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Abstract19

Estimation of correlation with appropriate uncertainty limits for scientific20

data that are potentially serially correlated is a common problem made seri-21

ously challenging especially when data are sampled unevenly in space and/or22

time. Here we present a new, robust method for estimating correlation with23

uncertainty limits between autocorrelated series that does not require either24

resampling or interpolation. The technique employs the Gaussian kernel25

method with a bootstrapping resampling approach to derive the probability26

density function and resulting uncertainties. The method is validated us-27

ing an example from radar geophysics. Autocorrelation and error bounds28

are estimated for an airborne radio-echo profile of ice sheet thickness. The29
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computed limits are robust when withholding 10%, 20%, and 50% of data.30

As a further example, the method is applied to two time-series of methane-31

sulphonic acid in Antarctic ice cores from different sites. We show how the32

method allows evaluation of the significance of correlation where the signal-33

to-noise ratio is low and reveals that the two ice cores exhibit a significant34

common signal.35

Keywords: Unevenly sampled data, autocorrelation, bootstrapping,36

Gaussian Kernel Method, confidence limits37

1. Introduction38

Sparse data correlation techniques, and the confidence limits associated39

with them, are a keystone of quantitative analysis in geoscience. However,40

uneven sampling of data is a common feature in many fields, and our in-41

ability to prescribe appropriate interpolations between data may hinder the42

statistical application of results. In many cases, this may come about as43

an inherent sampling non-uniformity. In the case of ice cores, for example,44

the relationship between the spatial and temporal distribution of a sample45

material varies with depth such that uniform spatial sampling generates non-46

uniform sampling on a temporal scale. Further difficulty arises from missing47

data or data gaps, which may be caused by physical sample size constraints,48

damage, or loss of samples due to contamination or analytical problems.49

Where numerical methods require evenly sampled data, interpolation is nec-50

essary, but must be used cautiously to avoid signal artifacts. The use of51

common software tools to interpolate between data points often comes at52

the expense of robustness, as bias may be introduced.53
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Rehfeld and Kurths (2014) investigated this issue in detail, bench-marking54

a variety of techniques to overcome the challenges introduced by irregularly-55

sampled time series. The use of a Gaussian kernel method gave a reliable and56

robust estimation in comparison to commonly-used interpolation approaches57

such as resampling onto a common uniform independent grid. Complications58

arise for irregularly-sampled data with inherent autocorrelations, however,59

as the estimation of a confidence interval, or some other measure of signifi-60

cance, requires explicit and quantitative consideration of the autocorrelations61

(Mudelsee, 2003; Ólafsdóttir and Mudelsee, 2014). Several methods exist for62

the assessment of significance, for evenly sampled data, in the presence of63

autocorrelation. Such methods include the effective spatial degrees of free-64

dom method of Bretherton et al. (1999) which uses classical tests with a65

reduced number of degrees of freedom to account for autocorrelations in the66

data, and data surrogates such as bootstrapping and Fourier space methods.67

These latter methods make no assumptions on the distribution of the data68

(Mudelsee, 2003), so may be more appropriate for many real-world datasets.69

Compared to standard bootstrapping techniques, Fourier space methods have70

the advantage of preserving linear correlations, but lose many of their com-71

putational advantages for irregularly-sampled data.72

Here, we report the development of the Gaussian kernel method, ex-73

tended to provide confidence interval information, with application to air-74

borne glacier geophysical data. An evenly-sampled, highly autocorrelated75

dataset of Antarctic ice thicknesses from the ICECAP (Investigating Cryospheric76

Evolution through Collaborative Aerogeophysical Profiling) project (see Fig. 177

for location) provides a suitable test data set to validate the approach. The78
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correlation and confidence interval distribution is compared to a recently79

published method (Ólafsdóttir and Mudelsee, 2014). Data were randomly80

removed to simulate the effect of uneven data spacing and the resulting au-81

tocorrelation distributions compared.82

As a second independent demonstration of the strength of the technique83

we compute the correlation between time series of methanesulphonic acid84

(MSA) concentration in two Antarctic ice cores (see Fig. 1 for location).85

MSA has been used as a proxy for Antarctic sea ice extent (Curran et al.,86

2003), based on the production of MSA from sea ice-associated phytoplank-87

ton which are known to be a dominant sulphur source from the sea-ice edge in88

Antarctica (Vance et al., 2013). Confirming that a statistically significant (at89

a 95% confidence interval) relationship exists between the two MSA records90

supports the hypothesis that the records preserve a common environmental91

signal.92

While the Mudelsee (2003); Ólafsdóttir and Mudelsee (2014) method can93

be used on unevenly spaced climate time series data, in cases where the data94

are both unevenly spaced and on a different time base their method requires95

interpolation or resampling. Our Gaussian Kernel-based method removes96

the need for such resampling, making it well suited to computing correlations97

between paleoclimate records from different locations and different archives,98

in which different time bases are ubiquitous.99
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Figure 1: Location of an airborne radar transect yielding ice thickness data (red line).

Elevation contours at 500 m are from Bamber et al. (2009) (grey lines) and the ice sheet

grounding line is from Bindschadler et al. (2011). Inset shows the Law Dome region of

East Antarctica and the sites of the two ice cores (red stars), with DSS97 being closer to

the dome summit and W10K being close to the 1300 m elevation contour.
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2. Method100

2.1. Correlation101

Correlations (Cxy) between unevenly and differently sampled series (xi102

and yj) are calculated using the Gaussian kernel correlation slotting (Rehfeld103

et al., 2011).104

Cxy =
1

σxσy

∑nx

i=1

∑ny

j=i (xi − x) (yj − y)K
(
dxi

− dyj
)

∑nx

i=1

∑ny

j=iK
(
dxi

− dyj
) (1)

where the average of the two series xi and yj (of length nx and ny) is x and105

y, respectively, and dx and dy are the independent variables (typically time106

or distance) for x and y respectively, and may differ from each other. The107

Gaussian kernel K (d) = 1√
2πh

exp (−d2/2h2) uses a width parameter (h) of108

one quarter of the larger of the average spacing of the two data series. Unlike109

Rehfeld et al. (2011) who normalise the signals to have zero mean and unit110

variance, we use the original signals and correct for the mean and estimate111

the standard deviations (σx and σy) using the same weighted summation112

Gaussian kernel (K (d)) as used in Eq. 1.113

2.2. Bootstrapping114

Confidence intervals (95%) are estimated using a stationary bootstrap-115

ping technique (Politis and Romano, 1994). This method accounts for per-116

sistence (serial correlation) and the associated reduction in the effective de-117

grees of freedom in the data (Wilks, 2006) by generating resampled data118

series based on blocks of data from the original series. The block lengths119

vary randomly, but the average block length is a function of the persistence120

of the data (Mudelsee, 2003). We estimate the persistence of the data from121
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the offset required for the autocorrelation to fall to 1
e
, and account for the122

uneven time intervals between data samples.123

For each member of the dataset of bootstrap resamples, in which n =124

2000, the correlation is estimated. The 95% confidence interval for the corre-125

lation coefficient is then calculated using the bias-corrected and accelerated126

(BCa) bootstrap method (Efron, 1987), which adjusts the result to account127

for bias in the resampled set compared to the original point estimate of the128

correlation coefficient from the original data.129

Finally, in order to improve the robustness of the estimations, an addi-130

tional 24 bootstrap resample sets of 2000 members each are generated and131

separate estimates of the 95% confidence intervals made. The final estimate132

of the lower (and upper) 95% confidence interval bounds is the median of133

the 25 BCa bootstrap estimates of the lower (upper) bound. The use of the134

median of 25 bootstrap resample sets was found to produce robust results135

for the test datasets used here; additional resample sets may be required for136

particularly problematic data.137

The cumulative probability density function and its inverse, both used for138

the BCa calculations, are based on algorithms from Abramowitz and Stegun139

(1968) and Wichura (1988) respectively.140

Bootstrapping methods can produce accurate estimates for relatively short141

data series without significant autocorrelation. However, the advantages142

of no underlying assumptions on the distribution of data comes at a cost:143

longer data series are required when the data has significant autocorrelation.144

Mudelsee (2003) investigated this and concluded that several hundred or145

more data points may be required for highly autocorrelated data. Addition-146
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ally, for highly skewed data, the BCa method may predict 95% confidence147

bounds that do not include the correlation estimate for the original data.148

3. Validation149

To validate the method, a uniformly sampled data set of 951 points was150

used. This allowed for comparison with existing methods for uniformly sam-151

pled data (Ólafsdóttir and Mudelsee, 2014). In addition, unevenly sampled152

data can be simulated by removing a portion of the data on a random basis.153

Three unevenly sampled datasets were generated, withholding 10%, 20%,154

and 50% of the data respectively.155

The validation data set chosen was 950 line km of ice thickness data156

(see Fig. 2) over Eastern Antarctica (Roberts et al., 2011; Young et al.,157

2011) (ICECAP flight ASB/JKB1a/R10Eb). This dataset covers different158

subglacial terrains, including flat sedimentary basins (Wright et al., 2012),159

steep-sided glacial valleys (Young et al., 2011) and rough highlands (Roberts160

et al., 2011). This dataset has a high degree of autocorrelation at large dis-161

placements (see Fig. 3), indicative of long characteristic length scales. The162

high autocorrelations over relatively large spatial scales shown in Fig. 3 is163

consistent with the results of Smith et al. (2007) who found that for East164

Antarctica, variograms of topography could be well represented by exponen-165

tial models with length scales up to 700 km. Since the ice sheet has a rela-166

tively smooth surface (compared with the underlying topography), bedrock167

topography is strongly related to ice thickness. Therefore it is not unexpected168

that the ice thickness may show a long characteristic scale distribution as ter-169

rain frequently exhibits long characteristic scales especially when preserved170

8



500

1000

1500

2000

2500

3000

3500

4000

4500

Ic
e

th
ic

kn
es

s
(m

)

01002003004005006007008009001000

Distance from coast (km)

Figure 2: ICECAP radar data from flight ASB/JKB1a/R10Eb, revealing a major deep

subglacial sedimentary basin, between 1000 and 700 km, in which the bed is remarkably

flat; steep sided 1500 m-deep valleys between 700 and 600 km, and at 400 km; rough

highland between 600 and 500 km; and flat subglacial terrain between 400 and 0 km. The

profile illustrates a range of topographies measured by airborne radar profiling. The data

are often hampered by losses at great ice depth, over very steep sided topography, or as a

consequence of scattering at the ice surface and bed.

beneath ice sheets.171

The large autocorrelation in the datasets can influence the performance of172

the bootstrapping estimates of the confidence interval, as the autocorrelation173

results in long sequences of resampled data which are very similar to the174

original data and, hence, artificially narrow 95% confidence intervals (e.g.,175

the collapsing of the 95% confidence intervals at displacements around 80176

and 95 km in Fig. 3). This is consistent with the finding of Mudelsee (2003)177

that long data series may be needed for strongly autocorrelated data.178

Including multiple BCa bootstrap estimates and the resulting median179
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estimates for the 95% confidence interval bounds produces more robust (and180

more smoothly varying with displacement) estimates than the Ólafsdóttir181

and Mudelsee (2014) method.182

The estimate is also robust to both the reduction in the amount of data183

and unevenly sampled data, as shown in Fig. 3b and c. Results are consistent184

even with 50% data removal. However, it should be noted that this dataset is185

highly autocorrelated and, as such, contains much redundant information (at186

least in terms of correlation estimates). The persistently high autocorrelation187

at increasing displacements (Fig. 3b) is due to the non-stationary nature of188

the ice thickness data: when the low frequency trend is removed by high-pass189

filtering (using a Gaussian filter with an equivalent half-power width of 10190

km) the correlations rapidly fall towards zero (Fig. 3c), although the results191

still remain consistent with up to 50% data removal.192

4. MSA193

The MSA records from two distinct ice core locations (DSS97 and W10k)194

10 km apart were compared to establish if a significant common signal exists,195

which would support the use of MSA as a sea ice proxy in this region. For196

broad consistency with the work of Curran et al. (2003), we low-pass filter197

the two MSA records (Fig. 4) using a Gaussian filter with width σ = 0.2994198

(equivalent half power width of 1 year), maintaining their unevenly sampled199

and different time-bases. The correlation between the two MSA records is200

0.394 [0.231–0.625], and as the confidence interval does not cross zero, we can201

conclude that this correlation is significant at the 95% level. The results here202

demonstrate coherence between two ice core records which experience differ-203
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Figure 3: Autocorrelation coefficient for ICECAP ice thickness data as a function of

offset displacement. a) Uniformly sampled data, red line Gaussian kernel correlation and

associated 95% confidence limits (dashed red). Black line is existing method correlation

calculation (Ólafsdóttir and Mudelsee, 2014) and associated 95% confidence limits (grey

banding). Exponential data fit to correlation coefficient (green dashed). b) Unevenly

sampled data, 0% missing (black), 10% missing (red), 20% missing (blue) and 50% missing

(green). c) As per b) except for high-pass filtered ICECAP ice thickness data and different

axis limits.
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Figure 4: MSA records for two East Antarctic ice cores, DSS97 (red) and W10k (blue).

ent snow accumulation rates. DSS97 has a mean annual accumulation rate204

of 0.69 metres of ice equivalent per year (Roberts et al., 2015) and W10k205

of around 0.5 metres of ice equivalent per year. The different mean snow206

accumulation rates and associated snow densification rates result in differ-207

ent diffusion properties of MSA within the ice cores (Abram et al., 2008;208

Roberts et al., 2009), and different losses of MSA to the atmosphere, re-209

sulting in reduced coherence. Additionally, timing noise arises from variable210

snow deposition and surface relief. Despite these sources of difference, the211

coherent signal between the two sites provides evidence that the co-variation212

seen between MSA in the Law Dome region and sea-ice extent represents a213

regional signal that is distinct from local noise processes. This supports the214

interpretation of MSA as a proxy for sea-ice extent in this region.215
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5. Software performance and concluding remarks216

We provide Fortran 90 source code (Intel 12.1.0, PGI 15.10-0 and gfortran217

4.8.4 compatible) as well as a Windows executable and MATLAB (R2015a)/Octave218

(3.8.1) source code in the supplementary material.219

The bootstrap confidence interval calculation requires the calculation of220

50 000 (25 replicates of 2000 members) Gaussian kernel method correlations221

which, for larger datasets, can be quite time consuming. For example, an222

execution time of around 11 minutes on an Intel Core i7-4712HQ CPU for223

the MSA example where the sample sizes are nx = 1879 and ny = 1491.224

The majority of the time is in the nested summation (nx × ny repetitions)225

of the exponential function in Eq. 1. To decrease the execution time, the226

code has OpenMP compiler directives to parallelise the calculation of this227

nested exponential function. The speed-up obtained on the test machine is228

approximately 4.2 on 8 CPUs. This appears to be hardware limited, as the229

simultaneous execution of eight single-CPU versions of the code obtains a230

very similar speed-up. An OpenACC version of the code is also provided for231

execution on GPU or other accelerators if available.232

The assertion that the nested exponential calculations is the most time233

intensive part of the calculation is confirmed by the replacement of the ex-234

ponential with an approximation. Using the relation235

exp (x) = lim
n→∞

(
1 +

x

n

)n

(2)

results in the following code236

d=ty(j)-tx(i)237

b=exp(-d**2/(2*h**2))/sqrt(2*pi*h)238
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being replaced by the approximation239

d=-(ty(j)-tx(i))**2/(2.0*h**2)240

! if-then-else is approximation for b=exp(d)241

if (d<-20) then242

b=0.0243

else244

b=1.0+d/1024245

b=b*b246

b=b*b247

b=b*b248

b=b*b249

b=b*b250

b=b*b251

b=b*b252

b=b*b253

b=b*b254

b=b*b/sqrt(2*pi*h)255

endif256

This version of the code runs around 4.6 times faster than the version us-257

ing the exponential function. Note that this version of the code is quicker (by258

around 25%) compared to replacing all the b=b*b with a single b=b**1024.259

This approximate version is included in the source code. For the MSA exam-260

ple the difference in the calculated correlation value is -0.005%, with larger261

differences in the confidence interval of around 0.8%. Since the confidence262

interval is only an estimate, this difference may be acceptable for some ap-263
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plications with very large datasets and associated long execution times.264

The method presented here combined with freely available software pro-265

vides a new and valuable tool for evaluation of correlation significance in266

common circumstances of unevenly and differently sampled, autocorrelated267

data series.268
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