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Abstract Agriculture is the mainstay of economy in Malawi - the warm heart of
Africa. It employs 85 % of the labour force, and produces one third of the Gross
Domestic Product (GDP) and 90 % of foreign exchange earnings. Maize farming
covers over 92 % of Malawi’s agricultural land and contributes over 54 % of national
caloric intake. With a subtropical climate and ~99 % rainfed agriculture, Malawi relies
heavily on precipitation for its agricultural production. Given the significance of
rainfed maize for the nation’s labour force and GDP, we have investigated climate
change effects on this staple crop. We show that rainfed maize production in the
Lilongwe District, the largest maize growing district in Malawi, may decrease up to
14 % by mid-century due to climate change, rising to as much as 33 % loss by the
century’s end. These declines can substantially harm Malawi’s food production and
socioeconomic status. Supplemental irrigation, crop diversification and natural conser-
vation methods are promising adaptation strategies to improve Malawi’s food security
and socioeconomic stability.
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1 Introduction

Climate change impacts on agricultural crop production vary from place to place (Muller et al.
2011) and from crop to crop (Tubiello et al. 2002). Higher temperatures can reduce crop
production in parts of the world (Schlenker and Lobell 2010; Gohari et al. 2013) although crop
yield could increase with warm-wet climate change in some areas (Chavas et al. 2009). Long-
term implications of crop yield reduction are significant for food security (Ringler et al. 2010),
socioeconomic stability (Burke et al. 2009), and ecological integrity (Walker and Schulze
2008). These risks are particularly high for the less resilient impoverished countries
(Mendelsohn 2008; Muller et al. 2011).

Agricultural production in tropical and subtropical areas of Africa is more sensitive to
climate warming than temperate agriculture (Mendelsohn 2008). Frequent droughts and floods
in the sub-Saharan Africa increase food insecurity, water scarcity, and famine, reflecting the
region’s vulnerability to climate change (Ngingi 2009). Warning signals of the adverse effects
of climate change in sub-Saharan Africa are manifest in higher food prices and reduced calorie
availability which cause malnutrition (Ringler et al. 2010).

Different methods have been proposed to deal with high uncertainty associated with general
circulation models (GCMs), which are the prevailing tool for climate projection. These include
(i) using central prediction with error bars, (ii) expressing the results as a central prediction,
(iii) applying a bounded range with a known probability distribution and (iv) using a bounded
range with an unknown probability distribution (OECD 2004). GCMs have limited capability
at local scales, although they can simulate climate at a global scale. There are different methods
for downscaling GCM outputs which fall under two headings (i) dynamic and (ii) statistical
downscaling (Wilby et al. 1998; Fowler et al. 2007). A commonly used statistical downscaling
technique employs stochastic weather generators (WG) (Semenov and Barrow 2002). In this
study, a bounded range with a known probability distribution and a stochastic WG were
applied to handle the uncertainty of the GCMs; a statistical downscaling approach that has
been previously implemented in climate change studies on crop production (Gohari et al.
2013; Gohari et al. 2014).

Rainfed agriculture is the mainstay of Malawi’s economy, a landlocked country dubbed the
warm heart of Africa. The country has a subtropical climate with three seasons. The cool dry
winter runs from May to August with mean temperatures between 17 °C and 27 °C, and
minimum temperature from -3 °C to 10 °C, particularly in June and July. This is followed by a
hot and dry season between September and October when temperatures can reach 37 °C with
50–80 % humidity. About 95 % of annual precipitation falls in the warm-wet season between
November and April, with February being the wettest month (MDCCMS 2015). The trends in
the national Malawian GDP are greatly influenced by agricultural activities that provide 85 %
of employment (GoM 2011a) and 83 % of foreign exchange income (Mucavele 2006),
contributing to 27 % of the GDP (World Bank 2015). The growing population in Malawi,
reported at 16.8 million in 2014 (World Bank 2015), drives low crop production primarily due
to factors such as loss of agricultural land, as well as continuous farming and deforestation
which cause soil erosion and low fertility levels (Tchale 2009).

The country’s economy and food production could be greatly impacted by climate
change through changes in rainfed maize yield. Maize is Malawi’s staple food crop
cultivated by up to 97 % of the farmers (Minot 2010), making up over 54 % of the
caloric intake (Minot 2010). Over the last few decades, corn production has been
affected by precipitation variability and changes in temperature. Droughts of the 1990s
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and 2000s significantly reduced maize production and led to famine in many areas of
Malawi (GoM 2011b). After the drought in 2005, the introduction of a Farm Input
Subsidy Programme (FISP) by the Government of Malawi (GoM), resulted in in-
creased corn harvests between 2006 and 2009 (Denning et al. 2009; Dorward and
Chirwa 2011) and a significant reduction in maize imports due to increased national
food security (Dorward and Chirwa 2011). Despite the FISP, the GoM advocates for
the implementation of other strategies that will enable the country to maintain stable
food supplies under climate change (GoM 2011b).

Understanding the impacts of climate change on rainfed agriculture is necessary to
draw attention to the need for minimizing undesirable effects in Malawi. This paper
presents the outcomes of an original assessment of climate change impacts on
Malawi’s rainfed maize production. It focuses on the Lilongwe District, which is
located in the central region of Malawi at latitude 13° 30′ South, longitude 33° 37′
East and an elevation of 1133 m above sea level (Fig. 1), and has similar average
annual temperatures and precipitation as other maize-growing areas in Malawi. Over
the past decade, average maize yields per hectare in Lilongwe District have nearly
equalled the national maize yields, making it a suitable region for investigating the
potential effects of climate change on maize production in this African nation.

Fig. 1 Map of Malawi and
location of Lilongwe District
(SMP 2006)
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2 Methods

We used an ensemble of fifteen GCMs, under two emission scenarios - A1B emission scenario
(SRA1B) and B1 emission scenario (SRB1) - to project long-term (multiple decades) changes in
climate variables in 2046–2065 (2050s) and 2080–2099 (2090s). The details of the GCMs, from
the Fourth Assessment Report (AR4) of the IPCC available at the time of completing this research,
are summarized in Table 1. The SRA1B scenario assumes rapid population growth
that peaks mid-century before declining, rapid economic growth and the development
of new and efficient technologies (Nakicenovic and Swart 2000). The SRB1 scenario
is characterized by a similar population trend but with a change in the economic
structure which diversifies to service and information with the introduction of clean
and resource efficient technologies that focus on social and environmental sustainabil-
ity (Nakicenovic and Swart 2000). The long-term climate changes were compared to a
baseline period of 1971–2000. The historical observed weather data used in this study
was obtained from the Department of Climate Change and Meteorological Services in
the Ministry of Natural Resources, Energy and Environment in Malawi. The data were
collected from the Chitedze Research Station, the main meteorological station in
Lilongwe District.

The Long Ashton Weather Generator (LARS-WG; Semenov and Barrow 2002) was
used to downscale the GCM outputs. The WG simulated weather data at a single site
under historical and future conditions for the GCMs which were developed under the

Table 1 Description of the fifteen GCMs (Semenov 2014)

Centre Centre Acronym Country Global Climate Model Grid Resolution

Beijing Climate Centre BCC China BCC-CM1 1.9°×1.9°

Canadian Centre for
Modeling and Analysis

CCCma Canada CGCM3 (T47) 2.8°×2.8°

Centre National de Recherches
Meteorologiques

CNRM France CNRM-CM3 1.9°×1.9°

Australia’s Commonwealth
Scientific and Industrial
Research Organisation

CSIRO Australia CSIRO-MK3.0 1.9°×1.9°

Institute of Atmospheric Physics LASG China FGOALS-g1.0 2.8°×2.8°

Goddard Institute for Space Studies GISS USA GISS-AOM 3°×4°

Geophysical Fluid Dynamics
Laboratory

GFDL USA GFDL-CM2.1 2.0°×2.5°

UK Met. Office UKMO UK HadCM3 2.5°×3.75°

UK Met. Office UKMO UK HadGEM1 1.3°×1.9°

Institute for Numerical Mathematics INM Russia INM-CM3.0 4°×5°

Institute Pierre Simon Laplace IPSL France IPSL-CM4 2.5°×3.75°

Meteorological Research
Institute, Japan

NIES Japan MIROC3.2 (hires) 1.1°×1.1°

Max-Planck Institute
for Meteorology

MPI-M Germany ECHAM5-OM 1.9°×1.9°

National Centre for
Atmospheric Research

NCAR USA PCM 2.8°×2.8°

National Centre for
Atmospheric Research

NCAR USA CCSM3 1.4°×1.4°
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AR4. The simulated data were in daily time series for different climate variables
including, maximum and minimum temperature (°C), precipitation (mm) and solar
radiation (MJmm−2 day−1). In the absence of solar radiation, the LARS-WG accom-
modates the use of sunshine hours which it converts to solar radiation (Semenov and
Barrow 2002). To capture the less frequent events like droughts and floods, (Semenov
and Barrow 2002) recommend the use of observed daily weather data of at least 20 to
30 years. The observed weather data used in this study was from 1971 to 2000. In the
calibration step, the observed weather data were used to generate probability distri-
butions of the observed data; these were used to calculate the WG parameters
(Semenov and Barrow 2002). Simulated data for the historical period were used in
the LARS-WG validation process. Statistical indicators (χ2 and t tests) were applied to
investigate the significance and the reliability of the LARS-WG to predict future
climate data with reference to the 1971–2000 baseline period at a 5 % confidence
level. Once the performance of the LARS-WG was deemed satisfactory, synthetic
weather data were generated for the aforementioned future periods and emission
scenarios.

To account for the uncertainties, we applied a probability analysis method with bounded
distribution functions (Gohari et al. 2013). The procedure involved three steps. In the first step,
the ability of each of the fifteen GCMs to simulate precipitation and temperature variables was
weighted based on the absolute difference between the observed data and the historical
projections by the GCMs:

Wij ¼
1

Δdij

� �

X N

j¼1

1

Δdij

� � ð1Þ

where: Wij is weight of GCM j in month i; Δdij is the absolute difference in temperature or
precipitation between the monthly mean simulated by GCM j in month i of the baseline period
and the corresponding observed value and N equals fifteen (the number of GCMs).

In the subsequent step, monthly discrete probability distribution functions (PDFs) for
changes in climate parameters were generated based on the calculated weights (Fig. 2). The
PDFs associate the weight of each GCM to average monthly changes in minimum and
maximum temperature and precipitation (Gohari et al. 2013). In a process that has been

Fig. 2 Example discrete PDFs outlining the relationship between weights of the GCMs and monthly change in
climate variables. Mid-century (2050s) showing a temperature changes in January and (b) relative precipitation
changes in February
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successfully executed in other climate change impact studies (Ines and Hansen 2006; Piani
et al. 2010; Gohari et al. 2013), the Gamma distribution function, with two parameters, was
used to construct continuous PDFs:

f xð Þ ¼ 1

βα Γ αð Þ χ
α−1 e−χ=β ; x≥0 ð2Þ

where: x is the climate variable; α and β are the shape and scale parameters for the Gamma
distribution function; and Γ(α) is the incomplete Gamma function which is given as:

Γ αð Þ ¼
Z∞

0

xα−1e−xdx ð3Þ

The values of α and β were adjusted using the maximum likelihood estimation method.
The sum of squared error was used to assess how well the Gamma distribution fit the data:

SSE ¼
X n

i¼1
yi − lið Þ

2
ð4Þ

where: yi is the calculated weight for each GCM; Yi is the estimation of the beta function and n
equals fifteen (the number of GCMs).

In the final step, we converted the PDFs to cumulative distribution functions (CDFs)
(Fig. 3). The values of climate change variables at three probability percentiles (25th, 50th,
and 75th) were then extracted from the generated CDFs to represent three maize production
scenarios with different risk levels: high changes in precipitation and low changes in temper-
ature (25th probability percentile); low changes in precipitation but high changes in temper-
ature (75th probability percentile); median precipitation and temperature changes (50th
probability percentile). With three types of climate variables, two emission scenarios and
two future time periods in this study, 144 PDFs and CDFs were constructed to characterize the
monthly relationships between the weight of each GCM and the average changes in precip-
itation, minimum temperature and maximum temperature.

AquaCrop (Steduto et al. 2009), the crop model developed by the Food and Agriculture
Organization (FAO), was used to estimate potential crop production under different climate
change scenarios as well as the historical climate. The model inputs include daily minimum
and maximum temperature, precipitation, crop evapotranspiration and the mean annual carbon
dioxide (CO2) concentration (Steduto et al. 2009). The first three variables were sourced from
the Malawian Department of Climate Change and Meteorological Services (MDCCMS), the

Fig. 3 Example CDFs developed based on the PDFs presented in Fig. 2
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evapotranspiration was calculated and the CO2 concentrations in the AquaCrop database
originated from the Mauna Loa Observatory (Raes et al. 2012).

The linkages between the different variables in the AquaCrop model are shown in
Fig. 4. The biomass is calculated using a fundamental equation, known as the ‘AquaCrop
growth engine’ (Steduto et al. 2009) which considers both water productivity and
transpiration (Raes et al. 2012):

B ¼ Ksb �WP* �
X Tr

ETo
ð5Þ

where: B is the above-ground biomass (g m−2); Ksb is the air temperature stress
coefficient (unit less); WP* is the water productivity i.e. biomass per unit of cumulative
transpiration (g m−2); Tr is the crop transpiration (mm day−1) and ETo is the reference
evapotranspiration (mm day−1).

In the model crop yields are calculated based on the harvest index, the proportion of
biomass that is yield (Steduto et al. 2009):

Y ¼ f HI � HIo � B ð6Þ
where: Y is the dry mass yield (g m−2); fHI is the timing and magnitude of stress (unit less);
HIo is the reference harvest index (fraction of biomass that is yield) (%) and B is the above-
ground biomass (g m−2).

Fig. 4 The main components of the soil-plant-atmosphere continuum in AquaCrop (FAO 2009)
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The ETo Calculator (Allen et al. 1998) was used to estimate evapotranspiration based on
Penman-Monteith algorithm under each scenario which is given by:

ETo ¼
0:408Δ Rn−Gð Þ þ γ

900

Tþ 273
u2 es−eað Þ

Δþ γ 1þ 0:34 u2ð Þ ð7Þ

where: ETo is the reference evapotranspiration (mm day−1); Rn is the net radiation at the crop
surface (MJ m−2 day−1); G is the soil heat flux density (MJ m−2 day−1); T is the mean daily air
temperature at 2 m height (°C); u2 is the wind speed at 2 m height (m s−1); es is the saturation
vapour pressure (kPa); ea is the actual vapour pressure (kPa); es − ea is the saturation vapour
pressure deficit (kPa); Δ is the slope vapour pressure curve (kPa oC−1) and γ is the psycho-
metric constant (kPa oC−1).

Based on the recorded maize yield in 2005 we calibrated the model by adjusting parameters
that generated significant sensitivity, including crop, management and soil properties. We
validated the model against the Lilongwe District’s four-year (2000–2004) historical maize
yield record using five statistical parameters: prediction error (Pe = 1.09 %–9.88 %), coefficient
of determination (R2 = 0.911), mean absolute error (MAE ≈ 0), root mean square error
(RMSE ≈ 0.09), and model efficiency (E = 0.91). E and R2 indicate the predictive power of
the model while Pe, MAE and RMSE denote the magnitude of error associated with the model
prediction (Abedinpour et al. 2012). The model is said to perform better when values of E and
R2 approach one and when values of Pe, MAE and RMSE approach zero. Thus, the model’s
performance was satisfactory and it was considered to be reliable for making projections.

3 Results

The outputs from fifteen GCMs from two emission scenarios were downscaled by the LARS-
WG. The results from the statistical tests that were applied to assess the WG performance are
given in Table 2. The relatively low values of χ2 and t tests and relatively high p-values were
used as an indication of the model satisfactorily simulating future climate variables.

The GCM outputs indicate that the mean monthly temperature is expected to increase in the
future under climate change (Fig. 5). The box plots in Fig. 5 illustrate the range of uncertainty
in ensemble projections. For example, under emission scenario A1B in 2050s (SRA1B-
2050s), the projected precipitation by all GCMs for the month of January approximately
ranges between 210 mm to 260 mm. The changes in relative precipitation will be more
uncertain than temperature with increases in some months and reductions in others. The large
interquartile ranges (length of the boxes) in Fig. 5 demonstrate the variability and
uncertainty of GCM outputs. In an effort to manage the uncertainty of the GCM
outputs, the study employed probability assessment of bounded range of known
distribution. The procedure involved three steps: (i) weighting average precipitation
and temperature variables for each GCM based on the absolute difference between the
observed data and the historical projections by the GCMs; (ii) generating monthly
discrete probability distribution functions (PDFs) for changes in climate parameters based on
the calculated weights; (iii) converting PDFs to cumulative distribution functions (CDFs) using
the Gamma probability distributions. The expected changes for each climate variable were
determined at the 25 %, 50 % and 75 % probability percentiles.
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Changes in future precipitation under the SRA1B and the changes in maximum temperature
for the SRB1 at three probability percentiles (25th, 50th, and 75th) are shown in Fig. 6. The
changes in monthly precipitation for each time period and different risk levels show decrease
and increase patterns in the same month. Projected precipitation changes are greater under the
SRA1B than the SRB1 in both time periods. On average, annual precipitation amounts are
predicted to decrease by 0 % to 26 % and 3 % to 29 % in 2050s and 2090s, respectively.

Table 2 The statistical details of the LARS-WG validation results

Precipitation Maximum Temperature Maximum Temperature

Month ×2 p-value t p-value ×2 p-value t p-value ×2 p-value t p-value

Jan 0.06 1.00 0.30 0.77 0.05 1.00 0.05 0.96 0.05 1.00 0.75 0.46

Feb 0.07 1.00 0.48 0.63 0.05 1.00 0.14 0.97 0.05 1.00 0.26 0.79

Mar 0.06 1.00 0.68 0.50 0.16 0.91 2.21 0.08 0.05 1.00 1.25 0.22

Apr 0.08 1.00 0.25 0.81 0.11 1.00 1.60 0.11 0.11 1.00 0.39 0.70

May 0.22 0.57 0.26 0.80 0.05 1.00 0.43 0.67 0.16 0.90 2.04 0.75

Jun 0.31 0.19 0.33 0.74 0.11 1.00 0.86 0.39 0.11 1.00 0.28 0.78

Jul 0.22 0.60 0.25 0.80 0.05 1.00 0.02 0.98 0.05 1.00 0.94 0.35

Aug 0.39 0.14 0.96 0.34 0.11 1.00 1.31 0.19 0.05 1.00 0.07 0.95

Sep 0.13 0.98 0.13 0.90 0.05 1.00 0.09 0.93 0.11 1.00 2.48 0.36

Oct 0.07 1.00 0.13 0.90 0.11 1.00 1.31 0.19 0.11 1.00 1.78 0.18

Nov 0.06 1.00 1.15 0.25 0.16. 0.91 1.85 0.07 0.05 1.00 0.44 0.66

Dec 0.06 1.00 0.39 0.70 0.11 1.00 0.34 0.74 0.05 1.00 0.22 0.83

Fig. 5 Comparison of the baseline (1971–2000) mean monthly precipitation and maximum temperature with the
projected mid- and end-century values for A1B and B1 emission scenarios
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Overall, maximum temperature is expected to increase in all cases, with greater temperature
increases under SRA1B. Average mid-century minimum temperature changes may be 1.31 °C
to 2.15 °C, increasing to 1.84 °C to 3.46 °C by the end of the century. Changes in the
maximum temperature for the same time horizons may be, respectively, 1.26 °C to 2.20 °C and
1.78 °C to 3.58 °C (Fig. 6). Projected temperature trends agree with findings of previous
studies in sub-Saharan Africa (IPCC 2007) and temperature projections for Malawi (EAD
2002). Although the decrease in mean annual precipitation could be greater than what was
previously reported which was a range from 16 % to −22 % change in annual precipitation
relative to the 1960–1991 baseline (EAD 2002).

A general decrease in maize production is expected under climate change based on our crop
yield modelling results. The average ranges of maize yield decrease for 2050s and 2090s
compared to the baseline period (1971–2000) are 7 %–14 % and 13 %–33 %, respectively
(Fig.7). Erratic precipitation and temperature changes, and severe extreme events such as
droughts and floods, coupled with population increase have already reduced maize production
in Malawi for the past two decades despite government subsidies and continuous expansion in
the cultivated area. In 2005, Malawi registered a very low national average maize production
of 0.76 tons per hectare (t/ha), 40 % below the expected average (Denning et al. 2009).
Figure 8a shows Malawi’s agricultural contribution to the overall GDP, indicating a good
correlation between Malawi’s economic growth and agricultural production. Figure 8b shows

Fig. 6 Changes in precipitation and maximum temperature by the mid- and end-century for the SRA1B and
SRB1 emission scenarios with respect to the baseline values. The precipitation change ratio is the ratio of the
projected to baseline precipitation in the same time of the year
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the changes in maize production in Malawi from 1980 to 2011, illustrating the instability of
maize production and a steady rise in maize prices over past decades. In the 1980’s an average
national production growth rate was 3 %, followed by a production decline rate of 2 % per
annum from 1990 to 1994. The major drought of 1991–1992 heavily reduced maize produc-
tion in this period and the following years. A series of positive and negative growth rates
occurred from 1994 to 2000 resulting in a net 2.2 % per annum. However, low precipitation
and undesirable precipitation distribution between 2000 and 2005 decreased the national
production potential of maize (Mapila et al. 2013). Steady increase in maize production
occurred from 2005 to 2008 when the GoM introduced subsidy programs where subsistence
farmers could buy farm inputs like fertilizer and seeds at a reduced rate.

4 Discussion

While the projected declines (Fig. 7) might seem modest, the ramifications for Malawi’s food
production and socioeconomic status could be substantial given the country’s heavy reliance
on rainfed agriculture and maize production for nutritional needs (Minot 2010), economic
value (Mucavele 2006) and social importance (GoM 2011a). As maize becomes less afford-
able with the continued decline in yield, Malawi could face greater food insecurity, food
shortages, and even famine. The situation is complicated by rapid population growth which
has almost tripled since the late 1970’s, currently growing at 3 % a year and currently (2015)
over 16 million (World Bank 2015) putting additional pressure on the diminishing food

Fig. 7 Average changes in the Lilongwe District’s mid- and late-century maize yields (%)

Fig. 8 Adjusted for constant 2005 prices aMalawi’s per worker agricultural value-added and national per capita
GDP for 1980–2008 (World Bank 2015); and b per capita maize production and price for the same period
(Chirwa et al. 2006; FAOSTAT 2015; UN 2015; World Bank 2015)
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production. In the long-run, the reduced GDP due to unsustainable agricultural production can
transfer additional stress to socioeconomic development. Internal population mobilization
from declining farms to urban areas with relatively better employment prospects can ultimately
increase over-crowded urban slums with poor living conditions. Increasing unemployment rate
also can trigger labour out-migration from Malawi to neighbouring countries.

To improve national food security under climate change, the GoM could consider
some adaptation strategies. Rainwater harvesting can supplement rainfed farming with
irrigation (Lebel et al. 2015). Crop diversification and dietary changes could help with
food insecurity. Food crops like cassava and sweet potatoes require less water than
maize, have better resistance to climate change, and need less fertilizer (Chirwa et al.
2006). These strategies have been accepted and adopted in much of Africa (Tchale
2009). In 1998, Smaling reported that Malawian soils lose large amounts of nutrients
(potassium, nitrogen and phosphorus) due to runoff and soil erosion (Tchale 2009).
Land conservation methods like mulching and zero tilling could preserve soil fertility
and improve crop yield (Dea and Scoones 2003). Research in biotechnology could
help the sub-Saharan Africa region deal with climate change effects on agriculture through
resistant crops (UNECA 2002). While some of the effects of climate change can be mitigated
through these methods, industrial development of the country would be necessary to make this
African nation less vulnerable to climate change. A growing industrial sector can prevent out-
migration due to unemployment and can compensate for the major economic losses in the
agricultural sector caused by climate change.

5 Conclusion

An evaluation of the impacts of climate change on rainfed maize production in Lilongwe
District, Malawi was performed. Fifteen GCMs were used to estimate future climate variables
in the mid- and end-century, under the SRA1B and SRB1 emission scenarios. Historical
weather data from 1971 to 2000 were used as a baseline period.

Outputs from GCMs were downscaled using the LARS-WG, a widely used stochastic WG.
A probability analysis assessment, using a bounded range with known probability distribution,
was employed to handle the uncertainty of GCM outputs. Climate change variables were
presented at three probability percentiles (25th, 50th, and 75th) representing varying risk levels
of climate change. The FAO crop model, AquaCrop, was successfully calibrated, validated and
used to simulate maize yields in future time periods.

We project that the mean annual precipitation in Lilongwe District will decrease by 0 %
to 26 % and 3 % to 29 % in the mid- and end-century, respectively, compared to the
baseline period of 1971–2000. However, mean monthly precipitation patterns depict both
increase and decrease in different months and time periods. An overall increase in the mean
monthly temperature is expected in both time horizons with maximum temperature changes
in the ranges of 1.26 °C to 2.20 °C and 1.78 °C to 3.58 °C in the mid- and end-century,
respectively. Crop modelling indicates that maize production will be reduced in the future
by −0.73 % to −14.33 % by mid-century, and by −13.19 % to −31.86 % in the end of the
century.
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