingly, iGTP also provided good species tree
estimates, being significantly but not egregiously worse

http://dx.doi.org/10.5061/dryad.74922
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than guenomu as the number of species increased. We
did not expect this behavior because iGTP cannot handle
both DL and ILS costs at once, and nonetheless assuming
just a DL cost seemed to work quite well even in the
presence of moderate ILS. iGTP’s performance decay
for larger species trees might be due to the increase in
ILS (as indicated by our linear regression results), when
guenomu is favored. We also notice that for iGTP we used
the top 25% most frequent gene trees from each input
distribution, using frequencies as weights, which gave
better results than using only the most frequent trees
or all trees (results not shown). This is likely due to the
long tail of wrong trees generated by our tree uncertainty
algorithm. Indeed, iGTP is faster than guenomu, which
then makes it a very competitive approach. On the
other hand, guenomu can replicate completely iGTP’s
functionality through its ML algorithm and has all
the advantages of Bayesian methods, which could
furthermore work with other complex distance costs in
the future.

The coalescent distance matrix methods evaluated
here assume that the source of disagreement comes
from ILS, therefore, it comes at no surprise that
they did not perform well under our simulations,
with an important contribution from DL. DL, when
unaccounted for, will have a detrimental effect on the
estimated coalescent process (Rasmussen and Kellis
2012). Although this comparison might seem somehow
unfair to these summary statistics methods, it serves also
as a warning against using attractive algorithms without
considering their assumptions. It might be interesting,
however, to explore more extensively these methods and
see how they fare against guenomu or iGTP when there
is only ILS.

We also observed that both iGTP and guenomu benefit
from large gene families, with several representatives
from each species—even though we do not distinguish
paralogs or populational samples. This is evidence
against the trend of finding good, hand-crafted sets
of orthologs at the expense of the paralogs that must
be discarded from the analysis. This pruning may be
done after the complete data set was used to create the
posterior distribution of species trees, in a subsequent
analysis, but not before.

The algorithm we devised to simulate gene tree
uncertainty allowed us to explore a wider range
of simulation scenarios without compromising the
conclusions. The inferred species trees under the
parametric simulation (INDELible+MrBayes) were
usually less accurate in this case, but similar performance
trends were observed.

The root location of the Drosophila largest gene
families was found even without an outgroup since
the presence of paralogs is informative about the
optimal location of duplication nodes (Katz et al.
2012). For the single-copy genes data set, on the other
hand, the root location was not correctly inferred
for the same reason: orthologous data sets lack such
phylogenetic information. Furthermore, the smaller

gene families were more sensitive to the effect of tree
uncertainty.

Advantages and Shortcomings of Our Bayesian Supertree
Method

Bayesian methods in general give us information
about the reliability of their findings through the
posterior distribution. The flatness of the posterior
distribution of species trees, or the frequency of the
most frequent topology can give us a hint about the
amount of signal contained in the data. The use of
a Bayesian framework not only allows for model
selection, but also facilitates the creation of models of
increased complexity, subject always to computational
constraints. Thus, our framework can be extended in
a straightforward manner to handle more complex
situations, and indeed incorporating more biological
realism. Our distinct parameterizations allow us to
compare models that use different sets of distances,
such that we can, in principle, compare their underlying
assumptions.

Our modeling of “phylogenomic error” can be seen
as a generalization of optimal Bayes estimators, like
the consensus tree or quartet puzzling (Huggins et al.
2011). Such a model has already been suggested as an
alternative to the detailed description of the processes
causing the tree incongruences, whereas at the same
time maintaining the convenience of supertree methods
(Steel and Rodrigo 2008; Cotton and Wilkinson 2009).
This class of methods can help bridge the gap between
sequence-based alignment and phylogenomic analyses
(Cotton and Wilkinson 2009), and ours is the first
implementation of this class of methods.

Originally, parsimonious reconciliation methods
under the DL or the ILS costs worked with rooted gene
trees and rooted species trees (Guigó et al. 1996; Than
and Nakhleh 2009). However, because we define the DL
and ILS distances as the minimum cost over all possible
gene root locations, our model works with unrooted
input gene trees. This is an important advantage, as
in in real life often there is no reliable information
about the rooting at the gene tree level, and fixing a root
location can severely influence the resulting inferences.

The current implementation of our model uses only
the topological information, ignoring branch lengths,
but it can be extended in the future to deal explicitly
with branch lengths on the gene and species trees.
However, it is possible to use crudely the branch lengths
as an indication of confidence in the bipartition, as
implemented in our generator of gene tree uncertainty.

Other topological distances can be easily implemented
as well, taking advantage of our solution to the
normalization constant. An example of a promising
distance would be one based on the recently developed
DLCpar algorithm (Wu et al. 2014), which can find
the most parsimonious reconciliation scenario by
considering duplications, losses, and deep coalescences
at once. Another option would be based on algorithms
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for finding the minimum cost reconciliation in the
presence of duplications, losses, and HGT (Tofigh
et al. 2011; Doyon et al. 2011). One drawback is
that many of these algorithms do not return a
single solution, since under these scenarios the best
reconciliations are not unique. We have already added
an approximate SPR distance (de Oliveira Martins
et al. 2008; de Oliveira Martins and Kishino 2010)
into our multivariate exponential distribution, to model
the effect of HGT between the gene and species
trees. Unfortunately, however, this approximation does
not work with multrees, as is the case with many
other distances. Therefore, this extension is left as an
experimental feature of guenomu, that might help for
cases where HGT cannot be neglected.

It has been shown that the normalization constant can
have an important effect on the species tree estimation
in a probabilistic setting when the RF distance is used
Bryant and Steel (2008), and it certainly can affect other
metrics. In our context, it means that some species trees
are naturally closer than others to the space G of gene
trees for a given gene family, being then spuriously
chosen. However, our simulations on small data sets
did not show any apparent differences in the estimated
species trees whether or not we include its estimation
(results not shown). We believe this is due to our usage
of several distances, since they may even out the sum
over G. As a result it becomes less likely that a given
species tree S1 is favored over another S2 due to the ratio
Z(S1,�)/Z(S2,�) despite being more dissimilar, since S1
would have to be closer to all G∈G according to all
distances. It is not unreasonable to expect that a species
tree S1 favored under one distance may be disfavored
under another distance, like for instance the DL and
the ILS costs. Since the calculation of the normalization
constant requires a secondary MCMC for each iteration,
we decided not to use it in our reported simulations (that
are centered around point estimates of the species tree),
speeding up our inference by around 10 times. However,
even if it does not influence the estimated consensus or
MAP trees, it can hamper other statistical interpretations,
like the estimation of credible intervals or calculation
of the marginal likelihood. Therefore, whenever enough
computational resources are available the normalization
constant should be included in the analysis.

One might worry about a possible correlation between
the distances used that might affect the performance of
our method. We have seen that this is not the case since
our model performs better than iGTP where distances
are used in isolation. Furthermore, these distances are
not equivalent as shown by distinct results using the
DL or the ILS costs under iGTP. Indeed, the distances
used are not redundant (Zheng and Zhang 2014), but
even the inclusion of a distance partially correlated
with an existing one should not be alarming, as long
as there are cases where it can add new information.
Actually, even a distance that is completely equivalent to
another metric should not bias the performance, with
the only drawbacks of wasting computing time and

increasing the variance over their penalty parameters
(since the model can not distinguish between them).
This concern makes more sense in a pure parsimonious
approach, where the weights for the costs must be
decided beforehand, in which case we might want to
give lower weights to groups of related distances. Each
term in the multivariate exponential distribution acts as
a penalty against dissimilar gene/species tree pairs, and
therefore similarity according to only one metric does not
guarantee a high probability for the given gene/species
tree pair.

When using resampling weights it is important to have
a large sample with all reasonable trees represented for
each gene family (Smith and Gelfand 1992), specially
since even lower likelihood trees might contribute more
to the species tree than the ML estimate (Boussau
et al. 2013). Indeed, the presence of the true gene
tree amongst the samples improved performance, as
was the case when we compared our nonparametric
gene tree uncertainty generator with the parametric
simulations using MrBayes. Therefore, ideally under
our importance sampling algorithm we should avoid
using point estimates of the gene trees (like the ML
gene tree, for instance), although for the TreeFam data
set it did not hamper the analysis. Nonetheless this
simplification allows us to focus on the distribution
of tree distances while using well-established software
to estimate the individual gene tree distributions,
saving time, and effort. Even gene tree distributions
representing bootstrap replicates might be used as
input to guenomu, with the caveat that we might not
interpret its output in probabilistic terms anymore.
Contemplating the uncertainty in the inference of gene
trees can provide a better picture of the evolutionary
history of species trees.

Here, we have presented guenomu, a program capable
of accurately estimating the set of likely species trees as
well as reducing the uncertainty of sampled gene trees. It
is based on a simple model that can be easily expandable,
and that incorporates several existing approaches like
GTP and the RF supertree. It is also very fast, such that
a single run on a data set like the one described by Song
et al. (2012) of 447 gene family tree distributions over
37 species would take less than 6 hours using a single
processor.
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APPENDIX

Pseudocode for the Non-Parametric Generation of Tree
Uncertainty

Here are the steps to apply uncertainty to a gene tree T:

1. find maximum branch length tMAX =MAXi(ti)
over all internal branches i of T, where ti is the
branch length;

2. associate to each internal branch i a probability of
swap Pi =PB ×(1−ti/tMAX);

3. with probability (1−PT), create a copy of T
unchanged;

4. Otherwise, with probability PT , apply uncertainty
as follows. For each internal branch i in postorder
(that is, closer to leaves first), using arbitrary root
location and assuming left and right children are
labelled c1 and c2:

(a) If c1 is internal but c2 is not, then
• with probability Pc1/3 attach the left

child of c1 to i;
• otherwise with probability Pc1/3 attach

the right child of c1 to i;
• otherwise do nothing;

(b) If c2 is internal but c1 is not, then
• with probability Pc2/3 attach the left

child of c2 to i;
• otherwise with probability Pc2/3 attach

the right child of c1 to i;
• otherwise do nothing;

(c) If both c1 and c2 are internal branches, then
do one of the following:

• with probability Pc1(1−Pc2) attach the
left or right child of c1 to i, at random;

• with probability Pc2(1−Pc1) attach the
left or right child of c2 to i, at random;

• with probability Pc1Pc2/2 attach the left
or right child of c1 to i, then attach the
left or right child of c2 to one of i, the left
or right children of c1;

• with probability Pc1Pc2/2 attach the left
or right child of c2 to i, then attach the
left or right child of c1 to one of i, the left
or right children of c2;

• with probability (1−Pc1)(1−Pc2), do
nothing;

If the gene tree does not have branch lengths, then a
common value is assumed for all branches. Furthermore,
if there are several trees in a file, the above procedure is
repeated for each one of them, keeping track of their
frequencies.
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