
1

Analysis SimCO Algorithms for Sparse Analysis
Model Based Dictionary Learning

Jing Dong, Wenwu Wang, Wei Dai, Mark D. Plumbley, Zi-Fa Han, Jonathon Chambers

Abstract—In this paper, we consider the dictionary learning
problem for the sparse analysis model. A novel algorithm is
proposed by adapting the simultaneous codeword optimization
(SimCO) algorithm, based on the sparse synthesis model, to the
sparse analysis model. This algorithm assumes that the analysis
dictionary contains unit ℓ2-norm atoms and learns the dictionary
by optimization on manifolds. This framework allows multiple
dictionary atoms to be updated simultaneously in each iteration.
However, similar to several existing analysis dictionary learning
algorithms, dictionaries learned by the proposed algorithm may
contain similar atoms, leading to a degenerate (coherent) dic-
tionary. To address this problem, we also consider restricting the
coherence of the learned dictionary and propose IncoherentAna-
lysis SimCO by introducing an atom decorrelation step following
the update of the dictionary. We demonstrate the competitive
performance of the proposed algorithms using experiments with
synthetic data and image denoising as compared with existing
algorithms.

Index Terms—Sparse representation, analysis model, SimCO,
analysis dictionary learning.

I. I NTRODUCTION

M ANY problems in signal processing can be regarded
as inverse problems, for example, denoising [1], in-

painting [2] and super-resolution [3]. These problems aim to
reconstruct original signals from their observed measurements.
Some prior knowledge or assumptions about the signals are
required due to the lack of information or the presence of
noise in the observations. One assumption that has attracted
extensive attention in the past decade is that the signals to
be restored aresparse in some domain. Two signal models to
capture the sparse property of the signals have been proposed,
namely, thesparse synthesis model [4] and sparse analysis
model [5], [6]. More recently, the sparse analysis model has
been extended to a more generalized model, referred to as the
sparsifying transform model [7].

A. Sparse Synthesis Model

The most well-known model in sparse representation is the
sparse synthesis model [4], [8], [9], [10]. This model assumes

J. Dong, W. Wang and M. D. Plumbley are with the Centre for Vision,
Speech and Signal Processing, University of Surrey, Guildford GU2 7XH,
U.K. (emails:{j.dong, w.wang, m.plumbley}@surrey.ac.uk).

W. Dai is with the Department of Electrical and Electronic En-
gineering, Imperial College London, London SW7 2AZ, U.K. (email:
wei.dai1@imperial.ac.uk).

Z.-F. Han is with the Department of Electronic Engineering,City University
of Hong Kong, Hong Kong. (email: zifahan@gmail.com).

J. Chambers is with the School of Electrical and Electronic Engi-
neering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K. (email:
Jonathon.Chambers@newcastle.ac.uk).

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/K014307/1 and theMOD
University Defence Research Collaboration in Signal Processing.

that a signaly ∈ R
m can be linearly represented with some

atoms (columns) of asynthesis dictionary D ∈ R
m×d, where

the dictionary is usually overcomplete withd > m. The
number of atoms used to representy is much smaller than
the total number of atoms in the dictionary, which reflects the
sparsity of the signaly. Mathematically, this model can be
written asy = Da with ‖a‖0 = s, where theℓ0-norm ‖ · ‖0
counts the number of non-zero elements of its argument, anda

is the representation coefficient vector withs being its sparsity.
The atoms corresponding to the non-zero elements ofa are
used to synthesize the signaly via their linear combination,
which brings about the term “synthesis” in the name of this
model.

One challenge related to this model is thesparse coding
problem which aims to find the sparsest representationa of
a given signaly with respect to a given dictionaryD. In
order to tackle this problem, greedy algorithms have been
proposed, such as matching pursuit (MP) [11], orthogonal
matching pursuit (OMP) [12], stagewise orthogonal matching
pursuit (StOMP) [13] and subspace pursuit (SP) [14], as well
as relaxation methods such as basis pursuit (BP) [15] and focal
underdetermined system solver (FOCUSS) [16].

A second challenge is to design or learn an appropriate
dictionary D to represent a set of signals as sparsely as
possible. Many analytical dictionaries have been developed,
but dictionaries learned from a set of training signals have
the potential to fit these signals better than the analyticaldic-
tionaries [4]. As a result, thedictionary learning problem for
the sparse synthesis model has become one of the most popular
topics in sparse representation. This problem aims to seek the
dictionaryD that leads to the best set of representations for
a given set of training signals. Many algorithms have been
proposed to address this problem, for example, method of
optimal directions (MOD) [9], K-SVD [4] and SimCO [10].
These algorithms typically alternate iteratively betweenan
update of the coefficients and an update of the dictionary.
For the update of the coefficients, sparse coding algorithms
are often used while keeping the dictionary fixed. The main
difference between synthesis dictionary learning algorithms is
the way in which the dictionary is updated.

B. Sparse Analysis Model and Sparsifying Transform Model

In contrast to the synthesis model, the sparse analysis model
uses ananalysis dictionary Ω ∈ R

p×m with p > m to
“analyze” the signaly ∈ R

m. Specifically, it assumes that the
product ofΩ andy is sparse, i.e.x = Ωy with ‖x‖0 = p− l,
where 0 ≤ l ≤ p is the number of zeros inx ∈ R

p. The
matrix Ω is usually referred to as ananalysis dictionary [17]

2

or analysis operator [18], [19], with each row ofΩ being
an atom. The vectorx is the analysis representation of the
signal y with respect toΩ. This model is also referred to
as aco-sparse analysis model, and the number of zerosl is
called theco-sparsity of the signaly with respect toΩ [6].
Let Λ = {i : xi = 0} denote the index set of the rows inΩ
corresponding to the zero elements inx (thus,card(Λ) = l)
and letΩΛ denote the sub-matrix ofΩ containing only the
rows indexed byΛ. The setΛ is called theco-support of y.
For the analysis model, we haveΩΛy = 0, meaning that the
l atoms indexed byΛ are orthogonal to the signaly. From
the subspace point of view,y lies in the subspace which is
orthogonal to the subspace spanned by the rows ofΩΛ. Even
though the description of the sparse analysis model may seem
similar to its synthesis counterpart, these two models differ
significantly if the dictionaries are overcomplete [5].

If the signaly is known, its analysis representation with
respect to a givenΩ can be obtained via multiplyingy
by Ω. However, when the observed signal is contaminated
by noise, the clean signaly has to be estimated first in
order to get its analysis representation, which leads to the
analysis pursuit problem [17]. Some algorithms like backward-
greedy (BG) [17], optimized-backward-greedy (OBG) [17],
and greedy analysis pursuit (GAP) [6] have been proposed
to address this problem.

In a similar way to the dictionary in the synthesis model,
the analysis dictionaryΩ also plays an important role in the
analysis representation of the signaly, and the dictionaries
learned from a set of training signals show some advantages
compared with pre-defined dictionaries [17]. In the past few
years, theanalysis dictionary learning (ADL) problem has
begun to attract more attention [17], [18], [19]. In this paper,
we focus on this ADL problem.

Recently, the so-called sparsifying transform model, which
assumes that a signal can be approximately sparsified with
an analysis transform operator, was introduced in [7]. This
model can be regarded as a natural extension of the sparse
analysis model. Learning a sparsifying transform has been
investigated in [7], [20], [21]. These algorithms deal withthe
sparsification error in the transform domain rather than in the
original signal domain as in the ADL algorithms [17], [18], by
applying the transform operator to the training signals even if
the signals contain noise. In the present paper, we intentionally
ignore this subtle difference between these two formulations
and regard the sparsifying transform learning algorithms as
alternative solvers of the ADL problem, since the results of
sparsifying transform learning can be regarded as dictionaries
for the sparse analysis model.

C. Analysis Dictionary Learning

Several algorithms have been proposed for the ADL pro-
blem. The Analysis K-SVD algorithm [17] assumes that the
training samples are noisy signals and minimizes the error
between the training samples and the signals estimated using
the learned dictionary. It applies the OBG [17] analysis pursuit
algorithm to detect the co-support of each training signal with
respect to an initial dictionary, and employs the singular value

decomposition (SVD) to update the dictionary atoms one-by-
one. After the update of all atoms, similar atoms, determined
with inner-product of two atoms, are replaced by new ran-
domly generated atoms. However, these new atoms cannot
preserve the information of the atoms to be replaced because
of the randomness. Besides, the computational complexity of
Analysis K-SVD is quite high due to the involvement of the
analysis pursuit problem [17].

The learning overcomplete sparsifying transforms (LOST)
algorithm [20] minimizes the so-called sparsifying error which
is defined in the transform or analysis domain rather than the
original signal domain as in the formulation of Analysis K-
SVD. As a result, the time consuming algorithm OBG is not
used any more. Two penalty terms are added to the objective
function of LOST to apply two constraints on the learned
dictionary respectively, i.e. the full column rank constraint
and the constraint on the correlation between the atoms. The
coefficients of the penalty terms play an important role in the
performance of LOST, but selecting proper coefficients is a
practical challenge [20].

Transform K-SVD proposed recently in [21] combines the
sparsifying error formulation of LOST with the dictionary
update approach of Analysis K-SVD. This algorithm uses
the same method as in Analysis K-SVD to avoid similar
atoms, but overcomes its computational complexity issue with
a formulation used in LOST. We have found that Transform
K-SVD performs well in recovering a reference dictionary, but
its denoising performance is relatively limited, as shown in our
simulations (see Section VI-B later).

The analysis operator learning (AOL) algorithm reported
in [18] addresses the ADL problem using a constrained
optimization framework. In this algorithm, theℓ1-norm is
used as the co-sparsity measurement. It restricts the dictionary
to be a uniform normalized tight frame (UNTF) which is
the intersection of uniform normalized (UN) frames manifold
and tight frames (TF) manifold. The AOL algorithm learns a
dictionary by combining anℓ1 optimization framework with
projection of the dictionary onto the UNTF set. The algorithms
(NL)AOL (noiseless AOL) and (NA)AOL (noise-aware AOL)
have been developed for learning with noiseless and noisy
training samples respectively. However, random dictionaries
cannot be recovered by the AOL algorithms since the UNTF
constraint limits the possible dictionaries to be learned (see
Section VI later). We will see that the denoising performance
of (NA)AOL is also limited when the noise level is relatively
high.

The GeOmetric Analysis operator Learning (GOAL) algo-
rithm [19] employstheℓp-norm(0 ≤ p ≤ 1) astheco-sparsity
measurement,which is different from thealgorithmsreviewed
above.Similar to the LOST algorithm, the objective function
of GOAL also incorporates two additional penalty terms to
addressthe full rank and the correlation constraints,leading
to the difficulty of setting the weights for the penalties. The
conjugate gradient methodon manifolds [22] is applied for
optimization.

3

D. Contributions

In this work, we propose two new algorithms which can
partly address the limitations of the ADL algorithms men-
tioned above. Firstly, we adapt the synthesis model based
SimCO algorithm [10] to the analysis model and develop
a new ADL algorithm which is referred to as the Analysis
SimCO algorithm. In SimCO, the optimization method on
manifolds is applied to update multiple dictionary atoms
simultaneously, leading to a better performance compared with
K-SVD where the atoms are updated one-by-one. Thus, we
adapt the framework of SimCO to the ADL problem to enable
the simultaneous update of multiple atoms via the optimization
on manifolds. The preliminary results of this work have been
presented in [23]. This dictionary update method is different
from the methods used by the existing algorithms. Analysis
K-SVD and Transform K-SVD only allow one atom to be
updated in one iteration. In LOST, the dictionary is updated
as a whole matrix by the standard conjugate gradient method.
Compared with the AOL algorithms, the updated dictionary in
our proposed method is more general without projection onto
the UNTF set.Notice that the GOAL algorithm alsoemploys
an optimization methodon manifolds, however, the objective
function of our proposedalgorithm is different from that of
GOAL due to the different co-sparsity measurebasedon ℓ0-
norm,andthefewerpenaltytermsused.Besides,our proposed
algorithm employs the gradient descentmethodon manifolds
ratherthan the conjugategradient methodas in GOAL.

Secondly, we propose the Incoherent Analysis SimCO al-
gorithm to avoid similar atoms appearing in the dictionaries
learned by Analysis SimCO. In the Incoherent Analysis
SimCO algorithm, a constraint restricting the correlations of
two distinct atoms of the dictionary is considered and an
atom decorrelation step is applied to enforce this constraint
by rotating the highly-correlated atom pairs. In this way, the
correlation of any two distinct atoms can be restricted to be
below a given threshold explicitly. Compared with the methods
used in existing ADL algorithms to avoid similar atoms, the
decorrelation step applied in the Incoherent Analysis SimCO
algorithm has some advantages. For example, this method
avoids the coefficient selection problem of LOST since the
constraint is tackled directly rather than applied as a penalty
term of the objective function. Besides, the new atoms ob-
tained by the decorrelation step are more likely to be closerto
the atoms replaced than the atoms that are generated randomly
in Analysis K-SVD and Transform K-SVD.

E. Notations

Bold capital letters are used to represent matrices. In par-
ticular, I denotes the identity matrix whose dimension can
be decided from the context. The notationXi,: is used to
specify theith row of the matrixX andX:,j represents its
jth column. Bold lowercase letters represent vectors. Scalars
are either capital or lowercase letters. The norms‖ · ‖2 and
‖·‖F denote theℓ2-norm and the Frobenius norm respectively.
The notation| · | returns the absolute value of a scalar. The
notation〈·, ·〉 is used to represent the canonical inner-product
of two vectors.

F. Organization of the Paper

The remainder of the paper is organized as follows. In
Section II the original SimCO algorithm is reviewed. In
Section III we present our formulation for the ADL pro-
blem and the optimization framework. More details of our
proposed Analysis SimCO algorithm and the discussions of
its convergence and computational complexity are providedin
Section IV. Section V introduces Incoherent Analysis SimCO
where an atom decorrelation step is involved. Section VI
provides experimental results of learning dictionaries with
synthetic data and for image denoising. Conclusions are drawn
in Section VII.

II. T HE SIM CO ALGORITHM

The SimCO algorithm [10] was proposed to learn a syn-
thesis dictionary from a set of signals so that the signals
can each be represented by a few atoms of the dictionary.
Let Y ∈ R

m×n denote the matrix of the training signals,
where each column ofY is one training signal. In SimCO,
the dictionary learning problem is formulated as

arg min
D∈D

f(D) = arg min
D∈D

min
A∈A

‖Y −DA‖2F
︸ ︷︷ ︸

f(D)

, (1)

where the columns ofA ∈ R
d×n are the representation

coefficient vectors andD ∈ R
m×d is the dictionary to be

learned. In this formulation,D is assumed to contain unitℓ2-
norm columns, which is addressed by the constraintD ∈ D
with D representing the set of all matrices that contain unit
ℓ2-norm columns. The positions of the non-zero elements of
the coefficient matrixA are fixed, achieved with the constraint
A ∈ A.

To solve the optimization problem (1), SimCO follows the
conventional two-stage optimization process – a sparse coding
stage and a dictionary update stage. The sparse coding stage
determines the sparse representationsA of the signals inY
for a given dictionaryD. Various sparse coding algorithms
such as OMP [8] can be employed in this stage.

In the dictionary update stage, SimCO applies optimization
methods on manifolds [24] to update the dictionaryD under
the unitℓ2-norm constraints on the columns ofD. According
to the updatedD, the coefficient matrixA is also updated,
while the positions of the non-zero elements are kept un-
changed. This framework is able to update multiple atoms and
the corresponding coefficients simultaneously, which gives rise
to the term simultaneous codeword optimization (SimCO).

III. PROBLEM FORMULATION AND OPTIMIZATION

FRAMEWORK

Given a set of training signalsY ∈ R
m×n, the ADL

problem can be written as [7]

{Ω∗,X∗} = arg min
{Ω,X}

‖X−ΩY‖2F

s.t. ‖X:,i‖0 = p− l, ∀i.
(2)

This is a general formulation without any additional constraint
onΩ apart from the co-sparsity constraints‖X:,i‖0 = p−l, ∀i.

4

However, this formulation has ambiguities caused by scaling.
In one case, when the training dataY admits exact sparse
representations, there exists a dictionaryΩ with which the
analysis representations ofY, i.e. X = ΩY, satisfy the co-
sparsity constraints. If the dictionaryΩ is scaled by mul-
tiplying a scalarc ∈ R, the corresponding representations
c · X = c · ΩY will also satisfy the constraints. Thus, the
problem (2) has infinite optimal solutionsc · Ω and c · X.
This may introduce difficulty in optimization. In the other
case, if the dataY admits approximation representations and
‖X−ΩY‖2F = δ, the value of the cost function with scaled
X andΩ, i.e.‖X−ΩY‖2F = c2 ·δ, can be arbitrarily small. In
other words, the cost function is unbounded from below, which
makes it impossible to find an optimal solution. In addition,
(2) has trivial solutions whereΩ contains all-zero rows.

In order to avoid these problems, we apply the unitℓ2-
norm constraints on the rows ofΩ, leading to the following
formulation of the ADL problem

{Ω∗,X∗} = arg min
{Ω,X}

‖X−ΩY‖2F

s.t. ‖X:,i‖0 = p− l, ∀i
‖Ωj,:‖2 = 1, ∀j.

(3)

The unit ℓ2-norm constraints on the rows ofΩ are able to
eliminate the scaling ambiguity mentioned above. Besides,the
trivial solutions whereΩ has zero rows can be excluded. The
formulation (3) is different from that of Analysis K-SVD [17]
which minimizes the error in the signal domain. It also differs
from the objective function of LOST [20] where the penalty
terms as described earlier in Section I are included.

The problem (3) can be addressed by an optimization
framework alternating between two stages: analysis sparse
coding and dictionary update. Given a dictionaryΩ, the first
stage findsX satisfying the co-sparsity constraints‖X:,i‖0 =
p−l, ∀i. In the dictionary update stage,Ω is updated assuming
known and fixedX obtained in the first stage.

Here we attempt to update the dictionary using a similar
method as in SimCO and refer to our proposed algorithm
as Analysis SimCO. The optimization framework of Analysis
SimCO is presented in Algorithm 1.In our original algorithm
SimCO, the useof the term “simultaneous” comesfrom the
following two facts:(1) multiple dictionaryatomsareupdated
simultaneously, and (2) their corresponding coefficients are
alsoupdatedsimultaneously with theseatoms.In the analysis
case,we borrow the term “SimCO” mainly becausein the
proposedalgorithm the dictionary atomsareupdatedsimulta-
neously.

A common problem with the popular analysis dictionary
learning algorithms, such as Analysis K-SVD [17], is that
the learned dictionaryΩ may contain similar atoms. Such
a dictionary is regarded as a degenerate solution [7], [21].
This issue is also observed in the dictionary learned from
(3) with the Analysis SimCO algorithm, as will be shown in
Section VI. Thus, we develop an extended version of Analysis
SimCO to avoid this kind of degenerate dictionary, which will
be presented in Section V in detail.

Algorithm 1 Optimization Framework of Analysis SimCO
Input: Y, p, l
Output: Ω⋆

Initialization:
Initialize the iteration counterk = 1 and the analysis

dictionaryΩ(k). Perform the following steps.
Main Iterations:

1) Analysis sparse coding: Compute the representations
X(k) with the fixed dictionaryΩ(k) and the training
signals inY.

2) Dictionary update: Update the dictionaryΩ(k+1) ←
Ω(k).

3) If the stopping criterion is satisfied,Ω⋆ = Ω(k+1)

and quit the iteration. Otherwise, increase the iteration
counterk = k + 1 and go back to step 1).

IV. A NALYSIS SIM CO ALGORITHM

As the dictionary update stage in our algorithm is based on
optimization on matrix manifolds, we begin this section with
a brief introduction to the optimization on matrix manifolds
to make this paper self-contained. The details of the analy-
sis sparse coding and dictionary update are then presented
respectively, followed by the convergence and computational
complexity analysis of our proposed algorithm.

A. Optimization on Matrix Manifolds

The Stiefel manifoldSt(p,m)(p ≤ m) is defined as
St(p,m) := {U ∈ R

m×p : UTU = I} [24, pp. 26]. For
p = 1, the Stiefel manifoldSt(p,m) reduces to the unit sphere,
i.e., S = {u ∈ R

m : uTu = 1}. At each pointu ∈ S,
there exists a tangent spaceTuS which consists of all vectors
orthogonal tou in R

m, i.e. TuS = {v ∈ R
m : uTv = 0}.

The vectors inTuS are tangent vectors toS at the pointu.
The tangent spaceTuS can be regarded as a vector space
approximation of the manifoldS at the pointu [24, pp. 34].

Before dealing with the optimization problem on manifolds,
we consider a more general class of problems, i.e., the uncon-
strained optimization problem, from which the optimization
methods on matrix manifolds can be adapted,

min
u

f(u), (4)

whereu ∈ R
m andf : Rm → R is a differentiable function.

This problem can be addressed by the standard line search
method. In thekth iteration, the standard line search method
selects a descent directionp along which the current pointuk

is moved to a new pointuk+1 leading to a smaller or equal
objective function value, i.e.

uk+1 = uk + α · p (5)

with f(uk+1) ≤ f(uk). Hereα is the scalar step size which
can be selected carefully to guarantee the reduction of the cost
function [25]. In order to determine the search directionp, the
value and the derivatives of the objective function can be used.
The most obvious choice is the steepest descent directionpk =
−∇f(uk) along which the objective function value decreases
most rapidly among all the directions [25, pp. 20].

5

Now we consider the optimization problem where the
variableu is restricted on the manifoldS, i.e.

min
u∈S

f(u). (6)

Analogous line search methods on manifolds have been de-
veloped by generalizing the standard line search methods for
the unconstrained optimization problem (4). Specifically,in
the kth iteration, the search directionqk should be chosen as
a tangent vector toS at uk, i.e.,qk ∈ Tuk

S. Thus the search
direction qk is the projection of the search directionpk of
the unconstrained optimization methods to the tangent space
Tuk
S [24, pp. 49], that is

qk = (I− uku
T
k)pk. (7)

The new pointuk+1 obtained by movinguk in the direction
of qk should stay onS. As a result, the line search path (5)
is replaced by a curve onS [24, pp. 103] , i.e.

uk+1 = ukcos(α‖qk‖2) +
qk

‖qk‖2
sin(α‖qk‖2). (8)

B. Analysis Sparse Coding Stage

The purpose of the analysis sparse coding stage is to get the
sparse representationsX of the training signals inY based
on a given dictionaryΩ. Unlike the corresponding problem of
the synthesis model, here the exact representationsX can be
calculated directly by simply multiplying the signals inY by
the dictionaryΩ, that is

X = ΩY. (9)

Since the initial dictionary is an arbitrary one, the represen-
tations obtained in this way may not satisfy the co-sparsity
constraints onX in (3). A hard thresholding operation is
therefore applied to enforce the co-sparsity

X̂ = HTl(X), (10)

whereHTl(X) is the non-linear operator that sets the smallest
l elements (in magnitude) of each column ofX to zero.
The representationŝX obtained via equation (10) are the best
approximation of the exact representationsX in terms of the
error in Frobenius norm among all the matrices satisfying the
co-sparsity constraints.

C. Dictionary Update Stage

The dictionary update stage aims at optimizing the fol-
lowing problem (by fixingX in (3))

arg min
Ω

f(Ω) = ‖X−ΩY‖2F s.t. ‖Ωj,:‖2 = 1, ∀j. (11)

The cost function can be rewritten as a function of the rows of
Ω. Besides, the constraint thatΩ only contains unitℓ2-norm
rows restricts the transposes of the rows ofΩ to lie on the
unit sphereS, i.e. ΩT

j,: ∈ S, ∀j. Thus the problem (11) can
be rewritten as

arg min
Ω

f(Ω) =

p
∑

j=1

‖Xj,: −Ωj,:Y‖22 s.t. ΩT
j,: ∈ S, ∀j.

(12)

As a result, the “line” search methods on manifolds can be
utilized in this stage. Here we use the first order optimization
procedures as in SimCO [10], i.e. the gradient descent line
search method. We explain below the key points of this method
including search direction, line search path, and step size
respectively. The dictionary update stage is summarized in
Algorithm 2.

Algorithm 2 Dictionary Update Stage

Input: Ω(k), X(k), Y
Output: Ω(k+1)

Main Steps:
1) Calculate the search direction, based on equations (13)

and (14).
2) Find a proper step sizeα using golden section search.
3) Update the dictionaryΩ(k+1) ← Ω(k), based on

equation (15).

1) Search direction: We use the steepest descent direction
as the search direction, i.e. the negative gradient of the
objective function with respect toΩ as follows

H = −∇f(Ω)

= −∂‖X−ΩY‖2F
∂Ω

= 2XYT − 2ΩYYT .

(13)

2) Line search path: The search direction of thejth row
of Ω, i.e. the projection of each row ofH onto the tangent
space ofS, is [24, pp. 49]

h̄j = Hj,:(I−ΩT
j,:Ωj,:). (14)

According to equation (8), the line search path for thejth row
of Ω can be written as

Ωj,:(α) =







Ωj,: if ‖h̄j‖2 = 0,

Ωj,: cos(α‖h̄j‖2) + (h̄j/‖h̄j‖2) sin(α‖h̄j‖2)
otherwise,

(15)
whereα is the step size.

3) Step size: In order to find a proper step sizeα, we apply
the golden section search method [10]. This method consists
of two stages. In the first stage, it finds a range which contains
a local minimum and within which the objective function is
unimodal. In the second stage, the golden section ratio is used
to successively narrow the range until the minimizer is located
and thusα is determined.

D. Convergence

Our proposed algorithm alternates between the analysis
sparse coding stage and the dictionary update stage. For a
fixed dictionaryΩ, X̂ obtained in the analysis sparse coding
stage is the optimal solution under the constraint of co-sparsity.
Thus, the cost function can only decrease in this stage. In
the dictionary update stage, since the update ofΩ is along
a descent direction and the step size is chosen to guarantee
that the updatedΩ will not increase the cost function. Thus,
the cost function is decreasing monotonically in our proposed

6

algorithm. In addition, the cost function of our formulation
(3) is lower bounded by zero, i.e.‖X − ΩY‖2F ≥ 0. Ac-
cording to the monotone convergence theorem [26], given the
cost function decreases monotonically and is lower bounded,
the algorithm must converge. The convergence will also be
demonstrated experimentally in Section VI-A.

E. Computational Complexity

The time complexity of the Analsysis SimCO algorithm can
be analyzed as follows. The time complexity of the sparse cod-
ing stage is dominated by the calculation ofΩY, atO(pmn),
in terms of the analysis in [20]. In the dictionary update stage,
the calculation ofH is the dominant part. Computing the
productXYT requiresO(pmn) operations. The time com-
plexity of ΩYYT is O(pm2) with pre-computedYYT . As a
result, the dictionary update stage requiresO(pmn) operations
with the usual casen > m. The total time complexity of
each iteration of the Analysis SimCO algorithm thus scales as
O(pmn).

The computational complexity of Analysis SimCO, similar
to those of LOST [20], (NL)AOL [18], and Transform K-SVD
[21], shows a reduction compared with those of Analysis K-
SVD and (NA)AOL. The complexity of Analysis K-SVD is
O(pm2n) using BG orO(pm3n) using OBG, and (NA)AOL
requiresO(pmnk) operations withk being the number of
dictionary update per iteration. The running time of these
algorithms in practice will be given in Section VI.

V. I NCOHERENTANALYSIS SIM CO

As mentioned in Section III, dictionaries learned by the exi-
sting ADL algorithms may contain similar atoms, which can
degrade the representation performance for signal recovery. To
address this problem, several methods have been proposed.
For example, in Analysis K-SVD and Transform K-SVD, the
similar atoms are replaced by randomly generated atoms, as
mentioned in Section I. In LOST [20], a penalty term is used
in their objective function to restrict the correlations between
atoms. As will be observed in the experiments of Section
VI, Analysis SimCO has the same issue, where some of the
atoms in the learned dictionary may appear similar. Here, we
present an alternative solution to this problem based on [27].
The method in [27] was developed to mitigate the correlations
between atoms learned by a synthesis model. Here we adapt
this method to our model and optimization problem.

In the context of the sparse synthesis model, the coherence
of the dictionary has been defined as a measure of the
similarities between the atoms [28]. We extend this definition
for an analysis dictionaryΩ and define the coherenceµ(Ω)
in a row-wise way as

µ(Ω) = max
∀i,j,i6=j

∣
∣
∣

〈 Ωi,:

‖Ωi,:‖2
,

Ωj,:

‖Ωj,:‖2

〉∣
∣
∣, (16)

From this definition, we have0 ≤ µ(Ω) ≤ 1. With the unit
ℓ2-norm constraints on the rows ofΩ, the coherenceµ(Ω)
can be simplified as

µ(Ω) = max
∀i,j,i6=j

|〈Ωi,:,Ωj,:〉|. (17)

The coherenceµ(Ω) reflects the maximum correlation of two
distinct atoms inΩ. If µ(Ω) is close to 1, it means that there
are very similar rows inΩ, which is the case we attempt to
avoid. Thus, we add a coherence constraintµ(Ω) ≤ µ0 to the
formulation (3) , i.e.

{Ω∗,X∗} = arg min
Ω,X

‖X−ΩY‖2F

s.t. ‖X:,i‖0 = p− l, ∀i
‖Ωj,:‖2 = 1, ∀j
µ(Ω) ≤ µ0,

(18)

whereµ0 is the coherence limit for the learned dictionaryΩ.
To enforce the incoherence constraint, we add an extra

step in the dictionary update stage, aiming to find the closest
dictionaryΩ̂ to Ω in Frobenius norm, with the coherence of
the dictionaryΩ̂ bounded by a thresholdµ0, that is

arg min
Ω̂

‖Ω̂−Ω‖2F

s.t. ‖Ω̂i,:‖2 = 1, ∀i
µ(Ω̂) ≤ µ0.

(19)

Here the unit ℓ2-norm constraints for the atomsin the dic-
tionary arealsoconsideredto guaranteethat the transposesof
the atomsin the output dictionary are still on the manifold.
This problem is addressed by applying the decorrelation
method [27] in a row-wise fashion, as presented in Algorithm
3. The general idea is to determine the atom pairs whose
correlations are greater thanµ0, via a labeling process (from
line 5 to line 9 of Algorithm 3), and decorrelate these atom
pairs, via a decorrelation process (from line 10 to line 20).This
method keeps alternating between the two processes until the
coherence of the estimated dictionaryΩ̂ reaches the threshold
µ0. Although this is a heuristic algorithm, it typically involves
only a few loops to output an incoherent dictionary. The
convergence and the effectiveness of this algorithm will be
numerically demonstrated in Section VI.

In the labeling process, the atoms ofΩ are labeled as either
the atom pairs to be decorrelated or atoms that do not need
to be modified. An index-pair setF is used to store the index
pairs of atom pairs labeled to be decorrelated and an index
setE is employed to save the indices of the remaining atoms.
Ω̂E represents the submatrix of̂Ω only containing the rows
indexed by the setE. In each iteration, the correlations of any
two distinct rows belonging tôΩE are calculated to determine
the most correlated pair. The indices of these two atoms willbe
saved, as an index-pair, into the setF , i.e.,F ← F

⋃{(i, j)},
indicating that these two atoms are labeled as an atom pair to
be decorrelated in the following decorrelation process. Their
indices will be removed fromE to avoid being detected again,
i.e. E ← E\{i, j}.

In the decorrelation process, the atom pairs indexed by the
members ofF are decorrelated successively. The decorrelation
of each atom pair is achieved by rotating the two atoms sym-
metrically with respect to their mean so that their correlation
reachesµ0 [27]. The rotated atoms are determined based on
the orthonormal basis{b1,b2} developed using the atoms to
be decorrelated (line 11 and 12) and the angleθ determined
by the coherence limitµ0, i.e., θ = 1

2arccos µ0 [27].

7

Algorithm 3 Atom Decorrelation Step
1: Input: Ω, µ0

2: Output: Ω̂

3: Initialization:
Ω̂ = Ω, θ = 1

2arccos µ0, c1 = cos θ, c2 = sin θ

4: while µ(Ω̂) > µ0 do
5: E = {1, 2, ..., p} // line 5-9: labeling process
6: F = ∅
7: while µ(Ω̂E) > µ0 do
8: (i, j) = arg max∀i,j∈E,i6=j |Ω̂i,:Ω̂

T
j,:|

F ← F
⋃{(i, j)}

E ← E\{i, j}
9: end while // line 10-20: decorrelation process

10: for ∀(i, j) ∈ F do
11: b1 = (Ω̂i,: + Ω̂j,:)/(‖Ω̂i,: + Ω̂j,:‖2)
12: b2 = (Ω̂i,: − Ω̂j,:)/(‖Ω̂i,: − Ω̂j,:‖2)
13: if 〈Ω̂i,:, Ω̂j,:〉 > 0 then
14: Ω̂i,: = c1b1 + c2b2

15: Ω̂j,: = c1b1 − c2b2

16: else
17: Ω̂i,: = c1b2 + c2b1

18: Ω̂j,: = −c1b2 + c2b1

19: end if
20: end for
21: end while
22: return Ω̂

In order to address the problem (18), the atom decorrelation
step is inserted after the dictionary update stage in the loop of
Analysis SimCO (Algorithm 1), as summarized in Algorithm
4. We referred to this extended version of Analysis SimCO as
Incoherent Analysis SimCO. Actually, Analysis SimCO can
be regarded as the special case of Incoherent Analysis SimCO
if µ0 = 1.

Algorithm 4 Incoherent Analysis SimCO
Input: Y, p, l, µ0

Output: Ω⋆

Initialization:
Initialize the iteration counterk = 1 and the analysis

dictionaryΩ(k). Perform the following steps.
Main Iterations:

1) Analysis sparse coding: Compute the representations
X(k) with the fixed dictionaryΩ(k) and the training
signals inY, based on equations (9) and (10).

2) Dictionary update: Update the dictionaryΩ(k+1) ←
Ω(k), using Algorithm 2.

3) Atom decorrelation: Decorrelate the atomsΩ̂(k+1) ←
Ω(k+1), using Algorithm 3.

4) If the stopping criterion is satisfied,Ω⋆ = Ω̂(k+1), quit
the iteration. Otherwise, increase the iteration counter
k = k + 1 and go back to step 1).

It is worth noting that otheralternative methodscould also
beusedto promoteincoherentdictionaries.As mentionedear-
lier, Analysis K-SVD replacesthe similar atomswith vectors
generatedin a random way. Comparedwith this method,the

decorrelation stepapplied in Incoherent Analysis SimCOcan
better preservethe information in the dictionary atomssince
the new atomsaregeneratedby rotating the existing atomsto
be replaced.Themethodin IncoherentK-SVD (IKSVD) [29],
proposedfor thesynthesismodel,canalsobeusedto decorre-
latetheatomsof theanalysisdictionary,whichcanbeachieved
by minimizing ‖ΩΩT − I‖2F after theupdateof thedictionary.
However, this methodcannot directly control the degree of
the coherenceof the dictionary. For comparison, we modify
the IncoherentAnalysisSimCOby replacing thedecorrelation
step (i.e. step 3 in Algorithm 4) with thesetwo decorrela-
tion methods,which we refer to asAnalysis SimCO-Random
(ASimCO-Random) andAnalysis SimCO-IKSVD (ASimCO-
IKSVD) respectively.

VI. SIMULATION RESULTS

In this section we present two categories of experiments
to demonstrate the performance of our proposed algorithms.
The first category contains experiments with synthetic data,
and the second one provides image denoising results using
the dictionaries learned with different ADL algorithms.

A. Experiments with Synthetic Data

Now we test the ADL algorithms with synthetic data.
First of all, the approach to generating the synthetic data
sets and the performance metrics employed are introduced.
Second, we test our proposed algorithms with different initial
dictionaries, showing their convergence and robustness to
initializations. Third, the effect of the atom decorrelation step
of the Incoherent Analysis SimCO algorithm is demonstrated.
Fourth, experiments with different parameters are conducted
to provide a more comprehensive comparison between our
proposed algorithms and other ADL algorithms.

1) Synthetic data generation and performance metrics: A
set of synthetic data consists of a reference analysis dictionary
Ω ∈ R

p×m and a set of signals inY ∈ R
m×n that is sparse

with respect toΩ with co-sparsityl. The reference dictionary
Ω is generated as detailed in the settings of the experiments.
The generation of the signals inY is based on the fact that the
sparse analysis model can be used as a generative model with
a given dictionary [6]. For generating each signal,l rows ofΩ
are selected randomly and a basis for the null space of thesel
rows is determined. Multiplying this basis by a random vector
gives a vector which can be one member of the signal set, i.e.
one column ofY. In the following experiments,Y and its
noisy version will both be used as the training samples. The
noisy training signals are obtained by adding Gaussian noise
with zero mean and standard deviation 0.04 tomathbfY , set
as in [17]. Learning with the original signalsY is referred to
as the noiseless case and learning with the noisy signals as
the noisy case.

An advantage of using synthetic data is that the reference
dictionary which can sparsify the signals exactly is available,
and therefore the quality of a learned dictionary can be
evaluated by comparing it with the reference dictionary. We
use the recovery rate of the atoms to measure the performance

8

of the algorithms for recovering the reference dictionary,fol-
lowing the experiments in [17]. An atomΩj,: of the reference
dictionary is regarded as recovered if

min
i
(1− |Ω̂i,:Ω

T
j,:|) < τ, (20)

whereΩ̂i,: are the atoms of the learned dictionary andτ is the
threshold value to determine whether the atoms are recovered.
The value ofτ is typically set as0.01 [17].

Another way for evaluating a learned dictionary is to
consider the average co-sparsity of the original signals inY

with respect to this dictionary since the final goal of ADL is to
acquire a dictionary with which the analysis representations of
the signals are sparse. We introduce an operator‖x‖ǫ0 counting
the number of the elements ofx ∈ R

p, which are below the
thresholdǫ, i.e.

‖x‖ǫ0 = card({i : |xi| < ǫ, i = 1, 2, ..., p}), (21)

wherexi denotes theith element ofx andǫ > 0. The threshold
value ǫ should be close to zero and it is set asǫ = 0.001
throughout our experiments. The co-sparsity of a signal can
be obtained by applying this operator to the product of the
learned dictionary and this signal. The average co-sparsity of
all signals are used as the second metric to evaluate the learned
dictionaries.

2) Convergence of the proposed algorithms: Different ini-
tial dictionaries are used to demonstrate the convergence of
our proposed algorithms. The reference dictionaries were ge-
nerated with the random variables satisfying the i.i.d. Gaussian
distribution with zero mean and unit variance and then the
rows of the dictionaries were normalized. The size of the
reference dictionaries was50× 25 (i.e. p = 50, m = 25). The
number of training signals was 50000 (i.e.n = 50000) and
their co-sparsity was 21 (i.e.l = 21) set as in [17]. Analysis
SimCO and Incoherent Analysis SimCO were applied to learn
analysis dictionaries respectively. The co-sparsity parameters
of these two algorithms were both set as the reference co-
sparsity. The coherence limit of Incoherent Analysis SimCO
was set asµ0 = 0.6, based on our empirical tests.

Three types of matrices were used as initial dictionaries,
following the experiments of [7]. The first type is the random
matrix consisting of i.i.d. zero mean and unit variance Gaus-
sian elements. The other two types are vertical concatenations
of two matrices. One type is the vertical concatenations of
two 25 × 25 2D DCT matrices (defined as the Kronecker
product of two 5 × 5 1D DCT matrix), and the other is
composed of two25×25 identity matrices.We haveused100
independent runs to test the proposedalgorithms, the change
of theobjective function (3) showssimilar patternsin different
runs. Fig. 1 shows the objective function value averaged from
ten independent tests of the proposed algorithms over the
iterations in noiseless case and noisy case.The objective
function decreases monotonically for all the initializations in
both the noiseless case and noisy case. Though the dictionaries
were initialized in different ways, the algorithms converge to a
similar final value. This indicates that our proposed algorithms
can converge robustly with different initializations.

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

Iteration Number

O
bj

ec
tiv

e
F

un
ct

io
n

Random Initialization
DCT Initialization
Identity Initialization

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

Iteration Number

O
bj

ec
tiv

e
F

un
ct

io
n

Random Initialization
DCT Initialization
Identity Initialization

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

Iteration Number

O
bj

ec
tiv

e
F

un
ct

io
n

Random Initialization
DCT Initialization
Identity Initialization

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

Iteration Number

O
bj

ec
tiv

e
F

un
ct

io
n

Random Initialization
DCT Initialization
Identity Initialization

Fig. 1. Objective function value with different initializations in the noiseless
case (top) and the noisy case (bottom). Left column: Analysis SimCO. Right
column: Incoherent Analysis SimCO.

3) Effect of the atom decorrelation step: Now we compare
the correlations of the atoms in the dictionaries learned by
Analysis SimCO and Incoherent Analysis SimCO to show the
effect of the atom decorrelation step. The initial dictionaries
were set as random Gaussian matrices with normalized rows.
Other settings were the same as those in the experiments of
Fig. 1.

In order to observe the correlations of the atoms of a learned
dictionaryΩ, we define its mutual correlation matrixM as
follows

M(Ω) = abs(I−ΩΩT), (22)

where operatorabs(·) takes the element-wise absolute value
of a matrix. The non-diagonal elements ofM(Ω) represent
the correlations between atoms ofΩ and thus the coherence
of Ω is the maximum value of all the elements ofM,
i.e. µ(Ω) = max(M(Ω)). The histograms of the mutual
correlation matrices of the dictionaries learned by Analysis
SimCO and Incoherent Analysis SimCO in one test are
presented in Fig. 2, in both the noiseless case and noisy
case. In the mutual correlation matrix obtained by Analysis
SimCO, there are some elements close to 1, which means that
highly-correlated atoms exist in the learned dictionary. These
highly-correlated atoms disappear in the dictionary learned by
Incoherent Analysis SimCO, as shown in the right plot of
Fig. 2. This demonstrates that the atom decorrelation step can
effectively avoid the highly-correlated atoms in the learned
dictionary.

The recovery rate and average co-sparsity averaged from
ten independent tests are shown in Fig. 3. It can be seen that
the recovery rate is higher in both the noiseless case and noisy
case, when the Incoherent Analsysis SimCO algorithm is ap-
plied. The average co-sparsity in the noisy case also increases
due to the atom decorrelation step. In the noiseless case, the
average co-sparsity obtained by Incoherent Analysis SimCOis
lower than that obtained by Analysis SimCO. This is because
some atoms which can sparsify the training signals with high
co-sparsity are replaced because of their high correlation. Even
though the dictionaries learned by Analysis SimCO can reach

9

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

Element Value

N
um

be
r

of
 E

le
m

en
ts

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

Element Value

N
um

be
r

of
 E

le
m

en
ts

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

Element Value

N
um

be
r

of
 E

le
m

en
ts

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

Element Value

N
um

be
r

of
 E

le
m

en
ts

Fig. 2. The histograms of the elements in the mutual correlation matrices of
the dictionaries learned in the noiseless case (top) and thenoisy case (bottom).
Left column: Analysis SimCO. Right column: Incoherent Analysis SimCO.

higher average co-sparsity, Incoherent Analysis SimCO can
learn the dictionaries without highly-correlated atoms.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Iteration Number

R
ec

ov
er

y
R

at
e

Analysis SimCO
Incoherent Analysis SimCO

0 500 1000 1500 2000 2500
0

5

10

15

20

Iteration Number

A
ve

ra
ge

 C
o−

sp
ar

si
ty

Analysis SimCO
Incoherent Analysis SimCO

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration Number

R
ec

ov
er

y
R

at
e

Analysis SimCO
Incoherent Analysis SimCO

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Number

A
ve

ra
ge

 C
o−

sp
ar

si
ty

Analysis SimCO
Incoherent Analysis SimCO

Fig. 3. Recovery Rate and Average Co-sparsity over iterations in the noiseless
case (top) and the noisy case (bottom).

4) Simulations with different parameters: Our proposed
algorithms are compared withseven baseline algorithms:
ASimCO-Random, ASimCO-IKSVD, Analysis K-SVD [17],
LOST [20], AOL [18], Transform K-SVD [21] and GOAL
[19]1.

The algorithms were tested with different parameters, i.e.
co-sparsityl, the number of training signalsn and the number
of atomsp. In each test, one parameter was changed while
the others were fixed, as shown in Table I. These parameters
are selected empirically to show the trends of the learning
results of the algorithms in terms of recovery rate and average
co-sparsity. The reference dictionaries were generated with
random variables satisfying i.i.d. Gaussian distributionwith

1The code of GOAL was downloaded from http://www.gol.ei.tum.de/
index.php?id=25&type=98.

zero mean and unit variance and their rows are normalized.
The initial dictionaries used in all the algorithms were also
generated in the same way.

TABLE I
PARAMETERS USED IN THE COMPARISON OF DIFFERENTADL

ALGORITHMS WITH SYNTHETIC DATA.

1
Fixed parameters p = 50, m = 25, n = 50000

Varying parameterl l ∈ {4, 8, 12, 16, 20, 24}

2
Fixed parameters p = 50, m = 25, l = 18

Varying parametern n ∈ {0.5, 1, 2, 4, 6, 8} × 104

3
Fixed parameters m = 25, l = 18, n = 50000

Varying parameterp p ∈ {30, 40, 50, 60, 70, 80}

Analysis SimCO and Incoherent Analysis SimCO were
applied for 2500 iterations. For Incoherent Analysis SimCO,
the coherence limit wasµ0 = 0.6. The parameters of Analysis
K-SVD were set as the experiments with synthetic data in [17].
We found that the LOST algorithm fails to recover any atom
of the reference dictionary if the parameters as in the original
paper [20] are used. This may be because the experiments
with synthetic data scale differently from the experimentswith
image patches in [20]. Extensive experiments were conducted
to find good parameters of LOST for the experiments with
synthetic data. The coefficients of the penalty terms in the
objective function were chosen as50 and the index parameter
in the correlation penalty term was20. The step size and
the iteration number of the inner gradient conjugate algorithm
were 10−4 and 30 respectively. The number of iterations for
LOST was fixed to 1000. For the AOL algorithms, its noiseless
version (NL)AOL and noise-aware version (NA)AOL were
applied to the noiseless case and the noisy case respectively.
The iteration numbers of (NL)AOL and (NA)AOL were 50000
and 10 respectively, according to the settings in [18]. The
coefficient of the objective function of (NA)AOL wasλ = 0.3.
Other parameters of these two algorithms were the same
as suggested in [18]. The parameters of Transform K-SVD
were set at their default values as in [21].The parameters
of GOAL were set as in the original code2. The threshold
usedto replacesimilar rows in ASimCO-Random is also set
asµ0 to be consistent with the coherencelimit of Incoherent
AnalysisSimCO.Theparametersfor thedecorrelation method
in ASimCO-IKSVD aresetas recommendedin [29].

The recovery rate and average co-sparsity averaged from
five independent tests with differentl, n andp are presented
in Figs. 4, 5 and 6 respectively. Abbreviations are used in the
legends because of space limitation (IN-ASimCO, ASimCO,
AKSVD and TKSVD are short for Incoherent Analysis
SimCO, Analysis SimCO, Analysis K-SVD and Transform
K-SVD respectively). In general, our proposed algorithms,
Analysis K-SVD, LOST and Transform K-SVD show similar
trends over the varying parameters. This may result from the
same measurements used for co-sparsity, i.e.ℓ0-norm, and
their similar optimization procedure which alternates between

2We should note that, in GOAL the values of the parameters set in the
code downloaded are different from those presented in the original paper.
Therefore, we tested both sets of parameters, the values of the parameters set
in the code were used in our experiments as we observed that they usually
lead to better results.

10

the update of the analysis representation and the update of
the dictionary. For these five algorithms, better dictionaries
can be learned with larger co-sparsities (cf. Fig. 4) and more
training samples (cf. Fig. 5). With the increase of the number
of atoms, the recovery rates obtained by these algorithms
decrease (cf. Fig. 6). The results of Incoherent Analysis
SimCO are similar to the results of Analysis K-SVD and
Transform K-SVD, which are better than the results of LOST.
The recovery rates of the dictionaries obtained by Incoherent
Analysis SimCO are higher than Analysis SimCO in all cases
due to the restriction of the coherence of the learned dictionary.
The average co-sparsities obtained by Analysis SimCO are
closer to the reference co-sparsities than those obtained by
Incoherent Analysis SimCO in the noiseless case, but the
Incoherent Analysis SimCO algorithm shows advantage for
the average co-sparsity in the noisy case.The results of
(NL)AOL, (NA)AOL and GOAL appearto be quite different
from the other methods compared.This might be due to the
“ℓ1-norm” or “ℓp-norm” (0 ≤ p ≤ 1) usedto estimatethe co-
sparsity of the coefficients,asopposedto the “ℓ0-norm” used
in the other algorithms. The relatively limited performances
of (NL)AOL and (NA)AOL may result from the application
of the UNTF constraint to the learneddictionaries,that the
referencedictionariesdo not satisfy. The resultsof Incoherent
Analysis SimCO and ASimCO-Random are very similar to
each other, and they both outperform the ASimCO-IKSVD
algorithm.

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Co−sparsity

R
ec

ov
er

y
R

at
e

4 8 12 16 20 24
0

5

10

15

20

25

Co−sparsity

A
ve

ra
ge

 C
o−

sp
ar

si
ty

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
(NL)AOL
TKSVD
GOAL

4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Co−sparsity

R
ec

ov
er

y
R

at
e

4 8 12 16 20 24
0

1

2

3

4

5

6

7

Co−sparsity

A
ve

ra
ge

 C
o−

sp
ar

si
ty

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
(NA)AOL
TKSVD
GOAL

Fig. 4. Recovery Rate (left) and Average Co-sparsity (right) with different
co-sparsities (l ∈ {4, 8, 12, 16, 20, 24}) in the noiseless case (top) and the
noisy case (bottom).

The time (in seconds) of one test with different parameters
is presented in Table II3. From Table II, we can see that
our proposed algorithms are faster than Analysis K-SVD,
LOST and (NL)AOL, but slower than Transform K-SVD
and GOAL. It seems that Transform K-SVD is the best
choice to learn dictionaries with synthetic data considering
its good performance and efficient computation. However, for

3All algorithms were implemented in Matlab R2012a and performed with
an Intel Core i5 CPU at 3.30GHz and 8GB memory.

0 2 4 6 8

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training samples

R
ec

ov
er

y
R

at
e

0 2 4 6 8

x 10
4

0

5

10

15

20

Number of training samples

A
ve

ra
ge

 C
o−

sp
ar

si
ty

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
(NL)AOL
TKSVD
GOAL

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of training samples

R
ec

ov
er

y
R

at
e

0 2 4 6 8

x 10
4

0

1

2

3

4

5

Number of training samples

A
ve

ra
ge

 C
o−

sp
ar

si
ty

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
(NA)AOL
TKSVD
GOAL

Fig. 5. Recovery Rate (left) and Average Co-sparsity (right) with different
numbers of training samples (n ∈ {0.5, 1, 2, 4, 6, 8} × 104) in the noiseless
case (top) and the noisy case (bottom).

30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of atoms

R
ec

ov
er

y
R

at
e

30 40 50 60 70 80
0

5

10

15

20

Number of atoms

A
ve

ra
ge

 C
o−

sp
ar

si
ty

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
(NL)AOL
TKSVD
GOAL

30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of atoms

R
ec

ov
er

y
R

at
e

30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Number of atoms

A
ve

ra
ge

 C
o−

sp
ar

si
ty

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
(NA)AOL
TKSVD
GOAL

Fig. 6. Recovery Rate (left) and Average Co-sparsity (right) with different
numbers of atoms (p ∈ {30, 40, 50, 60, 70, 80}) in the noiseless case (top)
and the noisy case (bottom).

the application to image denoising, our proposed algorithm
outperforms Transform K-SVD, which will be presented in
the next two subsections.The running time of (NA)AOL
changes substantially in different cases since sometimes the
subgradient algorithm applied to update the dictionary requires
longer time to converge.(NA)AOL seemsto be faster than
our proposedalgorithms as shown in Table II. It should be
notedthat the running time presentedhereis the time for one
test, however, the termination conditions for the algorithms
are different. For eachiteration, our proposedalgorithms are
fasterthan(NA)AOL which is consistent with the analysis of
the computational complexities in Section IV-E.

B. Experiments for Image Denoising

We apply the learned dictionaries to image denoising which
has become a common application for demonstrating ADL

11

TABLE II
T IME OF ONE TEST WITH DIFFERENT PARAMETERS(IN SECONDS).

Number of co-sparsitiesl

Algorithm 4 8 12 16 20 24

ASimCO 1373 1232 1323 1290 1329 1488

IN-ASimCO 1411 1264 1227 1219 1233 1064

ASimCO-Random 1234 1136 1022 1051 1027 1025

ASimCO-IKSVD 1188 1054 938 946 981 1002

AKSVD 1376 2940 4697 6532 8677 11037

LOST 1523 1500 1559 1716 1521 1448

TKSVD 209 222 232 242 252 260

(NL)AOL 4196 4489 4108 4255 4430 4167

(NA)AOL 13 13 346 347 15 348

GOAL 28 34 31 34 28 32

Number of training signalsn (104)

Algorithm 0.5 1 2 4 6 8

ASimCO 87 263 531 1055 1580 2201

IN-ASimCO 105 222 504 862 1506 1989

ASimCO-Random 135 268 537 993 1458 1874

ASimCO-IKSVD 121 240 463 839 1214 1704

AKSVD 807 1557 3075 6164 9243 12090

LOST 354 449 721 1305 2039 2953

TKSVD 132 146 175 219 272 323

(NL)AOL 563 1017 1775 3356 5459 7131

(NA)AOL 59 52 57 71 18 24

GOAL 5 13 18 29 14 57

Number of atomsp

Algorithm 30 40 50 60 70 80

ASimCO 1120 1264 1491 1530 1726 1787

IN-ASimCO 766 874 1344 1360 1454 1528

ASimCO-Random 908 1000 1106 1231 1356 1518

ASimCO-IKSVD 799 884 1001 1069 1170 1386

AKSVD 6700 7069 7561 8081 8697 9127

LOST 1168 1229 1552 2138 2068 2305

TKSVD 162 202 244 283 309 338

(NL)AOL 2610 3349 4690 5255 6134 6893

(NA)AOL 36 53 68 101 21 95

GOAL 23 31 32 45 48 60

algorithms [17], [21], [20]. In this section, the image denoising
framework, the performance evaluation index, and the para-
meter selection are introduced first. After that, the denoising
results for face images and natural images are presented.

1) Image denoising framework: The image denoising
framework employed in our experiments consists of dictionary
learning and image recovering, which are both based on small
image patches [4], [17]. To denoise a large image of size√
N ×

√
N , small image patches of size

√
m × √m with

m < N are used as the training signals to learn an analysis
dictionaryΩ ∈ R

p×m. These training patches are extracted
from the image to be denoised or from other clean images.
In the image recovering process, the noisy image is also
handled as overlapping patches of the same size. Specifically,√
m × √m patches extracted from the noisy image are

reshaped as column vectors which are concatenated as a matrix
Z ∈ R

m×n, wheren is the number of patches. The recovering
operation is directly applied toZ using the learned dictionary
Ω, resulting in a noiseless estimationY ∈ R

m×n. Overlapping

patches are used to mitigate the blockiness artifacts caused
by this patch-based framework. The denoised image can be
obtained by reshaping the columns ofY as image patches
and averaging these overlapping patches.

The key idea of estimatingY is to solve an optimization
problem where the learned analysis dictionaryΩ serves in the
regularization term reflecting the co-sparsity prior ofY, that
is

arg min
Y

‖ΩY‖1 +
λ

2
‖Z−Y‖2F , (23)

where λ is the Lagrangian multiplier to balance the data
fidelity term ‖Z−Y‖2F and the regularization term‖ΩY‖1.
The alternating direction method of multipliers (ADMM) [30],
[18] is applied to tackle this problem.

It should be noted that the methods used for image re-
covery in the experiments of LOST [20], Analysis K-SVD
[18], Transform K-SVD [21] and GOAL [19] are different,
which makes it difficult to evaluate the dictionaries learned by
different algorithms consistently. To make a fair comparison,
the same image recovering method, formulated as (23), is used
in our experiments. This method is selected because of its high
computational efficiency.

2) Denoising performance evaluation and parameter selec-
tion: The images to be denoised were artificially corrupted
by additive white Gaussian noise with the standard deviation
being eitherσ = 12.8 or σ = 45, choosing empirically to
represent the case of a relatively low or high level of noise
respectively. Peak signal to noise ratio (PSNR) was used to
measure the denoising performance. For anN -pixel noise-free
imagey ∈ R

N , the PSNR in decibels (dB) of its denoised
versionŷ ∈ R

N is defined as

PSNR = 10log10
2552N

‖ŷ − y‖22
, (24)

where‖ŷ−y‖22 is the mean squared error between the original
image and its denoised version.

Throughout our experiments, we followed the same set up
as in [18], [21] and fixed the size of the image patches to
8 × 8, i.e. m = 64. The overlap of the patches was set as 7.
The size of the learned dictionaries was128×64, i.e.p = 128.
In the image recovering process, the proper selection of the
Lagrangian multiplierλ is related to the noise level. In general,
λ needs to be smaller when the noise level is higher. The
method to choose optimalλ is out of the scope of our work.
Herein a set of differentλ’s was tested, and only the results
of λ ∈ {0.002, 0.01, 0.05, 0.1, 0.3, 0.5} are presented to
show the trends of the denoising results.

We still compareour proposedalgorithmswith thebaseline
algorithms asemployedin the experimentsfor synthetic data.
The parameters about co-sparsity were set as follows. For
Analysis SimCO and Incoherent Analysis SimCO, the co-
sparsities were set as eitherl = 40 or l = 80. The cor-
responding parameters of the baseline algorithms were set
based on the value ofl, in order to ensure the equal co-
sparsity. For Analysis K-SVD, only thel = 40 case was
tested sincel cannot be greater than the signal dimensionm
in its parameter settings [17]. There is no parameter related to
the co-sparsityl in (NA)AOL and GOAL. Other parameters

12

weresetasthoseemployedin their original papersexceptfor
GOAL whoseparameters are the sameas in the experiments
for syntheticdata. The coherence limit of Incoherent Analysis
SimCO and the correlation threshold of ASimCO-IKDVD
were both set as 0.2, which was lower than the value used
in the experimentswith synthetic data, since we found that,
in general, the image dictionaries learned have a relatively
lower coherence, as compared with that in the synthetic case.
The same initial dictionaries, generated with i.i.d. Gaussian
distribution with zero mean and unit variance, were used for
different algorithms.

3) Face image denoising: Now we denoise face images
using the learned analysis dictionaries, following the experi-
ments in [18]. The face images are centred and cropped [31]
and can be modelled as piecewise smooth signals approxi-
mately. The original face and the noisy face images are shown
in Fig. 7. Two types of training data were tested: Type I
consists of the patches extracted from 13 other clean face
images [18]; Type II includes the patches extracted from the
face image to be denoised. 16384 patches were randomly
selected as training data in both cases [18].

(a) (b) (c)
Fig. 7. Face images. (a) Original face. (b) Noisy face withσ = 12.8 (PSNR
= 26.00 dB). (c) Noisy face withσ = 45 (PSNR = 15.13 dB).

The PSNR (in dB) values of the denoised face images
averaged from five independent tests with varyingλ are
presented in Fig. 8 (σ = 12.8) and Fig. 9 (σ = 45). In each
of these two figures, the top and bottom sub-figures show the
results using the Type I and Type II training data, respectively.
The left and right sub-figures present the denoising results
with l = 40 andl = 80, obtained by our proposed algorithms,
LOST and Transform K-SVD. The results of Analysis K-SVD
are only shown in the left sub-figures.Theresultsof (NA)AOL
and GOAL, which are not related to the co-sparsity setting,
are plotted without modifications in both the left and right
sub-figures. The best denoising results obtained via different
algorithms with varyingλ, i.e. the peak PSNR values of the
lines in Fig. 8 and Fig. 9, are summarized in Table III.

Fig. 8 and Fig. 9 reveal that the denoising results change
considerably with various λ, except for ASimCO-Random.
The bestλ of the set tested in the caseσ = 45 is smaller
than that of the caseσ = 12.8 due to the increase of the
noise level. Some common features of the ADL algorithms
can also be observed from Table III. The dictionaries learned
with higher co-sparsity (l = 80) perform better in general.
In terms of the types of training data, the image patches
from the noisy face image itself (Type II training data) seem
to be more suitable to be the training data.As shown in
Table III, theperformanceof GOAL is competitive, compared
with otherbaseline algorithms.For the lower noiselevel with

0.002 0.01 0.05 0.1 0.3 0.5

26

28

30

32

34

36

λ

P
S

N
R

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
TKSVD
(NA)AOL
GOAL

0.002 0.01 0.05 0.1 0.3 0.5

26

28

30

32

34

36

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5

26

28

30

32

34

36

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5

26

28

30

32

34

36

λ

P
S

N
R

Fig. 8. Face image denoising (σ = 12.8). Top row: training patches are
extracted from 13 other clean face images, with the co-sparsity l = 40 (left)
and l = 80 (right). Bottom row: training patches are extracted from the face
image to be denoised, with the co-sparsityl = 40 (left) and l = 80 (right).

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

28

30

λ

P
S

N
R

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
TKSVD
(NA)AOL
GOAL

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

28

30

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

28

30

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

28

30

λ

P
S

N
R

Fig. 9. Face image denoising (σ = 45). Top row: training patches are
extracted from 13 other clean faces, with the co-sparsityl = 40 (left) and
l = 80 (right). Bottom row: training patches are extracted from the face image
to be denoised, with the co-sparsityl = 40 (left) and l = 80 (right).

Type I training data, it obtains the best result. However,our
proposedalgorithmscanobtain better resultsthanthebaseline
algorithms in othercases. Incoherent Analysis SimCO is able
to get higher PSNR than Analysis SimCO in some cases.
The resultsof ASimCO-Random reflect that the decorrelation
methodemployed in Analysis K-SVD is not suitable for the
facedenoising task.

Fig. 10. Test images for natural image denoising.

13

TABLE III
THE BEST FACE IMAGE DENOISING RESULTS(PSNRIN DECIBELS).

σ = 12.8

Training data type Type I Type II

co-sparsityl 40 80 40 80

ASimCO 33.46 34.22 33.98 34.20

IN-ASimCO 33.63 34.08 34.17 34.35

ASimCO-Random 34.06 34.06 33.35 33.39

ASimCO-IKSVD 31.78 33.07 32.54 33.44

AKSVD 28.89 — 30.76 —

LOST 30.90 32.14 31.15 33.33

TKSVD 29.16 30.58 27.27 28.27

(NA)AOL 33.08 33.27

GOAL 34.47 33.43

σ = 45

Training data type Type I Type II

co-sparsityl 40 80 40 80

ASimCO 27.38 27.69 27.46 26.37

IN-ASimCO 26.83 27.92 26.85 28.33

ASimCO-Random 27.36 27.58 25.93 26.03

ASimCO-IKSVD 25.74 25.78 25.72 25.92

AKSVD 25.74 — 25.72 —

LOST 25.74 25.74 25.72 25.94

TKSVD 19.13 25.22 16.57 28.04

(NA)AOL 26.91 26.72

GOAL 27.27 25.72

4) Natural image denoising: Now we examine the de-
noising of the natural images shown in Fig. 10. The size of the
images is256× 256. Similar to the denoising of face images,
two types of training data are tested: Type I contains image
patches extracted from 5 other clean images shown in Fig. 11;
Type II includes the patches of the image to be denoised. The
number of training patches is 20000 [17]. The results (PSNR
in dB) averaged from the denoised versions of the four test
images are plotted in Fig. 12 (σ = 12.8) and Fig. 13 (σ = 45),
and the peak results of each curve are listed in Table IV.

Fig. 11. Training images used for learning analysis dictionaries.

According to Fig. 12 and Fig. 13, the bestλ is bigger for
the lower noise level, which is consistent with the objective
function (23). Table IV indicates that the patches extracted
from other clean natural images are preferred to the patchesof
the image to be denoised. Our proposed algorithms outperform
the baseline problems, except in theσ = 12.8 case with Type
I training data where (NA)AOLand GOAL gives slightly
better results. The results obtained by Analysis SimCO and
Incoherent Analysis SimCO are similar to each other.

VII. C ONCLUSION

In this paper we have proposed an analysis dictionary
learning algorithm: Analysis SimCO. The dictionary learning

0.002 0.01 0.05 0.1 0.3 0.5
20

22

24

26

28

30

32

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5
20

22

24

26

28

30

32

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5
20

22

24

26

28

30

32

λ

P
S

N
R

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
TKSVD
(NA)AOL
GOAL

0.002 0.01 0.05 0.1 0.3 0.5
20

22

24

26

28

30

32

λ

P
S

N
R

Fig. 12. Natural image denoising (σ = 12.8). Top row: training patches are
extracted from the images in Fig. 11, with the co-sparsityl = 40 (left) and
l = 80 (right). Bottom row: training patches are extracted from the natural
image to be denoised, with the co-sparsityl = 40 (left) and l = 80 (right).

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

λ

P
S

N
R

ASimCO
IN−ASimCO
ASimCO−Random
ASimCO−IKSVD
AKSVD
LOST
TKSVD
(NA)AOL
GOAL

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

λ

P
S

N
R

0.002 0.01 0.05 0.1 0.3 0.5
14

16

18

20

22

24

26

λ

P
S

N
R

Fig. 13. Natural image denoising (σ = 45). Top row: training patches are
extracted from the images in Fig. 11, with the co-sparsityl = 40 (left) and
l = 80 (right). Bottom row: training patches are extracted from the natural
image to be denoised, with the co-sparsityl = 40 (left) and l = 80 (right).

process is formulated as an optimization problem with the
co-sparsity and unitℓ2-norm constraints on the atoms of
the dictionary. This algorithm iteratively solves this problem
by hard thresholding and the gradient descent method on
manifolds. We have also presented an extension of Analysis
SimCO: Incoherent Analysis SimCO, by incorporating an
atom decorrelation step after the dictionary update step. Exten-
sive experiments on synthetic data, face and natural image data
have confirmed the competitive performance of our proposed
algorithms. The applications of learned analysis dictionaries
in other signal processing tasks merit more study, which we
leave for future work.

14

TABLE IV
THE BEST NATURAL IMAGE DENOISING RESULTS(PSNRIN DECIBELS).

σ = 12.8

Training data type Type I Type II

co-sparsityl 40 80 40 80

ASimCO 31.45 31.17 29.68 30.79

IN-ASimCO 31.40 30.91 29.60 30.76

ASimCO-Random 31.29 31.25 31.18 31.22

ASimCO-IKSVD 30.22 31.26 29.11 30.17

AKSVD 28.12 — 27.89 —

LOST 29.47 31.05 28.93 29.84

TKSVD 29.59 30.17 29.20 30.05

(NA)AOL 31.47 29.57

GOAL 31.53 29.56

σ = 45

Training data type Type I Type II

co-sparsityl 40 80 40 80

ASimCO 25.73 24.24 22.44 24.52

IN-ASimCO 25.74 25.37 22.30 24.37

ASimCO-Random 25.54 25.71 22.57 22.71

ASimCO-IKSVD 22.22 22.53 22.17 22.37

AKSVD 22.17 — 22.18 —

LOST 22.17 22.39 22.17 22.27

TKSVD 22.17 22.19 22.18 23.11

(NA)AOL 23.54 22.18

GOAL 23.85 22.19

VIII. A CKNOWLEDGEMENT

The authors thank the Associate Editor and the anonymous
reviewers for their contributions to improving the qualityof
the paper.

REFERENCES

[1] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image
denoising using scale mixtures of Gaussians in the wavelet domain,”
IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, 2003.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpain-
ting,” in Proc. Assoc. Comput. Mach. Spec. Interest Group Comput.
Graph., 2000, pp. 417–424.

[3] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-
resolution,”IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65, 2002.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[5] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,”Inv. Probl., vol. 23, no. 3, pp. 947–968, 2007.

[6] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse
analysis model and algorithms,”Appl. Comput. Harmon. Anal., vol. 34,
no. 1, pp. 30–56, 2013.

[7] S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,”IEEE
Trans. Signal Process., vol. 61, no. 5, pp. 1072–1086, 2013.

[8] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,”IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, 2007.

[9] K. Engan, S. Aase, and J. Hakon-Husoy, “Method of optimaldirections
for frame design,” inProc. Int. Conf. Acoust., Speech, and Signal
Process., vol. 5, 1999, pp. 2443–2446.

[10] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization
(SimCO) for dictionary update and learning,”IEEE Trans. Signal
Process., vol. 60, no. 12, pp. 6340–6353, 2012.

[11] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–
3415, 1993.

[12] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” inProc. 27th Asilomar Conf. Signals, Syst., Comput.,
1993, pp. 40–44.

[13] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of
underdetermined systems of linear equations by stagewise orthogonal
matching pursuit,”IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094–
1121, 2012.

[14] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,”IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–
2249, 2009.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,”SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[16] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: A re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, 1997.

[17] R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: Adictionary-
learning algorithm for the analysis sparse model,”IEEE Trans. Signal
Process., vol. 61, no. 3, pp. 661–677, 2013.

[18] M. Yaghoobi, S. Nam, R. Gribonval, and M. Davies, “Constrained
overcomplete analysis operator learning for cosparse signal modelling,”
IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341–2355, 2013.

[19] S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator learning
and its application to image reconstruction,”IEEE Trans. Image Pro-
cess., vol. 22, no. 6, pp. 2138–2150, 2013.

[20] S. Ravishankar and Y. Bresler, “Learning overcompletesparsifying
transforms for signal processing,” inProc. Int. Conf. Acoust., Speech,
and Signal Process., 2013, pp. 3088–3092.

[21] E. M. Eksioglu and O. Bayir, “K-SVD meets transform learning:
Transform K-SVD,”IEEE Signal Process. Lett., vol. 21, no. 3, pp. 347–
351, 2014.

[22] M. Kleinsteuber and H. Shen, “Blind source separation with compres-
sively sensed linear mixtures,”IEEE Signal Process. Lett., vol. 19, no. 2,
pp. 107–110, 2012.

[23] J. Dong, W. Wang, and W. Dai, “Analysis SimCO: A new algorithm for
analysis dictionary learning,” inProc. Int. Conf. Acoust., Speech, and
Signal Process., 2014, pp. 7193–7197.

[24] P.-A. Absil, R. Mahony, and R. Sepulchre,Optimization algorithms on
matrix manifolds. Princeton University Press, 2009.

[25] J. Nocedal and S. J. Wright,Numerical Optimization, 2nd ed. New
York: Springer, 2006.

[26] T. Tao,Analysis (Texts and Readings in Mathematics). Hindustan Book
Agency, 2006.

[27] B. Mailhé, D. Barchiesi, and M. D. Plumbley, “INK-SVD:Learning
incoherent dictionaries for sparse representations,” inProc. Int. Conf.
Acoust., Speech, and Signal Process., 2012, pp. 3573–3576.

[28] J. Tropp, “Greed is good: algorithmic results for sparse approximation,”
IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[29] V. Abolghasemi, S. Ferdowsi, and S. Sanei, “Fast and incoherent
dictionary learning algorithms with application to fMRI,”Signal, Image
and Video Processing, vol. 9, no. 1, pp. 147–158, 2015.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternatingdirection method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[31] K.-C. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face
recognition under variable lighting,”IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 5, pp. 684–698, 2005.

