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Abstract—In this paper, we consider the dictionary learning
problem for the sparse analysis model. A novel algorithm is
proposed by adapting the simultaneous codeword optimizabin
(SimCO) algorithm, based on the sparse synthesis model, the
sparse analysis model. This algorithm assumes that the aryasiis
dictionary contains unit /2-norm atoms and learns the dictionary
by optimization on manifolds. This framework allows multiple
dictionary atoms to be updated simultaneously in each iteréon.
However, similar to several existing analysis dictionary éarning
algorithms, dictionaries learned by the proposed algorittm may
contain similar atoms, leading to a degenerate (coherent)ic-
tionary. To address this problem, we also consider restridhg the
coherence of the learned dictionary and propose Incohererina-
lysis SImCO by introducing an atom decorrelation step follaving
the update of the dictionary. We demonstrate the competitie
performance of the proposed algorithms using experiments ith
synthetic data and image denoising as compared with existin
algorithms.

Index Terms—Sparse representation, analysis model, SImCO,
analysis dictionary learning.

I. INTRODUCTION

ANY problems in signal processing can be regard

In-

as inverse problems, for example, denoising [1],
painting [2] and super-resolution [3]. These problems am
reconstruct original signals from their observed measergm
Some prior knowledge or assumptions about the signals
required due to the lack of information or the presence

noise in the observations. One assumption that has a’ﬂlrac1
extensive attention in the past decade is that the signals
o,

be restored argparse in some domain. Two signal models t

capture the sparse property of the signals have been prpo

namely, thesparse synthesis model [4] and sparse analysis

model [5], [6]. More recently, the sparse analysis model h
been extended to a more generalized model, referred to as

sparsifying transform model [7].

A. Sparse Synthesis Model

that a signaly € R™ can be linearly represented with some
atoms (columns) of aynthesis dictionary D € R™*¢, where
the dictionary is usually overcomplete witlh > m. The
number of atoms used to represgnis much smaller than
the total number of atoms in the dictionary, which reflects th
sparsity of the signaly. Mathematically, this model can be
written asy = Da with ||a|lo = s, where the/g-norm || - ||o
counts the number of non-zero elements of its argumentaand
is the representation coefficient vector witheing its sparsity.
The atoms corresponding to the non-zero elementa afe
used to synthesize the signgalvia their linear combination,
which brings about the term “synthesis” in the name of this
model.
One challenge related to this model is thmarse coding

problem which aims to find the sparsest representatioaf

a given signaly with respect to a given dictionarD. In
order to tackle this problem, greedy algorithms have been
proposed, such as matching pursuit (MP) [11], orthogonal
matching pursuit (OMP) [12], stagewise orthogonal matghin
edersuit (StOMP) [13] and subspace pursuit (SP) [14], as well
as relaxation methods such as basis pursuit (BP) [15] arad foc
{Jnderdetermined system solver (FOCUSS) [16].

A second challenge is to design or learn an appropriate
grigtionary D to represent a set of signals as sparsely as
ssible. Many analytical dictionaries have been develppe
gt dictionaries learned from a set of training signals have
ie potential to fit these signals better than the analytiaal
tionaries [4]. As a result, theictionary learning problem for
the sparse synthesis model has become one of the most popular
?gpics in sparse representation. This problem aims to deek t
adsictionaryD that leads to the best set of representations for
zi\h%iven set of training signals. Many algorithms have been
proposed to address this problem, for example, method of
optimal directions (MOD) [9], K-SVD [4] and SimCO [10].
These algorithms typically alternate iteratively betwesm
update of the coefficients and an update of the dictionary.

The most well-known model in sparse representation is th@ the update of the coefficients, sparse coding algorithms
sparse synthesis model [4], [8], [9], [10]. This model as88Mgre often used while keeping the dictionary fixed. The main
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B. Sparse Analysis Model and Sparsifying Transform Model

In contrast to the synthesis model, the sparse analysisimode
uses ananalysis dictionary @ € RP*™ with p > m to
“analyze” the signaly € R™. Specifically, it assumes that the
product ofQ2 andy is sparse, i.ex = Qy with ||x|lo =p—1,
where0 < | < p is the number of zeros ix € RP. The
matrix €2 is usually referred to as ammnalysis dictionary [17]



or analysis operator [18], [19], with each row of€2 being decomposition (SVD) to update the dictionary atoms one-by-
an atom. The vectorx is the analysis representation of the one. After the update of all atoms, similar atoms, deterchine
signal y with respect toQ2. This model is also referred towith inner-product of two atoms, are replaced by new ran-
as aco-sparse analysis model, and the number of zerdsis domly generated atoms. However, these new atoms cannot
called theco-sparsity of the signaly with respect tof2 [6]. preserve the information of the atoms to be replaced because
Let A = {i : ; = 0} denote the index set of the rows §&8 of the randomness. Besides, the computational complekity o
corresponding to the zero elementsxin(thus, card(A) = 1) Analysis K-SVD is quite high due to the involvement of the
and let2, denote the sub-matrix o2 containing only the analysis pursuit problem [17].
rows indexed byA. The setA is called theco-support of y.
For the analysis model, we ha¥2,y = 0, meaning that the  The learning overcomplete sparsifying transforms (LOST)
| atoms indexed by\ are orthogonal to the signal. From algorithm [20] minimizes the so-called sparsifying errdrigh
the subspace point of view; lies in the subspace which isis defined in the transform or analysis domain rather than the
orthogonal to the subspace spanned by the ron@ af Even original signal domain as in the formulation of Analysis K-
though the description of the sparse analysis model may se8¥D. As a result, the time consuming algorithm OBG is not
similar to its synthesis counterpart, these two modelsediffused any more. Two penalty terms are added to the objective
significantly if the dictionaries are overcomplete [5]. function of LOST to apply two constraints on the learned
If the signaly is known, its analysis representation wittflictionary respectively, i.e. the full column rank consita
respect to a giverf2 can be obtained via multiplyings and the constraint on the correlation between the atoms. The
by €. However, when the observed signal is contaminat&@efficients of the penalty terms play an important role i th
by noise, the clean signay has to be estimated first inperformance of LOST, but selecting proper coefficients is a
order to get its analysis representation, which leads to tReactical challenge [20].
analysis pursuit problem[17]. Some algorithms like backward- ) .
greedy (BG) [17], optimized-backward-greedy (OBG) [17], Transform K-SVD proposed recently in [21] combines the

and greedy analysis pursuit (GAP) [6] have been proposgaarsifying error formulation of LOST with the dictionary
to address this problem. update approach of Analysis K-SVD. This algorithm uses

In a similar way to the dictionary in the synthesis modeli® same method as in Analysis K-SVD to avoid similar

the analysis dictionarf2 also plays an important role in thedtoms, but. overcomes its computational complexity issubl wi
analysis representation of the signal and the dictionaries & formulation used in LOST. We have found that Transform

learned from a set of training signals show some advantadss VD performs well in recovering a reference dictionanyt b
compared with pre-defined dictionaries [17]. In the past fell denoising performance is relatively limited, as showour
years, theanalysis dictionary learning (ADL) problem has Simulations (see Section VI-B later).

\t,Jveegqur::ltJ(; iﬁr?;;rgcgﬁ aitoeg:gﬂ [17], [28], [19]. In this pap The analysis operator learning (AOL) algorithm reported

P o .in [18] addresses the ADL problem using a constrained

Recently, the so-called sparsifying transform model, \Whlc0 timization framework. In this algorithm. thé,-norm is
g - g ’

assumes that a signal can be approximately sparsified WiSkd as the co-sparsity measurement. It restricts thedaty

an analysis transform operator, was introduced in [7]. Th{(s) be a uniform normalized tight frame (UNTE) which is

model can be regarded as a natural extension of the spafse. . . .
. ; g e intersection of uniform normalized (UN) frames martdfol
analysis model. Learning a sparsifying transform has been

investigated in [7], [20], [21]. These algorithms deal witte a_nd_ tight frames (T.F). manifold. Th? AQL algorithm Iear_ns a
o - : . dictionary by combining arf; optimization framework with
sparsification error in the transform domain rather tharhin t

L . . . . projection of the dictionary onto the UNTF set. The algarith
or|g|n_al signal domain as in the ADL algorythms [.17]’ [18}{ b (NL)AOL (noiseless AOL) and (NA)AOL (noise-aware AOL)
applying the transform operator to the training signalsete

the signals contain noise. In the present paper, we inteaitio have been developed for learning with noiseless and noisy

. . . ._training samples respectively. However, random dicti@sar
ignore this subtle difference between these two formm'ocannot be recovered by the AOL algorithms since the UNTF

and regard the sparsifying transform Iear_mng algorithiss onstraint limits the possible dictionaries to be learnsee(
alternative solvers of the ADL problem, since the results @)

s . o ection VI later). We will see that the denoising perfornenc
sparsifying transform learning can be regarded as dictiesa . . . . .
. of (NA)AOL is also limited when the noise level is relatively
for the sparse analysis model.

high.

The GeOmeric Analysis opelator Learring (GOAL) algc-
rithm [19] enrploys the £,-normr (0 < p < 1) as the cc-spasity

Several algorithms have been proposed for the ADL prmeesurement which is differeni from the algcrithms reviewed
blem. The Analysis K-SVD algorithm [17] assumes that thabove Similar to the LOST algcrithm, the okjective function
training samples are noisy signals and minimizes the eriof GOAL alsc incoipcrate: two addtional penalty terms to
between the training samples and the signals estimated usacdres: the full rank anc the coirelation corstraints leacing
the learned dictionary. It applies the OBG [17] analysisspitr to the difficulty of seting the weights for the penaties The
algorithm to detect the co-support of each training signighh w corjugate gredieni methoc on menifolds [22] is agplied for
respect to an initial dictionary, and employs the singukug optimizétion.

C. Analysis Dictionary Learning



D. Contributions F. Organization of the Paper

In this work, we propose two new algorithms which can The remainder of the paper is organized as follows. In
partly address the limitations of the ADL algorithms menSection Il the original SIimCO algorithm is reviewed. In
tioned above. Firstly, we adapt the synthesis model basegction Il we present our formulation for the ADL pro-
SimCO algorithm [10] to the analysis model and developlem and the optimization framework. More details of our
a new ADL algorithm which is referred to as the Analysi®roposed Analysis SIimCO algorithm and the discussions of
SimCO algorithm. In SimCO, the optimization method offs convergence and computational complexity are provided
manifolds is applied to update multiple dictionary atom&ection IV. Section V introduces Incoherent Analysis SimCO
simultaneously, leading to a better performance compaitd wwhere an atom decorrelation step is involved. Section VI
K-SVD where the atoms are updated one-by-one. Thus, Weovides experimental results of learning dictionarieshwi
adapt the framework of SimCO to the ADL problem to enabi@ynthetic data and for image denoising. Conclusions anerdra
the simultaneous update of multiple atoms via the optirfozat in Section VII.
on manifolds. The preliminary results of this work have been
presented in [23]. This dictionary update method is différe Il. THE SIMCO ALGORITHM

from the methods used by the existing algorithms. Analysis The SimCO algorithm [10] was proposed to learn a syn-
K-SVD and Transform K-SVD only allow one atom to behesis dictionary from a set of signals so that the signals
updated in one iteration. In LOST, the dictionary is updateghn each be represented by a few atoms of the dictionary.
as a whole matrix by the standard conjugate gradient meth@gt v < R™x" denote the matrix of the training signals,
Compared with the AOL algorithms, the updated dictionary ighere each column o¥ is one training signal. In SimCO,

our proposed method is more general without projection oniige dictionary learning problem is formulated as
the UNTF setNotice tha: the GOAL algcrithm alsc errploys

ar otimization methoc on mznifolds, however the okjective arg Hz;in f(D) = arg Dgin min [|Y — DA[%, (1)
function of our prcposer algcrithm is different from thai of € €
GOAL due to the different cc-spasity meesure baser on ¢;- (D)

norm anc the fewel penalty terms used Besides our prcposed where the columns ofA € R%*" are the representation
algerithm enrploys the gredient descen methoc on menifolds coefficient vectors and e R™*4 is the dictionary to be
rathe thar the corjugate gredient methoc as in GOAL. learned. In this formulatior) is assumed to contain uri-

Secondly, we propose the Incoherent Analysis SImCO alorm columns, which is addressed by the constrBingE D
gorithm to avoid similar atoms appearing in the dictionsriavith D representing the set of all matrices that contain unit
learned by Analysis SIimCO. In the Incoherent Analysis,-norm columns. The positions of the non-zero elements of
SimCO algorithm, a constraint restricting the correlagia the coefficient matrixA are fixed, achieved with the constraint
two distinct atoms of the dictionary is considered and an c A.
atom decorrelation step is applied to enforce this comdtrai To solve the optimization problem (1), SIimCO follows the
by rotating the highly-correlated atom pairs. In this waye t conventional two-stage optimization process — a sparsegod
correlation of any two distinct atoms can be restricted to Bgage and a dictionary update stage. The sparse coding stage
below a given threshold explicitly. Compared with the mekhio determines the sparse representatidnsf the signals inY
used in existing ADL algorithms to avoid similar atoms, théor a given dictionaryD. Various sparse coding algorithms
decorrelation step applied in the Incoherent Analysis SInCsuch as OMP [8] can be employed in this stage.
algorithm has some advantages. For example, this methodn the dictionary update stage, SimCO applies optimization
avoids the coefficient selection problem of LOST since th@ethods on manifolds [24] to update the diction@yunder
constraint is tackled directly rather than applied as a ipenathe unit¢,-norm constraints on the columns BX. According
term of the objective function. Besides, the new atoms ofp the updatedD, the coefficient matrixA is also updated,
tained by the decorrelation step are more likely to be claserwhile the positions of the non-zero elements are kept un-
the atoms replaced than the atoms that are generated randathhnged. This framework is able to update multiple atoms and
in Analysis K-SVD and Transform K-SVD. the corresponding coefficients simultaneously, which gise

to the term simultaneous codeword optimization (SimCO).
E. Notations
I1l. PROBLEM FORMULATION AND OPTIMIZATION

Bold capital letters are used to represent matrices. In par- FRAMEWORK
ticular,_I denotes the identity matrix thse d.imension can Given a set of training signal¥ € R™*", the ADL
be decided from the context. The notatid&; . is used to
specify theith row of the matrixX and X. ; represents its
jth column. Bold lowercase letters represent vectors. 8ala
are either capital or lowercase letters. The nofng|» and
Il denote the/s-norm and the Frobenius norm respectively. .
The notation| - | returns the absolute value of a scalar. The st [Xeillo=p =1, Vi.
notation(-, -) is used to represent the canonical inner-produ€his is a general formulation without any additional coaistt
of two vectors. on apart from the co-sparsity constraifiiX. ;|lo = p—I, Vi.

problem can be written as [7]

{Q*, X*} = arg min | X — QY%
@) @




However, this formulation has ambiguities caused by sgalinAlgorithm 1 Optimization Framework of Analysis SImCO
In one case, when the training daa admits exact sparse Input: Y, p, [

representations, there exists a diction&ywith which the Output: Q*

analysis representations of, i.e. X = QY, satisfy the co- Initialization:

sparsity constraints. If the dictiona2 is scaled by mul- Initialize the iteration countek = 1 and the analysis
tiplying a scalarc € R, the corresponding representations dictionary Q(¥). Perform the following steps.

c-X = c¢- QY will also satisfy the constraints. Thus, the Main Iterations:

problem (2) has infinite optimal solutions- €2 and ¢ - X. 1) Analysis sparse coding: Compute the representations
This may introduce difficulty in optimization. In the other X ) with the fixed dictionary2(*) and the training
case, if the dat& admits approximation representations and signals inY.

[X — QY||% = 4, the value of the cost function with scaled  2) Dictionary update: Update the dictionafy**1) +

X and, i.e.[|[X-QY|% = ¢%-§, can be arbitrarily small. In Q).

other words, the cost function is unbounded from below, Whic  3) If the stopping criterion is satisfied)* = Q(*+1
makes it impossible to find an optimal solution. In addition, and quit the iteration. Otherwise, increase the iteration
(2) has trivial solutions wher& contains all-zero rows. counterk = k + 1 and go back to step 1).

In order to avoid these problems, we apply the uhit
norm constraints on the rows 6%, leading to the following

formulation of the ADL problem IV. ANALYSIS SIMCO ALGORITHM
As the dictionary update stage in our algorithm is based on
{Q*,X*} = arg min | X — QY% optimization on matrix manifolds, we begin this sectionfwit
2.x a brief introduction to the optimization on matrix manifsld
st. [[Xillo=p—1, Vi ®3) to make this paper self-contained. The details of the analy-
19;.]l2 =1, Vj. sis sparse coding and dictionary update are then presented

respectively, followed by the convergence and computation

The unit /2-norm constraints on the rows & are able to complexity analysis of our proposed algorithm.

eliminate the scaling ambiguity mentioned above. Besities,

trivial solutions where®2 has zero rows can be excluded. Thé. Optimization on Matrix Manifolds

formulation (3) is different from that of Analysis K-SVD [17  The Stiefel manifoldSt(p,m)(p < m) is defined as

which minimizes the error in the signal domain. It also d#fe St(p,m) := {U € R™*? : UTU = I} [24, pp. 26]. For

from the objective function of LOST [20] where the penalty, = 1, the Stiefel manifoldt(p, ) reduces to the unit sphere,

terms as described earlier in Section | are included. e, S = {u € R™ : u"u = 1}. At each pointu € S,
The problem (3) can be addressed by an optimizatidhere exists a tangent spa€gS which consists of all vectors

framework alternating between two stages: analysis spafg¢ghogonal tou in R™, i.e. TyS = {v € R™ : u’v = 0}.

coding and dictionary update. Given a diction&®y the first The vectors inl,,S are tangent vectors t§ at the pointu.

stage findsX satisfying the co-sparsity constraiftX. ;| = The tangent spac#,S can be regarded as a vector space
p—I, Vi. In the dictionary update stag®,is updated assuming approximation of the manifold at the pointu [24, pp. 34].
known and fixedX obtained in the first stage. Before dealing with the optimization problem on manifolds,

Here we attempt to update the dictionary using a simil¥fé consider a more general class of problems, i.e., the uncon
method as in SImCO and refer to our proposed algorithﬁﬁramed optlmlzqnon prpblem, from which the optimizatio
as Analysis SimCO. The optimization framework of Analysi§'ethods on matrix manifolds can be adapted,

SimCO is presented in Algorithm In our original algcrithm min f(u), ()
SimCO the use of the termr “simultaneous’ come: from the u ’

following two facts (1) multiple dictionary atom: are ugdated whereu € R™ and f : R™ — R is a differentiable function.
simultaneously anc (2) their coiresponing ccefficients are This problem can be addressed by the standard line search
alsc updatet simultaneously with thest atoms In the anéysis method. In thekth iteration, the standard line search method
case we borrow the terr “SimCO” mainly becaus: in the selects a descent directignalong which the current point;
prcpose algcerithm the dictionary atom: are updatec simulta-  is moved to a new pointi,; leading to a smaller or equal
neously. objective function value, i.e.

A common problem with the popular analysis dictionary
learning algorithms, such as Analysis K-SVD [17], is that
the learned dictionanf2? may contain similar atoms. Suchwith f(ux4+1) < f(ug). Herex is the scalar step size which
a dictionary is regarded as a degenerate solution [7], [2ERn be selected carefully to guarantee the reduction ofdake c
This issue is also observed in the dictionary learned frofunction [25]. In order to determine the search directigrihe
(3) with the Analysis SIimCO algorithm, as will be shown invalue and the derivatives of the objective function can kealus
Section VI. Thus, we develop an extended version of Analysifie most obvious choice is the steepest descent dirggstion
SimCO to avoid this kind of degenerate dictionary, which wil-V f(u;) along which the objective function value decreases
be presented in Section V in detail. most rapidly among all the directions [25, pp. 20].

g1 =up+a-p (5)



Now we consider the optimization problem where thAs a result, the “line” search methods on manifolds can be

variableu is restricted on the manifold, i.e. utilized in this stage. Here we use the first order optimarati
) 6 procedures as in SimCO [10], i.e. the gradient descent line
min f(u). (6)  search method. We explain below the key points of this method

Analogous line search methods on manifolds have been &qludin_g search di_re_ction, line search pth’ and stgp siz_e
veloped by generalizing the standard line search methads ?qspe_ctlvely. The dictionary update stage is summarized in
the unconstrained optimization problem (4). Specificailty, Algorithm 2.

the kth iteration, the search directiay), should be chosen as
a tangent vector t& at uy, i.e., qx € 1y, S. Thus the search

Algorithm 2 Dictionary Update Stage

direction q;, is the projection of the search directign, of ~ Input: Q(’Czl,jﬁ’“), Y
the unconstrained optimization methods to the tangentespacOUFpUt Q
Tu,S [24, pp. 49], that is Main Steps:
T 1) Calculate the search direction, based on equations (13)
qr = (I — upuy )ps. () and (14).

The new pointu;_; obtained by movingsy, in the direction 2) Find a proper step size tgﬂ? golden(}f)ectlon search.
of qi should stay onS. As a result, the line search path (5) 3) Update the dictionary < Q), based on
is replaced by a curve of [24, pp. 103] , i.e. equation (15).

_ . . 8 N L

uyp1 = ugcos(allar2) + ”qulen(qukllz). (8) 1) Search direction: We use the steepest descent direction
as the search direction, i.e. the negative gradient of the
B. Analysis Sparse Coding Stage objective function with respect t® as follows
The purpose of the analysis sparse coding stage is to get the H=-Vf(Q)
sparse representatiod$ of the training signals inY based IIX - QY% (13)
on a given dictionary2. Unlike the corresponding problem of - 0
the synthesis model, here the exact representaliorsn be —9XYT _20vYY7.
calculated directly by simply multiplying the signals ¥ by . o ]
the dictionary(, that is 2) Line search path: The search direction of thgth row
of €, i.e. the projection of each row df onto the tangent
X =QY. (9) space ofS, is [24, pp. 49]
Since the initial dictionary is an arbitrary one, the repres ﬁj =H,.I- Q?:Qjﬁ)_ (14)
tations obtained in this way may not satisfy the co—sparsiR/ _ ) o
constraints onX in (3). A hard thresholding operation isAccording to equation (8), the line search path for jtierow
therefore applied to enforce the co-sparsity of 2 can be written as )
X = HT)(X) (10) . if byl =0,

_ _ Q;:(a) = { ;.. cos(al[hy[2) + (h;/|[hyll2) sin(al[hy]l2)
where HT;(X) is the non-linear operator that sets the smallest
I elements (in magnitude) of each column Xf to zero.
The representationX obtained via equation (10) are the besyhere is the step size.
apprqximation (_)f the exact representatidﬁsjp terms_of Fhe 3) Sep size: In order to find a proper step size we apply
error in Frobenius norm among all the matrices satisfyirg thhe golden section search method [10]. This method consists
co-sparsity constraints. of two stages. In the first stage, it finds a range which costain

a local minimum and within which the objective function is

otherwise,

(15)

C. Dictionary Update Stage unimodal. In the second stage, the golden section ratiogd us
The dictionary update stage aims at optimizing the folo successively narrow the range until the minimizer is teda
lowing problem (by fixingX in (3)) and thusa is determined.

arg min f() = [X-OY [} st (2502 =1 Y (1) 5 convergence

The cost function can be rewritten as a function of the rows of Our proposed algorithm alternates between the analysis

. Besides, the constraint thgk only contains unit’,-norm sparse coding stage and the dictionary update stage. For a

rows restricts the transposes of the rows¢dfto lie on the fixed dictionary$2, X obtained in the analysis sparse coding

unit spheres, i.e. QJT € S, Vj. Thus the problem (11) canStage is the optimal solution under the constraint of cossfya

be rewritten as " Thus, the cost function can only decrease in this stage. In
P the dictionary update stage, since the updaté&ofs along

arg min f(£2) = Z X, — Q. Y|} st. Q. eS, vj. @ descent direction and the step size is chosen to guarantee

Q = ' ’ that the updated? will not increase the cost function. Thus,
(12) the cost function is decreasing monotonically in our pragbs



algorithm. In addition, the cost function of our formulatio The coherence(Q2) reflects the maximum correlation of two
(3) is lower bounded by zero, i.¢|X — QY||%2 > 0. Ac- distinct atoms in2. If () is close to 1, it means that there
cording to the monotone convergence theorem [26], given thee very similar rows irf2, which is the case we attempt to
cost function decreases monotonically and is lower boundedoid. Thus, we add a coherence constraiff2) < yg to the
the algorithm must converge. The convergence will also lbermulation (3) , i.e.

demonstrated experimentally in Section VI-A. (9, X"} = arg min | X — QYHQ
) - F
Q,
E. Computational Complexity st. [ Xllo=p—1, Vi (18)
The time complexity of the Analsysis SimCO algorithm can 19252 =1, Vj

be analyzed as follows. The time complexity of the sparse cod w(€2) < o,
ing stage is dominated by the calculation(a¥’, atO(pmn), wherey is the coherence limit for the learned dictiondy
in terms of the analysis in [20]. In the dictionary updateysta

. , . . To enforce the incoherence constraint, we add an extra
the calculat!g)n OfH is the domlnant.part. Computlng thestep in the dictionary update stage, aiming to find the ctoses
productXY* requiresO(pmn) operations. The time com- -

. T oy T dictionary €2 to © in Frobenius norm, with the coherence of
plexity of QYY" is O(pm”) with pre-computed’Y ™. As @ ¢ gictionaryS) bounded by a threshold,, that is
result, the dictionary update stage requitégmn) operations

with the usual caser > m. The total time complexity of arg min||2 — /7%

each iteration of the Analysis SimCO algorithm thus scates a L A

O(pmn) s.t. HQ%HQ = 1, \V/Z (19)
The computational complexity of Analysis SImCO, similar M(Q) < 1.

to those of LOST [20], (NL)AOL [18], and Transform K-SVD ) i ) )

[21], shows a reduction compared with those of Analysis HIEFEEREURItE3-NOrT corstraints for the atom<in the dic:
SVD and (NA)AOL. The complexity of Analysis K-SVD is liORaryarealsceorsicerecto guaartee thaithe transpose of
O(pm?n) using BG orO(pm®n) using OBG, and (NA)AOL [NEatomeinTthe oulpul dictionary are still on the'marifold:
requires O(pmnk) operations withk being the number of ThiS problem is addressed by applying the decorrelation

dictionary update per iteration. The running time of theg@&thod [27]in a row-wise fashion, as presented in Algorithm
algorithms in practice will be given in Section VI. 3. The general idea is to determine the atom pairs whose

correlations are greater than, via a labeling process (from
line 5 to line 9 of Algorithm 3), and decorrelate these atom
pairs, via a decorrelation process (from line 10 to line Z0)s

As mentioned in Section lll, dictionaries learned by the exmethod keeps alternating between the two processes uatil th
sting ADL algorithms may contain similar atoms, which cagoherence of the estimated diction&yreaches the threshold
degrade the representation performance for signal regoler 1. Although this is a heuristic algorithm, it typically inwas
address this problem, several methods have been proposedly a few loops to output an incoherent dictionary. The
For example, in Analysis K-SVD and Transform K-SVD, theonvergence and the effectiveness of this algorithm will be
similar atoms are replaced by randomly generated atoms,rasnerically demonstrated in Section VI.
mentioned in Section I. In LOST [20], a penalty term is used In the labeling process, the atoms$@fare labeled as either
in their objective function to restrict the correlationgween the atom pairs to be decorrelated or atoms that do not need
atoms. As will be observed in the experiments of Sectian be modified. An index-pair s€f is used to store the index
VI, Analysis SimCO has the same issue, where some of thairs of atom pairs labeled to be decorrelated and an index
atoms in the learned dictionary may appear similar. Here, wet £ is employed to save the indices of the remaining atoms.
present an alternative solution to this problem based oh [2¥2; represents the submatrix 6f only containing the rows
The method in [27] was developed to mitigate the correlatioindexed by the seF. In each iteration, the correlations of any
between atoms learned by a synthesis model. Here we adat distinct rows belonging t62 are calculated to determine
this method to our model and optimization problem. the most correlated pair. The indices of these two atomsbeill

In the context of the sparse synthesis model, the cohereseged, as an index-pair, into the geti.e., F < F | J{(¢,)},
of the dictionary has been defined as a measure of tinelicating that these two atoms are labeled as an atom pair to
similarities between the atoms [28]. We extend this definiti be decorrelated in the following decorrelation processiiTh
for an analysis dictionar§? and define the coherengé) indices will be removed fronk to avoid being detected again,

V. INCOHERENTANALYSIS SIMCO

in a row-wise way as i.e. B+ E\{i,j}.
Q.. Q.. In the decorrelation process, the atom pairs indexed by the
1(€2) = max ‘<7z, 73> , (16) members off" are decorrelated successively. The decorrelation
VigiZi N[ Qa2 195,12

of each atom pair is achieved by rotating the two atoms sym-
From this definition, we havé < u(2) < 1. With the unit metrically with respect to their mean so that their corietat
{5-norm constraints on the rows &?, the coherencei(2) reachesuo [27]. The rotated atoms are determined based on

can be simplified as the orthonormal basi§b;, b, } developed using the atoms to
be decorrelated (line 11 and 12) and the arfjldetermined
n(§2) = V?}%’;j (i, 25, 17) by the coherence limity, i.e., 0 = arccos pg [27].



Algorithm 3 Atom Decorrelation Step decorelation steg agplied in Incchelent Analysis SImCC can

1: Input: €, po beter preserve the informetion in the dictionary atom: since
2: Output: 2 the new atom¢ are generatel by rotaling the existing atom: to
3: Initialization: be replaced The methocin Incchelient K-SVD (IKSVD) [29],
Q= Q, 0 = Jarccos fig, ¢, = cos 0, c; =sin 0 prcposet for the syrthesis model car alsc be usecto decore-
4: while u(fz) > po do late the atom: of the andysis dictionary which car be achieved
5. E={1,2,..,p} /I line 5-9: labeling process by minimizing [|2Q7 — I||% after the update of the dictionary.
6: F=10 However this methoc carnol directly cortrol the degree of
7:  while /L(QE) > g do the ccheience of the dictionary For conmpaiison we mocify
8: (4,7) = arg maxy; jcp iz |Qi_,:QJT7:| the Inccheleni Analysis SimCC by replacing the decorelation
F «+ FU{(i,5)} stef (i.e. ster 3 in Algcerithm 4) with thest two decorela-
E + E\{i,j} tion mettods which we refer to as Analysis SimCC-Rardom
9: end while // line 10-20: decorrelation process(ASimCC-Rardom; anc Analysis SInCC-IKSVD (ASimCC-
10: for V(i,j) € F do IKSVD) respettively.

1w by = (@ + Q) (190 + Ql2)

12 by = (82, = 25.)/ ([, = 25.[12) VI. SIMULATION RESULTS

13: if (€., Q;.)>0then

14: Qi,; = c1b; + c2bg In this section we present two categories of experiments
15: QJ, =c;b; — coby to demonstrate the performance of our proposed algorithms.
16: else The first category contains experiments with synthetic ,data

17: Qi,; = c1bs + c3b; and the second one provides image denoising results using
18: QJ, = —c1bay + by the dictionaries learned with different ADL algorithms.

19: end if

20: end for _ _ ]

>1: end while A. Experiments with Synthetic Data

22: return Now we test the ADL algorithms with synthetic data.

First of all, the approach to generating the synthetic data
sets and the performance metrics employed are introduced.
In order to address the problem (18), the atom decorrelati@@cond, we test our proposed algorithms with differentaihit
step is inserted after the dictionary update stage in the @o gictionaries, showing their convergence and robustness to
Analysis SimCO (Algorithm 1), as summarized in Algorithmpitializations. Third, the effect of the atom decorretatistep
4. We referred to this extended version of Analysis SIMCO @ the Incoherent Analysis SImCO algorithm is demonstrated
Incoherent Analysis SimCO. Actually, Analysis SIMCO cagqyrth, experiments with different parameters are coretlict
pe regarded as the special case of Incoherent Analysis Simgg,oprovide a more comprehensive comparison between our
if pio = 1. proposed algorithms and other ADL algorithms.
1) Synthetic data generation and performance metrics: A
set of synthetic data consists of a reference analysisodity

Algorithm 4 Incoherent Analysis SimCO

Input: Y, p, I, o Q € RP*™ and a set of signals iy € R™*" that is sparse
Oprl_Jt: .Q* with respect to2 with co-sparsityl. The reference dictionary
In|t|aI|_z_at!on: . : . Q2 is generated as detailed in the settings of the experiments.

. !nmahze(gle iteration countek = 1 and the analysis e generation of the signals ¥ is based on the fact that the
d|ct-|onary!.l . Perform the following steps. sparse analysis model can be used as a generative model with
Main lterations: a given dictionary [6]. For generating each sigriabws of Q2

1) Analysis sparse coding: Compute the representatiof selected randomly and a basis for the null space of these
X*) with the fixed dictionary2*) and the training rows is determined. Multiplying this basis by a random vecto

signals inY, based on equations (9) and (10). gives a vector which can be one member of the signal set, i.e.
2) Dictionary update: Update the dictionafy**!) «-  gne column ofY. In the following experimentsY and its

), using Algorithm 2. X noisy version will both be used as the training samples. The
3) Atom decorrelation: Decorrelate the atof$" ") «  nojsy training signals are obtained by adding Gaussianenois

Q1) using Algorithm 3. with zero mean and standard deviation 0.04taithbfY, set

4) If the stopping criterion is satisfie®* = Q**1), quit as in [17]. Learning with the original signalé is referred to
the iteration. OtherWise, increase the iteration COUntgé the noiseless case and |earning with the noisy Signa|s as
k =k + 1 and go back to step 1). the noisy case.
An advantage of using synthetic data is that the reference
It is worth nofing that othel alteinctive mettods coulc also dictionary which can sparsify the signals exactly is aldéa
be usec to prcmote incchelent dictionaries As mertionec ea- and therefore the quality of a learned dictionary can be
lier, Anelysis K-SVD replace: the similar atom: with vectors evaluated by comparing it with the reference dictionary. We
generater in a rardonr way. Comnrparec with this method the use the recovery rate of the atoms to measure the performance
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Another way for evaluating a learned dictionary is tc
consider the average co-sparsity of the original signal¥in
with respect to this dictionary since the final goal of ADLds t
acquire a dictionary with which the analysis representatiof
the signals are sparse. We introduce an opetatf)§ counting
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Fig. 1. Objective function value with different initialiians in the noiseless
. ) ) case (top) and the noisy case (bottom). Left column: Angal@mCO. Right
||x||0 = card({i : |z;] <e€,i=1,2,...,p}), (21)  column: Incoherent Analysis SimCO.

wherez; denotes théth element ofx ande > 0. The threshold .
value ¢ should be close to zero and it is set @s= 0.001 3) Effect of the atom decorrelation step: Now we compare

throughout our experiments. The co-sparsity of a signal cfif correlations of the atoms in the dictionaries learned by
be obtained by applying this operator to the product of tHfnalysis SImCO and Incoherent Analysis SIimCO to show the
learned dictionary and this signal. The average co-syaosit effect of the atom decorrelation step. The initial dictioea

all signals are used as the second metric to evaluate theekarV€re set as random Gaussian matrices with normalized rows.
dictionaries. Other settings were the same as those in the experiments of

2) Convergence of the proposed algorithms: Different ini- F'?' 1. der to ob th lati f the at fal q
tial dictionaries are used to demonstrate the convergefce o noraer to observe he correlations of the aloms of a learne

our proposed algorithms. The reference dictionaries were éjlcUonaryQ, we define its mutual correlation matrdd as

nerated with the random variables satisfying the i.i.d. &&@n ollows T
distribution with zero mean and unit variance and then the M(€2) = abs(I — 202°), (22)
rows of the dictionaries were normalized. The size of thghere operatorbs(-) takes the element-wise absolute value
reference dictionaries wag) x 25 (i.e.p = 50, m = 25). The of a matrix. The non-diagonal elements B(2) represent
number of training signals was 50000 (i:e.= 50000) and the correlations between atoms @f and thus the coherence
their co-sparsity was 21 (i.é.= 21) set as in [17]. Analysis of Q is the maximum value of all the elements o,
SimCO and Incoherent Analysis SIimCO were applied to leare. ;(Q) = max(M(Q2)). The histograms of the mutual
analysis dictionaries respectively. The co-sparsity p@tars correlation matrices of the dictionaries learned by Anialys
of these two algorithms were both set as the reference &mCO and Incoherent Analysis SimCO in one test are
sparsity. The coherence limit of Incoherent Analysis SimCgresented in Fig. 2, in both the noiseless case and noisy
was set agi = 0.6, based on our empirical tests. case. In the mutual correlation matrix obtained by Analysis
Three types of matrices were used as initial dictionarieSimCO, there are some elements close to 1, which means that
following the experiments of [7]. The first type is the randorhighly-correlated atoms exist in the learned dictionarye3e
matrix consisting of i.i.d. zero mean and unit variance Gaukighly-correlated atoms disappear in the dictionary ledrby
sian elements. The other two types are vertical concaterstiIncoherent Analysis SimCO, as shown in the right plot of
of two matrices. One type is the vertical concatenations Bfg. 2. This demonstrates that the atom decorrelation siap ¢
two 25 x 25 2D DCT matrices (defined as the Kroneckeeffectively avoid the highly-correlated atoms in the lesin
product of two5 x 5 1D DCT matrix), and the other is dictionary.
composed of tw@5 x 25 identity matrices\We have usec 100 The recovery rate and average co-sparsity averaged from
indeperden runs to tes the prcposet algcrithms the change ten independent tests are shown in Fig. 3. It can be seen that
of the okjective function (3) show: sSimilar paternsin different the recovery rate is higher in both the noiseless case asg noi
runs. Fig. 1 shows the objective function value averagenhfrocase, when the Incoherent Analsysis SimCO algorithm is ap-
ten independent tests of the proposed algorithms over fhleed. The average co-sparsity in the noisy case also isesa
iterations in noiseless case and noisy célThe objective due to the atom decorrelation step. In the noiseless case, th
function decreases monotonically for all the initialipets in average co-sparsity obtained by Incoherent Analysis SinsCO
both the noiseless case and noisy case. Though the didggenadower than that obtained by Analysis SimCO. This is because
were initialized in different ways, the algorithms convetg a some atoms which can sparsify the training signals with high
similar final value. This indicates that our proposed alfponis co-sparsity are replaced because of their high correlaiven
can converge robustly with different initializations. though the dictionaries learned by Analysis SImCO can reach
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zero mean and unit variance and their rows are normalized.
The initial dictionaries used in all the algorithms wereoals
generated in the same way.
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TABLE |
PARAMETERS USED IN THE COMPARISON OF DIFFERENADL
ALGORITHMS WITH SYNTHETIC DATA.

Number of Elements
Number of Elements

02 04 06 1 02 04 06 08 1 Fixed parameters | p = 50, m = 25, n = 50000
Element Value Element Value 1 -
Varying parametet | I € {4, 8, 12, 16, 20, 24}
2 Fixed parameters | p =50, m = 25,1 =18

£ £ Varying parameten. | n € {0.5, 1, 2, 4, 6, 8} x 10%
£ £
i i 3 Fixed parameters | m = 25, [ = 18, n = 50000
3 3 Varying parametep | p € {30, 40, 50, 60, 70, 80}
€ €
E E

Analysis SImMCO and Incoherent Analysis SimCO were

I applied for 2500 iterations. For Incoherent Analysis SimCO
Element Value the coherence limit wagy = 0.6. The parameters of Analysis

Fig. 2. The histograms of the elements in the mutual coioglanatrices of K-S\/D were set as the experiments with synthetic data in.[17]

the dictionaries learned in the noiseless case (top) anddisg case (bottom). . .

Left column: Analysis SIimCO. Right column: Incoherent Arsé SimCO. We found that the. L_OST al_gorlthm fails to reCOYer any at‘?m

of the reference dictionary if the parameters as in the oaigi

paper [20] are used. This may be because the experiments

higher average co-sparsity, Incoherent Analysis SIimCO cuatith synthetic data scale differently from the experimeitt

o)
0

0
0

0.2 0.4 0.6 0.8 1
Element Value

learn the dictionaries without highly-correlated atoms. image patches in [20]. Extensive experiments were conducte

to find good parameters of LOST for the experiments with

! 2 synthetic data. The coefficients of the penalty terms in the
os =m0 objective function were chosen &8 and the index parameter

ey
o

in the correlation penalty term wa®). The step size and

: the iteration number of the inner gradient conjugate athoni
were 10~* and 30 respectively. The number of iterations for
LOST was fixed to 1000. For the AOL algorithms, its noiseless
,m —Analysis SImCO version (NL)AOL and noise-aware version (NA)AOL were

- - -Incoherent Analysis SimCO

© S0 mmo a0 am o % w0 mo im0 200 250 applied to the noiseless case and the noisy case respgctivel
The iteration numbers of (NL)AOL and (NA)AOL were 50000
and 10 respectively, according to the settings in [18]. The
coefficient of the objective function of (NA)AOL was = 0.3.
Other parameters of these two algorithms were the same
as suggested in [18]. The parameters of Transform K-SVD
were set at their default values as in [2The perameters
s of GOAL were se as in the original code. The threstold
el L Ll use to replace similar rows in ASimCC-Rardon is alsc set
tersten et rersen tumber as yuo to be corsistent with the ccheience limit of Incchelent
Analysis SImCO The peraneters for the decorelation method
in ASIMCC-IKSVD are se as recommender in [29].

4) Smulations with different parameters: Our proposed The recovery rate and average co-sparsity averaged from
algorithms are compared witlsevei basiine algerithms: five independent tests with differeiitn andp are presented
ASimCC-Rardom ASIimCC-IKSVD, Analysis K-SVD [17], in Figs. 4, 5 and 6 respectively. Abbreviations are used én th
LOST [20], AOL [18], Tranform K-SVD [21] anc GOAL legends because of space limitation (IN-ASIimCO, ASImCO,
[19]%. AKSVD and TKSVD are short for Incoherent Analysis

The algorithms were tested with different parameters, i.8imCO, Analysis SImCO, Analysis K-SVD and Transform
co-sparsityi, the number of training signats and the number K-SVD respectively). In general, our proposed algorithms,
of atomsp. In each test, one parameter was changed whiféalysis K-SVD, LOST and Transform K-SVD show similar
the others were fixed, as shown in Table I. These parametégfids over the varying parameters. This may result from the
are selected empirically to show the trends of the learniggme measurements used for co-sparsity, foenorm, and
results of the a|g0rithms in terms of recovery rate and mrathew similar optimization procedure which alternatesnmsn
co-sparsity. The reference dictionaries were generateld wi
random variables satisfying i.i.d. Gaussian distributieith

Recovery Rate
)
e

)
S
Average Co-sparsity
N
S

o

0.2}

I w
N w o

e
]

Average Co-sparsity

N

o
o

0.1 ——Analysis SImCO
- - -Incoherent Analysis SImCO|

Fig. 3. Recovery Rate and Average Co-sparsity over iteratio the noiseless
case (top) and the noisy case (bottom).

2We should note that, in GOAL the values of the parameters rs¢he
code downloaded are different from those presented in tiggnat paper.
Therefore, we tested both sets of parameters, the valué® gfarameters set

1The code of GOAL was downloaded from http://www.gol.ei.tdei in the code were used in our experiments as we observed tatutually
index.php?id=25&type=98. lead to better results.
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the update of the analysis representation and the update : 2
the dictionary. For these five algorithms, better dictioegr °°
can be learned with larger co-sparsities (cf. Fig. 4) andemo,°9
training samples (cf. Fig. 5). With the increase of the numb::°”
of atoms, the recovery rates obtained by these algorithrgo®
decrease (cf. Fig. 6). The results of Incoherent Analysm"‘5
SimCO are similar to the results of Analysis K-SVD anc °4
Transform K-SVD, which are better than the results of LOS™ o
The recovery rates of the dictionaries obtained by Incattere |
Analysis SImCO are higher than Analysis SimCO in all case
due to the restriction of the coherence of the learned diatip
The average co-sparsities obtained by Analysis SImCO ¢
closer to the reference co-sparsities than those obtaiged
Incoherent Analysis SimCO in the noiseless case, but t
Incoherent Analysis SImCO algorithm shows advantage fi °3
the average co-sparsity in the noisy caThe results of ok . . . i

(NL)AOL, (NA)AOL anc GOAL arpea to be quite different Number of raining samples 3¢ Number o taining samples 1+
from the othel mettods comrpared This might be due to the Fig. 5. Recovery Rate (left) and Average Co-sparsity (Jighith different
“¢1-norm” or “gp-norm" (0 <p< 1) use( to estimate the co- numbers of training samplesz € {0.5,1,2,4,6,8} x 10%) in the noiseless
spasity of the ccefficients as oppose to the “¢-norm” used ©2s¢ (1op) and the noisy case (bottom).

in the othel algcrithms The relatively limited pefformances
of (NL)AOL anc (NA)AOL may resuli from the agplicetion R
of the UNTF corstrain to the learnet dictionaries that the os\
referenct dictionarie: do noi saisfy. The results of Incchelent g

Anglysis SimCC anc ASimCC-Rardorr are very similar to
eacl other anc they bott outpeiform the ASImCC-IKSVD

Average Co-sparsity

0.8

0.6

0.4

Recovery Rate
Average Co-sparsity

N
=3

-
Ul

ASIMCO
- IN-ASImCO
-©- ASimCO-Random
ASIMCO-IKSVD
A AKSVD
~©—-LOST

(NL)AOL

Recovery Rate
o
e
ﬂ; S
Average Co-sparsity
N
o

-B8-TKSVD

algerithm. 02 52 con Y
1
%0 40 50 60 70 80 %0 40 50 60 70 80
1 YY) Number of atoms Number of atoms
k- IN-ASIMCO
0.8] 20 767:2::281?\?3“‘ +\ANS—IZ§-2CO
%. gi\gg}m 76722:2&&2‘5?
2 & (NLAOL 26 -A-AKSVD
@ 0.6] 2 15)| 8- TKSVD @ ~-LosT
£ i iy g Sl
% g x E GOSAL
04 210 g o4
-2 ] / 8 S
E /) & £3
0.2] 5 / W z 5
o I —— = T —
4 B 12 16 20 24 4 8 12 16 20 24 ! | i 4
Co-sparsity Co-sparsity %0 40 50 60 70 80 %“0 20 ) ) ) 30
1, 7 = Number of atoms Number of atoms
—#- IN-ASImCO . . L .
08 6] & ASmeo-random Fig. 6. Recovery Rate (left) and Average Co-sparsity (Jigtith different
Z 5 Tk numbers of atomsp(€ {30, 40, 50, 60, 70,80}) in the noiseless case (top)
g g (nAROL and the noisy case (bottom).
0.6 -8~ TKSVD y
ﬂé, : 24 GOAL
[ O
4 H . . . .. .
o 32 the application to image denoising, our proposed algorithm
1 outperforms Transform K-SVD, which will be presented in
o— w0 % ——7 the next two subsection<The running time of (NA)AOL

12 16
Co-sparsity

12
_ cospsy changes substantially in different cases since sometimes t
e e oAbty S i ubaradient algorithm appled to update the dictionargies
noisy case (bottom). longer time to converge(NA)AOL seem to be faste than
our prcposet algcrithms as showr in Table II. It shoulc be
The time (in seconds) of one test with different parametenotec that the running time presente: here is the time for one
is presented in Table If. From Table I, we can see thattest however the teiminetion corditions for the algcrithms
our proposed algorithms are faster than Analysis K-SVIare different For eacl itetation, our prcposet algcrithms are
LOST and (NL)AOL, but slower than Transform K-SVDfaste thar (NA)AOL which is corsisteni with the anéysis of
anc GOAL. It seems that Transform K-SVD is the besthe computational corrplexities in Sedion IV-E.
choice to learn dictionaries with synthetic data consiugri
its good performance and efficient computation. However, fg Experiments for Image Denoising

3All algorithms were implemented in Matlab R2012a and perfed with We apply the learned diCtion_ariFj'S to image denOiSir_]g which
an Intel Core i5 CPU at 3.30GHz and 8GB memory. has become a common application for demonstrating ADL
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TABLE |I patches are used to mitigate the blockiness artifacts dause
TIME OF ONE TEST WITH DIFFERENT PARAMETERSIN SECONDS). by this patch-based framework. The denoised image can be
obtained by reshaping the columns %f as image patches
and averaging these overlapping patches.

Number of co-sparsities
Algorithm 4 8 12 16 20 24

ASIMCO 1373 | 1232 | 1323 | 1290 | 1329 | 1488 The key idea of estimatiny is Fo splye an optimi;ation
IN-ASImCO 1411 | 1264 | 1227 | 1219 | 1233 | 1064 problem where the learned analysis dictionfgerves in the
ASImCO-Random| 1234 | 1136 | 1022 | 1051 | 1027 | 1025 regularization term reflecting the co-sparsity prior¥f that
ASIMCO-IKSVD | 1188 | 1054 | 938 | 946 | 981 | 1002 is N
AKSVD 1376 | 2940 | 4697 | 6532 | 8677 | 11037 arg min |QY | + Z||Z — Y||%, (23)
LOST 1523 | 1500 | 1559 | 1716 | 1521 | 1448 Y 2
TKSVD 209 | 222 | 232 | 242 | 252 | 260 where ) is the Lagrangian multiplier to balance the data
(NL)AOL 4196 | 4489 | 4108 | 4255 | 4430 | 4167 fidelity term || Z — Y||2 and the regularization terfQY]||;.
(NA)AOL 13 | 13 | 346 | 347 | 15 | 348 The alternating direction method of multipliers (ADMM) [R0
GOAL 28 | 34 | 81 | 34 | 28 | 32 [18] is applied to tackle this problem.
Number of training signals: (10%) It should be noted that the methods used for image re-
Algorithm 05 | 1 2 4 6 8 covery in the experiments of LOST [20], Analysis K-SVD
ASImCO 87 | 263 | 531 | 1055 1580 | 2201 [18], Trandorm K-SVD [21] anc GOAL [19] are different,
IN-ASImCO 105 | 222 | 504 | 862 | 1506 | 1989

which makes it difficult to evaluate the dictionaries leatty
different algorithms consistently. To make a fair compamis
the same image recovering method, formulated as (23), & use

ASImCO-Random| 135 268 537 993 | 1458 | 1874
ASImCO-IKSVD 121 240 463 839 | 1214 | 1704

AKSVD 807 | 1557 | 3075 | 6164 | 9243 | 12090 . . ; . .
TOST 354 420 T 721 1305 | 2039 | 2953 in our expenment_s._Thls method is selected because ofgts hi
TKSVD 132 | 146 | 175 | 219 | 272 | 323 computational efficiency. ,

(ND)AOL 563 | 1017 | 1775 | 3356 | 5459 | 7131 ~ 2) Denoising performance evaluation and parameter selec-

(NA)AOL 59 52 57 71 8 22 tion: The images to be denoised were artificially corrupted
GOAL 5 13 | 18 | 29 | 12 57 by additive white Gaussian noise with the standard deviatio

being eitherc = 12.8 or ¢ = 45, choosing empirically to

Number of atoms . . .
represent the case of a relatively low or high level of noise

Algorithm 30 40 50 60 70 80 . . B .
ASIMCO 1120 | 1264 | 1291 | 1530 | 1726 | 1787 respectively. Peak signal to noise ratio (PSNR) was used to
IN-ASIMCO 766 | 874 | 1344 | 1360 | 1454 | 1528 measure the denoising performance. FoNapixel noise-free
) N ; ) . ;
ASImCO-Random| 908 | 1000 | 1106 | 1231 | 1356 | 1518 | IMagey € IRN,_the PSNR in decibels (dB) of its denoised
ASImCO-IKSVD | 799 | 884 | 1001 | 1069 | 1170 | 1386 versiony € R™ is defined as
AKSVD 6700 | 7069 | 7561 | 8081 | 8697 | 9127 2
255“N
LOST 1168 | 1229 | 1552 | 2138 | 2068 | 2305 PSNR = 10log; ¢ 7——735> (24)
TKSVD 162 | 202 | 244 | 283 | 309 | 338 Iy = yliz
(NL)AOL 2610 | 3349 | 4690 | 5255 | 6134 | 6893 where||y —y||3 is the mean squared error between the original
(NA)AOL 36 | 53 | 68 | 101 | 21 | 95 image and its denoised version.
GOAL 23 | 31 | 32 | 45 | 48 60

Throughout our experiments, we followed the same set up
as in [18], [21] and fixed the size of the image patches to
8 x 8, i.e. m = 64. The overlap of the patches was set as 7.
algorithms [17], [21], [20]. In this section, the image d&weg  The size of the learned dictionaries Wi x 64, i.e.p = 128.
framework, the performance evaluation index, and the paia-the image recovering process, the proper selection of the
meter selection are introduced first. After that, the dengis |agrangian multiplien is related to the noise level. In general,
results for face images and natural images are presented. \ needs to be smaller when the noise level is higher. The

1) Image denoising framework: The image denoising method to choose optimal is out of the scope of our work.
framework employed in our experiments consists of dictipnaHerein a set of differend’s was tested, and only the results
learning and image recovering, which are both based on snallA € {0.002, 0.01, 0.05, 0.1, 0.3, 0.5} are presented to
image patches [4], [17]. To denoise a large image of siahow the trends of the denoising results.

VN x V/N, small image patches of sizgm x /m with We still conrpare our prcposet algcrithms with the basiline

m < N are used as the training signals to learn an analyalgcrithms as errployec in the experment: for syrthetic data.
dictionary Q € RP*™, These training patches are extracte@lhe parameters about co-sparsity were set as follows. For
from the image to be denoised or from other clean imagesnalysis SImMCO and Incoherent Analysis SimCO, the co-
In the image recovering process, the noisy image is alsparsities were set as either= 40 or [ = 80. The cor-
handled as overlapping patches of the same size. Spegificaltsponding parameters of the baseline algorithms were set
vm X /m patches extracted from the noisy image areased on the value of, in order to ensure the equal co-
reshaped as column vectors which are concatenated as & magarsity. For Analysis K-SVD, only thé = 40 case was

Z € R™*™ wheren is the number of patches. The recoveringested sincé cannot be greater than the signal dimension
operation is directly applied t& using the learned dictionary in its parameter settings [17]. There is no parameter retlate

Q, resulting in a noiseless estimatidhe R™*™, Overlapping the co-sparsity in (NA)AOL anc GOAL. Othel perarreters
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were se as those errployec in their original pepers excep for %
GOAL whose peramreters are the same as in the experiments  .f
for syrthetic data. The coherence limit of Incoherent Analysi:
SimCO anc the correlation threstold of ASImCC-IKDVD
were botl se as 0.2, which was lower thar the value used
in the experment: with syrthetic data, since we found that, s
in general, the image dictionaries learned have a relative
lower coherence, as compared with that in the synthetic. ca
The same initial dictionaries, generated with i.i.d. Gé&arss
distribution with zero mean and unit variance, were used fi
different algorithms. *
3) Face image denoising: Now we denoise face images =
using the learned analysis dictionaries, following the exip %30
ments in [18]. The face images are centred and cropped [<
and can be modelled as piecewise smooth signals apprc *
mately. The original face and the noisy face images are sho 2
in Fig. 7. Two types of training data were tested: Type 0002 001 00501 0305 0002 001 00501 0305
_conS|sts of the patches extracted from 13 other clean fa‘ﬁ& 8. Face image denoising (= 12.8). Top row: training patches are
images [18]; Type Il includes the patches extracted from tlgracted from 13 other clean face images, with the co-#pars= 40 (left)

face image to be denoised. 16384 patches were randoml§! = 80 (right). Bottom row: training patches are extracted frora thce
selected as training data in both cases [18] image to be denoised, with the co-spardite 40 (left) and! = 80 (right).

PSNR

30}

26

0.002 0.01 N 0.05 0.1 0.30.5 0.002 0.01 A 0.05 0.1 0305

6 6

30 : 30,
ASImCO
4~ IN-ASIMCO 28
-©-ASimCO-Random
ASIMCO-IKSVD
A~ AKSVD 26
~-LOST
~B-TKSVD 24]
3 ~3#— (NA)AOL
§ [-coaL

28|

26
24

PSNR

22]

0.002 0.01 N 0.05 0.1 0.30.5 0.002 0.01 N 0.05 0.1 0305

Fig. 7. Face images. (a) Original face. (b) Noisy face with- 12.8 (PSNR 30 30
= 26.00 dB). (c) Noisy face witlr = 45 (PSNR = 15.13 dB).

The PSNR (in dB) values of the denoised face image .
averaged from five independent tests with varyihgare
presented in Fig. 80(= 12.8) and Fig. 9 ¢ = 45). In each =
of these two figures, the top and bottom sub-figures show t
results using the Type | and Type Il training data, respebtiv. = *° s—o ¥
The left and right sub-figures present the denoising resu *“ooz eor  ossor asos  *““acee oor  oss 01 o305
with [ = 40 and! = 80, obtained by our proposed algorithms,_. . L R
LOST and Transform K-SVD. The results of Analysis K-SVDhracied from 13 other cean faces, win he co-spaisy 10 (o) and -
are only shown in the left sub-figureThe results of (NA)AOL ! = 80 (right). Bottom row: training patches are extracted from fice image
anc GOAL, which are not relatec to the cc-spasity seting, © Pe denoised, with the co-sparsity= 10 (left) and! = 80 (right).
are plottec withoul mocificetions in botl the left anc right

suk-figures. The best denoising results obtained via dlf'fere-i‘-)“/pe | trairing data it oktains the bes result. However our

algorithms with varying), i.e. the peak PSNR values of theyqnaqe( algerithme car oktain beter results thar the basiline
lines in Fig. 8 and Fig. 9, are summarized in Table III.

: ¢ - algerithms in othel cases. Incoherent Analysis SimCO is able
Fig. 8 anc Fig. 9 revea tha the denoising results change ;" get higher PSNR than Analysis SIimCO in some cases.
corsiderably with vaiious ), excep for ASIMCC-Rardom. the reqyits of ASIMCC-Rardom reflect tha the decorelation

The best) of the set tested in the case= 45 is smaller \neiho eployec in Analysis K-SVD is nof suitable for the
than that of the case = 12.8 due to the increase of theface denoisinc task.

noise level. Some common features of the ADL algorithms
can also be observed from Table Ill. The dictionaries ledirng -
with higher co-sparsity!(= 80) perform better in general. ”‘?
In terms of the types of training data, the image patch a
from the noisy face image itself (Type Il training data) see
to be more suitable to be the training daAs showr in
Table 111, the peiformanct of GOAL is conrpeitive, conpared
with othel basiine algcrithms For the lower noise level with ~ Fig. 10. Test images for natural image denoising.

PSNR
N
N
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TABLE Il 3
THE BEST FACE IMAGE DENOISING RESULT$PSNRIN DECIBELS). 2
o =128 =
Training data type Type | Type Il %zs
co-sparsityl 40 80 40 80 24
ASIimCO 33.46 | 34.22 || 33.98 | 34.20
IN-ASIMCO || 33.63 | 34.08 || 34.17 | 34.35 22
ASImCO-Random|| 34.06 | 34.06 || 33.35 | 33.39 =500z oot 00501 0305 =500z oot (00501 0305
ASImCO-IKSVD 31.78 | 33.07 || 32.54 | 33.44 3 3
ASImCO
AKSVD 2889 — | 3076 — s O "l
LOST 30.90 | 32.14 || 31.15| 33.33 s v B~y
TKSVD 29.16 | 30.58 || 27.27 | 28.27 B e g %
@ 24
(NA)AOL 33.08 33.27 1 %2
GOAL 34.47 33.43 o o
g= 45 22| 22|
Training data type Type | Type Il
CO-SpaI’Sityl 40 80 40 80 0 0.002 0.01 )\0.05 0.1 0.30.5 20 0.002 0.01 )\0,05 0.1 0305
ASImCO 21.38 | 27.69 || 27.46 | 26.37 Fig. 12. Natural image denoising (= 12.8). Top row: training patches are
IN-ASimCO 26.83 | 27.92 || 26.85 | 28.33 extracted from the images in Fig. 11, with the co-sparsity 40 (left) and
ASIimCO-Random|| 27.36 | 27.58 || 25.93 | 26.03 | = 80 (right). Bottom row: training patches are extracted frome tratural
ASIimCO-IKSVD 2574 | 25.78 || 25.72 | 25.92 image to be denoised, with the co-spardite 40 (left) and! = 80 (right).
AKSVD 25.74 — 25.72 —
LOST 25.74 | 25.74 || 25.72 | 25.94
TKSVD 19.13 | 25.22 || 16.57 | 28.04 — 6
(NA)AOL 26.91 26.72 N AR ol o
GOAL 27.21 2572 AN
22 .a_m\;& 22
% 20 GOAL % 20
4) Natural image denoising: Now we examine the de- 1 x 18
noising of the natural images shown in Fig. 10. The size of tt g o
images is256 x 256. Similar to the denoising of face images, | )
two types of training data are tested: Type | contains ima( ~ °® 0% 00501 0305 000z 00100501 0305
patches extracted from 5 other clean images shown in Fig. . % §
Type Il includes the patches of the image to be denoised. T 24

number of training patches is 20000 [17]. The results (PSN

in dB) averaged from the denoised versions of the four tez | g
images are plotted in Fig. 12 (= 12.8) and Fig. 13 § = 45), = .
and the peak results of each curve are listed in Table IV. 18
16 —8 16
) 001 00501 0305 ) 001 00501 0305

S =Wy

8
L
‘.__
/

Fig. 11. Training images used for learning analysis dicti@s.

Fig. 13. Natural image denoisingr (= 45). Top row: training patches are
extracted from the images in Fig. 11, with the co-sparsity 40 (left) and

| = 80 (right). Bottom row: training patches are extracted frome tratural
image to be denoised, with the co-spardite 40 (left) and! = 80 (right).

According to Fig. 12 and Fig. 13, the bestis bigger for
the lower noise level, which is consistent with the objeztiv _ o )
function (23). Table IV indicates that the patches extmct®rocess is formulated as an optimization problem with the
from other clean natural images are preferred to the patzhe£0-Sparsity and unit’;-norm constraints on the atoms of
the image to be denoised. Our proposed algorithms outperfd€ dictionary. This algorithm iteratively solves this ptem
the baseline problems, except in the= 12.8 case with Type by h_ard thresholding and the gradient desce_nt method on
| training data where (NA)AOLanc GOAL gives slightly mann‘olds. We have also prgseqted an extension of AnaIyS|s
beter results. The results obtained by Analysis SimCO angiMCO: Incoherent Analysis SImCO, by incorporating an

Incoherent Analysis SimCO are similar to each other. atom decorrelation step after the dictionary update stefer=
sive experiments on synthetic data, face and natural imatge d

have confirmed the competitive performance of our proposed
algorithms. The applications of learned analysis dictitasa

In this paper we have proposed an analysis dictionairy other signal processing tasks merit more study, which we
learning algorithm: Analysis SimCO. The dictionary leagpi leave for future work.

VIl. CONCLUSION



TABLE IV

THE BEST NATURAL IMAGE DENOISING RESULTS(PSNRIN DECIBELS).

o =128
Training data type Type | Type Il
co-sparsityl 40 80 40 80
ASIimCO 31.45| 31.17 || 29.68 | 30.79
IN-ASimCO 31.40 | 30.91 || 29.60 | 30.76
ASImCO-Random|| 31.29 | 31.25 || 31.18 | 31.22
ASImCO-IKSVD 30.22 | 31.26 || 29.11 | 30.17
AKSVD 28.12 — 27.89 —
LOST 29.47 | 31.05 || 28.93 | 29.84
TKSVD 29.59 | 30.17 || 29.20 | 30.05
(NA)AOL 31.47 29.57
GOAL 31.53 29.56
o =45
Training data type Type | Type Il
co-sparsityl 40 80 40 80
ASIimCO 25.73 | 24.24 || 22.44 | 24.52
IN-ASimCO 25.74 | 25.37 || 22.30 | 24.37
ASImCO-Random|| 25.54 | 25.71 || 22.57 | 22.71
ASImCO-IKSVD 2222 | 2253 || 22.17 | 22.37
AKSVD 22.17 — 22.18 —
LOST 22.17 | 22.39 || 22.17 | 22.27
TKSVD 22.17 | 22.19 || 22.18 | 23.11
(NA)AOL 23.54 22.18
GOAL 23.85 22.19
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