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Abstract—We consider the problem of transmit beamform-
ing to multiple cochannel multicast groups. The conventional
approach is to beamform a designated data stream to each
group, while treating potential inter-group interference as noise
at the receivers. In overloaded systems where the number of
transmit antennas is insufficient to perform interference nulling,
we show that inter-group interference dominates at high SNRs,
leading to a saturating max-min fair performance. We propose
a rather unconventional approach to cope with this issue based
on the concept of Rate-Splitting (RS). In particular, part of the
interference is broadcasted to all groups such that it is decoded
and canceled before the designated beams are decoded. We show
that the RS strategy achieves significant performance gains over
the conventional multigroup multicast beamforming strategy.

Index Terms—Broadcasting, multicasting, downlink beam-
forming, degrees of freedom, WMMSE approach.

I. INTRODUCTION

Since the work of Sidiropoulos et al. [1], beamforming for
physical-layer multicasting has received considerable research
attention. In the most basic setup, the Base Station (BS)
transmits a common data stream to all receivers. This was
later generalized to multiple cochannel multicast groups, also
known as multigroup multicasting [2]. The main problems
considered in the multicasting literature are those of classical
multiuser beamforming, namely the Quality of Service (QoS)
constrained power minimization problem and the power con-
strained Max-Min Fair (MMF) problem. Such problems were
shown to be NP-hard, and the solutions advised in [1], [2]
are based on Semidefinite Relaxation (SDR) and Gaussian
randomization techniques. Alternative solutions based on con-
vex approximation methods were later proposed, exhibiting
marginally improved performances under certain setups, and
more importantly, lower complexities [3], [4]. The multigroup
multicasting problem was also extended to incorporate per-
antenna power constraints [5] and large-scale arrays [6]. In
addition to the QoS and MMF problems, the sum-rate maxi-
mization problem was considered in [7].

The common transmission strategy adopted in multigroup
multicasting is based on extending the multiuser beamforming
paradigm, i.e. each message is first encoded into an indepen-
dent data stream then transmitted through linear precoding
(or beamforming). However, the multicast nature of each
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stream results in different, and more difficult, design problems
compared to their multiuser counterparts. In the beamforming
strategy, each receiver decodes its desired stream while treating
all interfering streams as noise. Hence, inter-group interference
is inevitable under an insufficient number of BS antennas.
Although rarely highlighted or treated in the multigroup multi-
casting literature, such interference can be highly detrimental.

We propose a beamforming strategy based on the concept
of Rate-Splitting (RS), where the message intended to each
group is split into a common part and a designated part. All
common parts are packed into one super common message,
broadcasted to all users in the system. Designated parts on the
other hand are transmitted in the conventional beamforming
manner. While the concept of RS is not particularly new
(it appears in the interference channel literature), it has only
been applied recently to multiuser beamforming, where it was
shown to enhance the performance under residual interference
arising from imperfect Channel State Information (CSI) at the
BS [8], [9]. We show that RS brings significant performance
gains to multigroup multicasting, particularly in inter-group
interference limited scenarios. While the focus is on the MMF
problem in this paper, RS can be extended to the QoS problem.

The rest of the paper is organized as follows. Section II
presents the system model. The limitations of the conventional
transmission strategy are analysed in Section III. In Section
IV, the RS strategy is introduced and the performance gains
over the conventional strategy are derived. The RS precoders
are optimized using a Weighted Minimum Mean Square Error
(WMMSE) algorithm in Section V. Simulation results are
presented in Section VI, and Section VII concludes the paper.

II. SYSTEM MODEL

Consider a transmitter equipped with N antennas commu-
nicating with K single-antenna receivers grouped into the M
multicast groups {G1, . . . ,GM}, where K , {1, . . . ,K} and
M , {1, . . . ,M}. We assume that

⋃
m∈M Gm = K, and

Gm ∩ Gj = ∅, for all m, j ∈ M and m 6= j. Let x ∈ CN
denote the signal vector transmitted by the BS in a given
channel use, which is subject to an average power constraint
E
{
xHx

}
≤ P . Denoting the corresponding signal received

by the kth user as yk, the input-output relationship writes as
yk = hHk x + nk, where hk ∈ CN is the narrow-band channel
vector from the BS to the kth user, and nk ∈ CN (0, σ2

n,k) is
the Additive White Gaussian Noise (AWGN) at the receiver.



We assume, without loss of generality, that σ2
n,1, . . . , σ

2
n,K =

σ2
n, from which the transmit SNR is given by P/σ2

n. Moreover,
the transmitter perfectly knows all K channel vectors, and each
receiver knows its own channel vector.

In multigroup multicast transmission, the BS communicates
the messages W1, . . . ,WM to G1, . . . ,GM respectively. Con-
sider a conventional linear precoding (beamforming) trans-
mission model. Messages are first encoded into independent
data streams, where the vector of coded data symbols in a
given channel use writes as sp , [s1, . . . , sM ]T ∈ CM .
We assume that E

{
sps

H
p

}
= I, where power allocation is

considered part of the beamforming. Data streams are then
mapped to the transmit antennas through a linear precoding
matrix Pp , [p1, . . . ,pM ], where pm ∈ CN is the mth
group’s precoding vector. The resulting transmit signal is

x =

M∑
m=1

pmsm (1)

where the power constraint reduces to
∑M
m=1 ‖pm‖2 ≤ P .

The kth user’s average receive power (over multiple channel
uses in which the channel is fixed) writes as

Tk =

Sk︷ ︸︸ ︷
|hHk pµ(k)|2 +

Ik︷ ︸︸ ︷∑
m6=µ(k)

|hHk pm|2 + σ2
n . (2)

where µ : K 7→ M maps a user-index to the corresponding
group-index, i.e. µ(k) = m such that k ∈ Gm. In the
following, µ(k) is referred to as µ for brevity where the
argument of the function is clear from the context. In (2),
Sk and Ik denote the desired receive power and the inter-
ference plus noise power, respectively. Hence, the Signal to
Interference plus Noise Ratio (SINR) experienced by the kth
user is defined as γk , SkI

−1
k . Under Gaussian signalling,

the kth achievable user-rate is given by Rk = log2(1 + γk).
In multigroup multicasting, users belonging to the same group
decode the same data stream. Therefore, to guarantee that all
users in the mth group are able to recover Wm successfully,
the corresponding code-rate should not exceed the group-rate
defined as rm , mini∈Gm Ri.

III. MAX-MIN FAIRNESS AND INTER-GROUP
INTERFERENCE

In the light of the conventional multi-stream beamforming
model, the MMF problem is formulated as

R(P ) :


max
Pp

min
m∈M

min
i∈Gm

Ri

s.t.
M∑
m=1

‖pm‖2 ≤ P
(3)

where the inner minimization in (3) accounts for the multi-
cast nature within each group, while the outer minimization
accounts for the fairness across groups. It is common practice
to formulate the above problem in terms of the SINRs [2],
[4]–[6]. Since each group receives a single stream, and due to
the Rate-SINR monotonic relationship, the two formulations

are equivalent. The rate formulation is preferred in this work
in order to compare the performance to the RS scheme.

A. Inter-Group Interference and Degrees of Freedom

An optimum MMF design achieves balanced group rates,
requiring a simultaneous increase in powers allocated to all
streams as P increases. In scenarios where the number of
transmit antennas in insufficient to place each beam in the
null space of all its unintended groups, inter-group interference
is expected to limit the MMF performance. To characterize
this, we resort to high SNR analysis through the Degrees of
Freedom (DoF). This regime is of particular interest as the
effect of noise can be neglected, and inter-group interference
is the main limiting factor. The DoF can be roughly inter-
preted as the number of interference-free streams that can
be simultaneously communicated in a single channel use. To
facilitate the definition of the DoF, we first define a precoding
scheme {Pp(P )}P as a family of feasible precoders with one
precoding matrix for each power level. The corresponding
achievable user-rates write as {R1(P ), . . . , RK(P )}P , and
the kth user-DoF is defined as Dk , limP→∞

Rk(P )
log2(P ) . It

follows that the mth group-DoF, denoted by dm, satisfies
0 ≤ dm ≤ Di for all i ∈ Gm. The corresponding symmetric-
DoF is given by d = minm∈M dm.

For a given setup, the optimum MMF precoding scheme
is denoted by

{
P∗p(P )

}
P

. The corresponding MMF-DoF is
given by d∗ = limP→∞

R(P )
log2(P ) , which is the maximum

symmetric-DoF. Since each user is equipped with a single
antenna, then D1, . . . , DK ≤ 1, and d ≤ 1 for any precoding
scheme. Hence, when d = 1 is achievable, it is also optimum.
It should be noted that although a rate-optimal precoder is also
optimum in a DoF sense, the converse is usually untrue.

B. MMF-DoF of Multi-Stream Beamforming

In the DoF analysis, we make the following assumptions.

Assumption 1. The channel vectors h1, . . . ,hK are indepen-
dently drawn from a set of continuous distribution functions.
Hence, for any N ×Ksub matrix in which the Ksub column
vectors constitute any subset of the K channel vectors, it holds
with probability one that the rank is min{N,Ksub}.

Assumption 2. We assume equal size groups. i.e.
|G1|, . . . , |GM | = G, where G = K/M is a positive integer.

Next, the MMF-DoF of the conventional multi-stream trans-
mission scheme is characterized.

Proposition 1. Under Assumptions 1 and 2, the optimum
MMF-DoF achieved by solving (3) is given by

lim
P→∞

R(P )

log2(P )
=

{
1, N ≥ Nmin

0, N < Nmin

(4)

where Nmin = 1 +K −G.

To show this, let us define Hm as the matrix with columns
constituting channel vectors of all users in Gm, and H̄m =
[H1, . . . ,Hm−1,Hm+1, . . . ,HM ] as the complementary set



of channel vectors. By Assumptions 1 and 2, null
(
H̄m

)
has

a dimension of max{N +G−K, 0} for all m ∈M. Hence,
N ≥ Nmin is sufficient to place each beamforming vector in
the null space of all groups it is not intended to, i.e. pm ∈
null

(
H̄m

)
for all m ∈ M. Each group sees no inter-group

interference, and a DoF of 1 per group is achievable. Such DoF
is optimum as it cannot be surpassed. On the contrary, when
N < Nmin, this is not possible, and inter-group interference
limits the MMF-DoF to 0 as shown in the Appendix. We refer
to this case as an overloaded system.

Finally, we conclude this section by highlighting the impact
of a collapsing DoF on the rate performance. When d = 0,
the MMF rate stops growing as SNR grows large, reaching a
saturated performance1. Although the DoF analysis is carried
out as SNR goes to infinity, its results are highly visible in
finite SNR regimes as we see in the simulation results.

IV. RATE-SPLITTING FOR MULTIGROUP MULTICASTING

The saturating performance can be avoided by single-stream
multigroup transmission. In particular, the M messages are
packed into one super message, encoded into a single data
stream. This is broadcasted such that it is decoded by all
groups, hence retrieving their corresponding messages. Since
this interference-free transmission achieves a total DoF of
1, each group is guaranteed a non-saturating performance
with a DoF of 1/M . However, relying solely on this strategy
jeopardizes partial gains potentially achieved by multi-stream
beamforming. A simple example is the low-SNR regime,
where interference is overwhelmed by noise, and beamforming
each message to its corresponding group is a preferred strategy.
Hence, we introduce the following unifying strategy.

A. The Rate-Splitting Strategy

Each group-message is split into a common part and a
group-designated part, e.g. Wm = {Wm0,Wm1}, with Wm0

and Wm1 being the common and designated parts respectively.
All common parts are packed into one super common message
Wc , {W10, . . . ,WM0}, encoded into the stream sc, and then
precoded using pc ∈ CN . On the other hand, the designated
messages are encoded into s1, . . . , sM and precoded in the
conventional multi-stream manner described in Section II. The
transmit signal writes as a superposition of the common stream
and the designated streams such that

x = pcsc +

M∑
m=1

pmsm. (5)

The power constraint writes as ‖pc‖2 +
∑M
m=1 ‖pm‖2 ≤ P .

The common stream can be interpreted as the part of the
interference that is decoded (hence eliminated) by all groups,
while interference from designated streams is treated as noise.

The kth user’s average received power now writes as

Tc,k = |hHk pc|2 + Tk (6)

1To be more precise, this corresponds to a rate scaling as o
(
log2(P )

)
,

which either stops growing or grows extremely slow with P compared to the
interference free scenario, reaching a flat or almost-flat performance.

where Sc,k = |hHk pc|2 denotes the common stream’s receive
power and Ic,k = Tk is the interference plus noise power
experienced by the common stream. By treating all designated
streams as noise, the SINR of the common stream at the kth
receiver is given by γc,k , Sc,kI

−1
c,k . Hence, transmitting Wc at

a rate of Rc,k = log2(1+γc,k) guarantees successful decoding
by the kth receiver. To guarantee that Wc is successfully
recovered by all receivers, the rate of the common data
stream should not exceed the common-rate defined as Rc =
mink∈KRc,k. After decoding the common stream, the receiver
removes it from yk using Successive Interference Cancellation
(SIC). This is followed by decoding the designated stream in
the presence of the remaining interference and noise, achieving
the rate Rk defined in Section II.

The common rate writes as a sum of M portions: Rc =∑M
m=1 Cm, where Cm is associated with Wm0. It follows that

the mth group-rate is defined as Rg,m , Cm + mini∈Gm Ri,
consisting of a common-rate portion plus a designated-rate.
It is easy to see that the RS group-rates reduce to the
conventional group-rates defined in Section III when |Wc| = 0.

B. MMF With Rate-Splitting

The MMF problem is formulated in terms of RS as follows

RRS(P ) :



max
c,P

min
m∈M

(
Cm + min

i∈Gm
Ri

)
s.t. Rc,k ≥

∑M
m=1 Cm,∀k ∈ K

Cm ≥ 0,∀m ∈M

‖pc‖2 +

M∑
m=1

‖pm‖2 ≤ P

(7)

where c , [C1, . . . , CM ]T is the vector of common-rate por-
tions. The first set of constraints in (7) accounts for the global
multicast nature of the common stream and guarantees that
it can be decoded by all users. The second set of constraints
guarantees that no user is allocated a negative common-rate
portion. Solving (7) yields the optimum precoding matrix, in
addition to the splitting ratio for each group-message. Next,
the DoF performance of the RS scheme is characterized.

Proposition 2. The MMF-DoF achieved by solving the RS
problem in (7) is lower-bounded by

lim
P→∞

RRS(P )

log2(P )
≥

{
1, N ≥ Nmin

1
M , N < Nmin

(8)

where the lower-bound is tight for N ≥ Nmin.

This follows directly from Proposition 1, and the fact
that the single-stream multigroup solution described at the
beginning of this section is feasible for problem (7).

V. PRECODER OPTIMIZATION

In the RS scheme, each group-rate writes as a sum of two
rate components. Hence, the MMF solutions in [2], [4] do not
apply here, as the performance metric of each user cannot be
expressed as a single SINR. Alternatively, we resort to the
WMMSE approach [10], [11], which is particularly effective



in dealing with problems incorporating non-convex coupled
sum-rate expressions, including RS problems [8], [9].

A. Rate-WMMSE Relationship

We start by defining the MSEs. The kth user’s estimate of
sc, denoted by ŝc,k, is obtained by applying the equalizer gc,k
to the receive signal such that ŝc,k = gc,kyk. After removing
the common stream using SIC, the equalizer gk is applied
to the remaining signal to obtain an estimate of ŝk given by
ŝk = gk(yk−hHk pcsc). The common and private MSEs at the
output of the kth receiver, defined as εc,k , E{|ŝc,k − sc|2}
and εk , E{|ŝk − sk|2} respectively, write as:

εc,k = |gc,k|2Tc,k − 2<
{
gc,kh

H
k pc

}
+ 1 (9a)

εk = |gk|2Tk − 2<
{
gkh

H
k pµ

}
+ 1. (9b)

The MMSEs are defined as εMMSE
c,k , mingc,k εc,k = T−1c,k Ic,k

and εMMSE
k , mingk εk = T−1k Ik, where the correspond-

ing optimum equalizers are the well-known MMSE weights
written as gMMSE

c,k = pHc hkT
−1
c,k and gMMSE

k = pHk hkT
−1
k .

The MMSEs are related to the SINRs such that γc,k =(
1/εMMSE

c,k

)
− 1 and γk =

(
1/εMMSE

k

)
− 1, from which

the achievable rates write as Rc,k = − log2(εMMSE
c,k ) and

Rk = − log2(εMMSE
k ).

Next we introduce the main building blocks of the solution,
the augmented WMSEs defined for the kth user as:

ξc,k , uc,kεc,k−log2(uc,k) and ξk , ukεk−log2(uk) (10)

where uc,k, uk > 0 are the corresponding weights. In the
following, ξc,k and ξk are referred to as the WMSEs for
brevity. The Rate-WMMSE relationship is established by
optimizing (10) over the equalizers and weights such that:

ξMMSE
c,k , min

uc,k,gc,k
ξc,k = 1−Rc,k (11a)

ξMMSE
k , min

uk,gk
ξk = 1−Rk (11b)

where the optimum equalizers are given by: g∗c,k = gMMSE
c,k and

g∗k = gMMSE
k , and the optimum weights are given by: u∗c,k =

uMMSE
c,k ,

(
εMMSE
c,k

)−1
and u∗k = uMMSE

k ,
(
εMMSE
k

)−1
,

obtained by checking the first order optimality conditions. By
closely examining each WMSE, it can be seen that it is convex
in each variable while fixing the other two.

B. WMSE Reformulation and Algorithm

Motivated by the relationship in (11), an equivalent WMSE
reformulation of problem (7) writes as

R̂RS(P ) :



max
rg,r,c,P,g,u

rg

s.t. Cm + rm ≥ rg,∀m ∈M
1− ξi ≥ rm,∀i ∈ Gm,∀m ∈M
1− ξc,k ≥

∑M
m=1 Cm,∀k ∈ K

Cm ≥ 0,∀m ∈M

‖pc‖2 +

M∑
m=1

‖pm‖2 ≤ P

(12)

where rg and r , {r1, . . . , rM} are auxiliary variables, u ,
{uc,k, uk | k ∈ K} is is the set of weights, and g , {gc,k, gk |
k ∈ K} is the set of equalizers. The equivalence between
(12) and (7) is established by observing that the WMSEs are
decoupled in their equalizers and weights. Hence, optimum g
and u are obtained by minimizing each WMSE separately as
shown in (11), yielding the MMSE solution. The equivalence
follows by substituting (11) into (12).

The WMSE problem in (12) is solved using an Alternating
Optimization (AO) algorithm, which exploits its block-wise
convexity. In a given iteration of the algorithm, g and u are
firstly updated using the optimum MMSE solution of (11).
Next, the set of precoders P alongside all auxiliary variables
in (12) are updated by solving R̂MMSE

RS (P ), formulated by
fixing g and u in (12). This is a convex problem which can
be efficiently solved using interior-point methods [12]. The
steps of the AO procedure are summarized in Algorithm 1.

Algorithm 1 Alternating Optimization

1: Initialize: n← 0, P, r(n)g ← 0
2: repeat
3: n← n+ 1
4:

(
gc,k, gk

)
←
(
gMMSE
c,k , gMMSE

k

)
, ∀k ∈ K

5:
(
uc,k, uk

)
←
(
uMMSE
c,k , uMMSE

k

)
, ∀k ∈ K

6: (r
(n)
g , r, c,P)← arg R̂MMSE

RS (P )

7: until |r(n)g − r(n−1)g

∣∣ < ε

Each iteration of Algorithm 1 increases the objective func-
tion, which is bounded above for a given power constraint,
until convergence. The global optimality of the limit point
cannot be guaranteed due to non-convexity. However, the sta-
tionarity (KKT optimality) of the solution can be argued based
on the ideas in [13], avoided here due to space limitations.

VI. SIMULATION RESULTS

We consider i.i.d channels with entries drawn from
CN (0, 1), and all results are averaged over 100 channel
realizations. We compare the MMF rates for: 1) conventional
beamforming (NoRS), 2) Single-Stream (SS) multigroup trans-
mission described at the beginning of Section IV, and 3) the
RS strategy. The results for NoRS and SS are obtained using
the SDR method in [1], [2]. We plot the SDR upper-bounds (no
randomization), hence presenting optimistic performances for
NoRS and SS. On the other hand, the RS results and obtained
by Algorithm 1, and represent the actual performances.

The MMF rates for a system with N = 2 transmit antennas
and M = 2 groups with G = 2 users each are presented in Fig.
1. As predicted from the DoF result in Proposition 1, NoRS
exhibits a saturating performance. Both SS and RS achieve
non-saturating rates with DoFs of 1/2 and an improved rate
performance for RS which comes from the designated beams.
The gains of RS over NoRS are very pronounced. The results
for a system with N = 4 transmit antennas and M = 3
groups with G = 3 users per group are shown in Fig. 2.
The benefits of using designated beams over SS transmission
at low SNRs are clearer in this scenario, as the performance
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Fig. 1. N = 2 antennas, K = 4 users, M = 2 equal groups.
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Fig. 2. N = 4 antennas, K = 9 users, M = 3 equal groups.

of the latter is constrained by the worst out of 9 users. While
SS achieves a DoF of 1/3, RS seems to surpass this DoF,
which is evident from its slope at high SNR. This suggests
that the trivial achievable lower-bound in Proposition 2 is in
fact loose, and RS can achieve even higher MMF-DoF.

VII. CONCLUSION

In this paper, we proposed a RS multi-group multicast
beamforming strategy. We showed through DoF analysis that
the proposed RS strategy outperforms the conventional beam-
forming strategy in overloaded scenarios, i.e. when the number
of transmit antennas is insufficient to cope with inter-group
interference. An AO algorithm based on the WMMSE method
was used to obtain the RS precoders. The effectiveness of the
proposed algorithm and the significant gains associated with
the RS strategy were demonstrated through simulations. Sim-
ulations also revealed that the trivial MMF-DoF lower-bound
is in fact loose, which calls for a rigorous characterization of
the optimum MMF-DoF achieved through RS.

APPENDIX

Proof of d∗ = 0 for N < Nmin: First, we write
a precoding vector as pm =

√
qmp̂m, where qm is the

power and p̂m is the unit-norm beamforming direction. For
a given precoding scheme characterized by one precoder for
each power level, the mth power scales as qm = O(P am)
with am ≤ 1, further assumed to be non-negative as MMF
necessitates non-vanishing powers allocated to all groups. Let

Im ⊂ M be the index set of groups that interfere with the
mth group, depending on the precoder design. From the DoF
definitions in Section III-A, it can be shown that

dm ≤
(
am − max

j∈Im
aj
)+
. (13)

The (.)+ can be omitted as when it is active, the MMF-DoF is
limited to zero which is also achieved when all am are equal.

It is sufficient to show that the MMF-DoF is upper-bounded
by 0 for N = Nmin−1 = (M−1)G, as decreasing the number
of antennas does not increase the DoF. For this case, pm can be
placed in the null space of at most M−2 groups, i.e. each beam
interferes with at least one group. It follows that

⋃
m∈M Im =

M. We assume that each beam interferes with exactly one
group, as the contrary does not increase the DoF. It follows
that at least two groups see non-zero interference. Let m1 be
the index of the group receiving the dominant interference,
i.e. max{am}m∈M ∈ Im1

, and m2 be the index of the group
receiving interference from m1, i.e. am1

∈ Im2
. It follows

from (13) that dm1 ≤ am1 − am2 and dm2 ≤ am2 − am1 .
Since the symmetric-DoF is upper-bounded by the average of
any number of group DoFs, we write d ≤ dm1+dm2

2 ≤ 0,
which holds for any possible precoder design.
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