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ABSTRACT

We present results obtained by applying our BAyesian HierArchical Modeling for the Analysis of Supernova
cosmology (BAHAMAS) software package to the 740 spectroscopically confirmed supernovae of type Ia (SNe Ia)
from the “Joint Light-curve Analysis” (JLA) data set. We simultaneously determine cosmological parameters and
standardization parameters, including corrections for host galaxy mass, residual scatter, and object-by-object
intrinsic magnitudes. Combining JLA and Planck data on the cosmic microwave background, we find significant
discrepancies in cosmological parameter constraints with respect to the standard analysis: we find
W = 0.399 0.027m , s2.8 higher than previously reported, and = - w 0.910 0.045, s1.6 higher than the
standard analysis. We determine the residual scatter to be s = 0.104 0.005res . We confirm (at the 95%
probability level) the existence of two subpopulations segregated by host galaxy mass, separated at

( ) =M Mlog 1010 , differing in mean intrinsic magnitude by 0.055 ± 0.022 mag, lower than previously
reported. Cosmological parameter constraints, however, are unaffected by the inclusion of corrections for host
galaxy mass. We find s~4 evidence for a sharp drop in the value of the color correction parameter, ( )b z , at a
redshift = z 0.662 0.055t . We rule out some possible explanations for this behavior, which remains
unexplained.
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1. INTRODUCTION

Supernovae of type Ia (SNe Ia) have been instrumental in
establishing the accelerated expansion of the universe, starting
with the momentous discovery of the Supernova Cosmology
Project and the High-z Supernova Search Team in the late
1990s (Riess et al. 1998; Perlmutter et al. 1999). The
accelerated expansion is currently widely attributed to the
existence of a “dark energy” component, which is compatible
with Einsteinʼs cosmological constant. Over the last decade, the
sample of SNe Ia has increased dramatically (e.g., Astier
et al. 2006; Wood-Vasey et al. 2007; Bailey et al. 2008;
Kowalski et al. 2008; Balland et al. 2009; Freedman
et al. 2009; Hicken et al. 2009; Kessler et al. 2009; Amanullah
et al. 2010; Contreras et al. 2010; Suzuki et al. 2012; Betoule
et al. 2014; Rest et al. 2014), and it now comprises several
hundred spectroscopically confirmed SNe Ia. Since SNe Ia
probe the low-redshift universe, they are ideal tools to measure
the properties of dark energy. Two of the most important tasks
required to shed light on the origin of dark energy are to
establish whether or not the dark-energy equation of state is
evolving with time and whether modified-gravity scenarios
might provide a viable alternative explanation.

SNe Ia are observationally characterized by an absence of H
in their spectrum, and by the presence of strong Si II lines. They
occur when material from a companion accreting onto a white
dwarf triggers carbon fusion, which proceeds until a core of
typical mass M0.7 of 56Ni is created. The radioactive decay
of 56Ni to 56Co, and subsequently to 56Fe, produces γ-rays that
heat up the ejecta, thus powering the light curve (LC). While it
is believed that this happens when the mass of the white dwarf
approaches (without reaching) the Chandrasekhar limit of

M1.4 , the debate about progenitor scenarios is not settled.
There is strong evidence that some systems are likely single-

degenerate (Nugent et al. 2011) (where a white dwarf accretes
mass from a large, perhaps main-sequence, companion star (Li
et al. 2011a)), but studies of SN Ia rates point to the existence
of two classes of progenitors (Mannucci et al. 2006).
Furthermore, single-degenerate models have been ruled out
for the supernova remnant SNR 0509-67 by the lack of an ex-
companion star (Schaefer & Pagnotta 2012), and pre-explosion
X-ray and optical data for SN2007on are compatible with a
single-degenerate model (Voss & Nelemans 2008). Multiple
progenitor channels would help to explain the observed
variability within the type Ia category (Li et al. 2011b).
Within the more restricted subclass of so-called “normal”

SNe Ia, the fundamental assumption underlying their use to
measure expansion history is that they can be standardized so
that their intrinsic magnitudes (after empirical corrections) are
sufficiently homogeneous. This makes them into “standard
candles,” i.e., objects of almost uniform intrinsic luminosity
(within ∼0.1 mag) that can be used to determine the distance–
redshift relation. This relies on the empirical observation that
intrinsic magnitudes are correlated with decay times of light
curves: intrinsically brighter SNe Ia are slower to fade (Phillips
1993; Phillips et al. 1999). It also appears that fainter SNe Ia
are redder in color (Riess et al. 1996). Therefore, multi-
wavelength observations of light curves can be used to exploit
this correlation and reduce the residual scatter in the intrinsic
magnitude to typically ∼0.10–0.15 mag. Near-infrared LC data
can significantly reduce residual scatter still further (Mandel
et al. 2011), as does selecting SNe Ia in young star-forming
environments (Kelly et al. 2015).
One of the most widely used frameworks for determining an

estimate of the distance modulus from LC data is the SALT2
method (Guy et al. 2005, 2007), which derives color and
stretch corrections for the magnitude from the LC fit, and then
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uses the corrected distance modulus to fit the underlying
cosmological parameters. By contrast, the Multi-color Light-
curve Shape (Riess et al. 1996; Jha et al. 2007) approach
simultaneously infers the Phillips corrections and the cosmo-
logical parameters of interest, while explicitly modeling the
dust absorption and reddening in the host galaxy. Recently, a
fully Bayesian, hierarchical model approach to LC fitting has
emerged (Mandel et al. 2009, 2011), but this so-called
BAYESN algorithm has not yet been applied for inferring
cosmological parameters.

As the size of the SN Ia sample grows, so does the
importance of systematic errors relative to statistical errors, to
the point where current measurements of the cosmological
parameters (including properties of dark energy) are limited by
systematics (Betoule et al. 2014). A better understanding of
how the properties of SNe Ia correlate with their environment
(such as the properties of their host galaxy) will help in
improving their usage as standard candles.

In this paper, we introduce BAHAMAS (BAyesian Hier-
Archical Modeling for the Analysis of Supernova cosmology),
an extention of the method first introduced by March et al.
(2011), and apply it to the SN Ia sample from the “Joint Light-
curve Analysis” (JLA, Betoule et al. 2014). Betoule et al.
(2014) reanalyzed 740 spectroscopically confirmed SNe Ia
obtained by the SDSS-II and SNLS collaboration. March et al.
(2011) demonstrated with simulated data that a Bayesian
hierarchical model approach of the kind developed here has a
reduced posterior uncertainty, smaller mean squared error, and
better coverage properties than the standard approach (see also
March et al. 2014; Karpenka 2015 for further detailed
comparisons). More recently, Rubin et al. (2015) applied a
similar method to analyze Union 2.1 data on SNe Ia, extending
it to deal with the selection effect and non-Gaussian
distribution. Nielsen et al. (2015) adopted the effective
likelihood introduced in March et al. (2011) but interpreted
the results in terms of profile likelihood (rather than posterior
distributions), showing that the profile likelihood in theW WL, m

plane obtained from JLA data is much wider than what is
recovered with the usual c2 approach.

This paper re-evaluates the JLA data in the light of the
principled statistical analysis made possible by BAHAMAS.
As demonstrated in March et al. (2011), the standard c2 fitting
is an approximation to the Bayesian result in a particular
regime, which is usually violated by SALT2 outputs. Therefore
we address the question of whether the cosmological
constraints obtained from the standard analysis remain
unchanged when using a principled likelihood function within
a fully Bayesian analysis, as in BAHAMAS. We use our
framework to test for evolution with redshift in the properties
of SNe Ia, and in particular in their color correction. Finally, we
investigate whether the residual scatter around the Hubble law
can be further reduced by exploiting correlations between the
intrinsic magnitudes of SNe Ia and their host galaxy mass.

This paper is organized as follows: in Section 2 we introduce
our notation, the parameters of interest, and our Bayesian
hierarchical model. In Section 3 we present results obtained
when our approach is applied to the JLA sample; conclusions
appear in Section 4. In Appendix A we review our statistical
algorithms; in Appendix B we present the full posterior
distributions, and in Appendix C we give details of the Gibbs-
type samplers that we use to fit our Bayesian models.

2. BAHAMAS: BAYESIAN HIERARCHICAL MODELING
FOR THE ANALYSIS OF SUPERNOVA COSMOLOGY

In this section, we review BAHAMAS, an extension of the
method introduced by March et al. (2011) for estimating
cosmological parameters using the peak magnitudes of SNe Ia
adjusted for the stretch and color of their LCs via SALT2. We
then discuss features of the model and methods that allow us to
adjust for systematic errors, host galaxy mass, and a possible
dependence of the color correction on redshift. We also provide
a new estimate of the residual scatter in absolute magnitudes of
SNe Ia. An outline of our statistical models and methods is
presented here. Details of the statistical posterior distributions
and the computational techniques we use to explore them
appear in Appendix B.

2.1. Distance Modulus in an FRW Cosmology

Our overall modeling strategy leverages the homogeneity of
the absolute magnitudes of SNe Ia to allow us to estimate their
distance modulus from their apparent magnitudes and thereby
estimate the underlying cosmological parameters that govern
the relationship between distance modulus and redshift, z.
Consider, for example, a sample of n SNe Ia with apparent B-
band peak magnitudes, må

i. The distance modulus in any
passband, C( )m z; , is the difference between the apparent and
the intrinsic magnitudes in that band. Ignoring measurement
error for the moment, we can express this relationship
statistically via the regression model

C( ) ( ) m= + = ¼m z M i n; , for 1, , , 1i i i

where ( ) s~M M ,i 0 int
2 is the absolute magnitude of SN Ia i,

with M0 and sint the mean and intrinsic standard deviation of
absolute magnitudes of SNe Ia in the underlying population.4

Clearly the smaller sint the better we can estimate C( )m z; . In
Section 2.2 we discuss the inclusion of correlates in
Equation (1) that aim to reduce its residual variance, i.e., to
make the SNe Ia better standard candles.
The distance modulus is given by

C
C( ) ( ) ( )m = +z

d z
; 25 5 log

;

Mpc
, 210

L

where C represents a set of underlying cosmological
parameters and C( )d z;L is the luminosity distance to redshift
z. In the case of the ΛCDM cosmological model (based on a
Friedman–Robertson–Walker (FRW) metric), the luminosity
distance is
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4 We use ( ) m S, to denote a (multivariate) Gaussian distribution of mean μ
and variance–covariance matrix Σ. For the one-dimensional case, Σ reduces to
the variance, s2.
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and C { }= W Wk H w, , , T
m 0 , with Wk the curvature parameter

and Wm the total (both baryonic and dark) matter density (in
units of the critical density); c is the speed of light, and

=H h1000 km s−1 Mpc−1 is the Hubble parameter today,
depending on the dimensionless quantity h. For a general dark-
energy equation of state as a function of redshift, ( )w z , we can
express

( ) ( ) ( )òW = W
+
+

L
⎡
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⎤
⎦⎥z

w x

x
dxexp 3

1

1
, 5
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whereWL is the dark-energy density parameter. In our analyses,
we assume either a flat universe (i.e., W =k 0) with ( )w z equal
to a constant other than −1 or a curved universe with a
cosmological constant (i.e., ( ) = -w z 1). In either case,

( ) =w z w becomes a time-independent constant, and thus

( )W = - W - WkL 1 . 6m

2.2. SALT2 Output and Standardization of SNe Ia

2.2.1. Baseline Model

As described in Guy et al. (2007), the SALT2 fit of the multi-
color LC observation of SN Ia i produces measured quantities:
ẑi is the measured heliocentric redshift, ˆ mBi the measured B-
band apparent magnitude, x̂ i1 the measured stretch correction
parameter, ĉi the measured color correction parameter, and Ĉi a
( )´3 3 variance–covariance matrix describing the measure-
ment error of ˆ mBi, x̂ i1 , and ĉi. As shown in March et al. (2011),
accounting for observational error in spectroscopically

determined redshifts does not lead to any appreciable
difference in the results. Thus, after correcting for the
translation from heliocentric redshift to the frame of reference
of the cosmic microwave background (CMB), we ignore
measurement error in the observed redshift and set ˆ =z zi i

throughout. Each Ĉi is treated as a known constant, and we
denote the SALT2 data by

D { ˆ ˆ ˆ } ( ) = = ¼m x c i n, , , for 1, , . 7i Bi i i
T

1

Here we review our Baseline Model that was first introduced
by March et al. (2011); extensions appear in Sections 2.2.2 and
2.3. We modelD D D{ }  = ¼, ,

T
n
T T

1 via a Bayesian hierarchical
model (Kelly 2007); see Figure 1. At the observation level, we
model the measured SALT2 fits as independent Gaussian
variables centered at their true values,

ˆ
ˆ
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The true (but unobserved) values, mBi, x i1 , and ci, are treated as
latent variables, with x i1 and ci used to predict the intrinsic
(absolute) magnitude Mi via the linear regression

( )a b= - + +M x c M , 9i i i i1

where ( )  s~M M ,i 0 res
2 . Here x i1 and ci represent the Phillips

stretch and color corrections, respectively, whose predictive
strength is controlled by the unknown parameters, α and β,
which must be inferred fromD;Mi appearing in Equation (1) is
the physical absolute magnitude of SN Ia i and Mi is the
empirically corrected absolute magnitude, after application of
the Phillips relations. Substituting Equation (9) into (1) yields

C( ˆ ) ( ) m a b= - + +m z x c M, . 10Bi i i i i i1

Figure 1. Graphical representation of BAHAMAS. The meaning of the symbols is given in Table 1.
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From a statistical point of view Equation (9) is a linear
regression model with residuals Mi . In principle, including the
stretch and color corrections in Equations (9) and (10) should
reduce the residual variance, i.e., s sres

2
int
2 , and improve the

precision of the estimates of C.5 In Section 2.3 we investigate
whether introducing either host galaxy mass or an interaction6

between redshift and the color correction as an additional
correlated variable in Equation (9) can further reduce the
residual variance and increase the precision of the estimate
of C.

The population distributions of the latent variables Mi , x i1 ,
and ci are modeled as Gaussian7, with unknown hyperpara-
meters controlling the mean and variance of each population:

( )∣ ( )  s s~M M M, , , 11i 0 res 0 res
2

( )∣ ( ) ~x x R x R, , , 12i x x1 1 1
2

1 1

( )∣ ( ) ~c c R c R, , . 13i c c
2

The distribution in Equation (11) is the model for the residuals
in Equation (9).

The prior distributions used for the model parameters are
given in Table 1 (along with those for parameters introduced in
extensions to the model in Section 2.3). We adopt non-
informative proper prior distributions for α, β, and the
parameters in C. The value of the Hubble parameter is
fixed at H0 = 67.3 km s–1 Mpc–1from Planck.8 Among the
population-level parameters, the choice of prior distribution for
s res

2 is the most subtle. The simple choice of a log-uniform
prior, as adopted in March et al. (2011), requires specification
of arbitrary bounds to make it proper. Because this might lead
to difficulties in interpreting the posterior distribution, we
instead adopt a proper inverse Gamma9 prior distribution,

( )s ~ I G 0.003, 0.003NV AMMAres
2 . We perform a sensitivity

analysis for the choice of scale for this distribution and
demonstrate that our results (including the posterior distribution
of sres) are robust to this choice; see Figure 3.

2.2.2. Systematics Covariance Matrix and Selection Effects

In the Baseline Model described in Section 2.2.1, we assume
that the SALT2 measurements for each SN Ia are conditionally
independent (given their means and variances, see
Equation (8)), i.e., the ( )´n n3 3 variance–covariance matrix

( ˆ ˆ )ºC C Cdiag ,..., nstat 1 is block-diagonal. Betoule et al. (2014)
derived a systematic variance–covariance matrix, Csyst, with

correlations among the SNe Ia. The systematic covariance
matrix includes contributions from calibration, model uncer-
tainty, bias correction, host, dust, peculiar velocities, and
contamination. We account for these systematics by replacing
the matrix Cstat with DS = +C Cstat syst in the full posterior
distribution; see Appendix B.
Betoule et al. (2014) used SNANA simulations to model

observational selection effects and corrected for them by
shifting the value of ˆ mBi accordingly. We adopt the bias-
corrected values of ˆ mBi and thus do not need to separately
account for selection effects. A fully Bayesian approach to
forward-modeling of such effects appears in Rubin
et al. (2015).

2.3. Generalizing the Phillips Corrections

The advantage of the Phillips corrections is that they are
expected to reduce the residual variance in Equation (10) and
thus increase the precision in the estimates of C. Introducing
additional correlates may further improve precision. In the

Table 1
Summary of the Parameters, Notation, and Prior Distributions Used in Our

Hierarchical Model

Parameter Notation and Prior Distribution

Cosmological Parameters

Matter density parameter ( )W ~ U 0, 2NIFORMm

Cosmological constant density
parameter

( )W ~L U 0, 2NIFORM

Dark-energy equation of state ( )~ -w U 2, 0NIFORM

Hubble parameter H0 = 67.3 km s–1 Mpc–1

Covariates

Coefficient of stretch covariate ( )a ~ U 0, 1NIFORM

Coefficient of color covariate ( ) ( )b b ~or U 0, 4NIFORM0

Coefficient of interaction of color
correction and z

( )b ~ -U 4, 4NIFORM1

Jump in coefficient of color covariate ( )bD ~ -U 1.5, 1.5NIFORM

Redshift of jump in color covariate ( )~z U 0.2, 1NIFORMt

Coefficient of host galaxy mass
covariate

( )g ~ -U 4, 4NIFORM

Population-level Distributions

Mean of absolute magnitude ( ) ~ -M 19.3, 20
2

Residual scatter after corrections ( )s ~ I G 0.003, 0.003NV AMMAres
2

Mean of absolute magnitude, low
galaxy mass

( )~ -M 19.3, 20
lo 2

SD of absolute magnitude, low
galaxy mass

( )s ~ I G 0.003, 0.003NV AMMAres
lo 2

Mean of absolute magnitude, high
galaxy mass

( )~ -M 19.3, 20
hi 2

SD of absolute magnitude, high
galaxy mass

( )s ~ I G 0.003, 0.003NV AMMAres
hi 2

Mean of stretch ( ) ~x 0, 101
2

SD of stretch ( )~ -R L U 5, 2OG NIFORMx1

Mean of color ( ) ~c 0, 12

SD of color ( )~ -R L U 5, 2OG NIFORMc

Mean of host galaxy mass ( ) ~M 10, 100g
2

SD of host galaxy mass ( )~ -R L U 5, 2OG NIFORMg

Note. These include parameters in the Baseline Model described in
Sections 2.1–2.2 and its extensions described in Section 2.3. “SD” stands for
“standard deviation.”

5 This intuition stems from standard linear regression where the dependent
variables (here the mBi) and independent variables (here the x i1 and ci) are
observed directly. The situation is more complicated when these variables are
observed with error.
6 In statistical terms, an interaction between two variables means that the
effect of one variable depends on the values of the other. In Section 2.3 we
allow the effect of the color correction to vary with redshift.
7 We assume a single underlying population, but it would be simple to extend
our model to multiple populations by drawing Mi from a mixture of Gaussians,
for example to account for different progenitor scenarios, or contamination
from sources other than SNe Ia.
8 The Hubble parameter is perfectly degenerate with the mean absolute
magnitude M0, hence data from SNe Ia constrain only the degenerate
combination -M h5log0 10 . Therefore changing the value of h amounts to a
shift in the mean absolute magnitude.
9 We parameterize the inverse Gamma distribution so that

( )~X u vI G ,NV AMMA means that v X2 follows a c2 distribution with u2
degrees of freedom.
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context of BAHAMAS, it is straightforward to generalize the
Phillips corrections to include additional covariates. To
formalize this, we replace x i1 and ci in Equation (9) with a
set of p covariates and substitute into Equation (1) to obtain

C B( ˆ ) ( ) m= + +m z X M, , 14Bi i i i
T

i

where Xi is a ( )´p 1 vector of covariates and B is a ( )´p 1
vector of regression coefficients. The usual case, given in
Equation (10), is a special case of Equation (14) in which only
the stretch and color covariates are included (p = 2), and it can
be recovered by setting { }=X x c,i i i

T
1 and B { }a b= - , T . If

the covariate vector depends nonlinearly on a set of parameters
t , Equation (14) can be further generalized to

C B( ˆ ) ( ) ( ) m t= + +m z X M, . 15Bi i i i
T

i

Equation (15) allows for both linear and nonlinear covariate
adjustment.

We consider various instances of Equation (15). First, we
investigate the effect of the environment by including the host
galaxy mass as a covariate in the correction. The host mass is a
(relatively easy to measure) proxy for more fundamental
changes in the environment, such as evolution of metallicity.
Second, we are interested in testing for possible redshift
dependence of the color correction. This could have a physical
origin (e.g., dust environments in a high-redshift galaxy being
different) or be a reflection of systematic differences between
low- and high-redshift surveys.

Future work will aim at investigating the dependence on
environmental properties, such as star formation rates and
metallicities, a topic of active investigation (Childress
et al. 2013a; Rigault et al. 2013, 2015; Jones et al. 2015;
Kelly et al. 2015).

2.3.1. Dependence on Host Galaxy Mass

There is strong evidence that the absolute magnitude (after
corrections) of SNe Ia correlates with host galaxy mass (e.g.,
Sullivan et al. 2006; Meyers et al. 2012). Current results
indicate that more massive galaxies ( ( ) >M Mlog 1010 ) host
brighter SNe Ia, with their average absolute magnitude being of
order ∼0.1 mag smaller than in less massive hosts (Kelly et al.
2010; Sullivan et al. 2010; Campbell et al. 2016). This could be
a reflection of dust, age, and/or metallicity in the progenitor
systems (Childress et al. 2013b).

We investigate three formulations that incorporate host
galaxy mass as a covariate in Equation (15) and study how they
affect inference for C. In particular, we consider models that (i)
divide the SNe Ia into two populations using a hard threshold
for host galaxy mass (“Hard Classification Model”), (ii) divide
the SNe Ia into two populations using soft probabilistic
classification (“Soft Classification Model”), and (iii) adjust for
host galaxy mass as a covariate in the regression, analogously
to the stretch and color corrections (“Covariate Adjustment
Model”). Specifically, we model the observed host galaxy
masses (on the log10 scale) as

( ) ( )  s~ = ¼M M i n, , for 1, , , 16i i ig
indep

g g
2

where M ig is the (true) host galaxy mass of SN Ia i (in log10
solar masses) and s ig is the (known) standard deviation of
measurement error.

In the “Hard Classification Model,” we divide the SNe Ia
into two classes using the observed mass: high host galaxy
mass if  M 10ig and low host galaxy mass if  <M 10ig . (In
this way, we ignore measurement errors in M ig .) The two
classes are allowed to have their own population-level values
for the mean absolute magnitude of SNe Ia and residual
standard deviation, i.e., ( )sM ,0

hi
res
hi for high-mass hosts and

( )sM ,0
lo

res
lo for low-mass hosts. Common values are used for α

and β (and of course for C) for both classes. We do not assume
a redshift dependence for the color correction. We fix the
classification of host galaxy mass at 1010 solar masses,
analogous to the location of the step function used for the
host galaxy mass by Betoule et al. (2014) to enable a direct
comparison with their results.
The “Soft Classification Model” is identical to the Hard

Classification Model except that measurement errors in the
observed masses are accounted for by probabilistically
classifying each SN Ia; these errors can be quite significant.
Specifically, we let Zi be an indicator variable that equals one
for high host galaxy masses and equals zero for low host galaxy
masses, that is,

( )=
<⎧⎨⎩Z

M

M

0, if 10

1, if 10.
17i

i

i

g

g

We treat { }¼Z Z, , n
T

1 as a vector of unknown latent variables
that are estimated along with the other model parameters and
latent variables via Bayesian model fitting. This requires
specification of a prior distribution on each M ig . We choose a

flat prior so that ∣ ( )  s~M M M , ;
indep

i i i ig g g g
2 details appear in

Appendix B.
The “Covariate Adjustment Model” introduces M ig as a

covariate in the regression in Equation (14) rather than
classifying the SNe Ia by galaxy mass. In particular, we use
Equation (14), but with p = 3, { }=X x c M, ,i i i i

T
1 g , and

B { }a b g= - , , T withB being Bayesianly estimated from the
data. The population model for the latent variables Mi , x i1 , and
ci given in Equations (11)–(13) is also expanded to include host
galaxy mass:

∣ ( ) ( ) ~M M R M R, , , 18ig g g g g
2

where Mg and Rg are hyperparameters analogous to, e.g., x1

and R ;x1 their prior distributions are given in Table 1.

2.3.2. Redshift Evolution of the Color Correction

The SALT2 color correction gives the offset with respect to
the average color at maximum B-band luminosity,

( )= - - á - ñc B V B Vi i . This time-independent color varia-
tion encompasses both intrinsic color differences and those due
to dust in the host galaxy. It is possible that the color correction
varies with redshift, as a consequence of evolution of the
progenitor and/or changes in the environment, for example,
variation in the dust composition with galactic evolution
(Childress et al. 2013b). Redshift-dependent dust extinction can
lead to biased estimates of cosmological parameters (Menard
et al. 2010a, 2010b). This is not captured by the SALT2 fits,
since they use a training sample that is distributed over a large
redshift range (  z0.002 1) (Guy et al. 2007), and thus the
color correction to the training sample is averaged across
redshift. It is therefore important to check for a redshift
dependence in the color correction by allowing β, which
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controls the amplitude of the linear correction to the distance
modulus, to vary with z.

We consider two phenomenological models that allow the
color correction to depend on z. In the first, the dependence is
linear: we replace the constant β in Equation (10) with the
z-dependent ˆb b+ zi0 1 . This is expressed by setting

{ ˆ }=X x c c z, ,i i i i i
T

1 and B { }a b b= - , , T
0 1 in Equation (14),

leading to

ˆ ( )a b b= - + + +M x c c z M . 19i i i i i i1 0 1

We refer to this as the “z-linear Color Correction Model.”
The second model allows for a sharp transition from a high-

redshift to a low-redshift regime: we replace the constant β in

Equation (10) with ( )( )ˆb b+ D +
p

-arctan z z
0

1

2

1

0.01
i t , where

b bD,0 , and zt are parameters. This can be viewed as a
smoothed step function in that it approaches b0 as z 0 and
approaches b b+ D0 as  ¥z , with a smooth monotonic
local transition centered at =z zt. Substituting into
Equation (9), we have

ˆ

( )



a b b
p

=- + + D +
-

+

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟M x c

z z
c

M

1

2

1
arctan

0.01
,

20

i i i
i t

i

i

1 0

where the covariate associated with bD depends nonlinearly on
zt as described in Equation (15). We refer to this model as the
“z-jump Color Correction Model.”

The several model extensions we consider are summarized in
Table 2.

2.4. Posterior Sampling

To significantly reduce the dimension of the parameter space
under the Baseline Model, March et al. (2011) marginalized out
the n3 latent variables, { }M x c, ,i i i1 , from the posterior
distribution. This relies on the Gaussian population distribu-
tions for analytic tractability. A consequence is that the
posterior distributions of the latent variables of each SN Ia
are inaccessible.

BAHAMAS improves on March et al. (2011) by using a
Gibbs-type sampler to sample from the joint posterior
distribution of the parameters and latent variables. This has
the advantage that we can present object-by-object posterior
distributions for the values of latent color, stretch, and intrinsic
magnitude. These can also be mapped onto posterior distribu-
tions for the residuals of the Hubble diagram; see Figure 4.

Furthermore, BAHAMAS does not require Gaussian popu-
lation distributions, as the posterior sampling is fully numer-
ical; Rubin et al. (2015) took a similar approach. Although we

do not use non-Gaussian distributions here, BAHAMAS opens
the door to a fully Bayesian treatment of non-Gaussianities and
selection effects. This will be investigated in a future work.
We present the algorithmic details of our Gibbs-type sampler

in Appendix C. We have cross-checked the results obtained
with the Gibbs-type sampler with those obtained with the
Metropolis–Hastings (MH) sampler of March et al. (2011) and
with the MULTINEST sampler (a nested sampling algorithm, see
Feroz et al. 2009). This comparison is carried out for the
Baseline Model as well as for the extensions in Table 2. The
main difference is that the Gibbs sampler directly simulates the
latent variables while the other two algorithms do not. The
marginal distributions obtainable with the latter two methods
match within the numerical sampling margin of error with the
output from the Gibbs-type sampler. We use the stopping
criterion of Gelman & Rubin (1992) and require their scale
reduction factor, R̂, to be less than 1.1 for all the components of
C and B. This leads to a chain of typically ∼3300 samples,
with an effective sample size10 of around 200 for C
components, and 400 for B components. This requires a
CPU time of order ´2.0 105 s, where the cost of evaluating a
single likelihood is of the order of 5–10 s on a single CPU.

3. RESULTS

Here we present the BAHAMAS fits to the JLA data, as well
as in combination with Planck CMB temperature data,
complemented by WMAP9 polarization data (Planck Colla-
boration et al. 2015).

3.1. Baseline Model

We begin by displaying in Figure 2 the 1D and 2D marginal
posterior distributions for the cosmological parameters, and
color and stretch correction parameters from the JLA sample of
SNe Ia analyzed with BAHAMAS (black contours). We also
show the combination with Planck CMB data, which we obtain
via importance sampling (red contours). We consider either a
universe containing a cosmological constant, = -w 1
(ΛCDM), or a flat universe with a dark-energy component
with redshift-independent ¹ -w 1 (wCDM).
Table 3 (ΛCDM) and Table 4 (wCDM) report the

corresponding marginal posterior credible intervals. For the

Table 2
Summary of Extensions to the Baseline Model

Models that adjust for host galaxy mass
Hard Classification ( )seM ,0 res split for low/high host galaxy mass at  =M 10ig .

Soft Classification ( )seM ,0 res split for low/high host galaxy mass at =M 10ig .

Covariate Adjustment Host galaxy mass included in linear regression with coefficient γ, see Equation (14).
Models that allow the color adjustment to depend on redshift
z-linear Color Correction Color correction given by b b+ z0 1 , see Equation (19).
z-jump Color Correction Color correction changes smoothly by bD near =z zt , see Equation (20).

10 The effective sample size of the parameter ψ is defined as

( )
( )

( )
å

y
r y

=
+ =

¥
T

ESS
1 2

, 21
t t1

where T is the total posterior sample size and ( )r yt is the lag-t autocorrelation
of ψ in the MCMC sample. ESS( )y approximates the size of an independent
posterior sample that would be required to obtain the same Monte Carlo
variance of the posterior mean of ψ; see Kass et al. (1998) and Liu (2001).
ESS( )y is an indicator of how well the MCMC chain for ψ mixes; ESS( )y is
necessarily less than T and larger values of ESS( )y are preferred.
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Figure 2. 1D and 2D marginal posterior distributions for the cosmological parameters, and the color and stretch correction parameters under the Baseline Model.
Black (red) contours show 68% and 95% highest posterior density regions for JLA SNe Ia data only (JLA combined with Planck). The top (bottom) panels display
results for the ΛCDM (wCDM) model.
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= -w 1 case (i.e., ΛCDM), we find W = 0.340 0.101m and
W = k 0.119 0.249 (JLA alone). Including Planck data
results in11 W = 0.399 0.027m , a significantly higher value
of the matter content than reported in the standard analysis.
(More detailed comparisons are given below.) The curvature
parameter is W = - k 0.024 0.008, excluding a flat universe,
W =k 0, at the s~3 level. For the case of a flat universe (i.e.,
wCDM, Table 4), we find from JLA and Planck,
W = 0.343 0.019m and = - w 0.910 0.045. The contours
of the posterior distribution of Wm and WL based on the JLA
data only are similar to those obtained by Nielsen et al. (2015).
These authors marginalized latent variables out of their

effective likelihood, in an approach similar to our own,
although with a number of detailed differences.12 In particular,
the s1 (marginal posterior) contour obtained with BAHAMAS
overlaps closely with the s1 (profile likelihood) contour in
Nielsen et al. (2015), while the s2 contour from BAHAMAS
shows a degree of asymmetry that is not present in Nielsen
et al. (2015). (Recall that the analysis of Nielsen et al. (2015)
relies on approximating the confidence regions using Gaus-
sians, while the numerical sampling of BAHAMAS does not.)
The residual intrinsic dispersion is in all cases close to

s = 0.104 0.005res . This value is to be understood as the
average residual scatter in the (post-correction) intrinsic
magnitudes across all surveys that make up the JLA data set.

Table 3
Marginalized Posterior Constraints on Cosmological and SNe Ia Correction Parameters for the ΛCDM Model, Assuming =H 67.30 km s−1 Mpc−1

JLA SNe Ia Only JLA SNe Ia + Planck 2015

z-linear z-jump z-linear z-jump
Baseline Color Corr. Color Corr. Baseline Color Corr. Color Corr.

Baseline Model Parameters

Wm 0.340 ± 0.101 0.362 ± 0.094 0.429 ± 0.097 0.399 ± 0.027 0.420 ± 0.031 0.425 ± 0.025
WL 0.542 ± 0.157 0.557 ± 0.145 0.632 ± 0.155 0.625 ± 0.020 0.609 ± 0.025 0.604 ± 0.019
Wk 0.119 ± 0.249 0.081 ± 0.230 −0.061 ± 0.244 −0.024 ± 0.008 −0.028 ± 0.008 −0.029 ± 0.007
α 0.137 ± 0.006 0.136 ± 0.006 0.136 ± 0.006 0.137 ± 0.006 0.135 ± 0.007 0.136 ± 0.006
β 3.058 ± 0.085 n/a n/a 3.068 ± 0.097 n/a n/a

Redshift Evolution of Color Correction Parameters

b0 n/a 3.211 ± 0.120 3.137 ± 0.092 n/a 3.219 ± 0.119 3.136 ± 0.096
b1 n/a −0.622 ± 0.342 n/a n/a −0.732 ± 0.360 n/a
bD n/a n/a −1.120 ± 0.240 n/a n/a −1.145 ± 0.243

zt n/a n/a 0.662 ± 0.055 n/a n/a 0.670 ± 0.056
Intrinsic Magnitude and Residual Dispersion Parameters

eM0 −19.140 ± 0.022 −19.140 ± 0.020 −19.144 ± 0.021 −19.140 ± 0.018 −19.138 ± 0.018 −19.140 ± 0.016

sres 0.104 ± 0.005 0.104 ± 0.005 0.103 ± 0.005 0.105 ± 0.005 0.105 ± 0.004 0.103 ± 0.005

Table 4
As in Table 3, but for wCDM

JLA SNe Ia Only JLA SNe Ia + Planck 2015

z-linear z-jump z-linear z-jump
Baseline Color Corr. Color Corr. Baseline Color Corr. Color Corr.

Wm 0.355 ± 0.117 0.366 ± 0.119 0.422 ± 0.097 0.343 ± 0.019 0.349 ± 0.015 0.353 ± 0.018
WL 0.645 ± 0.117 0.634 ± 0.119 0.578 ± 0.097 0.657 ± 0.019 0.651 ± 0.015 0.647 ± 0.018
w - -

+0.995 0.275
0.418 - -

+1.022 0.227
0.425 - -

+1.145 0.293
0.394 −0.910 ± 0.045 −0.905 ± 0.050 −0.883 ± 0.043

α 0.136 ± 0.006 0.136 ± 0.006 0.136 ± 0.006 0.136 ± 0.006 0.137 ± 0.006 0.136 ± 0.005
β 3.060 ± 0.088 n/a n/a 3.047 ± 0.087 n/a n/a
b0 n/a 3.206 ± 0.358 3.137 ± 0.090 n/a 3.199 ± 0.109 3.128 ± 0.082
b1 n/a −0.629 ± 0.358 n/a n/a −0.603 ± 0.320 n/a
bD n/a n/a −1.116 ± 0.240 n/a n/a −1.083 ± 0.237

zt n/a n/a 0.661 ± 0.055 n/a n/a 0.655 ± 0.055

eM0 −19.146 ± 0.024 −19.142 ± 0.022 −19.145 ± 0.021 −19.148 ± 0.024 −19.144 ± 0.020 −19.143 ± 0.020

sres 0.103 ± 0.005 0.104 ± 0.005 0.103 ± 0.005 0.103 ± 0.007 0.104 ± 0.005 0.102 ± 0.005

11 We summarize marginal posterior distributions with their posterior mean
and approximate 68% ( s1 ) posterior credible intervals. We report highest
posterior density (HPD) intervals, which are the shortest intervals that capture
68% of the posterior probability. In most cases, the marginal posterior
distributions are symmetric and approximately Gaussian, in which case the
reported error bar is the posterior standard deviation. The exceptions are the
intervals reported for w, which are reported with asymmetric positive and
negative errors due to the non-Gaussian shape of the posterior distribution.

12 Nielsen et al. (2015) adopted implicit uniform priors on the population
variances, as well as on sint. They also maximized the likelihood to obtain
confidence intervals on cosmological parameters (after marginalization of the
latent variables), rather than integrating the posterior to obtain marginalized
credible regions (as in this work). Because BAHAMAS is a nonlinear, non-
Gaussian model there is no reason to expect a priori that our results ought to be
similar to those obtained by Nielsen et al. (2015).
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This value should be compared with the parameter scoh in
Betoule et al. (2014) (which in that work has an approximately
equivalent meaning to our sres), ranging from 0.08 (for SNLS)
to 0.12 (low-z). It would be easy to extend our analysis to allow
for a different value of sres for each of the data sets (SNLS,
SDSS, low-z, and Hubble Space Telescope (HST)) compris-
ing JLA.

The posterior constraints on the residual intrinsic dispersion
are, in principle, sensitive to the choice of scale in its inverse
Gamma prior distribution. To test the robustness of our posterior
inference on sres with respect to its prior specification, we have
compared the posterior distributions obtained with three very
different prior distributions; each is an inverse Gamma
distribution, but with parameters = =u v 0.003, 0.03, 0.1.
The resulting posterior distributions (alongside their prior
distributions) are shown in Figure 3. Despite the widely differing
prior distributions, the posteriors are nearly identical, demon-
strating the prior-independence of our result. We have verified
that all constraints on the other parameters are similarly
insensitive to the choice of prior for sres.

BAHAMAS allows us to compute the posterior distribution
for all latent variables, and for the Hubble residuals. It is
instructive to compare the posterior distribution to the standard
best-fit estimate to illustrate the phenomenon of “shrinkage”:
the hierarchical regression structure of the Bayesian model
allows estimators to “borrow strength” across the SNe Ia and
thus reduces their residual scatter around the regression plane.

We illustrate the shrinkage effect using the Baseline Model.
We divide the SNe Ia into four bins using the quartiles of x̂1.
For each bin, in the four panels of the first row of Figure 4, we
plot in blue Cˆ ˆ ( ˆ ) mº -M m z ,i Bi i i versus ĉi. Here, C is the
posterior mean of the cosmological parameters, and M̂i is a
plug-in estimate of the intrinsic magnitude of SN Ia i before
corrections. This is equivalent to the standard “best-fit”
estimate of the intrinsic magnitude. In red we plot the posterior
means, i.e., C¯ ( ˆ ) m-m z ,Bi i i versus c̄i. The regression line in
each bin (black) has slope b̄ and intercept ¯ ā-eM x0 1, where the

bar represents the average with respect to the posterior
distribution while x1 is the mean of x̂1 in that bin.
In each bin, we observe the expected positive correlation

between intrinsic magnitude and color (top panels), and
negative correlation between intrinsic magnitude and stretch
(bottom panels). The most striking feature is that the posterior
estimates are dramatically shrunk toward the regression line,
when compared with the plug-in estimates. This is because
BAHAMAS accounts for the uncertainty in the measured
values of { ˆ ˆ ˆ }m x c, ,Bi i i , and adjusts their fitted values (i.e., their
posterior distributions) by “shrinking” them toward their fitted
population means and the fitted regression line.

3.2. Including Corrections for Host Galaxy Mass

We now investigate the impact of including information on
the host galaxy mass. Marginalized posterior constraints on our
model parameters when the host galaxy mass is used as a
predictor or a covariate are reported in Tables 5 (ΛCDM) and 6
(wCDM). The posterior distributions are shown in Figure 5,
where they are compared with the case when no mass
correction is used.
The Hard Classification Model matches exactly the proce-

dure to correct for host galaxy mass adopted in Betoule et al.
(2014), hence our results are directly comparable. The only
difference is the statistical method adopted in inferring the
cosmological parameters from the SALT2 fits. For the matter
density parameter (assuming ΛCDM and using JLA data only),
we find W = 0.343 0.096m compared to W =m

0.295 0.034 in Betoule et al. (2014). Our posterior
uncertainty is about a factor of ∼3 larger, despite the shrinkage
effect described above, and the central value is higher by

s~0.5 . We find = - -
+w 0.943 0.255

0.363. When compared with the
Baseline Model, our cosmological parameter constraints hardly
change (see Figure 5).13

Despite this, we do detect significant difference (with 95%
probability) between the mean intrinsic magnitude of SNe Ia in
host galaxies of low and high mass. Specifically, we define

( )D º -M M M 220 0
hi

0
lo

as the difference in intrinsic magnitude between the two
subclasses. The posterior interval for DM0 is

( ‐ )
( )

- < D <M0.10 0.00 95% equal tail posterior interval
23

0

with D =M 00 excluded with 95% probability. The posterior
distribution for DM0 is shown in Figure 6, where the result for
the Hard Classification Model is compared with the Soft
Classification Model. There is no appreciable difference in
DM0 between the Hard Classification Model and the Soft
Classification Model. In accordance with previous results
(Kelly et al. 2010; Sullivan et al. 2010; Campbell et al. 2016),
we find that SNe Ia in more massive galaxies are intrinsically
brighter, with our posterior estimate of the magnitude
difference being D = - M 0.055 0.0220 . However, the size
of the effect in our study is smaller than previously reported.

Figure 3. Robustness of the posterior distribution for sres (solid lines) with
respect to three different prior specifications (dashed lines). Black:

( )s ~ I G 0.003, 0.003 ;NV AMMAres
2 blue: ( )s ~ I G 0.03, 0.03 ;NV AMMAres

2 red:
( )s ~ I G 0.1, 0.1NV AMMAres

2 . Since the three posterior distributions are very
similar, we conclude that the posterior distribution of sres is largely insensitive
to its prior specification (assuming ΛCDM). Densities have been normalized to
their peak for ease of comparison. In the rest of this paper, we
use ( )s ~ I G 0.003, 0.003NV AMMAres

2 .

13 Our treatment in the Baseline Model is not fully consistent. While we ignore
any dependence on host galaxy mass we do include the “host relation” term in
the systematics covariance matrix. This, however, is likely to have a negligible
effect, since Table 11 in Betoule et al. (2014) quantifies the contribution to the
error budget on Wm from the uncertainty in host relation as a mere 1.3%.
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For example, Kelly et al. (2010) found (in our notation)
D = -M 0.110 , and Sullivan et al. (2010)D = -M 0.080 , while
Campbell et al. (2016) reported D = - M 0.091 0.0450 .

The residual intrinsic dispersion of the two subpopulations is
marginally smaller for the SNe Ia residing in more massive
hosts: s = 0.097 0.007;res

hi for the lower mass group the
residual dispersion is s = 0.110 0.009res

lo . (Those values are
for the ΛCDM case, but wCDM is similar.)

Figure 7 shows the posterior estimates of the empirically
corrected intrinsic magnitudes of SNe Ia, Mi , as a function of

the measured host galaxy mass. Histograms on either side of
the graph show the distributions of the posterior mean estimates
of Mi for the two populations. The average measurement error
of the host galaxy mass is fairly large, especially for low-mass
hosts. Therefore, galaxies whose mass is close to the cut-off of

=M 10ig are of uncertain classification, once the measurement
error is taken into account. This could influence the estimate of
DM0 and the ensuing cosmological constraints.

To investigate the importance of errors in mass measure-
ment, we fit the Soft Classification Model, which includes

Figure 4. Shrinkage of posterior estimates in BAHAMAS: plug-in estimates of the intrinsic magnitude (blue) and posterior mean (red). The four panels in the first row
correspond to quartiles of x̂ ;1 we plot the regression line as a function of the color parameter in each. The horizontal axis plots ĉi (blue) and the posterior mean of ci
(red). The four panels in the bottom row correspond to quartiles of ĉ; we plot the regression line as a function of the stretch parameter x̂1 in each. The horizontal axis
plots x̂ i1 (blue) and the posterior mean of x i1 (red). The regression lines use the posterior means of the parameters and the mean of the observed covariates in each
quartile. The posterior estimates shrink from the plug-in estimates toward the regression line and thus reduce scatter around the regression plane. This is a consequence
of the hierarchical regression in the model (this plot is for the ΛCDM case).

Table 5
Posterior Constraints on Our Model Parameters when the Host Galaxy Mass is Used as a Predictor or a Covariate (ΛCDM Case)

JLA SNe Ia Only JLA SNe Ia + Planck 2015

Hard Soft Covariate Hard Soft Covariate
Classification Classification Adjustment Classification Classification Adjustment

Baseline Model Parameters

Wm 0.343 ± 0.096 0.338 ± 0.107 0.361 ± 0.100 0.423 ± 0.030 0.400 ± 0.025 0.403 ± 0.031
WL 0.523 ± 0.144 0.522 ± 0.165 0.559 ± 0.151 0.603 ± 0.020 0.622 ± 0.019 0.621 ± 0.023
Wk 0.134 ± 0.232 0.140 ± 0.263 0.080 ± 0.244 −0.026 ± 0.011 −0.022 ± 0.008 −0.025 ± 0.010
α 0.141 ± 0.006 0.140 ± 0.006 0.143 ± 0.006 0.142 ± 0.006 0.142 ± 0.007 0.143 ± 0.005
β 3.058 ± 0.095 3.014 ± 0.086 3.068 ± 0.089 3.053 ± 0.068 3.034 ± 0.060 3.031 ± 0.086

eM0 n/a n/a −18.837 ± 0.100 n/a n/a −18.860 ± 0.096

M0
lo −19.114 ± 0.023 −19.110 ± 0.023 n/a −19.111 ± 0.019 −19.110 ± 0.021 n/a

s res
lo 0.110 ± 0.009 0.114 ± 0.009 n/a 0.108 ± 0.006 0.113 ± 0.009 n/a

DM0 −0.055 ± 0.022 −0.049 ± 0.022 n/a −0.062 ± 0.022 −0.049 ± 0.019 n/a
s res

hi 0.097 ± 0.007 0.096 ± 0.007 n/a 0.095 ± 0.006 0.094 ± 0.006 n/a
γ n/a n/a −0.030 ± 0.010 n/a n/a −0.028 ± 0.010
sres n/a n/a 0.101 ± 0.005 n/a n/a 0.102 ± 0.005

Note. Hard Classification adopts a mass-step correction by splitting the SNe Ia according to host galaxy mass into “Low” ( <M 10ig ) and “High” ( M 10ig )
subclasses. Soft Classification further accounts for uncertainty due to the error in measurement of the host galaxy mass. Covariate Adjustment uses the host galaxy
mass as a linear covariate. The quantity DM0 is the difference between the mean peak intrinsic magnitudes of the two populations: D º -M M M0 0

hi
0
lo.
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indicator variables for each SN Ia; recall that Zi is one if SN Ia i
belongs to the high-mass host class and zero if it does not.
Treating Zi as an unknown variable allows us to assess the

posterior probability that each SN Ia belongs to the high-mass
host class. In Figure 8 we plot the posterior means and standard
deviations for each Zi. The posterior mean of Zi is the posterior

Table 6
As in Table 5, but for wCDM

JLA SNe Ia only JLA SNe Ia + Planck 2015

Hard Soft Covariate Hard Soft Covariate
Classification Classification Adjustment Classification Classification Adjustment

Wm 0.342 ± 0.119 0.343 ± 0.116 0.348 ± 0.114 0.343 ± 0.017 0.350 ± 0.018 0.347 ± 0.015
WL 0.658 ± 0.119 0.657 ± 0.116 0.652 ± 0.114 0.657 ± 0.017 0.650 ± 0.018 0.653 ± 0.015
w - -

+0.943 0.255
0.363 - -

+0.937 0.213
0.341 - -

+0.958 0.271
0.364 −0.906 ± 0.043 −0.902 ± 0.049 −0.898 ± 0.051

α 0.141 ± 0.006 0.141 ± 0.007 0.142 ± 0.007 0.135 ± 0.007 0.142 ± 0.006 0.141 ± 0.005
β 3.034 ± 0.078 3.049 ± 0.085 3.066 ± 0.087 2.917 ± 0.092 3.054 ± 0.085 3.057 ± 0.086

eM0 n/a n/a −18.838 ± 0.098 n/a n/a −18.846 ± 0.090

M0
lo −19.117 ± 0.024 −19.111 ± 0.024 n/a −19.126 ± 0.021 −19.116 ± 0.020 n/a

s res
lo 0.111 ± 0.008 0.112 ± 0.009 n/a 0.110 ± 0.008 0.112 ± 0.009 n/a

DM0 −0.056 ± 0.021 −0.060 ± 0.020 n/a −0.047 ± 0.025 −0.058 ± 0.020 n/a
s res

hi 0.098 ± 0.006 0.094 ± 0.007 n/a 0.098 ± 0.007 0.094 ± 0.006 n/a
γ n/a n/a −0.030 ± 0.009 n/a n/a −0.030 ± 0.009
sres n/a n/a 0.101 ± 0.005 n/a n/a 0.100 ± 0.005

Figure 5. Comparison of cosmological parameters and standardization parameters with and without correction for host galaxy mass (black/shaded: Baseline Model;
green: Soft Classification Model; purple: Covariate Adjustment Model). The result of the Hard Classification Model is similar to that of the Soft Classification Model
and is not shown. Top panels are fit under the ΛCDM, while the bottom panels are fit under the wCDM. We do not find a significant difference in cosmology when
mass information is included in the fit.
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probability that SN Ia i belongs to the high-mass class.
Although measurement errors in the host galaxy mass are
suppressed for clarity in Figure 8, the fitted model fully
accounts for them.

The posterior constraints for the Soft Classification Model
are compared with those under the Baseline Model in Figure 5.
There is no significant difference between the cosmological fits
or in the fitted nuisance parameters of the Baseline, Hard
Classification, or Soft Classification Models.

Finally, the Covariate Adjustment Model includes host
galaxy mass as a covariate; the fitted regression line under
this model is plotted as a solid purple line in Figure 7. The
fitted regression line can be expressed as ˆ  m- =mBi i

¯ g+ Mintercept ig , where ḡ is the posterior mean of γ and
the intercept is ( )a b- +eM x c0 1 with eM0 , α, and β replaced
by their posterior means, ¯ eM0 , ā, and b̄; x̂ i1 replaced by

å = x ;
n i

n
i

1
1 1 and c replaced by ˆå = c

n i
n

i
1

1 . The shaded purple region
corresponds to a 68% posterior credible interval of γ (with the
intercept fixed as described above). Figure 9 plots the posterior
distribution for the slope γ. We find that the posterior
probability that g < 0 is 99%. The posterior 68% credible
interval for γ is −0.030 ± 0.010. This is qualitatively
consistent with previous work, but our slope is shallower.
Previous analyses (Lampeitl et al. 2010; Gupta et al. 2011;
Childress et al. 2013a; Pan et al. 2014; Campbell et al. 2016)
(using various samples of SNe Ia) found values of the slope in
the range g = -0.08 to g = -0.04.

Posterior constraints under the Covariate Adjustment Model
are compared with those under the Baseline Model in Figure 5.
Despite the fact that the posterior probability that g < 0 is
99%, there is no significant shift in the cosmological
parameters or the residual standard deviation, sres. Although
intuition stemming from standard linear regression suggests
that adding a significant covariate should reduce residual
variance, the situation is more complicated in Equation (14)
owing to the measurement errors in both the independent and
the dependent variables. While the variances of the left and

right sides of (14) must be equal, there are numerous random
quantities whose variances and covariances can be altered by
adding a covariate to the model.

3.3. Redshift Evolution of the Color Correction

We now examine possible redshift evolution of the color
correction parameter. The posterior distributions of the
cosmological parameters under the Baseline, z-linear Color
Correction, and z-jump Color Correction Models are compared
in Figure 10 (ΛCDM) and Figure 11 (wCDM). The corresp-
onding marginal posterior constraints are reported alongside
the Baseline Model in Tables 3 and 4.
When evolution that is linear in redshift is allowed (as in the

z-linear Color Correction Model), we find that a non-zero,
negative linear term b1 is preferred with ~95% probability,
b = - 0.622 0.3421 (JLA data only). Because the standard
deviation of ĉi is of the order of ∼0.1, high-redshift SNe Ia (at
~z 1) are typically ∼0.06 mag brighter than those nearby.

However, there is no significant shift in the ensuing distribu-
tions of the cosmological parameters when compared with the
Baseline Model.
When a sharp transition with redshift is allowed (as in the z-

jump Color Correction Model), there is strong evidence for a
significant drop in β at = z 0.662 0.055t . At this redshift, β
drops from its low-redshift value, b = 3.137 0.0920 , by
bD = - 1.120 0.240, with a nominal significance of

approximately s4.6 . This represents a correction of typically
∼0.11 mag for SNe Ia at >z zt. The mean value and 1σ
uncertainty band in the redshift-dependent ( )b z are shown in
Figure 12. This trend is qualitatively similar to what is reported
in Kessler et al. (2009), which attributed the shift to an
unexplained effect in the first-year SNLS data. Wang et al.
(2014) also found evidence for evolution of β with redshift in
the SNLS three-year data. The drop, however, disappears in
Betoule et al. (2014), after their reanalysis of the (three-year)
SNLS data. The present work, however, uses identical data to
Betoule et al. (2014). This is discussed further at the end of this
section.
Despite significant evidence for redshift evolution of the

color correction, the cosmological parameters are only mildly
affected with respect to the Baseline Model. (Differences
between the two fits are one standard deviation or less.) The
posterior distribution of the residual intrinsic scatter also
remains unchanged, giving s = 0.103 0.005res .
In order to quantify the residual scatter around the Hubble

diagram, we consider the difference between the theoretical
distance modulus, C( ˆ )m z ;i , and an estimate based on the
observables, ˆ ( ) ˆ ˆ ˆm a b a b= - + -e eM m M x c, , ;i Bi i i0 0 that is,
we define

Cˆ ( ) ( ˆ ) ( )m m a b mD = -eM z, , ; 24i i i0

and its sample variance,

( ¯ ) ( )ås m m=
-

D - DmD
=n

1

1
, 25

i

n

i
2

1

2

where m̄ mD = å D=n i
n

i
1

1 . Notice that both ˆ ( )m a beM , ,i 0 and

C( ˆ )m z ;i depend on model parameters, and thus for fixedD we
can view mD i and s mD

2 as functions of the parameters having
their own posterior distributions.
We compare the Hubble diagram residuals, mD i, for the

Baseline Model with those for the z-jump Color Correction

Figure 6. Posterior distribution ofDM0, the difference between mean intrinsic
magnitudes of SNe Ia in high-mass host galaxies ( M 10ig ) and low-mass
hosts ( <M 10ig ). The blue and green curves correspond to the Hard
Classification and Soft Classification Models, respectively. Under both models,
the posterior probability that D <M 00 is greater than 95%, meaning that
SNe Ia in more massive hosts are most probably intrinsically brighter
(D <M 00 ). (This plot assumes a ΛCDM universe.)
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Model in Figure 13. The unknown parameters in mD i are
replaced with their posterior means. We only plot SNe Ia with
ˆ >z 0.6, because the residuals for low-redshift SNe Ia are very
similar for the two models since the β value for ˆ z 0.6 is
similar. The left panel of Figure 13 shows the Hubble residuals
under the Baseline Model, the central panel shows them under
the z-jump Color Correction Model, and the right panel
compares the two by plotting residuals under the Baseline
Model versus residuals under the z-jump Color Correction
Model. The scatter is reduced under the z-jump Color
Correction Model; it is nearer to zero. This indicates that

allowing for a sharp transition in ( )b z improves the
standardization of SNe Ia.
We define the cumulative (i.e., summed over redshift)

Hubble residual as

∣ ∣ ( ) ( )
ˆ ˆ

 

å m= Ds i n1 . 26i

z z
j

j i

In Figure 14 we use the cumulative residual to highlight the
difference in the fit between the Baseline, z-linear Color
Correction and z-jump Color Correction Models. Figure 14
shows the cumulative residual as a function of redshift, where
at each redshift the Baseline Model residual has been
subtracted to facilitate comparison. For ˆ z 0.7, the Baseline
Model offers a slightly better fit than either of the ( )b z models.
But above ˆ ~z 0.8 both the z-linear Color Correction Model

Figure 7. Posterior means and standard deviations for the empirically corrected intrinsic magnitudes of SNe Ia in the JLA sample vs. measured host galaxy mass. The
sample has been divided into two populations, with M ig � 10 (< 10) depicted in blue (red). A hollow square represents an SN Ia whose nominal measurement error on
M ig is equal to or larger than 5. The population means of the intrinsic magnitudes are = - M 19.114 0.0230

lo and = - M 19.169 0.0220
hi (horizontal dashed

lines) respectively for the classes of low and high host mass. The blue and red vertical error bars represent the average posterior standard deviations of the intrinsic
magnitudes in the classes of low and high host mass, respectively. The horizontal error bars represent the average measurement errors of M ig in the two classes. The
average error bars exclude the SNe Ia represented by hollow squares. The slope of the purple regression line is the posterior mean of γ under the Covariate Adjustment
Model, while the purple shaded area represents the s1 credible region for γ. (The regression line is computed under ΛCDM.)

Figure 8. Posterior means and standard deviations of Zi, the indicator variables
for each SN Ia belonging to the high-mass host class ( =Z 1i , red) vs. measured
host galaxy mass. If =Z 0i (blue), the SN Ia belongs to the low-mass host
class. The posterior mean of Zi is the posterior probability that an SN Ia belongs
to the high-mass host class. Although the horizontal error bars are suppressed
for clarity, the model fully accounts for measurement errors in the host galaxy
mass. (This plot assumes the ΛCDM.)

Figure 9. Marginal posterior distribution for γ, the regression coefficient for
M ig in the Covariate Adjustment Model. (The model is fit assuming a ΛCDM
universe.) The probability that γ is less than zero is 99%.
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and especially the z-jump Color Correction Model provide
improved residuals with respect to the Baseline Model. This is
shown by their negative values for the relative residual with
respect to the Baseline Model. In other words, Figure 14
shows that either of the ( )b z models improves the fit for
high-redshift SNe Ia. Although it is beyond the scope of
this paper and the subject of future investigation, formal
model comparison should be deployed to weigh the evidence
for the evolving color correction model relative to the Baseline
Model.

It is conceivable that the evidence for a step in the evolution
of ( )b z is a spurious consequence of the mass-step correction,
which is not included in the above analysis. Since more
massive ( >M 10ig ) host galaxies are preferentially found
at low redshift, and SNe Ia in those galaxies are brighter
(see Section 3.2), it is possible that such galaxies require on
average a smaller color correction than SNe Ia in galaxies

at high redshift (which are on average less luminous).
However, if such a color–mass–redshift interaction were
to exist, it could be identified by fitting a model that
allows for both a correction for host galaxy mass and evolution
in the color correction. To investigate this possibility, we fit a
model that includes both a mass-step correction (as parameter-
ized in the Hard Classification Model) and the z-jump Color
Correction. The posterior constraints on all the model
parameters change negligibly in this fit compared with the fit
of the z-jump Color Correction Model without mass-step
correction.
Our result is in stark contrast with Betoule et al. (2014), who

found no significant departure of β from a constant. The
dependence of reconstructions of color correction on the
assumptions of the color scatter model used for SALT2 training
has been extensively investigated in Mosher et al. (2014). This
study found significant bias (up to ∼0.6) in the reconstructed

Figure 10. Comparisons of the posterior distributions for the cosmological parameters and the standardization parameters under different models for the color
correction parameter: black: Baseline Model (no evolution); blue: z-linear Color Correction Model; green: z-jump Color Correction Model. Posteriors are normalized
to the peak. (All models are fit assuming a ΛCDM universe).
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value for β when the underlying color scatter model was
misspecified in the reconstruction. However, Mosher et al.
(2014) showed that the reconstructed β (constant with redshift)
is biased down (in the cases they considered), that is, in the
opposite direction to what we observe. This appears to rule out
a misspecification of the color scatter model as an explanation
for our result. Mosher et al. (2014) also demonstrated that a
color misspecification does not appreciably bias the recovered
cosmological parameters. However, they did not investigate a
possible z-dependence of the recovered b value. Wang &
Wang (2013) analyzed the SNLS3 sample of SNe Ia using
different parameterizations of the possible redshift dependence
of β, including a linear dependence. They found that β
increases significantly with redshift, again in contrast to what is
seen in our analysis of the JLA data. Mohlabeng & Ralston
(2013) similarly applied a linear z-dependence model for β

using the Union 2.1 compilation of SNe Ia. They found a s7
deviation from a constant β, with a trend to smaller β at larger
z, similar to our findings.
The top panel in Figure 11 in Betoule et al. (2014) might

suggest that unmodeled selection effects on the color correction
at ˆ z 0.6 could lead to our detection of a drop in the value of

( )b z in that range. To test this possibility, we have artificially
corrected the trend to negative colors (as seen in Figure 11 of
Betoule et al. 2014) for ˆ >z zt, and refitted the z-jump Color
Correction Model. We find that this correction alters the
posterior distributions of the cosmological parameters very
significantly, while leaving the strong detection of a jump in the
value of ( )b z largely unchanged. This argues against the
existence of unmodeled selection effects due to color correction
causing the observed jump in ( )b z in the z-jump Color
Correction Model. By the same token, it is unlikely that our

Figure 11. Comparisons of the posterior distributions for the cosmological parameters and the standardization parameters under different models for the color
correction parameter: black: Baseline Model (no evolution); blue: z-linear Color Correction Model; green: z-jump Color Correction Model. Posteriors are normalized
to the peak. (All models are fit assuming a wCDM universe.)
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result is driven by the redshift evolution of the color (or stretch)
correction, as a consequence of selection effects, as seen, e.g.,
for SNLS one-year data in Astier et al. (2006).

In all of our models above, the population mean and variance
of the color and stretch corrections are assumed to be
independent of redshift. However, the observed color correc-
tions drift toward the blue near the magnitude limit of a survey
(i.e., to larger z). This happens because intrinsically brighter
SNe Ia (which are more likely to be observed) are bluer in
color. This selection effect thus leads to a z-dependence of the
observed color correction, even if the underlying color does not
change with redshift. We allow the population mean and
variance of the color correction to differ for low-redshift
( <z 0.66) and high-redshift ( z 0.66) SNe Ia. (The threshold
of =z 0.66 was chosen because it is the posterior mean of the
jump location in the z-jump Color Correction Model.)With this
change, we refit both the Baseline Model and the z-jump Color
Correction Model. The joint posterior distribution of (W WL,m )
shifts appreciably toward lower values of matter and
cosmological constant, but the evidence for a drop in β
persists. This shows that BAHAMAS results are sensitive to
the detailed modeling of a potential redshift dependence
(induced by selection effects, or otherwise) of the color
correction. However, the model for the redshift dependence of
color is not what is driving the shift in the posterior distribution
of Wm toward higher values. We will further investigate this
aspect in future work by including an explicit model of
selection effects in BAHAMAS.

3.4. Influence of the Systematics Covariance Matrix

To assess the relative importance of the statistical and
systematics variance–covariance matrices in our results, we
refit the Baseline Model with the statistical covariance matrix
only, thus omittingCsyst. The resulting posterior distributions of
( )W WL,m (for ΛCDM) and ( )W w,m (for wCDM) are shown in
Figure 15. Figure 15 compares this fit with the previous
Baseline Model that includes the systematics covariance
matrix. Adding the systematics covariance matrix not only
enlarges the size of the contours—as one expects—but also
significantly shifts the mean value of the posterior distribution
of Wm to larger values, which leads to a smaller WL (for

ΛCDM) and a larger w (for wCDM). In fact, the posterior
means we obtain when neglecting the systematics covariance
matrix are broadly compatible with standard results. The
Bayesian approach of March et al. (2011) is similar to
BAHAMAS and produced results comparable to c2 fitting on
the data set of Kessler et al. (2009); this analysis did not contain
the systematic covariance matrix included in JLA. Thus we are
led to conclude that the shift in cosmology is driven by some
aspect of the systematics error modeling in JLA. The
systematics covariance matrix derived by Betoule et al.
(2014) contains contributions from different sources: calibra-
tion uncertainty, Milky Way extinction, light-curve model, bias
corrections, host relations, contamination, and peculiar velo-
cities. Analysing these individually shows that the main driver
shifting Wm toward larger values is the calibration uncertainty.
The large differences in the fitted values for Wm and w between
BAHAMAS and the standard c2 have been observed
previously in simulations by March et al. (2014). These
authors showed on simulated SNLS three-year data that the
posterior mean of Wm tends to be biased high (by ∼0.1), while
the c2 fit tends to be biased low (by a similar amount).
However, March et al. (2014) also found that such discrepan-
cies largely disappear when the redshift arm of the sample of
SNe Ia is extended to lower and higher z.
In order to further investigate the origin of the observed shift

in the fitted cosmological parameters obtained by BAHAMAS,
we compute the percentage increase in the variances of
m x c, , andB 1 when adding the systematics covariance matrix

to the statistical covariance matrix, i.e.,

( )å
s

s
=

=

F
n

1
27i

j

n
i j

i j1

,
2,syst

,
2,stat

where i = mB
⋆, x1, or c. The quantity Fi

1 2 is the average
percentage increase in the standard deviation for observable i
when the systematics covariance matrix is added to the
statistical covariance matrix (considering diagonal elements
only). We find  =F 2.66m

1 2
B

, =F 0.16x
1 2
1

, and =F 0.36c
1 2 ,

which shows that the increased error on mB is by far the
dominant contribution from the systematics covariance matrix.
This is because the dominant source of systematic error in the
JLA data is the flux calibration (Betoule et al. 2014). To check
whether the increase in the mB variance is responsible for the
shift in fitted cosmological parameters, we multiply the
variance of mB in the statistical covariance matrix by
( )+ F1 mB

and refit (without adding the systematics covariance
matrix) our Baseline Model. The resulting cosmological
constraints are shown as purple contours in Figure 15.
Comparing with the original Baseline Model fit (black
contours), it is clear that most of the shift in the fitted
cosmological parameter is due to the large systematic variance
of mB . If the model were Gaussian and linear, inflating the
errors would only enlarge the uncertainty on the parameters and
would not shift the mean of the posterior distribution. Hence
we conclude that the shift in cosmology is a reflection of the
non-Gaussian, nonlinear nature of our model, something that is
only approximately accounted for in the linear propagation of
errors used in standard chi-squared analyses.

Figure 12. Redshift evolution of the color correction parameter β, assuming the
z-jump Color Correction Model. The green line is the posterior mean, while the
shaded region represents the s1 credible region. (ΛCDM case).
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3.5. JLA Subsamples

To further investigate the shift in the fitted cosmological
parameters and to check for consistency within the JLA sample
of SNe Ia, we split the SNe Ia into a series of subsamples: low-z
+SNLS, SDSS+SNLS, low-z+SNLS+HST, SDSS+SNLS+
HST and low-z+SDSS+HST. We do not investigate the low-z
+SDSS combination in our analysis as this subsample alone
does not have a sufficient redshift range to constrain the
cosmological parameters. In contrast to Betoule et al. (2014),
we vary both Wm and WL and do not assume flatness (but we do
fix = -w 1). We compare our results against the entire JLA
data set in Figure 16. The left panel shows the results when
excluding high-z HST data, while the right panel includes the
nine high-z HST SNe Ia.

In contrast to Betoule et al. (2014) (see their Table 10), we
find significant shifts in the posterior distributions of the
cosmological parameters resulting from the different subsam-
ples. The SNLS sample pushes the cosmology toward a closed
universe with higher matter and higher dark-energy content (an
effect previously observed in March et al. 2014) while the HST
sample pulls it in the opposite direction. In particular, for the

subsample low-z+SNLS (357 SNe Ia), including just nine extra
SNe Ia from HST shifts the contours very noticeably to much
lower values of both Wm and WL. If we had assumed flatness, as
was done in Betoule et al. (2014), this effect would have been
masked. In all cases in Figure 16 if we enforced W =k 0, the
posterior distribution of Wm would be similar to the baseline
case. The posterior distributions of all the other parameters for
the various subsamples are consistent with each other (hence
not shown), except for the low-z+SNLS subsample for which
both β and sres are smaller. This is consistent with the observed
redshift dependence of β; see Figure 12.

4. CONCLUSIONS

We have reanalyzed the JLA data on SNe Ia with a
principled Bayesian method (BAHAMAS). As shown in March
et al. (2011), our approach has better statistical coverage and
smaller mean squared errors than the standard c2 method. This
paper introduces a series of powerful Gibbs-type samplers that
allow us to explore the posterior distribution of the latent
variables associated with SNe Ia, such as their empirically
corrected intrinsic magnitudes. We have presented a general
methodology that can easily incorporate additional standardi-
zation variables, over and above the usual stretch and color
corrections. We have demonstrated this feature by including
measurements of host galaxy mass in our fit, fully accounting
for the uncertainty in mass measurement.
When the JLA data set is augmented by Planck CMB data,

we find significant discrepancies with the results from the
standard c2 fit, in particular in the values of Wm and w. We
measure the average residual dispersion of the post-correction
intrinsic magnitudes in the JLA sample to be
s = 0.104 0.005res . The magnitude of the correction for
host galaxy mass is smaller than previously reported. We find
significant statistical evidence for a drop in the value of the
color correction parameter, β, at a redshift =z 0.66t . While we
rule out color-dependent selection effects as being responsible
for this feature, we cannot trace it back to its origin.
Cosmological parameter constraints, however, remain unaf-
fected by marginalization over this non-standard redshift
dependence.
Future work will incorporate selection effects into our

framework (similarly to Rubin et al. 2015), include additional
covariates (such as star formation rate and metallicity) and test
their influence on the recovered cosmology, and allow for the

Figure 13. Hubble residuals of the Baseline Model (left, b = constant with redshift), z-jump Color Correction Model (center), and comparison between the two
(right). In the left and central panels, only SNe Ia with ˆ >z 0.6 are plotted to highlight the difference between the two cases. Error bars are the posterior standard
deviations of mD i. In the right panel, SNe Ia with ˆ z 0.6 are plotted in red. This panel shows that the z-jump Color Correction Model reduces the scatter around the
Hubble diagram noticeably for ˆ >z 0.6, while its Hubble residuals are similar to the Baseline Model for ˆ z 0.6 (this plot is for ΛCDM, and the wCDM case is
similar).

Figure 14. Cumulative Hubble residuals relative to the Baseline Model for the
two ( )b z models considered. For ˆ z 0.8, both the redshift-dependent models
improve the fit with respect to the Baseline Model, which has b = constant.
The z-jump Color Correction model shows the largest improvement in the fit.
This plot is for ΛCDM, but the wCDM case is qualitatively similar.
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possibility of contamination (as in the BEAMS scenario, Kunz
et al. 2007; Hlozek et al. 2012; Knights et al. 2013).
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APPENDIX A
ALGORITHM REVIEW

The Gibbs samplers (Geman & Geman 1984) and Data
Augmentation (DA) algorithm (Tanner & Wong 1987), which
is a special Gibbs sampler, are widely used Markov chain
Monte Carlo (MCMC) methods to sample from highly
structured models. Although they are typically easy to
implement, they can have slow convergence rates. To improve
their convergence, a variety of extensions have been proposed.
Among them, the Ancillarity–Sufficiency Interweaving Strat-
egy (ASIS, Yu & Meng 2011) is designed to improve the
convergence properties of the DA algorithm, and the Partially
Collapsed Gibbs (PCG) sampling (van Dyk & Park 2008) is a
useful tool to improve the convergence of Gibbs samplers. In a
Gibbs-type sampler, we may also need the help of the MH
algorithm (Metropolis et al. 1953; Hastings 1970), when one of
the component conditional distributions is not standard.

Consider a generic observed data set, Yobs, and model
parameters, θ, and suppose we wish to sample from the
posterior distribution ( ∣ )qp Yobs . When direct sampling is not
possible, we may consider introducing a latent variable, Ymis,
into the model, such that the complete-data model

( ∣ )qp Y Y,mis obs maintains the target model, ( ∣ )qp Yobs , as its
marginal distribution. The DA algorithm proceeds by drawing

from ( ∣ )qp Y Y,mis obs and ( ∣ )qp Y Y,mis obs iteratively. This is a
useful strategy when these two distributions are easy to sample
and the resulting MCMC is relatively quick to converge.
More generally, when the unknown quantity in a model, ψ,

consists of two or more components, each of which can be
multivariate, that is, ( )y y y= ,..., N1 with N 2, the Gibbs
sampler is useful to draw from ( ∣ )yp Yobs . In one iteration of a
Gibbs sampler, each component of ψ is sampled from its
complete conditional distribution, i.e., its distribution con-
ditioning on the current values of all the other components. In
this paper we consider only systematic-scan Gibbs samplers
(Liu et al. 1995), that is, in each complete iteration, the
components are updated in a fixed ordering. The DA algorithm
is a special case of the Gibbs sampler with two components in
ψ, i.e., ( )y q= Y, mis .
As mentioned above, although they are easy to implement, in

some cases the DA algorithm or Gibbs sampler can be slow to
converge. We now describe two strategies that can significanlty
improve their convergence, ASIS and PCG, along with the MH
algorithm.
Ancillarity–Sufficiency Interweaving Strategy. ASIS

improves the convergence of a standard DA algorithm by
using a pair of special DA schemes. One is the sufficient
augmentation Y Smis, , which means the conditional distribution

( ∣ )qp Y Y ,Sobs mis, is free of θ. The other is the ancillary
augmentation Y Amis, , for which ( ∣ )qp Y Amis, does not depend on
θ. Normally, given the parameter, these two augmentation
schemes are related via a one-to-one mapping (but see Yu &
Meng 2011 for an exception). It is usually the case that if the
sampler corresponding to one of these two augmentations is
fast, the other is slow. ASIS takes advantage of this “beauty-
and-beast” feature of the two DA algorithms by interweaving
steps of one into the other (Yu & Meng 2011). The resulting
ASIS sampler can substantially outperform both parent DA
samplers in terms of convergence, while the additional
computational expense is often fairly small.
Partially Collapsed Gibbs Sampling. The PCG sampler can

be effective in improving the convergence of Gibbs samplers. It
achieves this goal by reducing conditioning, that is, by
replacing some of the complete conditional distributions of
an ordinary Gibbs sampler with the complete conditionals of
marginal distributions of the target joint posterior distribution
(van Dyk & Park 2008). This generally leads to larger variance

Figure 15. Comparison of posterior distributions when including both statistical and systematic errors (black) with the case when the systematics covariance matrix is
neglected (blue). Purple: statistical covariance matrix with diagonal errors on mB inflated by the average mB variance from the systematics covariance matrix. Left:
ΛCDM; right: wCDM.
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of the conditional distribution, and hence bigger jumps. A PCG
sampler can be derived from a Gibbs sampler via a three-stage
process: (i) marginalization, (ii) permutation, and (iii)
trimming. Marginalization can significantly improve the rate
of convergence, while permutation typically has a minor effect
and trimming has no effect (van Dyk & Park 2008). Thus, we
generally expect the PCG sampler to exhibit better, and often
much better, convergence properties than its parent Gibbs
sampler. In fact, van Dyk & Park (2008) already gave
theoretical arguments and Park & van Dyk (2009) gave
numerical illustrations of the computational advantage of PCG
over ordinary Gibbs samplers. Sometimes, the PCG sampler is
simply a blocked or collapsed Gibbs sampler (Liu et al. 1994).
However, we are more interested in PCG samplers composed
of incompatible conditional distributions, that is, there is no
joint distribution corresponding to this set of conditional
distributions. The incompatibility is introduced by trimming;
permuting the order of the steps of a PCG sampler consisting of
incompatible conditionals will alter its stationary distribution;
see van Dyk & Park (2008).

MH Algorithm. The MH algorithm is frequently used to
obtain a correlated sample from a target distribution, ( ∣ )yp Yobs ,
for which direct sampling is difficult. Suppose we have
sampled ( )y t and need to generate ( )y +t 1 . Instead of sampling
from ( ∣ )yp Yobs directly, we generate a candidate value yc

from a proposal distribution ( ∣ )( )y yg t and accept it as ( )y +t 1

with probability ( )Rmin , 1 , where ( ∣ ) ( ∣ )
( ∣ ) ( ∣ )

( )

( ) ( )= y y y
y y y

R p Y g

p Y g

c t c

t c t
obs

obs
. In

this way, we construct a reversible Markov chain,
{ }( )y =t, 0, 1, ...t with ( ∣ )yp Yobs as its stationary distribution.

To further ease implementation and improve convergence
properties, we propose to combine several strategies introduced
above into one sampler. Jiao et al. (2015) used a simplified
version of the hierarchical model described in Section 2.2 as an
example to illustrate the efficiency of both PCG and ASIS in
improving the convergence properties of Gibbs-type samplers.
They found that combining two strategies into one sampler can
produce even more efficient samplers. Thus, we use PCG in
each of our samplers to improve the convergence properties of
C or B. In some samplers, we combine PCG and ASIS for
better convergence properties. The general method of combin-
ing several strategies into one sampler will appear in X. Jiao &
D. A. van Dyk (2015, in preparation).

APPENDIX B
THE POSTERIOR DISTRIBUTION

In this section we give explicit expressions for the posterior
distributions of the Baseline Model and its extensions listed in
Table 2. To this end, we introduce a unified and general
notation, see Table 7. We start with an expression that covers
all of the models we consider, except the Hard Classification
and Soft Classification Models. In particular, this formulation
covers the regression model given in Equation (15) with the
population distributions given in Equations (11)–(13) and (18)
and the systematics covariance matrix described in
Section 2.2.2. Under this extended hierarchical model, the
posterior distribution is

B C D

C C

}

( ∣ )

( )

( ˆ ( ) ) ( ˆ ( ) )

( ) ( )

( ) ( ) ( )

ˆ

ˆ

ˆ



 

   





s

S

µ
S S S

´ - - S -

+ - S -

+ - S -

-

-

-

-

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

p D D

R R R
p

D AD D AD

D JD D JD

D D D D

, , , ,

exp
1

2

, 28

D

D D D

g
i

c x

T
D

T
D

T
D

1
2

2 2 2 res
2

1

1

1

1

where ( )sp res
2 is the prior distribution of s res

2 given in Table 1
and the notation is defined in Table 2. The priors for the
cosmological parameters, C { }= W WL w, ,m , the regression
coefficients, B { }a b b b b g= D z, , , , , , t0 1 , the latent vari-
ables, D, their population means, D , and their variances, SD,
are given in Table 1.
The posterior distribution under the Hard Classification

Model is formally identical to that in Equation (28) except that

( ) ( ) ( ) ( )s s sp p pis replaced by , 29res
2

res
lo 2

res
hi 2

with the prior distributions given in Table 1. The (assumed
known) indicator variables, Zi, for low and high host galaxy
masses enter through J and SD using the definitions given in
Appendix C.1.4.
For the Soft Classification Model, SNe Ia are classified on

their true (latent) host galaxy masses (rather than on their

Figure 16. Comparison of posterior distributions for the cosmological parameters in the ΛCDM case when using different subsamples of the JLA data, as compared
with the result for the entire JLA data set (black/filled). Blue: SDSS+SNLS (613 SNe Ia, 0.04 < z < 1.06), red: low-z+SNLS (357 SNe Ia, 0.01 < z < 0.08 È
0.13 < z < 1.06), green: low-z+SDSS (492 SNe Ia, 0.01 < z < 0.40). The left plot does not include the HST SNe Ia (nine SNe Ia, 0.84 < z < 1.30 ) while the right
one does.
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observed masses as in the Hard Classification Model). Thus,
the indicator variables, Zi, are treated as unknown and the
posterior distribution, B C D D( ∣ )  Sp D D Z, , , , , ,D g , is for-
mally identical to that in Equation (28) except

( )

( ) ( ) ( ) ( )

s

s s p p-
=

-

p

p p

is replaced by

1 , 30
i

n

i
Z

i
Z

res
2

res
lo 2

res
hi 2

1

1i i

with the prior distributions given in Table 1,
D { } = = ¼M i n, 1, ,ig g , and

( ∣ ) ( ∣ )

[ ( ) ( )] ( )

 





ò
p

s

= = =

= - -
ps

¥

Z M M M

M M dM

Pr 1 Pr 10

exp 2 , 31

i i i i i

i i i i

g g g

10

1

2 g g
2

g
2

g
ig

for =i n1 ,..., . The specific definitions of the unified notation
for the Soft Classification Model are given in Appendix C.1.5.

APPENDIX C
THE MCMC SAMPLERS

To obtain posterior draws of all the variables (including
latent variables) of the hierarchical models, we use Gibbs-type
samplers, sometimes augmented with an MH step. In order to
cross-check our sampling results, we have compared the
marginal posteriors for the cosmological parameters, the
regression coefficients, and the population variances obtained
with Gibbs-type samplers with those obtained from a pure MH
algorithm. The MH algorithm has been used to sample from a
marginal posterior with latent variables, D, and population

mean parameters, D , integrated out analytically, akin to what
was done in March et al. (2011).
In our Gibbs-type samplers, we make use of PCG to improve

convergence. As detailed below, this involves sampling from
conditional distributions of the marginal posterior distribution,

B C D

C C

( ∣ )
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ˆ ( ) ˆ ( )

( )

ˆ

ˆ



   
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1
2

2 2 2 res
2

1

1 1

1

with notation given in Table 7. The corresponding marginal
posterior distributions for the Hard Classification and Soft
Classification Models are obtained using the substitutions in
Equations (29) and (30), respectively.

This section consists of details of sampling steps of these
algorithms.

C.1. Gibbs-type Samplers

We start with Gibbs-type samplers and consider both the
Baseline Model and all its extensions discussed in Sections 2.2
and 2.3.

Table 7
Unified General Notation Used in the Posterior Distributions Given in Equations (28)–(32)

Symbol Description

Cˆ ( )D Column stacked vector of observed quantities, with apparent magnitude corrected for distance modulus, e.g., C Cˆ ( ) { ˆ ( ˆ ) ˆ ˆ m= - ¼D m z x c, , , , ,B1 1 1 11 1

Cˆ ( ˆ ) ˆ ˆ } m-m z x c, , ,Bn n n n n
T

1 in the Baseline Model

D Column stacked vector of latent variables, e.g., { } =D M x c M x c, , ,..., , ,n n n
T

1 11 1 1 in the Baseline Model

D Vector of population means of the latent variables in D, e.g., { }
  =D M x c, , T

0 1 in the Baseline Model

D Vector of prior means of quantities in D , e.g., with priors given in Table 1, { } = -D 19.3,0,0 T in the Baseline Model
ˆSD Matrix of variances (uncertainties) of observed quantities in Cˆ ( )D , compiled using DS = +C Cstat syst, see Section 2.2.2

SD Population variance–covariance matrix of latent quantities in D. This is a block-diagonal matrix composed of n blocks, i.e., ( )S = S Sdiag ,...,D n1 . For
example, each ( )s=S R Rdiag , ,i x cres

2 2 2
1 in the Baseline Model

SD Prior variance–covariance matrix of quantities in D , e.g., with priors given in Table 1, ( )S = diag 2 , 10 , 1D
2 2 2 in the Baseline Model

J Top-to-bottom stacked matrix of n matrices, i.e., =
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥J

J

Jn

1

. In the Hard and Soft Classification Models, =
-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥J

Z Z1 0 0
0 0 1 0
0 0 0 1

i

i i

, while in the other models,

each Ji is an identity matrix

A Block-diagonal matrix with n blocks, i.e., ( )=A T Tdiag ,..., n1 . Each block is composed of 0, 1, and elements of B, e.g., each
a b

=
-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥T

1
0 1 0
0 0 1

i in the

Baseline Model
SA ˆS = S + S- - -A AA

T
D D

1 1 1

SK S = - S S S + S + S- - - - -J J J JK
T

D A D
T

D D
1 1 1 1 1

D Cˆ ( )ˆD = S-A DT
D

1

k ( ) = S S S D + S- -k J DK
T

D A D
1 1

l Parameter in the prior I GNV AMMA distribution of s res
2 , i.e., ( )s l l~ I G ,NV AMMAres

2

Note. Here we exemplify the general notation for the Baseline Model in terms of the notation used in Section 2. These details are given for each of the model
extensions in Appendix C.1.
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C.1.1. Baseline Model

As stated in Table 7, in the Baseline Model, Cˆ ( )D is the
version of D corrected for distance modulus, that is,

C C C{ }ˆ ( ) ˆ ( ) ˆ ( ) ( )=D D D,..., , 33T
n
T T

1

where C Cˆ ( ) { ˆ ( ˆ ) ˆ ˆ } m= -D m z x c, , ,i Bi i i i i
T

1 . Moreover,
{ }=D D D,...,T

n
T T

1 , where { }=D M X,i i i
T T with

{ } { }
  = =X x c D M x c, ; , , ;i i i

T T
1 0 1 { } = -D 19.3, 0, 0 T .

For the variance–covariance matrices,
( )ˆS = + S =C C S S; diag ,...,D D nstat syst 1 , where each

( )s=S R Rdiag , , ;i x cres
2 2 2

1
( )S = diag 2 , 10 , 1D

2 2 2 . In addition,

( ) =´

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥J

J

J
n

n

3 3

1

, where each Ji is a ( )´3 3 identity matrix, that

is, ( )=J diag 1, 1, 1 ;i B { }a b= - , T , and

( )( ) =´A T Tdiag ,...,n n n3 3 1 , where each
a b

=
-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥T

1
0 1 0
0 0 1

i .

The sampler for the Baseline Model. This is an MH within a
PCG sampler, that is, we integrate ( )D D, out when updating
C and B. Then the sampling of C and B needs the help of the
MH algorithm. While using MH in a Gibbs sampler is a
standard strategy, embedding MH into a PCG sampler involves
more subtleties. We follow exactly the procedure provided by
van Dyk & Jiao (2015) when deriving an MH within a PCG
sampler. The steps of the sampler are listed below. We use a
prime to indicate the current iteration of a parameter, and to
represent the transition function introduced by the MH
algorithm.

Step 1. C C D B( ∣ )~ S¢ ¢, ,D :
Use MH to sample C from C D B( ∣ ) S¢ ¢p , ,D , which
is proportional to B C D( ∣ )S¢ ¢p , ,D , under the
constraint imposed by the priors14;

Step 2. B B D C( ∣ )~ S¢, ,D :
Use MH to sample B from B D C( ∣ ) S¢p , ,D , which
is proportional to B C D( ∣ )S¢p , ,D , under the
constraint imposed by the priors;

Step 3. D B C( ) ( ∣ ) ~ S¢D D p D D, , , , ,D :
This step consists of two substeps:

1. Sample D from ( )  Sk , K , where k and SK are
defined in Table 7;

2. Sample D from ( ) m S,A A , where SA is defined in
Table 7 and ( )m = S D + S- JDA A D

1 ;
Step 4. D B C( ∣ ) s s~ ¢ ¢p D D R R, , , , , ,x cres res 1

:

Sample s res
2 from l+

⎡
⎣⎢

n
I G

2
,NV AMMA

( ) 

l+å -=
⎤
⎦⎥

M M

2
i

n
i1 0

2

, and s s=res res
2 ;

Step 5. D B C( ∣ )  s~ ¢R p R D D R, , , , , ,x x cres1 1 :

Sample Rx
2
1
from

å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n x x

2 2
i

n
i1 1 1

2

with

( ) [ ]Î -Rlog 5, 2x1
, and =R Rx x

2
1 1

;

Step 6. D B C( ∣ )  s~R p R D D R, , , , , ,c c xres 1 :

Sample Rc
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n c c

2 2
i

n
i1

2

with

( ) [ ]Î -Rlog 5, 2c , and =R Rc c
2 .

C.1.2. z-linear Color Correction Model

In the z-linear Color Correction Model, the specification of
Cˆ ( ) ˆ  S S SD D D, , , , ,D D D , and J is identical to that in the

Baseline Model. As above, { }=D D D,...,T
n
T T

1 , where
{ }=D M X,i i i

T T , but under this model { ˆ }=X x c z c, ,i i i i i
T

1 .
In addition, B { }a b b= - , , ;T

0 1 ( )( ) =´A T Tdiag ,...,n n n3 3 1 ,

where
ˆa b b

=
- +⎡

⎣
⎢⎢

⎤

⎦
⎥⎥T

z1
0 1 0
0 0 1

i

i0 1

.

The sampler for the z-linear Color Correction model. In this
sampler, we combine ASIS and MH within PCG algorithms.
We integrate ( )D D, out when updating C, and use the ASIS
algorithm to updateB. The distribution of D conditioning onB
and other parameters is

B C∣ ( ) ( ) S ~ SD D JD, , , , . 34D D

Because this distribution is free of B D, is an ancillary
augmentation for B conditioning on other parameters. To
derive a sufficient augmentation, we set ˜ =D AD. The
distribution of Cˆ ( )D conditioning on BD̃, , and other
parameters is

C B Cˆ ( )∣ ˜ ( ˜ ) ( )ˆ S ~ SD D D D, , , , , . 35D D

Because this distribution is free of B D̃, is the corresponding
sufficient augmentation for B.
We use “I” in the superscript to indicate intermediate draws

that are not part of the final output. The steps of the sampler for
the z-linear Color Correction model are:

Step 1. C C D B( ∣ )~ S¢ ¢, ,D :
Use MH to sample C from C D B( ∣ ) S¢ ¢p , ,D , which
is proportional to B C D( ∣ )S¢ ¢p , ,D , under the
constraint imposed by the priors;

Step 2. D B C( ) ( ∣ ) ~ S¢ ¢D D p D D, , , , ,I
D :

This step consists of two substeps:
1. Sample D from ( )  Sk , K , where k and SK are

defined in Table 7;
2. Sample DI from ( ) m S,A A , where SA is defined in

Table 7 and ( )m = S D + S- JDA A D
1 ;

Step 3. B B D C( ∣ ) ~ S¢p D D, , , ,I I
D :

Sample BI from ( ) z S,B B (details about this
distribution are given below) with constraint
B [ ] [ ] [ ]Î - ´ ´ -1, 0 0, 4 4, 4I ;
Use BI to construct AI . Then set ˜ =D A DI I ;

Step 4. B B D C( ∣ ˜ ) ~ S¢p D D, , , ,D :
Sample B from (˜ ˜ ) z S,B B (details about this
distribution are given below) with constraint
B [ ] [ ] [ ]Î - ´ ´ -1, 0 0, 4 4, 4 ;
Use B to construct A. Then set ˜= -D A D1 ;

Step 5. D B C( ∣ ) s s~ ¢ ¢p D D R R, , , , , ,x cres res 1
:

Sample s res
2 from l+⎡⎣I G ,NV AMMA

n

2
( ) 

l+å -=
⎤
⎦⎥

M M

2
i

n
i1 0

2

, and s s=res res
2 ;

14 The proportionality is a consequence of the relationship:
( ∣ ) ( ) ( ) ( )= µp X Y P X Y P Y P X Y, , , as a function of X .
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Step 6. D B C( ∣ )  s~ ¢R p R D D R, , , , , ,x x cres1 1 :

Sample Rx
2
1
from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n x x

2 2
i

n
i1 1 1

2

with

( ) [ ]Î -Rlog 5, 2x1
, and =R Rx x

2
1 1

;

Step 7. D B C( ∣ )  s~R p R D D R, , , , , ,c c xres 1 :

Sample Rc
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n c c

2 2
i

n
i1

2

with

( ) [ ]Î -Rlog 5, 2c , and =R Rc c
2 .

In Step 3, S =- -E V EB
T

m
1 1 , where Vm is the ( )´n n

submatrix of ˆSD after deleting the ( ) ( )- =i i n3 1 1, ... ,th

and ( ) ( )=i i n3 1, ... ,th rows and columns, and ( ) =´

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

E
X

X
n

T

n
T

3

1

.

Furthermore, (ˆ )z x x x= S - - D-E VB B
T

m m m
1 , where

x̂ =m C{ ˆ ( ˆ ) m-m z , , ... ,B1 1 1 Cˆ ( ˆ )} m-m z , ,Bn n n
T x =m

{ } M M, ... , n
T

1 , and (ˆ )x x xD = -- -
-

- -V V ;m m m m m,
1

-V m is
the ( )´n n2 2 submatrix of ˆSD after deleting the
( ) ( )- =i i n3 2 1, ... ,th rows and columns; -Vm m, is the
( )´n n2 submatrix of ˆSD after deleting the ( )-i3 1 th

( )=i n1, ... , and ( ) ( )=i i n3 1, ... ,th rows and the ( )-i3 2 th

( )=i n1, ... , columns; ˆ { ˆ ˆ ˆ ˆ }x =- x c x c, , ... , , ;m n n
T

11 1 1

{ }x =- x c x c, , ... , ,m n n
T

11 1 1 .

In Step 4, ˜ ( ˜ ˜) sS =- ¢E EB
T1

res
2 , where ˜

˜

˜
( ) =´

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
E

E

E

n

T

n
T

3

1

with

˜ { ˜ ˜ ˆ ˜ }= - - -E x c z c, ,i i i i i
T

1 ; x̃ i1 and c̃i are the ( )-i3 1 th and ( )i3 th

components of D̃ respectively. Furthermore, z̃ =B

˜ [ ˜ ( ˜ ) ]x x sS -
¢

EB
T

M m res
2

0
/ , where { }  

 x = M M,...,M

n

T
0 00

and x̃ =m

{ ˜ ˜ } ˜  M M M,..., ;n
T

i1 is the ( )-i3 2 th component of D̃.

C.1.3. z-jump Color Correction Model

In the z-jump Color Correction Model, the specification of
Cˆ ( ) ˆ  S S SD D D, , , , ,D D D , and J is identical to that in the

Baseline Model. As above, { }=D D D,...,T
n
T T

1 , where
{ }=D M X,i i i

T T , but under this model ( )= =X X zi i t

{ }( )( )ˆ+
p

-x c c, , arctani i
z z

i

T

1
1

2

1

0.01
i t . In addition, B =

{ }a b b- D, , ;T
0 ( )( ) =´A T Tdiag ,...,n n n3 3 1 ,

where
( )( )ˆa b b

=
- + D +

p
-⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
T

1 arctan

0 1 0
0 0 1

i

z z
0

1

2

1

0.01
i t

.

Because we have an additional unknown parameter, zt, under
this model, the complete and marginal posterior distributions
should be written as B C D( ∣ ) Sp D D z, , , , ,D t and

B C D( ∣ )Sp z, , ,D t respectively, although they are formally
identical to (28) and (32), respectively.

The sampler for the z-jump Color Correction Model. As in
the sampler for the z-linear Color Correction Model, we also
combine ASIS and MH within PCG algorithms in this sampler.
We integrate ( )D D, out when updating both C and zt, and use
the ASIS algorithm to update B. When implementing ASIS,
we also regard D as the ancillary augmentation, and ˜ =D AD
as the corresponding sufficient augmentation for B, condition-
ing on other parameters.

The steps of the sampler for the z-jump Color Correction
Model are:

Step 1. C C D B( ∣ )~ S¢ ¢ ¢z, , ,D t :
Use MH to sample C from C D B( ∣ ) S¢ ¢ ¢p z, , ,D t ,
which is proportional to B C D( ∣ )S¢ ¢ ¢p z, , ,D t , under
the constraint imposed by the priors;

Step 2. D B C( ∣ )~ S¢ ¢z z , , ,t t D :
Use MH to sample zt from D B C( ∣ ) S¢ ¢p z , , ,t D ,
which is proportional to B C D( ∣ )S¢ ¢p z, , ,D t , under
the constraint [ ]Îz 0.2, 1t ;

Step 3. D B C( ) ( ∣ ) ~ S¢ ¢D D p D D z, , , , , ,I
D t :

This step consists of two substeps:
1. Sample D from ( )  Sk , K , where k and SK are

defined in Table 7;
2. Sample DI from ( ) m S,A A , where SA is defined in

Table 7 and ( )m = S D + S- JDA A D
1 ;

Step 4. B B D C( ∣ ) ~ S¢p D D z, , , , ,I I
D t :

Sample BI from ( ) z S,B B with constraint
B [ ] [ ] [ ]Î - ´ ´ -1, 0 0, 4 1.5, 1.5I . The con-
struction of zB and SB is identical to that in the z-
linear Color Correction sampler;
Use BI and zt to construct AI . Then set ˜ =D A DI I ;

Step 5. B B D C( ∣ ˜ ) ~ S¢p D D z, , , , ,D t :
Sample B from (˜ ˜ ) z S,B B with constraint
B [ ] [ ] [ ]Î - ´ ´ -1, 0 0, 4 1.5, 1.5 . The construc-
tion of z̃B and S̃B is identical to that in the z-linear
Color Correction sampler, except that under this model

{ }( )( )˜ ˜ ˜ ˜ˆ= - - - +
p

-E x c c, , arctani i i
z z

i

T

1
1

2

1

0.01
i t ;

Use B and zt to construct A. Then set ˜= -D A D1 ;
Step 6. D B C( ∣ ) s s~ ¢ ¢p D D R R z, , , , , , ,x c tres res 1

:

Sample s res
2 from l+⎡⎣I G ,NV AMMA

n

2

( ) 

l+å -=
⎤
⎦⎥

M M

2
i

n
i1 0

2

, and s s=res res
2 ;

Step 7. D B C( ∣ )  s~ ¢R p R D D R z, , , , , , ,x x c tres1 1 :

Sample Rx
2
1
from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n x x

2 2
i

n
i1 1 1

2

with

( ) [ ]Î -Rlog 5, 2x1
, and =R Rx x

2
1 1

;

Step 8. D B C( ∣ )  s~R p R D D R z, , , , , , ,c c x tres 1 :

Sample Rc
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n c c

2 2
i

n
i1

2

with

( ) [ ]Î -Rlog 5, 2c , and =R Rc c
2 .

C.1.4. Hard Classification Model of Host Galaxy Mass

In this model, we divide the population of SNe Ia into two
classes according to host galaxy mass. The specification of

Cˆ ( ) ˆSD D, , D, and A is identical to that in the Baseline Model.
However, the specification of  S SD , ,D D , and J is changed to
reflect the existence of two populations according to host
galaxy mass. Under this model, =D {( ) ( ) } M M x c, , , ;T

0
lo

0
hi

1

=D { }- -19.3, 19.3, 0, 0 ;T ( )S = S Sdiag ,...,D n1 , where
[( )( ) ( ) ]s s= - +S Z Z R Rdiag 1 , , ;i i i x cres

lo 2
res
hi 2 2 2

1

( )S = diag 2 , 2 , 10 , 1 ;D
2 2 2 2

( ) =´

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥J

J

J
n

n

3 4

1

, where
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=
-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥J

Z Z1 0 0
0 0 1 0
0 0 0 1

i

i i

. As stated in Appendix B, under this

model, { }=Z Z Z,..., n1 is assumed known with

( )
 =

⎧⎨⎩Z M1 if 10

0 otherwise.
36i

ig

The Sampler for the Hard Classification Model. This is also
an MH within a PCG sampler, that is, we integrate ( )D D, out
when updating C and B. The steps of the sampler are listed as
follows.

Step 1. C C D B( ∣ )~ S¢ ¢, ,D :
Use MH to sample C from C D B( ∣ ) S¢ ¢p , ,D , which
is proportional to B C D( ∣ )S¢ ¢p , ,D , under the
constraint imposed by the priors;

Step 2. B B D C( ∣ )~ S¢, ,D :
Use MH to sample B from B D C( ∣ ) S¢p , ,D , which
is proportional to B C D( ∣ )S¢p , ,D , under the
constraint imposed by the priors;

Step 3. D B C( ) ( ∣ ) ~ S¢D D p D D, , , , ,D :
This step consists of two substeps:

1. Sample D from ( )  Sk , K , where k and SK are
defined in Table 7;

2. Sample D from ( ) m S,A A , where SA is defined in
Table 7 and ( )m = S D + S- JDA A D

1 ;
Step 4. ( ) (( )s s~ pres

lo
res
lo D∣ ( )  s ¢D D, , , ,res

hi ¢ ¢R R, ,x c1
B C), :

Sample ( )s res
lo 2 from

( )
l+å -=

⎡
⎣⎢I G ,NV AMMA

Z1

2
i

n
i1

( ( ))

l+å - -=
⎤
⎦⎥

Z M M1

2
i

n
i i1 0

lo 2

, and ( ) ( )s s=res
lo

res
lo 2 ;

Step 5. ( ) (( )s s~ pres
hi

res
hi D∣ ( )  sD D, , , ,res

lo ¢ ¢R R, ,x c1
B C), :

Sample ( )s res
hi 2 from

( )
l+å =

⎡
⎣⎢I G ,NV AMMA

Z

2
i

n
i1

( ( ))

l+å -=
⎤
⎦⎥

Z M M

2
i

n
i i1 0

hi 2

( ) ( )s s=and res
hi

res
hi 2 ;

Step 6. D( ∣ ( )  s~R p R D D, , , ,x x res
lo

1 1
( )s ¢R, ,cres

hi B C), :

Sample Rx
2
1
from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n x x

2 2
i

n
i1 1 1

2

with

( ) [ ]Î -Rlog 5, 2x1 , and =R Rx x
2

1 1
;

Step 7. D( ∣ ( )  s~R p R D D, , , ,c c res
lo ( )s R, ,xres

hi
1 B C), :

Sample Rc
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n c c

2 2
i

n
i1

2

with

( ) [ ]Î -Rlog 5, 2c , and =R Rc c
2 .

C.1.5. Soft Classification Model of Host Galaxy Mass

In this model, the specification of
Cˆ ( )   S SD D D D J, , , , , ,D D , and A is identical to that in

the Hard Classification Model. But here J is stochastic, since Z
is stochastic.

The sampler for the Soft Classification Model. This is also an
MH within a PCG sampler, that is, we integrate ( )D D, out
when updating C and B. The steps of the sampler are:

Step 1. D D B C( ∣ ) 
~ ¢ ¢ S¢ ¢ ¢Z p Z D D, , , , , ,Dg :

For each i, sample Zi from ( ˜ )pBernoulli i , where

˜ =
+

pi
p

p p
i

i i

,high

,low ,high
, with

{ } ( )
( )

[( ) ( ) ]
( )



p= - -
s s¢

¢ - ¢
¢p exp 1 37i

M M
i,low

1

2
i

res
lo

0
lo 2

res
lo 2

and

{ } ( )
( )

[( ) ( ) ]
( )



p= -
s s¢

¢ - ¢
¢p exp ; 38i

M M
i,high

1

2
i

res
hi

0
hi 2

res
hi 2

pi is defined in Appendix B;
Use Z to construct J , as in Table 7;

Step 2. C C D D B( ∣ ) ~ S¢ ¢ Z, , , ,Dg :
Use MH to sample C from C D D B( ∣ )  S¢ ¢p Z, , , ,Dg ,
which is proportional to B C D D( ∣ ) S¢ ¢p Z, , , ,D g ,
under the constraint imposed by the priors;

Step 3. B B D D C( ∣ ) ~ S¢ Z, , , ,Dg :
Use MH to sample B from B D D C( ∣ )  S¢p Z, , , ,Dg ,
which is proportional to B C D D( ∣ ) S¢p Z, , , ,D g ,
under the constraint imposed by the priors;

Step 4. D D B C( ) ( ∣ )  ~ S¢D D p D D Z, , , , , , ,Dg :
This step consists of two substeps:

1. Sample D from ( )  Sk , K , where k and SK are
defined in Table 7;

2. Sample D from ( ) m S,A A , where SA is defined in
Table 7 and ( )m = S D + S- JDA A D

1 ;
Step 5. D D( ) (( )∣  s s~ p D D, , , ,res

lo
res
lo

g B( )s ¢ ¢ ¢R R, , , ,x cres
hi

1

C )Z, :

Sample ( )s res
lo 2 from

( )
l+å -=

⎡
⎣⎢I G ,NV AMMA

Z1

2
i
n

i1

( ( ))

l+å - -=
⎤
⎦⎥

Z M M1

2
i

n
i i1 0

lo 2

, and ( ) ( )s s=res
lo

res
lo 2 ;

Step6. D D( ) (( )∣  s s~ p D D, , , ,res
hi

res
hi

g B( )s ¢ ¢R R, , , ,x cres
lo

1

C )Z, :

Sample ( )s res
hi 2 from l+å =

⎡
⎣⎢I G ,NV AMMA

Z

2
i

n
i1

( )( ( ))

l+å -=
⎤
⎦⎥

Z M M

2
i

n
i i1 0

hi 2

, and ( )s res
hi = ( )s res

hi 2 ;

Step 7. D D( ∣ ( )   s~R p R D D, , , , ,x x g res
lo

1 1 B C( ) )s ¢R Z, , , ,cres
hi :

Sample Rx
2
1
from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n x x

2 2
i

n
i1 1 1

2

with

( ) [ ]Î -Rlog 5, 2x1 , and =R Rx x
2

1 1
;

Step 8. D D( ∣ ( )   s~R p R D D, , , , ,c c g res
lo B C( ) )s R Z, , , ,xres

hi
1 :

Sample Rc
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n c c

2 2
i

n
i1

2

with

( ) [ ]Î -Rlog 5, 2c , and =R Rc c
2 .

C.1.6. Covariate Adjustment Model of Host Galaxy Mass

In this model, since we include M ig as an additional
covariate, the specification of quantities in the posterior
distribution is different from the Baseline Model. First, Cˆ ( )D
is the combination of theD corrected for distance modulus and
the host galaxy mass,Dg, that is, C C Cˆ ( ) { ˆ ( ) ˆ ( ) }=D D D,...,T

n
T T

1 ,
where C Cˆ ( ) { ˆ ( ˆ ) ˆ ˆ } m= -D m z x c M, , , ,i Bi i i i i i

T
1 g . Moreover,

{ }=D D D,...,T
n
T T

1 , where { }=D M X,i i i
T T with =Xi

{ }x c M, , ;i i i
T

1 g { }
   =D M x c M, , , ;T

0 1 g  =D
{ }-19.3,0,0,10 T . For the variance–covariance matrices, ˆSD
now has the dimension of ( )´n n4 4 . The ( )´n n3 3 submatrix
of ˆSD, after deleting the ( ) ( )=i i n4 1 ,...,th rows and columns,
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is ( )+C Cstat syst . The ( )i i4 , 4 th element of ˆ sS isD ig
2 , while the

other elements in the ( )i4 th rows and columns are all zero,
because we ignore correlations between M ig and other
observed quantities; ( )S = S Sdiag ,...,D n1 , where each

( )s=S R R Rdiag , , , ;i x cres
2 2 2

g
2

1
( )S = diag 2 , 10 , 1 , 100D

2 2 2 2 .

In addition, ( ) =´

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥J

J

J
n

n

4 4

1

, where each Ji is a ( )´4 4 identity

matrix; B { }a b g= - , , T and ( )( ) =´A T Tdiag ,...,n n n4 4 1 ,

where each

a b g

=

-⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥T

1
0 1 0 0
0 0 1 0
0 0 0 1

i .

Because we include data on host galaxy mass,Dg, under this
model, the complete and marginal posterior distributions
should be written as B C D D( ∣ )  Sp D D, , , , ,D g and

B C D D( ∣ ) Sp , , ,D g respectively. But they are formally
identical to (28) and (32), respectively.

The sampler for the Covariate Adjustment Model. This is
also an MH within a PCG sampler, that is, we integrate ( )D D,
out when updating C and B. Then the sampling of C and B
needs the help of the MH algorithm. The steps of the sampler
are listed below.

Step 1. C C D D B( ∣ ) ~ S¢ ¢, , ,Dg :

Use MH to sample C from C D D B( ∣ )  S¢ ¢p , , ,Dg ,

which is proportional to B C D D( ∣ ) S¢ ¢p , , ,D g ,
under the constraint imposed by the priors;

Step 2. B B D D C( ∣ ) ~ S¢, , ,Dg :

Use MH to sample B from B D D C( ∣ )  S¢p , , ,Dg ,

which is proportional to B C D D( ∣ ) S¢p , , ,D g , under
the constraint imposed by the priors;

Step 3. D D B C( ) ( ∣ )  ~ S¢D D p D D, , , , , ,Dg :
This step consists of two substeps:

1. Sample D from ( )  Sk , K , where k and SK are
defined in Table 7;

2. Sample D from ( ) m S,A A , where SA is defined in
Table 7 and ( )m = S D + S- JDA A D

1 ;
Step 4. D D B C( ∣ )  s s~ ¢ ¢ ¢p D D R R R, , , , , , , ,x cres res g g1

:

Sample s res
2 from l+⎡⎣I G ,NV AMMA

n

2

( ) 

l+å -=
⎤
⎦⎥

M M

2
i

n
i1 0

2

, and s s=res res
2 ;

Step 5. D D B C( ∣ )   s~ ¢ ¢R p R D D R R, , , , , , , ,x x cg res g1 1 :

Sample Rx
2
1
from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n x x

2 2
i

n
i1 1 1

2

with

( ) [ ]Î -Rlog 5, 2x1
, and =R Rx x

2
1 1

;

Step 6. D D B C( ∣ )   s~ ¢R p R D D R R, , , , , , , ,c c xg res g1 :

Sample Rc
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n c c

2 2
i

n
i1

2

with

( ) [ ]Î -Rlog 5, 2c , and =R Rc c
2 ;

Step 7. D D B C( ∣ )   s~R p R D D R R, , , , , , , ,x cg g g res 1 :

Sample Rg
2 from

( )å -=
⎡
⎣⎢

⎤
⎦⎥I G ,NV AMMA

n M M

2 2
i

n
i1 g g

2

with ( ) [ ]Î -Rlog 5, 2g , and =R Rg g
2 .

When MH updates are required in the samplers above, we
use truncated normal distributions centered at the current draw
with variance–covariance matrix adjusted to obtain an
acceptance rate of around 40% (univariate) or 25% (multi-
variate as proposal distributions). Truncations are applied
according to prior constraints.
PCG and ASIS show significant power in improving the

convergence properties of C and B. Although our PCG and
ASIS samplers require 30%–50% more CPU time per iteration
than our ordinary Gibbs samplers, their correlation lengths are
smaller. For example, the effective sample size for the
components of C is 5–6 times larger, and for the components
of B is 3–4 times larger. See Jiao et al. (2015) for more
numerical illustrations.

C.2. MH Samplers

We also use the MH algorithm to obtain samples of SD, B,
C, and (for the z-jump Color Correction Model) zt from their
joint posterior distribution under all the models, except the Soft
Classification one, with the purpose of cross-checking the
results obtained under the Gibbs-type samplers described
above. The proposal distribution of the MH algorithm is a
normal distribution centered at the current draw. For the
variance–covariance matrix of the normal proposal distribution,
we initially choose a diagonal matrix with randomly chosen
entries. We then run a preliminary chain and use it to obtain an
estimate of the variance–covariance matrix of the parameters.
Finally we replace the variance–covariance matrix in the
proposal distribution with this estimate and run the MH
sampler to obtain posterior samples (ignoring the initial run
when plotting the marginal distributions).
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