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Abstract 5 

Classical shell finite elements usually employ low-order polynomial shape functions to 6 

interpolate between nodal displacement and rotational degrees of freedom. Consequently, 7 

carefully-designed fine meshes are often required to accurately capture regions of high local 8 

curvature, such as at the ‘boundary layer’ of bending that occurs in cylindrical shells near a 9 

boundary or discontinuity. This significantly increases the computational cost of any analysis. 10 

This paper is a ‘proof of concept’ illustration of a novel cylindrical axisymmetric shell 11 

element that is enriched with rigorously-derived transcendental shape functions to exactly 12 

capture the bending boundary layer. When complemented with simple polynomials to express 13 

the membrane displacements, a single boundary layer shell element is able to support very 14 

complex displacement and stress fields that are exact for distributed element loads of up to 15 

second order. A single element is usually sufficient per shell segment in a multi-strake shell. 16 

The predictions of the novel element are compared against analytical solutions, a classical 17 

axisymmetric shell element with polynomial shape functions and the ABAQUS S4R shell 18 

element in three problems of increasing complexity and practical relevance. The element 19 

displays excellent numerical results with only a fraction of the total degrees of freedom and 20 

involves virtually no mesh design. The shell theory employed at present is kept deliberately 21 

simple for illustration purposes, though the formulation will be extended in future work. 22 
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1. Introduction 27 

Membrane action is the preferred load-carrying mechanism for shells, enabling efficient and 28 

economical use of material. As membrane forces can be obtained easily through equilibrium 29 

alone and are valid throughout much of the shell, membrane theory often forms the basis of 30 

design. However, bending action must be considered to fully take into account the effect of 31 

kinematic boundary conditions and to identify the range of validity of membrane action [1, 2]. 32 

Bending theory is significantly more complex mathematically, and even the very simplest 33 

linear axisymmetric variant requires the solution of a fourth-order non-homogeneous 34 

differential equation [3-6]. The high order of the governing equations belies a rich set of 35 

underlying physical behaviours, chief among them being the possibility of displacements and 36 

stress fields exhibiting rapid variations and high magnitudes near boundaries or 37 

discontinuities. This ‘boundary layer’ decays exponentially away from boundaries at a rate 38 

governed by the bending half-wavelength λ, settling on a particular integral corresponding to 39 

membrane action [2]. 40 

As analytical solutions cannot easily be obtained even for simple shell bending problems [2, 41 

6-10], the finite element method (FEM) is widely employed instead [11-15]. Numerous shell 42 

element formulations exist, all based on polynomial shape functions of varying order. 43 

Membrane action is very ‘smooth’ and easily captured, but convergence to the solution in the 44 

vicinity of a bending boundary layer requires careful local mesh refinement [2, 15, 16]. Multi-45 

segment or multi-strake shells may exhibit several boundary layers, each requiring a locally-46 

refined interpolation field and contributing greatly to the total number of degrees of freedom 47 

in the system. For this reason, symmetry is exploited wherever possible for computational 48 

efficiency, although even axisymmetric shells exhibit boundary layers.  49 

 50 

2. Scope of the study 51 

The central concept behind the present study is to formally distinguish between membrane 52 

and bending components of the displacement solution at the level of the interpolation field, 53 

and to enrich the field through specialised bending shape functions derived rigorously from 54 

the governing differential equation. In this way the boundary layer is included natively within 55 

the finite element, leading to significant gains in accuracy and substantial economies in terms 56 

of total degrees of freedom, modelling effort and mesh design. The idea of enriching the 57 



3 

interpolation field to account for specific local and global phenomena is not new and is the 58 

basis of the eXtended or General FEM (XFEM or GFEM) methods [17-20], but to the authors’ 59 

knowledge it is the first time that such an approach has been applied to shell elements 60 

specifically to account for localised bending phenomena. The complexity is purposefully 61 

limited here to the very minimum required to demonstrate the validity of the approach: the 62 

proposed Cylindrical Shell Boundary Layer (CSBL) element currently supports linear stress 63 

analysis of axisymmetric loading on thin cylindrical shells, based on a simple Kirchoff-Love 64 

shell bending theory [21, 22]. However the use of a general constitutive relation enables the 65 

study of isotropic, uniformly orthotropic and meridionally-stiffened ‘smeared’ shells [22-24], 66 

making it an efficient tool for the axisymmetric bending stress analysis of multi-segment 67 

cylinders, silos, tanks and pressure vessels even in its present form. The performance of the 68 

linear CSBL element is illustrated on three example problems of increasing complexity, two 69 

of which relate directly to non-trivial practical axisymmetric design problems. 70 

 71 

3. Axisymmetric bending theory for thin orthotropic cylindrical shells 72 

The idea of using specialised shape functions to capture the boundary layer specifically in 73 

cylindrical shells stems directly from an analytical result in classical shell bending theory. 74 

Here, the mathematical distinction between the homogeneous and particular solutions of the 75 

governing differential equation corresponds directly to physical bending and membrane action 76 

respectively. The kinematic relations are kept linear in what follows, as even a simple 77 

axisymmetric thin-walled shell theory based on the Kirchhoff-Love assumptions [7, 21] 78 

captures the mechanics of meridional bending together with its associated boundary layer. 79 

This has the additional benefit that the solutions for the normal w and meridional u 80 

displacements are decoupled, permitting the origin of the proposed shape functions to be 81 

illustrated clearly. However, the linear constitutive relations are generalised to allow for the 82 

study of both isotropic and uniformly orthotropic cylinders via the ‘smeared’ stiffness 83 

approach [23, 24]. Lastly, as the transcendental bending shape functions of the proposed 84 

CSBL element are obtained directly from the analytical solution to the governing differential 85 

equation, some level of detail in presenting its derivation, however classical, is necessary here. 86 

Under axisymmetric conditions, a cylindrical shell of radius r and thickness t may be subject 87 

to pressure loading normal pn and meridionally tangential pz to the midsurface (dimensions of 88 

[F.L
-2

], as shown in Fig. 1. Axisymmetry of the loading, boundary conditions and geometry 89 
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ensures that only five stress resultants act on the mid-surface of the thin shell: the meridional 90 

and circumferential membrane stress resultants nz and nθ ([F.L
-1

]), the bending moment stress 91 

resultants mz and mθ ([FL.L
-1

]), and the meridional transverse shear stress resultant qz ([F.L
-1

]). 92 

There are no displacements or gradients in the circumferential direction. 93 

 94 

Fig. 1 – Equilibrium of an element of a thin-walled axisymmetric cylindrical shell 95 

Considering equilibrium of an elementary cylinder section of length dz and arc length rdθ 96 

yields the following equations: 97 
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The following constitutive and kinematic relations are used in this illustration [22]:  99 
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where the C’s represent appropriate stiffness coefficients that will be discussed later. The 101 

resultants mθ and qz need not be included in Eq. (2) as their corresponding generalised strains 102 

are zero. Combining Eqs. (1)-(3) and simplifying the result leads to a linear fourth-order 103 

ordinary differential equation in w only, the normal midsurface displacement: 104 
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Solving the homogeneous part of the equation requires finding the complex roots of the 106 

corresponding characteristic polynomial: 107 
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Setting Y = X
2
, this becomes a polynomial of second degree in Y, for which the discriminant is: 109 
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which is negative if and only if the following inequality is satisfied: 111 
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It is important to establish that this inequality will indeed always be satisfied, as this governs 113 

the functional form of the general solution to the homogeneous equation. For a very general 114 

uniformly orthotropic shell with elastic moduli Ez and Eθ, Poisson’s ratio ν and thickness t, 115 

and ‘smeared’ meridional stiffeners of modulus Es, cross-section area As, second moment of 116 

area Is, spacing ds and eccentricity es, the constitutive matrix [C] is the following [22]: 117 
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The left-hand side of the inequality in Eq. (7) may be evaluated as: 119 
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But ν
2
 < 1 by definition, and since initial elastic stiffnesses and dimensions must always be 121 

positive it follows that k > 0 and thus 1 / (1+k) < 1. Consequently: 122 
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Thus the inequality is always satisfied. Accordingly, the characteristic polynomial in Eq. (5) 124 

exhibits four complex roots and the general solution to the homogeneous equation may be 125 

expressed using exponential and trigonometric functions: 126 
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where Ai are integration constants depending on boundary conditions (four in total) and α and 128 

β are the linear meridional bending half-wavelengths: 129 
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The above equations fully govern the extent of the bending component of w and thus of the 131 

boundary layer, and for this reason the notation wb has been used. The two bending half-132 

wavelengths in particular contain information about the rate of decay of the boundary layer in 133 

a shell segment and play a key role in what follows. They are identical for an unstiffened shell 134 

where there is no coupling between the meridional membrane stress resultant nz and curvature 135 

κz (C13 = 0), in which case they are both denoted by the more familiar symbol λ: 136 
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Introducing the following convenient short-hand notation 138 
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permits wb to be written in a more compact form: 140 
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The particular solution wm governing the membrane component of w, or the normal 142 

displacement that would exist if bending effects were ignored, is classically obtained by 143 

neglecting all derivatives in Eq. (4): 144 
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where nz0 is a prescribed meridional ‘edge’ load. The total normal displacement w is then 146 

simply obtained by superposition: w = wb + wm. Lastly, the meridional displacement u may be 147 

obtained by integrating the following intermediate result:  148 
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It may be shown that u may similarly be decomposed into components associated with 150 

bending ub (Eq. (18)) and membrane um (Eq. (19)) actions only: 151 
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where u0 is a prescribed meridional displacement. While it is perhaps not obvious, closer 154 

inspection shows that ub shares the same functional form with wb and is governed by the same 155 

bending half-wavelengths α and β. 156 

 157 

4. The axisymmetric cylindrical shell boundary layer (CSBL) element 158 

It is worth briefly reflecting that the expressions for wm and um (Eqs. (16) and (19)) feature the 159 

distributed loads pn and pz whereas those of wb and ub (Eqs. (15) and (18)) do not, while the 160 

converse is true for the integration constants A1 to A4. The membrane component of the 161 

solution thus alone equilibrates the applied loads, while the bending component alone satisfies 162 

kinematic boundary conditions. These mechanisms are independent both mathematically and 163 

physically, a distinction that leads logically to the idea of treating wb, ub, wm and um as 164 

independent variables in a shell finite element formulation, with shape functions tailored to 165 

best capture each underlying physical mechanism. The authors are not aware of a similar 166 

approach having been implemented in any widely-used shell element. 167 
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4.1. Bending shape functions 168 

A set of unique shape functions G1 to G4 may be obtained by reformulating wb (Eq. (15)) 169 

using a different base, so that the unknown integration constants A1, A2, A3 and A4 are 170 

expressed instead in terms of unknown displacements and rotations at each end of the cylinder 171 

(defined without loss of generality at z = 0 and h), namely wb1 = wb(0), θb1 = w´b(0), wb2 = wb(h) 172 

and θb2 = w´b(h). These are then the nodal degrees of freedom (DOFs) corresponding 173 

specifically to the bending component of the normal displacement wb.  174 
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The vector {Wb} is expressed in terms of the constants Ai using Eq. (15) as follows: 176 
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Introducing Eq. (21) into Eq. (20) leads to a linear system that is easily inverted to obtain the 178 

transcendental Gi functions in closed form: 179 
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Since [g] is obtained by inversion and transposition of [T], its terms share a common 183 

denominator d that is the determinant of [T]: 184 
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This determinant is zero if and only if either bending half-wavelength α or β is zero, which 186 

cannot happen for physical shells, so the resulting Gi functions are always well-defined. The 187 

individual gii terms, all scalars, are given by: 188 
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where, for compactness, the following additional notation was employed: 193 
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Although the symmetry may not be obvious from the gii terms, it can easily be shown that 195 

G3(z) = G1(h – z) and G4(z) = –G2(h – z). The four Gi functions are illustrated in Fig. 2 for 196 

isotropic (λ = α = β) cylindrical elements of three different lengths h relative to λ. Fig. 2a 197 

shows h/λ = 5 where the total element length is significantly greater than the width of the 198 

boundary layer, and the associated bending deformations are localised near either node. Fig. 199 

2b shows a shorter cylinder with h/λ = 2, where neither boundary layer has enough width to 200 

decay and one begins to infringe on the other, while Fig. 2c shows a very short cylinder with 201 

h/λ = ½ where two boundary layers overlap entirely. The bending half-wavelength λ (or α and 202 

β) contains the entirety of the information about the rate of decay of the boundary layer, and 203 

as it is always known a priori for each element under linear conditions, the need for local 204 
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refinement of the interpolating field and its associated degree of freedom cost are eliminated. 205 

Lastly, an interesting property of the Gi functions seen in Fig. 2d is their convergence to the 206 

well-known Hermite cubic functions (Ni in Table 1) as λ → ∞ or h/λ → 0, easily verified 207 

through an analytical Taylor series expansion. It should come as no surprise that structures for 208 

which the primary load carrying mechanism is transverse bending (e.g. beams and plates) 209 

actually exhibit an infinite bending boundary layer.    210 

 211 

Fig. 2 – Illustration of bending ‘boundary layer’ shape functions for various h/λ ratios, and 212 

comparison with classical Hermite cubic polynomials 213 

The bending component of the meridional displacement ub (Eq. (18)) exhibits the same 214 

functional form as wb (Eq. (15)) and is governed by the same bending half-wavelengths, so it 215 

is proposed that the same G functions may also be used for its interpolation. The associated 216 

nodal degrees of freedom are then ub = ub(0), u´b1 = u´b(0), ub2 = ub(h)and u´b2 = u´b(h), where 217 

u´b is the tangent slope of ub.  218 

4.2. Membrane shape functions 219 

While the functional form of the bending boundary layer may be determined uniquely from 220 

the kinematics, the same cannot be said for the membrane components of the displacements 221 

as these depend on the distribution of the loading which can be arbitrary. The CSBL element 222 

should be thought of as a high-order element, as it relies on higher-complexity shape 223 

functions rather than more elements (p-refinement over h-refinement [25]) to capture the 224 

bending boundary layer, and using polynomials of the lowest order to interpolate the 225 

membrane displacements would be somewhat in conflict with that purpose. The choice was 226 
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therefore made to permit the membrane interpolation field to exactly accommodate distributed 227 

element loads pn and pz up to second-order polynomial variation with z. This permits an exact 228 

solution to the most common uniform and hydrostatic load cases, while more complex load 229 

cases can be approximated as piecewise-quadratic functions. As will be shown in what 230 

follows, many nonlinear load cases of practical importance are very smooth, such as the 231 

‘Janssen’ silo pressure distribution [26], and are captured very well in this piecewise manner. 232 

Other choices for the membrane shape functions (higher order polynomials, or shape 233 

functions tailored for certain loads) are of course possible, but would result in a CSBL 234 

element with a higher internal DOF count, and should therefore be made only if the trade-off 235 

in terms of overall computational efficiency is deemed favourable. 236 

Table 1 – Hermite cubics and other polynomial shape functions 237 

2 3 2 3 2 3 2 3

3 4
2 3 2 2 3 2

2

1 2

1 2

2

1 3 2 3

1
1 4 1 12 3 1

2

1 1 2 16

2 2

1

z z z z z z
N N

h h h h h h

z z z z z

h h h h h

z z
N N z

h h

z z
L L

z z z

h

P C
h h

U L Q
h h

= − = − −

    
= − = = − = − −    

   

+ + = − = +

   
−   

  



= = −


+ =

 238 

Accordingly, Eqs (16) and (19) dictate that any shape functions for wm and um must be a base 239 

for polynomials of at least order 3 and 4 respectively (ℝ[3] and ℝ[4]). There are many ways 240 

to achieve this using functions presented in Table 1: a base for ℝ[1] can be (L1, L2) or (U, L), 241 

both of which can be completed by (P), (P,C) or (P,C,Q) to form bases of ℝ[2], ℝ[3] and ℝ[4] 242 

respectively. Alternatively, the classical Hermite cubics (N1,N2,N3,N4) form a base of ℝ[3] 243 

that can also be completed by a quartic (Q) to reach the next order.  244 

Apart from Q, each one of these functions features a non-zero slope or displacement at 0 or h, 245 

making them impractical for use as additional shape functions. Continuity of u, w and its first 246 

derivative θ is required between elements in order to ensure convergence with h-refinement, 247 

and if the polynomials from Table 1 were to be used, these continuity conditions would need 248 

to be enforced at the nodes using, for instance, Lagrange multipliers [12]. It is, however, 249 

possible to use these functions in conjunction with the previously-defined bending shape 250 

functions to create an interpolation field that has the appropriate number of nodal DOFs 251 

(giving the total value of u, w and θ at each node) while making all other DOFs element-252 

specific, therefore allowing for efficient static condensation [13]. 253 
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4.3. Element degrees of freedom 254 

One option is to use the DOFs associated with the bending shape functions as the nodal DOFs, 255 

and to use additional element-specific DOFs with corresponding shape functions that linearly 256 

combine the bending shape functions with the chosen polynomials such that the end 257 

displacements are zero for u and both the end displacements and slopes are zero for w. This 258 

would lead to the following shape functions being used (the shape functions associated with a 259 

nodal DOF have a circumflex accent ^): 260 

 For u: ( )1 2 3 4
# #ˆ ˆ, , , , , , , ,G G G G U L P C Q  with 

#
1 3

#
1 3

U U G G

L L G G

= − −


= + −
  (30) 261 

 For w: ( )1 2 3 4
# #~ ~ ~ˆ ˆ ˆ ˆ, , , , , , ,G G G G U L P C   with  

( )( )

( )( )

( )( )

#~ #
2 4

~
2 4

~
2 4

2

4

6 3

L L h G G

P P h G G

C C h G G

 = − +


= − −


= − +

  (31) 262 

Alternatively, DOFs associated with the Hermite cubics could be the nodal DOFs, and they 263 

could be combined with the bending shape functions to make them element-specific:  264 

 For u: ( )1 2 3 4 1
#

2 3 4
#ˆ ˆ, , , , , , , ,N N N N G G G G Q   with 

1 1

3

#

3

1

3
#

G G N

G G N

= −


= −
  (32) 265 

 For w: ( )# ~ #
1 2 3

~
4 1 2 3 4

ˆ ˆ ˆ ˆ, , , , , , ,N N N N G G G G   with 
~

2 2 2

~
4 4 2

G G N

G G N

= −


= −
  (33) 266 

 267 

Fig. 3 – Nodal and element-specific DOFs for the 2-node axisymmetric CSBL element 268 

Although both options are valid and interpolate the same displacement field from a 269 

mathematical point of view, the second one (illustrated in Fig. 3) is preferred computationally 270 

as it leads to a significantly simpler element stiffness matrix and equivalent load vector with 6 271 
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nodal DOFs (w1, θ1, u1, w2, θ2, u2) and 11 element-specific DOFs 272 

(wb1
#
, θb1

~
, wb2

#
, θb2

~
, u’1, u’2, ub1

#
, u’b1, ub2

#
, u’b2, uQ). An interesting observation is that in the 273 

limit where h/λ → 0, the convergence of the G functions to the Hermite cubics makes the 274 

shape functions ( )# ~ # ~
1 2 3 4, , ,G G G G  tend to zero and their associated element-specific DOFs 275 

redundant, with only 3 element-specific DOFs (u’1, u’2, uQ) remaining. 276 

The following interpolation function {G} and DOF {d} vectors may now be defined at the 277 

element level:  278 

 

{ } { }

{ } [ ]

{ } [ ]

{ } [ ]

{ } [ ]

17 1 17 1

# ~ # ~
1 2 3 48 1

# ~ # ~
1 1 2 2 1 1 2 28 1

# #
1 2 3 49 1

# #
1 1 2 2 1 1 2 29

1 2 3 4

1 2 3

1

4

   and   

where 

and 
' ' ' '

w w

w

w b b b

u

b

u

u b b b

u

Qb

N N N N G G G G

w w w w

N N N N G G G G Q

u u u u u u u u u

θ θθ θ

× ×

×

×

×

×

      
= =   
      

=

=

=

=

T

T

T

T

G d
G d

G d

G

d

G

d

  (34)    279 

 280 

Extraction matrices may be defined to obtain {Gw} and {Gu} from {G}, as well as {dw} and 281 

{du} from {d}, respectively: 282 

 
{ } [ ] { } { } [ ] { }
{ } [ ] { } { } [ ] { }

8 1 17 1 8 1 17 18 17 8 17

9 1 17 1 9 1 17 19 17 9 17

and

and

w w

u

w w

u u u

× × × ×× ×

× × × ×× ×

= =

= =

G t G d t d

G t G d t d
  (35) 283 

 284 

Therefore, displacements w  and u  can be obtained as a product of {G} and {d}: 285 

 
{ } { } { } [ ] [ ]{ } { } [ ]{ }

{ } { } { } [ ] [ ]{ } { } [ ]{ }

TT T T

TT T T

w w w w w

u u u u u

w

u

= = =

= = =

G d G t t d G T d

G d G t t d G T d
  (36) 286 

 287 

4.4. Strain energy and element stiffness matrix 288 

The strain energy E  may be obtained in the classical manner as a double integral over the 289 

cylinder (simplifying to a single integral along the meridian due to axisymmetry) 290 

incorporating the kinematic and constitutive relations: 291 
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[ ]

( ) ( ) ( )

[ ]

( ) ( ) ( ) ( ) ( )
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h
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h
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θ θ θ

θ θ

π ε ε κ

π ε ε ε κ ε ε ε κ ε κ
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π
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= + + + +

 = + + + +

=

 

∫

∫

∫

∫

E

  (37) 292 

The 17×17 element stiffness matrix [K] is obtained after introducing Eq. (36) and its 293 

derivatives: 294 

 

{ }

[ ] { }{ } [ ]

[ ] { }{ } [ ] [ ] { }{ } [ ]( )

[ ] { }{ } [ ]

[ ] { }{ } [ ] [ ] { }{ } [ ]( )
[ ] { }{ } [ ]
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2
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0
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1
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  + +  
  
 =  +
  
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T G G T T G G T
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d K d

E

h

u u

w u u w

w w

u w w u

w w

r

C

C

r dzC

C

C

r   (38) 295 

Symmetry of the stiffness matrix in the presence of terms with C12 and C13 may be ensured by 296 

choosing the following expressions for the strains in terms of {G} and {d}: 297 

 

{ } [ ] { }{ } [ ]{ } { } [ ] { }{ } [ ]{ }( )

{ } [ ] { }{ } [ ]{ } { } [ ] { }{ } [ ]{ }( )

T TT T T T

T TT T T T

1
' ' '

2

1
' '' ' '' '' '

2

w u u w

u w w u

u

u w

w

r
= +

= +

d T G G T d d T G G T d

d T G G T d d T G G T d

  (39) 298 

The stiffness terms of [K] evaluate to closed-form expressions requiring only the radius of the 299 

cylindrical element r, its meridional dimension h, the bending half-wavelengths (λ or α and β) 300 

and the stiffness terms of the constitutive relation. The number of unique terms is minimised 301 

due to the multiple symmetries featured by both membrane and bending shape functions.  302 

4.5. Equivalent force vector from distributed load 303 

The equivalent nodal force vector {f} may be obtained by considering the contributions to the 304 

total work W done by distributed element loads pn and pz, giving Wn and Wz respectively: 305 

 { } { } { } { } { }( )T T
   or   n z n zW W W= + = +d f d f f   (40) 306 
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The known distributed loads may be expressed in vector form using interpolation functions L1, 307 

L2 and P (Table 1) in the following manner: 308 

 { } { } { } { } { }
1

T T

23 1 3 11 3 1 3
   and       where    n p n z p z p

L

p p L

P
× ×× ×

 
 

= = =  
 
 

G p G p G    (41) 309 

The {p} vectors are sampled from the known distributions of pn and pz at the nodes and at 310 

mid-height (Fig. 4), which keeps the load interpolation continuous between elements:   311 
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=    
   

− +      
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    

=    
   

− +      

p

p

  (42) 312 

 313 

Fig. 4 – Distributed loading interpolation over an element 314 

Using Eqs (36) and (41), it may be shown that:  315 

{ } [ ] { } { }( ){ } { } { }

{ } [ ] { } { }( ){ } { } { }

TTT T
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TTT T
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∫ ∫
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F

F

d T G G p d f

d T G G p d f

���������������

���������������

  (43) 316 

The terms of matrices [Fn] and [Fz] have a closed-form expression requiring only the radius r, 317 

dimension h and bending half-wavelengths (λ or α and β) and can therefore be used for 318 

multiple loads on the same structure without needing to be re-evaluated. These terms, and 319 

those of [K], may easily be derived by a symbolic manipulation package if desired by the 320 

reader. 321 
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4.6. Static condensation, assembly, nodal loads 322 

Once the elements stiffness matrix [K] and element force vector {f} are obtained, static 323 

condensation can be performed on each to yield condensed stiffness matrices and force 324 

vectors. The process comes from the expression of the equilibrium equation reordered so that 325 

those related to nodal (index no) and element-specific (index el) DOFs are separated: 326 

 
[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

, , 6 1 6 16 6 6 11

, , 11 1 11 111 6 11 11

no no no el no

el no el el el el

no × ×× ×

× ×× ×

        
=    

       

K K d f

K K d f
  (44) 327 

The second group of equation, relative to the element-specific DOFs, gives: 328 

 { } [ ] { } [ ] { }( )1

, ,11 1 11 1 6 111 11 11 6el el el e n nol el o

−

× × ×× ×
= −d K f K d   (45) 329 

Introducing Eq. (45) in the first group of equation, relative to the nodal DOFs, leads to:  330 

[ ] { } [ ]
6 16 6 6 1nocond cond×× ×

=K d f  331 

 where  
[ ] [ ] [ ] [ ] [ ]

{ } { } [ ] [ ] { }

1

, , , ,6 6 6 6 6 11 11 11 11 6

1

, ,6 1 6 1 11 16 11 11 11

cond no no no el el el el no

cond no no del el el el

−

× × × × ×

−

× × ×× ×

= −

= −

K K K K K

f f K K f
  (46) 332 

The usual steps to assemble the global system can therefore be performed, the nodal DOFs 333 

being shared by elements sharing a node. For n elements, the matrix dimension is 3(n+1). 334 

Lastly, the work done by an edge load at a node is the circumferential integral of the product 335 

of that edge load with the corresponding nodal displacement: 336 

( ) { } { }
T

1 3 3 1
2 z z z node nodee r q wW m n uπ θ

× ×
+ + == d f  337 

The nodal force vectors can therefore be added to the assembled force vectors at the relevant 338 

position. 339 

4.7. Boundary conditions and resolution 340 

In order to prevent the overall translation of the shell in the meridional direction, at least one 341 

essential boundary condition (BC) on u is needed. Additional essential BCs can be enforced 342 

on u, w and θ at every node where no corresponding edge load (natural BC) is applied, using 343 

classical methods. The replacement of redundant equilibrium equations by the required BC 344 

equations is the one preferred here as it leaves the size of the linear system to be solved 345 

unchanged. 346 
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In any case, the nodal DOFs are obtained by solving the obtained linear system of equations, 347 

and for every element they can be used to retrieve the element-specific DOFs using Eq. (45). 348 

Finally, the values of the displacements, strains and stress resultants can be obtained at every 349 

point of each element from: 350 

 351 
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 354 

5. Illustration of the CSBL element on three examples 355 

The performance of the CSBL element is illustrated here on three example problems, two of 356 

which are genuine practical design problems that require a non-trivial linear stress analysis of 357 

a multi-segment cylindrical metal shell. In each example, the CSBL element is compared 358 

against a ‘classical’ thin axisymmetric shell element (termed ‘ThinAxi’) using the formulation 359 

of Zienkiewicz et al. [11]. The latter relies on the same simple kinematic and constitutive 360 

relations introduced previously, but employs only simple polynomial shape functions: the four 361 

Hermite cubic functions N1 to N4 are used to interpolate w and θ, while the two linear 362 

functions L1 and L2 interpolate u. As there is no division into bending and membrane 363 

displacement components, system assembly can be done using shared DOFs yielding a 364 

stiffness matrix of size 3(n + 1) for n elements. The ThinAxi element thus represents a ‘tried 365 

and tested’ classical alternative, relying on low-order polynomials and h-refinement for 366 

convergence in the vicinity of the boundary layer. Both formulations were implemented using 367 

the Matlab [27] programming environment taking full advantage of matrix sparsity. 368 
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5.1. Example 1: single-thickness cylindrical shell under several loads 369 

The first somewhat academic example is intended to illustrate the ability of a single CSBL 370 

element to exactly express a very rich displacement and stress state. A fictitious cylindrical 371 

shell of height h = 2 m, radius r = 1 m and uniform thickness t = 10 mm was considered, 372 

subject to a complete array of loading: linearly-varying outward normal pressure pn from 0 at 373 

the top (z = h) to 1 MPa at the base (z = 0), linearly-varying downward meridional traction pz 374 

from 0 at the top to 1 MPa at the base, and applied shell edge loads of nzh = 1000 N/mm 375 

(downwards), mzh = 1000 Nmm/mm (hogging) and qzh = 50N/mm (radially outwards) at the 376 

unrestrained top boundary (Fig. 5a). The bottom boundary was restrained against all 377 

displacements and rotations (w = u = 0 and θ = 0). An isotropic steel wall was assumed with 378 

elastic modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The constitutive matrix and bending 379 

half-wavelengths thus become: 380 

[ ]
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0

1
0

1

0 0
12

Et Et

Et Et

t
E

ν

ν
ν

 
 
 
 =
 −
 
 
  

C   thus 

1/4

2

1
244.4mm

3(1 )
rtλ α β π

ν

 
= = = ≈ 

− 
 (50) 381 

 382 

This structure exhibits two bending boundary layers, each concentrated within approximately 383 

2λ of either end, inside which a fine mesh resolution of classical ThinAxi elements is required 384 

(Fig. 5b). An often-applied rule of thumb is to use a minimum of 10 elements per λ within 385 

both of these regions to capture the high local curvatures reasonably well for practical 386 

purposes. By contrast, a significantly coarser mesh is usually sufficient for the purposes of a 387 

linear stress analysis within the internal ‘membrane action’ region: only 5 elements were used 388 

here. A total of 45 ThinAxi elements were thus generated requiring 135 DOFs, and it is 389 

stressed that this number is on the frugal side. Furthermore, it is clear that significant prior 390 

knowledge of cylindrical shell behaviour is required to be able to even design an appropriate 391 

mesh for this seemingly simple structure. By contrast, the design of a ‘mesh’ of CSBL 392 

elements is trivial (Fig. 5c), consisting of just the one element. Lastly, the problem is in fact 393 

simple enough to permit a closed-form analytical solution to the governing differential 394 

equation (Eq. (4)) for additional comparison.  395 
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 396 

Fig. 5 – Geometry, loading and mesh design for the first example 397 

 398 

Fig. 6 – Comparison of predictions of the CSBL and ThinAxi elements for the first example 399 

The global solutions for w, nz, mz and qz are illustrated in Fig. 6. The compressive meridional 400 

membrane stress resultant nz varies from -1000 N/mm at the top, where it is in equilibrium 401 

with the applied load nzh, to -2000 N/mm at the base due to the downward action of pz. The 402 

high rates of change of the total normal displacement w clearly illustrate the presence of a 403 

boundary layer within 2λ of either end, decaying onto an internal ‘membrane’ region with no 404 

bending where the displacement is proportional to pn. This is further seen in the distribution of 405 
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the meridional bending moment stress resultant mz, which is non-zero only in the boundary 406 

layer and zero in the internal region.  407 

The agreement between the predictions of the ThinAxi element and the analytical solution is 408 

very close for w (0.84 % max normalised error), unsurprising given that it is a nodal variable, 409 

but becomes increasingly less satisfactory for derived higher-order stress variables (4.8 %,  410 

2.6 % and 16 % max norm. error respectively for nz, mz and qz). Eq. (18) suggests that u is 411 

also affected by the boundary layer, albeit to a smaller extent than w, a behaviour that the 412 

classical ThinAxi formulation is ill-prepared to capture as it uses only a linear interpolation 413 

for u. Further mesh refinement is necessary within the boundary layers to alleviate this, 414 

exacerbating the DOF cost for the ThinAxi element. By contrast, the single CSBL element 415 

exhibits no such limitation, reproducing the numerical predictions of the analytical solution 416 

exactly (10
-14

 % max norm. error over all variables, close to machine precision), at a cost of 417 

only 17 DOFs. In terms of system assembly and solution time, the CSBL is also 6 % faster on 418 

average over 100 runs. The rather modest speedup for this small problem should be 419 

understood in the context of the higher flop cost in computing the more complex expressions 420 

for the coefficients of the stiffness matrix of the CSBL element. 421 

 422 

5.2. Example 2: isotropic silos with stepwise-varying thickness under nonlinear loading 423 

The second example is intended to illustrate the effectiveness of an assembly of CSBL 424 

elements to perform an accurate and efficient linear stress analysis of a multi-strake 425 

cylindrical shell under nonlinear distributed pressure loads. To this end, five realistic stepped-426 

wall cylindrical metal silos were modelled using meshes of both ThinAxi and CSBL elements. 427 

The silos differ in total height to diameter H/D ratio but share a common storage volume of 428 

~510 m
3
 and exhibit stepwise-increasing integer wall thickness distributions with depth (Fig. 429 

7), as is common in engineering practice. The silos are denoted as VS (H/D = 5.2), 430 

S (H/D = 3), B (H/D = 2.06), I (H/D = 1.47) and Q (H/D = 0.65). The structural designs were 431 

performed on the basis of membrane theory according to EN 1993-1-6 and EN 1993-4-1 [28, 432 

29] with loading given by EN 1991-4 [30]. The interested reader may find full details of the 433 

design, loading and further discussion in [31]. 434 
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 435 

Fig. 7 – Geometry (shown to scale) and loading of the five silos for the second example 436 

The silos store a granular solid (wheat) which exerts a nonlinear normal pressure pn that 437 

increases monotonically to an asymptotic limit with depth, as well as associated frictional 438 

tractions pz that follow the same distribution. For the three most slender silos (VS, S and B), 439 

the variation with z is negative exponential and is known as a ‘Janssen’ distribution, while for 440 

the squattest silos (I and Q) the variation follows a power law instead and is known as a 441 

‘modified Reimbert’ distribution [26]. The outline patterns of these distributions, all actually 442 

quite similar, are also illustrated in Fig. 7. While nonlinear, the distributions are very smooth, 443 

and can be very well approximated in a piecewise quadratic manner. 444 

The silos are assumed to be fully restrained at the base (w = u = 0 and θ = 0). At the top, only 445 

the normal displacement w is restrained, a boundary condition assumedly provided by a roof 446 

structure. An isotropic steel material is assumed throughout with E = 200 GPa and ν = 0.3 447 

(Eq. (50)). As the radii and thicknesses vary across the silo designs, each wall strake exhibits 448 

a different bending half-wavelength λ (Table 2). Further, every internal step change in wall 449 

thickness represents a discontinuity in the membrane displacements and thus leads to 450 

compatibility bending with an associated boundary layer on either side (marked * in Fig. 7), 451 

the rate of decay of which is governed by the λ of the strake in which it occurs. Silo VS 452 

potentially exhibits 10 boundary layers, while silos S, B, I and Q may exhibit 8, 8, 6 and 6 453 

respectively: the structures are therefore too complex to allow for a closed-form analytical 454 

bending theory solution, and finite elements are needed even for a linear stress analysis. 455 
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Accordingly, modelling each silo with ThinAxi elements requires careful planning, as a fine 456 

mesh must be used within 2λ on either side of every discontinuity to accommodate the 457 

boundary layers. The simple rule of thumb of a minimum of 10 elements per λ signals the 458 

possibility of a high DOF count, and a mesh convergence study is often necessary for 459 

optimality. Where the mesh is to be partitioned in this manner prior to analysis, each λ must 460 

usually be calculated manually by the analyst from standard expressions, a laborious task. By 461 

contrast, mesh design for the CSBL element requires significantly less effort, as a single such 462 

element can automatically be assigned to a strake, with λ being treated as just another 463 

coefficient to be computed ‘internally’ during stiffness matrix assembly. Strake boundaries 464 

then represent the nodes of CSBL elements. 465 

 466 

Table 2 – Details of strake thicknesses t, depths h and aspect ratios h/ λ for the five silos 467 

Silo VS 

r = 2500 † 

Silo S 

r = 3000 

Silo B 

r = 3400 

Silo I 

r = 3800 

Silo Q 

r = 5000 

t † h† h/ λ ‡ t h h/ λ 
t

  
h h/ λ 

t

  
h h/ λ 

t

  
h h/ λ 

3 8800 41.6             

4 3600 14.7 3 8200 35.4 3 8000 32.4       

5 4400 16.1 4 2800 10.5 4 2400 8.4 3 8200 31.4 1 3300 19.1 

6 5600 18.7 5 3200 10.7 5 2600 8.2 4 2200 7.3 2 2700 11.1 

7 3600 11.1 6 3800 11.6 6 1000 2.9 5 800 2.4 3 500 1.7 

Note: † dimensions in mm; ‡ dimensionless. 468 

 469 

The predictions of the ThinAxi and CSBL element models for the normal displacement w and 470 

the meridional stresses σz on the inner and outer shell surfaces are shown in Fig. 8, together 471 

with element and DOF counts for each mesh and silo. The data have been scaled to separate 472 

out the plots for enhanced readability, with scaling factors given in the legend for that figure. 473 

The differences between the ThinAxi and CSBL models results, normalised by the maximum 474 

absolute value of the considered field, were computed for every interpolation point and their 475 

95
th

 percentile over each boundary layer and membrane-governed region are shown at the 476 

middle of the corresponding regions for the most and least slender silos VS and Q 477 

respectively. 478 
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 479 

Fig. 8 – a) Normal displacement w and b) meridional surface stresses σz obtained with the 480 

CSBL and ThinAxi elements.  481 

Note: the data have been scaled for readability – scaling factors may be found in the legend. 482 
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The agreement between the two models is excellent, with the CSBL mesh requiring only 40 % 483 

of the DOFs of an optimised ThinAxi mesh. Both solutions hint at a discontinuity in w at 484 

every change of thickness, and clearly show the localised boundary layers of compatibility 485 

bending (wb) necessary to force the solution to be continuous from one membrane particular 486 

integral (wm) to another. The associated higher local stresses are rather modest except at the 487 

base of each silo, where very high surface stresses develop. The error due to the piecewise-488 

parabolic approximation of the load is noticeable only in the upper part of the silos where the 489 

distributions exhibit the highest gradients, and remains very reasonable due to the smooth 490 

nature of silo loadings. In terms of computation time, the CSBL models are between 6 and 17 % 491 

faster than their ThinAxi counterparts (when comparing average runtimes for system 492 

assembly and solution out of 50 repeat calculations). 493 

5.3. Example 3: meridionally-stiffened corrugated shell with stepwise-varying thickness 494 

The final example extends on the second to illustrate the effectiveness of an assembly of 495 

CSBL elements to model a complex multi-strake silo with circumferentially corrugated metal 496 

walls and meridional stiffeners, both of which exhibit a stepwise variation in thickness, using 497 

a ‘smeared’ stiffness approach [23, 24]. The solution is compared against an assembly of 498 

ThinAxi elements, as well as a detailed 3D model built using the commercial ABAQUS 6.14-499 

4 [32] software which explicitly considers the corrugation and stiffener profiles to validate the 500 

axisymmetric ‘smeared’ stiffness assumption.  501 

Corrugations and meridional stiffeners are a common feature of silo design: the corrugations 502 

greatly enhance the circumferential bending stiffness of the shell though at a significant 503 

penalty to the meridional stiffness so that axial loads must instead be carried almost entirely 504 

by external columns [22, 26]. The present example considers a real design, carried out 505 

according to NF P 22-630 [33] and DIN 1055-6 [34], of a wheat silo of nominal radius 506 

r = 8.885 m built with 12 corrugated strakes of equal height h = 1.144 m up to a total height 507 

H = 13.728 m (Fig. 9a). The corrugated sheets have a thickness varying from 1.5 to 2.5 mm 508 

with an ‘arc and tangent’ profile (Fig. 9b). There are 60 external column stiffeners with 509 

varying Ω profiles, bolted to the external peaks of the corrugations, with a spacing of 510 

dst = 933 mm (Fig. 9c). Both the strakes and stiffeners are made of isotropic steel with 511 

E = 200 GPa and ν = 0.3. The present analyses assume a smooth but nonlinear axisymmetric 512 

‘Janssen’ pressure distribution for the stored wheat using material properties from EN 1991-4 513 

[30], with additional provisions for corrugated silos from EN 1993-4-1 [28, 29]. 514 
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 515 

Fig. 9 – Overall geometry, shell-thickness and stringer distribution of the silo for the third 516 

example a), corrugation profile b) and stiffener positioning c) 517 

The ABAQUS reference model uses a combination of linear four-node reduced-integration 518 

S4R shell and linear two-node B21 beam elements to accurately model the corrugated shell 519 

and the stiffeners respectively. The meridional corrugation profile (Fig. 9b) can be expressed 520 

well by 28 S4R elements per corrugation wave (approx. element size of 5 mm). 521 

Circumferential symmetry is exploited to model the smallest possible arc of the shell (Fig. 9c). 522 

As important variations can also be expected in that direction, 47 S4R elements (approx. size 523 

20 mm) were used, which helps to maintain a reasonable aspect ratio for the shell elements. 524 

With 11 waves in every of the 12 strakes, a total of 173,712 shell elements were required. 525 

While it is probably possible to optimise the element count, doing so is unlikely to lead to a 526 

significant reduction in the required number of total elements.  527 

The stiffeners were modelled using 22 B21 elements per strake, up to a total of 264. 528 

Connector elements CON3D2 were used to link the beam and shell element DOFs at each of 529 

the 132 contact points. Boundary conditions were assumed the same as in the second example: 530 

clamped base and restrained normal displacement at the top. For simplicity, the distributed 531 

pressure and friction tractions loads were assumed to act in the radial and meridional 532 

directions regardless of local incline of the corrugated wall (Fig. 9b), an assumption that is 533 

implicitly made with the ThinAxi and CSBL models. It should be noted that building the 534 
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complex geometry of such a model demands significant skill on the part of the analyst, with 535 

extensive use of Python scripting. 536 

The use of axisymmetric shell elements is possible with the help of the ‘smeared’ stiffness 537 

approach. This treats the silo as a composite cylindrical shell with a uniformly orthotropic 538 

stiffness that is a superposition of two cylinders with equivalent membrane and bending 539 

stiffnesses corresponding to the corrugated shell [Cshell] and stiffeners [Cstiffeners] respectively. 540 

The constitutive relation is thus: 541 

 [ ] [ ]( )  shell stiffener

z z

z z

s

n

n

m

θ θ

ε

ε

κ

   
   

= +   
   
   

C C   (51) 542 

The equivalent orthotropic properties for a corrugated shell can be found in EN 1993-4-1 [29] 543 

as follows (a and l are defined in Fig. 9b): 544 
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It may be noted that these properties ignore Poisson coupling in the meridional and 546 

circumferential directions, and that the circumferential membrane stiffness C22,sh is 547 

significantly greater than the meridional membrane stiffness C11,sh. EN 1993-4-1 [29] 548 

additionally specifies that stiffener spacing dst of 933 mm should be less than a maximum 549 

value dst,max to validate a ‘smeared’ treatment. This criterion is met, with the limit given by: 550 
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  (53) 551 

Lastly, displacements, strains and stress resultants in the shell are obtained using Eqs (47)-(49) 552 

with the relevant [Cshell] terms.  553 

The contribution of the stiffeners, expressed with respect to the midsurface of the orthotropic 554 

shell, depends on their material (Est) and section (Ast and Ist) properties, and their eccentricity 555 

relative to the cylinder (est) and spacing (dst) [22, 29]: 556 
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The resultant axial force Nz and bending moment Mz in the beam sections, with respect to the 558 

centroid of the stiffener, may be obtained by: 559 
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The columns exhibit a meridional bending stiffness far greater than that of the shell itself, and 561 

the resulting bending half-wavelengths α ≠ β are of the same order as the strake dimensions. 562 

The bending boundary layer thus dominates the entire structure, and a simple conventional 563 

stress analysis based solely on membrane equilibrium would be entirely inappropriate [22]. A 564 

full bending analysis is necessary even to obtain the linear stress state, and since the multi-565 

strake structure is much too complex for a closed-form analytical solution this must be done 566 

with finite elements. It is interesting to note that just a single ThinAxi element per strake will 567 

in fact give a reasonably good solution for the normal displacement w in the ‘smeared’ shell, 568 

since in the limit H/α → 0 the boundary layer shape functions anyway converge to the 569 

Hermite cubic polynomials that the ThinAxi element uses to interpolate w (Fig. 2). However, 570 

the solution for the meridional displacement would be very inadequate in this case due to that 571 

element’s linear interpolation field for u. Each ‘smeared’ strake was therefore modelled with 572 

10 ThinAxi elements (the rule of the thumb of 10 elements per bending half-wavelength now 573 

being redundant) to solve for both w and u more accurately, up to a total of 120. By contrast, 574 

only a single CSBL element was necessary per strake, up to a total of 12. The modelling 575 

effort required in either case is trivial compared with the complexity of creating a 3D model. 576 

The element, node and DOF counts in the three models are compared in Table 3. 577 

Table 3 – Comparison of the complexities of the finite element models 578 

Model No. of elements No. of nodes No. of DOFs 

ABAQUS 178,704† 183,156 1,098,144‡ 

ThinAxi 120 121 363 

CSBL 12 13 204 

† includes both shell and beam elements; ‡ includes Lagrange multipliers 579 
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A very good agreement is observed between the three finite element models for the solution 580 

governing the stiffeners (Fig. 10), with the ThinAxi and CSBL predicting a very similar 581 

response. Using ABAQUS as the reference solution, 90 % of the sampled ThinAxi and CSBL 582 

predictions exhibit a relative error below 6.2, 6.6 and 15 % for the transverse displacement w, 583 

axial displacements u and the axial force Nz respectively. The axial force increases 584 

monotonically with depth to a maximum compressive value of ~175kN near the base where 585 

the risk of buckling is thus greatest, while the bending moment is negligible everywhere 586 

except near the base where it peaks at ~6 kNm. The relative error in Nz and Mz in the lowest 587 

strake is less than 20 % and 30 % respectively, the discrepancy being a consequence of the 588 

‘smeared’ stiffness approach rather than the choice of interpolation field for either the CSBL 589 

or ThinAxi elements. Similarly, the agreement between the three models for the solution 590 

within the shell itself is satisfactory (Fig. 11, where the ThinAxi solution is not represented 591 

for readability as it does not differ significantly from that of the CSBL). The normal 592 

displacements w of the shell were extracted from the ABAQUS model at the stiffened and 593 

unstiffened locations (Fig. 9c). On the stiffened side, the shell displacements closely follow 594 

those of the stiffener (Fig. 10), while on the unstiffened side the displacements are larger due 595 

to the increased local flexibility. 596 

 597 

Fig. 10 – Transverse and axial displacements, force and bending moment for the stiffeners 598 

obtained with the ABAQUS, ThinAxi and CSBL finite element models 599 
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Also shown in Fig. 11 are the circumferential σθ and meridional σz stresses on the inner shell 600 

surface. As the actual stresses in the ABAQUS model follow the corrugation profile and 601 

feature important oscillations, a moving average with a period fitted to the wavelength of the 602 

corrugation is used to enable an easier comparison and better readability. The CSBL results 603 

are globally in excellent agreement with ABAQUS, with the exception of the bottom 604 

boundary and near changes of corrugation (but not stiffener) thickness. This is due to 605 

significant non-axisymmetric bending that occurs at those locations that is strongly dependent 606 

on the exact manner in which they are modelled in ABAQUS, but which it is anyway not 607 

possible to reproduce through a ‘smeared stiffener’ treatment. The largest error is observed 608 

for the shell meridional stresses on the unstiffened side in the bottom strake, since the stresses 609 

developed there are underestimated by an order of magnitude by the ‘smeared’ stiffness 610 

model. A reduction in the stiffener circumferential spacing ds would improve the quality of 611 

the results for the unstiffened side, as it would make the problem closer to axisymmetric. The 612 

‘smeared’ approach is, however, clearly a very valuable simplifying design tool for certain 613 

structures, and the CSBL implementation is preferable over a classical shell formulation as it 614 

captures the higher order variables (stresses and resultants) more accurately with fewer DOFs 615 

and requires significantly less modelling effort. 616 

 617 

Fig. 11 – Normal displacements, inner circumferential and meridional surface shell stresses 618 

obtained with ABAQUS and the CSBL finite element models 619 
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6. Conclusions and further development 620 

This ‘proof of concept’ paper builds on an axisymmetric bending theory for thin orthotropic 621 

cylindrical shells presented in [22] to develop a novel cylindrical shell boundary layer (CSBL) 622 

finite element. Specialised shape functions are introduced to enrich the element to exactly 623 

capture the ‘boundary layer’ of local bending that occurs near supports, changes of wall 624 

thickness and other discontinuities. These shape functions are obtained directly from the 625 

solution to the governing differential equation and permit the interpolation of the bending 626 

components of the nodal displacement variables separately from the membrane components.  627 

The proposed formulation permits just a single CSBL element to exactly capture the stresses 628 

and displacements of an entire cylindrical shell under up to second order polynomial 629 

distributed loading. The ability of the element to accurately and efficiently analyse more 630 

realistic design problems, featuring more complex loads and geometries, multi-segment 631 

cylindrical strakes with stepwise-varying wall thickness and meridional stiffener distributions 632 

was demonstrated on three examples of increasing complexity and practical relevance. For 633 

two of these, even a linear bending stress analysis is prohibitively onerous analytically. 634 

Comparisons with classical axisymmetric shell elements based on low-order polynomial 635 

shape functions and the commercial ABAQUS software show that the added complexity of 636 

the CSBL formulation may be balanced by a significantly simpler meshing and modelling 637 

procedure. Additionally, the CSBL element leads to a system with a lower number of degrees 638 

of freedom and faster runtimes than an alternative classical axisymmetric shell formulation.  639 

Under linear conditions, the rate of decay of the bending boundary layer is governed by the 640 

bending half-wavelength, a quantity always known a priori for any cylindrical shell from 641 

standard expressions that is coded into the proposed bending shape functions. However, under 642 

geometrically nonlinear conditions, the bending half-wavelength is known to be greatly 643 

amplified by the level of local meridional stress, but the only known closed-form expression 644 

for the nonlinear bending half-wavelength relates to a cylinder under uniform meridional 645 

compression [35]. Ongoing development on a nonlinear axisymmetric CSBL element aims to 646 

implement the bending half-wavelength as an element DOF, with only initial values given by 647 

linear expressions. Additionally, the formulation is currently being extended to other shells of 648 

revolution and Gaussian curvatures, including cones and spheres which exhibit significantly 649 

wider boundary layers than cylinders, as well as non-axisymmetric conditions and different 650 

sets of practical boundary conditions such as stiffening rings and elastic foundations. 651 
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