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ABSTRACT

We present a noise-robust algorithm for estimating the active level of
speech, which is the average speech power during intervals of speech
activity. The proposed algorithm uses the clean speech phase to re-
move the quadrature noise component from the short-time power
spectrum of the noisy speech, as well as SNR-dependent techniques
to improve the estimation. The pitch of voiced speech frames is
determined using a noise-robust pitch tracker and the speech level
is estimated from the energy of the pitch harmonics using the har-
monic summation principle. At low noise levels, the resultant active
speech level estimate is combined with that from the standardized
ITU-T P.56 algorithm to give a final composite estimate. The algo-
rithm has been evaluated using a range of noise signals and gives
consistently lower errors than previous methods and than the ITU-T
P.56 algorithm, which is accurate for SNR levels of above 15 dB.

Index Terms— Speech analysis; active speech level; harmonic
summation

1. INTRODUCTION

The active speech level (ASL) of a speech signal is defined to be its
average power during intervals when speech is present; it is equal
to the total speech energy in the signal divided by the duration of
speech activity. A reliable estimate of the ASL is required whenever
a statistical model of speech is applied to a noisy speech signal. In
this paper, we present a robust ASL estimation algorithm.

Many speech processing applications require an estimate of the
ASL of a noisy speech signal. An ASL estimate is, for example, re-
quired in a speech recognizer when combining a pre-trained speech
model with an adaptive noise estimate [1], [2]. In [3], an ASL esti-
mate makes it possible to normalize the speech level prior to deter-
mining a binary mask for speech enhancement and an ASL estimate
is used to determine the SNR of a noisy speech signal as an initial
step in calculating a non-intrusive speech quality metric in [4].

This paper presents an algorithm for estimating the ASL that is
robust to high levels of additive noise. Section 2 of the paper pro-
vides an overview of two existing algorithms: the ITU-T P.56 algo-
rithm [6] and the composite harmonic summation (CHS) algorithm
[7]. The proposed algorithm, which is a development of [7] is de-
scribed in Sec. 3 and evaluated in Sec. 4. Finally, conclusions are
presented in Sec. 5.

2. ANALYSIS OF THE EXISTING ALGORITHMS

2.1. The ITU-T P.56 algorithm

The ITU-T Recommendation P.56 [6] defines a standardized algo-
rithm for objectively measuring the ASL. The algorithm first low-
pass filters the rectified input signal to obtain its envelope. The
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Fig. 1. The top panel shows the signals that are used in this report.
In this case, babble noise at 10 dB SNR is plotted. The bottom panel
shows the error for the P.56 and the composite HS (CHS) algorithms
for SNR levels from −20 dB to 20 dB. For these graphs, one sen-
tence from the TIMIT database [5] is used with babble noise.

speech is then defined to be active whenever the envelope has ex-
ceeded an adaptive threshold within the past 200 ms [8], [9]. The
ASL is then calculated as the total energy of the signal divided by
the duration of activity. The threshold used to define speech activ-
ity is circularly defined to be 15.9 dB below the calculated ASL.
Throughout this paper, we define the true ASL to be the value ob-
tained by applying the P.56 algorithm to clean speech and the SNR
of a noisy signal as the ratio between the true ASL and the average
noise power.

The top panel of Fig. 1 shows a speech signal with additive bab-
ble noise at 10 dB SNR. The signal includes two segments of speech
activity separated by a silent interval. The upper curve in the bottom
panel shows the error in the ASL estimate of the P.56 algorithm as
a function of the global input SNR of the speech signal. The ASL
is calculated as the ratio of the signal energy to the active speech
duration and errors arise from two opposing effects; one affecting
the numerator and of this ratio and the other the denominator. First,
the numerator includes the noise energy in addition to the speech en-
ergy; this results in an overestimate of the true ASL for SNR≤ 0 dB.
Second, for SNR ≤ 15 dB, the algorithm fails to identify the silent
intervals in the speech signal and assumes that the speech is active at
all times; this results in an under estimate of the true ASL for 0 dB≤
SNR ≤ 15 dB. Figure 2 plots the activity factor (AF) of the speech
in the signal from Fig. 1 versus SNR where the AF is the fraction of
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Fig. 2. The activity factor (AF) estimate of the P.56 algorithm is
tested with SNR levels from −20 dB to 20 dB. One sentence from
the TIMIT database [5] is used with babble noise and with car noise.

time that speech is active expressed in dB (and not as a percentage).
The true AF is −3.4 dB and is shown as a horizontal dashed line
(i.e. the bottom curve). The upper curve shows the estimated AF for
babble noise and it can be seen that the errors are significant below
15 dB SNR. The middle curve shows the estimated AF for car noise
and it can be seen that the errors are significant below −2 dB SNR.
The overestimate of the AF thus varies with the noise type.

2.2. The composite harmonic summation (CHS) algorithm

An ASL estimator with improved noise robustness, the composite
harmonic summation (CHS) algorithm, was presented in [7]; this
uses the P.56 algorithm at high SNRs but uses an alternative ap-
proach, the harmonic summation (HS) algorithm at low SNRs. The
HS algorithm uses a pitch detector [10] to identify voiced speech in-
tervals and to track their pitch. The energy in each pitch harmonic
of a voiced frame is then determined by integrating the product of
the noisy speech power spectrum and a Mexican hat window centred
on the frequency of the harmonic. This is illustrated in Fig. 3 which
shows the power spectrum of a voiced speech frame with a larynx
frequency of about 180 Hz and Mexican hat windows centred on the
first six pitch harmonics. Since the Mexican hat window is symmet-
ric and integrates to zero, a noise component in the power spectrum
that is a linear function of frequency will not contribute to the in-
tegral. To determine the ASL, the CHS algorithm determines the
average power in the first 15 pitch harmonics of the voiced frames
and adds a constant offset of 0.85 dB to compensate for the energy of
the unvoiced frames and the high harmonics. In order to reduce the
errors of the ASL estimate at high SNR levels, the CHS algorithm
uses the noise estimator from [11] to determine the global SNR and
reverts to the P.56 estimate of ASL for SNR≥ 4 dB. For SNR levels
in the range −2 to 4 dB the CHS algorithm uses a weighted average
of the P.56 and the HS estimate described above.

The errors of the CHS algorithm are shown as the lower curve
in the bottom pannel of Fig. 1 where it can be seen that the error
is reduced by up to 6 dB for SNR levels below −5 dB. For 0 dB
≤ SNR ≤ 15 dB, the CHS algorithm is the same as the P.56 algo-
rithm and so it does not correct for the underestimation of the ASL
in this range. This underestimation arises because the P.56 algorithm
fails to detect intervals of speech inactivity at these levels of SNR.
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Fig. 3. The 120 Hz Mexican hat is used in the frequency domain to
compute the voiced speech power. In this case, the pitch of the male
speaker is approximately 180 Hz, the noise type is babble noise, the
global SNR is 20 dB and the time-local SNR is higher than 20 dB.

Because the evaluation of the CHS algorithm in [7] did not include
speech samples that included pauses, the degradation in performance
for SNR levels in this range is not apparent from the results in [7].

3. THE PROPOSED ALGORITHM

In this section we propose an algorithm, that is based on the CHS al-
gorithm [7] but incorporates a number of modifications that improve
its performance at both low and moderate SNR levels.

The algorithm operates in the short-time Fourier transform
(STFT) domain in which the complex-valued coefficients of the
noisy speech in frame λ and frequency bin k are denoted as Y (λ, k).
The relation between the complex-valued DFT coefficients in the
STFT domain is Y (λ, k) = X(λ, k)+N(λ, k), whereX(λ, k) and
N(λ, k) are the clean speech and noise DFT coefficients.

3.1. Quadrature noise suppression

In the HS algorithm, the power in each pitch harmonic is estimated
by integrating the product of the noisy speech power spectrum,
|Y (λ, k)|2, and a Mexican hat window centred on the harmonic.
Figure 3 shows the power spectrum of a single voiced frame from
the speech signal shown in Fig. 1. The pitch of this frame is approx-
imately 180 Hz and the Mexican hat windows are shown for the first
six harmonics. If the power spectrum of the noise, |N(λ, k)|2 is a
linear function of k within the support of the window, its presence
will not introduce a bias into the power estimate but it will, however,
increase the variance of the estimation error. If we know the phase of
the clean speech coefficient, X(λ, k), then we can reduce this vari-
ance by excluding the component of the noise that is in quadrature
to the speech.

Omitting λ, k for clarity and defining θX = ∠X , we can write

E {|Y |2 − |X|2} = <(N × e−jθX )2 + =(N × e−jθX )2 ≥

<(N × e−jθX )2 = E {<(Y × e−jθX )2 − |X|2} (1)

where the expectation is over the noise phase ∠N which we
assume to be independent of the clean speech phase θX . Thus, we
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Fig. 4. The upper panel depicts the active speech presence (ASP)
binary classification based on P.56 for clean speech. The centre
panel shows the voiced speech presence (VSP) based on PEFAC for
babble-noisy speech at 20 dB SNR. The bottom panel shows the esti-
mated active speech presence (EASP) based on PEFAC with 250 ms
hangover. Babble noise at 20 dB SNR is utilised.

see that Ỹ 2 , <(Y × e−jθX ))2 is a better estimate of |X|2 than is
|Y |2 . In general, we do not know θX(λ, k) a priori, so we estimate
it for each λ, k using the algorithm from [12] and then use Ỹ 2 when
estimating the power of the pitch harmonics.

We denote this variant of the HS algorithm in which quadrature
noise is removed, the QHS algorithm.

3.2. SNR-dependent hangover scheme

The upper panel of Fig. 4 shows the active speech intervals, and more
specifically the active speech presence (ASP) binary classification,
identified by the P.56 algorithm when applied to a clean speech sig-
nal similar to that in Fig. 1. The ASP intervals are thus the true active
speech intervals.

The centre panel of Fig. 4 shows the frames identified as voiced,
and more specifically the voiced speech presence (VSP) binary clas-
sification, when the PEFAC algorithm [10] is applied to the speech
signal with added babble noise at 20 dB SNR. The voiced frames
are detected by PEFAC using a 50% probability threshold. The cen-
tre panel illustrates two types of error if the detected frames are
assumed to represent speech activity: (a) within the active speech
intervals some frames are unvoiced and, especially at poor SNRs,
some voiced frames may be undetected, (b) some noise frames are
wrongly detected as voiced. To address these issues, we apply a
hangover interval to the detected voiced frames in order to estimate
the intervals of speech activity. The bottom panel of Fig. 4 shows
the effect of applying a hangover of 250 ms for noisy speech at 20
dB SNR. It illustrates the estimated active speech presence (EASP)
binary classification based on PEFAC with the 250ms hangover. We
see that the gaps in the active speech segments have been completely
filled in but that the false detections during the speech-inactive peri-
ods have also been lengthened.

The hangover extends the duration of speech activity in the de-
nominator of the ASL ratio to compensate for the duration of the un-
voiced speech frames when voiced speech frames are detected [13].
We apply an SNR-dependent hangover duration chosen to minimize
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Fig. 5. The hangover duration for each SNR level is illustrated. The
MSE objective function is the sum of the frame classification MSEs.

the number of active/inactive classification errors. We first estimate
the global SNR as the ratio between the ASL and the noise power es-
timated from [11]. The ASL is itself calculated as the ratio between
the energy of the voiced frames estimated using the HS algorithm
and the active speech duration estimated using a fixed 250 ms hang-
over to the voiced speech duration.

The SNR-dependent hangover duration minimizes the number
of active/inactive classification errors. The MSE between the ASP
and the EASP binary classification is equal to the number of clas-
sification errors. The MSE is thus between the ASP segments from
the P.56 algorithm on clean speech, as in the upper panel of Fig. 4,
and the voiced speech segments from the PEFAC algorithm with the
hangover, as in the bottom panel of Fig. 4.

The SNR-based hangover scheme balances the tradeoff between
reducing the length of the hangover due to the misclassification of
certain non-voiced silence frames and increasing the length of the
hangover due to the sparsity of the detected voiced frames in low
SNR levels. The MSE objective function, which is the sum of the
frame classification MSEs, penalises the two contradicting objec-
tives equally and ensures that the two opposing errors do not cancel
out. Due to the fact that the MSE penalises the two contradicting
objectives equally, the SNR-dependent hangover does not depend
heavily on the AF of the speech samples that are used for training.

Using the training dataset, defined in Sec. 4, we found the hang-
over duration that minimized the number of active/inactive classi-
fication errors for each value of estimated SNR in the range −20
dB ≤ SNR ≤ 20 dB. These values are plotted in Fig. 5. The opti-
mum hangover was 250 ms at high SNRs of above 15 dB, but this
decreased to 150 ms at −5 dB SNR as the number of false detec-
tions in inactive regions increased. For SNRs below −5 dB, the
optimum hangover increased because at these very low SNRs the
voiced frames detected within the active speech intervals become in-
creasingly sparse.

The bottom panel of Fig. 4 shows the EASP binary classifica-
tion results when 250 ms hangover is used for noisy speech at 20
dB SNR. This can be seen as an example of SNR-dependent hang-
over since, based on Fig. 5, for the high SNR levels of 15 dB and
above, the 250 ms hangover duration minimizes the MSE objective
function.

We denote this variant of the HS algorithm in which quadrature
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Fig. 6. The error for the HS and the QHS algorithms for SNR levels
from −20 dB to 20 dB is illustrated. A fixed hangover of 250 ms
is used in both algorithms. For this graph, a perfect clean phase
estimator in the STFT domain is used in the QHS algorithm. A fixed
offset is used to correct the ASL estimate for clean speech signals.

noise is removed and SNR-dependent hangover is used, the HQHS
algorithm. The HQHS algorithm therefore uses QHS to estimate the
harmonic energy of the voiced frames and divides this by the active
speech duration determined with an SNR-dependent hangover.

3.3. SNR-dependent offset

The proposed algorithm estimates the global SNR to implement the
SNR-dependent hangover scheme. This SNR estimate leads to the
notion of a SNR-dependent offset rather than a fixed offset in the
log-power domain. For the SNR-dependent offset, a training set has
been used to obtain the offset for each SNR level. The offset is the
negative value of the mean error of the ASL estimates in the training
set.

We denote this variant of the HS algorithm in which quadrature
noise is removed and SNR-dependent hangover and offset are used,
the OHQHS algorithm.

3.4. Proposed composite algorithm

The final step of the proposed algorithm refers to the use of a com-
posite algorithm that implements the P.56 algorithm for SNR ≥
15 dB. The mean squared error is the sum of the variance and the
squared bias. At poor SNR levels, the OHQHS algorithm has much
lower bias than the P.56 algorithm. However, at high SNR levels
of above 15 dB, the P.56 algorithm has low bias and also very low
variance. Therefore, as with [7], we form a composite algorithm
whose ASL estimate is a weighted average of the OHQHS and P.56
algorithms using equation (2). We will name this variant of the HS
algorithm as the COHQHS algorithm. Thus, the term lCOHQHS de-
notes the estimated ASL from the COHQHS algorithm, lOHQHS the
estimated ASL from the OHQHS algorithm and luP56 the estimated
ASL from the P.56 algorithm.

lCOHQHS = ρ(γ)× lP56 + (1− ρ(γ))× lOHQHS (2)

The weighting factor ρ(γ), as a function of estimated SNR γ, is
determined by considering the minimisation of the error power using
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Fig. 7. The error for the HS and the HQHS algorithms for SNR levels
from −20 dB to 20 dB is illustrated. A SNR-dependent hangover,
based on Fig. 5, is used in both algorithms. A perfect clean phase
estimator in the STFT domain is used in the HQHS algorithm. A
fixed offset is used to correct the estimate for clean speech signals.

equation (3). The term lu denotes the true ASL, G(γ) is the training
set and the u-superscript denotes a specific training signal.

ρ(γ) =

∑
u∈G(γ)(l

u − luOHQHS)× (luP56 − luOHQHS)∑
u∈G(γ)(l

u
P56 − luOHQHS)2

(3)

3.5. Overview of the complete algorithm

The steps of the proposed COHQHS algorithm are as follows. The
algorithm first removes the noise component that is orthogonal to
speech, as described in Sec. 3.1. Quadrature noise is thus removed.
Then, the algorithm uses a SNR-dependent hangover scheme to
compensate for the unvoiced speech segments, as described in
Sec. 3.2. Next, the algorithm uses a SNR-dependent offset as de-
scribed in Sec. 3.3. Finally, the algorithm is linearly combined with
the P.56 algorithm, with the SNR-dependent weighting chosen to
minimize the mean squared error.

4. EVALUATION

The proposed ASL estimation algorithm is tested with signals that
are created based on the clean speech files of the TIMIT database [5]
and contain silence segments. For Fig. 6 to 8, 45 sentences from the
TIMIT database [5] are used to create the training and test signals
along with 15 noise types from the noise database in [14] for the
SNR levels of −20 dB to 20 dB. Random segments of noise from
the noise signals have been utilised. For training, 45 TIMIT files
and 35 different speakers were used and, for testing, 45 TIMIT files
and 38 different speakers were used. For each SNR level, the total
number of speech and noise combinations used was 675.

The proposed algorithm uses 90 ms frames with 80 ms overlap,
as in [10]. The code for the P.56 algorithm and the CHS algorithm
in [15] have been used to obtain an improved CHS algorithm.

Figure 6 and Fig. 7 present the effect of the quadrature noise sup-
pression step of the proposed algorithm. Figure 6 shows the boxplot
error metrics for the corrected HS algorithm with a fixed hangover
and the QHS algorithm when a perfect clean phase estimator is used.
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Fig. 8. The RMS error is shown for the P.56, the CHS and the pro-
posed COHQHS algorithms for SNR levels from −20 dB to 20 dB.
The COHQHS algorithm has low RMS error at 0 < SNR ≤ 20 dB.

The corrected HS algorithm refers to the HS with a fixed offset in the
log-power domain. The algorithms used to generate the results in
Fig. 6 used a fixed hangover of 250 ms. Both the corrected HS and
the corrected QHS algorithms are more accurate than the P.56 algo-
rithm in moderate and low SNR levels. It can be seen that the median
of the error decreases for SNR ≤ 0 dB due to the quadrature noise
suppression step. Figure 7 shows the relevant boxplot error metrics
as Fig. 6 but with a SNR-dependent hangover scheme to compen-
sate for the duration of the unvoiced speech frames. The difference
between the two figures is the SNR-dependent hangover scheme.

Every step of the proposed ASL estimation algorithm further re-
duces the RMS error. Figure 6 shows that the QHS algorithm is more
accurate than the HS algorithm for SNR≤ 0 dB. Figure 6 and Fig. 7
show that the SNR-dependent hangover in the HQHS algorithm fur-
ther reduces the ASL estimation error. Moreover, the OHQHS algo-
rithm has a lower mean error than the HQHS algorithm due to the
SNR-dependent offset in the log-power domain. The RMS error is
the sum of the mean error squared and the error variance. The SNR-
dependent offset reduces the mean error and thus the RMS error, but
not the error variance of the ASL estimate.

Figure 8 shows the RMS error for the P.56, the CHS and the
COHQHS algorithms. The figure illustrates that the COHQHS algo-
rithm has lower RMS error and is consequently more accurate than
the CHS algorithm for SNR levels between 0 and 15 dB. Based on
Fig. 8, the COHQHS algorithm leads to an effective error reduction
for a wide range of SNR values. The COHQHS algorithm has low
RMS error at 0 < SNR ≤ 20 dB. However, the CHS algorithm has
a slightly lower RMS error than the COHQHS algorithm for −10
dB ≤ SNR ≤ 0 dB due to the fact that the performance of the clean
speech phase estimation algorithm from [12] deteriorates at low SNR
levels and due to the fact that the fixed offset of the CHS algorithm
in the log-power domain has been optimized for these SNR levels.

5. CONCLUSION

In this paper, we have presented an ASL estimation algorithm that is
based on improving the HS algorithm presented in [7] in four steps.
Firstly, the quadrature noise component is removed using a clean

speech phase estimator. Secondly, the global SNR is estimated and a
SNR-dependent hangover scheme is used to compensate for the un-
voiced speech segments and, thirdly, a SNR-dependent offset in the
log-power domain is utilised. The final step is the combination of the
P.56 algorithm and the proposed algorithm. Using an efficient clean
speech phase estimator as well as the proposed modifications of the
HS algorithm, we developed the robust COHQHS algorithm. We
evaluated the COHQHS algorithm and we demonstrated that it yields
consistent ASL estimation accuracy improvements. Compared to the
P.56 algorithm, the COHQHS algorithm is more robust to noise and,
compared to the CHS algorithm, the COHQHS algorithm shows im-
proved ASL estimation accuracy for a wide range of SNR levels.
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