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Abstract

We derive an energy conservation law for the system of gravitational perturbations on the Schwarz-
schild spacetime expressed in a double null gauge. The resulting identity involves only first derivatives
of the metric perturbation. Exploiting the gauge invariance up to boundary terms of the fluxes that
appear, we are able to establish positivity of the flux on any outgoing null hypersurface to the future
of the initial data. This allows us to bound the total energy flux through any such hypersurface, in-
cluding the event horizon, in terms of initial data. We similarly bound the total energy radiated to null
infinity. Our estimates provide a direct approach to a weak form of stability, thereby complementing
the proof of the full linear stability of the Schwarzschild solution recently obtained in [M. Dafermos,
G. Holzegel and I. Rodnianski The linear stability of the Schwarzschild solution to gravitational pertur-
bations, arXiv:1601.06467].

1 Introduction

The study of gravitational perturbations of the Schwarzschild spacetime [28] in general relativity orig-
inates in the pioneering work of Regge and Wheeler [27] more than 50 years ago. Despite a deepened
understanding as well as significant refinements and generalizations over the years, see for instance
[7, 24, 23, 30], a proof of the full linear stability of the Schwarzschild solution was only given in a recent
paper of the author in collaboration with Dafermos and Rodnianski [10]. The main result of [10] can be
stated as follows:

Theorem ([10]). General solutions
∨
S of the system of gravitational perturbations on Schwarzschild

arising from suitably normalised characteristic initial data remain uniformly bounded on the black hole
exterior and in fact decay inverse polynomially to a linearised Kerr solution K after adding to

∨
S a

dynamically determined pure gauge solution G , which is itself uniformly bounded by initial data.

The proof of the above theorem relies on recent advances in the black hole stability problem [20, 11,
5, 12, 18], specifically the complete understanding of the scalar wave equation on black hole exteriors. It
provides a complete physical space theory for the study of gravitational perturbations adapting some of
the classical insights into the structure of gravitational perturbations [25, 7, 4, 31]. The key ingredients
of the proof may be summarised as follows:

• expressing the linearised Einstein equations in a double null gauge

• a complete understanding of “pure gauge” solutions of the resulting linearised system (preserving
the double null form) arising from the diffeomorphism invariance of the full non-linear theory
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• exploiting the existence of gauge invariant quantities which decouple from the full system [4], in
particular the Teukolsky null curvature components α and α

• a physical space transformation mapping solutions of the Teukolsky equation to solutions of the
Regge-Wheeler equation, for whose solutions robust decay estimates can be derived (see [7] for a
fixed frequency version of these transformations applied to individual modes)

• identifying a hierarchical structure in the linearised system allowing to estimate all remaining quan-
tities through transport equations

As a byproduct of the proof in [10] one obtains, from the estimates satisfied by the decoupled, gauge-
invariant quantities alone, control over the gauge invariant flux1 of the linearised shear on the event
horizon and the flux of the linearised (weighted) shear on null infinity. As the former can be interpreted
as a measure of the total energy leaving through the horizon and the latter as a measure of total energy
radiated to null infinity, one may view the boundedness of these fluxes as a weak form of stability. This
boundedness alone can already be seen to imply, in particular, “mode stability”.

While control over the aforementioned fluxes on the horizon and null infinity in terms of initial data
is of course a much weaker stability statement than the full linear stability result of [10] (the latter
providing boundedness and decay for all dynamical quantities), one may ask whether one can obtain the
weaker stability statement directly without making use of the equations satisfied by decoupled quantities
such as

(1)

α and
(1)

α. In this paper, we prove that this can indeed be done. We give here a rough version of
our main theorem, Theorem 7.1 below:

Theorem 1.1. General solutions
∨
S of the system of gravitational perturbations arising from suitably

normalised characteristic initial data satisfy the following properties:

data da
ta

∫
C
u

r
2 |Ω

(1
)

χ̂
|
2

u

u 0vu

v
0

H
+ ∫

I +
r 2
| (1)χ̂
| 2

I +

1. The total energy flux of the linearised shear
(1)

χ̂ along any outgoing null cone Cu with u ≥ u0,

∫

Cu

|Ω
(1)

χ̂|2r2dv sin θdθdφ ,

is bounded by initial data, uniformly in u.

2. The total energy flux along the event horizon H+,

∫

H+

|Ω
(1)

χ̂|2r2dv sin θdθdφ ,

is bounded by initial data.

3. The total linearised gravitational energy flux radiated to null infinity I+

∫

I+

|
(1)

χ̂|2r2du sin θdθdφ ,

is bounded by initial data.

We remark immediately that we have stated the theorem for characteristic initial data for convenience
(and to make manifest the geometric significance of the terms appearing in the initial data). The
asymptotic fluxes are similarly controlled for solutions arising from spacelike initial data.

1strictly speaking it is only a residual gauge invariance as certain partial gauge choices on the horizon always need to be
made in order to estimate the flux
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As mentioned above, the stability statement implicit in Theorem 1.1 is much weaker than the state-
ment of [10]. However, as we will see, the estimate itself requires less control on the initial data: While
in [10] certain (up to) second derivatives of curvature were required to be bounded initially to obtain
control of the linearised shear on the event horizon, we prove here that initial boundedness of some of
the metric and connection coefficients is sufficient to control the total energy fluxes through the event
horizon and null infinity.

Key to the proof of Theorem 1.1 are certain conservation laws inherent in the system of gravitational
perturbations at the level of the linearised metric and connection coefficients. The existence of such
conservation laws for the system of gravitational perturbations on static and stationary axisymmetric
vacuum and electro-vacuum spacetimes was pioneered by Friedman [15], Chandrasekhar [7, 8] and Wald
and collaborators [22, 6], one motivation being a deeper conceptual understanding of the the reflection
and transmission coefficients summing up to unity in the context of black hole scattering theory. At a very
general level, one may understand the existence of conservation laws from the fact that the non-linear
Einstein equations arise from a variational principle and that the background with respect to which the
linearisation is performed admits a non-trivial timelike Killing field. Recently, the subject of conservation
laws in black hole perturbation theory has been revived through important work of Hollands and Wald
[17] (see also [19]), who introduced, for general static or stationary axisymmetric spacetimes, a notion
of canonical energy based on the symplectic structure on the space of perturbations. See also [21] for
generalisations of the canonical energy.

For a general conservation law to be useful in controlling the dynamics of the system, one needs the
associated energies to be coercive. Remarkably, the canonical energy of [17] in particular produces man-
ifestly positive energy fluxes through the event horizon and null infinity for axisymmetric perturbations
on stationary backgrounds, and for general perturbations if the background is static. Unfortunately,
however, it has not yet been shown to produce non-negative energies on a foliation of spacelike slices
connecting the event horizon and null infinity, even for gravitational perturbations on Schwarzschild,
which is the case under consideration here. It is this fact which has prevented the direct use of the
canonical energy to prove weak stability statements.

On the other hand, surprisingly perhaps, the positivity of the fluxes on the horizon and null infinity
and the implied monotonicity of the canonical energy with respect to a foliation of spacelike slices can
already be exploited to establish a weak form of instability in classes of spacetimes for which instability
can be expected. The basic idea is that if one can find a perturbation of negative initial canonical energy,
then the energy will remain negative by monotonicity, which in turn prevents future convergence to
zero (or rather, to a pure gauge solution) of the perturbation. This insight goes back to [15, 17] and
has been exploited subsequently in [16] where a form of superradiant instability is established for linear
perturbations in the context of asymptotically anti-de Sitter black hole spacetimes in all dimensions.2

Moreover, from the negativity of the canonical energy one can, for a particular class of perturbations,
deduce in fact exponential growth of those perturbations [26].

Returning to the case of perturbations on Schwarzschild, we emphasise that the conservation laws
presented in this paper will a priori also fail to produce manifestly non-negative energy fluxes on general
null hypersurfaces, similar to the canonical energy on general spacelike slices discussed above.3 Our
main achievement here – besides stating a conservation law in a geometric form based on a double null
foliation– is therefore to establish certain positivity properties of the fluxes appearing in it by exploiting
the gauge invariance (up to boundary terms) of the fluxes, so that the a priori control promised by
Theorem 1.1 can indeed be deduced. Our argument proceeds along the following lines:

1. The conservation law (cf. Section 4) is expressed entirely in terms of fluxes through null hypersur-
faces, the latter having the advantage that positive definiteness of fluxes is often easier to establish
than on spacelike slices.4

2. The fluxes appearing are shown to be invariant up to boundary terms (on round 2-spheres) under
the addition (or subtraction) of a large class of pure gauge solutions (PGS); see Section 5.

3. Subtraction of a suitably chosen PGS, normalised to a fixed outgoing null hypersurface Cufin
, can

be exploited to demonstrate positive definiteness of the flux on that hypersurface up to a boundary

2See also [14] for an explicit construction of exponentially growing modes in the context of the massive wave equation on
4-dimensional Kerr-AdS spacetimes.

3It is an interesting question whether the conservation law satisfied by the canonical energy of [17] can be directly related
to the two conservation laws presented in this paper.

4For positive flux properties on null cones, see also [9]. See in addition [1] for a proof of a Penrose inequality in spacetimes
close to the Schwarzschild spacetime using null cones.
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term. Moreover, the linearised shear appearing in this flux is invariant under the subtraction of the
PGS and hence controlled in L2. See Section 6.

4. Taking the limit of the ingoing hypersurface to null infinity I+ shows positive definiteness of the
corresponding flux (which asymptotes to the linearised shear in L2) up to a boundary term which
cancels the boundary term in 3. See Sections 4.1.2 and the proof in Section 7.

The main result emerging from these steps is Theorem 7.1 below. See also directly Corollary 7.1.
For completeness, we end the paper by stating a second, independent, conservation law for the system

of gravitational perturbations together with the transformation properties of the corresponding fluxes,
cf. Section 8. Applications of the two conservation laws to the stability problem will be presented
elsewhere.

Note in particular that we obtain uniform control over the linearised shears of any future cone in
terms of the initial data. This distinguishes the result from bounds on the shear in terms of the Bondi
mass that can be obtained on a single cone (for a general class of spacetimes in the fullly non-linear
theory). See for instance [9].

As a final comment, we expect the conservation laws presented in this paper to generalise to the case
of gravitational perturbations on Kerr and their positivity properties to persist at least for axisymmetric
perturbations. See [13] for a discussion of coercive conservation laws in the context of axisymmetric
perturbations on extremal Kerr spacetimes. Note however the presence of the Aretakis instability [3, 2]
on the event horizon in the extremal case.

2 The system of gravitational perturbations

In this section, we will write out the system of gravitational perturbations in the double null formulation
as derived in [10]. We begin by recalling a few notational conventions and introduce the differential
operators on the Schwarzschild manifold that will appear in the equations in Section 2.1. In Section
2.2 we introduce the dynamical quantities of the system and finally collect all equations of the system
of gravitational perturbations in Sections 2.3–2.5. The last subsection, Section 2.6, introduces a class
of exact solutions to the system, pure gauge solutions, corresponding to infinitesimal diffeomorphisms of
the non-linear theory. These will play an important role later.

2.1 Preliminaries

Let (M̃, g) denote the maximally extended Schwarzschild spacetime. We denote byM ⊂ M̃ the manifold
with boundary which in Kruskal coordinates [29] corresponds to (0, U0]× [V0,∞)× S2

U,V with boundary
being the event horizon H+ = {0} × [V0,∞) × S2

0,V . We will consider the linearised Einstein equations
on (M, g) with characteristic initial data defined on the null cones U = U0 and V = V0.

As carried out explicitly in Section 4 of [10] we define from the Kruskal coordinate system a sys-
tem of double null Eddington-Finkelstein (EF) coordinates in the interior of M via the relation U =
exp (−u/2M) and V = exp (v/2M), determining in particular u0 and v0. See the figure below. In the
interior of M we can write the Schwarzschild metric in EF coordinates (with r given implicitly in terms
of u, v (in particular ∂vr = −∂ur = Ω2), cf. [10]) as

g = −4Ω2dudv + r2 (u, v)
(

dθ + sin2 θdφ2
)

with Ω2 := 1−
2M

r
.

We also recall from [10] the null frame

e3 =
1

Ω
∂u , e4 =

1

Ω
∂v , e1, e2 a (local) frame on S2

u,v

and the associated notion of S2
u,v-tensors, specifically S2

u,v-scalars, S
2
u,v-one-forms and symmetric traceless

S2
u,v-tensors. The linearised equations will be written as a system of equations for such tensors.
The derivative operators /∇3, /∇4 act on these S2

u,v-tensors and are defined as the projection of the
spacetime covariant derivative in the direction of 1

Ω
∂u and 1

Ω
∂v respectively to the tangent space of S2

u,v.
See Section 4.3.1 of [10].

The derivative operator /∇ denotes the covariant derivative on S2
u,v equipped with the round metric

on the sphere of radius r (u, v), denoted /g. The following special angular operators will appear repeatedly
in the system:

/divξ := /∇
A
ξA , /curlξ := /ǫ

AB /∇AξB and ( /div θ)B := /∇
A
θAB
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the first two mapping an S2
u,v-one-form ξ into a scalar and the last mapping a symmetric traceless tensor

θ into a one-form. Here /ǫAB
denotes the components of the volume-form associated with

(

S2
u,v, /g

)

. We
also define the operator

/D
⋆
1 (h1, h2) := − /∇Ah1 + /ǫAB

/∇
B
h2

mapping a pair of functions h1, h2 into an S2
u,v one-form. Note that its S2

u,v-adjoint is the operator
/D1ξ :=

(

/divξ, /curlξ
)

mapping an S2
u,v-one-form ξ into a pair of functions. Finally, we define

2 /D
⋆
2ξ := − /∇AξB − /∇BξA + /gAB

(

/∇
C
ξC
)

mapping a one-form ξ into a symmetric traceless tensor on S2
u,v. Note that /D

⋆
2 is the adjoint of /div.

2.2 The dynamical quantities

We now recall the dynamical quantities of the system of gravitational perturbations as derived in [10] to
which we refer the reader for further details. The quantities arise from linearising the Einstein equations
in a system of double null coordinates, where the perturbed metric takes the schematic form

g = −4Ω2
(

1 + Ω−1
(1)

Ω
)2

dudv +
(

/gCD
+

(1)

/gCD

)(

dθC −
(1)

bCdv
)(

dθD −
(1)

bDdv
)

(1)

with Ω2 = 1− 2M
r

and /g (defined in the previous subsection) being the Schwarzschild background values.

Decomposing the perturbation
(1)

/g =
(1)

/̂g+
1
2/g · tr/g

(1)

/g and defining
(1)
√

/g := 1
2

√

/g · tr/g
(1)

/g as in [10], the dynamical
quantities are

• the linearised metric coefficients
(1)
√

/g
√

/g
, Ω−1

(1)

Ω ,
(1)

b ,
(1)

/̂g ,

which are two scalars, a one-form and a symmetric traceless two-tensor on S2
u,v,

• the linearised connection coefficients
(1)

(Ωtrχ) ,
(1)

ω ,
(1)

ω ,
(1)

(

Ωtrχ
)

,
(1)

η ,
(1)

η ,
(1)

χ̂ ,
(1)

χ̂ ,

which are four scalars, two one-forms and two symmetric traceless two-tensors on S2
u,v,

• the linearised curvature components
(1)

K ,
(1)

ρ ,
(1)

σ ,
(1)

β ,
(1)

β ,
(1)

α ,
(1)

α

which are three scalars5, two one-forms and two symmetric traceless S2
u,v-tensors.

As in [10] we will also write

S =

(

(1)

/̂g ,
(1)
√

/g ,
(1)

Ω ,
(1)

b ,
(1)

(Ωtrχ) ,
(1)

(

Ωtrχ
)

,
(1)

χ̂ ,
(1)

χ̂ ,
(1)

η ,
(1)

η ,
(1)

ω ,
(1)

ω ,
(1)

α ,
(1)

β ,
(1)

ρ ,
(1)

σ ,
(1)

β ,
(1)

α ,
(1)

K

)

(2)

to denote the collection of all dynamical quantities and refer to a solution of the system of gravitational
perturbations by S . Furthermore, linearised metric and connection coefficients will sometimes be denoted
collectively by Γ, linearised curvature components by R.

Remark 2.1. Because the above linearised quantities are defined with respect to a null frame which is
not regular on the event horizon [10], the following weighted linearised quantities can be shown to extend

smoothly to the event horizon H+, cf. in particular Sections 5.1.3 and 5.1.4 of [10]:
(1)

/̂g ,
(1)
√

/g ,
(1)

b ,
(1)

Ω ,
(1)

(Ωtrχ) , Ω−2
(1)

(

Ωtrχ
)

,Ω
(1)

χ̂ , Ω−1
(1)

χ̂ ,
(1)

η ,
(1)

η ,
(1)

ω , Ω−2 (1)

ω , Ω2 (1)

α , Ω
(1)

β ,
(1)

ρ ,
(1)

σ , Ω−1
(1)

β , Ω−2 (1)

α ,
(1)

K. (3)

In the following subsections we collect the system of equations satisfied by the dynamical quantities
introduced above. These are taken directly from [10], where they are also formally derived by explicit
linearisation of the vacuum Einstein equations,

Ric [g] = 0 .

Here we only collect the Schwarzschild background values appearing in the equations below:

Ω2 = 1−
2M

r
, trχ = −trχ =

2

r
Ω , ω = Ωω̂ = −ω = −Ωω̂ =

M

r2
, ρ = −

2M

r3
, K =

1

r2
. (4)

5Strictly speaking σ is a two-form on S2
u,v but can be identified by duality with a scalar as it has to be proportional to the

volume form.
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2.3 Equations for the linearised metric components

The following equations hold for the linearised metric components,
(1)
√

/g ,
(1)

/̂g ,
(1)

b , Ω−1
(1)

Ω:

∂u





(1)
√

/g
√

/g



 =
(1)

(

Ωtrχ
)

, ∂v





(1)
√

/g
√

/g



 =
(1)

(Ωtrχ)− /div
(1)

b , (5)

√

/g ∂u





(1)

/̂gAB
√

/g



 = 2Ω
(1)

χ̂AB ,
√

/g ∂v





(1)

/̂gAB
√

/g



 = 2Ω
(1)

χ̂AB + 2
(

/D
⋆
2

(1)

b
)

AB
, (6)

∂u

(1)

bA = 2Ω2
(

(1)

ηA −
(1)

ηA
)

, (7)

∂v

(

Ω−1
(1)

Ω
)

=
(1)

ω , ∂u

(

Ω−1
(1)

Ω
)

=
(1)

ω , 2 /∇A

(

Ω−1
(1)

Ω
)

=
(1)

ηA +
(1)

η
A
. (8)

2.4 Equations for the linearised Ricci coefficients

For
(1)

(Ωtrχ) ,
(1)

(

Ωtrχ
)

we have the equations

∂v

(1)
(

Ωtrχ
)

= Ω2
(

2 /div
(1)

η + 2
(1)

ρ+ 4ρΩ−1
(1)

Ω
)

−
1

2
Ωtrχ

(

(1)
(

Ωtrχ
)

−
(1)

(Ωtrχ)

)

, (9)

∂u

(1)

(Ωtrχ) = Ω2
(

2 /div
(1)

η + 2
(1)

ρ+ 4ρΩ−1
(1)

Ω
)

−
1

2
Ωtrχ

(

(1)
(

Ωtrχ
)

−
(1)

(Ωtrχ)

)

, (10)

∂v

(1)

(Ωtrχ) = − (Ωtrχ)
(1)

(Ωtrχ) + 2ω
(1)

(Ωtrχ) + 2 (Ωtrχ)
(1)

ω, (11)

∂u

(1)
(

Ωtrχ
)

= −
(

Ωtrχ
)

(1)
(

Ωtrχ
)

+ 2ω
(1)

(

Ωtrχ
)

+ 2
(

Ωtrχ
)

(1)

ω, (12)

while for
(1)

χ̂ ,
(1)

χ̂ we have

/∇3

(

Ω−1
(1)

χ̂
)

+ Ω−1 (trχ
)

(1)

χ̂ = −Ω−1 (1)

α ,

/∇4

(

Ω−1
(1)

χ̂
)

+ Ω−1 (trχ)
(1)

χ̂ = −Ω−1 (1)

α ,
(13)

/∇3

(

Ω
(1)

χ̂
)

+
1

2

(

Ωtrχ
)

(1)

χ̂+
1

2
(Ωtrχ)

(1)

χ̂ = −2Ω /D
⋆
2

(1)

η , (14)

/∇4

(

Ω
(1)

χ̂
)

+
1

2
(Ωtrχ)

(1)

χ̂+
1

2

(

Ωtrχ
)

(1)

χ̂ = −2Ω /D
⋆
2

(1)

η . (15)

We also have the (purely elliptic) linearised Codazzi equations on the spheres S2
u,v, which read

/div
(1)

χ̂ = −
1

2

(

trχ
)

(1)

η +
(1)

β +
1

2Ω
/∇A

(1)
(

Ωtrχ
)

,

/div
(1)

χ̂ = −
1

2
(trχ)

(1)

η −
(1)

β +
1

2Ω
/∇A

(1)

(Ωtrχ) .

(16)

For
(1)

η and
(1)

η we have the transport equations

/∇3
(1)

η =
1

2

(

trχ
) (

(1)

η −
(1)

η
)

+
(1)

β , /∇4
(1)

η = −
1

2
(trχ)

(

(1)

η −
(1)

η
)

−
(1)

β, (17)

together with the elliptic equations on the spheres S2
u,v

/curl
(1)

η =
(1)

σ , /curl
(1)

η = −
(1)

σ . (18)
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We finally have the transport equations for
(1)

ω and
(1)

ω

∂v
(1)

ω = −Ω
(

(1)

ρ+ 2ρΩ−1
(1)

Ω
)

, (19)

∂u
(1)

ω = −Ω
(

(1)

ρ+ 2ρΩ−1
(1)

Ω
)

, (20)

and the linearised Gauss equation on the spheres S2
u,v, which reads

(1)

K = −
(1)

ρ−
1

4

trχ

Ω

(

(1)
(

Ωtrχ
)

−
(1)

(Ωtrχ)

)

+
1

2
Ω−1

(1)

Ω
(

trχtrχ
)

. (21)

2.5 Equations for linearised curvature components

We finally collect the equations satisfied by the linearised curvature components, which arise from the
linearisation of the Bianchi equations:

/∇3
(1)

α+
1

2
trχ

(1)

α+ 2ω̂
(1)

α = −2 /D
⋆
2

(1)

β − 3ρ
(1)

χ̂ , (22)

/∇4

(1)

β + 2(trχ)
(1)

β − ω̂
(1)

β = /div
(1)

α , (23)

/∇3

(1)

β + (trχ)
(1)

β + ω̂
(1)

β = /D
⋆
1

(

−
(1)

ρ ,
(1)

σ
)

+ 3ρ
(1)

η , (24)

/∇4
(1)

ρ+
3

2
(trχ)

(1)

ρ = /div
(1)

β −
3

2

ρ

Ω

(1)

(Ωtrχ) , (25)

/∇3

(1)

ρ+
3

2
(trχ)

(1)

ρ = − /div
(1)

β −
3

2

ρ

Ω

(1)
(

Ωtrχ
)

, (26)

/∇4

(1)

σ +
3

2
(trχ)

(1)

σ = − /curl
(1)

β , (27)

/∇3
(1)

σ +
3

2
(trχ)

(1)

σ = − /curl
(1)

β , (28)

/∇4

(1)

β + (trχ)
(1)

β + ω̂
(1)

β = /D
⋆
1

(

(1)

ρ ,
(1)

σ
)

− 3ρ
(1)

η , (29)

/∇3

(1)

β + 2(trχ)
(1)

β − ω̂
(1)

β = − /div
(1)

α , (30)

/∇4
(1)

α+
1

2
(trχ)

(1)

α+ 2ω̂
(1)

α = 2 /D
⋆
2

(1)

β − 3ρ
(1)

χ̂ . (31)

2.6 A class of pure gauge solutions

There exist special solutions to the system of gravitational perturbations above which correspond to
infinitesimal coordinate transformations preserving the double null form of the metric. These are called
pure gauge solutions of the system of gravitational perturbations. A particular subset of them is identified
in the following Lemma, which is proven as Lemma 6.1.1 of [10]. Recall the notation ∆S2 = r2 /∆, so ∆S2

is the Laplacian on the round unit sphere, whose standard metric we denote by γ.

Lemma 2.1. For any smooth function f = f (v, θ, φ), the following is a pure gauge solution of the system
of gravitational perturbations:

2Ω−1
(1)

Ω =
1

Ω2
∂v

(

fΩ2) ,
(1)

/̂g = −
4

r
r2 /D

⋆
2 /∇Af ,

(1)
√

/g
√

/g
=

2Ω2f

r
+

2

r
r2 /∆f,

(1)

b = −2r2 /∇A

[

∂v

(

f

r

)]

,
(1)

η =
Ω2

r2
r /∇f,

(1)

η =
1

Ω2
r /∇

[

∂v

(

Ω2

r
f

)]

,

(1)

χ̂ = −2
Ω

r2
r2 /D

⋆
2 /∇f,

(1)

(Ωtrχ) = 2∂v

(

fΩ2

r

)

,
(1)

(

Ωtrχ
)

= 2
Ω2

r2
[

∆S2f − f
(

1− 2Ω2)] ,

(1)

ρ =
6MΩ2

r4
f,

(1)

β =
6MΩ

r4
r /∇f,

(1)

K = −
Ω2

r3
(∆S2f + 2f)

and
(1)

χ̂ =
(1)

α =
(1)

α = 0 ,
(1)

β = 0 ,
(1)

σ = 0 .

We will call f a gauge function.
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3 The class of solutions

In [10] we discussed the characteristic initial value problem for the above system of gravitational per-
turbations. In particular, a notion of smooth characteristic seed initial data was defined to which a
unique smooth solution of the system was associated, cf. Theorem 8.1 of [10]. We also defined a notion
of asymptotically flat seed initial data. When we talk about a solution S below, we will always mean a
smooth solution arising from the characteristic future initial value problem posed on two null cones

Cu0 = {u0} × {v ≥ v0} × S2 and Cv0 = {u ≥ u0} × {v} × S2

as illustrated by the figure in the introduction. The restriction to smooth is of course not needed but
convenient in the considerations below.

In [10] we exhibited a 4-parameter family of explicit solutions to the system of gravitational pertur-
bations, the linearised Kerr solutions, denoted collectively by K . These solutions are supported only
on the spherical harmonics ℓ = 0, 1. We proved in Theorem 9.2 of [10] that any solution of the system
supported only on the harmonics ℓ = 0, 1 is equal to the sum of (a member of) K and an (explicit) pure
gauge solution. This fact allows one to restrict to solutions supported on ℓ ≥ 2:

Definition 3.1. Let S be a solution of the system of gravitational perturbations. We say that S is
supported on ℓ ≥ 2, if any scalar quantity of S has vanishing projection to the ℓ = 0 and ℓ = 1 spherical
harmonics (see [10]) and if any one-form ξ of S satisfies that the scalars /divξ and /curlξ have vanishing
projection to the ℓ = 1 spherical harmonic.

Adding pure gauge solutions G to a given solution S can moreover be used to achieve certain gauge
conditions on the initial data (“normalise the data”). We recall them below. Compared with [10] we
distinguish here between “partially” initial data normalised and “fully” initial data normalised solutions
supported on ℓ ≥ 2. This is merely to state the theorem of this paper with minimal assumptions.

Definition 3.2. We call S a partially initial data normalised solution supported on ℓ ≥ 2 of
the system of gravitational perturbations if S is supported on ℓ ≥ 2 and the initial data satisfies

1. The horizon gauge conditions, i.e.

(1)

(Ωtrχ) (∞, v0, θ, φ) = 0 and
(

/div
(1)

η +
(1)

ρ
)

(∞, v0, θ, φ) = 0 . (32)

2. The basic round sphere condition at infinity, i.e. the linearised Gauss-curvature satisfies

lim
v→∞

r2
(1)

K (u0, v, θ, φ) = 0 along the null hypersurface Cu0 . (33)

Note that both horizon gauge conditions are evolutionary, i.e. a solution S satisfying (32) satisfies
(1)

(Ωtrχ) = 0 and /div
(1)

η+
(1)

ρ = 0 along all of H+. This follows directly from the transport equations for these
quantities along H+. Similarly, the round sphere condition can be seen to be evolutionary, i.e. r2K(1)

vanishes as v → ∞ along any cone Cu with u0 ≤ u < ∞. See Proposition 9.4.1 and Corollary A.1 of [10].

Definition 3.3. We call S a fully initial data normalised solution supported on ℓ ≥ 2 if it is
partially initial data normalised supported on ℓ ≥ 2 and if the initial data of S satisfy in addition

1. The second round sphere condition at infinity, i.e.

lim
v→∞

r2 /D
⋆
2 /D2

(1)

/̂g (u0, v, θ, φ) = 0 holds along the null hypersurface Cu0 . (34)

2. The lapse and shift gauge condition, i.e.

Ω−1
(1)

Ω = w (θ, φ) holds along both Cu0 and Cv0 (35)

for a smooth function w (θ, φ) on the unit sphere which has vanishing projection to ℓ = 0, 1, and

(1)

b = 0 holds along Cu0 .

Partially and fully initial data normalised solutions supported on ℓ ≥ 2 will typically be denoted by

∨
S

′ consistent with the notation in [10].
Below we also want to take certain limits of the solution as v → ∞ for fixed u (or a fixed bounded

subset of u values). For this, the following definition is convenient:
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Definition 3.4. We call a solution S extendible to null infinity if the following weighted quantities
of S have well-defined finite limits on null infinity6 for some 0 < s < 1

r3+s (1)

α , r3+s
(1)

β , r3
(1)

ρ, r3
(1)

σ, r2
(1)

β , r
(1)

α , r3
(1)

K ,

r2
(1)

χ̂ , r
(1)

χ̂ , r
(1)

η , r2
(1)

η , r2 /div
(1)

η , r3 /div
(1)

η , r2+s (1)

ω ,
(1)

ω , r2
(1)

(Ωtrχ) , r
(1)

(

Ωtrχ
)

, Ω−1
(1)

Ω .
(36)

In addition, denoting an arbitrary representative of the quantities in (36) by Q, for any fixed ufin with
u0 < ufin < ∞ the estimate

sup
[u0,ufin]×{v≥v0}×S2

|Q| ≤ C [ufin] (37)

holds with the constant C [ufin] depending only on ufin (and the initial data) but not on v.

In Theorems 9.1 and 9.2 of [10] and Theorem A.1 of the appendix of [10] we proved the following state-
ment, which expresses the fact that there is no restriction in considering fully initial data normalised

solutions supported on ℓ ≥ 2 which are extendible to null infinity:

Theorem ([10]). Given any asymptotically flat to order n ≥ 12 smooth characteristic seed initial data
set (see Definition 8.2 of [10]) with corresponding solution S , we can construct a pure gauge solution G

of the system of gravitational perturbations and a linearised Kerr solution K , both explicitly computable
and controllable from the seed data, such that

∨
S

′ = S +G −K is a fully initial data normalised solution
supported on ℓ ≥ 2 which is extendible to null infinity.

We remark that this statement concerns only the asymptotics of the solution towards null-infinity.
Such a semi-global statement is much weaker (and much more easily proven) than the full strength of
[10].

Our distinction between partially and fully initial data normalised above emphasises that we will only
exploit the validity of a subset of the gauge conditions of [10] on the solution to obtain our main theorem.7

The role of the fully initial data normalised solutions here is only to guarantee that the solutions are
extendible towards null-infinity. Their further properties are not needed for the results of this paper.

We end this section with the following simple observation (see the quantity
(1)

Z in [10]):

Proposition 3.1. Consider
∨
S

′ a partially initial data normalised solution supported on ℓ ≥ 2. As
u → ∞ along the initial cone Cv0 we have

r
(1)

(Ωtrχ)− 4Ω2Ω−1
(1)

Ω(v0, u, θ, φ) = O
(

Ω4
)

and also the angular commuted version

r2 /∆
(

r
(1)

(Ωtrχ)− 4Ω2Ω−1
(1)

Ω (v0, u, θ, φ)
)

= O
(

Ω4) .

Proof. Equations (10), (20) along Cv0 yield

∂u

(

r
(1)

(Ωtrχ)− 4MΩ2Ω−1
(1)

Ω
)

= −
8M

r2
Ω2Ω−1

(1)

Ω +
8M

r2
Ω2Ω−1

(1)

Ω +O
(

Ω4
)

,

where we have used the horizon gauge conditions and the smoothness of the solution at the horizon
(cf. Remark 2.1). By the horizon gauge condition (32), the quantity in brackets vanishes on the horizon
and hence integration yields the desired result. The second claim follows by trivial commutation and the
smoothness of the solution.

4 The basic conservation law

In this section we define, for a smooth solution of the system of gravitational perturbations, basic energy
fluxes on null hypersurfaces (Section 4.1). For S a partially initial data normalised solution supported
on ℓ ≥ 2 that is extendible to null infinity we explicitly obtain the limiting fluxes on the horizon and null
infinity. Finally, we state and prove a conservation law relating the fluxes (Section 4.2).

6In particular, for every u ≥ u0 fixed the limit of the quantity along the null cone Cu as v → ∞ is well-defined.
7We note in particular that both the initial data normalised solution

∨
S ′ and the horizon-renormalised solution

∧

S ′ of [10]
are partially initial data normalised in the language of this paper.

9



4.1 The energy fluxes

Let S be a smooth solution of the system of gravitational perturbations (cf. Section 3). For any u0 ≤
u1 < u2 ≤ ∞ and v0 ≤ v1 < v2 ≤ ∞ let us define the fluxes

Fv [Γ,S ] (u1, u2) =

∫ u2

u1

du

∫

S2

dθdφ r2 sin θ

[

− 2
(1)

ω
(1)

(Ωtrχ)−
1

2

(

(1)
(

Ωtrχ
)

)2

−
4M

r2

(

Ω−1
(1)

Ω
) (1)
(

Ωtrχ
)

+ 2Ω2|
(1)

η|2 + Ω2|
(1)

χ̂|2
]

(38)

and

Fu [Γ,S ] (v1, v2) =

∫ v2

v1

dv

∫

S2

dθdφ r2 sin θ

[

− 2
(1)

ω
(1)

(

Ωtrχ
)

−
1

2

( (1)

(Ωtrχ)
)2

+
4M

r2

(

Ω−1
(1)

Ω
) (1)

(Ωtrχ) + 2Ω2|
(1)

η|2 + Ω2|
(1)

χ̂|2
]

. (39)

Note that the flux (38) remains well defined at the horizon, i.e. in the limit u2 → ∞ by the smoothness
of the solution at the horizon. Similarly, for a solution that extends to null infinity (cf. Definition 3.4)
the flux (39) remains well defined as v2 → ∞ for any fixed u.

4.1.1 The flux on the horizon

If the solution S =
∨
S

′ is partially initial data normalised supported on ℓ ≥ 2 we have for any fixed
v0 ≤ v1 < v < ∞ the horizon limit

F∞

[

Γ,
∨
S

′
]

(v1, v) = lim
u→∞

Fu

[

Γ,
∨
S

′
]

(v1, v) =

∫ v

v1

dv

∫

S2

dθdφ r2 sin θ
[

Ω2|
(1)

χ̂|2
]

, (40)

since
(1)

(Ωtrχ) = 0 on H+ and the quantities Ω−2
(1)

(

Ωtrχ
)

and
(1)

η are regular on the event horizon. In fact,

one easily sees that the validity of the horizon gauge condition
(1)

(Ωtrχ) = 0 on S2
∞,v0 alone for a general

S is sufficient for concluding the limit (40).

4.1.2 The flux on null infinity

To investigate the limiting flux on null infinity, we consider S =
∨
S

′ a partially initial data normalised
solution supported on ℓ ≥ 2 which extends to null infinity (cf. Definition 3.4). Let us fix u0 ≤ u1 < u2 < ∞
and a large v which we will eventually send to infinity. Note that we have v ∼ r in M∩{v ≥ v0}∩{u1 ≤
u ≤ u2} with the constant implicit in ∼ depending on u1, u2, v0. From (21) we have

r
(1)

(

Ωtrχ
)

= −4Ω−1
(1)

Ω+O
(

r−1
)

along any cone Cu with u < ∞.

We now observe that the third term in the integrand of (38) will vanish in the limit v → ∞ while the
first, second and fourth will combine to a pure boundary term. The details are as follows:

−2

∫ u2

u1

du

∫

S2

dθdφ r2 sin θ
(1)

ω
(1)

(Ωtrχ) = −2

∫

S2

sin θdθdφr2Ω−1
(1)

Ω
(1)

(Ωtrχ)

∣

∣

∣

∣

∣

u2

u1

+ 2

∫ u2

u1

du

∫

S2

dθdφ r2 sin θ Ω−1
(1)

Ω

(

2 /div
(1)

η −
1

r

(1)
(

Ωtrχ
)

+O
(

r−3
)

)

,

where we have used the transport equation (10) and recalled
(1)

(Ωtrχ) ∼ r−2 from Definition 3.4. By the
same definition

(1)

η ∼ r−2 and hence we see that in the limit

lim
v→∞

Fv

[

Γ,
∨
S

′] (u1, u2) = lim
v→∞

∫ u2

u1

du

∫

S2

dθdφ r2 sin θ|
(1)

χ̂|2 (u, v)

+ lim
v→∞

1

2

∫

S2

sin θdθdφr3
(1)

(

Ωtrχ
)

(1)

(Ωtrχ) (u, v)

∣

∣

∣

∣

∣

u2

u1

. (41)

This is reminiscent of the Bondi mass loss formula, with the first term on the right hand side representing
the flux of gravitational energy between retarded times u1 and u2. We summarise the above as
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Proposition 4.1. Let
∨
S

′ be a partially initial data normalised solution supported on ℓ ≥ 2 that extends
to null infinity (Definition 3.4). Then for u0 ≤ u1 < u2 < ∞ the flux (38) satisfies (41) in the limit on
null infinity.

4.2 The conservation law

The following conservation law holds:

Proposition 4.2. Let S be a solution to the system of gravitational perturbations.
For any u0 < u1 < u2 ≤ ∞ and v0 < v1 < v2 < ∞ we have the conservation law

Fv [Γ,S ] (u0, u1) + Fu [Γ,S ] (v0, v1) = Fv0 [Γ,S ] (u0, u1) + Fu0 [Γ,S ] (v0, v1) . (42)

Proof. Direct computation using the null structure and Codazzi equations. We compute

∂v

(

r2
[

− 2
(1)

ω
(1)

(Ωtrχ)−
1

2

(

(1)
(

Ωtrχ
)

)2

−
4M

r2

(

Ω−1
(1)

Ω
) (1)
(

Ωtrχ
)

+ 2Ω2|
(1)

η|2 + Ω2|
(1)

χ̂|2
]

)

= −2
(

r2
(1)

(Ωtrχ)
)

(

−Ω2

(

(1)

ρ−
4M

r3
Ω−1

(1)

Ω

))

− 2
(1)

ωr2
(

+
2M

r2

(1)

(Ωtrχ) +
4Ω2

r

(1)

ω

)

−r
(1)

(

Ωtrχ
)

· r

(

Ω2

[

2 /div
(1)

η + 2
(1)

ρ−
8M

r3
Ω−1

(1)

Ω

]

+
Ω2

r

(1)

(Ωtrχ)

)

− 4M ·
(1)

ω
(1)

(

Ωtrχ
)

−4M
(

Ω−1
(1)

Ω
)

(

Ω2

[

2 /div
(1)

η + 2
(1)

ρ−
8M

r3
Ω−1

(1)

Ω

]

−
Ω2

r

(

(1)
(

Ωtrχ
)

−
(1)

(Ωtrχ)

))

+4MΩ2|
(1)

η|2 + 4rΩ2 (1)

η
(

+Ω2 (1)

η − Ωr
(1)

β
)

+ 2rΩ
(1)

χ̂ · Ω
(

Ω2
(1)

χ̂− 2Ωr /D
⋆
2

(1)

η
)

, (43)

where we used (9), (11), the second of (8), (19), the second of (17) and (15). Similarly

∂u

(

r2
[

− 2
(1)

ω
(1)

(

Ωtrχ
)

−
1

2

(

(1)

(Ωtrχ)
)2

+
4M

r2

(

Ω−1
(1)

Ω
)

(1)

(Ωtrχ) + 2Ω2|
(1)

η|2 + Ω2|
(1)

χ̂|2
]

)

= −2

(

r2
(1)

(

Ωtrχ
)

)(

−Ω2

(

(1)

ρ−
4M

r3
Ω−1

(1)

Ω

))

− 2
(1)

ωr2
(

−
2M

r2

(1)
(

Ωtrχ
)

−
4Ω2

r

(1)

ω

)

−r
(1)

(Ωtrχ) · r

(

Ω2

[

2 /div
(1)

η + 2
(1)

ρ−
8M

r3
Ω−1

(1)

Ω

]

−
Ω2

r

(1)
(

Ωtrχ
)

)

+ 4M ·
(1)

ω
(1)

(Ωtrχ)

+4M
(

Ω−1
(1)

Ω
)

(

Ω2

[

2 /div
(1)

η + 2
(1)

ρ−
8M

r3
Ω−1

(1)

Ω

]

−
Ω2

r

(

(1)
(

Ωtrχ
)

−
(1)

(Ωtrχ)

))

−4MΩ2|
(1)

η|2 + 4rΩ2(1)

η
(

−Ω2 (1)

η + Ωr
(1)

β
)

+ 2rΩ
(1)

χ̂ · Ω
(

−Ω2
(1)

χ̂− 2Ωr /D
⋆
2η
)

,

where we used (10), (12), the first of (8), (20), the first of (17) and (14). Summing the two expressions
and integrating over

∫

S2 sin θdθdφ (which we do not write out, instead “≡” indicates equality after this
integration) we find the expression

≡ −2r2
(1)

(Ωtrχ)

(

−Ω2

(

(1)

ρ−
4M

r3
Ω−1

(1)

Ω

))

− 2
(1)

ωr2
(

+
2M

r2

(1)

(Ωtrχ) +
4Ω2

r

(1)

ω

)

−2r2
(1)

(

Ωtrχ
)

·

(

Ω2

[

/div
(1)

η +
(1)

ρ−
4M

r3
Ω−1

(1)

Ω

])

− 4M ·
(1)

ω
(1)

(

Ωtrχ
)

−2r2
(1)

(

Ωtrχ
)

(

−Ω2

(

(1)

ρ−
4M

r3
Ω−1

(1)

Ω

))

− 2
(1)

ωr2
(

−
2M

r2

(1)
(

Ωtrχ
)

−
4Ω2

r

(1)

ω

)

−2r2
(1)

(Ωtrχ) ·

(

Ω2

[

/div
(1)

η +
(1)

ρ−
4M

r3
Ω−1

(1)

Ω

])

+ 4M ·
(1)

ω
(1)

(Ωtrχ)

+4M
(

Ω−1
(1)

Ω
)

Ω2
(

2 /div
(1)

η − 2 /div
(1)

η
)

+4MΩ2|
(1)

η|2 − 4r2Ω3 (1)

η
(

(1)

β + /div
(1)

χ̂
)

− 4MΩ2|
(1)

η|2 + 4r2Ω3(1)

η
(

(1)

β − /div
(1)

χ̂
)

. (44)
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From this further cancellations in the first four lines are obvious and an additional integration by parts
yields

≡ −2
(1)

ωr2
(

+
2M

r2

(1)

(Ωtrχ) +
4Ω2

r

(1)

ω

)

− 2r2
(1)

(

Ωtrχ
)

· Ω2
[

/div
(1)

η
]

− 4M ·
(1)

ω
(1)

(

Ωtrχ
)

−2
(1)

ωr2
(

−
2M

r2

(1)
(

Ωtrχ
)

−
4Ω2

r

(1)

ω

)

− 2r2
(1)

(Ωtrχ) · Ω2 [ /div
(1)

η
]

+ 4M ·
(1)

ω
(1)

(Ωtrχ)

+8MΩ2Ω−1
(1)

Ω
(

/div
(1)

η − /div
(1)

η
)

+ 4MΩ2|
(1)

η|2 − 4r2Ω3 (1)

η
(

(1)

β + /div
(1)

χ̂
)

− 4MΩ2|
(1)

η|2 + 4r2Ω3(1)

η
(

(1)

β − /div
(1)

χ̂
)

,

which is seen to vanish after a further integration by parts in the angular variables using the third of
(8) and inserting the linearised Codazzi equation (16). Note that the above computations exploited that
trχ = −trχ and ω̂ = −ω̂ hold for the Schwarzschild background, cf. (4).

The following figure illustrates the conservation law for a region bounded by the initial cones Cu0 and
Cv0 and the future null cones given by u1 = ufin and v1 = vfin. This is how it will be applied later.

u
=

u 0

u
=

u f
in

H

I
+

v
=

v
f
in

v
=

v
0

5 Gauge invariance of the u-flux modulo boundary terms

In this section, we compute how the flux Fu [Γ,S ] (v1, v2) transforms under the addition of a pure gauge
solution generated by a gauge function f (v, θ, φ). To derive these formulae we will not need any gauge
conditions on the solution. We have

Proposition 5.1. Let S be a solution of the system of gravitational perturbations. Let f (v, θ, φ) be a
smooth gauge function generating a pure gauge solution G of the system of gravitational perturbations as
in Lemma 2.1. Finally, set

S = S̃ + G (45)

thereby defining a new solution S̃ . Then the flux on fixed constant-u hypersurfaces satisfies

Fu [Γ,S ] (v0, v) = Fu

[

Γ, S̃
]

(v0, v) +

∫

S2

sin θdθdφ (G (v, u, θ, φ)− G (v0, u, θ, φ))

with

G (v, u, θ, φ) =
(

Ω2f
)2 6M

r2
−

1

2
Ω−2r3

( (1)

(Ωtrχ)
S

−
(1)

(Ωtrχ)
S̃

) (1)
(

Ωtrχ
)

S

+ fΩ2
(

2r2
(

− /div
(1)

η
S̃

+
(1)

ρ
S̃

))

− fΩ2 ·
1

r

(

1−
4M

r

)

r2Ω−2
(1)

(Ωtrχ)
S̃

, (46)

where the subscripts S or S̃ indicate whether the geometric quantity is associated with the solution S

or S̃ . In other words, the difference of the fluxes in the old and in the new gauge is a pure boundary
term.
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Proof. According to Lemma 2.1, the integrand of the u-flux in (39) changes to

fu [Γ,S ] := −2

(

(1)

ω
S̃

+
1

2
∂v

(

Ω−2∂v(fΩ
2)
)

)(

(1)
(

Ωtrχ
)

S̃
+ 2

Ω2

r2

(

∆S2f + f

(

1−
4M

r

)))

−
1

2

(

(1)

(Ωtrχ)
S̃

+ 2∂v

(

Ω2f

r

))2

+
4M

r2

(

Ω−1
(1)

Ω
S̃

+
1

2
Ω−2∂v(fΩ

2)

)(

(1)

(Ωtrχ)
S̃

+ 2∂v

(

Ω2f

r

))

+2Ω2
∣

∣

∣

(1)

η
S̃

+ Ω−2r /∇

(

∂v

(

Ω2f

r

))

∣

∣

∣

2

+ Ω2|
(1)

χ̂
S̃
|2. (47)

Upon expanding there are three types of terms in (47): The first type will produce the (integrand of the)
flux in the new gauge, the second are mixed terms (“involving one f”) and the third are the remaining
terms (involving two f ’s). As the terms of the first type are easily collected we focus on the latter
two. We keep the convention that “≡” denotes equality after integration over the unit S2 (which allows
integration by parts over the angular variables).

Mixed terms

A ≡ −
(1)

(

Ωtrχ
)

S̃
∂v

(

Ω−2∂v(fΩ
2)
)

− 4
(1)

ω
S̃

Ω2

r2

(

∆S2f + f

(

1−
4M

r

))

−2
(1)

(Ωtrχ)
S̃

∂v

(

Ω2f

r

)

+
8M

r2

(

Ω−1
(1)

Ω
S̃

)

∂v

(

Ω2f

r

)

+
2M

r2
Ω−2∂v

(

fΩ2
)

(1)

(Ωtrχ)
S̃

− 4r /div
(1)

η
S̃

∂v

(

Ω2f

r

)

. (48)

We denote these six terms by

A ≡ A1 +A2 +A3 +A4 +A5 +A6 . (49)

We have

A1 ≡−
1

r2
∂v

(

r2
(1)

(

Ωtrχ
)

S̃

(

Ω−2∂v(fΩ
2)
)

)

+
∂v(fΩ

2)

r

[

2r /div
(1)

η
S̃

+ 2r
(1)

ρ
S̃

−
8M

r2
Ω−1

(1)

Ω
S̃

+
(1)

(Ωtrχ)
S̃

+
(1)

(

Ωtrχ
)

S̃

]

, (50)

A2 ≡ −
4

r2
∂v

(

Ω−1
(1)

Ω
S̃

(

∆S2fΩ2 + fΩ2

(

1−
4M

r

)))

+
16M

r4
fΩ4Ω−1

(1)

Ω
S̃

+2
(

/div
(1)

η + /div
(1)

η
)

S̃
∂v

(

fΩ2)+
4

r2

(

1−
4M

r

)

Ω−1
(1)

Ω
S̃

∂v

(

fΩ2) (51)

and we can therefore write A as

A ≡ ∂v

(

Ω2f
)

[

2 /div
(1)

η
S̃

+ 2
(1)

ρ
S̃

−
1

r
Ω−2

(

1−
4M

r

)

(1)

(Ωtrχ)
S̃

+
4

r2

(

1−
4M

r

)

Ω−1
(1)

Ω
S̃

+
1

r

(1)
(

Ωtrχ
)

S̃

]

+ fΩ2

[

8M

r4
Ω2Ω−1

(1)

Ω
S̃

+ 2
Ω2

r2

(1)

(Ωtrχ)
S̃

+
4

r
Ω2 /div

(1)

η
S̃

]

+ B1 + B2

where B1 and B2 are the boundary terms (i.e. the first term of (50) and (51) respectively) encountered
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above. We now write the term multiplying ∂v

(

Ω2f
)

as a boundary term:

A ≡ B1 + B2 +
1

r2
∂v

(

fΩ2

(

2

r
r3
(

/div
(1)

η
S̃

+
(1)

ρ
S̃

)

))

+
2

r
Ω4f

(

/div
(1)

η
S̃

+
(1)

ρ
S̃

)

− 2
Ω2

r
f

(

Ω2 /div
(1)

η
S̃

+ Ω2 /div
(1)

η
S̃

+
3M

r2

(1)

(Ωtrχ)
S̃

)

−
1

r2
∂v

(

fΩ2 ·
1

r

(

1−
4M

r

)

r2Ω−2
(1)

(Ωtrχ)
S̃

)

−fΩ2

(

1

r2
−

8M

r3

)

(1)

(Ωtrχ)
S̃

+ 4

(

1−
4M

r

)

fΩ2

r2
(1)

ω
S̃

+4
1

r2
∂v

(

fΩ2

(

1−
4M

r

)

Ω−1
(1)

Ω
S̃

)

−4
1

r2
fΩ2

(

1−
4M

r

)

(1)

ω
S̃

−
16M

r4
fΩ4Ω−1

(1)

Ω
S̃

+
1

r2
∂v

(

fΩ2 · r
(1)

(

Ωtrχ
)

S̃

)

−
fΩ4

r2

[

2r /div
(1)

η
S̃

+ 2r
(1)

ρ
S̃

−
8M

r2
Ω−1

(1)

Ω
S̃

+
(1)

(Ωtrχ)
S̃

]

+fΩ4

[

8M

r4
Ω−1

(1)

Ω
S̃

+ 2
1

r2

(1)

(Ωtrχ)
S̃

+
4

r
/div

(1)

η
S̃

]

.

Note that all terms which are not boundary terms cancel. For the above we have used the evolution
equation (which holds for both S and S̃ as the pure gauge solution is a solution of the system)

∂v

(

r3
(

/div
(1)

η +
(1)

ρ
))

= Ω2r2 /div
(

(1)

η +
(1)

η
)

+ 3M
(1)

(Ωtrχ) (52)

which is easily derived from (25) and (17), as well as the propagation equations (11) and (9). We
summarise this as

A ≡−
1

r2
∂v

(

r2
(1)

(

Ωtrχ
)

S̃

(

Ω−2∂v(fΩ
2)
)

)

−
4

r2
∂v

(

Ω−1
(1)

Ω
S̃

(

∆S2fΩ2 + fΩ2

(

1−
4M

r

)))

+
1

r2
∂v

(

fΩ2

(

2

r
r3
(

/div
(1)

η
S̃

+
(1)

ρ
S̃

)

))

−
1

r2
∂v

(

fΩ2 ·
1

r

(

1−
4M

r

)

r2Ω−2
(1)

(Ωtrχ)
S̃

)

+ 4
1

r2
∂v

(

fΩ2

(

1−
4M

r

)

Ω−1
(1)

Ω
S̃

)

+
1

r2
∂v

(

fΩ2 · r
(1)

(

Ωtrχ
)

S̃

)

, (53)

which simplifies to

A ≡−
1

r2
∂v

(

r3
(1)

(

Ωtrχ
)

S̃

(

Ω−2∂v

(

fΩ2

r

)))

+
1

r2
∂v

(

fΩ2
(

2r2
(

− /div
(1)

η
S̃

+
(1)

ρ
S̃

)))

−
1

r2
∂v

(

fΩ2 ·
1

r

(

1−
4M

r

)

r2Ω−2
(1)

(Ωtrχ)
S̃

)

. (54)
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Remaining terms

We turn to the remaining quadratic terms in (47) since the terms which produce the flux expression in
the new gauge are easily taken care of. Here we have

−2
(

∂v

(

Ω−2∂v(fΩ
2)
))

(

Ω2

r2

(

∆S2f + f

(

1−
4M

r

)))

− 2

(

∂v

(

Ω2f

r

))2

+
4M

r2

(

1

2
Ω−2∂v(fΩ

2)

)(

2∂v

(

Ω2f

r

))

+ 2Ω−2
∣

∣

∣
r /∇A

(

∂v

(

Ω2f

r

))

∣

∣

∣

2

and we will refer to this expression as Ã and

Ã = Ã1 + ...+ Ã4 (55)

We have (recall γ denotes the round metric on the unit sphere)

Ã1 = −
2

r2
∂v

(

Ω−2∂v(fΩ
2)

(

∆S2fΩ2 + fΩ2

(

1−
4M

r

)))

+
2

r2
Ω−2∂v

(

fΩ2)
(

∆S2∂v(fΩ
2) + ∂v(fΩ

2)

(

1−
4M

r

)

+ fΩ4 4M

r2

)

≡ −
2

r2
∂v

(

Ω−2∂v(fΩ
2)

(

∆S2fΩ2 + fΩ2

(

1−
4M

r

)))

+
4M

r2
∂v

(

1

r2
(fΩ2)2

)

−
2

r2
Ω−2|∂v

(

∇S2fΩ
2) |2γ +

2

r2
Ω−2

(

1−
4M

r

)

|∂v(fΩ
2)|2 +

8M

r5
f2Ω6

Ã2 = −2
1

r2
(

∂v

(

Ω2f
))2

+ 2
Ω2

r3
∂v

(

Ω2f
)2

− 2
f2Ω8

r4

= −2
1

r2
(

∂v

(

Ω2f
))2

+ 2
1

r2
∂v

(

Ω2

r

(

Ω2f
)2
)

−
4M

r5
Ω6f2 (56)

Ã3 =
4M

r3
Ω−2

(

∂v(fΩ
2)
)2

−
2M

r4
∂v

(

fΩ2
)2

=
4M

r3
Ω−2 (∂v(fΩ

2)
)2

−
2M

r2
∂v

(

1

r2
(

fΩ2)2
)

−
4M

r5
Ω6f2 (57)

Ã4 = +2
Ω−2

r2
|∂v

(

Ω2∇S2f
)

|2γ − 2
1

r3
∂v

∣

∣Ω2∇S2f
∣

∣

2

γ
+ 2

|∇S2f |2γΩ
6

r4

= +2
Ω−2

r2
|∂v

(

Ω2∇S2f
)

|2γ − 2
1

r2
∂v

(

1

r

∣

∣Ω2∇S2f
∣

∣

2

γ

)

. (58)

We see that all terms except boundary terms cancel and hence

Ã = −
2

r2
∂v

(

Ω−2∂v(fΩ
2)

(

∆S2fΩ2 + fΩ2

(

1−
4M

r

)))

+
4M

r2
∂v

(

1

r2
(fΩ2)2

)

+ 2
1

r2
∂v

(

Ω2

r

(

Ω2f
)2
)

−
2M

r2
∂v

(

1

r2
(

fΩ2)2
)

− 2
1

r2
∂v

(

1

r

∣

∣Ω2∇S2f
∣

∣

2

γ

)

is also a pure boundary term.

Summary

In summary, we have proven the desired proposition for G being

G (v, u, θ, φ) = −
2

r

∣

∣Ω2∇S2f
∣

∣

2

γ
+
(

Ω2f
)2
(

2

r
−

2M

r2

)

− Ω−2r3∂v

(

Ω2f

r

)

(1)
(

Ωtrχ
)

S

−rfΩ2

(

(1)
(

Ωtrχ
)

S
−

(1)
(

Ωtrχ
)

S̃

)

+ fΩ2
(

2r2
(

− /div
(1)

η
S̃

+
(1)

ρ
S̃

))

−fΩ2 ·
1

r

(

1−
4M

r

)

r2Ω−2
(1)

(Ωtrχ)
S̃
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which can be simplified to

G (v, u, θ, φ) = +
(

Ω2f
)2
(

2

r
−

2M

r2

)

−
1

2
Ω−2r3

( (1)

(Ωtrχ)
S

−
(1)

(Ωtrχ)
S̃

) (1)
(

Ωtrχ
)

S

−
2

r
fΩ4

(

∆S2f + f

(

1−
4M

r

))

+ fΩ2
(

2r2
(

− /div η
S̃

+
(1)

ρ
S̃

))

−fΩ2 ·
1

r

(

1−
4M

r

)

r2Ω−2
(1)

(Ωtrχ)
S̃

−
2

r

∣

∣Ω2∇S2f
∣

∣

2

γ

and after further integration by parts in the angular variables to the expression appearing in (46).

6 Choice of the gauge function normalised to the cone Cufin

Let
∨
S

′ be a partially initial data normalised solution supported on ℓ ≥ 2. Fix an outgoing null cone
Cufin

for some ufin > u0. We will now define a particular gauge function, normalised to the null cone
Cufin

, which will generate a pure gauge solution G through Lemma 2.1, which when subtracted from
∨
S

′

will produce positivity of the flux Fufin

[

Γ,
∧

S
′ =

∨
S

′ − G

]

. Specifically, we define the gauge function

f (v, θ, φ) =
r

Ω2
(ufin, v, θ, φ)

∫ v

v0

(1)

(Ωtrχ)
∨
S ′ (ufin, v̄, θ, φ) dv̄ . (59)

Clearly f (v0, θ, φ) = 0. We have

Lemma 6.1. Under the assumptions of Proposition 5.1 with S =
∨
S

′ a partially initial data normalised
solution supported on ℓ ≥ 2 and with f defined as in (59) generating a pure gauge solution G , we have

on the null hypersurface Cufin
the following identities for the geometric quantities of

∧

S
′ :=

∨
S

′ − G :

(1)

(Ωtrχ) ∧

S ′
(ufin, v, θ, φ) = 0 and

(1)

ω ∧

S ′
(ufin, v, θ, φ) = 0 . (60)

Moreover,

2Ω−1
(1)

Ω ∧

S ′
(ufin, v, θ, φ) = 2Ω−1

(1)

Ω ∧

S ′
(ufin, v0, θ, φ) =

(

2Ω−1
(1)

Ω−
r

2Ω2

(1)

(Ωtrχ)
)

∨
S ′

(ufin, v0, θ, φ) (61)

and

r3
(

/div
(1)

η ∧

S ′
+

(1)

ρ ∧

S ′

)

(ufin, v, θ, φ) = r3
(

/div
(1)

η +
(1)

ρ
)

∨
S ′

(ufin, v0, θ, φ)

+ (r (ufin, v)− r (ufin, v0))∆S2

(

2Ω−1
(1)

Ω
)

∧

S ′

(ufin, v, θ, φ) . (62)

Proof. Suppressing the dependence on θ, φ in the notation for the proof, we have from Lemma 2.1

(1)

(Ωtrχ)
∨
S ′ (ufin, v) =

(1)

(Ωtrχ) ∧

S ′
(ufin, v) + 2∂v

(

fΩ2

r

)

(ufin, v) (63)

and the first claim of the Lemma follows. From the transport equation for
(1)

(Ωtrχ) ∧

S ′
(ufin, v) along

u = ufin, (11), we conclude that
(1)

ω ∧

S ′
(ufin, v) = 0 for any v ≥ v0. We also have

2Ω−1
(1)

Ω
∨
S ′ = 2Ω−1

(1)

Ω ∧

S ′
+

r

2Ω2

( (1)

(Ωtrχ)
∨
S ′ −

(1)

(Ωtrχ) ∧

S ′

)

+
fΩ2

r
. (64)

Therefore (using that
(1)

ω ∧

S ′
(ufin, v) = 0 for any v ≥ v0) , along u = ufin we obtain

2Ω−1
(1)

Ω ∧

S ′
(ufin, v) = 2Ω−1

(1)

Ω ∧

S ′
(ufin, v0) =

(

2Ω−1
(1)

Ω−
r

2Ω2

(1)

(Ωtrχ)
)

∨
S ′

(ufin, v0) . (65)

To verify the last claim of the Lemma note first that

(

/div
(1)

η +
(1)

ρ
)

∨
S ′

(ufin, v0) =
(

/div
(1)

η +
(1)

ρ
)

∧

S ′
(ufin, v0) (66)
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since f (v0, θ, φ) = 0. Moreover, along ufin we have the evolution equation

∂v

(

r3
(

/div
(1)

η +
(1)

ρ
)

∧

S ′
(ufin, v)

)

= Ω2∆S2

(

2Ω−1
(1)

Ω
)

∧

S ′
. (67)

Since the expression multiplying Ω2 on the right hand side is constant along u = ufin by the identity
(61), integration of (67) yields the claim.

Remark 6.1. Note that since
∨
S

′ is partially initial data normalised supported on ℓ ≥ 2 we have

lim
ufin→∞

(

/div
(1)

η +
(1)

ρ
)

∨
S ′

(ufin, v0, θ, φ) = 0 (68)

and from (61) and Proposition 3.1 also

lim
ufin→∞

(

Ω−1
(1)

Ω
)

∧

S ′

(ufin, v, θ, φ) = lim
ufin→∞

(

Ω−1
(1)

Ω
)

∧

S ′

(ufin, v0, θ, φ) = 0 (69)

and the angular commuted version

lim
ufin→∞

/∆
(

Ω−1
(1)

Ω
)

∧

S ′

(ufin, v, θ, φ) = lim
ufin→∞

/∆
(

Ω−1
(1)

Ω
)

∧

S ′

(ufin, v0, θ, φ) = 0 . (70)

Remark 6.2. One can define the gauge function f in (59) also on the horizon ufin = ∞ by taking an
appropriate limit. This would recover the horizon-normalised gauge of [10]. In this paper, however, we
are only going to use f defined for ufin < ∞ and take the limit as v → ∞. See Theorem 7.1 below.

7 The main theorem

We are now ready to state the main theorem. We first define, for any u > u0 the following initial data
energy on Cu0 ∪ Cv0 associated with

∨
S

′ a partially initial data normalised solution supported on ℓ ≥ 2
which extends to null infinity:

Edata

[

∨
S

′] (u) :=Fu0

[

Γ,
∨
S

′] (v0,∞) + Fv0

[

Γ,
∨
S

′] (u0, u)

+
1

2
lim
v→∞

∫

S2

sin θdθdφ

(

r3
(1)

(

Ωtrχ
)

(1)

(Ωtrχ) (u0, v, θ, φ)

)

. (71)

This energy is continuous in u, uniformly bounded for all u > u0 (by the regularity of the solution near
the horizon) and it can be computed explicitly from the data. We also define

Edata

[

∨
S

′
]

:= lim
u→∞

Edata

[

∨
S

′
]

(u) . (72)

Note that this limit is again well-defined by the regularity of the solution. Note also that at this point,
we do not know whether Edata

[

∨
S

′
]

(u) or Edata

[

∨
S

′
]

is non-negative, however we will deduce the non-

negativity of the total initial energy Edata

[

∨
S

′
]

a posteriori from the following theorem:

Theorem 7.1. Consider
∨
S

′ a partially initial data normalised solution of the system of gravitational
perturbations supported on ℓ ≥ 2 which is extendible to null infinity. Let the associated initial energy
Edata

[

∨
S

′
]

be as defined in (71). Then for any fixed ∞ > ufin > u0 the following estimate holds:

∫ ∞

v0

dv

∫

S2

r2 sin θdθdφ |
(1)

χ̂Ω|2 (ufin, v, θ, φ)

+ lim sup
vfin→∞

∫ ufin

u0

du

∫

S2

r2 sin θdθdφ|
(1)

χ̂|2 (u, vfin, θ, φ) ≤ Edata

[

∨
S

′] (ufin) +R (ufin, v0) ,

with the remainder term on the right hand side defined in terms of the initial data as

R (ufin, v0) =
1

M

∫

S2

sin θdθdφ

[

4|r3
(

/div
(1)

η +
(1)

ρ
)

|2 + 16
∣

∣

∣
r∆S2

(

Ω−1
(1)

Ω−
r

4Ω2

(1)

(Ωtrχ)
) ∣

∣

∣

2
]

(ufin, v0, θ, φ)

+

∫

S2

sin θdθdφ
1

2
Ω−2r3

(1)

(Ωtrχ)
(1)

(

Ωtrχ
)

(ufin, v0, θ, φ) (73)

and satisfying
lim

ufin→∞
R (ufin, v0) = 0 .
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Proof. As the proof will involve subtracting a pure gauge solution from the solution
∨
S

′, we will use
subscripts

∨
S

′ to denote the geometric quantities associated with the solution
∨
S

′ for the duration of the

proof, i.e. we write
(

(1)

χ̂
)

∨
S ′

=
(1)

χ̂,
(1)

(Ωtrχ)
∨
S ′ =

(1)

(Ωtrχ) etc.

Applying Proposition 4.2 in the initial data gauge yields for any ufin, vfin fixed the identity

Fu0

[

Γ,
∨
S

′
]

(v0, vfin) + Fv0

[

Γ,
∨
S

′
]

(u0, ufin) = Fufin

[

Γ,
∨
S

′
]

(v0, vfin) + Fvfin

[

Γ,
∨
S

′
]

(u0, ufin) .

(74)

The strategy now, roughly, is to establish positivity up to a boundary term of the terms on the right
hand side and then to take that boundary term to the left. The resulting expression on the left will be
converted to Edata

[

∨
S

′
]

(ufin) after taking the limit vfin → ∞.
The details are as follows. Define

∧

S
′ =

∨
S

′ − G ,

where G is the pure gauge solution generated by the f chosen in (59), cf. Lemma 2.1. Using Proposition
5.1 and Lemma 6.1, the flux Fufin

[

Γ,
∨
S

′
]

(v0, vfin) transforms according to (recall f (v0, θ, φ) = 0):

Fufin

[

Γ,
∨
S

′
]

(v0, vfin) = Fufin

[

Γ,
∧

S
′
]

(v0, vfin) +

∫

S2

sin θdθdφ

[

(

Ω2f
)2 6M

r2
(ufin, vfin)

−
1

2
Ω−2r3

(

(1)

(Ωtrχ)
∨
S ′

(1)
(

Ωtrχ
)

∨
S ′

)

(ufin, vfin) +
1

2
Ω−2r3

(

(1)

(Ωtrχ)
∨
S ′

(1)
(

Ωtrχ
)

∨
S ′

)

(ufin, v0)

+
fΩ2

r

(

2r3
(

+ /div
(1)

η +
(1)

ρ
)

∧

S ′

)

(ufin, vfin)−
fΩ2

r
2r3

(

/div
(1)

η + /div
(1)

η
)

∧

S ′
(ufin, vfin)

]

, (75)

while Proposition 4.1 yields

Fvfin

[

Γ,
∨
S

′] (u0, ufin) =

∫ ufin

u0

du

∫

S2

dθdφ r2 sin θ
∣

∣

∣

(

(1)

χ̂
)

∨
S ′

∣

∣

∣

2

(u, vfin)

+
1

2

∫

sin θdθdφr3
(1)

(

Ωtrχ
)

∨
S ′

(1)

(Ωtrχ)
∨
S ′ (ufin, vfin)

−
1

2

∫

sin θdθdφr3
(1)

(

Ωtrχ
)

∨
S ′

(1)

(Ωtrχ)
∨
S ′ (u0, vfin)

+ terms vanishing in the limit vfin → ∞ . (76)

Using Lemma 6.1 and noting
(

(1)

χ̂
)

∨
S ′

=
(

(1)

χ̂
)

∧

S ′

we simplify the sum of (75) and (76) to

Fufin

[

Γ,
∨
S

′
]

(v0, vfin) + Fvfin

[

Γ,
∨
S

′
]

(u0, ufin) =
∫ vfin

v0

dv

∫

S2

dθdφr2 sin θ

[

∣

∣

∣

(

(1)

χ̂
)

∨
S ′

Ω
∣

∣

∣

2

+ 2Ω2
∣

∣

∣

(

(1)

η
)

∧

S ′

∣

∣

∣

2
]

(ufin, v)

+

∫ ufin

u0

du

∫

S2

dθdφ r2 sin θ
∣

∣

∣

(

(1)

χ̂
)

∨
S ′

∣

∣

∣

2

(u, vfin) +Q , (77)

where the extra term Q is given by (use Lemma 6.1)

Q =

∫

S2

sin θdθdφ

[

(

Ω2f
)2 6M

r2
(ufin, vfin)

+
1

2
Ω−2r3

(1)

(Ωtrχ)
∨
S ′

(1)
(

Ωtrχ
)

∨
S ′

(ufin, v0)−
1

2
r3

(1)
(

Ωtrχ
)

∨
S ′

(1)

(Ωtrχ)
∨
S ′ (u0, vfin)

+
fΩ2

r
(ufin, vfin) ·

(

2r3
(

+ /div
(1)

η +
(1)

ρ
)

∨
S ′

− 4r∆S2

(

Ω−1
(1)

Ω
)

∧

S ′

)

(ufin, v0)

]

+ terms vanishing in the limit vfin → ∞ . (78)

Note that a cancellation (up to a term vanishing in the limit vfin → ∞) has appeared between the first
term in the second line of (75) and the term in the second line of (76). Applying the Cauchy-Schwarz
inequality to the expression for Q exploiting the positive first term we can estimate

Q ≥ −R (ufin, v0)−
1

2

∫

S2

sin θdθdφr3
(1)

(Ωtrχ)
∨
S ′

(1)
(

Ωtrχ
)

∨
S ′

(u0, vfin) + terms vanishing as vfin → ∞ .
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Inserting this back into (77) and combining (77) with (74) we conclude after taking the limit vfin → ∞

Edata

[

∨
S

′] (ufin) +R (ufin, v0) ≥

∫ ∞

v0

dvdθdφr2 sin θ

[

∣

∣

∣

(

(1)

χ̂
)

∨
S ′

Ω
∣

∣

∣

2

+ 2Ω2
∣

∣

∣

(

(1)

η
)

∧

S ′

∣

∣

∣

2
]

(ufin, v)

+ lim sup
vfin→∞

∫ ufin

u0

du

∫

S2

dθdφ r2 sin θ
∣

∣

∣

(

(1)

χ̂
)

∨
S ′

∣

∣

∣

2

(u, vfin) , (79)

which proves the estimate claimed in the theorem. The conclusion about the limit of R (ufin, v0) follows
directly from the horizon gauge condition satisfied by

∨
S

′ and Remark 6.1 in conjunction with (61).

Remark 7.1. The estimates derived in the proof of Theorem 7.1 give more control than explicitly stated.
In particular, the gauge function f is controlled (we dropped a good term in the expression for Q) and so
is
(

(1)

η
)

∧

S ′
. This will be exploited in future work.

Remark 7.2. Taking the limit ufin → ∞ in Theorem 7.1 we see that we must have Edata

[

∨
S

′
]

≥ 0. Note

also that the formula for Edata

[

∨
S

′
]

simplifies considerably for a fully initial data normalised solution.

Taking the limit ufin → ∞ and using that the pointwise limit of the quantity r
(1)

χ̂ actually exists on
null infinity (in view of the solution

∨
S

′ being extendible to null infinity), we conclude control on the
energy fluxes through the event horizon and null infinity:

Corollary 7.1. With the assumptions of Theorem 7.1 we have that

• the total flux of the linearised shear on null infinity is bounded:

∫ ∞

u0

du

∫

S2

dθdφ r2 sin θ|
(1)

χ̂|2 (u,∞, θ, φ) ≤ Edata

[

∨
S

′] , (80)

• the total flux of the linearised shear on the horizon is bounded:

∫ ∞

v0

dv

∫

S2

dθdφr2 sin θ
[

|
(1)

χ̂Ω|2
]

(∞, v, θ, φ) ≤ Edata

[

∨
S

′
]

. (81)

Note that the quantity appearing on the left hand side of (80) is the total amount of gravitational
radiation measured by far away observers.

8 A second conservation law

We end the paper by stating a second conservation law. Unlike the first, it will involve curvature
components, which is why we denote the corresponding fluxes by F [Γ, R,S ]. More precisely, we define

Fv [Γ, R,S ] (u1, u2) =

∫ u2

u1

du

∫

S2

dθdφ sin θ
[

3Mr
(1)

ω
(1)

(Ωtrχ)− 3M

(

1−
4M

r

)

Ω−1
(1)

Ω
(1)

(

Ωtrχ
)

+
1

2
Ω2r4

(

|
(1)

ρ|2 + |
(1)

σ|2
)

− 3MrΩ2|
(1)

η|2 +
1

2
r4Ω2|

(1)

β|2
]

(82)

and

Fu [Γ, R,S ] (v0, v) =

∫ v

v0

dv

∫

S2

dθdφ sin θ
[

3Mr
(1)

ω
(1)

(

Ωtrχ
)

+ 3M

(

1−
4M

r

)

(1)

(Ωtrχ)Ω−1
(1)

Ω

+
1

2
Ω2r4

(

|
(1)

ρ|2 + |
(1)

σ|2
)

− 3MrΩ2|
(1)

η|2 +
1

2
r4Ω2|

(1)

β|2
]

. (83)

The following conservation law holds:

Proposition 8.1. For any u0 < u1 < u2 < ∞ and v0 < v1 < v2 < ∞ we have the conservation law

Fv [Γ, R,S ] (u0, u1) + Fu [Γ, R,S ] (v0, v1) = Fv0 [Γ, R,S ] (u0, u1) + Fu0 [Γ, R,S ] (v0, v1) . (84)

Proof. Straightforward computation.

We have the following analogue of Proposition 5.1:

19



Proposition 8.2. Let f (v, θ, φ) be a smooth gauge function generating a pure gauge solution of the
system of gravitational perturbations as in Lemma 2.1. Then the flux on fixed constant-u hypersurfaces
satisfies

Fu [Γ, R,S ] (v0, v) = Fu

[

Γ, R, S̃
]

(v0, v) +

∫

S2

sin θdθdφ (G (v, u, θ, φ)− G (v0, u, θ, φ))

where

G = 3Mr

(

(

Ω−1
(1)

Ω
)

S

(1)
(

Ωtrχ
)

S
−
(

Ω−1
(1)

Ω
)

S̃

(1)
(

Ωtrχ
)

S̃

)

− 3M2

(

f

r

(1)

(Ωtrχ)
S̃

)

+12M2

(

1

r2
fΩ2

(

Ω−1
(1)

Ω
)

S̃

)

− 3MfΩ2r
(

/div
(1)

η +
(1)

ρ
)

S̃
+

3M

2

∣

∣

∣∇S2
fΩ2

r

∣

∣

∣

2

−
6M2

r3
(

fΩ2
)2

.

In other words, the differences of the fluxes in the old and in the new gauge is a pure boundary term.

Proof. Straightforward computation.

Similar arguments to those presented in Sections 6 and 7 lead to control of additional fluxes. These
will be exploited elsewhere.
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