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ABSTRACT
Large-scale metabolomics studies involving thousands of samples present multiple challenges in data analysis, particularly when an untargeted platform is used. Studies with multiple cohorts and analysis platforms exacerbate existing problems such as peak alignment and normalization. Therefore, there is a need for robust processing pipelines which can ensure reliable data for statistical analysis. The COMBI-BIO project incorporates serum from approximately 8000 individuals, in 3 cohorts, profiled by 6 assays in 2 phases using both 1H-NMR and UPLC-MS. Here we present the COMBI-BIO NMR analysis pipeline and demonstrate its fitness for purpose using representative quality control (QC) samples. NMR spectra were first aligned and normalized. After eliminating interfering signals, outliers identified using Hotelling’s T2 were removed and a cohort/phase adjustment was applied, resulting in two NMR datasets (CPMG and NOESY). Alignment of the NMR data was shown to increase the correlation-based alignment quality measure from 0.319 to 0.391 for CPMG and from 0.536 to 0.586 for NOESY, showing that the improvement was present across both large and small peaks. End-to-end quality assessment of the pipeline was achieved using Hotelling’s T2 distributions. For CPMG spectra, the interquartile range decreased from 1.425 in raw QC data to 0.679 in processed spectra, while the corresponding change for NOESY spectra was from 0.795 to 0.636 indicating an improvement in precision following processing. PCA indicated that gross phase and cohort differences were no longer present. These results illustrate that the pipeline produces robust and reproducible data, successfully addressing the methodological challenges of this large multi-faceted study.
Keywords: metabolomics, NMR, preprocessing, normalization, alignment, quality control, multi-cohort, epidemiology, large-scale.


INTRODUCTION
Metabolic phenotyping using 1H NMR spectroscopy is becoming a widely used approach in modern molecular epidemiology. Owing to its high reproducibility and quantitative accuracy, the technique is particularly amenable to assessing the metabolic status of individuals from large epidemiological cohorts1. However, as study sizes increase, the challenge of obtaining high quality data from thousands of blood (plasma/serum) or urine samples becomes acute. The problems are particularly apparent in untargeted assays where the conventional approach of internal standards matched to each analyte of interest cannot be used. Further complications arise from studies combining multiple cohorts, leading to systematic differences in sample composition between the groups. Thus, there is a need for efficient and robust data processing pipelines which can address large and potentially heterogeneous study designs, to ensure reliable, quality controlled data for subsequent statistical analysis.
Pre-processing is an important and challenging step in metabolic phenotyping studies, and particularly so in metabolic epidemiology2. Conventional pre-processing of 1-dimensional NMR data includes apodization, Fourier transform, baseline correction, phasing and chemical shift calibration. In metabolic phenotyping, large numbers of spectra must be made comparable using tools such as peak alignment, intensity normalization. In addition, outlying samples and possible interfering signals need to be removed prior to statistical analysis. Large studies introduce further problems of accounting for instrument drift during long runs, batch differences, possible merging of data from multiple instruments, and the comparability of data from independent cohorts.
Validation of chemical- and data-analytic protocols is difficult in untargeted metabolomics because of the wide range and unknown identity of the metabolites assayed. However, repeated analysis throughout the run using a quality control (QC) sample has become a standard approach to monitor precision of the measurements3, 4. QC samples can be prepared from a pool of the study samples or by use of a representative standard reference material. Since the QC sample is of constant composition, any variation in QC measurements can be used both to monitor and correct for measurement errors. 
In this paper, we present a workflow for pre-processing 1-dimensional 1H NMR data from large multiple cohort studies. We focus on data from the COMBI-BIO project, in which ~8000 individuals from three cohorts were profiled by both 1H NMR and liquid chromatography - mass spectrometry with the aim of discovering serum metabolic biomarkers of pre-clinical atherosclerosis. To our knowledge, this is the largest multi-cohort, multi-platform (NMR and LC-MS) untargeted study performed to date. Thus our suggested pre-processing pipeline will be of interest to researchers designing similar large studies using NMR.
MATERIALS AND METHODS
Study population
We used serum samples from randomly selected individuals from three population-based cohorts: LOLIPOP5 (The London Life Sciences Prospective Population, UK), MESA6 (The Multi-Ethnic Study of Atherosclerosis, USA) and ROTTERDAM7 (The Rotterdam Study, The Netherlands). The COMBI-BIO project combined these three cross-sectional populations with the aim of detecting combinatorial biomarkers of pre-clinical atherosclerosis, using coronary artery calcium and inter-media thickness as predictive outcomes. Ethical approval was obtained separately for each cohort, by local ethical review boards, and subsequent analysis was conducted in full accordance with the ethical approval obtained. The serum samples of LOLIPOP and MESA were stored at -80 C after collection whereas the samples of ROTTERDAM were stored at -20 C. The collection period of samples for LOLIPOP was 2002-2008; for MESA it was 2000-2002 and for ROTTERDAM it was 1997-1999. The age range of the participants at the time of recruitment was 35-74 for LOLIPOP, 45-84 for MESA and 55-85 for ROTTERDAM. In total, 7773 serum samples were analyzed in two phases over a period of approximately one year. Phase 1 corresponded to 3964 samples (LOLIPOP: 998, MESA: 1976, ROTTERDAM: 990) and phase 2 corresponded to 3809 (LOLIPOP: 987, MESA: 1982, ROTTERDAM: 840). 
Preparation of samples, including quality controls (QCs) 
Study samples were shipped on dry ice and stored at -80 C upon arrival until NMR analysis.
Two types of QC samples were used to monitor the quality of the NMR data. QC1 samples were derived from a commercially available serum (human serum, off the clot, type AB, VWR catalog number BCHRS01049.2-01, VWR International Ltd, UK). QC1 samples were the only QCs used in phase 1 due to the limited sample volume present for some cohorts and the need to retain as much volume as possible for contingencies. In phase 2, unused volume from phase 1 LOLIPOP samples were used to create a study specific QC2 by pooling equal 50 l aliquots. All QC pools were aliquoted in 350 μl lots and stored at -80 C prior to analysis. In the results, the study samples are labeled as STY.
Both QC and study samples were thawed on the day prior to analysis. 300 μl of each sample was mixed with 300 μl of phosphate buffer (NaHPO4, 0.075M, pH=7.4, as described previously1) in Eppendorfs for the phase 1 analysis, and in 96 well plates for the phase 2 analysis. After centrifugation (12,000 g at 4 C for 5 minutes), 550 μl of each sample-buffer mixture was manually transferred into SampleJet 5 mm diameter NMR tubes and kept at 4 C until analysis. In phase 1 one QC1 sample was incorporated in each 96 tube rack. In phase 2, a single QC2 sample was run in each 96 well plate, and a single QC1 sample was run every two plates. In the following, we call each combination of phase and cohort a ‘batch’, since each batch of samples were analyzed in a continuous run on the instrument.
NMR data acquisition
All 1H NMR spectra were acquired on the same Bruker DRX600 spectrometer (Bruker Biospin, Rheinstetten, Germany) operating at 600 MHz. A standard water suppressed 1-dimensional spectrum (NOESY) and a Carr-Purcell-Meiboom-Gill (CPMG) spectrum were obtained for each sample. 32 scans were collected into 131072 frequency domain points and a line broadening of 0.3 Hz was applied. Spectra were rejected and the sample rerun if the peak width at half height of the alanine doublet at 1.44 ppm was greater than 1.0 Hz. NMR spectroscopic analysis was completed in six batches corresponding to the three cohorts and two phases.
PRE-PROCESSING WORKFLOW
Figure 1 presents our workflow for processing NMR data in COMBI-BIO and proposed for other large multi-cohort, multi-batch studies. In comparison to smaller, single batch studies, it is necessary to modify the steps in the processing pipeline to address the key challenges of large studies. Modified steps include chemical shift alignment, removal of interfering spectral signals and outlying samples, normalization and cohort/batch correction. The workflow was implemented in MATLAB version 8.1 (Mathworks Inc., USA). All components of the workflow are either available publically or on request from the authors.
Raw data processing and generation of one dataset from several data tables
All spectra were automatically phased and baseline corrected using Topspin version 3.2 (Bruker Biospin, Rheinstetten, Germany). Since internal standards such as 3-trimethylsilylpropionic acid (TSP) exhibit significant protein binding that affects peak shape and position8, chemical shifts were calibrated to the glucose doublet at δ 5.26 as suggested earlier9. The chemical shift range of the spectra was clipped to δ 0.50‒9.00 since no bona fide metabolite signals are observed in serum outside this region. Finally, the six datasets (3 cohorts  2 phases) were concatenated to produce one large data table consisting of 34,001 variables (NMR chemical shifts in ppm) and 7,872 samples in the CPMG dataset and 7,869 samples in the NOESY dataset including the QCs. 
Spectral peak alignment
Prior to spectral peak alignment, the region δ 4.40‒5.10 corresponding to residual water signals was removed. The table was split into six consecutive chemical shift slices for alignment to ameliorate high computer memory demands. The cut points (δ 1.45, 2.64, 3.33 and 6.00) were selected to be in regions containing no sharp resonances. There are several alignment methods available10 and we used Recursive Segment-wise Peak Alignment11 (RSPA) in this study. RSPA is appropriate for large datasets as it is fast and has been shown to improve alignment of both large and small peaks11. After alignment the slices were concatenated to form a single data table.
Removal of interfering regions
In addition to the spectral region related to the water suppression residual, there may be other regions which contain interferents which can cause errors in further analysis. A common contaminant in clinical and epidemiological studies is methanol. This was also observed in our study requiring removal of the region δ 3.375‒3.400. Suspected interferents in the regions δ 1.180‒1.240, δ 2.244‒2.261, and δ 3.660‒3.710 were also removed. Selection of the interfering spectral regions may not be straightforward and may require expert knowledge. After removing interfering signals, the datasets contained 30,590 data points.
Normalization
Normalization is the process of applying a spectrum-wide scale factor to each spectrum to correct for global variations in the NMR signal. These could be due to, for example, variable dilutions or small changes in instrument calibration over the course of a large run. In this study, we used probabilistic quotient normalization12 (PQN) in which the median of intensity ratios between each sample spectrum and a reference is normalized to unity. PQN has been shown to outperform earlier methods such as total intensity normalization12 and is fast and memory efficient. We used the median spectrum of the full data as the reference. Note that normalization using a reference must be performed after alignment, since intensity ratios prior to alignment may be influenced by uncontrolled peak shifts.
Removal of outlying samples
Before applying statistical analysis, removal of outliers is essential. Strong outliers due, for example, to instrument malfunction during measurement can be detected by investigating Hotelling’s T2 values of the samples, calculated using the scores of a principal component analysis (PCA). The spectra of suspected samples are then examined as to whether they are analytical outliers and, if so, discarded from the sample set. In the present study, we constructed separate PCA models for both CPMG and NOESY datasets. We excluded 3 outliers from the CPMG dataset and 4 outliers from the NOESY dataset where the outliers demonstrated extreme Hotelling’s T2 values (>10T2crit at 95% confidence level). Excluded samples were attributable to spectra with poor water suppression and baseline distortion. 
Phase and cohort adjustment
In large-scale studies with samples of different provenance, variation can be observed with respect to the source. In the present case we have three cohorts and two phases of data acquisition. The variation due to cohorts may occur because of different sample composition, but also collection and storage conditions, whereas the phase variation is related to different time periods of NMR analysis. Given that biomarker discovery is aimed at finding cohort-independent signatures of disease, we used a mean-centering operation13 to remove cohort and phase differences in mean levels prior to statistical analysis. We mean-centered every variable in each of the six phase/cohort batches separately and subsequently concatenated the data back into a single table using Equation (1):
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where  represents the pth intensity of the ith spectrum in the Mth batch, and  is the number of samples in the batch. Therefore, mean spectra of batch M is subtracted from every sample spectrum in batch M.
RESULTS AND DISCUSSION
The pre-processing workflow was applied to each of the CPMG and NOESY NMR datasets. The final datasets consisted of 7,869 spectra for CPMG and 7,865 spectra for NOESY both containing 30,590 variables. In the following we illustrate the workflow using the CPMG data. Results for NOESY data are similar and can be found in the Supporting Information (Figure S-1 and Figure S-2).
Assessment of spectral peak alignment
Peak alignment quality was initially assessed visually as shown in Figure 2 (See Figure S-3 to Figure S-14 in Supporting Information for the entire ppm range). A clear improvement can be observed in the heat maps, for example the doublet at ~1.55 ppm (alanine). Panels (c) and (d) show the distribution of detected NMR peaks on each data point. NMR peaks were detected by zero crossing of the derivative of smoothed spectra calculated using a Savitzky-Golay 3rd order polynomial filter with window size 0.005 ppm11. The sharper peaks in the peak position distribution after the procedure indicate an improvement in alignment.
To evaluate the quality of the alignment more objectively, we follow Veselkov et al.11 and calculate quality measures based on correlation between appropriately scaled pairs of aligned spectra. The spectra are first divided into a grid of K adjacent regions each of width w. To account for large variations in intensities, each raw intensity () of the kth region in the ith spectrum are centered and scaled to unit variance:
	
	
	(2)


where  is the pth intensity of spectrum i and region k after centering and scaling; and  and  denote the mean and standard deviation of intensities in spectrum i and region k. The scaled intensities are reassembled  and the quality metric  is defined as
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where cc is the Pearson correlation coefficient and N is the number of spectra. 
We assessed alignment quality through calculation of the alignment quality metric  (Table 1). We chose bin sizes of w = 0.08 ppm to focus on large peaks only and w = 0.02 ppm to up-weight the contribution from small peaks. The aq values for the aligned data were found to be significantly higher than those for the unaligned data for both bin sizes (one-sided, paired t-test, largest p=1.610-143) indicating a successful peak alignment across the QC and study sample spectra.
Assessment of the pre-processing workflow via the quality control samples (QCs)
An assessment of the overall workflow was achieved by monitoring the QC samples. Since each QC type (QC1 & QC2) is of constant composition, the dispersion in the QC measurements reveals the level of non-biological variation, introduced during the analytical and data analysis pipeline, which may also be present in the study (non-QC) samples.
[bookmark: _GoBack]A qualitative impression of the QC measurements can be gained from observing the position of the QC samples on a PCA score plot, along with the study samples. Figure 3 shows such a plot for the first two components of PCA models of the mean-centered datasets. The QC samples form two clusters according to the QC type where QC1 samples and QC2 samples cluster separately. After the preprocessing steps, each group of QC1 or QC2 samples are expected to cluster more tightly on the score plots as the variations due to misalignments of the peaks and global intensity variations across the samples are largely removed.
The distribution of QC samples on the score plots in Figure 3a and Figure 3b look similar to each other although the distribution of the study samples seem to slightly change. The reason for this may be the stability of the peak locations in the QC samples, i.e. there are no major misalignments within the QC samples. In Figure 3c, after removal of outliers and normalization, the clustering of the QC samples seems to be improved according to the QC type. Since only three outliers were removed, this improvement is mainly due to the probabilistic quotient normalization which is able to successfully correct global intensity variations across the data set.
To quantify the improvement in QC clustering seen in the figure, we calculated the ratio r of the sum of variances of the first two scores of each QC type to the sum of variances of the first two scores of the study samples.
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where  and  are the variances of the ith score vectors for QC and study samples respectively. This ratio for the CPMG dataset was approximately halved from 3.59% in the unaligned data to 1.64% after normalization for QC1, and from 1.77% to 0.81% for QC2. As QC samples are expected to be close to each other compared to the study samples, a decrease in these ratios demonstrates an improvement. Similarly for the NOESY dataset, the ratio decreased from 11.84% to 2.94% for QC1 and from 6.39% to 1.17% for QC2. 
A further quality assessment can be made by analyzing the distribution of Hotelling’s T2 values for the QC samples1. The Hotelling’s T2 value is proportional to the squared Mahalanobis distance of a sample to the origin in the score space14 and thus takes into account all components in the PCA model. Figure 4 shows box plots of the Hotelling’s T2 values for QC1, QC2 and study samples, computed from PCA models explaining at least 95% of the variance in the data (six PCs). For the CPMG dataset, the QC1 interquartile range decreased from 1.425 in the raw data to 0.679 after alignment, normalization and outlier removal, while the range for QC2 decreased from 0.471 to 0.355 after the pre-processing steps. For the NOESY dataset, the range for QC1 decreased from 0.795 to 0.636 and from 0.763 to 0.426 for QC2. Note that no information from the QCs is used in pre-processing the data, so this decrease can be interpreted as a genuine effect of the processing pipeline. Therefore, it can be concluded that the pre-processing pipeline improved the quality of the data, as measured by the quality control samples. 
On the PCA score plot of the pre-processed data in Figure 3c, the samples of the MESA and LOLIPOP cohorts appear to overlap whereas the samples of the ROTTERDAM cohort are separate. Whilst there are real biological differences between the cohorts (e.g. age, diet, lifestyle), this variation might also have occurred due to sample collection and storage protocols. This is relevant in our case, as samples of the ROTTERDAM cohort were stored at -20 C, whereas LOLIPOP and MESA samples were stored at -80 C. In addition, within each cohort, the two analysis phases introduce potential batch effects which should be taken into consideration. This situation is typical of large and complex multicenter studies where the biological and methodological effects are often partially confounded. However, our primary goal was to find relationships between metabolic phenotype and clinical outcomes which are consistent across cohorts. This implies that we should not allow gross differences between cohorts or phases to affect the discovery of possible biomarkers. We therefore determined that a pooled analysis across all data, but adjusting for phase and cohort, was appropriate. We adjusted the data (study samples only, not QCs) for both phase and cohort using the mean-centering operation explained in “Phase and cohort adjustment” section. After adjustment the batch differences are no longer apparent and data for the three cohorts are overlapped (Figure 3d). The mean-centering operation forced the samples of each batch to center on zero as a consequence of having zero mean.
At the end of the assessment of the pre-processing workflow, the final versions of CPMG and NOESY spectra were deemed suitable for further statistical analysis according to the quality measures presented here.
CONCLUSION
Obtaining high quality analytical data in large metabolic epidemiology studies is a challenge because of artefacts introduced by sample collection, handling and storage, machine, processing and batch effects. We present a general workflow for pre-processing such large NMR datasets. While there are examples of targeted analysis of annotated NMR peaks across multiple cohorts15, to our knowledge this is the first workflow addressing the issue of multi-cohort large-scale studies in untargeted NMR metabolomics. Careful end-to-end analysis using multiple repeatedly analyzed QC samples enabled us to monitor and control the quality of the resulting datasets. Overall, the approach was able to improve the precision of the data, according to several measures of quality, compared to the unprocessed data. The strategy presented here provides a framework for the analysis of multi-cohort studies where large numbers of samples are to be assayed using an untargeted NMR platform.
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Figure S-1. Plots of the first two PCA scores for NOESY data: a) unaligned, b) aligned, c) after normalization and removal of major outliers, d) after adjustment for cohort and phase. Figure S-2. Box plots of Hotelling T2 distributions for the NOESY dataset (QC1, QC2 and study samples, STY) corresponding to a) unaligned data b) aligned and normalized data with major outliers removed. Figure S-3. Illustration of spectral peaks of the CPMG NMR dataset between δ 0.50 and δ 1.45 ppm region before (a) and after (b) alignment. Figure S-4. Illustration of spectral peaks of the CPMG NMR dataset between δ 1.45 and δ 2.64 ppm region before (a) and after (b) alignment. Figure S-5. Illustration of spectral peaks of the CPMG NMR dataset between δ 2.64 and δ 3.33 ppm region before (a) and after (b) alignment. Figure S-6. Illustration of spectral peaks of the CPMG NMR dataset between δ 3.33 and δ 4.40 ppm region before (a) and after (b) alignment. Figure S-7. Illustration of spectral peaks of the CPMG NMR dataset between δ 5.10 and δ 6.00 ppm region before (a) and after (b) alignment. Figure S-8. Illustration of spectral peaks of the CPMG NMR dataset between δ 6.00 and δ 9.00 ppm region before (a) and after (b) alignment. Figure S-9. Illustration of spectral peaks of the NOESY NMR dataset between δ 0.50 and δ 1.45 ppm region before (a) and after (b) alignment. Figure S-10. Illustration of spectral peaks of the NOESY NMR dataset between δ 1.45 and δ 2.64 ppm region before (a) and after (b) alignment. Figure S-11. Illustration of spectral peaks of the NOESY NMR dataset between δ 2.64 and δ 3.33 ppm region before (a) and after (b) alignment. Figure S-12. Illustration of spectral peaks of the NOESY NMR dataset between δ 3.33 and δ 4.40 ppm region before (a) and after (b) alignment. Figure S-13. Illustration of spectral peaks of the NOESY NMR dataset between δ 5.10 and δ 6.00 ppm region before (a) and after (b) alignment. Figure S-14. Illustration of spectral peaks of the NOESY NMR dataset between δ 6.00 and δ 9.00 ppm region before (a) and after (b) alignment.
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Figure 1. Pre-processing workflow for CPMG and NOESY NMR data.
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[bookmark: _Ref408504380][bookmark: _Ref408505794]Figure 2. Illustration of spectral peaks on a representative region of the CPMG NMR dataset before (a) and after (b) alignment. Panels (c) and (d) show the peak position distribution in each region. Larger peak position distribution values indicate that the peaks are better aligned.
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[bookmark: _Ref455161685][bookmark: _Ref442718190]Figure 3. Plots of the first two PCA scores for CPMG data: a) unaligned, b) aligned, c) after normalization and removal of major outliers, d) after adjustment for cohort and phase. Colors correspond to cohorts (red: LOLIPOP, blue: MESA, green: ROTTERDAM). Symbols for the study samples vary according to phases (: phase 1, : phase 2). Zoomed frames show the QC samples (: QC1 analyzed in phase 1, : QC1 analyzed in phase 2, : QC2 analyzed in phase 2). Axis labels indicate the percentage variance explained by each principal component. Note that QC samples are not shown in panel (d) because they were excluded from the dataset when cohort/phase adjustment was applied.
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[bookmark: _Ref455161846][bookmark: _Ref442719808]Figure 4. Box plots of Hotelling’s T2 distributions for the CPMG dataset (QC1, QC2 and study samples, STY) corresponding to a) unaligned data b) aligned and normalized data with major outliers removed. The y-axes of the plots were set to be between 0 and 20 for better visualization of the QCs.



Tables

[bookmark: _Ref440559861]Table 1. Alignment quality () measures for the datasets with different bin sizes in ppm.
	
	
	CPMG
	NOESY

	sample type
	
	unaligned
	aligned
	unaligned
	aligned

	QC1
	
	0.349
	0.415
	0.582
	0.636

	
	
	0.468
	0.532
	0.806
	0.846

	QC2
	
	0.407
	0.456
	0.654
	0.677

	
	
	0.524
	0.570
	0.872
	0.887

	STY
	
	0.319
	0.391
	0.536
	0.586

	
	
	0.439
	0.511
	0.764
	0.801
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