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Place du Maréchal De Lattre De Tassigny,

PARIS, 75775 CEDEX 16, France

frouvelle@ceremade.dauphine.fr

SARA MERINO-ACEITUNO

Department of Mathematics, Imperial College London, South Kensington Campus

London, SW7 2AZ
United Kingdom

s.merino-aceituno@imperial.ac.uk

Received (Day Month Year)

Revised (Day Month Year)
Communicated by (xxxxxxxxxx)

We present a new model for multi-agent dynamics where each agent is described by
its position and body attitude: agents travel at a constant speed in a given direction

and their body can rotate around it adopting different configurations. In this manner,
the body attitude is described by three orthonormal axes giving an element in SO(3)

(rotation matrix). Agents try to coordinate their body attitudes with the ones of their

neighbours. In the present paper, we give the Individual Based Model (particle model)
for this dynamics and derive its corresponding kinetic and macroscopic equations.
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1. Introduction

In this paper we model collective motion where individuals or agents are described

by their position and body attitude. The body attitude is given by three orthonor-

mal axis; one of the axes describes the direction in which the agent moves at a

constant speed; the other two axis indicate the relative position of the body with

respect to this direction. Agents try to coordinate their body attitude with those of
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near neighbours (see Figure 1). Here we present an Individual Based Model (particle

model) for body attitude coordination and derive the corresponding macroscopic

equations from the associated mean-field equation, which we refer to as the Self-

Organized Hydrodynamics for body attitude coordination (SOHB), by reference to

the Self-Organized Hydrodynamics (SOH) derived from the Vicsek dynamics (see

Ref. 24 and discussion below).

There exists already a variety of models for collective behaviour depending on

the type of interaction between agents. However, to the best of our knowledge,

this is the first model that takes into account interactions based on body attitude

coordination. This has applications in the study of collective motion of animals such

as birds and fish and it is a stepping stone to model more complex agents formed

by articulated bodies (corpora).13,14 In this section we present related results in the

literature and the structure of the document.

There exists a vast literature on collective behaviour. In particular, here we deal

with the case of self-propelled particles which is ubiquitous in nature. It includes,

among others, fish schools, flocks of birds, herds8,9,41; bacteria5,47; human walking

behaviour.36 The interest in studying these systems is to gain understanding on

the emergent properties: local interactions give rise to large scale structures in the

form of patterns and phase transitions (see the review in Ref. 46). These large scale

structures take place when the number of individuals or agents is very large. In this

case a statistical description of the system is more pertinent than an agent-based

one. With this in mind mean-field limits are devised when the number of agents tend

to infinity. From them macroscopic equations can be obtained using hydrodynamic

limit techniques (as we explain below).

The results presented here are inspired from those in Ref. 24. There the authors

consider the Vicsek model which is a particular type of model for self-propelled

particles.1,15,34,45 The Vicsek model describes collective motion where agents travel

at a constant speed in a given direction. At each time step the direction of movement

is updated to the averaged one of the neighbouring agents, with some noise. The

position is updated considering the distance travelled during that time step.

Our results here are inspired by the Self-Organized Hydrodynamics (SOH) model

(the continuum version of the Vicsek model), where we have substituted velocity

alignment by body attitude coordination. Other refinements and adaptations of the

Vicsek model (at the particle level) or the SOH model (at the continuum level) have

been proposed in the literature, we just mention the following ones as examples: in

Ref. 10 an individual-based model is proposed to better describe collective motion

of turning birds; in Ref. 25 agents are considered to have the shape of discs and

volume exclusion is included in the dynamics; a description of nematic alignment

in rods is done in Ref. 23.

In Ref. 24 the authors investigate the mean-field limit and macroscopic limit of

the Vicsek model. The mean-field limit gives a kinetic equation that takes the form

of a Fokker-Planck equation referred to as the mean-field limit Vicsek model.
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(a) Birds with coordinated body attitude.
Three orthonormal axis describe the body at-
titude: the green arrow indicates the direction
of movement; the blue and red arrows indi-
cate the position of the body with respect to
this direction.

(b) Birds with no coordinated body
attitude.

(c) Dolphins moving in the same direction but with
different body attitude. In this example one can see
that the body attitude coordination model gives more
information than the Vicsek model (which only de-
scribes the direction of movement).

Fig. 1: Examples of body attitude coordination/dis-coordination and the use of the

rotation matrix representation.1

1These images are in public domain (released under Creative Commons CC0 by pixabay.com).

To obtain the macroscopic equations (the SOH model), the authors in Ref. 24

use the well-known tools of hydrodynamic limits, first developed in the framework

of the Boltzmann equation for rarefied gases.11,16,42 Since its first appearance, hy-

drodynamics limits have been used in other different contexts, including traffic flow

modeling3,35 and supply chain research.2,26 However, in Ref. 24 a new concept

is introduced: the Generalized Collision Invariant (GCI). Typically to obtain the

macroscopic equations we require as many conserved quantities in the kinetic equa-

tion as the dimension of the equilibria (see again Ref. 46). In the mean-field limit
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Vicsek model this requirement is not fulfilled and the GCI is used to sort out this

problem. For other cases where the GCI concept has been used see Refs. 17, 18, 21,

22, 27, 29.

After this introduction and the following discussion about the main result, the

next part of the paper is dedicated to the modelling. In Section 3.1 we explain the

derivation of the Individual Based Model for body coordination dynamics: given N

agents labelled by k = 1, . . . , N the positions and body attitudes (Xk, Ak) ∈ R3 ×
SO(3) over time are given by the Stochastic Differential Equations (3.10)-(3.11). In

Section 3.2 we give the corresponding (formal) mean-field limit (Prop. 3.2) for the

evolution of the empirical measure when the number of agents N →∞.

The last part concerns the derivation of the macroscopic equations (Theo-

rem 4.1) for the total density of the particles ρ = ρ(t, x) and the matrix of the

mean body attitude Λ = Λ(t, x). To obtain these equations we first study the

rescaled mean-field equation (Eq. (4.1) in Section 4.1), which is, at leading order, a

Fokker-Planck equation. We determine its equilibria, which are given by a von Mises

distribution on SO(3) (Eq. (4.4), Section 4.3). Finally in Section 4.4 we obtain the

Generalized Collision Invariants (Prop. 4.6), which are the main tool to be able to

derive the macroscopic equations in Section 4.5.

2. Discussion of the main result: the Self-Organized

Hydrodynamics for body attitude coordination (SOHB)

The main result of this paper is Theorem 4.1 which gives the following macroscopic

equations for the density of agents ρ = ρ(t, x) and the matrix of the mean body

attitude Λ = Λ(t, x) ∈ SO(3) (i.e., the Self-Organized Hydrodynamics for body

attitude coordination (SOHB)):

∂tρ+ c1∇x · (ρΛe1) = 0, (2.1)

ρ
(
∂tΛ + c2

(
(Λe1) · ∇x

)
Λ
)

+
[
(Λe1)×

(
c3∇xρ+ c4ρ rx(Λ)

)
+ c4ρ δx(Λ)Λe1

]
×Λ = 0.

(2.2)

In the equations above c1, c2, c3 and c4 are explicit constants which depend on

the parameters of the model (namely the rate of coordination and the level of

noise). The expressions of the constants c2, c3 and c4 depend on the General-

ized Collision Invariant mentioned in the introduction (and computed thanks to

Prop. 4.6). The constant c1 is obtained as a “consistency” relation (Lemma 4.4).

In (2.2), the operation [·]× transforms a vector v in an antisymmetric matrix such

that [v]×u = v × u for any vector u (see (3.2) for the exact definition). The

scalar δx(Λ) and the vector rx(Λ) are first order differential operators intrinsic to the

dynamics : if Λ(x) = exp ([b(x)]×) Λ(x0) with b smooth around x0 and b(x0) = 0,

then

δx(Λ)(x0) = ∇x · b(x)|x=x0
and rx(Λ)(x0) = ∇x × b(x)|x=x0

,
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where ∇x× is the curl operator. These operators are well-defined as long as Λ is

smooth: as we will see in the next section, we can always express a rotation matrix

as exp ([b]×) for some vector b ∈ R3, and this function b 7→ exp ([b]×) is a local

diffeomorphism between a neighborhood of 0 ∈ R3 and the identity of SO(3). This

gives a unique smooth representation of b in the neighborhood of 0 when x is in

the neighborhood of x0 since then Λ(x)Λ(x0)−1 is in the neighborhood of Id.

We express Eq. (2.2) in terms of the basis vectors {Ω = Λe1,u = Λe2,v = Λe3}
and we write Λ = Λ(Ω,u,v). System (2.1)-(2.2) can be expressed as an evolution

system for ρ and the basis {Ω,u,v} as follows:

∂tρ+ c1∇x · (ρΩ) = 0, (2.3)

ρDtΩ + PΩ⊥ (c3∇xρ+ c4ρ r) = 0, (2.4)

ρDtu− u · (c3∇xρ+ c4ρ r) Ω + c4ρ δ v = 0, (2.5)

ρDtv − v · (c3∇xρ+ c4ρ r) Ω− c4ρ δ u = 0, (2.6)

where Dt := ∂t + c2(Ω · ∇x), δ = δx(Λ(Ω,u,v)) and r = rx(Λ(Ω,u,v)). The

operator PΩ⊥ denotes the projection on the orthogonal of Ω. We easily see here

that these equations preserve the constraints |Ω| = |u| = |v| = 1 and Ω ·u = Ω ·v =

u · v = 0. The expressions of δ and r are:

δ = [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u,
r = (∇x · Ω)Ω + (∇x · u)u + (∇x · v)v.

Eq. (2.1) (or equivalently Eq. (2.3)) is the continuity equation for ρ and ensures

mass conservation. The convection velocity is given by c1Λe1 = c1Ω and Ω gives the

direction of motion. Eq. (2.2) (or equivalently Eqs. (2.4)-(2.6)) gives the evolution

of Λ. We remark that every term in Eq. (2.2) belongs to the tangent space at Λ

in SO(3); this is true for the first term since (∂t + c2(Λe1) · ∇x) is a differential

operator and it also holds for the second term because it is the product of an

antisymmetric matrix with Λ (see Prop. Appendix A.2). Alternately, this means

that (Ω(t),u(t),v(t)) is a direct orthonormal basis as soon as (Ω(0),u(0),v(0)).

The term corresponding to c3 in (2.2) gives the influence of ∇xρ (pressure gradi-

ent) on the body attitude Λ. It has the effect of rotating the body around the vector

directed by (Λe1) × ∇xρ at an angular speed given by c3
ρ ‖(Λe1) × ∇xρ‖, so as to

align Ω with −∇xρ. Indeed the solution of the differential equation dΛ
dt +γ[n]×Λ = 0,

when n is a constant unit vector and γ a constant scalar, is given by Λ(t) =

exp(−γ t[n]×)Λ0, and exp(−γ t[n]×) is the rotation of axis n and angle −γ t
(see (3.4), it is called Rodrigues’ formula). Since we will see that c3 is positive

the influence of this term consists of relaxing the direction of displacement Λe1

towards ∇xρ. Alternately, we can see from (2.4) that Ω turns in the opposite direc-

tion to ∇xρ, showing that the ∇xρ term has the same effect as a pressure gradient

in classical hydrodynamics. We note that the pressure gradient has also the effect
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of rotating the whole body frame (see influence of ∇xρ on u and v) just to keep

the frame orthonormal. Similarly to what happens with the ∇xρ term in Eq. (2.2),

the term containing c4ρ r in Eq. (2.4) has the effect of relaxing the direction of

displacement Ω towards −r (we will indeed see that c4 is positive). Finally, the last

terms of Eqs. (2.5)-(2.6) have the effect of rotating the vectors u and v around Ω

along the flow driven by Dt at angular speed c4δ.

If we forget the term proportional to r in (2.4), System (2.3)-(2.4) is decoupled

from (2.5)-(2.6), and is an autonomous system for ρ and Ω, which coincides with

the Self-Organized Hydrodynamic (SOH) model. The SOH model provides the fluid

description of a particle system obeying the Vicsek dynamics.24 As already discussed

in Ref. 24, the SOH model bears analogies with the compressible Euler equations,

where (2.3) is obviously the mass conservation equation and (2.4) is akin to the

momentum conservation equation, where momentum transport ρDtΩ is balanced

by a pressure force −PΩ⊥∇xρ. There are however major differences. The first one

is the presence of the projection operation PΩ⊥ which is there to preserve the

constraint |Ω| = 1. Indeed, while the velocity in the Euler equations is an arbitrary

vector, the quantity Ω in the SOH model is a velocity orientation and is normalized

to 1. The second one is that the convection speed c2 in the convection operator Dt

is a priori different from the mass convection speed c1 appearing in the continuity

equation. This difference is a signature of the lack of Galilean invariance of the

system, which is a common feature of all dry active matter models.

The major novelty of the present model, which can be referred to as the Self-

Organized Hydrodynamic model with Body coordination (or SOHB) is that the

transport of the direction of motion Ω involves the influence of another quantity

specific to the body orientation dynamics, namely the vector r. The overall dynamics

tends to align the velocity orientation Ω, not opposite to the density gradient ∇xρ
but opposite to a composite vector (c3∇xρ+c4ρ r). The vector r is the rotational of

a vector b locally attached to the frame (namely the unit vector of the local rotation

axis multiplied by the local angle of rotation around this axis). This vector gives

rise to an effective pressure force which adds up to the usual pressure gradient. It

would be interesting to design specific solutions where this effective pressure force

has a demonstrable effect on the velocity orientation dynamics.

In addition to this effective force, spatial inhomogeneities of the body attitude

also have the effect of inducing a proper rotation of the frame about the direction

of motion. This proper rotation is also driven by spatial inhomogeneities of the

vector b introduced above, but are now proportional to its divergence.

3. Modelling: the Individual Based Model and its mean-field limit

The body attitude is given by a rotation matrix. Therefore, we work on the Rieman-

nian manifold SO(3) (Special Orthogonal Group), which is formed by the subset of

matrices A such that AAT = Id and det(A) = 1, where Id stands for the identity

matrix.
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In this documentM indicates the set of square matrices of dimension 3; A is the

set of antisymmetric matrices of dimension 3; S is the set of symmetric matrices of

dimension 3. Typically we will denote by A,Λ matrices in SO(3) and by P matrices

in A. Bold symbols n,v, e1 indicate vectors.

We will often use the so-called Euler axis-angle parameters to represent an el-

ement in SO(3): to A ∈ SO(3) there is associated an angle θ ∈ [0, π] and a vec-

tor n ∈ S2 so that A = A(θ,n) corresponds to the anticlockwise rotation of angle θ

around the vector n. It is easy to see that

tr(A) = 1 + 2 cos θ (3.1)

(for instance expressing A in an orthonormal basis with n), so the angle θ is uniquely

defined as arccos( 1
2 (tr(A)−1)). Notice that n is uniquely defined whenever θ ∈ (0, π)

(if θ = 0 then n can be any vector in S2 and if θ = π then the direction of n is

uniquely defined but not its orientation). For a given vector u, we introduce the

antisymmetric matrix [u]×, where [·]× is the linear operator from R3 to A given by

[u]× :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , (3.2)

so that for any vectors u,v ∈ R3, we have [u]× v = u × v. In this framework, we

have the following representation for A ∈ SO(3) (called Rodrigues’ formula):

A = A(θ,n) = Id + sin θ [n]× + (1− cos θ)[n]2× (3.3)

= exp(θ[n]×). (3.4)

We also have n× (n× v) = (n · v) n− (n · n)v, therefore when n is a unit vector,

we have :

[n]2× = n⊗ n− Id, (3.5)

where the tensor product a ⊗ b is the matrix defined by (a ⊗ b)u = (u · b)a for

any u ∈ R3. Finally, SO(3) has a natural Riemannian metric (see Ref. 38) induced

by the following inner product in the set of square matrices of dimension 3:

A ·B =
1

2
tr(ATB) =

1

2

∑
i,j

AijBij . (3.6)

This normalization gives us that for any vectors u,v ∈ R3, we have that

[u]× · [v]× = (u · v). (3.7)

Moreover, the geodesic distance on SO(3) between Id and a rotation of an-

gle θ ∈ [0, π] is exactly given by θ (the geodesic between Id and A is ex-

actly t ∈ [0, θ] 7→ exp(t[n]×)). See Appendix Appendix A for some properties

of SO(3) used throughout this work.
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Seeing SO(3) as a Riemannian manifold, we will use the following notations: TA
is the tangent space in SO(3) at A ∈ SO(3); PTA

denotes the orthogonal projec-

tion onto TA; the operators ∇A,∇A· are the gradient and divergence in SO(3),

respectively. These operators are computed in Section 4.2 in the Euler axis-angle

coordinates.

3.1. The Individual Based Model

Consider N agents labelled by k = 1, . . . , N with positions Xk(t) ∈ R3 and associ-

ated matrices (body attitudes) Ak(t) ∈ SO(3). For each k, the three unit vectors

representing the frame correspond to the vectors of the matrix Ak(t) when written

as a matrix in the canonical basis (e1, e2, e3) of R3. In particular, the direction of

displacement of the agent is given by its first vector Ak(t)e1.

Evolution of the positions. Agents move in the direction of the first axis with

constant speed v0

dXk(t)

dt
= v0Ak(t)e1.

Evolution of the body attitude matrix. Agents try to coordinate their body atti-

tude with those of their neighbours. So we are facing two different problems from a

modelling viewpoint, namely to define the target body attitude, and to define the

way agents relax their own attitude towards this “average” attitude.

As for the Vicsek model,24 we consider a kernel of influence K = K(x) ≥ 0 and

define the matrix

Mk(t) :=
1

N

N∑
i=1

K(|Xi(t)−Xk(t)|)Ai(t). (3.8)

This matrix corresponds to the averaged body attitude of the agents inside the

zone of influence corresponding to agent k. Now Mk(t) /∈ SO(3), so we need to

orthogonalize and remove the dilations, in order to construct a target attitude

in SO(3). We will see that the polar decomposition of Mk(t) is a good choice in the

sense that it minimizes a weighted sum of the squared distances to the attitudes

of the neighbours. We also refer to Ref. 40 for some complements on averaging

in SO(3).

We give next the definition of polar decomposition:

Lemma 3.1 (Polar decomposition of a square matrix.33).

Given a matrix M ∈ M, if det(M) 6= 0 then there exists a unique orthogonal

matrix A (given by A = M(
√
MTM)−1) and a unique symmetric positive definite

matrix S such that M = AS.

Proposition 3.1. Suppose that the matrix Mk(t) has positive determinant. Then

the following assertions are equivalent:
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(i) The matrix A minimizes the quantity 1
N

∑N
i=1K(|Xi(t)−Xk(t)|)‖Ai(t)−A‖2

among the elements of SO(3).

(ii) The matrix A is the element of SO(3) which maximizes the quantity A ·Mk(t).

(iii) The matrix A is the polar decomposition of Mk(t).

Proof. We get the equivalence between the first two assertions by expanding:

‖Ai(t)−A‖2 =
1

2
[tr(Ai(t)

TAi(t)) + tr(ATA)]− 2A ·Ai(t) = 3− 2A ·Ai(t),

since A and Ai(t) are both orthogonal matrices. So minimizing the weighted sum of

the squares distances amounts to maximizing inner product of A and the weighted

sum Mk of the matrices Ai given by (3.8).

Therefore if detMk > 0, and A is the polar decomposition of Mk, we immediately

get that detA > 0, hence A ∈ SO(3). We know that S can be diagonalized in an

orthogonal basis : S = PTDP with PTP = Id and D is a diagonal matrix with

positive diagonal elements λ1, λ2, λ3. Now if B ∈ SO(3) maximizes 1
2 tr(BTMk)

among all matrices in SO(3), then it maximizes tr(BTAPTDP ) = tr(PBTAPTD).

So the matrix B̄ = PBTAPT maximizes tr(B̄D) = λ1b̄11 + λ2b̄22 + λ3b̄33 among

the elements of SO(3) (the map B 7→ PBTAPT is a one-to-one correspondence

between SO(3) and itself). But since B̄ is an orthogonal matrix, all its column

vectors are unit vectors, and so bii 6 1, with equality for i = 1, 2 and 3 if and only

if B̄ = Id, that is to say PBTAPT = Id, which is exactly B = A.

We denote by PD(Mk) ∈ O(3) the corresponding orthogonal matrix coming

from the Polar Decomposition of Mk.

We now have two choices for the evolution of Ak. We can use the second point

of Proposition 3.1 and follow the gradient of the function to maximize :

dAk(t)

dt
= ν∇A(Mk ·A)|A=Ak

= νPTAk
Mk, (3.9)

(see (A.2) for the last computation, PTAk
is the projection on the tangent space,

this way the solution of the equation stays in SO(3)).

Or we can directly relax to the polar decomposition PD(Mk), in the same man-

ner:

dAk(t)

dt
= νPTAk

(PD(Mk)) .

We can actually see that the trajectory of this last equation, when PD(Mk)

belongs to SO(3) and does not depend on t, is exactly following a geodesic (see

Prop. Appendix A.4). Therefore in this paper we will focus on this type of coordi-

nation. The positive coefficient ν gives the intensity of coordination, in the follow-

ing we will assume that it is a function of the distance between Ak and PD(Mk)

(the angle of the rotation ATk PD(Mk)), which is equivalent to say that ν depends

on Ak · PD(Mk).
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Remark 3.1. Some comments:

(1) One could have used the Gram-Schmidt orthogonalization instead of the Polar

Decomposition, but it depends on the order in which the vector basis is taken

(for instance if we start with e1, it would define the first vector as the average

of all the directions of displacement, independently of how the other vectors of

the body attitudes of the individuals are distributed). The Polar Decomposition

gives a more canonical way to do this.

(2) We expect that the orthogonal matrix coming from the Polar Decomposition

of Mk belongs in fact to SO(3). Firstly, we notice that O(3) is formed by

two disconnected components: SO(3) and the other component formed by the

matrices with determinant -1. We assume that the motion of the agents is

smooth enough so that the average Mk stays ‘close’ to SO(3) and that, in

particular, det(Mk) > 0.

A simple example is when we only average two different matrices A1 and A2

of SO(3). We then have M = 1
2 (A1 + A2). If we write A1A

T
2 = exp(θ[n]×)

thanks to Rodrigues’ formula (3.4) and we define A = A2 exp( 1
2θ[n]×), we get

that A1 = A exp( 1
2θ[n]×) and so M = A 1

2 (exp( 1
2θ[n]×) + exp(− 1

2θ[n]×)) =

A(cos θ2 Id + (1− cos θ2 )n⊗ n), thanks to Rodrigues’ formula (3.3) and to (3.5).

Since the matrix S = cos θ2 Id + (1− cos θ2 )n⊗n is a positive-definite symmetric

matrix as soon as θ ∈ [0, π), we have that det(M) > 0. The polar decomposition

of M is then A, which is the midpoint of the geodesic joining A1 to A2 (which

corresponds to the curve t ∈ [0, θ] 7→ A1 exp(t[n]×)).

As soon as we average more than two matrices, there exist cases for

which det(M) < 0: for instance if we take

A1 =

1 0 0

0 −1 0

0 0 −1

 , A2 =

−1 0 0

0 1 0

0 0 −1

 , A3 =

−1 0 0

0 −1 0

0 0 1

 ,

we have M = 1
3 (A1 +A2 +A3) = − 1

3 Id.

Noise term. Agents make errors when trying to coordinate their body attitude

with that of their neighbours. This is represented in the equation of Ak by a noise

term: 2
√
DdW k

t where D > 0 and W k
t =

(
W k,i,j
t

)
i,j=1,2,3

are independent Gaussian

distributions (Brownian motion).

From all these considerations, we obtain the IBM

dXk(t) = v0Ak(t)e1dt, (3.10)

dAk(t) = PTAk
◦
[
ν(PD(Mk) ·Ak)PD(Mk)dt+ 2

√
DdW k

t

]
, (3.11)

where the Stochastic Differential Equation is in Stratonovich sense (see Ref. 32).

The projection PTAk
and the fact that we consider the SDE in Stratonovich sense

ensures that the solution Ak(t) stays in SO(3). The normalization constant 2
√
D
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ensures that the diffusion coefficient is exactly D : the law p of the underlying pro-

cess given by dAk = 2
√
DPTAk

◦ dW k
t satisfies ∂tp = D∆Ap where ∆A = ∇A · ∇A

is the Laplace-Beltrami operator on SO(3). Notice the factor 2
√
D instead of the

usual
√

2D which is encountered when considering diffusion process on manifolds

isometrically embedded in the euclidean space Rn, because we are here consider-

ing SO(3) embedded in M (isomorphic to R9), but with the metric (3.6), which

corresponds to the canonical metric of R9 divided by a factor 2. We refer to the

book 37 for more insight on such stochastic processes on manifolds.

3.2. Mean-field limit

We assume that the kernel of influence K is Lipschitz, bounded, with the following

properties:

K = K(|x|) ≥ 0,

∫
R3

K(|x|) dx = 1,

∫
R3

|x|2K(|x|) dx <∞. (3.12)

In Ref. 7 the mean-field limit is proven for the Vicsek model. Using the techniques

there it is straightforward to see that for

M(x, t) :=
1

N

N∑
i=1

K(Xi − x)Ai

the law fN = fN (x,A, t) of the empirical measure associated to the Stratonovich

Stochastic Differential Equation (SDE):

dXk(t) = v0Ak(t)e1dt, (3.13)

dAk(t) = PTAk
◦
[
ν(M(Xk, t) ·Ak)M(Xk, t)dt+ 2

√
DdW k

t

]
, (3.14)

converges weakly fN → f as N →∞. The limit satisfies the kinetic equation:

∂tf + v0Ae1 · ∇xf = D∆Af −∇A · (F [f ]f) ,

with

F [f ] := ν(Mf ·A)PTA
(Mf ),

Mf =

∫
R3×SO(3)

K(x− x′)f(x′, A′, t)A′ dA′dx′.

The equations we are dealing with (3.10)-(3.11), since we consider the Polar

Decomposition of the averaged body attitude Mk, are slightly different from (3.13)-

(3.14), which would correspond to the modelling point of view of Eq. (3.9). As a

consequence, the corresponding coefficient of the SDE is not Lipschitz any more

and the known results for existence of solutions and mean-field limit (see Th. 1.4

in Ref. 43) fail. More precisely, the problem arises when dealing with matrices

with determinant zero; the orthogonal matrix of the Polar Decomposition is not
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uniquely defined for matrices with determinant zero and, otherwise, PD(Mk) =

Mk(
√

MT
kMk)−1 (Lemma 3.1).

A complete proof of the previous results in the case of Eq. (3.10)-(3.11)

would involve proving that solutions to the equations stay away from the singu-

lar case det(Mk) = 0. This is an assumption that we make on the Individual Based

Model (see the second point of Remark 3.1). This kind of analysis has been done

for the Vicsek model (explained in the introduction) in Ref. 28 where the authors

prove global well-posedness for the kinetic equation in the spatially homogeneous

case.

In our case one expects the following to hold:

Proposition 3.2 (Formal). When the number of agents in (3.10)-(3.11) N →∞,

its corresponding empirical distribution

fN (x,A, t) =
1

N

N∑
k=1

δ(Xk(t),Ak(t))

converges weakly to f = f(x,A, t), (x,A, t) ∈ R3 × SO(3)× [0,∞) satisfying

∂tf + v0Ae1 · ∇xf = D∆Af −∇A · (fF [f ]) , (3.15)

F [f ] := νPTA
(M̄[f ]),

M̄[f ] = PD(M[f ]), M[f ](x, t) :=

∫
R3×SO(3)

K (x− x′) f(x′, A′, t)A′dA′dx′,

where PD(M[f ]) corresponds to the orthogonal matrix obtained on the Polar De-

composition of M[f ] (see Lemma 3.1); and ν = ν(M̄[f ] ·A).

4. Hydrodynamic limit

The goal of this section will be to derive the macroscopic equations (Theorem 4.1).

From now on, we consider the kinetic equation given in (3.15).

4.1. Scaling and expansion

We express the kinetic Eq. (3.15) in dimensionless variables. Let ν0 be the typical

interaction frequency scale so that ν(Ā · A) = ν0ν
′(Ā · A) with ν′(Ā · A) = O(1).

We introduce also the typical time and space scales t0, x0 such that t0 = ν−1
0

and x0 = v0t0; the associated variables will be t′ = t/t0 and x′ = x/x0. Con-

sider the dimensionless diffusion coefficient d = D/ν0 and the rescaled influence

kernel K ′(|x′|) = K(x0|x′|). Skipping the primes we get

∂tf +Ae1 · ∇xf = d∆Af −∇A · (fF [f ]) ,

F [f ] := ν(M̄[f ] ·A)PTA
(M̄[f ]),

M̄[f ] = PD(M[f ]), M[f ](x, t) :=

∫
R3×SO(3)

K (x− x′) f(x′, A′, t)A′dA′dx′.
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Here d, ν and K are assumed to be of order 1.

Remark 4.1. Notice in particular that before and after scaling the ratio

ν

D
=
ν′

d

remains the same.

Now, to carry out the macroscopic limit we rescale the space and time variables

by setting t̃ = εt, x̃ = εx to obtain (skipping the tildes):

∂tf
ε +Ae1 · ∇xfε =

1

ε
(d∆Af

ε −∇A · (fεF ε[fε])) ,

F ε[f ] := ν(M̄ε[f ] ·A)PTA
(M̄ε[fε]),

M̄ε[f ] = PD(Mε[f ]), Mε[f ](x, t) :=

∫
R3×SO(3)

K

(
x− x′

ε

)
f(x′, A′, t)A′dA′dx′.

Lemma 4.1. Assuming that f is sufficiently smooth (with bounded derivatives), we

have the expansion

M̄ε[f ](x, t) = Λ[f ](x, t) +O(ε2),

where

Λ[f ](x, t) = PD(λ[f ]) and λ[f ] =

∫
SO(3)

A′f(x,A′, t)dA′.

Proof. This is obtained by performing the change of variable x′ = x + εξ in the

definition of Mε[f ] and using a Taylor expansion of f(x+εξ,A′, t) with respect to ε.

We use that K is isotropic and with bounded second moment by assumption (see

Eq. (3.12)).

From the lemma, we rewrite

∂tf
ε +Ae1 · ∇xfε =

1

ε
Q(fε) +O(ε), (4.1)

F0[f ] := ν(Λ[f ] ·A)PTA
(Λ[f ]),

Λ[f ] = PD(λ[f ]), λ[f ](x, t) :=

∫
SO(3)

f(x,A′, t)A′dA′,

Q(f) := d∆Af −∇A · (fF0[f ]) .

Λ[f ], Q(f) and F0[f ] are non-linear operators of f , which only acts on the

attitude variable A.
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4.2. Preliminaries: differential calculus in SO(3)

In the sequel we will use the volume form, the gradient and divergence in SO(3)

expressed in the Euler axis-angle coordinates (θ,n) (explained at the beginning of

Section 3). In this section we give their explicit forms; the proofs are in appendix Ap-

pendix A.

Proposition 4.1 (The gradient in SO(3)). Let f : SO(3) → R be a smooth

scalar function. If f̄(θ,n) = f(A(θ,n)) is the expression of f in the Euler axis-

angle coordinates by Rodrigues’ formula (3.3), we have then

∇Af = ∂θf̄ A[n]×+
1

2 sin(θ/2)
A
(

cos(θ/2)
[
∇nf̄

]
× + sin(θ/2)

[
n×∇nf̄

]
×

)
, (4.2)

where A = A(θ,n) and ∇n is the gradient on the sphere S2.

The volume form in SO(3) is left invariant (it is the Haar measure), due to the

fact that the inner product inM is also left invariant: A ·B = 1
2 tr(ATB) = ΛA ·ΛB

when Λ ∈ SO(3). We give its expression in the Euler axis-angle coordinates (θ,n) :

Lemma 4.2 (Decomposition of the volume form in SO(3)). If f̄(θ,n) =

f(A(θ,n)) is the expression of f in the Euler axis-angle coordinates by Rodrigues’

formula (3.3), we have∫
SO(3)

f(A) dA =

∫ π

0

W (θ)

∫
S2

f̄(θ,n) dndθ,

where dn is the Lebesgue measure on the sphere S2, normalized to be a probability

measure, and

W (θ) =
2

π
sin2(θ/2). (4.3)

We have seen in Prop. 4.1 that the gradient is decomposed in the basis

{A[n]×, A
[
∇nf̄

]
× , A

[
n×∇nf̄

]
×},

which are three orthogonal vectors of TA (by Prop. Appendix A.2).

More generally if B ∈ TA for A = A(θ,n) ∈ SO(3), then B is of the form AH

with H antisymmetric, so H = [u]× for some u ∈ R3. Decomposing u on n and

its orthogonal, we get that there exists v ⊥ n and b ∈ R such that B = bA[n]× +

A [v(θ,n)]×. Expressing B in this form, we compute the divergence in SO(3).

Proposition 4.2 (The divergence in SO(3)). Consider B : SO3 → T (SO(3))

a smooth function (so that B(A) ∈ TA for all A ∈ SO(3)), and suppose that

B(A(θ,n)) = b(θ,n)A[n]× +A [v(θ,n)]×

for some smooth function b and smooth vector function v such that v(θ,n) ⊥ n.

Then

∇A ·B =
1

sin2(θ/2)
∂θ
(
sin2(θ/2)b(θ,n)

)
+

1

2 sin(θ/2)
∇n ·

(
v(θ,n) cos(θ/2) + (v(θ,n)× n) sin(θ/2)

)
.
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Now we can compute the Laplacian in SO(3):

Corollary 4.1. The Laplacian in SO(3) can be expressed as

∆Af =
1

sin2(θ/2)
∂θ

(
sin2(θ/2)∂θf̃

)
+

1

4 sin2(θ/2)
∆nf̃ ,

where ∆n is the Laplacian on the sphere S2 and f(A) = f(A(θ,n)) = f̃(θ,n).

Proof. Let B(θ,n) := ∇Af(A(θ,n)) ∈ TA. Then, using the notations of Prop. 4.2

and the result of Prop. 4.1, we have that

b = ∂θf̃ ,

v =
1

2 sin(θ/2)

(
cos(θ/2)∇nf̃ + sin(θ/2)(n×∇nf̃)

)
,

from here we just need to apply Prop. 4.2 knowing that (n × ∇nf̃) × n = ∇nf̃

since ∇nf̃ is orthogonal to n.

4.3. Equilibrium solutions and Fokker-Planck formulation

We define a generalization of the von-Mises distributions on SO(3) by

MΛ(A) =
1

Z
exp

(
σ(A · Λ)

d

)
,

∫
SO(3)

MΛ(A) dA = 1, Λ ∈ SO(3), (4.4)

where Z = Z(ν, d) is a normalizing constant and σ = σ(µ) is such that (d/dµ)σ =

ν(µ). Observe that Z <∞ is independent of Λ since the volume form on SO(3) is

left-invariant. Therefore we have

Z =

∫
SO(3)

exp(d−1σ(A · Λ))dA =

∫
SO(3)

exp(d−1σ(ΛTA · Id))dA

=

∫
SO(3)

exp(d−1σ(A · Id))dA,

and we also obtain that MΛ(A) is actually MId(ΛTA).

We are now ready to describe the properties of Q in terms of these generalized

von-Mises distributions.

Lemma 4.3 (Properties of Q). The following holds:

i) The operator Q can be written as

Q(f) = d∇A ·
[
MΛ[f ]∇A

(
f

MΛ[f ]

)]
and we have

H(f) :=

∫
SO(3)

Q(f)
f

MΛ[f ]
dA = −d

∫
SO(3)

MΛ[f ]

∣∣∣∣∇A( f

MΛ[f ]

)∣∣∣∣2 dA ≤ 0.

(4.5)
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ii) The equilibria, i.e., the functions f = f(x,A, t) such that Q(f) = 0 form a 4-

dimensional manifold E given by

E = {ρMΛ(A) | ρ > 0, Λ ∈ SO(3)},

where ρ is the total mass while Λ is mean body attitude of ρMΛ(A), i.e.,

ρ =

∫
SO(3)

ρMΛ(A)dA,

Λ = Λ[ρMΛ].

Furthermore, H(f) = 0 iff f = ρMΛ for arbitrary ρ ∈ R+ and Λ ∈ SO(3).

To prove Lemma 4.3 we require the following one, which is of independent

interest and for which we introduce the following notation: for any scalar func-

tion g : (0, π) → R and a given integrable scalar function h : (0, π) → R which

remains positive (or negative) on (0, π), we define

〈g(θ)〉h(θ) :=

∫ π

0

g(θ)
h(θ)∫ π

0
h(θ′) dθ′

dθ. (4.6)

Lemma 4.4 (Consistency relation for the ‘flux’).

λ[MΛ0 ] = c1Λ0

where c1 ∈ (0, 1) is equal to

c1 = 2
3 〈

1
2 + cos θ〉m(θ) sin2(θ/2) (4.7)

for

m(θ) = exp(d−1σ( 1
2 + cos θ)). (4.8)

Proof. Using the fact that the measure on SO(3) is left invariant, we obtain

λ[MΛ0
] =

1

Z

∫
SO(3)

A exp(d−1σ((A · Λ0)))dA

=
Λ0

Z

∫
SO(3)

ΛT0 A exp(d−1σ( 1
2 tr(ΛT0 A)))dA

=
Λ0

Z

∫
SO(3)

B exp(d−1σ( 1
2 tr(B)))dB.

We now write B = Id + sin θ [n]× + (1 − cos θ)[n]2× thanks to Rodrigues’ for-

mula (3.3). Therefore, using Lemma 4.2, we get

λ[MΛ0
] = Λ0

∫
SO(3)

B exp(d−1σ( 1
2 tr(B)))dB∫

SO(3)
exp(d−1σ( 1

2 tr(B)))dB

= Λ0

∫ π
0

sin2(θ/2) exp(d−1σ( 1
2 + cos θ))

( ∫
S2(Id + sin θ [n]× + (1− cos θ)[n]2×)dn

)
dθ∫ π

0
sin2(θ/2) exp(d−1σ( 1

2 + cos θ))dθ
.
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Next, we see that since the function n 7→ [n]× is odd, we have
∫
S2 [n]×dn = 0. We

also have (see (3.5)) that [n]2× = n⊗n− Id. Since we know that
∫
S2 n⊗ndn = 1

3 Id

(by invariance by rotation), it is easy to see that the integral in S2 has to be

proportional to Id, the coefficient is given by computing the trace), we get that

λ[MΛ0
] = Λ0

∫
SO(3)

B exp(d−1σ( 1
2 tr(B)))dB∫

SO(3)
exp(d−1σ( 1

2 tr(B)))dB

= Λ0

∫ π
0

sin2(θ/2) exp(d−1σ( 1
2 + cos θ))(Id + (1− cos θ)( 1

3 − 1)Id)dθ∫ π
0

sin2(θ/2) exp(d−1σ( 1
2 + cos θ))dθ

=

∫ π
0

2
3 ( 1

2 + cos θ) sin2(θ/2) exp(d−1σ( 1
2 + cos θ))dθ∫ π

0
sin2(θ/2) exp(d−1σ( 1

2 + cos θ))dθ
Λ0 = c1Λ0,

which gives the formula (4.7) for c1.

It remains to prove that c1 ∈ (0, 1). We have that c1 is the average of 2
3 ( 1

2 +cos θ)

for the probability measure on (0, π) proportional to sin2(θ/2) exp(d−1σ( 1
2 +cos θ)).

Since we have 2
3 ( 1

2 + cos θ) ≤ 1 with equality only for θ = 0, we immediately get

that c1 < 1. To prove the positivity, we remark that the function in the expo-

nent θ 7→ d−1σ( 1
2 + cos θ) is strictly decreasing for θ ∈ (0, π) (since ν > 0 is the

derivative of σ), so we obtain that σ( 1
2 +cos θ) > σ( 1

2 +cos 2π
3 ) = σ(0) for θ ∈ (0, 2π

3 ).

Therefore, for θ ∈ (0, 2π
3 ),

( 1
2 + cos θ) exp(d−1σ( 1

2 + cos θ)) > ( 1
2 + cos θ) exp(d−1σ(0)),

since 1
2 + cos θ > 0. When θ ∈ ( 2π

3 , π), we have exactly the same inequality above

since we have 1
2 + cos θ < 0. Therefore we get

c1 >

∫ π
0

2
3 ( 1

2 + cos θ) sin2(θ/2) exp(d−1σ(0))dθ∫ π
0

sin2(θ/2) exp(d−1σ( 1
2 + cos θ))dθ

= 0,

since
∫ π

0
( 1

2 +cos θ) sin2(θ/2)dθ =
∫ π

0
( 1

2 +cos θ)( 1
2−

1
2 cos θ)dθ = π

4 −
1
2

∫ π
0

cos2 θdθ =

0.

Proof. [Proof of Lemma 4.3] We follow the structure of the analogous proof in

Ref. 24:

i) To prove the first identity we have that (see expression (A.2))

∇A
(
lnMΛ[f ]

)
= d−1∇A (σ(A · Λ[f ]))

= d−1ν(A · Λ[f ])PTA
(Λ[f ])

= d−1F0[f ]

and so

d∇A ·
[
MΛ[f ]∇A

(
f

MΛ[f ]

)]
= d∇A ·

[
∇Af − f∇A

(
ln(MΛ[f ])

)]
= d∇Af −∇A · (fF0[f ]) .
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Inequality (4.5) follows from this last expression and the Stokes theorem

in SO(3).

ii) From the inequality (4.5) we have that if Q(f) = 0, then f
MΛ[f]

is a constant that

we denote by ρ (which is positive since f and MΛ[f ] are positive). Conversely,

if f = ρMΛ then

λ[ρMΛ] =

∫
SO(3)

ρMΛ(A)AdA = ρc1Λ

by Lemma 4.4. Now, by uniqueness of the Polar Decomposition and since ρc1Id

is a symmetric positive-definite matrix, we have that Λ[ρMΛ] = Λ.

Let us describe the behavior of these equilibrium distributions for small and

large noise intensities. We have that for any function g, the average 〈g( 1
2 +

cos θ)〉m(θ) sin2(θ/2) is the average of g(A · Λ) with respect to the probability mea-

sure MΛ (by left-invariance, this is independent of Λ).

One can actually check that the probability measure MΛ on SO(3) converges

in distribution to the uniform measure when d → ∞ (by Taylor expansion) and

it converges to a Dirac delta at matrix Λ when d → 0 (this can be seen for MId

thanks to the decomposition of the volume form and the Laplace method, since the

maximum of σ( 1
2 +cos θ) is reached only at θ = 0 which corresponds to the identity

matrix, and we then get the result for any Λ since MΛ(A) = MId(ΛTA)). So for

small diffusion, at equilibrium, agents tend to adopt the same body attitude close

to Λ.

With these asymptotic considerations, we have in particular the behaviour of c1:

c1 −→
d→∞

0

and

c1 −→
d→0

1.

4.4. Generalized Collision Invariants

To obtain the macroscopic equation, we start by looking for the conserved quantities

of the kinetic equation: we want to find the functions ψ = ψ(A) such that∫
SO(3)

Q(f)ψ dA = 0 for all f.

By Lemma 4.3, this can be rewritten as

0 = −
∫
SO(3)

MΛ[f ]∇A
(

f

MΛ[f ]

)
· ∇Aψ dA.

This happens if ∇Aψ ∈ T⊥A which holds true only if ∇Aψ = 0, implying that ψ is

constant.

Consequently, our model has only one conserved quantity: the total mass. How-

ever the equilibria is 4-dimensional (by Lemma 4.3). To obtain the macroscopic
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equations for Λ, a priori we would need 3 more conserved quantities. This prob-

lem is sorted out by using Generalized Collision Invariants (GCI) a concept first

introduced in Ref. 24.

4.4.1. Definition and existence of GCI

Define the operator

Q(f,Λ0) := ∇A ·
(
MΛ0
∇A

(
f

MΛ0

))
,

notice in particular that

Q(f) = Q(f,Λ[f ]).

Using this operator we define:

Definition 4.1 (Generalised Collision Invariant). For a given Λ0 ∈ SO(3) we

say that a real-valued function ψ : SO(3)→ R is a Generalized Collision Invariant

associated to Λ0, or for short ψ ∈ GCI(Λ0), if∫
SO(3)

Q(f,Λ0)ψ dA = 0 for all f s.t PTΛ0
(λ[f ]) = 0.

In particular, the result that we will use is :

ψ ∈ GCI(Λ[f ]) =⇒
∫
SO(3)

Q(f)ψ dA = 0. (4.9)

Indeed, since Λ[f ] is the polar decomposition of λ[f ], we have λ[f ] = Λ[f ]S, with S

a symmetric matrix. Therefore (see Proposition Appendix A.2), we get that λ[f ]

belongs to the orthogonal of TΛ[f ], so the definition 4.1 and the fact that Q(f) =

Q(f,Λ[f ]) gives us the property (4.9).

The definition 4.1 is equivalent to the following:

Proposition 4.3. We have that ψ ∈ GCI(Λ0) if and only if

there exists B ∈ TΛ0 such that ∇A · (MΛ0∇Aψ) = B ·AMΛ0 . (4.10)

Proof. [Proof of Prop. 4.3] We denote L the linear operator Q(·,Λ0), and L∗ its

adjoint. We have the following sequence of equivalences, starting from Def. 4.1:

ψ ∈ GCI(Λ0)⇔
∫
SO(3)

ψL(f) dA = 0, for all f such that PTΛ0
(λ[f ]) = 0

⇔
∫
SO(3)

L∗(ψ)f dA = 0, for all f such that

∫
SO(3)

Af(A)dA ∈ (TΛ0)
⊥

⇔
∫
SO(3)

L∗(ψ)f dA = 0, for all f s.t. ∀B ∈ TΛ0 ,

∫
SO(3)

(B ·A)f(A)dA = 0

⇔
∫
SO(3)

L∗(ψ)f dA = 0, for all f ∈ F⊥Λ0

⇔ L∗(ψ) ∈
(
F⊥Λ0

)⊥
,



October 5, 2016 22:21 WSPC/INSTRUCTION FILE ws-m3as

20 P. Degond, A. Frouvelle, S. Merino-Aceituno

where

FΛ0 := {g : SO(3)→ R, with g(A) = (B ·A), for some B ∈ TΛ0} ,

and F⊥Λ0
is the space orthogonal to FΛ0

in L2. FΛ0
is a vector space in L2 isomorphic

to TΛ0 and (F⊥Λ0
)⊥ = FΛ0 since FΛ0 is closed (finite dimensional). Therefore we get

ψ ∈ GCI(Λ0)⇔ L∗(ψ) ∈ FΛ0 ⇔ there exists B ∈ TΛ0 such that L∗(ψ)(A) = B·A,

which ends the proof since the expression of the adjoint is L∗(ψ) = 1
MΛ0
∇A ·

(MΛ0
∇Aψ).

We prove the existence and uniqueness of the solution ψ satisfying Eq. (4.10) in

the following:

Proposition 4.4 (Existence of the GCI). For a given B ∈ TΛ fixed, there exists

a unique (up to a constant) ψB ∈ H1(SO(3)), satisfying the relation (4.10).

Proof. [Proof of Prop. 4.4] We would like to apply the Lax-Milgram theorem to

prove the existence of ψ in an appropriate functional space. For this, we rewrite the

relation (4.10) weakly

a(ψ,ϕ) :=

∫
SO(3)

MΛ0∇Aψ·∇AϕdA =

∫
SO(3)

B ·PTΛ0
(A)MΛ0ϕdA =: b(ϕ). (4.11)

Our goal is to prove that there exists a unique ψ ∈ H1(SO(3)) such that a(ψ,ϕ) =

b(ϕ) for all ϕ ∈ H1(SO(3)).

To begin with we apply the Lax-Milgram theorem on the space

H1
0 (SO(3)) :=

{
ϕ ∈ H1 |

∫
SO(3)

ϕdA = 0

}
.

In this space the H1-norm and the H1 semi-norm are equivalent thanks to the

Poincaré inequality, i.e., there exists C > 0 such that∫
SO(3)

|∇Aϕ|2dA ≥ C
∫
SO(3)

|ϕ|2dA for some C > 0, for all ϕ ∈ H1
0 (SO(3)).

Notice that the Poincaré inequality holds in SO(3) because it is compact Rieman-

nian manifold.12 This gives us the coercivity estimate to apply the Lax-Milgram

theorem. Hence, there exists a unique ψ ∈ H1
0 (SO(3)) s.t a(ψ,ϕ) = b(ϕ) for

all ϕ ∈ H1
0 (SO(3)).

Now, define for a given ϕ ∈ H1(SO(3)), ϕ0 := ϕ−
∫
SO(3)

ϕdA ∈ H1
0 (SO(3)). It

holds that

a(ψ,ϕ) = a(ψ,ϕ0) and b(ϕ) = b(ϕ0)

since b(1) = 0 given that it has antisymmetric integrand. Hence, we obtain that

there exists a unique ψ ∈ H1
0 (SO(3)) such that

a(ψ,ϕ) = b(ϕ) for all ϕ ∈ H1(SO(3)).
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Suppose next, that there exists another solution ψ̄ ∈ H1(SO(3)) to this problem,

then the difference Ψ = ψ − ψ̄ satisfies:

0 = a(Ψ, ϕ) =

∫
SO(3)

MΛ0∇AΨ · ∇AϕdA for all ϕ ∈ H1(SO(3)).

Take in particular ϕ = Ψ, then∫
SO(3)

MΛ0
|∇AΨ|2 dA = 0.

Hence, Ψ = c for some constant c, so all solutions are of the form ψ + c where ψ is

the unique solution satisfying
∫
SO(3)

ψ dA = 0.

By writing that

B ∈ TΛ0
if and only if there exists P ∈ A, B = Λ0P, (4.12)

with A the set of antisymmetric matrices, we deduce the:

Corollary 4.2. For a given Λ0 ∈ SO(3), the set of Generalized Collision Invariants

associated to Λ0 are

GCI(Λ0) = span{1,∪P∈AψΛ0

P }

(where A is the set of antisymmetric matrices) with ψΛ0

P the unique solution

in H1
0 (SO(3)) of

a(ψΛ0

P , ϕ) = bP (ϕ) for all ϕ ∈ H1(SO(3)),

where a and bP are defined by (4.11) with B substituted by Λ0P .

Notice that since the mapping P 7→ ψΛ0

P is linear and injective from A (of

dimension 3) to H1
0 (SO(3)), the vector space GCI(Λ0) is of dimension 4.

4.4.2. The non-constant GCIs

From now on, we omit the subscript on Λ0, and we are interested in a simpler

expression for ψΛ
P . Rewriting expression (4.10) using (4.12), for any given P ∈ A

we want to find ψ such that

∇A · (MΛ∇Aψ) = (ΛP ) ·AMΛ = P · (ΛTA)MΛ, P ∈ A. (4.13)

Proposition 4.5. Let P ∈ A and ψ be the solution of (4.13) belonging

to H1
0 (SO(3)). If we denote ψ̄(B) := ψ(ΛB), then ψ̄ is the unique solution

in H1
0 (SO(3)) of:

∇B ·
(
MId(B)∇Bψ̄

)
= P ·BMId(B). (4.14)

Proof. Let ψ(A) = ψ̄(ΛTA). Consider A(ε) a differentiable curve in SO(3) with

A(0) = A,
dA(ε)

dε

∣∣∣∣
ε=0

= δA ∈ TA.
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Then, by definition

lim
ε→0

ψ(A(ε))− ψ(A)

ε
= ∇Aψ(A) · δA,

and therefore we have that

lim
ε→0

ψ̄(ΛTA(ε))− ψ̄(ΛTA)

ε
= ∇Bψ̄(ΛTA) · ΛT δA

since

ΛTA(0) = ΛTA,
d

dε
ΛTA(ε)

∣∣∣∣
ε=0

= ΛT δA.

We conclude that

∇Aψ(A) · δA = ∇Bψ̄(ΛTA) · ΛT δA.

Now we check that

1

2
tr
(

(∇Aψ(A))
T
δA

)
=

1

2
tr
((
∇Bψ̄(ΛTA)

)T
ΛT δA

)
=

1

2
tr
((

Λ∇Bψ̄(ΛTA)
)T
δA

)
,

implying (since this is true for any δA ∈ TA) that

∇Aψ(A) = Λ∇Bψ̄(ΛTA).

Now to deal with the divergence term, we consider the variational formulation.

Consider ϕ ∈ H1(SO(3)), then our equation is equivalent to

−
∫
SO(3)

MΛ(A)∇Aψ(A) · ∇Aϕ(A) dA =

∫
SO(3)

P · (ΛTA)MΛ(A)ϕ(A) dA

for all ϕ ∈ H1(SO(3)). The left hand side can be written as:

−
∫
SO(3)

MId(B)(ΛTA)
(
Λ∇Bψ̄(ΛTA)

)
·
(
Λ∇Bϕ̄(ΛTA)

)
dA

= −
∫
SO(3)

MId(B)∇Bψ̄(B) · ∇Bϕ̄(B) dB;

and the right hand side is equal to∫
SO(3)

P ·BMId(B)ϕ̄(B) dB,

where we define analogously ϕ̄(B) = ϕ(ΛB). This concludes the proof.

Therefore it is enough to find the solution to (4.14). Inspired by Ref. 24 we make

the ansatz:

ψ̄(B) = P ·B ψ̄0( 1
2 tr(B))

for some scalar function ψ̄0.
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Proposition 4.6 (Non-constant GCI). Let P ∈ A, then the unique solution ψ̄ ∈
H1

0 (SO(3)) of (4.14) is given by

ψ̄(B) = P ·B ψ̄0( 1
2 tr(B)), (4.15)

where ψ̄0 is constructed as follows: Let ψ̃0 : R→ R be the unique solution to

1

sin2(θ/2)
∂θ

(
sin2(θ/2)m(θ)∂θ

(
sin θψ̃0

))
− m(θ) sin θ

2 sin2(θ/2)
ψ̃0 = sin θm(θ), (4.16)

where m(θ) = MId(B) = exp(d−1σ( 1
2 + cos θ))/Z. Then

ψ̃0(θ) = ψ̄0

(
1

2
tr(B)

)
(4.17)

by the relation 1
2 tr(B) = 1

2 + cos θ. ψ̃0 is 2π-periodic, even and negative (by the

maximum principle).

Going back to the GCI ψ(A), we can write it as

ψ(A) = P · (ΛTA) ψ̄0(Λ ·A). (4.18)

Proof. [Proof of Prop. 4.6] Suppose that the solution is given by expression (4.15).

We check that ψ̃0 given by Eq. (4.17) satisfies Eq. (4.16) using the gradient and

divergence in SO(3) computed in Prop. 4.1 and 4.2. First notice that P is antisym-

metric, thus if we write Rodrigues’ formula (3.3) for B(θ,n), the symmetric part

of B(θ,n) gives no contribution when computing P ·B and we get

ψ̄(B) = P ·B ψ̄0( 1
2 tr(B)) = sin θ ψ̃0(θ)P · [n]× = sin θ ψ̃0(θ)(p · n),

where the vector p is such that P = [p]× and this leads to

∇B ·
(
MId(B)∇Bψ̄

)
=

1

sin2(θ/2)
∂θ

(
sin2(θ/2)m(θ)∂θ

(
sin θ ψ̃0(θ)

))
(p · n)

+
m(θ) sin θ

4 sin2(θ/2)
ψ̃0(θ)∆n(p · n).

Using that the Laplacian in the sphere has the property ∆n(p ·n) = −2(p ·n) (p ·n
corresponds to the first spherical harmonic), we conclude that expression (4.16) is

satisfied. In the computation we used the same procedure as for the proof of the

expression of the Laplacian in SO(3) (Corollary 4.1), but (using the same notations)

we have taken b(θ,n) = m(θ)∂θ(sin θ ψ̃0(θ))(p · n).

To conclude the proof we just need to check that ψ̃0 exists and corresponds to

a function ψ̄ in H1
0 (SO(3)). Using the expression of the volume form, since

∫
S2 p ·

n dn = 0, we get that if ψ0 is smooth, we have
∫
SO(3)

ψ̄(A)dA = 0, and using the

expression of the gradient, we get that∫
SO(3)

|∇ψ̄(A)|2dA =
2

π

∫ π

0

sin2(θ/2)|∂θ(sin θψ̃0(θ))|2dθ
∫
S2

|p · n|2dn

+
2

π

∫ π

0

1

4
| sin θψ̃0(θ)|2dθ

∫
S2

|∇n(p · n)|2dn .
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Therefore by density of smooth functions in H1
0 (SO(3)), we get that ψ̄ ∈

H1
0 (SO(3)) if and only if ψ̃0 ∈ H, where

H :=

{
ψ |
∫

(0,π)

ψ2 sin2 θ dθ <∞,
∫

(0,π)

|∂θ(sin θψ(θ))|2 sin2(θ/2) dθ <∞

}
.

This Hilbert space is equipped with the corresponding norm:

‖ψ‖2H =

∫
(0,π)

ψ2 sin2 θ dθ +

∫
(0,π)

|∂θ(sin θψ(θ))|2 sin2(θ/2) dθ.

Now, Eq. (4.16) written in weak form in H and tested against any φ ∈ H reads

a(ψ̃0, φ) := −
∫

(0,π)

m(θ)

[
sin2(θ/2)∂θ(sin θψ̃0(θ))∂θ(sin θφ(θ)) dθ +

1

2
sin2 θψ̃0(θ)φ(θ)

]
dθ

=

∫
(0,π)

sin2 θ sin2(θ/2)m(θ)φdθ =: b(φ).

It holds for some c, c′, c′′ > 0 that: |a(ψ, φ)| ≤ c‖ψ‖H‖φ‖H since m = m(θ) is

bounded; and also |a(ψ,ψ)| ≥ c′‖ψ‖2H since there exists m0 > 0 such that m(θ) >

m0 for all θ ∈ [0, π]; finally, we also have that |b(φ)| ≤ c′′‖φ‖2H . Therefore, by the

Lax-Milgram theorem, there exists a (unique) solution ψ̃0 ∈ H to (4.16), which

corresponds to a (unique) ψ̄ in H1
0 (SO(3)).

4.5. The macroscopic limit

In this section we investigate the hydrodynamic limit. To state the theorem we first

give the definitions of the first order operators δx and rx. For a smooth function Λ

from R3 to SO(3), and for x ∈ R3, we define the following matrix Dx(Λ) such that

for any w ∈ R3, we have

(w · ∇x)Λ = [Dx(Λ)w]×Λ. (4.19)

Notice that this first-order differential equation Dx is well-defined as a matrix; for

a given vector w, the matrix (w · ∇x)Λ is in TΛ and thanks to Prop. Appendix

A.3, it is of the form PΛ, with P an antisymmetric matrix. Therefore there ex-

ists a vector Dx(Λ)(w) ∈ R3 depending on w such that P = [Dx(Λ)(w)]×. The

function w 7→ Dx(Λ)(w) is linear from R3 to R3, so Dx(Λ) can be identified as a

matrix.

We now define the first order operators δx (scalar) and rx (vector), by

δx(Λ) = tr
(
Dx(Λ)

)
and [rx(Λ)]× = Dx(Λ)−Dx(Λ)T . (4.20)

We first give an invariance property which allows for a simple expression for

these operators.

Proposition 4.7. The operators Dx, δx and rx are right invariant in the following

sense: if A is a fixed matrix in SO(3) and Λ : R3 → SO(3) a smooth function, we

have
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Dx(ΛA) = Dx(Λ), δx(ΛA) = δx(Λ) and rx(ΛA) = rx(Λ).

Consequently, in the neighborhood of x0 ∈ R3, we can write Λ(x) =

exp ([b(x)]×) Λ(x0) where b is a smooth function from a neighborhood of x0 into R3

such that b(x0) = 0, and we have(
Dx(Λ)

)
ij

(x0) = ∂jbi(x0),

and therefore

δx(Λ)(x0) = (∇x · b) (x0), and rΛ(x0) = (∇x × b) (x0).

Proof. For any w ∈ R3, we have, since A is constant:

[Dx(ΛA)w]×ΛA = w · ∇x(ΛA) = (w · ∇xΛ)A = [Dx(Λ)w]×ΛA.

This proves that Dx(ΛA) = Dx(Λ), and by (4.20), the same is obviously true for δx
and rx.

We now write, in the neighborhood of x0, that Λ(x) = exp([b(x)]×)Λ(x0),

with b smooth in the neighborhood of x0 and b(x0) = 0. Then we have Dx(Λ) =

Dx
(

exp([b]×)
)
. We perform a Taylor expansion around x0 of exp([b]×):

exp([b(x)]×) = Id + [b(x)]× +M(x),

where M(x) is of order 2 in the coordinates b1, b2, b3, (since b is smooth in the

neighborhood of x0 and b(x0) = 0), therefore

∂1M(x0) = ∂2M(x0) = ∂3M(x0) = 0.

We then get, since exp([b(x0)]) = Id, that

[Dx
(

exp([b]×)
)
(x0)w]× = w · ∇x

(
exp([b]×)

)
(x0) =

[
(w · ∇xb)(x0)

]
×,

and therefore Dx(Λ)(x0)w = Dx(exp([b]×))(x0)w = (w ·∇xb)(x0). Taking w = ej ,

we get Dx(Λ)(x0)ej = ∂jb(x0), and thus
(
Dx(Λ)(x0)

)
ij

= ei · Dx(Λ)(x0)ej = ∂jbi.

The formula for δx(Λ) follows from (4.20), since ∇x · b =
∑
i ∂ibi. Finally by the

definition of [·]× (see (3.2)), we get

[∇x × b]× =

 0 ∂2b1 − ∂1b2 ∂3b1 − ∂1b3

∂1b2 − ∂2b1 0 ∂3b2 − ∂2b3

∂1b3 − ∂3b1 ∂2b3 − ∂3b2 0

 ,

so from (4.20) we obtain (∇x × b)(x0) = rx(Λ)(x0).

We are now ready to state the main theorem of our paper (see Section 2 for a

discussion on this result).

Theorem 4.1 ((Formal) macroscopic limit). When ε → 0 in the kinetic Eq.

(4.1) it holds (formally) that

fε → f = f(x,A, t) = ρMΛ(A), Λ = Λ(t, x) ∈ SO(3), ρ = ρ(t, x) ≥ 0.
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Moreover, if this convergence is strong enough and the functions Λ and ρ are smooth

enough, they satisfy the following first-order system of partial differential equations:

∂tρ+∇x ·
(
c1ρΛe1

)
= 0, (4.21)

ρ
(
∂tΛ + c2

(
(Λe1) · ∇x

)
Λ
)

+
[
(Λe1)×

(
c3∇xρ+ c4ρ rx(Λ)

)
+ c4ρ δx(Λ)Λe1

]
× Λ = 0,

(4.22)

where c1 = c1(ν, d) = 2
3 〈

1
2 + cos θ〉m(θ) sin2(θ/2) is the constant given in (4.7) and

c2 = 1
5 〈2 + 3 cos θ〉m̃(θ) sin2(θ/2),

c3 = d〈ν( 1
2 + cos θ)−1〉m̃(θ) sin2(θ/2),

c4 = 1
5 〈1− cos θ〉m̃(θ) sin2(θ/2),

where the notation 〈·〉m̃(θ) sin2(θ/2) is defined in (4.6). The function m̃ : (0, π) →
(0,+∞) is given by

m̃(θ) := ν( 1
2 + cos θ) sin2 θm(θ) ψ̃0(θ), (4.23)

where m(θ) = exp(d−1σ( 1
2 + cos θ)) is the same as in (4.8) and ψ̃0 is the solution

of Eq. (4.16).

Proof. Suppose that fε → f as ε → 0, then using (4.1) we get Q(fε) = O(ε),

which formally yields Q(f) = 0 and by Lemma 4.3 we have that

f = f(x,A, t) = ρMΛ(A), with Λ = Λ(t, x) ∈ SO(3), ρ = ρ(t, x) ≥ 0.

Using the conservation of mass (integrating (4.1) on SO(3)), we have that

∂tρε +∇x · j[fε] = O(ε),

where

ρε(t, x) :=

∫
SO(3)

fε(x,A, t) dA, j[fε] :=

∫
SO(3)

Ae1fε dA,

and in the limit (formally)

ρε → ρ,

j[fε]→ ρ

∫
SO(3)

Ae1MΛ(A) dA = ρλ[MΛ]e1 = ρc1Λe1,

thanks to Lemma 4.4. This gives us the continuity equation (4.21) for ρ.

Now, we want to obtain the equation for Λ. We write Λε = Λ[fε], and we

take P ∈ A a given antisymmetric matrix. We consider the non-constant GCI

associated to Λε and corresponding to P in (4.18): ψε(A) = P · ((Λε)TA)ψ̄0(Λε ·A).

Since we have ψε ∈ GCI(Λ[fε]), we obtain, thanks to the main property (4.9) of

the GCI, that ∫
SO(3)

Q(fε)ψεdA = 0.
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Multiplying (4.1) by ψε, integrating w.r.t. A on SO(3) and using the expression

of ψε as stated above, we obtain∫
SO(3)

(
∂tf

ε +Ae1 · ∇xfε +O(ε)
)
P ·
(
(Λε)TA

)
ψ̄0(Λε ·A) dA = 0.

Assuming the convergence fε → f is sufficiently strong, we get in the limit∫
SO(3)

(
∂t(ρMΛ) +Ae1 · ∇x(ρMΛ)

)(
P · ΛTA

)
ψ̄0(Λ ·A) dA = 0. (4.24)

Since (4.24) is true for any P ∈ A, the matrix∫
SO(3)

(
∂t(ρMΛ) +Ae1 · ∇x(ρMΛ)

)
ψ̄0(Λ ·A) ΛTAdA = 0.

is orthogonal to all antisymmetric matrices. Therefore, it must be a symmetric

matrix, meaning that we have

X :=

∫
SO(3)

(
∂t(ρMΛ) +Ae1 · ∇x(ρMΛ)

)
ψ̄0(Λ ·A) (ΛTA−ATΛ) dA = 0. (4.25)

We have with the definition of MΛ in (4.4) that

∂t(ρMΛ) = MΛ(∂tρ+ d−1ν(Λ ·A)ρ(A · ∂tΛ)),

(Ae1 · ∇x)(ρMΛ) = MΛ

(
Ae1 · ∇xρ+ d−1ν(Λ ·A) ρ(A · (Ae1 · ∇x)Λ)

)
.

Inserting the two previous expressions into (4.25), we compute separately each com-

ponent of X defined by:

X1 :=

∫
SO(3)

∂tρMΛ ψ̄0(Λ ·A) (ΛTA−ATΛ) dA,

X2 :=

∫
SO(3)

d−1ν(Λ ·A)ρ(A · ∂tΛ)MΛ ψ̄0(Λ ·A) (ΛTA−ATΛ) dA,

X3 :=

∫
SO(3)

Ae1 · ∇xρMΛ ψ̄0(Λ ·A) (ΛTA−ATΛ) dA,

X4 :=

∫
SO(3)

d−1ν(Λ ·A) ρ(A · (Ae1 · ∇x)Λ)MΛ ψ̄0(Λ ·A) (ΛTA−ATΛ) dA,

so X = X1 +X2 +X3 +X4.

For the first term we have (changing variables B = ΛTA):

X1 = ∂tρ

∫
SO(3)

MId(B) ψ̄0(Id ·B) (B −BT ) dB = 0

since both MId(B) and ψ̄0(Id ·B) are invariant by the change B 7→ BT .



October 5, 2016 22:21 WSPC/INSTRUCTION FILE ws-m3as

28 P. Degond, A. Frouvelle, S. Merino-Aceituno

For the term X2 we make the change of variables B = ΛTA and compute

X2 = ρ

∫
SO(3)

d−1ν(Id ·B)(ΛB · ∂tΛ)MId(B)ψ̄0(Id ·B)(B −BT ) dB

=
2d−1ρ

πZ

∫
(0,π)×S2

(
Λ
(
Id + sin θ[n]× + (1− cos θ)[n]2×

))
· ∂tΛ

sin2(θ/2) ν( 1
2 + cos θ)m(θ) ψ̃0(θ) 2 sin θ [n]× dθdn,

where we have used the expression of the Haar measure dB = 2
π sin2(θ/2)dθdn (see

Lemma 4.2) and that writing B = B(θ,n) = Id + sin θ[n]×+ (1− cos θ)[n]2× thanks

to Rodrigues’ formula (3.3), we have B − BT = 2 sin θ[n]×. Removing odd terms

with respect to the change n 7→ −n, we obtain

X2 =
4d−1ρ

πZ

∫
(0,π)×S2

ν( 1
2 +cos θ) sin2 θm(θ)ψ̃0(θ) sin2(θ/2)(Λ[n]× ·∂tΛ) [n]× dθdn.

Now since ∂tΛ ∈ TΛ, we have ΛT∂tΛ ∈ A (antisymmetric, see Prop. Appendix A.2),

and so

ΛT∂tΛ = [λtλtλt]×

for some vector λtλtλt. Therefore

(Λ[n]×) · ∂tΛ = [n]× · (ΛT∂tΛ) = [n]× · [λλλt]× = (n · λtλtλt).

So using the definition (4.23) of m̃(θ), we get

X2 =
4d−1ρ

πZ

∫
(0,π)×S2

m̃(θ) sin2(θ/2)(n · λtλtλt) [n]× dθdn

=
4d−1ρ

πZ

[∫
(0,π)×S2

m̃(θ) sin2(θ/2)(n · λtλtλt) n dθdn

]
×

=
4d−1ρ

3πZ

(∫ π

0

m̃(θ) sin2(θ/2) dθ

)
[λtλtλt]×,

because the mapping w 7→ [w]× is linear, and
∫
S2 n⊗ n dn = 1

3 Id.

Denote by

C2 :=
4d−1

3πZ

(∫ π

0

m̃(θ) sin2(θ/2) dθ

)
,

then we conclude that

X2 = C2ρΛT∂tΛ.
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Now, for the term X3 we compute the following, starting again by the change

of variables B = ΛTA:

X3 =

∫
SO(3)

(ΛBe1 · ∇xρ)MId(B) ψ̄0(Id ·B) (B −BT ) dB

=
4

πZ

∫
(0,π)×S2

m(θ) ψ̃0(θ) sin θ sin2(θ/2)(
Λ
(
Id + sin θ[n]× + (1− cos θ)[n]2×

)
e1 · ∇xρ

)
[n]× dθdn

=
4

πZ

∫
(0,π)×S2

m(θ) ψ̃0(θ) sin2 θ sin2(θ/2) (Λ[n]×e1 · ∇xρ) [n]× dθdn

=
4

πZ

[∫
(0,π)×S2

m̃(θ)

ν( 1
2 + cos θ)

sin2(θ/2)
(
n · (e1 × ΛT∇xρ)

)
ndθdn

]
×

=
4

3πZ

(∫ π

0

m̃(θ)

ν( 1
2 + cos θ)

sin2(θ/2) dθ

)
[e1 × ΛT∇xρ]×,

where we used similar considerations as for X2, as well as that

Λ[n]×e1 · ∇xρ = [n]×e1 · (ΛT∇xρ) = (n× e1) · (ΛT∇xρ) = n · (e1 × ΛT∇xρ).

Denote by

C3 :=
4

3πZ

(∫ π

0

m̃(θ)

ν( 1
2 + cos θ)

sin2(θ/2) dθ

)
,

then

X3 = C3[e1 × ΛT∇xρ]x.

We now compute X4 in the same way, with the change of variables B = ΛTA:

X4 = ρd−1

∫
SO(3)

(
ν(Id ·B)(ΛB · (ΛBe1 · ∇x)Λ)

)
MId(B) ψ̄0(Id ·B) (B −BT ) dB .

We now use the definition of Dx(Λ) given in (4.19) to get

X4 = ρd−1

∫
SO(3)

(
ν(Id ·B)(ΛB ·([Dx(Λ)ΛBe1]×Λ)

)
MId(B)(B−BT )ψ̄0(Id ·B) dB .

Using the fact that ΛT [w]× = [ΛTw]×ΛT for all w ∈ R3, we have

ΛB · ([Dx(Λ)ΛBe1]×Λ) = B · [ΛTDx(Λ)ΛBe1]×.

To simplify the notations, we denote L = ΛTDx(Λ)Λ. Since the symmetric part

of B does not contribute to the scalar product B · [LBe1]×, we get

ΛB · ([Dx(Λ)ΛBe1]×Λ) = B · [LBe1]× = sin θ [n]× · [LBe1]× = sin θ n · LBe1,

Therefore we obtain, in the same manner as before,

X4 =
4ρd−1

πZ

∫ π

0

m̃(θ) sin2(θ/2)[∫
S2

(
n ·
(
L(Id + sin θ[n]× + (1− cos θ)[n]2×)e1

))
n dn

]
×
dθ,
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and we have to know the value of

y(θ) :=

∫
S2

(
n ·
(
L(Id + sin θ[n]× + (1− cos θ)[n]2×)e1

))
n dn

=

∫
S2

(
n ·
(
L (cos θe1 + (1− cos θ)(n · e1) n)

))
n dn

=
1

3
cos θLe1 + (1− cos θ)

(∫
S2

n · Ln (n⊗ n) dn

)
e1,

where the term involving [n]× vanishes since its integrand is odd with respect to n 7→
−n.

To compute the second term of this expression we will make use of the following

lemma proved at the end of this section:

Lemma 4.5. For a given matrix L ∈M, we have∫
S2

n · Ln (n⊗ n) dn =
1

15
(L+ LT ) +

1

15
tr(L)Id.

Using this lemma we have that

y(θ) = 1
3 cos θ Le1 + (1− cos θ)

(
1
15 (L+ LT ) + 1

15 tr(L)Id
)
e1

= 1
15 (1 + 4 cos θ)Le1 + 1

15 (1− cos θ)
(
LTe1 + tr(L)e1

)
.

Therefore we obtain

X4 =
4ρd−1

πZ

∫ π

0

m̃(θ) sin2(θ/2)[y(θ)]× dθ

=
4ρd−1

15πZ

∫ π

0

m̃(θ) sin2(θ/2)
(
(1 + 4 cos θ)[Le1]× + (1− cos θ)[LTe1 + tr(L)e1]×

)
dθ

= ρ
(
C4[Le1]× + C5[LTe1 + tr(L)e1]×

)
for

C4 :=
4d−1

15πZ

∫ π

0

m̃(θ) sin2(θ/2)(1 + 4 cos θ) dθ,

C5 :=
4d−1

15πZ

∫ π

0

m̃(θ) sin2(θ/2)(1− cos θ) dθ.

Finally putting all the terms together we have that

0 = X = X1 +X2 +X3 +X4

= C2ρΛT∂tΛ + C3[e1 × ΛT∇xρ]× + ρC4[Le1]× + ρC5[LTe1 + tr(L)e1]×.

In particular ΛX = 0 and from the fact that Λ[w]× = [Λw]×Λ for any w ∈ R3 we

get

0 = ΛX = C2ρ∂tΛ+C3[(Λe1)×∇xρ]×Λ+C4ρ[ΛLe1]×Λ+C5ρ[ΛLTe1+tr(L)Λe1]×Λ.

(4.26)
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Since we have taken L = ΛTDx(Λ)Λ, we get that tr(L) = tr
(
Dx(Λ)

)
= δx(Λ) and,

thanks to (4.20):

[ΛLTe1]× = [Dx(Λ)TΛe1]× = [(Dx(Λ)− [rx(Λ)]×)Λe1]×

Furthermore, we have [ΛLe1]×Λ = [Dx(Λ)Λe1]×Λ =
(
(Λe1) · ∇x

)
Λ thanks to the

definition of Dx given in (4.19). Finally, inserting these expressions into (4.26) and

dividing by C2, we get the equation

ρ
(
∂tΛ+c2

(
(Λe1)·∇x

)
Λ
)

+c3[(Λe1)×∇xρ]×Λ+c4ρ[−rx(Λ)×(Λe1)+δx(Λ) Λe1]×Λ = 0,

for

c2 =
C4 + C5

C2
= 1

5 〈2 + 3 cos θ〉m̃(θ) sin2(θ/2),

c3 =
C3

C2
= d〈ν( 1

2 + cos θ)−1〉m̃(θ) sin2(θ/2),

c4 =
C5

C2
= 1

5 〈1− cos θ〉m̃(θ) sin2(θ/2),

which ends the proof.

Proof. [Proof of Lemma 4.5] Denote by I(L) the integral that we want to compute

I(L) :=

∫
S2

n · Ln (n⊗ n) dn,

then, written in components, we have

I(L)ij =

∫
S2

(n · Ln) (ei · n) (ej · n) dn

=

{
(Lij + Lji)

∫
S2(ei · n)2(ej · n)2 dn if i 6= j∑

k Lkk
∫
S2(ek · n)2(ei · n)2 dn if i = j

=

{
1
15 (Lij + Lji) if i 6= j
1
15

∑
k Lkk + 2

15Lii if i = j

=
1

15
(Lij + Lji) +

{
0 if i 6= j
1
15

∑
k Lkk if i = j

,

from which we conclude the lemma. In the computations we used that

for i 6= j,

∫
S2

(ei · n)2(ej · n)2 dn =
1

4π

∫
[0,π]×[0,2π]

sin3 φ cos2 ψ cos2 φdφdψ =
1

15
;

for k = i,

∫
S2

(ek · n)4 dn =
1

4π

∫
[0,π]×[0,2π]

cos4 φ sinφdφdψ =
1

5
.

Finally, we consider the orthonormal basis given by

{Λe1 =: Ω, Λe2 =: u, Λe3 =: v},
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where {e1, e2, e3} is the canonical basis of R3. We can have an expression of the

operators δx and rx in terms of these unit vectors {Ω,u,v}, which allows to rewrite

the evolution equation of Λ as three evolution equations for these vectors.

Proposition 4.8. We have

δx(Λ) = [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u, (4.27)

rx(Λ) = (∇x · Ω)Ω + (∇x · u)u + (∇x · v)v. (4.28)

Consequently, we have the following evolution equations for Ω, u, and v, corre-

sponding to the evolution equation of Λ given in (4.22):

ρDtΩ + PΩ⊥

(
c3∇xρ+ c4ρ

(
(∇x · u) u + (∇x · v) v

))
= 0, (4.29)

ρDtu− (c3 u · ∇xρ+ c4ρ∇x · u) Ω + c4ρ δx(Ω,u,v) v = 0, (4.30)

ρDtv − (c3 v · ∇xρ+ c4ρ∇x · v) Ω− c4ρ δx(Ω,u,v) u = 0, (4.31)

where Dt := ∂t + c2(Ω · ∇x), and where δx(Ω,u,v) is the expression of δx(Λ) given

by (4.27).

Proof. We first prove (4.27). We have

δx(Λ) = tr(Dx(Λ)) = tr(ΛTDx(Λ)Λ) =
∑
k

ΛTDx(Λ)Λek · ek =
∑
k

(
Dx(Λ)Λek

)
· Λek

=
∑
k

[Dx(Λ)Λek]× · [Λek]× =
∑
k

[Dx(Λ)Λek]×Λ · [Λek]×Λ

=
∑
k

((Λek · ∇x)Λ) · [Λek]×Λ,

thanks to the definition of Dx given in (4.19). Now we use the fact that for two

matrices A, B, we have A · B = 1
2 tr(ATB) = 1

2

∑
iAei · Bei (half the sum of the

scalar products of the corresponding columns of the matrices A and B), to get

δx(Λ) =
1

2

∑
k

∑
i

[
(Λek · ∇x) (Λei)

]
·
[
(Λek)× (Λei)

]
=

1

2

(
(Ω · ∇x)u · v − (u · ∇x)Ω · v − (Ω · ∇x)v · u

+(v · ∇x)Ω · u + (u · ∇x)v · Ω− (v · ∇x)u · Ω
)

= [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u .

For this last equality we used the fact that

0 = (Ω · ∇x)(u · v) = (Ω · ∇x)u · v + (Ω · ∇x)v · u

since u ⊥ v and analogously for the other components.

We proceed next to proving the expression of rx(Λ) given by (4.28). We first

prove that rx(Λ) · Ω = ∇x · Ω. We have (recall that [rx(Λ)]× = Dx(Λ) − Dx(Λ)T
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and that for all w in R3, w · ∇xΛ = [Dx(Λ)w]×Λ):

rx(Λ) · Ω = rx(Λ) · (u× v) = v · ([rx(Λ)]×u) = v ·
(
Dx(Λ)−Dx(Λ)T

)
u

= v · Dx(Λ)u− u · Dx(Λ)v

= (Ω× u) · Dx(Λ)u + (Ω× v) · Dx(Λ)u

= [Dx(Λ)u]×Ω · u + [Dx(Λ)v]×Ω · v
= [Dx(Λ)u]×Λe1 · u + [Dx(Λ)v]×Λe1 · v
=
(
(u · ∇x)Λe1

)
· u +

(
(v · ∇x)Λe1

)
· v

=
(
(u · ∇x)Ω

)
· u +

(
(v · ∇x)Ω

)
· v.

Since (Ω · ∇x)Ω is orthogonal to Ω, we therefore get

rx(Λ) · Ω =
(
(Ω · ∇x)Ω

)
· Ω +

(
(u · ∇x)Ω

)
· u +

(
(v · ∇x)Ω

)
· v

=
∑
i,k,j

Λik∂iΩjΛjk =
∑
i,j

∂iΩj
∑
k

ΛikΛTkj =
∑
i

∂iΩi = ∇x · Ω,

since ΛΛT = Id (the first line is actually the expression of the divergence of Ω in

the basis {Ω,u,v}). For the other two components of rx(Λ), we perform exactly the

same computations with a circular permutation of the roles of Ω,u,v to get rx(Λ) ·
u = ∇x · u and rx(Λ) · v = ∇x · v. Therefore we obtain (4.28).

Finally we rewrite the equation for Λ as the evolution of the basis {Ω,u,v}. To

obtain the evolution of Λek for k = 1, 2, 3, we multiply the Eq. (4.22) by ek and

compute to obtain:

ρDtΩ + PΩ⊥ (c3∇xρ+ c4ρ rx(Λ)) = 0,

ρDtu− u · (c3∇xρ+ c4ρ rx(Λ)) Ω + c4ρδx(Λ) v = 0,

ρDtv − v · (c3∇xρ+ c4ρ rx(Λ)) Ω− c4ρδx(Λ) u = 0,

where Dt = ∂t+c2(Ω·∇x). To perform the computations we have used, for w = ∇xρ
or w = r that

[w × Ω]×Ω = −PΩ⊥(w) and (w × Ω)× u = (u ·w)Ω

since Ω ⊥ u (analogously for v). From here, using (4.28) we obtain straightforwardly

Eqs. (4.29), (4.30), and (4.31) for Ω, u and v respectively.

5. Conclusions and open questions

In the present work we have presented a new flocking model through body atti-

tude coordination. We have proposed an Individual Based Model where agents are

described by their position and a rotation matrix (corresponding to the body atti-

tude). From the Individual Based Model we have derived the macroscopic equations

via the mean-field equations. We observe that the macroscopic equation gives rise

to a new class of models, the Self-Organized Hydrodynamics for body attitude coor-

dination (SOHB). This model does not reduce to the more classical Self-Organized



October 5, 2016 22:21 WSPC/INSTRUCTION FILE ws-m3as

34 P. Degond, A. Frouvelle, S. Merino-Aceituno

Hydrodynamics (SOH), which is the continuum version of the Vicsek model. The

dynamics of the SOHB system are more complex than those of the SOH ones of

the Vicsek model. In a future work, we will carry out simulations of the Individual

Based Model and the SOHB model and study the patterns that arise to compare

them with the ones of the Vicsek and SOH model.

Also, there exist yet many open questions on the modelling side. For instance,

one could consider that agents have a limited angle of vision, thus the so-called in-

fluence kernel K (see Section 3.1) is not isotropic any more, see Ref. 29 for the case

of the Vicsek and SOH models. One could also consider a different interaction range

for the influence kernel K that may give rise to a diffusive term in the macroscopic

equations, see Ref. 19. Moreover, in the case of the SOH model, when the coordi-

nation frequency and noise intensity (quantities ν and D in the Individual Based

Model (3.10)-(3.11)) are functions of the flux of the agents, then phase transitions

occur at the macroscopic level,19 (see also Refs. 4, 6, 20, 44). An analogous feature

is expected to happen in the present case. Finally, one could think of elaborating on

the model by adding repulsive effects at short range and attraction effects at large

range.

On the analytical side, this model opens also many questions like making

Prop. 3.2 rigorous, which means dealing with Stochastic Differential Equations

with non-Lipschitz coefficients. In the context of the Vicsek model, the global well-

posedness has been proven for the homogeneous mean-field Vicsek equation and also

its convergence to the von Mises equilibria in Ref. 28, see also Ref. 31; an analogous

result for our model will be desirable. The convergence of the Vicsek model to the

model which was formally done in Ref. 24 has been recently achieved rigorously in

Ref. 39. Again, one could also think of generalizing these results to our case.

Appendix A. Special Orthogonal Group SO(3)

Throughout the text, we used repeatedly the following properties:

Proposition Appendix A.1 (Space decomposition in symmetric and an-

tisymmetric matrices). Denote by S the set of symmetric matrices in M and

by A the set of antisymmetric ones. Then

S ⊕A =M and A ⊥ S.

Proof. For A ∈ M we have A = 1
2 (A + AT ) + 1

2 (A − AT ), the first term being

symmetric and the second antisymmetric. The orthogonality comes from the prop-

erties of the trace, namely tr(AT ) = tr(B), and tr(AB) = tr(BA) for B ∈ M.

Indeed if P ∈ A and S ∈ S then tr(PTS) = tr(SPT ) = tr(PST ) = −tr(PTS).

Hence P · S = 1
2 tr(PTS) = 0.

Proposition Appendix A.2 (Tangent space to SO(3)). For A ∈ SO(3), de-

note by TA the tangent space to SO(3) at A. Then

M ∈ TA if and only if there exists P ∈ A s.t M = AP,
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or equivalently the same statement with M = PA. Consequently, we have that

M ∈ T⊥A if and only if there exists S ∈ S s.t. M = AS,

or equivalently the same statement with M = SA.

Proof. We have that M ∈ TA if and only if there exists a curve Λ(t) from the

neighborhood of 0 in R to SO(3) such that Λ(0) = A and Λ′(0) = M . We then have

Id = Λ(t)ΛT (t) = (A+ tM + o(t))(AT + tMT + o(t)) = Id + t(ATM +MTA) + o(t).

So if M ∈ TA, we must have (ATM+MTA) = 0, that is to say that P = ATM ∈ A.

Conversely if M = AP with P ∈ A, the solution of the linear differential

equation Λ′(t) = Λ(t)P with Λ(0) = A is given by Λ(t) = AetP so it is a curve

in SO(3). Indeed we have Λ(t)TΛ = (etP )T etP = etP
T

etP = e−tP etP = Id.

Since Λ′(0) = AP = M , we get that M ∈ TA. The equivalent condition comes

from the fact that if M = AP , with P ∈ A, then M = APATA = P̃A with P̃ ∈ A.

Finally the last part is obtained thanks to Prop. Appendix A.1) and the fact that

the dot product is left (and right) invariant with respect to SO(3): if B,C ∈ M
and A ∈ SO(3), then AB ·AC = 1

2 tr(BTATAC) = B · C.

Proposition Appendix A.3 (Projection operator on the tangent space).

Let A ∈ SO(3) and M ∈ M (set of square matrices). Let PTA
be the orthogonal

projection on TA (tangent space at A), then

PTA
(M) =

1

2

(
M −AMTA

)
. (A.1)

Notice that then

PT⊥A (M) =
1

2

(
M +AMTA

)
.

Proof. It suffices to verify that the expression given for PTA
(M) satisfies PTA

(M) ∈
TA and M−PTA

(M) ∈ T⊥A , that is to say ATPTA
M ∈ A and AT (M−PTA

(M)) ∈ S
thanks to Prop. Appendix A.2. We have indeed AT 1

2 (M − AMTA) = 1
2 (ATM −

MTA) which is clearly antisymmetric, and AT 1
2 (M +AMTA) = 1

2 (ATM +MTA)

which is symmetric.

To compute the gradient in SO(3) of a function ψ : SO(3) → R we will con-

sider A(ε) a differentiable curve in SO(3) such that

A(0) = A,
d

dε
A(ε)

∣∣∣∣
ε=0

= δA ∈ TA

then ∇Aψ(A) is the element of TA such that for any δA ∈ TA, we have

lim
ε→0

ψ(A(ε))− ψ(A)

ε
= ∇Aψ(A) · δA.
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In particular, one can check that

∇A(A ·M) = PTA
(M), M ∈M. (A.2)

We now show that the differential equation corresponding to following this gradient

has trajectories supported on geodesics.

Proposition Appendix A.4. If B ∈ SO(3) and A0 ∈ SO(3), the trajectory of

the solution of the differential equation dA
dt = ν(A · B)PTA

B = ν(A · B)∇A(A · B)

with A(0) = A0 (and with ν smooth and positive) is supported on a geodesic from A0

to B.

Proof. Indeed, write BTA0 = exp(θ0[n]×) thanks to Rodrigues’ formula (3.4)

with [n]× an antisymmetric matrix of unit norm and θ0 ∈ [0, π]. If we set A(t) =

B exp(θ(t)[n]×) where θ satisfies the equation θ′ = −ν( 1
2 +cos θ) sin θ with θ(0) = θ0,

we get

dA

dt
= B exp(θ(t)[n]×)θ′(t)[n]× = −ν( 1

2 + cos θ(t))B exp(θ(t)[n]×) sin θ(t)[n]×.

Now, thanks to the expression (3.3), we have

sin θ[n]× = 1
2 (exp(θ[n]×)− exp(θ[n]×)T ) = 1

2 (BTA−ATB),

and A · B = Id · ABT = 1
2 tr(exp(θ[n]×)) = 1

2 + cos θ thanks to (3.1). Therefore we

obtain

dA

dt
= −ν(A ·B)A 1

2 (BTA−ATB) = ν(A ·B)PTA
B,

thanks to (A.1) and we have A(0) = A0. Since θ ∈ [0, θ0] 7→ exp(θ[n]×) is a geodesic

between Id and BTA0, then θ 7→ B exp(θ[n]×) is a geodesic between B and A, and

the solution A(t) is supported on this geodesic. It is also easy to see that, except

in the case θ0 = π or θ0 = 0, for which the solution is constant, the function t 7→
θ(t) (solution of the one-dimensional differential equation θ′ = −ν( 1

2 + cos θ) sin θ)

is positive, decreasing, and converge exponentially fast to 0, with an asymptotic

exponential rate ν( 3
2 ). Therefore, as time goes to infinity, the trajectory covers the

whole geodesic from A0 to B (excluded).

We now turn to the proofs of the expressions of the gradient, the volume form

and the divergence in SO(3) in the so-called Euler axis-angle coordinates, that were

presented in section 4.2.

Proof. [Proof of Prop. 4.1: expression of the gradient in SO(3).]

Consider a curve in SO(3) given by

A(t) = exp(θ(t)[n]×(t)) = Id + sin(θ(t))[n]×(t) + (1− cos(θ(t)))[n]2×(t)
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(following (3.3)-(3.2)) with A(0) = A, θ(0) = θ and [n]×(t) = [n(t)]×, n(0) = n.

Define:

δA = A′(0) ∈ TA,
δθ = θ′(0) ∈ R,
δn = n′(0),

δ[n]× = [n]×
′
(0) = [δn]×.

With these notations, for a function f = f(A(θ,n)) it holds:

∇Af · δA =
∂f

∂θ
δθ +∇nf · δn. (A.3)

On the other hand, it holds true that

δA = A[n]×δθ + sin θδ[n]× + (1− cos θ)
(
[n]×δ[n]× + δ[n]× [n]×

)
= A[n]×δθ +AAT

(
sin θδ[n]× + (1− cos θ)

(
[n]×δ[n]× + δ[n]× [n]×

) )
= A[n]×δθ +A

(
Id− sin θ [n]× + (1− cos θ)[n]2×

)(
sin θδ[n]× + (1− cos θ)

(
[n]×δ[n]× + δ[n]× [n]×

) )
= A[n]×δθ +A

(
sin θδ[n]× + (1− cos θ)

(
δ[n]× [n]× − [n]×δ[n]×

) )
= A[n]×δθ + 2 sin(θ/2)A

(
cos(θ/2) [δn]× + sin(θ/2) [n× δn]×

)
,

= A[n]×δθ + L[n]×(δ[n]×), (A.4)

where the last line defines L[n]× . In the first line, the term in δθ is obtained by

differentiating the exponential form (3.4) of A(t) assuming that [n]×(t) is constant.

The term in δ[n]× is obtained by differentiating Rodrigues’ formula (3.3). To do the

computation we have used Rodrigues’ formula (3.3) to express AT and the facts

that [n]3× = −[n]×; [n]×δ[n]× [n]× = 0; and δ[n]× [n]× − [n]×δ[n]× = [δn × n]×.

In particular notice that {[n]×, [δn]×, [n × δn]×} is an orthogonal basis of A
(antisymmetric matrices) from which we obtain a basis of TA (by Prop. Ap-

pendix A.2). So, we just need to compute the components of ∇Af in span{A[n]×}
and span{(A[n]×)⊥}.

We will show that the component in span{A[n]×} is given by

PA[n]× (∇Af) =
∂f

∂θ
A[n]× (A.5)

and the one on span{(A[n]×)⊥} is

P(A[n]×)⊥ (∇Af) =
1

2 sin(θ/2)
A
(
cos(θ/2) [∇nf ]× + sin(θ/2) [n×∇nf ]×

)
. (A.6)

The sum of the two previous expressions gives (4.2) (∇Af = PA[n]×(∇Af) +

P(A[n]×)⊥(∇Af)). The component (A.5) is computed considering the case

where δn = 0 in (A.4)-(A.3), so that

∇Af · δA = ∇Af ·A[n]×δθ =
∂f

∂θ
δθ.
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Expression (A.5) is obtained by noticing that (A[n]×) · (A[n]×) = [n]× · [n]× =

n · n = 1 (using (3.7)).

To obtain the component (A.6), consider the case δθ = 0 in (A.4) and (A.3) so

that

∇Af · δA = ∇Af · L[n]×(δ[n]×) = ∇nf · δn, (A.7)

where L[n]× is given in (A.4).

We have that

P(A[n]×)⊥ (∇Af) = A [u]× for some u ⊥ n.

The goal is to compute u as a function of v := ∇nf . By (A.7) we have that

A [u]× · L[n]×(δ[n]×) = ∇nf · δn.

This implies that

2 sin(θ/2) [u]× ·
(
cos(θ/2) [δn]× + sin(θ/2) [n× δn]×

)
= v · δn for all δn ⊥ n,

so (see (3.7)) we get

2 sin(θ/2) (cos(θ/2)u + sin(θ/2)u× n) · δn = v · δn.

Since this is true for all δn orthogonal to n, we get

v = 2 sin(θ/2) (cos(θ/2)u + sin(θ/2)u× n) .

From here can get the expression of n × v in terms of u and n × u. After some

computations we finally obtain that

u =
1

2 sin(θ/2)
(cos(θ/2)v + sin(θ/2)n× v) .

Proof. [Proof of the volume form, Lemma 4.2] We denote by g the metric of the

Riemannian manifold SO(3) associated to the inner product

A ·B =
1

2
tr(ATB), A,B ∈ SO(3).

The volume form is proportional to
√

det(g).30 We compute the volume form using

spherical coordinates, i.e., we consider the coordinates (θ, φ, ψ) ∈ [0, π] × [0, π] ×
[0, 2π]. Given the Euler axis-angle coordinates (θ,n) we have that

n =

 sinφ cosψ

sinφ sinψ

cosφ

 .

For the spherical coordinate system, we consider the vector field
(
∂
∂θ ,

∂
∂φ ,

∂
∂ψ

)
. De-

noting

Y1 =
∂A

∂θ
, Y2 =

∂A

∂φ
, Y3 =

∂A

∂ψ
, A ∈ SO(3),
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we get that (Yi)i=1,2,3 ∈ TA(SO(3)) forms a basis of vectors fields at A.

The metric g is defined as gij = g(Yi, Yj) = 1
2 tr(Y Ti Yj), i, j = 1, 2, 3. We compute

next each term. Firstly, we know that for a given δA ∈ TA, there exists δθ, δψ, δφ ∈ R
such that

δA =
∂A

∂θ
δθ +

∂A

∂φ
δφ +

∂A

∂ψ
δψ

and also for a given δn ∈ Tn(S2) (the tangent plane to the sphere at n), there

exists δ′ψ, δ′ψ such that

δn =
∂n

∂φ
δ′φ +

∂n

∂ψ
δ′ψ.

Now, following the computation given in (A.4) we have that, for δθ = 1, δφ =

0, δψ = 0

∂A

∂θ
= δA = A[n]×.

Now, if δθ = 0, δφ = 1, δψ = 0 then, using that δn = ∂n
∂φ we have that

∂A

∂φ
= δA = 2 sin(θ/2)A

[
Rn,θ/2

(
∂n

∂φ

)]
×
,

where

Rn,θ/2(v) = cos(θ/2)v + sin(θ/2)(n× v),

which corresponds to the rotation of the vector v around n by an angle θ/2 (anti-

clockwise) as long as v · n = 0. Analogously one can also deduce that

∂A

∂ψ
= 2 sin(θ/2)

[
Rn,θ/2

(
∂n

∂ψ

)]
×
.

From here, using that ‖∂n∂φ‖
2 = 1 and ‖ ∂n∂ψ‖

2 = sin2 φ, we conclude that

g =

 1 0 0

0 4 sin2(θ/2) 0

0 0 4 sin2(θ/2) sin2 φ

 .

Notice that to compute g
(
∂A
∂θ ,

∂A
∂φ

)
we use that Rn,θ/2

(
∂n
∂φ

)
⊥ n.

Finally we have that √
det(g) = 4 sin2(θ/2) sinφ

and therefore∫
SO(3)

f(A) dA =

∫
[0,π]×[0,π]×[0,2π]

f̃(θ, φ, ψ)4 sin2(θ/2) sinφdθdφdψ

= 4

∫
θ∈[0,π]

(∫
[0,π]×[0.2π]

f̃(θ, φ, ψ) sinφdφdψ

)
sin2(θ/2) dθ.
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The term sinφdφdψ is the volume element in the sphere S2 so we have that∫
S2

f̂(θ,n)dn =

∫
[0,π]×[0,2π]

f̃(θ, φ, ψ) sinφdφdψ.

Therefore, the volume element corresponding to the Euler axis-angle coordinates is

proportional to sin2(θ/2)dθdn. Since the volume element is defined up to a constant,

we choose the constant c such that∫ 2π

0

c sin2(θ/2) dθ = 1,

i.e., c = 2/π. In conclusion, the volume element in the Euler axis-angle coordinates

corresponds to

2

π
sin2(θ/2)dθdn.

Proof. [Proof of divergence formula, Prop. 4.2] We compute the divergence by

duality of the gradient, Prop. 4.1. Let f = f(A) be a function and consider∫
SO(3)

∇A ·B(A) f(A) dA

= −
∫
SO(3)

B(A) · ∇Af(A) dA

= −
∫

(0,π)×S2

W (θ)b(θ,n)∂θf(θ,n) dθdn

−
∫

(0,π)×S2

W (θ)

2 sin(θ/2)
v(θ,n) ·

(
cos(θ/2)∇nf(n, θ) + sin(θ/2)n×∇nf(n, θ)

)
dθdn

=

∫
(0,π)×S2

f(θ,n)

sin2(θ/2)
∂θ
(
sin2(θ/2)b(θ,n)

)
W (θ) dθdn

+

∫
(0,π)×S2

f(θ,n)

2 sin(θ/2)
∇n ·

(
v(θ,n) cos(θ/2) + sin(θ/2)(v(θ,n)× n)

)
W (θ)dθdn,

where W is given by (4.3), from which we deduce the result.
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of CEREMADE, Université Paris Dauphine, where part of this research was con-

ducted.



October 5, 2016 22:21 WSPC/INSTRUCTION FILE ws-m3as

A new flocking model through body attitude coordination 41

Data statement

No new data was generated in the course of this research.

References

1. M.Aldana and C.Huepe, Phase transitions in self-driven many-particle systems and
related non-equilibrium models: a network approach, J. Stat. Phys. 112 (2013) 135153.

2. D. Armbruster, P. Degond, and C. Ringhofer, A model for the dynamics of large
queuing networks and supply chains, SIAM J. Appl. Math. 66 (2006) 896920.

3. A. Aw, A. Klar, M. Rascle, and T. Materne, Derivation of continuum traffic flow
models from microscopic follow-the-leader models, SIAM J. Appl. Math. 63 (2002)
259278.

4. A. B.T. Barbaro and P. Degond, Phase transition and diffusion among socially inter-
acting self-propelled agents, arXiv preprint arXiv:1207.1926, (2012).

5. E. Ben-Jacob, I. Cohen, and H. Levine, Cooperative self-organization of microorgan-
isms, Advances in Physics 49 (2000) 395554.
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7. F. Bolley, J. A. Cañizo, and J. A. Carrillo, Mean-field limit for the stochastic vicsek
model, Appl. Math. Lett. 25 (2012) 339343.

8. J. Buhl, D. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, and S. J.
Simpson, From disorder to order in marching locusts, Science 312 (2006) 14021406.

9. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M.
Viale, Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. 107 (2010)
1186511870.

10. A. Cavagna, L. Del Castello, I. Giardina, T. Grigera, A. Jelic, S. Melillo, T. Mora,
L. Parisi, E. Silvestri, M. Viale, et al, Flocking and turning: a new model for self-
organized collective motion, J. Stat. Phys. 158 (2014) 601627.

11. C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases,
Springer Science & Business Media 106 (2013).

12. B. Colbois, Laplacian on Riemannian manifolds, Notes of a series of 4 lectures given
in Carthage (2010).

13. P. Constantin, The Onsager equation for corpora, J. Comput. Theor. Nanosci. 7
(2010) 675682.

14. P. Constantin, A. Zlatos, et al, On the high intensity limit of interacting corpora,
Commun. Math. Sci. 8 (2010) 173186.

15. I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, Collective memory
and spatial sorting in animal groups, J. Theoret. Biol. 218 (2002) 111.

16. P. Degond, Macroscopic limits of the Boltzmann equation: a review, Modeling and
Computational Methods for Kinetic Equations, Springer (2004) 357.

17. P. Degond, G. Dimarco, and T. B. N. Mac, Hydrodynamics of the kuramoto vicsek
model of rotating self-propelled particles, Math. Models Methods Appl. Sci. 24 (2014)
277325.

18. P. Degond, G. Dimarco, T.B. N. Mac, and N. Wang, Macroscopic models of collective
motion with repulsion, arXiv preprint arXiv:1404.4886 (2014).

19. P. Degond, A. Frouvelle, and J. Liu, Macroscopic limits and phase transition in a
system of self-propelled particles, J. Nonlinear Sci. 23 (2013) 427456.

20. P. Degond, A. Frouvelle, and J. Liu, Phase transitions, hysteresis, and hyperbolicity
for self-organized alignment dynamics, Arch. Ration. Mech. Anal. 216 (2015) 63115.



October 5, 2016 22:21 WSPC/INSTRUCTION FILE ws-m3as

42 P. Degond, A. Frouvelle, S. Merino-Aceituno

21. P. Degond and J. Liu, Hydrodynamics of self-alignment interactions with precession
and derivation of the LandauLifschitzGilbert equation, Math. Models Methods Appl.
Sci. 22 (2012) 1140001.

22. P. Degond, J. Liu, and C. Ringhofer, Evolution of wealth in a non-conservative econ-
omy driven by local nash equilibria, Phil. Trans. R. Soc. A 372 (2014) 20130394.

23. P. Degond, A. Manhart, and H. Yu, A continuum model for nematic alignment of
self-propelled particles, arXiv preprint arXiv:1509.03124 (2015).

24. P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation
interaction, Math. Models Methods Appl. Sci. 18 (2008) 11931215.

25. P. Degond and L. Navoret, A multi-layer model for self-propelled disks interacting
through alignment and volume exclusion, arXiv preprint arXiv:1502.05936 (2015).

26. P.Degond and C.Ringhofer, Stochastic dynamics of longs supply chains with random
breakdowns, SIAM J. Appl. Math. 68 (2007) 5979.

27. P. Degond and H. Yu, Self-organized hydrodynamics in an annular domain: Modal
analysis and nonlinear effects, Math. Models Methods Appl. Sci. 25 (2015) 495519.

28. A. Figalli, M. Kang, and J. Morales, Global well-posedness of the spatially homoge-
neous Kolmogorov-Vicsek model as a gradient flow, ArXiv e-prints (2015).

29. A. Frouvelle, A continuum model for alignment of self-propelled particles with
anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci. 22
(2012) 1250011

30. S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Springer 3 (1990).
31. I. M. Gamba and M Kang, Global weak solutions for Kolmogorov-Vicsek type equa-

tions with orientational interaction, ArXiv e-prints (2015).
32. C. W. Gardiner, Stochastic methods, (Springer-Verlag, 1985).
33. G. H. Golub and C. F. Van Loan, Matrix computations, JHU Press 3 (2012).
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Flour, Springer XIX1989 (1991) 165251.
44. J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical xy model: how

birds fly together, Phys. Rev. Lett. 75 (1995) 4326.
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