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We present a new model for multi-agent dynamics where each agent is described by
its position and body attitude: agents travel at a constant speed in a given direction
and their body can rotate around it adopting different configurations. In this manner,
the body attitude is described by three orthonormal axes giving an element in SO(3)
(rotation matrix). Agents try to coordinate their body attitudes with the ones of their
neighbours. In this paper, we give the individual-based model (particle model) for this
dynamics and derive its corresponding kinetic and macroscopic equations.

Keywords: Body attitude coordination; collective motion; Vicsek model; generalized col-
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1. Introduction

In this paper, we model collective motion where individuals or agents are described
by their position and body attitude. The body attitude is given by three
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(a) (b)

(c)

Source: These images are in public domain (released under Creative Commons CC0 by pix-
abay.com).

Fig. 1. (Color online) Examples of body attitude coordination/dis-coordination and the use of
the rotation matrix representation. (a) Birds with coordinated body attitude. Three orthonormal
axes describe the body attitude: the green arrow indicates the direction of movement; the blue
and red arrows indicate the position of the body with respect to this direction. (b) Birds with
no coordinated body attitude. (c) Dolphins moving in the same direction but with different body
attitude. In this example one can see that the body attitude coordination model gives more
information than the Vicsek model (which only describes the direction of movement).

orthonormal axes; one of the axes describes the direction in which the agent moves
at a constant speed; the other two axes indicate the relative position of the body
with respect to this direction. Agents try to coordinate their body attitude with
those of near neighbours (see Fig. 1). Here we present an individual-based model
(particle model) for body attitude coordination and derive the corresponding macro-
scopic equations from the associated mean-field equation, which we refer to as the
Self-Organised Hydrodynamics for body attitude coordination (SOHB), by refer-
ence to the Self-Organised Hydrodynamics (SOH) derived from the Vicsek dynamics
(see Ref. 24 and discussion below).
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There exists already a variety of models for collective behaviour depending on
the type of interaction between agents. However, to the best of our knowledge,
this is the first model that takes into account interactions based on body attitude
coordination. This has applications in the study of collective motion of animals such
as birds and fish and it is a stepping stone to model more complex agents formed
by articulated bodies (corpora).13,14 In this section, we present related results in
the literature and the structure of the document.

There exists a vast literature on collective behaviour. In particular, here we deal
with the case of self-propelled particles which is ubiquitous in nature. It includes,
among others, fish schools, flocks of birds, herds8,9,41; bacteria5,47; human walking
behaviour.36 The interest in studying these systems is to gain understanding on
the emergent properties: local interactions give rise to large scale structures in the
form of patterns and phase transitions (see the review in Ref. 46). These large scale
structures take place when the number of individuals or agents is very large. In
this case a statistical description of the system is more pertinent than an agent-
based one. With this in mind mean-field limits are devised when the number of
agents tend to infinity. From them macroscopic equations can be obtained using
hydrodynamic limit techniques (as we explain below).

The results presented here are inspired from those in Ref. 24. There the authors
consider the Vicsek model which is a particular type of model for self-propelled
particles.1,15,34,45 The Vicsek model describes collective motion where agents travel
at a constant speed in a given direction. At each time step the direction of movement
is updated to the averaged one of the neighbouring agents, with some noise. The
position is updated considering the distance travelled during that time step.

Our results here are inspired by the SOH model (the continuum version of the
Vicsek model), where we have substituted velocity alignment by body attitude
coordination. Other refinements and adaptations of the Vicsek model (at the par-
ticle level) or the SOH model (at the continuum level) have been proposed in the
literature, we just mention the following ones as examples: in Ref. 10 an individual-
based model is proposed to better describe collective motion of turning birds; in
Ref. 25 agents are considered to have the shape of discs and volume exclusion is
included in the dynamics; a description of nematic alignment in rods is done in
Ref. 23.

In Ref. 24 the authors investigate the mean-field limit and macroscopic limit of
the Vicsek model. The mean-field limit gives a kinetic equation that takes the form
of a Fokker–Planck equation referred to as the mean-field limit Vicsek model.

To obtain the macroscopic equations (the SOH model), the authors in Ref. 24
use the well-known tools of hydrodynamic limits, first developed in the frame-
work of the Boltzmann equation for rarefied gases.11,16,42 Since its first appearance,
hydrodynamics limits have been used in other different contexts, including traffic
flow modelling3,35 and supply chain research.2,26 However, in Ref. 24 a new con-
cept is introduced: the Generalised Collision Invariant (GCI). Typically to obtain
the macroscopic equations we require as many conserved quantities in the kinetic
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equation as the dimension of the equilibria (see again Ref. 46). In the mean-field
limit Vicsek model this requirement is not fulfilled and the GCI is used to sort out
this problem. For other cases where the GCI concept has been used see Refs. 17,
18, 21, 22, 27 and 29.

After this introduction and the following discussion about the main result,
the next part of the paper is dedicated to the modelling. In Sec. 3.1 we explain
the derivation of the individual-based model for body coordination dynamics:
given N agents labelled by k = 1, . . . , N the positions and body attitudes
(Xk, Ak) ∈ R

3×SO(3) over time are given by the Stochastic Differential Equations
(SDEs) (3.10)–(3.11). In Sec. 3.2 we give the corresponding (formal) mean-field
limit (Proposition 3.2) for the evolution of the empirical measure when the number
of agents N → ∞.

The last part concerns the derivation of the macroscopic equations (Theo-
rem 4.1) for the total density of the particles ρ = ρ(t, x) and the matrix of the
mean body attitude Λ = Λ(t, x). To obtain these equations we first study the
rescaled mean-field equation (Eq. (4.1)), which is, at leading order, a Fokker–Planck
equation. We determine its equilibria, which are given by a von Mises distribution
on SO(3) (Eq. (4.4)). Finally in Sec. 4.4 we obtain the GCIs (Proposition 4.6),
which are the main tool to be able to derive the macroscopic equations in Sec. 4.5.

2. Discussion of the Main Result: The Self-Organised
Hydrodynamics for Body Attitude Coordination

The main result of this paper is Theorem 4.1 which gives the following macroscopic
equations for the density of agents ρ = ρ(t, x) and the matrix of the mean body
attitude Λ = Λ(t, x) ∈ SO(3) (i.e. SOHB):

∂tρ+ c1∇x · (ρΛe1) = 0, (2.1)

ρ(∂tΛ + c2((Λe1) · ∇x)Λ) + [(Λe1)

× (c3∇xρ+ c4ρ rx(Λ)) + c4ρ δx(Λ)Λe1]×Λ = 0. (2.2)

In the equations above c1, c2, c3 and c4 are explicit constants which depend on the
parameters of the model (namely the rate of coordination and the level of noise).
The expressions of the constants c2, c3 and c4 depend on the GCI mentioned in the
Introduction (and computed thanks to Proposition 4.6). The constant c1 is obtained
as a “consistency” relation (Lemma 4.4). In (2.2), the operation [·]× transforms a
vector v in an antisymmetric matrix such that [v]×u = v×u for any vector u (see
(3.2) for the exact definition). The scalar δx(Λ) and the vector rx(Λ) are first-order
differential operators intrinsic to the dynamics : if Λ(x) = exp([b(x)]×)Λ(x0) with b
smooth around x0 and b(x0) = 0, then

δx(Λ)(x0) = ∇x · b(x)|x=x0 and rx(Λ)(x0) = ∇x × b(x)|x=x0 ,

where ∇x× is the curl operator. These operators are well defined as long as Λ is
smooth: as we will see in the next section, we can always express a rotation matrix
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as exp([b]×) for some vector b ∈ R
3, and this function b �→ exp([b]×) is a local

diffeomorphism between a neighbourhood of 0 ∈ R
3 and the identity of SO(3). This

gives a unique smooth representation of b in the neighbourhood of 0 when x is in
the neighbourhood of x0 since then Λ(x)Λ(x0)−1 is in the neighbourhood of Id.

We express Eq. (2.2) in terms of the basis vectors {Ω = Λe1,u = Λe2,v = Λe3}
and we write Λ = Λ(Ω,u,v). System (2.1)–(2.2) can be expressed as an evolution
system for ρ and the basis {Ω,u,v} as follows:

∂tρ+ c1∇x · (ρΩ) = 0, (2.3)

ρDtΩ + PΩ⊥ (c3∇xρ+ c4ρ r) = 0, (2.4)

ρDtu − u · (c3∇xρ+ c4ρ r)Ω + c4ρ δ v = 0, (2.5)

ρDtv − v · (c3∇xρ+ c4ρ r) Ω − c4ρ δ u = 0, (2.6)

where Dt := ∂t + c2(Ω · ∇x), δ = δx(Λ(Ω,u,v)) and r = rx(Λ(Ω,u,v)). The
operator PΩ⊥ denotes the projection on the orthogonal of Ω. We easily see
here that these equations preserve the constraints |Ω| = |u| = |v| = 1 and
Ω · u = Ω · v = u · v = 0. The expressions of δ and r are:

δ = [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u,
r = (∇x · Ω)Ω + (∇x · u)u + (∇x · v)v.

Equation (2.1) (or equivalently Eq. (2.3)) is the continuity equation for ρ and
ensures mass conservation. The convection velocity is given by c1Λe1 = c1Ω and Ω
gives the direction of motion. Equation (2.2) (or equivalently Eqs. (2.4)–(2.6)) gives
the evolution of Λ. We remark that every term in Eq. (2.2) belongs to the tangent
space at Λ in SO(3); this is true for the first term since (∂t + c2(Λe1) · ∇x) is a
differential operator and it also holds for the second term because it is the product
of an antisymmetric matrix with Λ (see Proposition A.2). Alternately, this means
that (Ω(t),u(t),v(t)) is a direct orthonormal basis as soon as (Ω(0),u(0),v(0)).

The term corresponding to c3 in (2.2) gives the influence of ∇xρ (pressure gra-
dient) on the body attitude Λ. It has the effect of rotating the body around the
vector directed by (Λe1) × ∇xρ at an angular speed given by c3

ρ ‖(Λe1) × ∇xρ‖,
so as to align Ω with −∇xρ. Indeed the solution of the differential equation
dΛ
dt +γ[n]×Λ = 0, when n is a constant unit vector and γ a constant scalar, is given by

Λ(t) = exp(−γt[n]×)Λ0, and exp(−γt[n]×) is the rotation of axis n and angle −γt
(see (3.4), it is called Rodrigues’ formula). Since we will see that c3 is positive
the influence of this term consists of relaxing the direction of displacement Λe1

towards ∇xρ. Alternately, we can see from (2.4) that Ω turns in the opposite direc-
tion to ∇xρ, showing that the ∇xρ term has the same effect as a pressure gradient
in classical hydrodynamics. We note that the pressure gradient has also the effect
of rotating the whole body frame (see influence of ∇xρ on u and v) just to keep
the frame orthonormal. Similarly to what happens with the ∇xρ term in Eq. (2.2),
the term containing c4ρ r in Eq. (2.4) has the effect of relaxing the direction of
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displacement Ω towards −r (we will indeed see that c4 is positive). Finally, the last
terms of Eqs. (2.5)–(2.6) have the effect of rotating the vectors u and v around Ω
along the flow driven by Dt at angular speed c4δ.

If we forget the term proportional to r in (2.4), system (2.3)–(2.4) is decoupled
from (2.5)–(2.6), and is an autonomous system for ρ and Ω, which coincides with
the SOH model. The SOH model provides the fluid description of a particle system
obeying the Vicsek dynamics.24 As already discussed in Ref. 24, the SOH model
bears analogies with the compressible Euler equations, where (2.3) is obviously the
mass conservation equation and (2.4) is akin to the momentum conservation equa-
tion, where momentum transport ρDtΩ is balanced by a pressure force −PΩ⊥∇xρ.
There are however major differences. The first one is the presence of the projection
operation PΩ⊥ which is there to preserve the constraint |Ω| = 1. Indeed, while the
velocity in the Euler equations is an arbitrary vector, the quantity Ω in the SOH
model is a velocity orientation and is normalised to 1. The second one is that the
convection speed c2 in the convection operator Dt is a priori different from the
mass convection speed c1 appearing in the continuity equation. This difference is
a signature of the lack of Galilean invariance of the system, which is a common
feature of all dry active matter models.

The major novelty of the present model, which can be referred to as the SOHB
is that the transport of the direction of motion Ω involves the influence of another
quantity specific to the body orientation dynamics, namely the vector r. The overall
dynamics tends to align the velocity orientation Ω, not opposite to the density
gradient ∇xρ but opposite to a composite vector (c3∇xρ + c4ρ r). The vector r is
the rotational of a vector b locally attached to the frame (namely the unit vector
of the local rotation axis multiplied by the local angle of rotation around this
axis). This vector gives rise to an effective pressure force which adds up to the
usual pressure gradient. It would be interesting to design specific solutions where
this effective pressure force has a demonstrable effect on the velocity orientation
dynamics.

In addition to this effective force, spatial inhomogeneities of the body attitude
also have the effect of inducing a proper rotation of the frame about the direction
of motion. This proper rotation is also driven by spatial inhomogeneities of the
vector b introduced above, but are now proportional to its divergence.

3. Modelling: The Individual-Based Model and
Its Mean-Field Limit

The body attitude is given by a rotation matrix. Therefore, we work on the Rieman-
nian manifold SO(3) (Special Orthogonal Group), which is formed by the subset of
matrices A such that AAT = Id and det(A) = 1, where Id stands for the identity
matrix.

In this document M indicates the set of square matrices of dimension 3; A is the
set of antisymmetric matrices of dimension 3; S is the set of symmetric matrices of
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dimension 3. Typically we will denote by A,Λ matrices in SO(3) and by P matrices
in A. Bold symbols n,v, e1 indicate vectors.

We will often use the so-called Euler axis-angle parameters to represent an
element in SO(3): to A ∈ SO(3) there is associated an angle θ ∈ [0, π] and a
vector n ∈ S2 so that A = A(θ,n) corresponds to the anticlockwise rotation of
angle θ around the vector n. It is easy to see that

tr(A) = 1 + 2 cos θ (3.1)

(for instance expressingA in an orthonormal basis with n), so the angle θ is uniquely
defined as arccos(1

2 (tr(A)−1)). Notice that n is uniquely defined whenever θ ∈ (0, π)
(if θ = 0 then n can be any vector in S2 and if θ = π then the direction of n is
uniquely defined but not its orientation). For a given vector u, we introduce the
antisymmetric matrix [u]×, where [·]× is the linear operator from R

3 to A given by

[u]× :=


0 −u3 u2

u3 0 −u1

−u2 u1 0

, (3.2)

so that for any vectors u,v ∈ R
3, we have [u]×v = u × v. In this framework, we

have the following representation for A ∈ SO(3) (called Rodrigues’ formula):

A = A(θ,n) = Id + sin θ[n]× + (1 − cos θ)[n]2× (3.3)

= exp(θ[n]×). (3.4)

We also have n× (n×v) = (n ·v)n− (n ·n)v, therefore when n is a unit vector,
we have

[n]2× = n ⊗ n− Id, (3.5)

where the tensor product a ⊗ b is the matrix defined by (a ⊗ b)u = (u · b)a for
any u ∈ R

3. Finally, SO(3) has a natural Riemannian metric (see Ref. 38) induced
by the following inner product in the set of square matrices of dimension 3:

A · B =
1
2

tr(ATB) =
1
2

∑
i,j

AijBij . (3.6)

This normalisation gives us that for any vectors u,v ∈ R
3, we have that

[u]× · [v]× = (u · v). (3.7)

Moreover, the geodesic distance on SO(3) between Id and a rotation of an-
gle θ ∈ [0, π] is exactly given by θ (the geodesic between Id and A is exactly
t ∈ [0, θ] �→ exp(t[n]×)). See Appendix A for some properties of SO(3) used through-
out this work.

Seeing SO(3) as a Riemannian manifold, we will use the following notations: TA
is the tangent space in SO(3) at A ∈ SO(3); PTA denotes the orthogonal projection
onto TA; the operators ∇A,∇A· are the gradient and divergence in SO(3), respec-
tively. These operators are computed in Sec. 4.2 in the Euler axis-angle coordinates.
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3.1. The individual-based model

Consider N agents labelled by k = 1, . . . , N with positions Xk(t) ∈ R
3 and asso-

ciated matrices (body attitudes) Ak(t) ∈ SO(3). For each k, the three unit vectors
representing the frame correspond to the vectors of the matrix Ak(t) when written
as a matrix in the canonical basis (e1, e2, e3) of R

3. In particular, the direction of
displacement of the agent is given by its first vector Ak(t)e1.

Evolution of the positions. Agents move in the direction of the first axis with con-
stant speed v0:

dXk(t)
dt

= v0Ak(t)e1.

Evolution of the body attitude matrix. Agents try to coordinate their body attitude
with those of their neighbours. So we are facing two different problems from a
modelling viewpoint, namely to define the target body attitude, and to define the
way agents relax their own attitude towards this “average” attitude.

As for the Vicsek model,24 we consider a kernel of influence K = K(x) ≥ 0 and
define the matrix

Mk(t) :=
1
N

N∑
i=1

K(|Xi(t) − Xk(t)|)Ai(t). (3.8)

This matrix corresponds to the averaged body attitude of the agents inside the zone
of influence corresponding to agent k. Now Mk(t) /∈ SO(3), so we need to orthog-
onalise and remove the dilations, in order to construct a target attitude in SO(3).
We will see that the polar decomposition of Mk(t) is a good choice in the sense
that it minimises a weighted sum of the squared distances to the attitudes of the
neighbours. We also refer to Ref. 40 for some complements on averaging in SO(3).

We give next the definition of polar decomposition.

Lemma 3.1. (Polar decomposition of a square matrix33) Given a matrix
M ∈ M, if det(M) 	=0 then there exists a unique orthogonal matrix A (given by

A = M(
√
MTM)−1) and a unique symmetric positive definite matrix S such that

M =AS.

Proposition 3.1. Suppose that the matrix Mk(t) has positive determinant. Then
the following assertions are equivalent:

(i) The matrix A minimises the quantity 1
N

∑N
i=1K(|Xi(t)−Xk(t)|)‖Ai(t)−A‖2

among the elements of SO(3).
(ii) The matrix A is the element of SO(3) which maximises the quantity A ·Mk(t).
(iii) The matrix A is the polar decomposition of Mk(t).

Proof. We get the equivalence between the first two assertions by expanding:

‖Ai(t) −A‖2 =
1
2
[tr(Ai(t)TAi(t)) + tr(ATA)] − 2A ·Ai(t) = 3 − 2A ·Ai(t),

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

10
05

-1
04

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

09
/1

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



May 26, 2017 10:46 WSPC/103-M3AS 1740008

A new flocking model through body attitude coordination 1013

since A and Ai(t) are both orthogonal matrices. So minimising the weighted sum of
the squares distances amounts to maximising inner product of A and the weighted
sum Mk of the matrices Ai given by (3.8).

Therefore if det Mk > 0, and A is the polar decomposition of Mk, we immedi-
ately get that detA > 0, hence A ∈ SO(3). We know that S can be diagonalised in
an orthogonal basis: S = PTDP with PTP = Id and D is a diagonal matrix with
positive diagonal elements λ1, λ2, λ3. Now if B ∈ SO(3) maximises 1

2 tr(BTMk)
among all matrices in SO(3), then it maximises tr(BTAPTDP) = tr(PBTAPTD).

So the matrix B̄ = PBTAPT maximises tr(B̄D) = λ1b̄11 + λ2b̄22 + λ3b̄33 among

the elements of SO(3) (the map B �→ PBTAPT is a one-to-one correspondence
between SO(3) and itself). But since B̄ is an orthogonal matrix, all its column
vectors are unit vectors, and so bii ≤ 1, with equality for i = 1, 2 and 3 if and only
if B̄ = Id, that is to say PBTAPT = Id, which is exactly B = A.

We denote by PD(Mk)∈O(3) the corresponding orthogonal matrix coming from
the polar decomposition of Mk.

We now have two choices for the evolution of Ak. We can use the second point
of Proposition 3.1 and follow the gradient of the function to maximise:

dAk(t)
dt

= ν∇A(Mk ·A)|A=Ak
= νPTAk

Mk (3.9)

(see (A.2) for the last computation, PTAk
is the projection on the tangent space,

this way the solution of the equation stays in SO(3)).
Or we can directly relax to the polar decomposition PD(Mk), in the same

manner:
dAk(t)
dt

= νPTAk
(PD(Mk)).

We can actually see that the trajectory of this last equation, when PD(Mk)
belongs to SO(3) and does not depend on t, is exactly following a geodesic (see
Proposition A.4). Therefore in this paper we will focus on this type of coordination.
The positive coefficient ν gives the intensity of coordination, in the following we will
assume that it is a function of the distance between Ak and PD(Mk) (the angle of
the rotation ATk PD(Mk)), which is equivalent to say that ν depends on Ak ·PD(Mk).

Remark 3.1. Some comments:

(1) One could have used the Gram–Schmidt orthogonalisation instead of the polar
decomposition, but it depends on the order in which the vector basis is taken
(for instance if we start with e1, it would define the first vector as the average
of all the directions of displacement, independently of how the other vectors of
the body attitudes of the individuals are distributed). The polar decomposition
gives a more canonical way to do this.

(2) We expect that the orthogonal matrix coming from the polar decomposition
of Mk belongs in fact to SO(3). First, we notice that O(3) is formed by two
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disconnected components: SO(3) and the other component formed by the matri-
ces with determinant −1. We assume that the motion of the agents is smooth
enough so that the average Mk stays “close” to SO(3) and that, in particu-
lar, det(Mk) > 0.

A simple example is when we only average two different matrices A1 and A2

of SO(3). We then have M = 1
2 (A1 + A2). If we write A1A

T
2 = exp(θ[n]×)

thanks to Rodrigues’ formula (3.4) and we define A = A2 exp(1
2θ[n]×), we get

that A1 = A exp(1
2θ[n]×) and so

M = A
1
2

(
exp

(
1
2
θ[n]×

)
+ exp

(
−1

2
θ[n]×

))
= A

(
cos

θ

2
Id +

(
1 − cos

θ

2

)
n ⊗ n

)
,

thanks to Rodrigues’ formula (3.3) and to (3.5). Since the matrix
S = cos θ2 Id + (1 − cos θ2 )n⊗ n is a positive-definite symmetric matrix as soon
as θ ∈ [0, π), we have that det(M) > 0. The polar decomposition of M is then A,
which is the midpoint of the geodesic joining A1 to A2 (which corresponds to
the curve t ∈ [0, θ] �→ A1 exp(t[n]×)).

As soon as we average more than two matrices, there exist cases for
which det(M) < 0: for instance if we take

A1 =


1 0 0

0 −1 0

0 0 −1

, A2 =


−1 0 0

0 1 0

0 0 −1

, A3 =


−1 0 0

0 −1 0

0 0 1

,
we have M = 1

3 (A1 +A2 +A3) = − 1
3 Id.

Noise term. Agents make errors when trying to coordinate their body attitude
with that of their neighbours. This is represented in the equation of Ak by a noise
term: 2

√
DdW k

t where D > 0 and W k
t = (W k,i,j

t )i,j=1,2,3 are independent Gaussian
distributions (Brownian motion).

From all these considerations, we obtain the IBM:

dXk(t) = v0Ak(t)e1dt, (3.10)

dAk(t) = PTAk
◦ [ν(PD(Mk) · Ak)PD(Mk)dt+ 2

√
DdW k

t ], (3.11)

where the SDE is in Stratonovich sense (see Ref. 32). The projection PTAk

and the fact that we consider the SDE in Stratonovich sense ensure that the
solution Ak(t) stays in SO(3). The normalisation constant 2

√
D ensures that

the diffusion coefficient is exactly D: the law p of the underlying process given
by dAk = 2

√
DPTAk

◦ dW k
t satisfies ∂tp=D∆Ap where ∆A =∇A ·∇A is the Laplace–

Beltrami operator on SO(3). Notice the factor 2
√
D instead of the usual

√
2D which
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is encountered when considering diffusion process on manifolds isometrically embed-
ded in the Euclidean space R

n, because we are here considering SO(3) embedded
in M (isomorphic to R

9), but with the metric (3.6), which corresponds to the
canonical metric of R

9 divided by a factor 2. We refer to Ref. 37 for more insight
on such stochastic processes on manifolds.

3.2. Mean-field limit

We assume that the kernel of influence K is Lipschitz, bounded, with the following
properties:

K = K(|x|) ≥ 0,
∫
R3
K(|x|)dx = 1,

∫
R3

|x|2K(|x|)dx <∞. (3.12)

In Ref. 7 the mean-field limit is proven for the Vicsek model. Using the techniques
there it is straightforward to see that for

M(x, t) :=
1
N

N∑
i=1

K(Xi − x)Ai,

the law fN = fN (x,A, t) of the empirical measure associated to the Stratonovich
SDE:

dXk(t) = v0Ak(t)e1dt, (3.13)

dAk(t) = PTAk
◦ [ν(M(Xk, t) · Ak)M(Xk, t)dt+ 2

√
DdW k

t ], (3.14)

converges weakly fN → f as N → ∞. The limit satisfies the kinetic equation:

∂tf + v0Ae1 · ∇xf = D∆Af −∇A · (F [f ]f) ,

with

F [f ] := ν(Mf · A)PTA(Mf ),

Mf =
∫

R3×SO(3)

K(x− x′)f(x′, A′, t)A′dA′dx′.

The equations we are dealing with (3.10)–(3.11), since we consider the polar
decomposition of the averaged body attitude Mk, are slightly different from (3.13)–
(3.14), which would correspond to the modelling point of view of Eq. (3.9). As
a consequence, the corresponding coefficient of the SDE is not Lipschitz anymore
and the known results for existence of solutions and mean-field limit (see The-
orem 1.4 in Ref. 43) fail. More precisely, the problem arises when dealing with
matrices with determinant zero; the orthogonal matrix of the polar decomposi-
tion is not uniquely defined for matrices with determinant zero and, otherwise,

PD(Mk) = Mk(
√

MT
k Mk)−1 (Lemma 3.1).

A complete proof of the previous results in the case of Eqs. (3.10)–(3.11)
would involve proving that solutions to the equations stay away from the singu-
lar case det(Mk) = 0. This is an assumption that we make on the individual-based
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model (see the second point of Remark 3.1). This kind of analysis has been done
for the Vicsek model (explained in Sec. 1) in Ref. 28 where the authors prove global
well-posedness for the kinetic equation in the spatially homogeneous case.

In our case one expects the following to hold.

Proposition 3.2. (Formal) When the number of agents in (3.10)–(3.11) N → ∞,

its corresponding empirical distribution

fN(x,A, t) =
1
N

N∑
k=1

δ(Xk(t),Ak(t)),

converges weakly to f = f(x,A, t), (x,A, t) ∈ R
3 × SO(3) × [0,∞) satisfying

∂tf + v0Ae1 · ∇xf = D∆Af −∇A · (fF [f ]),

F [f ] := νPTA(M̄[f ]),

M̄[f ] = PD(M[f ]),

M[f ](x, t) :=
∫

R3×SO(3)

K(x− x′)f(x′, A′, t)A′dA′dx′,

(3.15)

where PD(M[f ]) corresponds to the orthogonal matrix obtained on the polar decom-
position of M[f ] (see Lemma 3.1); and ν = ν(M̄[f ] ·A).

4. Hydrodynamic Limit

The goal of this section will be to derive the macroscopic equations (Theorem 4.1).
From now on, we consider the kinetic equation given in (3.15).

4.1. Scaling and expansion

We express the kinetic equation (3.15) in dimensionless variables. Let ν0 be
the typical interaction frequency scale so that ν(Ā · A) = ν0ν

′(Ā · A) with
ν′(Ā · A) = O(1). We introduce also the typical time and space scales t0, x0

such that t0 = ν−1
0 and x0 = v0t0; the associated variables will be t′ = t/t0

and x′ = x/x0. Consider the dimensionless diffusion coefficient d = D/ν0 and the
rescaled influence kernel K ′(|x′|) = K(x0|x′|). Skipping the primes we get:

∂tf +Ae1 · ∇xf = d∆Af −∇A · (fF [f ]),

F [f ] := ν(M̄[f ] · A)PTA(M̄[f ]),

M̄[f ] = PD(M[f ]), M[f ](x, t) :=
∫

R3×SO(3)

K(x− x′)f(x′, A′, t)A′dA′dx′.

Here d, ν and K are assumed to be of order 1.
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Remark 4.1. Notice in particular that before and after scaling the ratio

ν

D
=
ν′

d

remains the same.

Now, to carry out the macroscopic limit we rescale the space and time variables
by setting t̃ = εt, x̃ = εx to obtain (skipping the tildes):

∂tf
ε +Ae1 · ∇xf

ε =
1
ε
(d∆Af

ε −∇A · (fεF ε[fε])),

F ε[f ] := ν(M̄ε[f ] · A)PTA(M̄ε[fε]),

M̄
ε[f ] = PD(Mε[f ]), M

ε[f ](x, t) :=
∫

R3×SO(3)

K

(
x− x′

ε

)
f(x′, A′, t)A′dA′dx′.

Lemma 4.1. Assuming that f is sufficiently smooth (with bounded derivatives),
we have the expansion

M̄
ε[f ](x, t) = Λ[f ](x, t) + O(ε2),

where

Λ[f ](x, t) = PD(λ[f ]) and λ[f ] =
∫

SO(3)

A′f(x,A′, t)dA′.

Proof. This is obtained by performing the change of variable x′ = x + εξ in the
definition of M

ε[f ] and using a Taylor expansion of f(x + εξ, A′, t) with respect
to ε. We use that K is isotropic and with bounded second moment by assumption
(see Eq. (3.12)).

From the lemma, we rewrite:

∂tf
ε +Ae1 · ∇xf

ε =
1
ε
Q(fε) + O(ε),

F0[f ] := ν(Λ[f ] ·A)PTA(Λ[f ]),

Λ[f ] = PD(λ[f ]), λ[f ](x, t) :=
∫

SO(3)

f(x,A′, t)A′dA′,

Q(f) := d∆Af −∇A · (fF0[f ]).

(4.1)

Λ[f ], Q(f) and F0[f ] are nonlinear operators of f , which only acts on the attitude
variable A.

4.2. Preliminaries: Differential calculus in SO(3)

In the sequel we will use the volume form, the gradient and divergence in SO(3)
expressed in the Euler axis-angle coordinates (θ,n) (explained at the beginning of
Sec. 3). In this section, we give their explicit forms; the proofs are in Appendix A.
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Proposition 4.1. (The gradient in SO(3)) Let f : SO(3) → R be a smooth scalar
function. If f̄(θ,n) = f(A(θ,n)) is the expression of f in the Euler axis-angle
coordinates by Rodrigues’ formula (3.3), we have then

∇Af = ∂θ f̄A[n]× +
1

2 sin(θ/2)
A(cos(θ/2)[∇nf̄ ]× + sin(θ/2)[n×∇nf̄ ]×), (4.2)

where A = A(θ,n) and ∇n is the gradient on the sphere S2.

The volume form in SO(3) is left invariant (it is the Haar measure), due to the
fact that the inner product in M is also left invariant: A ·B = 1

2 tr(ATB) = ΛA ·ΛB
when Λ ∈ SO(3). We give its expression in the Euler axis-angle coordinates (θ,n).

Lemma 4.2. (Decomposition of the volume form in SO(3)) If f̄(θ,n) = f(A(θ,n))
is the expression of f in the Euler axis-angle coordinates by Rodrigues’ formula
(3.3), we have ∫

SO(3)

f(A)dA =
∫ π

0

W(θ)
∫
S2
f̄(θ,n)dndθ,

where dn is the Lebesgue measure on the sphere S2, normalised to be a probability
measure, and

W(θ) =
2
π

sin2(θ/2). (4.3)

We have seen in Proposition 4.1 that the gradient is decomposed in the basis

{A[n]×, A[∇nf̄ ]×, A[n×∇nf̄ ]×},
which are three orthogonal vectors of TA (by Proposition A.2).

More generally if B ∈ TA for A = A(θ,n) ∈ SO(3), then B is of the
form AH with H antisymmetric, so H = [u]× for some u ∈ R

3. Decomposing u
on n and its orthogonal, we get that there exist v ⊥ n and b ∈ R such that
B = bA[n]× + A[v(θ,n)]×. Expressing B in this form, we compute the divergence
in SO(3).

Proposition 4.2. (The divergence in SO(3)) Consider B : SO3 →T (SO(3)) a
smooth function (so that B(A) ∈ TA for all A ∈ SO(3)), and suppose that

B(A(θ,n)) = b(θ,n)A[n]× +A[v(θ,n)]×,

for some smooth function b and smooth vector function v such that v(θ,n) ⊥ n.
Then

∇A ·B =
1

sin2(θ/2)
∂θ(sin2(θ/2)b(θ,n))

+
1

2 sin(θ/2)
∇n · (v(θ,n) cos(θ/2) + (v(θ,n) × n) sin(θ/2)).

Now we can compute the Laplacian in SO(3).
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Corollary 4.1. The Laplacian in SO(3) can be expressed as

∆Af =
1

sin2(θ/2)
∂θ(sin2(θ/2)∂θ f̃) +

1
4 sin2(θ/2)

∆nf̃ ,

where ∆n is the Laplacian on the sphere S2 and f(A) = f(A(θ,n)) = f̃(θ,n).

Proof. Let B(θ,n) := ∇Af(A(θ,n)) ∈ TA. Then, using the notations of Proposi-
tion 4.2 and the result of Proposition 4.1, we have that:

b = ∂θ f̃ ,

v =
1

2 sin(θ/2)
(cos(θ/2)∇nf̃ + sin(θ/2)(n×∇nf̃)),

from here we just need to apply Proposition 4.2 knowing that (n×∇nf̃)×n = ∇nf̃

since ∇nf̃ is orthogonal to n.

4.3. Equilibrium solutions and Fokker–Planck formulation

We define a generalisation of the von Mises distributions on SO(3) by

MΛ(A) =
1
Z

exp
(
σ(A · Λ)

d

)
,

∫
SO(3)

MΛ(A)dA = 1, Λ ∈ SO(3), (4.4)

where Z = Z(ν, d) is a normalising constant and σ = σ(µ) is such that
(d/dµ)σ = ν(µ). Observe that Z < ∞ is independent of Λ since the volume form
on SO(3) is left invariant. Therefore we have

Z =
∫

SO(3)

exp(d−1σ(A · Λ))dA =
∫

SO(3)

exp(d−1σ(ΛTA · Id))dA

=
∫

SO(3)

exp(d−1σ(A · Id))dA,

and we also obtain that MΛ(A) is actually MId(ΛTA).
We are now ready to describe the properties of Q in terms of these generalised

von Mises distributions.

Lemma 4.3. (Properties of Q) The following holds:

(i) The operator Q can be written as

Q(f) = d∇A ·
[
MΛ[f ]∇A

(
f

MΛ[f ]

)]
and we have

H(f) :=
∫

SO(3)

Q(f)
f

MΛ[f ]
dA = −d

∫
SO(3)

MΛ[f ]

∣∣∣∣∇A(
f

MΛ[f ]

)∣∣∣∣2 dA ≤ 0.

(4.5)
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(ii) The equilibria, i.e. the functions f = f(x,A, t) such that Q(f) = 0 form a four-
dimensional manifold E given by

E = {ρMΛ(A) | ρ > 0,Λ ∈ SO(3)},

where ρ is the total mass while Λ is mean body attitude of ρMΛ(A), i.e.:

ρ =
∫

SO(3)

ρMΛ(A)dA,

Λ = Λ[ρMΛ].

Furthermore, H(f) = 0 if and only if f = ρMΛ for arbitrary ρ ∈ R+ and
Λ ∈ SO(3).

To prove Lemma 4.3 we require the following one, which is of independent
interest and for which we introduce the following notation: for any scalar function
g : (0, π) → R and a given integrable scalar function h : (0, π) → R which remains
positive (or negative) on (0, π), we define

〈g(θ)〉h(θ) :=
∫ π

0

g(θ)
h(θ)∫ π

0 h(θ′)dθ′
dθ. (4.6)

Lemma 4.4. (Consistency relation for the “flux”)

λ[MΛ0 ] = c1Λ0,

where c1 ∈ (0, 1) is equal to

c1 =
2
3

〈
1
2

+ cos θ
〉
m(θ) sin2(θ/2)

(4.7)

for

m(θ) = exp
(
d−1σ

(
1
2

+ cos θ
))
. (4.8)

Proof. Using the fact that the measure on SO(3) is left invariant, we obtain

λ[MΛ0 ] =
1
Z

∫
SO(3)

A exp(d−1σ((A · Λ0)))dA

=
Λ0

Z

∫
SO(3)

ΛT0A exp
(
d−1σ

(
1
2
tr(ΛT0 A)

))
dA

=
Λ0

Z

∫
SO(3)

B exp
(
d−1σ

(
1
2
tr(B)

))
dB.
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We now write B = Id + sin θ[n]× + (1 − cos θ)[n]2× thanks to Rodrigues’ for-
mula (3.3). Therefore, using Lemma 4.2, we get

λ[MΛ0 ] = Λ0

∫
SO(3)

B exp(d−1σ(1
2 tr(B)))dB∫

SO(3) exp(d−1σ(1
2 tr(B)))dB

= Λ0

∫ π
0

sin2(θ/2) exp(d−1σ(1
2 + cos θ))

×(
∫
S2(Id + sin θ [n]× + (1 − cos θ)[n]2×)dn)dθ∫ π
0

sin2(θ/2) exp(d−1σ(1
2 + cos θ))dθ

.

Next, we see that since the function n �→ [n]× is odd, we have
∫
S2 [n]×dn = 0. We

also have (see (3.5)) that [n]2× = n⊗n− Id. Since we know that
∫
S2 n⊗ndn = 1

3 Id
(by invariance by rotation), it is easy to see that the integral in S2 has to be
proportional to Id, the coefficient is given by computing the trace), we get that

λ[MΛ0 ] = Λ0

∫
SO(3)B exp(d−1σ(1

2 tr(B)))dB∫
SO(3)

exp(d−1σ(1
2 tr(B)))dB

= Λ0

∫ π
0 sin2(θ/2) exp(d−1σ(1

2 + cos θ))(Id + (1 − cos θ)(1
3 − 1)Id)dθ∫ π

0 sin2(θ/2) exp(d−1σ(1
2 + cos θ))dθ

=

∫ π
0

2
3 (1

2 + cos θ) sin2(θ/2) exp(d−1σ(1
2 + cos θ))dθ∫ π

0 sin2(θ/2) exp(d−1σ(1
2 + cos θ))dθ

Λ0 = c1Λ0,

which gives the formula (4.7) for c1.
It remains to prove that c1 ∈ (0, 1). We have that c1 is the average of 2

3 (1
2 +cos θ)

for the probability measure on (0, π) proportional to sin2(θ/2) exp(d−1σ(1
2 +cos θ)).

Since we have 2
3 (1

2 + cos θ) ≤ 1 with equality only for θ = 0, we immediately get
that c1 < 1. To prove the positivity, we remark that the function in the expo-
nent θ �→ d−1σ(1

2 + cos θ) is strictly decreasing for θ ∈ (0, π) (since ν > 0 is the
derivative of σ), so we obtain that σ(1

2+cos θ) > σ(1
2+cos 2π

3 ) = σ(0) for θ ∈ (0, 2π
3 ).

Therefore, for θ ∈ (0, 2π
3 ),

(
1
2

+ cos θ
)

exp
(
d−1σ

(
1
2

+ cos θ
))

>

(
1
2

+ cos θ
)

exp(d−1σ(0)),

since 1
2 + cos θ > 0. When θ ∈ (2π

3 , π), we have exactly the same inequality above
since we have 1

2 + cos θ < 0. Therefore we get

c1 >

∫ π
0

2
3 (1

2 + cos θ) sin2(θ/2) exp(d−1σ(0))dθ∫ π
0 sin2(θ/2) exp(d−1σ(1

2 + cos θ))dθ
= 0,
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since ∫ π

0

(
1
2

+ cos θ
)

sin2(θ/2)dθ =
∫ π

0

(
1
2

+ cos θ
)(

1
2
− 1

2
cos θ

)
dθ

=
π

4
− 1

2

∫ π

0

cos2 θdθ = 0.

Proof of Lemma 4.3. We follow the structure of the analogous proof in Ref. 24:

(i) To prove the first identity we have that (see expression (A.2)):

∇A
(
lnMΛ[f ]

)
= d−1∇A(σ(A · Λ[f ]))

= d−1ν(A · Λ[f ])PTA(Λ[f ])

= d−1F0[f ]

and so

d∇A ·
[
MΛ[f ]∇A

(
f

MΛ[f ]

)]
= d∇A · [∇Af − f∇A(ln(MΛ[f ]))]

= d∇Af −∇A · (fF0[f ]).

Inequality (4.5) follows from this last expression and the Stokes theorem
in SO(3).

(ii) From the inequality (4.5) we have that ifQ(f) = 0, then f
MΛ[f]

is a constant that

we denote by ρ (which is positive since f and MΛ[f ] are positive). Conversely,
if f = ρMΛ then

λ[ρMΛ] =
∫

SO(3)

ρMΛ(A)AdA = ρc1Λ

by Lemma 4.4. Now, by uniqueness of the polar decomposition and since ρc1 Id
is a symmetric positive-definite matrix, we have that Λ[ρMΛ] = Λ.

Let us describe the behaviour of these equilibrium distributions for small
and large noise intensities. We have that for any function g, the average
〈g(1

2 + cos θ)〉m(θ) sin2(θ/2) is the average of g(A · Λ) with respect to the probability
measure MΛ (by left invariance, this is independent of Λ).

One can actually check that the probability measure MΛ on SO(3) converges
in distribution to the uniform measure when d → ∞ (by Taylor expansion) and
it converges to a Dirac delta at matrix Λ when d → 0 (this can be seen for MId

thanks to the decomposition of the volume form and the Laplace method, since the
maximum of σ(1

2 +cos θ) is reached only at θ = 0 which corresponds to the identity
matrix, and we then get the result for any Λ sinceMΛ(A) = MId(ΛTA)). So for small
diffusion, at equilibrium, agents tend to adopt the same body attitude close to Λ.
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With these asymptotic considerations, we have in particular the behaviour of c1:

c1 −−−→
d→∞

0

and

c1 −→
d→0

1.

4.4. Generalised collision invariants

To obtain the macroscopic equation, we start by looking for the conserved quantities
of the kinetic equation: we want to find the functions ψ = ψ(A) such that∫

SO(3)

Q(f)ψdA = 0 for all f.

By Lemma 4.3, this can be rewritten as

0 = −
∫

SO(3)

MΛ[f ]∇A
(

f

MΛ[f ]

)
· ∇AψdA.

This happens if ∇Aψ ∈ T⊥
A which holds true only if ∇Aψ = 0, implying that ψ is

constant.
Consequently, our model has only one conserved quantity: the total mass. How-

ever the equilibria is four-dimensional (by Lemma 4.3). To obtain the macroscopic
equations for Λ, a priori we would need three more conserved quantities. This
problem is sorted out by using GCI a concept first introduced in Ref. 24.

4.4.1. Definition and existence of GCI

Define the operator

Q(f,Λ0) := ∇A ·
(
MΛ0∇A

(
f

MΛ0

))
,

notice in particular that

Q(f) = Q(f,Λ[f ]).

Using this operator we define the following.

Definition 4.1. (GCI) For a given Λ0 ∈ SO(3) we say that a real-valued func-
tion ψ : SO(3) → R is a GCI associated to Λ0, or for short ψ ∈ GCI(Λ0), if∫

SO(3)

Q(f,Λ0)ψdA = 0 for all f such that PTΛ0
(λ[f ]) = 0.

In particular, the result that we will use is

ψ ∈ GCI(Λ[f ]) ⇒
∫

SO(3)

Q(f)ψdA = 0. (4.9)

Indeed, since Λ[f ] is the polar decomposition of λ[f ], we have λ[f ] = Λ[f ]S, with S
a symmetric matrix. Therefore (see Proposition A.2), we get that λ[f ] belongs to
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the orthogonal of TΛ[f ], so Definition 4.1 and the fact that Q(f) = Q(f,Λ[f ]) give
us the property (4.9).

Definition 4.1 is equivalent to the following.

Proposition 4.3. We have that ψ ∈ GCI(Λ0) if and only if :

there exists B ∈ TΛ0 such that ∇A · (MΛ0∇Aψ) = B · AMΛ0 . (4.10)

Proof. We denote by L the linear operator Q(·,Λ0), and L∗ its adjoint. We have
the following sequence of equivalences, starting from Definition 4.1:

ψ ∈ GCI(Λ0) ⇔
∫

SO(3)

ψL(f)dA = 0 for all f such that PTΛ0
(λ[f ]) = 0

⇔
∫

SO(3)

L∗(ψ)fdA = 0 for all f such that

∫
SO(3)

Af(A)dA ∈ (TΛ0)
⊥

⇔
∫

SO(3)

L∗(ψ)fdA = 0 for all f such that ∀B ∈ TΛ0 ,∫
SO(3)

(B ·A)f(A)dA = 0

⇔
∫

SO(3)

L∗(ψ)fdA = 0 for all f ∈ F⊥
Λ0

⇔ L∗(ψ) ∈ (
F⊥

Λ0

)⊥
,

where

FΛ0 := {g : SO(3) → R,with g(A) = (B · A), for some B ∈ TΛ0},
and F⊥

Λ0
is the space orthogonal to FΛ0 in L2. FΛ0 is a vector space in L2-isomorphic

to TΛ0 and (F⊥
Λ0

)⊥ = FΛ0 since FΛ0 is closed (finite-dimensional). Therefore we get

ψ ∈ GCI(Λ0) ⇔ L∗(ψ) ∈ FΛ0

⇔ there exists B ∈ TΛ0 such that L∗(ψ)(A) = B ·A,
which ends the proof since the expression of the adjoint is

L∗(ψ) =
1

MΛ0

∇A · (MΛ0∇Aψ).

We prove the existence and uniqueness of the solution ψ satisfying Eq. (4.10)
in the following.

Proposition 4.4. (Existence of the GCI) For a given B ∈ TΛ fixed, there exists a
unique (up to a constant) ψB ∈ H1(SO(3)), satisfying the relation (4.10).
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Proof. We would like to apply the Lax–Milgram theorem to prove the existence
of ψ in an appropriate functional space. For this, we rewrite the relation (4.10)
weakly

a(ψ, ϕ) :=
∫

SO(3)

MΛ0∇Aψ · ∇AϕdA =
∫

SO(3)

B · PTΛ0
(A)MΛ0ϕdA =: b(ϕ).

(4.11)

Our goal is to prove that there exists a unique ψ ∈ H1(SO(3)) such that
a(ψ, ϕ) = b(ϕ) for all ϕ ∈ H1(SO(3)).

To begin with we apply the Lax–Milgram theorem on the space

H1
0 (SO(3)) :=

{
ϕ ∈ H1

∣∣∣∣∣
∫

SO(3)

ϕdA = 0

}
.

In this space the H1-norm and the H1-semi-norm are equivalent thanks to the
Poincaré inequality, i.e. there exists C > 0 such that∫

SO(3)

|∇Aϕ|2dA ≥ C

∫
SO(3)

|ϕ|2dA for some C > 0, for all ϕ ∈ H1
0 (SO(3)).

Notice that the Poincaré inequality holds in SO(3) because it is compact Rieman-
nian manifold.12 This gives us the coercivity estimate to apply the Lax–Milgram
theorem. Hence, there exists a unique ψ ∈ H1

0 (SO(3)) such that a(ψ, ϕ) = b(ϕ) for
all ϕ ∈ H1

0 (SO(3)).
Now, define for a given ϕ ∈ H1(SO(3)), ϕ0 := ϕ− ∫

SO(3)
ϕdA ∈ H1

0 (SO(3)). It
holds that

a(ψ, ϕ) = a(ψ, ϕ0) and b(ϕ) = b(ϕ0),

since b(1) = 0 given that it has antisymmetric integrand. Hence, we obtain that
there exists a unique ψ ∈ H1

0 (SO(3)) such that

a(ψ, ϕ) = b(ϕ) for all ϕ ∈ H1(SO(3)).

Suppose next, that there exists another solution ψ̄ ∈ H1(SO(3)) to this problem,
then the difference Ψ = ψ − ψ̄ satisfies:

0 = a(Ψ, ϕ) =
∫

SO(3)

MΛ0∇AΨ · ∇AϕdA for all ϕ ∈ H1(SO(3)).

Take in particular ϕ = Ψ, then∫
SO(3)

MΛ0 |∇AΨ|2dA = 0.

Hence, Ψ = c for some constant c, so all solutions are of the form ψ + c where ψ is
the unique solution satisfying

∫
SO(3)

ψdA = 0.

By writing that

B ∈ TΛ0 if and only if there exists P ∈ A, B = Λ0P, (4.12)

with A the set of antisymmetric matrices, we deduce the following.
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Corollary 4.2. For a given Λ0 ∈ SO(3), the set of GCIs associated to Λ0 are

GCI(Λ0) = span

{
1,

⋃
P∈A

ψΛ0
P

}

(where A is the set of antisymmetric matrices) with ψΛ0
P the unique solution

in H1
0 (SO(3)) of

a(ψΛ0
P , ϕ) = bP (ϕ) for all ϕ ∈ H1(SO(3)),

where a and bP are defined by (4.11) with B substituted by Λ0P .

Notice that since the mapping P �→ψΛ0
P is linear and injective from A (of dimen-

sion 3) to H1
0 (SO(3)), the vector space GCI(Λ0) is of dimension 4.

4.4.2. The non-constant GCIs

From now on, we omit the subscript on Λ0, and we are interested in a simpler
expression for ψΛ

P . Rewriting expression (4.10) using (4.12), for any given P ∈ A
we want to find ψ such that

∇A · (MΛ∇Aψ) = (ΛP ) · AMΛ = P · (ΛTA)MΛ, P ∈ A. (4.13)

Proposition 4.5. Let P ∈ A and ψ be the solution of (4.13) belonging to
H1

0 (SO(3)). If we denote ψ̄(B) := ψ(ΛB), then ψ̄ is the unique solution in
H1

0 (SO(3)) of

∇B · (MId(B)∇Bψ̄
)

= P ·BMId(B). (4.14)

Proof. Let ψ(A) = ψ̄(ΛTA). Consider A(ε) a differentiable curve in SO(3) with

A(0) = A,
dA(ε)
dε

∣∣∣∣
ε=0

= δA ∈ TA.

Then, by definition

lim
ε→0

ψ(A(ε)) − ψ(A)
ε

= ∇Aψ(A) · δA,

and therefore we have that

lim
ε→0

ψ̄(ΛTA(ε)) − ψ̄(ΛTA)
ε

= ∇Bψ̄(ΛTA) · ΛTδA
since

ΛTA(0) = ΛTA,
d

dε
ΛTA(ε)

∣∣∣∣
ε=0

= ΛTδA.

We conclude that

∇Aψ(A) · δA = ∇Bψ̄(ΛTA) · ΛTδA.
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Now we check that
1
2
tr((∇Aψ(A))TδA) =

1
2
tr((∇Bψ̄(ΛTA))TΛTδA)

=
1
2
tr((Λ∇Bψ̄(ΛTA))TδA),

implying (since this is true for any δA ∈ TA) that

∇Aψ(A) = Λ∇Bψ̄(ΛTA).

Now to deal with the divergence term, we consider the variational formulation.
Consider ϕ ∈ H1(SO(3)), then our equation is equivalent to

−
∫

SO(3)

MΛ(A)∇Aψ(A) · ∇Aϕ(A)dA =
∫

SO(3)

P · (ΛTA)MΛ(A)ϕ(A)dA,

for all ϕ ∈ H1(SO(3)). The left-hand side can be written as

−
∫

SO(3)

MId(B)(ΛTA)
(
Λ∇Bψ̄(ΛTA)

) · (Λ∇Bϕ̄(ΛTA)
)
dA

= −
∫

SO(3)

MId(B)∇Bψ̄(B) · ∇Bϕ̄(B)dB;

and the right-hand side is equal to∫
SO(3)

P ·BMId(B)ϕ̄(B)dB,

where we define analogously ϕ̄(B) = ϕ(ΛB). This concludes the proof.

Therefore it is enough to find the solution to (4.14). Inspired by Ref. 24 we make
the ansatz:

ψ̄(B) = P · Bψ̄0

(
1
2
tr(B)

)
,

for some scalar function ψ̄0.

Proposition 4.6. (Non-constant GCI) Let P ∈ A, then the unique solution
ψ̄ ∈ H1

0 (SO(3)) of (4.14) is given by

ψ̄(B) = P · Bψ̄0

(
1
2
tr(B)

)
, (4.15)

where ψ̄0 is constructed as follows: let ψ̃0 : R → R be the unique solution to

1
sin2(θ/2)

∂θ(sin2(θ/2)m(θ)∂θ(sin θψ̃0)) − m(θ) sin θ
2 sin2(θ/2)

ψ̃0 = sin θm(θ), (4.16)

where m(θ) = MId(B) = exp(d−1σ(1
2 + cos θ))/Z. Then

ψ̃0(θ) = ψ̄0

(
1
2
tr(B)

)
(4.17)
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by the relation 1
2 tr(B) = 1

2 + cos θ. ψ̃0 is 2π-periodic, even and negative (by the
maximum principle).

Going back to the GCI ψ(A), we can write it as

ψ(A) = P · (ΛTA)ψ̄0(Λ · A). (4.18)

Proof. Suppose that the solution is given by expression (4.15). We check that ψ̃0

given by Eq. (4.17) satisfies Eq. (4.16) using the gradient and divergence in SO(3)
computed in Propositions 4.1 and 4.2. First notice that P is antisymmetric, thus if
we write Rodrigues’ formula (3.3) for B(θ,n), the symmetric part of B(θ,n) gives
no contribution when computing P · B and we get

ψ̄(B) = P · Bψ̄0

(
1
2
tr(B)

)
= sin θψ̃0(θ)P · [n]× = sin θψ̃0(θ)(p · n),

where the vector p is such that P = [p]× and this leads to

∇B · (MId(B)∇Bψ̄
)

=
1

sin2(θ/2)
∂θ(sin2(θ/2)m(θ)∂θ(sin θψ̃0(θ)))(p · n)

+
m(θ) sin θ
4 sin2(θ/2)

ψ̃0(θ)∆n(p · n).

Using that the Laplacian in the sphere has the property

∆n(p · n) = −2(p · n)(p · n)

corresponds to the first spherical harmonic), we conclude that expression (4.16) is
satisfied. In the computation we used the same procedure as for the proof of the
expression of the Laplacian in SO(3) (Corollary 4.1), but (using the same notations)
we have taken b(θ,n) = m(θ)∂θ(sin θψ̃0(θ))(p · n).

To conclude the proof we just need to check that ψ̃0 exists and corresponds
to a function ψ̄ in H1

0 (SO(3)). Using the expression of the volume form, since∫
S2 p ·ndn = 0, we get that if ψ0 is smooth, we have

∫
SO(3) ψ̄(A)dA = 0, and using

the expression of the gradient, we get that∫
SO(3)

|∇ψ̄(A)|2dA =
2
π

∫ π

0

sin2(θ/2)|∂θ(sin θψ̃0(θ))|2dθ
∫
S2

|p · n|2dn

+
2
π

∫ π

0

1
4
|sin θψ̃0(θ)|2dθ

∫
S2

|∇n(p · n)|2dn.

Therefore by density of smooth functions in H1
0 (SO(3)), we get that ψ̄∈H1

0 (SO(3))
if and only if ψ̃0 ∈ H , where

H :=

{
ψ

∣∣∣∣∣
∫

(0,π)

ψ2 sin2 θdθ <∞ ,

∫
(0,π)

|∂θ(sin θψ(θ))|2 sin2(θ/2)dθ <∞
}
.
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This Hilbert space is equipped with the corresponding norm:

‖ψ‖2
H =

∫
(0,π)

ψ2 sin2 θdθ +
∫

(0,π)

|∂θ(sin θψ(θ))|2 sin2(θ/2)dθ.

Now, Eq. (4.16) written in weak form in H and tested against any φ ∈ H reads

a(ψ̃0, φ) := −
∫

(0,π)

m(θ)
[

sin2(θ/2)∂θ(sin θψ̃0(θ))∂θ(sin θφ(θ))

+
1
2

sin2 θψ̃0(θ)φ(θ)
]
dθ

=
∫

(0,π)

sin2 θ sin2(θ/2)m(θ)φdθ =: b(φ).

It holds for some c, c′, c′′ > 0 that |a(ψ, φ)| ≤ c‖ψ‖H‖φ‖H since m = m(θ)
is bounded; and also |a(ψ, ψ)| ≥ c′‖ψ‖2

H since there exists m0 > 0 such that
m(θ) > m0 for all θ ∈ [0, π]; finally, we also have that |b(φ)| ≤ c′′‖φ‖2

H . Therefore,

by the Lax–Milgram theorem, there exists a (unique) solution ψ̃0 ∈H to (4.16),
which corresponds to a (unique) ψ̄ in H1

0 (SO(3)).

4.5. The macroscopic limit

In this section, we investigate the hydrodynamic limit. To state the theorem we first
give the definitions of the first-order operators δx and rx. For a smooth function Λ
from R

3 to SO(3), and for x ∈ R
3, we define the following matrix Dx(Λ) such that

for any w ∈ R
3, we have

(w · ∇x)Λ = [Dx(Λ)w]×Λ. (4.19)

Notice that this first-order differential equation Dx is well defined as a matrix; for
a given vector w, the matrix (w · ∇x)Λ is in TΛ and thanks to Proposition A.3,
it is of the form PΛ, with P an antisymmetric matrix. Therefore there exists a
vector Dx(Λ)(w) ∈ R

3 depending on w such that P = [Dx(Λ)(w)]×. The func-
tion w �→ Dx(Λ)(w) is linear from R

3 to R
3, so Dx(Λ) can be identified as a

matrix.
We now define the first-order operators δx (scalar) and rx (vector), by

δx(Λ) = tr(Dx(Λ)) and [rx(Λ)]× = Dx(Λ) −Dx(Λ)T . (4.20)

We first give an invariance property which allows for a simple expression for these
operators.

Proposition 4.7. The operators Dx, δx and rx are right invariant in the following
sense: if A is a fixed matrix in SO(3) and Λ : R

3 → SO(3) a smooth function, we
have

Dx(ΛA) = Dx(Λ), δx(ΛA) = δx(Λ) and rx(ΛA) = rx(Λ).
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Consequently, in the neighbourhood of x0 ∈ R
3, we can write

Λ(x) = exp([b(x)]×)Λ(x0)

where b is a smooth function from a neighbourhood of x0 into R
3 such that

b(x0) = 0, and we have

(Dx(Λ))ij(x0) = ∂jbi(x0),

and therefore

δx(Λ)(x0) = (∇x · b)(x0) and rΛ(x0) = (∇x × b)(x0).

Proof. For any w ∈ R
3, we have, since A is constant:

[Dx(ΛA)w]×ΛA = w · ∇x(ΛA) = (w · ∇xΛ)A = [Dx(Λ)w]×ΛA.

This proves that Dx(ΛA) = Dx(Λ), and by (4.20), the same is obviously true for δx
and rx.

We now write, in the neighbourhood of x0, that Λ(x)= exp([b(x)]×)Λ(x0),
with b smooth in the neighbourhood of x0 and b(x0) = 0. Then we have
Dx(Λ) = Dx(exp([b]×)). We perform a Taylor expansion around x0 of exp([b]×):

exp([b(x)]×) = Id + [b(x)]× +M(x),

where M(x) is of order 2 in the coordinates b1, b2, b3, (since b is smooth in the
neighbourhood of x0 and b(x0) = 0), therefore

∂1M(x0) = ∂2M(x0) = ∂3M(x0) = 0.

We then get, since exp([b(x0)]) = Id, that

[Dx(exp([b]×))(x0)w]× = w · ∇x(exp([b]×))(x0) = [(w · ∇xb)(x0)]×,

and therefore Dx(Λ)(x0)w = Dx(exp([b]×))(x0)w = (w ·∇xb)(x0). Taking w = ej ,
we get Dx(Λ)(x0)ej = ∂jb(x0), and thus (Dx(Λ)(x0))ij = ei · Dx(Λ)(x0)ej = ∂jbi.
The formula for δx(Λ) follows from (4.20), since ∇x · b =

∑
i∂ibi. Finally by the

definition of [·]× (see (3.2)), we get

[∇x × b]× =


0 ∂2b1 − ∂1b2 ∂3b1 − ∂1b3

∂1b2 − ∂2b1 0 ∂3b2 − ∂2b3

∂1b3 − ∂3b1 ∂2b3 − ∂3b2 0

,
so from (4.20) we obtain (∇x × b)(x0) = rx(Λ)(x0).

We are now ready to state the main theorem of our paper (see Sec. 2 for a
discussion on this result).

Theorem 4.1. ((Formal) macroscopic limit) When ε→ 0 in the kinetic equa-
tion (4.1) it holds (formally) that

fε → f = f(x,A, t) = ρMΛ(A), Λ = Λ(t, x) ∈ SO(3), ρ = ρ(t, x) ≥ 0.
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Moreover, if this convergence is strong enough and the functions Λ and ρ are smooth
enough, they satisfy the following first-order system of partial differential equations:

∂tρ+ ∇x · (c1ρΛe1) = 0, (4.21)

ρ(∂tΛ + c2((Λe1) · ∇x)Λ) + [(Λe1) × (c3∇xρ+ c4ρ rx(Λ))

+ c4ρδx(Λ)Λe1]×Λ = 0, (4.22)

where c1 = c1(ν, d) = 2
3

〈
1
2 + cos θ

〉
m(θ) sin2(θ/2)

is the constant given in (4.7) and

c2 =
1
5
〈2 + 3 cos θ〉em(θ) sin2(θ/2),

c3 = d

〈
ν

(
1
2

+ cos θ
)−1

〉
em(θ) sin2(θ/2)

,

c4 =
1
5
〈1 − cos θ〉em(θ) sin2(θ/2),

where the notation 〈·〉em(θ) sin2(θ/2) is defined in (4.6). The function

m̃ : (0, π) → (0,+∞)

is given by

m̃(θ) := ν

(
1
2

+ cos θ
)

sin2 θm(θ)ψ̃0(θ), (4.23)

where m(θ) = exp(d−1σ(1
2 + cos θ)) is the same as in (4.8) and ψ̃0 is the solution

of Eq. (4.16).

Proof. Suppose that fε → f as ε → 0, then using (4.1) we get Q(fε) = O(ε),
which formally yields Q(f) = 0 and by Lemma 4.3 we have that

f = f(x,A, t) = ρMΛ(A), with Λ = Λ(t, x) ∈ SO(3), ρ = ρ(t, x) ≥ 0.

Using the conservation of mass (integrating (4.1) on SO(3)), we have that

∂tρε + ∇x · j[fε] = O(ε),

where

ρε(t, x) :=
∫

SO(3)

fε(x,A, t)dA, j[fε] :=
∫

SO(3)

Ae1fεdA,

and in the limit (formally)

ρε → ρ,

j[fε] → ρ

∫
SO(3)

Ae1MΛ(A)dA = ρλ[MΛ]e1 = ρc1Λe1,

thanks to Lemma 4.4. This gives us the continuity equation (4.21) for ρ.
Now, we want to obtain the equation for Λ. We write Λε = Λ[fε], and we

take P ∈ A a given antisymmetric matrix. We consider the non-constant GCI
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associated to Λε and corresponding to P in (4.18): ψε(A) = P · ((Λε)TA)ψ̄0(Λε ·A).
Since we have ψε ∈GCI(Λ[fε]), we obtain, thanks to the main property (4.9) of the
GCI, that ∫

SO(3)

Q(fε)ψεdA = 0.

Multiplying (4.1) by ψε, integrating with respect to A on SO(3) and using the
expression of ψε as stated above, we obtain∫

SO(3)

(∂tfε +Ae1 · ∇xf
ε + O(ε))P · ((Λε)TA)ψ̄0(Λε ·A)dA = 0.

Assuming the convergence fε → f is sufficiently strong, we get in the limit∫
SO(3)

(∂t(ρMΛ) +Ae1 · ∇x(ρMΛ))(P · ΛTA)ψ̄0(Λ · A)dA = 0. (4.24)

Since (4.24) is true for any P ∈ A, the matrix∫
SO(3)

(∂t(ρMΛ) +Ae1 · ∇x(ρMΛ))ψ̄0(Λ ·A)ΛTAdA = 0

is orthogonal to all antisymmetric matrices. Therefore, it must be a symmetric
matrix, meaning that we have

X :=
∫

SO(3)

(∂t(ρMΛ) +Ae1 · ∇x(ρMΛ))ψ̄0(Λ · A)(ΛTA− ATΛ)dA = 0. (4.25)

We have with the definition of MΛ in (4.4) that:

∂t(ρMΛ) = MΛ(∂tρ+ d−1ν(Λ · A)ρ(A · ∂tΛ)),

(Ae1 · ∇x)(ρMΛ) = MΛ(Ae1 · ∇xρ+ d−1ν(Λ ·A)ρ(A · (Ae1 · ∇x)Λ)).

Inserting the two previous expressions into (4.25), we compute separately each
component of X defined by:

X1 :=
∫

SO(3)

∂tρMΛψ̄0(Λ · A)(ΛTA−ATΛ)dA,

X2 :=
∫

SO(3)

d−1ν(Λ · A)ρ(A · ∂tΛ)MΛψ̄0(Λ ·A)(ΛTA−ATΛ)dA,

X3 :=
∫

SO(3)

Ae1 · ∇xρMΛψ̄0(Λ ·A)(ΛTA−ATΛ)dA,

X4 :=
∫

SO(3)

d−1ν(Λ · A)ρ(A · (Ae1 · ∇x)Λ)MΛψ̄0(Λ ·A)(ΛTA−ATΛ)dA,

so X = X1 +X2 +X3 +X4.
For the first term we have (changing variables B = ΛTA):

X1 = ∂tρ

∫
SO(3)

MId(B)ψ̄0(Id · B)(B −BT )dB = 0,

since both MId(B) and ψ̄0(Id ·B) are invariant by the change B �→ BT .
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For the term X2 we make the change of variables B = ΛTA and compute

X2 = ρ

∫
SO(3)

d−1ν(Id ·B)(ΛB · ∂tΛ)MId(B)ψ̄0(Id · B)(B −BT )dB

=
2d−1ρ

πZ

∫
(0,π)×S2

(
Λ(Id + sin θ[n]× + (1 − cos θ)[n]2×)

) · ∂tΛ
× sin2(θ/2)ν

(
1
2

+ cos θ
)
m(θ)ψ̃0(θ)2 sin θ[n]×dθdn,

where we have used the expression of the Haar measure dB = 2
π sin2(θ/2)dθdn (see

Lemma 4.2) and that writing B = B(θ,n) = Id + sin θ[n]× + (1− cosθ)[n]2× thanks
to Rodrigues’ formula (3.3), we have B − BT = 2 sin θ[n]×. Removing odd terms
with respect to the change n �→ −n, we obtain

X2 =
4d−1ρ

πZ

∫
(0,π)×S2

ν

(
1
2

+ cos θ
)

sin2 θm(θ)ψ̃0(θ)

× sin2(θ/2)(Λ[n]× · ∂tΛ)[n]×dθdn.

Now since ∂tΛ ∈ TΛ, we have ΛT∂tΛ ∈ A (antisymmetric, see Proposition A.2),
and so

ΛT∂tΛ = [λtλtλt]×,

for some vector λtλtλt. Therefore

(Λ[n]×) · ∂tΛ = [n]× · (ΛT∂tΛ) = [n]× · [λλλt]× = (n · λtλtλt).
So using the definition (4.23) of m̃(θ), we get

X2 =
4d−1ρ

πZ

∫
(0,π)×S2

m̃(θ) sin2(θ/2)(n · λtλtλt)[n]×dθdn

=
4d−1ρ

πZ

[∫
(0,π)×S2

m̃(θ) sin2(θ/2)(n ·λtλtλt)ndθdn
]
×

=
4d−1ρ

3πZ

(∫ π

0

m̃(θ) sin2(θ/2)dθ
)

[λtλtλt]×,

because the mapping w �→ [w]× is linear, and
∫
S2 n ⊗ ndn = 1

3 Id.
Denote by

C2 :=
4d−1

3πZ

(∫ π

0

m̃(θ) sin2(θ/2)dθ
)
,

then we conclude that

X2 = C2ρΛT∂tΛ.
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Now, for the term X3 we compute the following, starting again by the change
of variables B = ΛTA:

X3 =
∫

SO(3)

(ΛBe1 · ∇xρ)MId(B)ψ̄0(Id ·B)(B −BT )dB

=
4
πZ

∫
(0,π)×S2

m(θ)ψ̃0(θ) sin θ sin2(θ/2)

× (Λ(Id + sin θ[n]× + (1 − cos θ)[n]2×)e1 · ∇xρ)[n]×dθdn

=
4
πZ

∫
(0,π)×S2

m(θ)ψ̃0(θ) sin2 θ sin2(θ/2)(Λ[n]×e1 · ∇xρ)[n]×dθdn

=
4
πZ

[∫
(0,π)×S2

m̃(θ)
ν(1

2 + cos θ)
sin2(θ/2)(n · (e1 × ΛT∇xρ))ndθdn

]
×

=
4

3πZ

(∫ π

0

m̃(θ)
ν(1

2 + cos θ)
sin2(θ/2)dθ

)
[e1 × ΛT∇xρ]×,

where we used similar considerations as for X2, as well as that

Λ[n]×e1 · ∇xρ = [n]×e1 · (ΛT∇xρ) = (n × e1) · (ΛT∇xρ) = n · (e1 × ΛT∇xρ).

Denote by

C3 :=
4

3πZ

(∫ π

0

m̃(θ)
ν(1

2 + cos θ)
sin2(θ/2)dθ

)
,

then

X3 = C3[e1 × ΛT∇xρ]x.

We now compute X4 in the same way, with the change of variables B = ΛTA:

X4 = ρd−1

∫
SO(3)

(
ν(Id ·B)(ΛB · (ΛBe1 · ∇x)Λ)

)
MId(B)ψ̄0(Id ·B)(B −BT )dB.

We now use the definition of Dx(Λ) given in (4.19) to get

X4 = ρd−1

∫
SO(3)

(ν(Id ·B)(ΛB · ([Dx(Λ)ΛBe1]×Λ)))

×MId(B)(B −BT )ψ̄0(Id ·B)dB.

Using the fact that ΛT [w]× = [ΛTw]×ΛT for all w ∈ R
3, we have

ΛB · ([Dx(Λ)ΛBe1]×Λ) = B · [ΛTDx(Λ)ΛBe1]×.
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To simplify the notations, we denote L = ΛTDx(Λ)Λ. Since the symmetric part
of B does not contribute to the scalar product B · [LBe1]×, we get

ΛB · ([Dx(Λ)ΛBe1]×Λ) = B · [LBe1]× = sin θ[n]× · [LBe1]× = sin θn · LBe1.

Therefore we obtain, in the same manner as before,

X4 =
4ρd−1

πZ

∫ π

0

m̃(θ) sin2(θ/2)

×
[∫

S2
(n · (L(Id + sin θ[n]× + (1 − cos θ)[n]2×)e1))ndn

]
×
dθ,

and we have to know the value of

y(θ) :=
∫
S2

(n · (L(Id + sin θ[n]× + (1 − cos θ)[n]2×)e1))ndn

=
∫
S2

(n · (L (cos θe1 + (1 − cos θ)(n · e1)n)))ndn

=
1
3

cos θLe1 + (1 − cos θ)
(∫

S2
n · Ln(n⊗ n)dn

)
e1,

where the term involving [n]× vanishes since its integrand is odd with respect
to n �→ −n.

To compute the second term of this expression we will make use of the following
lemma proved at the end of this section.

Lemma 4.5. For a given matrix L ∈ M, we have∫
S2

n · Ln(n⊗ n)dn =
1
15

(L+ LT ) +
1
15

tr(L)Id.

Using this lemma we have that

y(θ) =
1
3

cos θLe1 + (1 − cos θ)
(

1
15

(L+ LT ) +
1
15

tr(L)Id
)

e1

=
1
15

(1 + 4 cos θ)Le1 +
1
15

(1 − cos θ)(LTe1 + tr(L)e1).

Therefore we obtain

X4 =
4ρd−1

πZ

∫ π

0

m̃(θ) sin2(θ/2)[y(θ)]×dθ

=
4ρd−1

15πZ

∫ π

0

m̃(θ) sin2(θ/2)((1 + 4 cos θ)[Le1]×

+ (1 − cos θ)[LTe1 + tr(L)e1]×)dθ

= ρ(C4[Le1]× + C5[LTe1 + tr(L)e1]×),
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for

C4 :=
4d−1

15πZ

∫ π

0

m̃(θ) sin2(θ/2)(1 + 4 cos θ)dθ,

C5 :=
4d−1

15πZ

∫ π

0

m̃(θ) sin2(θ/2)(1 − cos θ)dθ.

Finally putting all the terms together we have that

0 = X = X1 +X2 +X3 +X4

= C2ρΛT∂tΛ + C3[e1 × ΛT∇xρ]× + ρC4[Le1]×

+ ρC5[LTe1 + tr(L)e1]×.

In particular ΛX = 0 and from the fact that Λ[w]× = [Λw]×Λ for any w ∈ R
3

we get

0 = ΛX = C2ρ∂tΛ + C3[(Λe1) ×∇xρ]×Λ + C4ρ[ΛLe1]×Λ

+C5ρ[ΛLTe1 + tr(L)Λe1]×Λ. (4.26)

Since we have taken L = ΛTDx(Λ)Λ, we get that tr(L) = tr(Dx(Λ)) = δx(Λ) and,
thanks to (4.20):

[ΛLTe1]× = [Dx(Λ)TΛe1]× = [(Dx(Λ) − [rx(Λ)]×)Λe1]×.

Furthermore, we have [ΛLe1]×Λ = [Dx(Λ)Λe1]×Λ =
(
(Λe1) · ∇x

)
Λ thanks to the

definition of Dx given in (4.19). Finally, inserting these expressions into (4.26) and
dividing by C2, we get the equation

ρ(∂tΛ + c2((Λe1) · ∇x)Λ) + c3[(Λe1) ×∇xρ]×Λ

+ c4ρ[−rx(Λ) × (Λe1) + δx(Λ)Λe1]×Λ = 0,

for

c2 =
C4 + C5

C2
=

1
5
〈2 + 3 cos θ〉em(θ) sin2(θ/2),

c3 =
C3

C2
= d

〈
ν

(
1
2

+ cos θ
)−1

〉
em(θ) sin2(θ/2)

,

c4 =
C5

C2
=

1
5
〈1 − cos θ〉em(θ) sin2(θ/2),

which ends the proof.

Proof of Lemma 4.5. Denote by I(L) the integral that we want to compute

I(L) :=
∫
S2

n · Ln(n⊗ n)dn,
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then, written in components, we have

I(L)ij =
∫
S2

(n · Ln)(ei · n)(ej · n)dn

=


(Lij + Lji)

∫
S2

(ei · n)2(ej · n)2dn if i 	= j,

∑
k

Lkk

∫
S2

(ek · n)2(ei · n)2dn if i = j

=


1
15

(Lij + Lji) if i 	= j,

1
15

∑
k

Lkk +
2
15
Lii if i = j

=
1
15

(Lij + Lji) +


0 if i 	= j,

1
15

∑
k

Lkk if i = j,

from which we conclude the lemma. In the computations we used that:

for i 	= j,

∫
S2

(ei · n)2(ej · n)2dn =
1
4π

∫
[0,π]×[0,2π]

sin3 φ cos2 ψ cos2 φdφdψ =
1
15

;

for k = i,

∫
S2

(ek · n)4dn =
1
4π

∫
[0,π]×[0,2π]

cos4 φ sinφdφdψ =
1
5
.

Finally, we consider the orthonormal basis given by

{Λe1 =: Ω,Λe2 =: u,Λe3 =: v},
where {e1, e2, e3} is the canonical basis of R

3. We can have an expression of the
operators δx and rx in terms of these unit vectors {Ω,u,v}, which allows to rewrite
the evolution equation of Λ as three evolution equations for these vectors.

Proposition 4.8. We have:

δx(Λ) = [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u, (4.27)

rx(Λ) = (∇x · Ω)Ω + (∇x · u)u + (∇x · v)v. (4.28)

Consequently, we have the following evolution equations for Ω,u and v, corre-
sponding to the evolution equation of Λ given in (4.22):

ρDtΩ + PΩ⊥(c3∇xρ+ c4ρ((∇x · u)u + (∇x · v)v)) = 0, (4.29)

ρDtu− (c3u · ∇xρ+ c4ρ∇x · u)Ω + c4ρδx(Ω,u,v)v = 0, (4.30)

ρDtv − (c3v · ∇xρ+ c4ρ∇x · v)Ω − c4ρδx(Ω,u,v)u = 0, (4.31)

where Dt := ∂t + c2(Ω · ∇x), and where δx(Ω,u,v) is the expression of δx(Λ) given
by (4.27).
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Proof. We first prove (4.27). We have

δx(Λ) = tr(Dx(Λ)) = tr(ΛTDx(Λ)Λ)

=
∑
k

ΛTDx(Λ)Λek · ek =
∑
k

(Dx(Λ)Λek) · Λek

=
∑
k

[Dx(Λ)Λek]× · [Λek]× =
∑
k

[Dx(Λ)Λek]×Λ · [Λek]×Λ

=
∑
k

((Λek · ∇x)Λ) · [Λek]×Λ,

thanks to the definition of Dx given in (4.19). Now we use the fact that for two
matrices A, B, we have A · B = 1

2 tr(ATB) = 1
2

∑
iAei · Bei (half the sum of the

scalar products of the corresponding columns of the matrices A and B), to get

δx(Λ) =
1
2

∑
k

∑
i

[(Λek · ∇x)(Λei)] · [(Λek) × (Λei)]

=
1
2
((Ω · ∇x)u · v − (u · ∇x)Ω · v − (Ω · ∇x)v · u

+ (v · ∇x)Ω · u + (u · ∇x)v · Ω − (v · ∇x)u · Ω)

= [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u.
For this last equality we used the fact that

0 = (Ω · ∇x)(u · v) = (Ω · ∇x)u · v + (Ω · ∇x)v · u
since u ⊥ v and analogously for the other components.

We proceed next to proving the expression of rx(Λ) given by (4.28). We first
prove that rx(Λ) · Ω = ∇x · Ω. We have (recall that [rx(Λ)]× = Dx(Λ) − Dx(Λ)T

and that for all w in R
3, w · ∇xΛ = [Dx(Λ)w]×Λ):

rx(Λ) · Ω = rx(Λ) · (u × v) = v · ([rx(Λ)]×u) = v · (Dx(Λ) −Dx(Λ)T )u

= v · Dx(Λ)u − u · Dx(Λ)v

= (Ω × u) · Dx(Λ)u + (Ω × v) · Dx(Λ)u

= [Dx(Λ)u]×Ω · u + [Dx(Λ)v]×Ω · v
= [Dx(Λ)u]×Λe1 · u + [Dx(Λ)v]×Λe1 · v
= ((u · ∇x)Λe1) · u + ((v · ∇x)Λe1) · v
= ((u · ∇x)Ω) · u + ((v · ∇x)Ω) · v.

Since (Ω · ∇x)Ω is orthogonal to Ω, we therefore get

rx(Λ) · Ω = ((Ω · ∇x)Ω) · Ω + ((u · ∇x)Ω) · u +
(
(v · ∇x)Ω) · v

=
∑
i,k,j

Λik∂iΩjΛjk =
∑
i,j

∂iΩj
∑
k

ΛikΛTkj =
∑
i

∂iΩi = ∇x · Ω,
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since ΛΛT = Id (the first line is actually the expression of the divergence of Ω in
the basis {Ω,u,v}). For the other two components of rx(Λ), we perform exactly
the same computations with a circular permutation of the roles of Ω,u,v to get
rx(Λ) · u = ∇x · u and rx(Λ) · v = ∇x · v. Therefore we obtain (4.28).

Finally we rewrite the equation for Λ as the evolution of the basis {Ω,u,v}.
To obtain the evolution of Λek for k = 1, 2, 3, we multiply Eq. (4.22) by ek and
compute to obtain:

ρDtΩ + PΩ⊥(c3∇xρ+ c4ρrx(Λ)) = 0,

ρDtu − u · (c3∇xρ+ c4ρrx(Λ))Ω + c4ρδx(Λ)v = 0,

ρDtv − v · (c3∇xρ+ c4ρrx(Λ))Ω − c4ρδx(Λ)u = 0,

where Dt = ∂t+c2(Ω·∇x). To perform the computations we have used for w = ∇xρ

or w = r that

[w × Ω]×Ω = −PΩ⊥(w) and (w × Ω) × u = (u ·w)Ω,

since Ω ⊥ u (analogously for v). From here, using (4.28) we obtain straightforwardly
Eqs. (4.29)–(4.31) for Ω, u and v, respectively.

5. Conclusions and Open Questions

In this work, we have presented a new flocking model through body attitude coordi-
nation. We have proposed an individual-based model where agents are described by
their position and a rotation matrix (corresponding to the body attitude). From the
individual-based model we have derived the macroscopic equations via the mean-
field equations. We observe that the macroscopic equation gives rise to a new class
of models, the SOHB. This model does not reduce to the more classical SOH, which
is the continuum version of the Vicsek model. The dynamics of the SOHB system
are more complex than those of the SOH ones of the Vicsek model. In a future work,
we will carry out simulations of the individual-based model and the SOHB model
and study the patterns that arise to compare them with the ones of the Vicsek and
SOH model.

Also, there exist yet many open questions on the modelling side. For instance,
one could consider that agents have a limited angle of vision, thus the so-called
influence kernel K (see Sec. 3.1) is not isotropic any more, see Ref. 29 for the case
of the Vicsek and SOH models. One could also consider a different interaction range
for the influence kernel K that may give rise to a diffusive term in the macroscopic
equations, see Ref. 19. Moreover, in the case of the SOH model, when the coordi-
nation frequency and noise intensity (quantities ν and D in the individual-based
model (3.10)–(3.11)) are functions of the flux of the agents, then phase transitions
occur at the macroscopic level19 (see also Refs. 4, 6, 20 and 44). An analogous
feature is expected to happen in the present case. Finally, one could think of elabo-
rating on the model by adding repulsive effects at short range and attraction effects
at large range.
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On the analytical side, this model opens also many questions like making Propo-
sition 3.2 rigorous, which means dealing with stochastic differential equations with
non-Lipschitz coefficients. In the context of the Vicsek model, the global well-
posedness has been proven for the homogeneous mean-field Vicsek equation and
also its convergence to the von Mises equilibria in Ref. 28, see also Ref. 31; an
analogous result for our model will be desirable. The convergence of the Vicsek
model to the model which was formally done in Ref. 24 has been recently achieved
rigorously in Ref. 39. Again, one could also think of generalising these results to
our case.

Appendix A. Special Orthogonal Group SO(3)

Throughout the text, we used repeatedly the following properties.

Proposition A.1. (Space decomposition in symmetric and antisymmetric mat-
rices) Denote by S the set of symmetric matrices in M and by A the set of anti-
symmetric ones. Then

S ⊕A = M and A ⊥ S.

Proof. For A ∈ M we have A = 1
2 (A + AT ) + 1

2 (A − AT ), the first term being
symmetric and the second antisymmetric. The orthogonality comes from the prop-
erties of the trace, namely tr(AT ) = tr(B), and tr(AB) = tr(BA) for B ∈ M.
Indeed if P ∈ A and S ∈ S then tr(PTS) = tr(SPT ) = tr(PST ) = −tr(PTS).
Hence P · S = 1

2 tr(PTS) = 0.

Proposition A.2. (Tangent space to SO(3)) For A ∈ SO(3), denote by TA the
tangent space to SO(3) at A. Then

M ∈ TA if and only if there exists P ∈ A such that M = AP,

or equivalently the same statement with M = PA. Consequently, we have that

M ∈ T⊥
A if and only if there exists S ∈ S such that M = AS,

or equivalently the same statement with M = SA.

Proof. We have that M ∈ TA if and only if there exists a curve Λ(t) from the
neighbourhood of 0 in R to SO(3) such that Λ(0) = A and Λ′(0) = M . We then
have

Id = Λ(t)ΛT (t) = (A+ tM + o(t))(AT + tMT + o(t))

= Id + t(ATM +MTA) + o(t).

So if M ∈ TA, we must have (ATM +MTA) = 0, that is to say that P = ATM ∈ A.
Conversely if M = AP with P ∈ A, the solution of the linear differential

equation Λ′(t) = Λ(t)P with Λ(0) = A is given by Λ(t) = AetP so it is a curve
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in SO(3). Indeed we have Λ(t)TΛ = (etP )T etP = etP
T

etP = e−tP etP = Id. Since
Λ′(0) = AP = M , we get that M ∈ TA. The equivalent condition comes from the
fact that if M = AP , with P ∈ A, then M = APATA = P̃A with P̃ ∈ A. Finally the
last part is obtained thanks to Proposition A.1) and the fact that the dot product
is left (and right) invariant with respect to SO(3): if B,C ∈ M and A ∈ SO(3),
then AB · AC = 1

2 tr(BTATAC) = B · C.

Proposition A.3. (Projection operator on the tangent space) Let A ∈ SO(3)
and M ∈ M (set of square matrices). Let PTA be the orthogonal projection on TA
(tangent space at A), then

PTA(M) =
1
2
(
M −AMTA

)
. (A.1)

Notice that then

PT⊥
A
(M) =

1
2
(
M +AMTA

)
.

Proof. It suffices to verify that the expression given for PTA(M) satisfies

PTA(M) ∈ TA and M − PTA(M) ∈ T⊥
A , that is to say ATPTAM ∈ A and

AT(M − PTA(M)) ∈ S thanks to Proposition A.2. We have indeed

AT 1
2 (M − AMTA) = 1

2 (ATM − MTA) which is clearly antisymmetric, and

AT 1
2 (M +AMTA) = 1

2 (ATM +MTA) which is symmetric.

To compute the gradient in SO(3) of a function ψ : SO(3) → R we will con-
sider A(ε) a differentiable curve in SO(3) such that

A(0) = A,
d

dε
A(ε)

∣∣∣∣
ε=0

= δA ∈ TA,

then ∇Aψ(A) is the element of TA such that for any δA ∈ TA, we have

lim
ε→0

ψ(A(ε)) − ψ(A)
ε

= ∇Aψ(A) · δA.
In particular, one can check that

∇A(A ·M) = PTA(M), M ∈ M. (A.2)

We now show that the differential equation given by this gradient has trajecto-
ries supported on geodesics.

Proposition A.4. If B ∈ SO(3) and A0 ∈ SO(3), the trajectory of the solution of
the differential equation dA

dt = ν(A · B)PTAB = ν(A · B)∇A(A · B) with A(0) = A0

(and with ν smooth and positive) is supported on a geodesic from A0 to B.

Proof. Indeed, write BTA0 = exp(θ0[n]×) thanks to Rodrigues’ formula (3.4)
with [n]× an antisymmetric matrix of unit norm and θ0 ∈ [0, π]. If we set
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A(t) = B exp(θ(t)[n]×) where θ satisfies the equation θ′ = −ν(1
2 + cos θ) sin θ with

θ(0) = θ0, we get

dA

dt
= B exp(θ(t)[n]×)θ′(t)[n]×

= −ν
(

1
2

+ cos θ(t)
)
B exp(θ(t)[n]×) sin θ(t)[n]×.

Now, thanks to the expression (3.3), we have

sin θ[n]× =
1
2
(exp(θ[n]×) − exp(θ[n]×)T ) =

1
2
(BTA−ATB),

and A ·B = Id · ABT = 1
2 tr(exp(θ[n]×)) = 1

2 + cos θ thanks to (3.1). Therefore we
obtain

dA

dt
= −ν(A ·B)A

1
2
(BTA−ATB) = ν(A · B)PTAB,

thanks to (A.1) and we have A(0) = A0. Since θ ∈ [0, θ0] �→ exp(θ[n]×) is a geodesic
between Id and BTA0, then θ �→ B exp(θ[n]×) is a geodesic between B and A, and
the solution A(t) is supported on this geodesic. It is also easy to see that, except in
the case θ0 = π or θ0 = 0, for which the solution is constant, the function t �→ θ(t)
(solution of the one-dimensional differential equation

θ′ = −ν
(

1
2

+ cos θ) sin θ
)

is positive, decreasing, and converge exponentially fast to 0, with an asymptotic
exponential rate ν(3

2 ). Therefore, as time goes to infinity, the trajectory covers the
whole geodesic from A0 to B (excluded).

We now turn to the proofs of the expressions of the gradient, the volume form
and the divergence in SO(3) in the so-called Euler axis-angle coordinates, that were
presented in Sec. 4.2.

Proof of Proposition 4.1. Consider a curve in SO(3) given by

A(t) = exp(θ(t)[n]×(t)) = Id + sin(θ(t))[n]×(t) + (1 − cos(θ(t)))[n]2×(t)

(following (3.3)–(3.2)) with A(0) = A, θ(0) = θ and [n]×(t) = [n(t)]×, n(0) = n.
Define

δA = A′(0) ∈ TA,

δθ = θ′(0) ∈ R,

δn = n′(0),

δ[n]× = [n]′×(0) = [δn]×.
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With these notations, for a function f = f(A(θ,n)) it holds

∇Af · δA =
∂f

∂θ
δθ + ∇nf · δn. (A.3)

On the other hand, it holds true that

δA = A[n]×δθ + sin θδ[n]× + (1 − cos θ)
(
[n]×δ[n]× + δ[n]× [n]×

)
= A[n]×δθ +AAT

(
sin θδ[n]× + (1 − cos θ)

(
[n]×δ[n]× + δ[n]× [n]×

))
= A[n]×δθ +A

(
Id − sin θ[n]× + (1 − cos θ)[n]2×

)
×(

sin θδ[n]× + (1 − cos θ)
(
[n]×δ[n]× + δ[n]× [n]×

))
= A[n]×δθ +A

(
sin θδ[n]× + (1 − cos θ)

(
δ[n]× [n]× − [n]×δ[n]×

))
= A[n]×δθ + 2 sin(θ/2)A

(
cos(θ/2)[δn]× + sin

(
θ/2)[n× δn]×

)
= A[n]×δθ + L[n]×(δ[n]×), (A.4)

where the last line defines L[n]× . In the first line, the term in δθ is obtained by
differentiating the exponential form (3.4) of A(t) assuming that [n]×(t) is constant.
The term in δ[n]× is obtained by differentiating Rodrigues’ formula (3.3). To do the
computation we have used Rodrigues’ formula (3.3) to express AT and the facts
that [n]3× = −[n]×; [n]×δ[n]× [n]× = 0; and δ[n]× [n]× − [n]×δ[n]× = [δn × n]×.

In particular notice that {[n]×, [δn]×, [n × δn]×} is an orthogonal basis of A
(antisymmetric matrices) from which we obtain a basis of TA (by Proposition
A.2). So, we just need to compute the components of ∇Af in span{A[n]×}
and span{(A[n]×)⊥}.

We will show that the component in span{A[n]×} is given by

PA[n]×(∇Af) =
∂f

∂θ
A[n]× (A.5)

and the one on span{(A[n]×)⊥} is

P(A[n]×)⊥(∇Af) =
1

2 sin(θ/2)
A(cos(θ/2)[∇nf ]× + sin(θ/2)[n×∇nf ]×). (A.6)

The sum of the two previous expressions gives (4.2):

∇Af = PA[n]×(∇Af) + P(A[n]×)⊥(∇Af).

The component (A.5) is computed considering the case where δn = 0 in (A.4)–(A.3),
so that

∇Af · δA = ∇Af · A[n]×δθ =
∂f

∂θ
δθ.

Expression (A.5) is obtained by noticing that

(A[n]×) · (A[n]×) = [n]× · [n]× = n · n = 1 (using (3.7)).
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To obtain the component (A.6), consider the case δθ = 0 in (A.4) and (A.3) so
that

∇Af · δA = ∇Af · L[n]×(δ[n]×) = ∇nf · δn, (A.7)

where L[n]× is given in (A.4).
We have that

P(A[n]×)⊥(∇Af) = A[u]× for some u ⊥ n.

The goal is to compute u as a function of v := ∇nf . By (A.7) we have that

A[u]× · L[n]×(δ[n]×) = ∇nf · δn.
This implies that

2 sin(θ/2)[u]× · (cos(θ/2)[δn]× + sin(θ/2)[n × δn]×) = v · δn for all δn ⊥ n,

so (see (3.7)) we get

2 sin(θ/2)(cos(θ/2)u + sin(θ/2)u × n) · δn = v · δn.
Since this is true for all δn orthogonal to n, we get

v = 2 sin(θ/2)(cos(θ/2)u + sin(θ/2)u × n).

From here we can get the expression of n× v in terms of u and n× u. After some
computations we finally obtain that

u =
1

2 sin(θ/2)
(cos(θ/2)v + sin(θ/2)n× v).

Proof of the volume form, Lemma 4.2. We denote by g the metric of the
Riemannian manifold SO(3) associated to the inner product

A · B =
1
2
tr(ATB), A,B ∈ SO(3).

The volume form is proportional to
√

det(g).30 We compute the volume form using
spherical coordinates, i.e. we consider the coordinates

(θ, φ, ψ) ∈ [0, π] × [0, π] × [0, 2π].

Given the Euler axis-angle coordinates (θ,n) we have that

n =


sinφ cosψ

sinφ sinψ

cosφ

.
For the spherical coordinate system, we consider the vector field ( ∂∂θ ,

∂
∂φ ,

∂
∂ψ ).

Denoting

Y1 =
∂A

∂θ
, Y2 =

∂A

∂φ
, Y3 =

∂A

∂ψ
, A ∈ SO(3),

we get that (Yi)i=1,2,3 ∈ TA(SO(3)) forms a basis of vectors fields at A.
The metric g is defined as gij = g(Yi, Yj) = 1

2 tr(Y Ti Yj), i, j = 1, 2, 3. We compute
next each term. First, we know that for a given δA ∈ TA, there exist δθ, δψ, δφ ∈ R
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such that

δA =
∂A

∂θ
δθ +

∂A

∂φ
δφ +

∂A

∂ψ
δψ

and also for a given δn ∈Tn(S2) (the tangent plane to the sphere at n), there
exist δ′ψ, δ′ψ such that

δn =
∂n
∂φ

δ′φ +
∂n
∂ψ

δ′ψ.

Now, following the computation given in (A.4) we have that for δθ = 1, δφ = 0,
δψ = 0:

∂A

∂θ
= δA = A[n]×.

Now, if δθ = 0, δφ = 1, δψ = 0 then, using that δn = ∂n
∂φ we have that

∂A

∂φ
= δA = 2 sin(θ/2)A

[
Rn,θ/2

(
∂n
∂φ

)]
×
,

where

Rn,θ/2(v) = cos(θ/2)v + sin(θ/2)(n× v),

which corresponds to the rotation of the vector v around n by an angle θ/2 (anti-
clockwise) as long as v · n = 0. Analogously one can also deduce that

∂A

∂ψ
= 2 sin(θ/2)

[
Rn,θ/2

(
∂n
∂ψ

)]
×
.

From here, using that
∥∥∂n
∂φ

∥∥2 = 1 and ‖ ∂n∂ψ‖2 = sin2 φ, we conclude that

g =


1 0 0

0 4 sin2(θ/2) 0

0 0 4 sin2(θ/2) sin2 φ

.
Notice that to compute g

(
∂A
∂θ ,

∂A
∂φ

)
we use that Rn,θ/2

(
∂n
∂φ

) ⊥ n.
Finally we have that √

det(g) = 4 sin2(θ/2) sinφ

and therefore∫
SO(3)

f(A)dA =
∫

[0,π]×[0,π]×[0,2π]

f̃(θ, φ, ψ)4 sin2(θ/2) sinφdθdφdψ

= 4
∫
θ∈[0,π]

(∫
[0,π]×[0.2π]

f̃(θ, φ, ψ) sin φdφdψ

)
sin2(θ/2)dθ.
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The term sinφdφdψ is the volume element in the sphere S2 so we have that∫
S2
f̂(θ,n)dn =

∫
[0,π]×[0,2π]

f̃(θ, φ, ψ) sin φdφdψ.

Therefore, the volume element corresponding to the Euler axis-angle coordinates is
proportional to sin2(θ/2)dθdn. Since the volume element is defined up to a constant,
we choose the constant c such that∫ 2π

0

c sin2(θ/2)dθ = 1,

i.e. c = 2/π. In conclusion, the volume element in the Euler axis-angle coordinates
corresponds to

2
π

sin2(θ/2)dθdn.

Proof of divergence formula, Proposition 4.2. We compute the divergence by
duality of the gradient, Proposition 4.1. Let f = f(A) be a function and consider∫

SO(3)

∇A ·B(A)f(A)dA

= −
∫

SO(3)

B(A) · ∇Af(A)dA

= −
∫

(0,π)×S2
W(θ)b(θ,n)∂θf(θ,n)dθdn

−
∫

(0,π)×S2

W(θ)
2 sin(θ/2)

v(θ,n) · (cos(θ/2)∇nf(n, θ) + sin(θ/2)n

×∇nf(n, θ))dθdn

=
∫

(0,π)×S2

f(θ,n)
sin2(θ/2)

∂θ
(
sin2(θ/2)b(θ,n)

)
W(θ)dθdn

+
∫

(0,π)×S2

f(θ,n)
2 sin(θ/2)

∇n · (v(θ,n) cos(θ/2) + sin(θ/2)(v(θ,n) × n))

×W(θ)dθdn,

where W is given by (4.3), from which we deduce the result.
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45. T. Vicsek, A. Czirṕk, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase
transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) 1226.

46. T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep. 517 (2012) 71140.
47. H. Zhang, A. Beer, E.-L. Florin and H. L. Swinney, Collective motion and density

fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. 107 (2010) 13626–13630.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
17

.2
7:

10
05

-1
04

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

09
/1

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.


