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Architecture-independent power bound for vibration
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E Halvorsen1, C P Le1, P D Mitcheson2 and E M Yeatman2

1 Department of Micro and Nano Systems Technology, Vestfold University College, Raveien
197, N-3184 Borre, Norway
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Abstract. The maximum output power of energy harvesters driven by harmonic vibrations is
well known for a range of specific harvester architectures. An architecture-independent bound
based on the mechanical input-power also exists and gives a strict limit on achievable power
with one mechanical degree of freedom, but is a least upper bound only for lossless devices.
We report a new theoretical bound on the output power of vibration energy harvesters that
includes parasitic, linear mechanical damping while still being architecture independent. This
bound greatly improves the previous bound at moderate force amplitudes and is compared
to the performance of established harvester architectures which are shown to agree with it in
limiting cases. The bound is a hard limit on achievable power with one mechanical degree of
freedom and can not be circumvented by transducer or power-electronic-interface design.

1. Introduction
In designing energy harvesters, an important question is how to adjust the parameters of a chosen
harvester architecture in order to optimize the performance? This question has been resolved
for a number of harvester architectures under various operating conditons [1, 2, 3, 4] and also
resulted in guidelines on which among the known architectures to choose for given operating
conditions [2]. Another important question is to what extent it is possible to significantly improve
ouput power beyond that of the known architectures by inventing new device concepts, either
related to the mechanics, the electromechanical conversion or the power electronic interface? In
order to answer this question, it is necessary to know the ultimate limits on power without having
to specify the details of the transducer and electronic interface, i.e. an architecture-independent
power bound is needed. Such a bound based on input-power exists [5, 6], but does not account
for parasitic losses which can amount to as much as half the input power even under optimal
conditions [1]. To tighten the bound, losses should be accounted for. In this contribution we
present a new theoretical bound that takes linear mechanical damping into account without
making any a priori assumptions on the the details of the transducer or the electronic sub-
system beyond the transducer having only one mechanical port. The optimal output powers of
the established harvester architectures are compared to this bound.
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2. Power bound
We consider energy harvesting systems characterized by a single mass m and a single mechanical
displacement x. The mass is acted upon by an external force F which would usually be the
inertial force F = −mÿ due to the displacement y of the device frame attached to a vibrating
body. The proof-mass motion drives an electromechanical transducer which may or may not
include an elastic suspension. Unwanted parasitic loss is modelled by the linear damping force
bẋ characterized by a constant b. An equivalent circuit for the system is shown in figure 1.
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Figure 1. Energy harvesting system.

Newton’s second law for the proof mass is mẍ = −FT − bẋ + F where FT is the transducer
force. As opposed to optimizing FT for a given architecture, we here seek a least upper bound
on the output power when we are not limited to already known architectures. This problem
requires an approach that doesn’t hinge on a priori knowledge of FT. It is made possible by the
power balance which follows from observing that the time average of the mechanical input power
minus the time average of power lost in parasitic damping equals the average power delivered
to the rest of the system. We therefore base the analysis on this energy difference expressed as

E[x; tb, ta] =

∫ tb

ta

[
F (t)ẋ(t)− b(ẋ(t))2

]
dt =

∫ tb

ta

(F (t))2dt/4b− b
∫ tb

ta

[ẋ(t)− F (t)/2b]2 dt. (1)

for a time interval [ta, tb] and seek the displacement waveform x that maximizes this quantity.
This approach is equivalent to optimizing the average of the power (F − bẋ)ẋ transferred at “1”
in figure 1 and for long times it gives an upper bound on the power flow at later stages, such as
the opportunity power at the output of the electromechanical transducer (”2” in the figure) or
the final output power to a load or to a storage unit.

2.1. Unrestricted proof mass motion
The energy is always less than or equal to the first term on the r.h.s. of (1), so the average
power is bounded by P̄ (x; tb, ta) = E[x; tb, ta]/(tb − ta) ≤ F 2

rms/4b where Frms is the rms force.
The equality of the bound is reached if one can realize dynamics that give ẋ(t) = F (t)/2b. With
a harmonic force F = F0 cosωt of amplitude F0 and angular frequency ω, P̄ = F 2

0 /8b when
tb − ta → ∞ and coincides with the optimal power point of the velocity damped generator
(VDRG) [1, 2]. Therefore, no transducer or power electronic interface design can result in a
better performance than the optimal VDRG when the forcing is harmonic and the displacement
is unconstrained.

For a possibly irregular F , we insert ẋ(t) = F (t)/2b into Newton’s second law and solve for FT

to determine the transducer force under optimum operation. The result is FT = F/2−mḞ/2b =
bẋ−mẍ which in the frequency domain amounts to complex conjugate load matching and cannot
be achieved exactly over a band of frequencies with a passive load. The problem is evident for
white noise which has infinite Frms. It is conceivable to closely approximate the optimal force
over a limited band of frequencies with an active control strategy as proposed in [7] for another
target FT. Such a system has bounded input power even with white noise input [8, 9].
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2.2. Strict limits on proof mass motion and periodic forcing
We now seek an optimal proof mass trajectory x = x(t) subject to the constraint that
−Zl ≤ x(t) ≤ Zl for a limit of displacement Zl. We start with maximizing the energy (1)
over the period T of the force F (t). General solution methods exist for this type of inequality-
constrained nonlinear programming problem [10, 11]. Based on the key ideas of these general
methods, we present a specific approach for our problem.

The displacement constraint is turned into an equality constraint x2+s2 = Z2
l by introducing

an auxiliary real function s = s(t) and is enforced by introducing a Lagrange multiplier λ = λ(t).

We first look for x, s and λ that make S =
∫ T
0

[
Fẋ− bẋ2 + λ(x2 + s2 − Z2

l )
]

dt stationary with
ẋ piecewise differentiable and everywhere continuous. The first order variation of S w.r.t x, s
and λ is then zero if

2bẍ+ 2λx = Ḟ , (2)

λs = 0, (3)

x2 + s2 = Z2
l . (4)

Suppose now that x, s, λ solve (2)-(4), and consider another candidate periodic displacement
waveform x̃ which we write x̃ = x + ∆x and which also fulfils |x̃| ≤ Zl. We permit ˙̃x and
∆ẋ that have a finite number of step discontinuities, so that cases with impulse forces on the
proof mass are within the set of admissible x̃. The converted energy (1) can then be written

E[x̃;T, 0] = E[x;T, 0]−2
∫ T
0 λx∆xdt−b

∫ T
0 ∆ẋ2dt by help of an integration by parts, the periodic

boundary condition, and (2). The rightmost integral is manifestly non-negative. When λ 6= 0,
then s = 0 by (3), we have |x| = Zl and therefore x∆x ≤ 0. This leads to the conclusion that if

λ(t) ≤ 0 for all t, then also
∫ T
0 λx∆xdt ≥ 0 and we have E[x̃;T, 0] ≤ E[x;T, 0] for all admissible

x̃. Hence, a solution of (2-4) with λ(t) ≤ 0, if it exists, maximizes the energy per cycle.
We reiterate the above arguments for a possibly aperiodic x̃ and find that the average power

P̄ over an arbitrary time interval [ta, tb] can be bounded as P̄ [x̃; tb, ta] ≤ E[x; tb, ta]/(tb − ta) +
(F − 2bẋ)∆x|tbt=ta

/(tb − ta). It follows that

P [x̃] ≡ lim
tb−ta→∞

P̄ [x̃; tb, ta] ≤ P [x] = E[x;T, 0]/T. (5)

Therefore the specified periodic solution also maximizes the long-time average power. It remains
to show that such a solution actually exists. We will do so for a time-harmonic force.

2.3. Optimum operation for a time harmonic force
For a small enough force, the solution for unrestricted motion still applies, and with F = F0 cosωt
it is x = (F0/2bω) sinωt up to a constant. Displacement-constrained operation will be reached
at a critical force amplitude Fc = 2bωZl with a critical power of Pc = F 2

c /8b = bω2Z2
l /2.

For F0 ≥ Fc, we note that while λ 6= 0 so that s = 0 by (3), the proof mass is at rest at one
of the displacement limits according to (4). We can then use (2) to write the requirement of
nonpositive λ as λ = Ḟ /2x = −F0ω sin(ωt)/2x ≤ 0 and conclude that the proof mass may only
rest at x = Zl if sinωt ≥ 0 and at x = −Zl if sinωt ≤ 0. When λ = 0, we integrate (2) twice to
get

ẋ = F0(cosωt− cos θ1)/2b and x = F0(sinωt− ωt cos θ1)/2bω (6)

where the integration constants were determined by requiring zero velocity at the limits. The
limit x(t1) = Zl is reached at a time t1 and a phase angle θ1 = ωt1 ∈ [0, π/2] given by

sin θ1 − θ1 cos θ1 = Fc/F0. (7)
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Figure 2. Displacement waveforms that
maximize power delivered into the transducer.
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Figure 3. Velocity waveforms that maximize
power delivered into the transducer.

Because F (t−π/ω) = −F (t), we have that −x(t−π/ω) is a solution of (2) if x(t) is. We can
therefore generate solutions for any ωt ∈ [nπ−θ1, nπ+θ1] with integer n by repeated application
of this symmetry operation to (6). For the intervening intervals, the proof mass is at rest at
either of the limits which is also a feature of the Coulomb-force parametric generators (CFPGs)
[2]. The resulting waveforms are shown in figures 2 and 3.

To determine the output power bound for F0 ≥ Fc, we insert the optimal solution into (1)
and divide by T . One way to write the result is

P/Pc =
1

π

(
F0

Fc

)2

(sin 2θ1 − 2θ1 cos 2θ1) . (8)

Figure 4 shows this power bound over a range of force amplitudes. It is compared to the exact
result for the optimal VDRG [2] which coincides with the bound for F0 ≤ Fc as discussed above.
For larger F0, the initial asymptotics agrees to first order in F0/Fc − 1, but as F0/Fc →∞ the
deviation increases and the power bound approaches asymptotically the mechanical input-power
bound Pin,bound/Pc = 8F0/πFc [5, 6] which is 4/π larger than for the VDRG. The CFPG has
output power PCFPG = βPin,bound with the parameter β → 1 as the vibration amplitude goes to
infinity. Hence, its performance coincides with the bound in this limit.
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Figure 4. Output-power bound compared to optimal VDRG and input-power bound. (a) Wide
force-amplitude range. (b) Moderate force amplitudes.
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3. Linear two-port devices
The linear-two port model has the equivalent circuit in figure 5a and performs equally with the
VDRG without constraints and for k2Qm > 1 +

√
1− k2 with k2 = Γ2/KC, Qm = mω0/b and

ω0 =
√
K/m [3]. Its output power is shown in figure 5b where the load resistance has been

adjusted to avoid displacement beyond the limit. The drive frequency is held fixed at the value
near the resonant frequency that is optimal for unconstrained motion [3]. The two-port model
does not perform better than the VDRG and even has a power drop before sufficient damping
becomes impossible to achieve. However, the higher the coupling is, the further into the high-
force regime is it possible to operate and the closer the model follows the VDRG. Therefore
higher coupling than the critical one is advantageous for displacement-limited operation.

4. Concluding remarks
We have derived a new architecture-independent power bound which at small to intermediate
force-amplitudes greatly improves on using input-power bound as a bound for output power.
VDRG performance is equal or close to the new bound for small force amplitudes while the CFPG
performance is close to it when the force approaches infinity. The bound is a fundamental limit
which can not be circumvented by transducer or power-electronic-interface design. Multiple
degrees of freedom and explicit treatment of other parasitic damping than linear are interesting
extensions to pursue in future work.
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