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Abstract— This paper develops an integrated filtering and
adaptive approximation-based approach for fault diagnosis of
process and sensor faults in a class of continuous-time nonlinear
systems with modeling uncertainties and measurement noise. The
proposed approach integrates learning with filtering techniques
to derive tight detection thresholds, which is accomplished in two
ways: 1) by learning the modeling uncertainty through adaptive
approximation methods and 2) by using filtering for dampening
measurement noise. Upon the detection of a fault, two estimation
models, one for process and the other for sensor faults, are
initiated in order to identify the type of fault. Each estimation
model utilizes learning to estimate the potential fault that has
occurred, and adaptive isolation thresholds for each estimation
model are designed. The fault type is deduced based on an
exclusion-based logic, and fault detectability and identification
conditions are rigorously derived, characterizing quantitatively
the class of faults that can be detected and identified by
the proposed scheme. Finally, simulation results are used to
demonstrate the effectiveness of the proposed approach.

Index Terms— Adaptive estimation, fault detection, fault diag-
nosis, learning systems.

I. INTRODUCTION

DUE to the increased complexity of systems in the
modern era, there is a further need for methods that

would ensure a robust, resilient, and reliable operation, in
order to avoid potential failures that could impose a significant
economic, social, and health damage. Especially, in today’s
environment where many large-scale systems are intercon-
nected and interdependent, such as electric power systems,
communication, and water networks, a potential failure could
trigger a domino effect of failing systems. Therefore, prompt
fault detection, isolation, and identification is a crucial feature
that remains at the forefront of the technological evolution.
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The importance of the fault detection and isolation (FDI)
problem was acknowledged several decades back and is
now well established with various approaches. Several survey
papers [1]–[3] and books [4]–[7] detail the main methods that
have been proposed over the years. The research conducted
for fault diagnosis in linear systems is well established (the
interested reader may refer to the aforementioned survey
papers and books), whereas for nonlinear systems, the work
is more limited and focused on specific classes of nonlinear
systems by using various methods, such as observer
methods [8]–[13], differential-geometric approaches [14],
change-detection approaches [15], and learning meth-
ods [16]–[18]. These approaches were based on a centralized
framework, whereas lately, due to advances in communications
and distributed sensing, several fault diagnosis techniques
for hierarchical, decentralized, and distributed systems have
emerged [19]–[30]. In general, though, there are some issues
that are usually overseen or dealt independently such as:
1) the presence of measurement noise; 2) the presence of
nonlinear modeling uncertainties; and 3) the identification of
the fault type (i.e., process or sensor fault). For instance,
in the research literature, the modeling uncertainty has been
addressed by considering either a known constant or adaptive
threshold [17], [31], and measurement noise was treated
similarly [26], [32]. A filtering approach to attenuate the
effects of measurement noise in order to enhance fault
detectability was recently presented in [27] and contained
a rigorous detectability analysis. The aforementioned issues
significantly affect the performance of fault diagnosis schemes,
and therefore, the main objective of this paper is to address
them collectively in a unified methodology by integrating
learning and filtering methods.

Moreover, in the research literature, fault diagnosis
approaches are typically developed targeting a specific fault
type, for example, either a process or a sensor fault. However,
this treatment may not operate satisfactory in real world appli-
cations, since each approach is only valid for the correspond-
ing fault type. For instance, by considering fault diagnosis
schemes only for the process faults, the degraded performance
or erroneous measurements from faulty sensors are ignored
and may be mistakenly considered as process faults, endan-
gering system stability. Similarly, in fault diagnosis schemes
that only consider the sensor faults, the crucial element of
potential faults in the plant process is overlooked. As a result,
dealing with only one fault type imposes the danger of false
alarms due to monitoring the specific fault type and ignoring
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the other, something that results in unnecessary component
replacement and increased maintenance costs.

The research conducted on the fault diagnosis problem
that deals with process and sensor faults simultaneously is
limited [29], [33]–[38]. In [33], a framework for dealing with
joint diagnosis of process and sensor faults is proposed by
using a principal component analysis, whereas in [34], the
sensor and process fault detection problem is addressed using
multisensor data fusion techniques. In the context of analytical
redundancy methods, Talebi et al. [37] propose a recurrent
neural-network-based fault detection scheme for nonlinear
systems, which employs two nonlinear-in-parameters neural
networks to isolate actuator and sensor faults. In [35], a learn-
ing approach is proposed that is able to determine the type of
the fault that has occurred (process or sensor) by considering
that only a single fault occurs and by utilizing adaptive
approximation methods to construct suitable fault isolation
estimators. Moreover, the work in [36] follows along similar
concepts of [35] for a more general class of systems. In the
case of discrete-time systems, Thumati and Halligan [38]
propose a nonlinear observer-based fault diagnostics scheme,
dealing with process and sensor faults for nonlinear systems,
which consists of an artificial immune system as an online
approximator that identifies the fault type by monitoring the
outputs’ magnitude of two online approximators designed for
estimating the system state and output. In [29], a distrib-
uted detection scheme for process and sensor faults for a
special class of input–output interconnected systems under
continuous-time is proposed by using nonlinear observer
design that only deals with the fault detection issue.

This paper deals with the aforementioned challenges and
proposes an integrated learning and filtering approach for a
fault diagnosis approach of process and sensor faults in a
class of continuous-time nonlinear systems with modeling
uncertainty and in the presence of measurement noise. The
primary objective and main contribution of this paper are the
design of a unified fault diagnosis approach by: 1) integrating
learning and filtering techniques for obtaining tight detection
thresholds that guarantee no false alarms and, thus, enhancing
fault detectability and 2) identifying the fault type (process or
sensor) when a fault is detected and generating an estimation
of the fault. The first objective is achieved in two ways:
1) adaptive approximation methods are used for learning the
modeling uncertainty (so that the learned modeling uncertainty
function is used in the design of the residual signals) and
2) by using filtering to attenuate the effect of measurement
noise on the diagnosis thresholds. Adaptive approximation
methods have been used in the area of fault diagnosis for
learning the modeling uncertainties and the fault function for
fault isolation purposes [16], [17], [39], [40]. Therefore, the
novelty in this paper is that, both tasks, learning and filtering,
are integrated in a unified framework and intertwined through
the recent filtering approach in [27], which is decomposed in
a two stage filtering process in order to derive the required
signals for the adaptive approximation and for the residual
derivation. Preliminary results of the first objective were
presented in [41], which is now significantly extended to
formulate the unified fault diagnosis approach for process

and sensor faults proposed in this paper. In order to achieve
the second objective (fault type identification), two estimation
models are constructed, one for process and one for sensor
faults, which utilize adaptive approximation methods to learn
the potential faults, and then, the fault type is determined based
on an exclusion-based logic. The main differences of this
paper with respect to the other papers [35], [36] that deal with
the FDI problem for process and sensor faults are: 1) in the
other works, the process faults were considered to belong to a
class of known functions with unknown magnitudes, whereas
in this work, we do not impose this restriction; instead, we
exploit the sheer learning potential of the learning method to
approximate any function that represents the process fault and
2) in the other works, only a single-sensor fault is considered
and can be identified, whereas in this work, multiple sensor
faults are allowed. Finally, fault detectability and identification
conditions are derived for both process and sensor faults that
provide an implicit characterization of the faults that can be
detected and identified by the proposed scheme.

This paper is organized as follows. In Section II, the prob-
lem formulation is given. In Section III, the detailed design
of the fault detection scheme by combining adaptive approx-
imation with filtering is presented in detail. In Section IV,
the detectability conditions for process and sensor faults
that characterize the class of detectable faults are derived.
The details of the fault identification procedure are given
in Section V. In Section VI, the fault-type identification
conditions are derived. In Section VII, a simulation example
demonstrating the effectiveness of the scheme is presented.
Finally, the conclusions are drawn in Section VIII.

II. PROBLEM FORMULATION

Consider a nonlinear dynamic system

� :

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t)+ f (x(t), u(t))+ η(x(t), u(t))
+ βx

(
t − T x

0

)
φ(x(t), u(t))

y(t) = x(t)+ ξ(t)+ β y
(
t − T y

0

)
σ(t)

(1)

(2)

where x ∈ R
n , u ∈ R

m , and y ∈ R
n are the state, input, and

measured output vectors, respectively, the matrix A ∈ R
n×n

and the function f : R
n ×R

m �→ R
n are the known (nominal)

function dynamics, and η : R
n × R

m �→ R
n is the modeling

uncertainty associated with the nominal function. The vector
ξ ∈ Dξ ⊂ R

n (Dξ is a compact set) represents the unknown
measurement noise. The term βx(t −T x

0 )φ(x, u) characterizes
the time-varying process fault function dynamics affecting the
system. More specifically, the term φ : R

n × R
m �→ R

n

represents the unknown process fault function, and the term
βx(t − T x

0 ) : R �→ R
+ models the time evolution of the

process fault, where T x
0 is the unknown time of the process

fault occurrence. The time profile βx (t − T x
0 ) can be used

to model both abrupt and incipient faults. Specifically, prior
to the fault occurrence, the time profile is considered to be
zero, i.e., βx(t − T x

0 ) = 0, for all t < T x
0 , and after the fault

occurrence, it is monotonically increasing to one as t → ∞
(in the case of incipient fault, since in the case of abrupt faults,
the time profile takes the form of a step function). The term
β y(t − T y

0 )σ (t) characterizes the time-varying magnitude of
the sensor faults. More specifically, each component σ (k)(t),
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Fig. 1. Diagram describing the general procedure of the fault detection and identification scheme. The time TL indicates the learning time allowed for
learning the modeling uncertainty, T0 indicates the time of the fault occurrence (process or sensor), Td indicates the fault detection time, and TL ,2 indicates
the learning time allowed for learning the combined effect of the modeling uncertainty with the potential process fault.

k = 1, 2, . . . , n, of the sensor fault vector σ : R
+ �→ R

n ,
represents the (possibly time varying) bias due to a sensor
fault that occurs in the kth sensor at time T y

0 . In this paper,
we only consider the case of abrupt sensor faults

β y(t − T y
0

) =
{

0, if t < T y
0

1, if t ≥ T y
0 .

(3)

Please note that without loss of generality, in this paper,
all the sensor faults are considered to occur at time T y

0 for
simplicity. In addition, we consider the occurrence of a single
type of fault: either a process fault occurring at time T x

0 or
single/multiple sensor fault(s) occurring at time T y

0 .
The objective is twofold: 1) to exploit the filtering frame-

work, recently developed in [27], in order to exploit the noise
suppression properties of filtering and to integrate learning
methods for approximating the modeling uncertainty, so that
tight detection thresholds are obtained, thus enhancing fault
detectability and 2) when a fault is detected, to determine
whether it is a process or sensor fault and provide an esti-
mation of the fault function (i.e., φ̂, σ̂ ). The formulation is
independent of the controller used, which may either be a
generic one achieving some desired control objectives or one
that incorporates an advanced fault accommodation scheme.
The learning of the overall uncertainty function η is based
on adaptive approximation methods and allows the use of
the learned function dynamics (indicated by η̂) in a suitable
residual signal to cancel out the true function η and, hence,
aid in the derivation of a tighter detection threshold.

After the detection of a fault, two fault identification esti-
mators (FIEs) are initiated to identify the type of the fault that
has occurred and provide an estimation of the fault. Each FIE
corresponds to a fault type (i.e., process or sensor), and by
utilizing adaptive approximation methods, the fault that has
occurred is being learned, while, at the same time, residual

and isolation thresholds are derived that are used for the
identification of the fault type. The fault type identification is
based on an exclusion logic, in the sense that when a particular
residual generated from an FIE exceeds its corresponding
isolation threshold, then the particular fault type that the
FIE corresponds to is excluded. Hence, it is guaranteed that
the fault type is the other one, for which all the residuals
of its FIE model remain below their corresponding isolation
thresholds, and the fault estimation is provided by the latter
FIE model. Fig. 1 shows the general procedure of the scheme
developed in this paper.

In the sequel, | · | indicates the absolute value of a scalar
function, the Euclidean 2-norm for vectors, and the matrix
norm induced by the 2-norm for matrices. In addition, the
notation z f (t) = H (s)[z(t)] denotes the output z f (t) of any
signal z(t), which is passed through a filter with a transfer
function H (s). In other words, z f (t) is the output of a
linear system represented by the transfer function H (s) with
z(t) as input. In terms of more rigorous notation, let h(t)
be the impulse response associated with H (s), i.e., h(t) �
L−1[H (s)], where L−1 is the inverse Laplace transform
operator. Then, z f (t) = H (s)[z(t)] = ∫ t

0 h(τ )z(t − τ ) dτ .
Moreover, the notation z(k) denotes the kth component of the
vector z or the kth row of z in case it is a matrix. The following
assumptions are used throughout this paper.

Assumption 1: The state variable x and the local input
u remain bounded in some compact region of interest
D = Dx × Du ⊂ R

n × R
m , before and after the occurrence

of a fault.
Assumption 2: The kth component of the function f (x, u)

satisfies the Lipschitz condition

| f (k)(x1, u)− f (k)(x2, u)| ≤ λ fk |x1 − x2| (4)

for x1, x2 ∈ Dx , u ∈ Du , where λ fk is the known
Lipschitz constant. Hence, for the vector function f (x, u),
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the Lipschitz condition becomes | f (x1, u) − f (x2, u)| ≤
λ f |x1 − x2|, where λ f is the Lipschitz constant that can be
considered as λ f �

∑n
k=1 λ fk .

Assumption 3: The rate of change of the sensor bias σ (k)(t)
is uniformly bounded as follows:

|σ̇ (k)(t)| ≤ ψ, k = 1, . . . , n (5)

where ψ is a known positive scalar.
Assumption 4: The measurement noise is bounded, i.e.,

|ξ(k)(t)| ≤ ξ̄ (k), where ξ̄ (k) is a known constant. Hence,
|ξ(t)| ≤ ξ̄d � |ξ̄ |.

Assumption 1 is required for well-posedness, since,
in this paper, we address the fault detection problem,
not the control design and fault accommodation problem.
Assumptions 2 and 3 are required for the design of the FIE
model for the sensor faults. Assumption 4 is required in order
to distinguish the effects of sensor faults.

In Section III, the details of the proposed scheme for
the tasks of learning the modeling uncertainty and designing
suitable fault detection thresholds are given.

III. FAULT DETECTION

First, we derive suitable detection thresholds by computing
uncertainty bounds associated with the fault-free operation of
the system.

A. Filtering

Each measured variable y(k)(t) is filtered by an induced
filter H (s) that is implemented as a series of two filters H1(s)
and H2(s), for reasons that will become apparent in the sequel,
such that H (s) = H1(s)H2(s). The filter H (s) is of pth order
with a strictly proper transfer function H (s) = s Hp(s), where

Hp(s) = dp−2s p−2 + dp−3s p−3 + · · · + d0

s p + cp−1s p−1 + · · · + c1s + c0
. (6)

At first, the selection of the filter H (s) is made, so that
the effect of the measurement noise is dampened. Then, the
filters H1(s) and H2(s) are obtained by introducing the design
constant α > 0 (which is required for the learning task) and
are given by

H1(s) = s

s + α
(7)

H2(s) = (s + α)(dp−2s p−2 + dp−3s p−3 + · · · + d0)

s p + cp−1s p−1 + · · · + c1s + c0
. (8)

In the following, the initial conditions of the filters
H1(s) and H2(s) are considered to be zero.

It must be stressed that, although four filters have been
introduced above (namely, H (s), Hp(s), H1(s), H2(s)), only
H (s) is required to be selected, so that the noise attenuation is
achieved, and then, the other three filters can be easily deduced
from the particular selection of H (s).

The filters H1(s) and H2(s) [and hence H (s) and Hp(s)]
are asymptotically stable and, therefore, BIBO stable. Hence,
for bounded measurement noise ξ(t), the filtered measurement
noise εξ (t) � H (s) [ξ(t)] is bounded as follows:

∣
∣ε
(k)
ξ (t)

∣
∣ ≤ ε̄

(k)
ξ (t) k = 1, 2, . . . , n

where ε̄
(k)
ξ are bounding functions that are computable

since ξ ∈ Dξ .
In general, each measured variable y(k)(t) can be filtered

by a different induced filter H (s) with different design
constants α. In this paper, without loss of generality, we
consider H (s) and α to be the same for all the output variables
in order to simplify the notation and presentation.

The two-step filtering process using filters H1(s) and H2(s)
is employed, instead of directly filtering each measurement
with H (s), in order to integrate the filtering with the learning
task and be able to derive the required signals for both
tasks (approximation error for learning and residual for fault
detection). It must be noted that adaptive approximation
methods require that the filters used are strictly positive
real (SPR) [42], [43]. Therefore, the filter H (s), which is
selected for dampening the measurement noise, may not be
SPR and, hence, not suitable for the learning task. With the
decomposition of H (s) into the two filters H1(s) and H2(s),
the output of the filter H1(s) (which is SPR) can be used for
the learning task, and the output of the filter H2(s) can be used
for the fault detection task. Therefore, the decoupling of the
two tasks into two separate and independent ones is achieved.

The choice of a particular type of filter to be used is appli-
cation dependent, and it is made according to the available
a priori knowledge on the noise properties. Usually, measure-
ment noise is constituted by high-frequency components, and
therefore, the use of low-pass filter for dampening noise is
well justified. On other occasions, one may want to focus
the fault detectability on a prescribed frequency band of the
measurement signals and, hence, choose the filter accordingly.
The particular selection criteria for choosing a suitable filter
and its tradeoffs are out of the scope of this paper, and the
reader is referred to the continuous-time case in our recent
work [27], where a rigorous investigation of the filtering
impact (according to the poles location and filters order) on
the detection time is presented.

B. Adaptive Approximation

An adaptive approximator is used for learning the modeling
uncertainty η and providing an estimate η̂. To simplify the
notation in the following analysis, (1) is rewritten as:

ẋ(t) = g(x(t), u(t))+ η(x(t), u(t))

+ βx(t − T x
0

)
φ(x(t), u(t)) (9)

where g(x(t), u(t)) � Ax(t)+ f (x(t), u(t)).
Based on (9), an estimation model x̂(t) for x(t) under fault-

free operation is generated as follows:
˙̂x(t) = g(y(t), u(t))+ η̂(y(t), u(t), θ̂ (t)) (10)

with initial condition x̂(0) = y(0), η̂ denotes the output of
an adaptive approximator structure and θ̂ ∈ R

q is a set of
adjustable parameters in vector form. More details regarding
the adaptive approximator design will be given in the sequel.

The signal, which is used in the adaptive law for adjusting
the parameter vector θ̂ , is given by

ε(t) � H1(s)[y(t)− x̂(t)] (11)
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and by using (2), (7), and the Laplace differentiation property
s[x(t)] = ẋ(t) + x(0)δ(t) (where δ(t) is the Dirac delta
function), we obtain

ε(t) = s

s + α
[x(t)+ ξ(t) − x̂(t)]

= 1

s + α
[ẋ(t)+ x(0)δ(t)] + s

s + α
[ξ(t)]

− 1

s + α
[ ˙̂x(t)+ x̂(0)δ(t)]. (12)

By using (1) and (10), (12) becomes

ε(t) = 1

s + α
[�g(t)+�η(t)− αξ(t)]

− e−αtξ(0)+ ξ(t) (13)

where

�g(t) � g(x(t), u(t))− g(y(t), u(t)) (14)

�η(t) � η(x(t), u(t))− η̂(y(t), u(t), θ̂ (t)). (15)

As it can be seen from (13), ε(t) is comprised of the functional
error �η(t) and some additional terms, which arise due to the
measurement noise ξ(t). Therefore, the signal ε(t) provides a
measure of �η(t), and by an appropriate selection of α, the
scaled quantity αε(t) (which is measurable) provides a good
approximation of �η(t) (which is unknown) over the lower
frequency range (depending on the pole of the filter H1(s)).
Hence, ε(t) can be used in the adaptive law for adjusting the
parameter vector θ̂ of the approximator [16].

In this paper, we use a linearly parameterized approximator
η̂(y, u, θ̂ ), so that each component k = 1, 2, . . . , n is given

by η̂(k)(y, u, θ̂k) = ω	
k (y, u)θ̂k , where ωk : R

n × R
m �→ R

qk

is a vector composed of smooth functions independent of θ̂k ,
and θ̂k ∈ R

qk is a set of adjustable parameters in vector form.
In compact form, we have

η̂(y, u, θ̂ ) = �(y, u)θ̂ (16)

where � : R
n × R

m �→ R
n×q is the diagonal block matrix

�(y, u) = ω	
1 (y, u) ⊕ ω	

2 (y, u) ⊕ . . . ⊕ ω	
n (y, u), where

⊕ indicates the direct sum operator and θ̂ ∈ R
q (q = ∑n

k=1 qk)
is the column vector θ̂ = [θ̂	

1 , . . . , θ̂
	
n ]	.

Based on (13) and by using techniques from adaptive
control (Lyapunov synthesis approach [42]), θ̂ is updated
according to the following law:

˙̂
θ(t) = Pp(�

x�	(t)ε(t)) (17)

where �x ∈ R
q×q is a symmetric and positive definite learning

rate matrix, and Pp is a projection operator that restricts θ̂ in
a predefined compact and convex set �̂p ∈ Rq .

The initial weight vector is chosen as θ̂ (0) = 0, so that
η̂(y, u, θ̂ (0)) = 0 that corresponds to the case in which the
dynamics of the estimator are only described in terms of the
known dynamics f .

Remark 1: The signal ε(t) is used in the adaptive law for
adjusting the parameter vector θ̂ , since it provides a measure of
the uncertainty �η(t). It is important to note that, from (13),
a suitable bound for |ε(t)| can be derived, and hence, ε(t) can
also be used as a residual signal for the task of fault detection.

Fig. 2. Residual generation.

In this case, though ε(t) is generated by using the filter H1(s),
which, although being suitable for the learning task (due to the
SPR property), it has a proper transfer function that allows
the noise ξ(t) to pass through unaffected. As a result, the
bound on ε(t) may be too conservative for practical purposes,
and hence, it may not be exceeded, thus leading to missed
faults. Therefore, the fault detection scheme described in the
sequel relies on a general strictly proper transfer function H (s)
(through the series of H1(s) and H2(s)) that possesses better
noise dampening characteristics and allows the derivation of
tight detection thresholds.

C. Residual Generation

The residual signal r(t) to be used for fault detection in this
paper is given by

r(t) � H2(s)[ε(t)] (18)

where H2(s) is given by (8) and ε(t) is given by (11).
By using (11), the residual (18) becomes

r(t) = H (s)[y(t)− x̂(t)]
= s Hp(s)[x(t)− x̂(t)] + H (s)[ξ(t)]

+ H (s)
[
β y(t − T y

0

)
σ(t)

]

= Hp(s)[ẋ(t)− ˙̂x(t)+ (x(0)− x̂(0))δ(t)] + εξ (t)

+ H (s)
[
β y(t − T y

0

)
σ(t)

]

= Hp(s)
[
�g(t)+�η(t)+ βx(t − T x

0

)
φ(x(t), u(t))

]

+ H (s)
[
β y(t − T y

0

)
σ(t)

] − h p(t)ξ(0)+ εξ (t) (19)

where h p(t) is the impulse response associated with Hp(s).
Under fault-free operation, the residual (19) is written as

r(t) = Hp(s)[�g(t)+�η(t)] − h p(t)ξ(0)+ εξ (t). (20)

Fig. 2 shows the residual generation procedure according
to (7), (8), (10), (11), and (18).

D. Detection Threshold

In this section, the derivation of suitable detection threshold
signals that guarantee no-false alarms is presented. In order
to exploit the benefits from the learning process, it is con-
sidered that the learning period is conducted during the time
interval [0, TL] in which it is assumed that no faults occur.
In other words, at time TL , the update of the parameter
vector θ̂ (t) stops, and the fault detection scheme is initiated.
The training time TL is selected by the designer and should
be sufficiently large to allow learning of the modeling
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uncertainty η. The detection decision of a fault in the system
is made when |r (k)(t)| > r̄ (k)(t) at some time t > TL , for
at least one component k = 1, 2, . . . , n, where r̄ (k)(t) is the
detection threshold, to be designed in the sequel.

For the derivation of the detection threshold, we consider
that after time TL , the functional discrepancy between the
unknown function η and its approximator η̂ satisfies the
following assumption.

Assumption 5: After the end of the learning phase at
time TL , the error between the modeling uncertainty η and
the adaptive approximator η̂ is bounded as follows:

∣
∣η(k)(x(t), u(t))− η̂

(k)
L (y(t), u(t))

∣
∣ ≤ η̄

(k)
L (y(t), u(t))

for all k = 1, 2, . . . , n, t > TL and for all (x, u) ∈ D,
where η̄(k)L is a known bounding function and η̂(k)L (y, u) is the
functional approximator using the parameter vector obtained at
the end of the learning phase, i.e., η̂L(y, u) � �(y, u)θ̂(TL).

The bound η̄(k)L can be computed by applying a set member-
ship technique, as indicated in [40] and the references therein.
In addition, the bound η̄(k)L can take a constant value for a
given compact region according to the universal approximation
property of the RBF networks [43]. Specifically, consider the
case of the linearly parameterized network consisting by radial
basis functions (RBFs) described by fnn(Z) = W	S(Z) =
∑Q

i=1 wi si (Z), where Z ∈ �Z ⊂ Qq is the input vector,
W = [w1, . . . , wQ ]	 is the weight vector, Q is the number of
nodes of the network, and S(Z) = [s1(Z), . . . , sQ (Z)]	 is the
vector of RBFs. It has been shown in [44] and [45] that for
any continuous function f (Z) : �Z → R, where �Z ⊂ Rq

is a compact set, and for the linear in parameters RBF
network W	S(Z) with a sufficiently large node number Q,
then there exists an ideal constant weight vector W∗, such
that the approximation error ε(Z) � f (Z) − (W∗)	S(Z)
satisfies |ε(Z)| ≤ ε∗ for all Z ∈ �Z . Hence, by selecting
a sufficiently large set of basis functions, the approximation
error can be made arbitrarily small. The main issue, though, is
selecting an appropriate time TL that may pose a challenge for
learning the modeling uncertainty. However, the key point for
fault detection enhancement is achieved as long as the bound
η̄
(k)
L (y, u) (with the use of learning) is smaller than the bound

on |η(k)(x, u)| that would be used instead if no learning was
used.

Therefore, �η(t) from (15), for t > TL , becomes
�η(t) = �ηL(t), where

�ηL(t) � η(x(t), u(t))− η̂L(y(t), u(t)) (21)

and therefore, the kth component of the residual (20) becomes

r (k)(t) = Hp(s)
[
�η

(k)
L (t)

] + ε
(k)
�g(t)− h p(t)ξ

(k)(0)+ ε
(k)
ξ (t)

(22)

where ε
(k)
�g(t) � Hp(s)[g(k)(x(t), u(t)) − g(k)(x(t) +

ξ(t), u(t))] is the filtered form of the function discrepancy
term that arises due to the measurement noise. Note that
ε
(k)
�g(t) = Hp(s)[�g(k)(t)] under sensor fault-free operation

[due to the use of measurements in �g(t) given by (14)].
For the derivation of the detection threshold, we make the
following assumption.

Assumption 6: The filtered function mismatch term ε
(k)
�g(t)

(under sensor fault-free operation) is bounded by a computable
positive function ε̄(k)�g(t), i.e., for all t > 0

∣
∣ε
(k)
�g(t)

∣
∣ ≤ ε̄

(k)
�g(t), k = 1, 2, . . . , n.

Assumption 6 is based on the observation that filtering
dampens the error effect of measurement noise present in
the function mismatch term �g(t). A suitable selection of
the bound ε̄(k)�g can be derived through the use of simulations
(i.e., Monte Carlo) by filtering the function mismatch term
using the nominal function and the available noise characteris-
tics (note that the measurement noise is assumed to take values
in a compact set). Alternatively, one may exploit the Lipschitz
property of the function f (k)(·) and derive a suitable bound
as ε̄(k)�g = (|A(k)| + λ fk )H̄p(s)[ξ̄d ], where A(k) indicates the
kth row of A and H̄p(s) is a transfer function with an impulse
response h̄ p(t), such that |h p(t)| ≤ h̄ p(t) for all t > 0.
However, this bound is more conservative, since the filtering
benefits are not exploited.

By using the triangle inequality, the residual (22) satisfies

|r (k)(t)| ≤ |Hp(s)[�η(k)(t)]| + ∣
∣ε
(k)
�g(t)

∣
∣ + |h p(t)ξ

(k)(0)|
+ ∣

∣ε
(k)
ξ (t)

∣
∣.

Therefore, by using the well-known result that the impulse
response h p(t) of a strictly proper and asymptotically stable
transfer function Hp(s) decays exponentially, i.e., |h p(t)| ≤
νe−ζ t for some ν > 0, ζ > 0, for all t > 0 [46], and by using
Assumptions 5 and 6, the detection threshold for t > TL is
given by

r̄ (k)(t) � H̄p(s)
[
η̄
(k)
L (y(t), u(t))

] + ε̄
(k)
�g(t)+ |h p(t)|ξ̄ (k)

+ ε̄(k)ξ (t) (23)

where H̄p(s) is a filter with transfer function H̄p(s) =
ν/(s + ζ ). Note that, even a conservative bound ξ̄ (k) only
affects the threshold during the initial transient, since h p(t) is
exponentially decaying.

Remark 2: In earlier works [17], [27], [39], it was con-
sidered that the modeling uncertainty η(k) was bounded by
an appropriate bounding function η̄(k), which could lead to
conservative detection thresholds. In this paper, we exploit
the learned modeling uncertainty to derive less conservative
thresholds through η̄(k)L , which can be smaller than η̄(k), in
addition to noise attenuation through filtering and, therefore,
enhance fault detectability. For instance, in this works’ setting,
if we did not utilize learning or filtering, but instead considered
that the modeling uncertainty satisfies |η(k)(x, u)| ≤ η̄(k)(y, u)
for all k = 1, . . . , n, then the estimator would simply be˙̂x = g(y, u), the residual would directly be given by ε(t) =
H1(s)[y(t) − x̂(t)], and a suitable threshold in this case
would be ε̄(k)(t) = 1/(s + α)[�̄g(k)(t) + η̄(k)(y(t), u(t)) +
αξ̄ (k)(t)] + e−αt ξ̄ (k)(t) + ξ̄ (k)(t), where �̄g(k)(t) is a bound
on the mismatch function �g(k)(t). Therefore, the threshold
in this case may be more conservative due to the bounds used
(on the modeling uncertainty, the noise, and the mismatch
function�g(k)(t)), leading to missed detections. This is further
illustrated in the simulation results (Section VII).
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Remark 3: Qualitatively, if no filtering is used, then in order
to guarantee no-false alarms, bounds on the noise magnitude
and mismatch functions must be used, which can be rather
conservative leading to conservative detection thresholds.
By using filtering, the effect of noise is attenuated, allowing
to set tighter bounds on the filtered noise and the filtered
mismatch functions and, thus, leading to tighter detection
thresholds. Even though the residual signal is lowered due
to the use of filtering, the detection threshold in this case is
tighter—relatively to the residual—allowing the easier detec-
tion of a fault in comparison with the case in which no filtering
is used. Of course, the filter selection plays a crucial role.
Further details regarding the performance enhancement of the
filtering scheme are given in our earlier work [27]. Note that, if
the fault that has occurred (process or sensor) is not sufficiently
large, so that the residual r(t) crosses the detection thresh-
old r̄(t), then the fault remains undetected (missed alarm).
In general, this is not uncommon in fault diagnosis schemes,
because it is difficult to strike a balance between conservative
detection thresholds and avoiding the presence of false alarms.
This is a key reason that we propose the integrated learning
and filtering approach in order to achieve tight detection
thresholds that guarantee no-false alarms.

IV. FAULT DETECTABILITY ANALYSIS

The design and analysis of the fault detection scheme in
Sections II and III were based on the derivation of suitable
thresholds r̄ (k)(t), such that in the absence of any fault, the
residual signals r (k)(t) are bounded by r̄ (k)(t) for t > TL .
In this section, fault detectability conditions for the aforemen-
tioned fault detection scheme are derived. The fault detectabil-
ity analysis provides an implicit characterization, in nonclosed
form, of the class of faults detectable by the proposed scheme.

Theorem 1: Consider the nonlinear system (1) and (2) with
the adaptive approximation structure described in (7), (10),
(11), (16), and (17), and the fault detection scheme described
in (8), (18), and (23).

1) Process Fault Detectability: A process fault occurring
at time T x

0 > TL is detectable at time Td > T x
0

if the following condition is satisfied for some
k = 1, 2, . . . , n:
∣
∣Hp(s)

[
βx(Td − T x

0

)
φ(k)(x(Td), u(Td))

]∣
∣ > 2r̄ (k)(Td).

(24)

2) Sensor Fault Detectability: A sensor fault occurring at
time T y

0 > TL is detectable at time Td > T y
0 if the

following condition is satisfied for some k = 1, 2, . . . , n:
|H (s)[σ (k)(Td)] + Hp(s)[g(k)(x(Td)+ ξ(Td ), u(Td))

− g(k)(x(Td)+ ξ(Td)+ σ(Td), u(Td))]| > 2r̄ (k)(Td ).

(25)
Proof:

1) In the presence of a process fault that occurs at some
time T x

0 > TL , the residual from (19) for t > T x
0 becomes

r(t) = Hp(s)
[
�g(t)+�ηL(t)+ βx(t − T x

0

)
φ(x(t), u(t))

]

− h p(t)ξ(0)+ εξ (t). (26)

By using the triangle inequality, the kth component of (26)
satisfies

|r (k)(t)| ≥ −∣
∣Hp(s)

[
�η

(k)
L (t)

]∣
∣ − ∣

∣ε
(k)
�g(t)

∣
∣ − |h p(t)||ξ(k)(0)|

−∣
∣ε
(k)
ξ (t)

∣
∣ + ∣

∣Hp(s)
[
βx(t − T x

0

)
φ(k)(x(t), u(t))

]∣
∣

≥ −H̄p(s)
[
η̄
(k)
L (y(t), u(t))

] − ε̄
(k)
�g(t)− |h p(t)|ξ̄ (k)

− ε̄(k)ξ (t)+ ∣
∣Hp(s)

[
βx(t − T x

0

)
φ(k)(x(t), u(t))

]∣
∣

≥ −r̄ (k)(t)+ ∣
∣Hp(s)

[
βx(t − T x

0

)
φ(k)(x(t), u(t))

]∣
∣.

Therefore, for fault detection, the inequality |r (k)(t)| > r̄ (k)(t)
must hold at some time t = Td for some k = 1, 2, . . . , n, so
the final fault detectability condition in (24) is obtained.

2) In the presence of a sensor fault that occurs at some time
T y

0 > TL , the residual from (19) by using (14), and by adding
and subtracting g(x(t)+ ξ(t), u(t)) for t > T y

0 becomes

r(t) = Hp(s)[g(x(t), u(t))− g(x(t)+ ξ(t), u(t))

+ g(x(t)+ ξ(t), u(t))

− g(x(t)+ ξ(t)+ σ(t), u(t))]
+ Hp(s)[�ηL(t)] − h p(t)ξ(0)+ εξ (t)+ H (s)[σ(t)].

(27)

By using the triangle inequality and Assumptions 5 and 6, the
kth component of (27) satisfies

|r (k)(t)|
≥ |H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]|
− ∣

∣ε
(k)
�g(t)

∣
∣−∣

∣Hp(s)
[
�η

(k)
L (t)

]∣
∣−|h p(t)||ξ(k)(0)|−

∣
∣ε
(k)
ξ (t)

∣
∣

≥ |H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]|
− ε̄(k)�g(t)− H̄p(s)

[
η̄
(k)
L (y(t), u(t))

] − |h p(t)|ξ̄ (k) − ε̄
(k)
ξ (t)

≥ |H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]|
− r̄ (k)(t).

Therefore, for fault detection, the inequality |r (k)(t)| > r̄ (k)(t)
must hold at some time t = Td for some k = 1, 2, . . . , n,
so the final fault detectability condition in (25) is
obtained.

The above theorem provides sufficient conditions for the
implicit characterization of a class of faults that can be
detected by the proposed fault detection scheme. As seen from
the detectability conditions, the detection of the fault depends
on the filtered fault functions. This demonstrates the crucial
importance of the filter selection, which allows the derivation
of tight detection thresholds. As a result, some filter selections
may lead to better fault detection performance than others.
A rigorous investigation of the filtering impact on the detection
time is presented in [27]. In addition, note that the detectability
conditions, which are obtained under worst case conditions,
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are only sufficient (but not necessary), and hence, the classes
of the detectable faults may be significantly larger.

V. FAULT TYPE IDENTIFICATION

In this section, we proceed to the task of identification of
the fault type and the estimation of the magnitude of the fault
that has occurred. When a fault is detected at time Td , we
initiate two distinct estimation models in order to identify the
potential fault that has occurred. The first estimation model
considers that a process fault has occurred and relies on the
same logic for learning the modeling uncertainty by resuming
learning to allow learning of the process fault as well. The
second estimation model considers the occurrence of a sensor
fault and makes use of learning to estimate adaptively the
potential sensor fault(s) magnitude that occurred. The fault
type identification methodology relies on an exclusion-based
logic, i.e., suitable threshold signals in both estimation models
are obtained, and when they are exceeded, the particular fault
type is excluded, and hence, the occurrence of the other
fault type is guaranteed. Furthermore, the use of learning in
both estimation models provides an estimation of the fault
that has occurred, once the fault type identification has been
concluded.

A. Process Fault

In this section, we consider the case of a process fault.
When a fault is detected at time Td , we use the same logic
that was used to learn the modeling uncertainty, with the only
difference that this time the task is to learn the combined effect
of the modeling uncertainty coupled with the potential process
fault function. Essentially, we use the same estimation model
as before indicated by (10), (11), (18), and resume learning.
For clarity, we rewrite the equations as follows:

˙̂x p(t) = g(y(t), u(t))+ η̂(y(t), u(t), θ̂ (t)) (28)

εp(t) � H1(s)[y(t)− x̂ p(t)] (29)

rp(t) � H2(s)[εp(t)] (30)

with initial conditions x̂ p(Td) = y(Td) and θ̂ (Td) = θ̂ (TL)
(resume learning). As before, we allow a training time TL ,2
to learn the combined effect of the modeling uncertainty and
the potential process fault., i.e., the training is conducted
during the interval [Td , Td + TL ,2], and make the following
assumption, similar to Assumption 5.

Assumption 7: In the case of a process fault, after the end
of the learning phase at time Td + TL ,2, the error between
the combined modeling uncertainty and fault function η(·)+
βx(·)φ(·) and the adaptive approximator η̂, i.e., �ηL ,2(t) �
η(x(t), u(t)) + βx(t − T x

0 )φ(x(t), u(t)) − η̂L ,2(y(t), u(t)), is
bounded as follows:

∣
∣�η

(k)
L ,2(t)

∣
∣ ≤ η̄

(k)
L ,2(y(t), u(t))

for all k = 1, 2, . . . , n, t > Td + TL ,2 and for all (x, u) ∈ D,
where η̄

(k)
L ,2 is a known bounding function and η̂

(k)
L ,2(y, u)

is the functional approximator using the parameter vector
obtained at the end of the second stage of the learning phase,
i.e., η̂L ,2(y, u) � �(y, u)θ̂(Td + TL ,2).

Therefore, in the case of a process fault, by using (28)–(30),
rp satisfies the following equation for t > Td + TL ,2 [derived
similar to (20)]:

rp(t) = Hp(s)[�ηL ,2(t)] + Hp(s)[�g(t)] − h p(t)ξ(Td)

+ εξ (t). (31)

Hence, by using the triangle inequality and by using
Assumption 6 (note that it is valid under sensor fault-free oper-
ation) and Assumption 7, the kth component of rp from (31)
satisfies
∣
∣r (k)p (t)

∣
∣ ≤ ∣

∣Hp(s)
[
�η

(k)
L ,2(t)

]∣
∣ + ∣

∣ε
(k)
�g(t)

∣
∣ + |h p(t)||ξ(k)(Td)|

+ ∣
∣ε
(k)
ξ (t)

∣
∣

and hence, |r (k)p (t)| ≤ r̄ (k)p (t), where r̄ (k)p (t) is the process
isolation threshold given by

r̄ (k)p (t) � H̄p(s)
[
η̄
(k)
L ,2(y(t), u(t))

] + ε̄
(k)
�g(t)+ |h p(t)|ξ̄ (k)

+ ε̄(k)ξ (t). (32)

Fault Identification Logic: When a process fault occurs
and it is detected at time Td , then the residual rp(t) given
by (28)–(30) satisfies |r (k)p (t)| ≤ r̄ (k)p (t) for all k = 1, . . . , n
and for all t > Td +TL ,2. Hence, if at some time t > Td +TL ,2,

we have |r (k)p (t)| > r̄ (k)p (t) for some k = 1, . . . , n, then the
possibility of a process fault is excluded, and it is guaranteed
that a sensor fault has occurred [single or multiple sensor
fault(s)]. The estimation of the sensor fault is given by σ̂ (t)
(to be designed in the sequel) from which the faulty sensors
can be identified as the components that deviate significantly
from zero.

Remark 4: As it is the case for the time TL , which is
allowed for learning the modeling uncertainty, the training
time TL ,2 should be sufficiently large to allow learning of the
combined effect of the modeling uncertainty with the potential
process fault. Note that the fault could be incipient and still be
developing at the end of the learning period, but given that it
has been detected at time Td (therefore, it has been developing
for time Td − T x

0 which was sufficient for the fault to be
detected), it is considered that with the additional time TL ,2,
the error at the end of the learning period will be within the
bound stated with Assumption 7.

B. Sensor Faults

In this section, we consider the occurrence of a sensor
fault. When a fault is detected at time Td , the following
estimation model is initiated to learn the potential sensor fault
that occurred:

˙̂xs(t) = Ax̂s(t)+ f (x̂s(t), u(t))+ η̂L(y(t), u(t))+�ε
y
s (t)

(33)

ŷs(t) = x̂s(t)+ σ̂ (t) (34)
˙̂σ(t) = Pσ

(
�yε

y
s (t)

)
(35)

where ε
y
s (t) denotes the output estimation error ε y

s (t) �
y(t) − ŷs(t), � is a design matrix that is selected, so that
A0 � A − � is Hurwitz, �y ∈ R

n×n is a symmetric and
positive definite learning rate matrix, and σ̂ (t) ∈ R

n denotes
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the sensor fault estimation. Finally, the initial conditions are
x̂s(Td) = 0 and σ̂ (Td) = 0. In the following, we denote the
state estimation error as εx

s (t) � x(t)− x̂s(t). The projection
operator Pσ restricts the estimation vector σ̂ (t) in a predefined
and convex region �σ ∈ R

n in order to guarantee the stability
of the learning algorithm in the presence of noise and modeling
uncertainty. In this paper, �σ is considered to be a zero-origin
hypersphere of radius Mσ , and hence, the adaptive law for ˙̂σ
can be expressed as [32], [47]

˙̂σ(t) = �yε
y
s (t)− χ∗�y σ̂ (t)σ̂	(t)

σ̂	(t)�y σ̂ (t)
�yε

y
s (t) (36)

where χ∗ denotes the indicator function

χ∗ =
{

1, if |σ̂ (t)| = Mσ and σ̂	(t)�yε
y
s (t) > 0

0, otherwise.
(37)

The following main result summarizes the properties of the
aforementioned adaptive estimation scheme.

Theorem 2: In the case of a sensor fault σ(t) that occurs
at time T y

0 and is detected at time Td , the adaptive
nonlinear estimation scheme described by (33)–(35) under
Assumptions 1–3 and 5, with the positive constants μ, ρ
selected such that |eA0t | ≤ μe−ρt for all t > 0 and
ρ − μλ f > 0, guarantees that the following holds.

1) The state estimation error εx
s (t), the output estimation

error ε y
s (t), and the sensor fault estimation vector σ̂ (t)

are uniformly bounded, i.e., εx
s (t), ε

y
s (t), σ̂ (t) ∈ L∞.

Specifically, a bound on εx
s (t) such that |εx

s (t)| ≤ ε̄x
s (t)

for all t > Td is given by (48), and a bound for ε y
s (t)

such that |ε y
s (t)| ≤ ε̄

y
s (t) for all t > Td is given by (50).

2) There exist a positive constant q and a bounded function
v(t), such that for all finite t > Td , the output estimation
error ε y

s (t) satisfies
∫ t

Td

∣
∣ε

y
s (τ )

∣
∣2

d τ ≤ q + 4
∫ t

Td

|v(τ )|2d τ. (38)

3) In the absence of measurement noise (i.e., ξ(t) = 0),
if the bounded function v(t) is square integrable (i.e.,
v(t) ∈ L2), then limt→∞ ε

y
s (t) = 0.

Proof:
1) When a sensor fault occurs, by using (1) (note that

φ(·) = 0) and (33), the state estimation error εx
s (t) =

x(t)− x̂s(t) satisfies

ε̇x
s (t) = ẋ(t)− ˙̂xs(t)

= Ax(t)+ f (x(t), u(t)) + η(x(t), u(t))− Ax̂s(t)

− f (x̂s(t), u(t))− η̂L(y(t), u(t)) −�(y(t)− ŷs(t))

(39)

= Aεx
s (t)+� fs(t)+�ηL(t)

−�(x(t)+ ξ(t)+ σ(t)− x̂s(t)− σ̂ (t))

= A0ε
x
s (t)+�σ̃(t)−�ξ(t)+� fs(t)+�ηL(t) (40)

where

� fs(t) � f (x(t), u(t)) − f (x̂s(t), u(t)) (41)

σ̃ (t) � σ̂ (t)− σ(t) (42)

and �ηL(t) is given by (21) (note that a fault is considered to
occur after the end of training at time TL). By solving (40),
we obtain

εx
s (t) = eA0(t−Td)εx

s (Td )+
∫ t

Td

eA0(t−τ )

× [�σ̃(τ)−�ξ(τ)+� fs(τ )+�ηL(τ )] dτ. (43)

Using the triangle inequality, (43) satisfies
∣
∣εx

s (t)
∣
∣ ≤ |eA0(t−Td)|∣∣εx

s (Td)
∣
∣

+
∫ t

Td

|eA0(t−τ )|[|�||σ̃ (τ )| + |�||ξ(τ )| + |� fs(τ )|
+ |�ηL(τ )|] dτ. (44)

Since A0 is Hurwitz, there exist positive constants μ and ρ,
such that |eA0t | ≤ μe−ρt for all t > 0 [42]. Moreover,
by using the initial conditions x̂s(Td) = 0, we obtain
|εx

s (Td)| = |x(Td) − x̂s(Td )| = |x(Td)| ≤ x̄d , where x̄d is a
suitable bound for the region of the state operation. By using
Assumption 2, |� fs(t)| ≤ λ f |x(t)−x̂s(t)| = λ f |εx

s (t)|, and by
using Assumption 5, we have that |�ηL(t)| ≤ |η̄L(y(t), u(t))|.
Regarding the term σ̃ (t) = σ̂ (t)−σ(t), it is generally unknown
but, since σ̂ (t) belongs to the known compact set �σ , we
have that |σ̂ (t) − σ(t)| ≤ κ(t) for a suitable κ(t) depending
on the geometric properties of the set �σ [17], [32].
More specifically, in our case where the compact
set �σ is an origin-based hypersphere of radius Mσ , the
function κ(t) is given by κ(t) = Mσ + |σ̂ (t)|. Hence, (44)
becomes

∣
∣εx

s (t)
∣
∣ ≤ μe−ρ(t−Td ) x̄d

+
∫ t

Td

μe−ρ(t−τ )[|�|κ(τ )+ |�|ξ̄d + λ f |εx
s (τ )|

+ |η̄L(y(τ ), u(τ ))|] dτ (45)

which can be written as

∣
∣εx

s (t)
∣
∣ ≤ E0(t)+ μλ f e−ρt

∫ t

Td

eρτ
∣
∣εx

s (τ )
∣
∣ dτ (46)

where

E0(t) � μe−ρ(t−Td ) x̄d +
∫ t

Td

μe−ρ(t−τ )

× [|�|κ(τ )+ |�|ξ̄d + |η̄L(y(τ ), u(τ ))|]d τ. (47)

By applying the Bellman–Gronwall lemma [42] to (46),
it results in |εx

s (t)| ≤ ε̄x
s (t) where

ε̄x
s (t) � E0(t)+ μλ f

∫ t

Td

E0(w)e
−(ρ−μλ f )(t−w) dw (48)

where the positive constants μ and ρ must be selected, such
that ρ−μλ f > 0 to guarantee that εx

s (t) remains bounded, and
hence, εx

s (t)∈ L∞. Moreover, since |σ̃ (t)| = |σ̂ (t) − σ(t)| ≤
κ(t) due to the projection operator, we deduce that σ̃ (t) ∈ L∞,
σ̂ (t) ∈ L∞. Finally, by using (2) and (34), ε y

s (t) = y(t)− ŷs(t)
becomes

ε
y
s (t) = εx

s (t)+ ξ(t)− σ̃ (t). (49)
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Using the triangle inequality, (49) satisfies
∣
∣ε

y
s (t)

∣
∣ ≤ ∣

∣εx
s (t)

∣
∣ + |ξ(t)| + |σ̃ (t)|

≤ ε̄
y
s (t) � ε̄x

s (t)+ ξ̄d + κ(t) (50)

and hence, ε y
s (t) is bounded, i.e., ε y

s (t) ∈ L∞.
2) From (43), εx

s (t) can be written as

εx
s (t) = υ1(t)+ υ2(t) (51)

where υ1(t) and υ2(t) are the solutions of

υ̇1(t) = −�υ1(t)+�σ̃(t)−�ξ(t)+� fs(t)+�ηL(t)

υ̇2(t) = −�υ2(t)

with initial conditions υ1(Td) = 0 and υ2(Td) = εx
s (Td) =

x(Td) (note that x̂s(Td) = 0).
By using (51), (49) becomes

ε
y
s (t) = υ1(t)+ υ2(t)+ ξ(t)− σ̃ (t). (52)

Let the Lyapunov function candidate be V (t) =
(1/2)σ̃	(t)(�y)−1σ̃ (t)+ ∫ ∞

t |υ2(τ )|2 dτ . The time derivative
of V (t) is given by

V̇ (t) = σ̃	(t)(�y)−1 ˙̃σ(t)− |υ2(t)|2
= σ̃	(t)(�y)−1( ˙̂σ(t)− σ̇ (t))− |υ2(t)|2

and by using (36), it becomes

V̇ (t) = σ̃	(t)ε y
s (t)− σ̃	(t)χ∗ σ̂ (t)σ̂	(t)

σ̂	(t)�y σ̂ (t)
�yε

y
s (t)

− σ̃	(t)(�y)−1σ̇ (t)− |υ2(t)|2. (53)

Following the same logic as in [47], it can be shown that the
second term in (53) satisfies:

σ̃	(t)χ∗ σ̂ (t)σ̂	(t)
σ̂	(t)�y σ̂ (t)

�yε
y
s (t) ≥ 0

and hence, (53) can be written as

V̇ (t) ≤ σ̃	(t)ε y
s (t)− σ̃	(t)(�y)−1σ̇ (t)− |υ2(t)|2. (54)

By using σ̃ (t) = −ε y
s (t) + υ1(t) + υ2(t) + ξ(t) [from (52)]

and by completing the squares, (54) becomes

V̇ (t) ≤ (
ε

y
s (t)

)	( − ε
y
s (t)+ υ1(t)+ υ2(t)+ ξ(t)

)

− σ̃	(t)(�y)−1σ̇ (t)− |υ2(t)|2
≤ −∣

∣ε
y
s (t)

∣
∣2 + ∣

∣ε
y
s (t)

∣
∣ξ̄d +∣

∣ε
y
s (t)

∣
∣|υ1(t)| + ∣

∣ε
y
s (t)

∣
∣|υ2(t)|

−|υ2(t)|2 + |σ̃ (t)||(�y)−1||σ̇ (t)|
≤ −

∣
∣ε

y
s (t)

∣
∣2

4
+ ξ̄2

d + |υ1(t)|2 + |σ̃ (t)||(�y)−1||σ̇ (t)|.
(55)

Let v(t) � (|υ1(t)|2+ξ̄2
d +|σ̃ (t)||(�y)−1||σ̇ (t)|)(1/2) (note that

v is bounded). Then, by integrating (55) from time Td to t we
obtain
∫ t

Td

∣
∣ε

y
s (τ )

∣
∣2

dτ

≤ 4(V (Td)− V (t))

+ 4
∫ t

Td

(|υ1(τ )|2 + ξ̄2
d + |σ̃ (τ )||(�y)−1||σ̇ (τ )|) dτ

≤ q + 4
∫ t

Td

|v(τ )|2 dτ (56)

where q � supt≥Td
[4(V (Td) − V (t)] is a positive constant

(since V (t) is uniformly bounded).
3) Since ε y

s (t) ∈ L∞ as it was shown in part (1) of the
proof, then from (35), we deduce that ˙̂σ(t) ∈ L∞. Moreover,
all terms in the right-hand side of (40) were shown to be
bounded, and therefore, ε̇x

s (t) ∈ L∞. Moreover, in the absence
of noise (i.e., ξ(t) = 0), from (49), we have that ε̇ y

s (t) =
ε̇x

s (t)+ σ̇ (t)− ˙̂σ(t), and since ε̇x
s (t) ∈ L∞, σ̇ (t) ∈ L∞ (from

Assumption 3), and ˙̂σ(t) ∈ L∞, we obtain that ε̇ y
s (t) ∈ L∞.

Therefore, if the bounded function v(t) is square integrable,
i.e., v(t) ∈ L2, then (56) can be valid for t → ∞, leading to
ε

y
s (t) ∈ L2. Since ε y

s (t) ∈ L∞, ε̇ y
s (t) ∈ L∞, and ε y

s (t) ∈ L2,
then according to Barbalat’s Lemma, limt→∞ ε

y
s (t) = 0.

Now, we exploit the findings of Theorem 2 to derive suitable
bounds to aid in the determination of the fault type. More
specifically, we proceed to derive a threshold for the case of a
sensor fault, so that when it is exceeded then it is guaranteed
that a process fault has occurred. Two such residuals are given.
The first one is the output estimation error ε y

s (t) = y(t)− ŷs(t),
since it is bounded by ε̄

y
s (t) given by (50) for all t > Td

in the case of a sensor fault. The second residual rs(t)
exploits both the use of filtering and some signals from the
designed adaptive scheme, to cancel out some terms in the
residual and allow a potentially tighter threshold. Therefore,
the residual rs(t) in this case is obtained by

rs(t) � H (s)
[
ε

y
s (t)+w(t)

]
(57)

ẇ(t) = �(y(t)− ŷs(t))+ ˙̂σ(t) (58)

with initial condition w(Td ) = 0. For simplicity, in the sequel,
we omit the initial condition terms (now at time Td ) that
are exponentially decaying to zero, since they are multiplied
with h p(t), and do not affect substantially the threshold
derivation. Therefore, by using (49), (57) can be written

rs(t) = H (s)
[
εx

s (t)+ ξ(t)− σ̃ (t)+w(t)
]

= Hp(s)
[
ε̇x

s (t)− ˙̃σ(t)+ ẇ(t)
] + εξ (t) (59)

and by using (39) and (58), (59) becomes

rs(t)= Hp(s)
[
Aεx

s (t)+� fs(t)+�ηL(t)−�(y(t)− ŷs(t))

− ( ˙̂σ(t)−σ̇ (t))+�(y(t)− ŷs(t))+ ˙̂σ(t)]+ εξ (t)

= Hp(s)
[
Aεx

s (t)+� fs(t)+�ηL(t)+ σ̇ (t)
] + εξ (t).

(60)

Thus, by using the triangle inequality, the kth component
of (60) satisfies

∣
∣r (k)s (t)

∣
∣ ≤ H̄p(s)

[|A(k)|∣∣εx
s (t)

∣
∣ + ∣

∣� f (k)s (t)
∣
∣ + ∣

∣�η
(k)
L (t)

∣
∣

+ |σ̇ (k)(t)|] + ∣
∣ε
(k)
ξ (t)

∣
∣. (61)

Using Assumption 2, 3, and 5, a suitable threshold r̄ (k)s (t), such
that |r (k)s (t)| ≤ r̄ (k)s (t) for all t > Td and for all k = 1, . . . , n
is obtained as

r̄ (k)s (t) � H̄p(s)
[
(|A(k)| + λ fk )ε̄

x
s (t)+ η̄

(k)
L (y(t), u(t))+ ψ

]

+ ε̄(k)ξ (t). (62)

Fault Identification Logic: When a sensor fault occurs and is
detected at time Td , then |ε y

s (t)| ≤ ε̄
y
s (t) and |r (k)s (t)| ≤ r̄ (k)s (t)
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for all k = 1, . . . , n and for all t > Td . Therefore, if at some
time t > Td , we have |ε y

s (t)| > ε̄
y
s (t) or |r (k)s (t)| > r̄ (k)s (t)

for some k = 1, . . . , n, then the possibility of a sensor fault is
excluded, and it is guaranteed that a process fault has occurred.
The estimation of the process fault (including the modeling
uncertainty) is given by η̂L ,2 for t > Td + TL2 .

VI. FAULT TYPE IDENTIFICATION ANALYSIS

In this section, fault type identification conditions for
the aforementioned fault diagnosis scheme are derived. This
analysis, similar to the fault detectability analysis given in
Section IV, constitutes a theoretical result that characterizes
quantitatively and, in nonclosed form, the classes of faults that
can be identified (process or sensor) by the proposed scheme.

Theorem 3: Consider the nonlinear system (1) and (2) with
the adaptive approximation structure described in (7), (10),
(11), (16), and (17) along with the two estimation models: for
process faults given by (28)–(30) and for sensor faults given
by (33)–(35) and their corresponding isolation thresholds given
by (32) (r̄ p(t)) and (62) (r̄s(t)).

1) Process Fault Identification: A process fault type is
identified if one of the following conditions (63) or (65)
is satisfied for some k = 1, 2, . . . , n at some time t > Td

(the possibility of a sensor fault is excluded):
∣
∣εx

s,2(t)
∣
∣ > ε̄

y
s (t)+ ξ̄d + |σ̂ (t)| (63)

where

εx
s,2(t) � eA0(t−Td )x(Td)+

∫ t

Td

eA0(t−τ )

× [
�σ̂ (τ)−�ξ(τ)+� fs(τ )+�ηL(τ )

+ βx(τ − T x
0

)
φ(x(τ ), u(τ ))

]
dτ (64)

or
∣
∣Hp(s)

[
βx(t − T x

0 )φ
(k)(x(t), u(t))

]∣
∣ > r̄ (k)s (t)

+∣
∣Hp(s)

[
A(k)εx

s (t)+� f (k)s (t)+�η
(k)
L (t)

] + ε
(k)
ξ (t)

∣
∣.

(65)

2) Sensor Fault Identification: A sensor fault type is
identified if the following condition is satisfied for
some k = 1, 2, . . . , n at some time t > Td + TL ,2
(the possibility of a process fault is excluded):
|H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]| > 2r̄ (k)p (t).

(66)

Proof:
1) When a fault is detected at time Td , one of the estimators

initiated for identifying the fault type is the one for sensor
faults given in Section V-B, which satisfies |ε y

s (t)| ≤ ε̄
y
s (t)

and |r (k)s (t)| ≤ r̄ (k)s (t) for all k = 1, . . . , n and for all t > Td ,
if a sensor fault has occurred. Therefore, when a process
fault occurs and the fault is detected, the state estimation
error εx

s (t) = x(t) − x̂s(t) (now indicated as εx
s,2(t)) is

given by (64) (derived similar to (43) by using σ(t) = 0).

By using the triangle inequality, the output estimation
error ε y

s (t) from (49) satisfies
∣
∣ε

y
s (t)

∣
∣ ≥ ∣

∣εx
s,2(t)

∣
∣ − |ξ(t)| − |σ̂ (t)|

≥ ∣
∣εx

s,2(t)
∣
∣ − ξ̄d − |σ̂ (t)|. (67)

For process fault identification, the inequality |ε y
s (t)| > ε̄

y
s (t)

(possibility of a sensor fault is excluded) must hold at some
time t > Td , so the sensor fault identification condition in (63)
is obtained.

The second process fault identification condition given
by (65) is obtained as follows. When a process fault occurs
and the fault is detected, the residual rs(t) from (60) becomes

rs(t) = Hp(s)
[
Aεx

s (t)+� fs(t)+�ηL(t)

+ βx(t − T x
0

)
φ(x(t), u(t))

] + εξ (t). (68)

Using the triangle inequality, the kth component of (68)
satisfies

∣
∣r (k)s (t)

∣
∣ ≥ ∣

∣Hp(s)
[
βx(t − T x

0

)
φ(k)(x(t), u(t))

]∣
∣

− ∣
∣Hp(s)

[
A(k)εx

s (t)+� f (k)s (t)+�η
(k)
L (t)

]

+ ε
(k)
ξ (t)

∣
∣. (69)

For process fault determination, the inequality |r (k)s (t)| >

r̄ (k)s (t) for some k = 1, . . . , n (possibility of a sensor fault
is excluded) must hold at some time t > Td , so the sensor
fault identification condition in (65) is obtained.

2) When a fault is detected at time Td , one of the estimators
initiated for identifying the fault type is the one for process
faults given in Section V-A, which satisfies |r (k)p (t)| ≤ r̄ (k)p (t)
for all k = 1, . . . , n and t > Td + TL ,2 if a process fault has
occurred. Therefore, when a sensor fault occurs and the fault
is detected, the residual rp(t) from (31), by using (14) and by
adding and subtracting g(x(t)+ ξ(t), u(t)), becomes

rp(t) = Hp(s)[g(x(t), u(t))

− g(x(t)+ ξ(t), u(t)) + g(x(t)+ ξ(t), u(t))

− g(x(t)+ ξ(t)+ σ(t), u(t))] + H (s)[σ(t)]
+ Hp(s)[�ηL ,2(t)] − h p(t)ξ(Td )+ εξ (t). (70)

By using the triangle inequality and Assumptions 6 and 7, the
kth component of (70) satisfies
∣
∣r (k)p (t)

∣
∣

≥ |H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]|
− ∣

∣ε
(k)
�g(t)

∣
∣ − ∣

∣Hp(s)
[
�η

(k)
L ,2(t)

]∣
∣

− |h p(t)||ξ(k)(Td)| − ∣
∣ε
(k)
ξ (t)

∣
∣

≥ |H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]|
− ε̄(k)�g(t)− H̄p(s)

[
η̄
(k)
L ,2(y(t), u(t))

]−|h p(t)|ξ̄ (k)−ε̄(k)ξ (t)

≥ |H (s)[σ (k)(t)] + Hp(s)[g(k)(x(t)+ ξ(t), u(t))

− g(k)(x(t)+ ξ(t)+ σ(t), u(t))]|
− r̄ (k)p (t)
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and therefore, for sensor fault identification, the inequality
|r (k)p (t)| > r̄ (k)p (t) (possibility of a process fault is excluded)
must hold at some time t > Td+TL ,2 for some k = 1, 2, . . . , n,
so the final sensor fault identification condition in (66) is
obtained.

As in the case of the fault detectability conditions given in
Theorem 1, the fault type identification conditions (63), (65),
and (66) stated in Theorem 3 are only sufficient (but not
necessary), and hence, the classes of the identifiable faults
can be larger.

Remark 5: The identification residuals rp(t) and rs(t) uti-
lize filtering and the learned (potential) process or sensor fault
in order to obtain smaller residuals, so that tighter identifica-
tion threshold r̄ p(t) and r̄s(t) can be obtained, respectively.
The implementation of these thresholds relies on the bounds
stated in Assumptions 5–7, and as a result, crude knowl-
edge of these bounds may lead to conservative identification
thresholds, making it hard to be crossed by their respective
residual and, thus, not concluding the fault type. Therefore,
the selection of proper bounds required by Assumptions 5–7
is of crucial importance in order to ease the fault type
identification task. Note that, in the case in which the fault
type identification residuals remain below their corresponding
identification thresholds, the fault type cannot be identified.

VII. SIMULATION RESULTS

In this section, we apply the proposed approach to an
example of a single-link robotic arm with a revolute elastic
joint with motion dynamics described by [32], [40]

Jl q̈l + Fl q̇l + k(ql − qm)+ (m +�m)gh sin(ql) = 0
Jmq̈m + Fmq̇m − k(ql − qm) = kτu

where ql is the angular position of the link, qm is the angular
position of the motor, Jl and Jm are the link and motor inertia,
respectively, Fl and Fm are the viscous coefficients of the
link and motor respectively, k is the elastic constant, m is the
link mass, �m is the link mass inaccuracy, g is the gravity
constant, h is the center of the mass, kτ is the amplifier gain,
and u is the torque input delivered by the motor. The values
of the parameters in SI units are: Jl = 4.5, Jm = 1, Fl = 0.5,
Fm = 1, k = 2, m = 4, �m = 0.05m, g = 9.8, h = 0.5,
kτ = 1, and u = 2 sin(0.25t). By selecting x1 = q̇m , x2 = qm ,
x3 = q̇l and x4 = ql , the nonlinear uncertain model becomes

ẋ(t) = Ax(t)+ f (x4(t), u(t)) + η(x4(t)) (71)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]	 is the state vector

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Fm

Jm
− k

Jm
0

k

Jm
1 0 0 0

0
k

Jl
− Fl

Jl
− k

Jl
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

f (x4(t), u(t)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

kτ
Jm

u(t)

0

−mgh

Jl
sin(x4(t))

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Fig. 3. (a) Learning of the modeling uncertainty. (b) Learned modeling
uncertainty after the end of learning.

and η(x4(t)) = [0, 0,−(�mgh/Jl) sin(x4(t)), 0]	. The initial
conditions of the plant are set as x(0) = 0. The measurement
noise ξ(k)(t) is generated from a uniform distribution with 5%
uncertainty of the state. The nominal nonlinear function
f (x4(t), u(t) satisfies the Lipschitz condition in x4(t) ∈ R

for all u, t with a Lipschitz constant λ f = mgh/Jl . Note that,
componentwise the function f (k) has a Lipschitz constant λ fk ,
k = 1, . . . , 4 with λ f3 = mgh/Jl and λ f1 = λ f2 = λ f4 = 0.

The filter used for dampening noise is H (s) = s Hp(s),
where Hp(s) = 502/((s + 10)(s + 50)2), and by using
α = 10, the required implementation filters are given
by H1(s) = s/(s + 10) and H2(s) = 502/(s + 50)2.
Note that Hp(s) has a nonnegative impulse response, and
therefore, the filter required for the threshold implemen-
tation is H̄p(s) = Hp(s). For simplicity, the bounds on
the filtered noise used are found from the simulation and
are ε̄

(1)
ξ = 0.01, ε̄

(2)
ξ = 0.04, ε̄

(3)
ξ = 0.002, and

ε̄
(4)
ξ = 0.006. Similarly, the bounds on the filtered mis-

match function used are ε̄
(1)
�g = 0.005, ε̄(2)�g = 0.0005,

ε̄
(3)
�g = 0.002, and ε̄(4)�g = 0.001.

The objective is to apply the proposed fault diagnosis
framework to achieve the following tasks: 1) learn the model-
ing uncertainty η; 2) detect any faults; and 3) identification of
the type of the fault (process or sensor) and fault estimation.
In addition, the enhancement of the fault detectability by
using the integrated filtering and learning approach is also
demonstrated.

1) Learning the Modeling Uncertainty: This task is based
on Sections III-A and III-B. The training time to learn
the modeling uncertainty is selected as TL = 200 s.
We use a RBF network with 30 centers distributed
evenly in the region of interest x (4) = [−0.25, 0.25] and
constant variance σ 2 = 0.022 for each basis function.
It is also considered that the radius of the hypersphere
for the parameter adaptation is Mp = 1 and the constant
matrix used for learning is �x = 2I, where I is the
identity matrix. The results of the learning process are
shown in Fig. 3, in which the modeling uncertainty η(3)

and its estimation η̂
(3)
L are shown. As it can be seen,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KELIRIS et al.: INTEGRATED LEARNING AND FILTERING APPROACH 13

the learning procedure is effective and the modeling
uncertainty is learned quickly.

2) Fault Detection: This task is based on Sections III-C
and III-D. After the end of the learning period at TL , the
fault detection scheme is initiated by implementing the
residual and the detection threshold according to (18)
and (23), respectively, using a bound for the learned
modeling uncertainty η̄L = [0, 0, 0.05, 0]	.

3) Fault Type Identification and Estimation: After the
detection of the fault, the fault identification and estima-
tion are initiated according to Section V-A to investigate
the process fault occurrence and Section V-B to inves-
tigate the sensor fault occurrence. For the investigation
of a process fault, we essentially resume the learning
process for the modeling uncertainty in order to learn
the combined effect of the modeling uncertainty and
the potential process fault. The training time is selected
as TL ,2 = 200 s, and the learning is conducted during
the time interval [Td , Td + TL ,2]. The matrix used for
learning is changed to �x = 20I to allow learning of
potential faster changes, and the bound used for the
learned modeling uncertainty combined with the process
fault is the same as before, i.e., η̄L ,2 = η̄L . After the

end of the training, if a residual r (k)p (30) exceeds its
corresponding process fault isolation threshold r̄ (k)s (32)
for some k = 1, . . . , 4, then the occurrence of a process
fault is excluded, and it is guaranteed that a sensor fault
has occurred. Once a process fault has been excluded,
then the sensor fault estimation is given by the σ̂ (t) that
contains the estimation of each sensor fault.

For the investigation of a sensor fault, we implement the
estimation model (33)–(35). The gain matrix � is selected
through the pole placement, so that the eigenvalues of A0
are located at [−9.1,−9.8,−10.5,−11.2]. The residual in
this case is implemented according to (57) and (58) and the
sensor isolation thresholds according to (48) and (62), by using
μ = 1, ρ = 7.5, Mσ = 0.1, and �y = 0.1. If at some time

t > Td , a residual r (k)s (57) exceeds its corresponding sensor

fault isolation threshold r̄ (k)s (62) for some k = 1, . . . , 4, then
the possibility of a sensor fault is excluded, and it is guaranteed
that a process fault has occurred. The estimation of the process
fault including the modeling uncertainty is given by η̂L ,2 for
t > Td + TL2 (after the end of learning).

In the sequel, we will examine two cases: the first one
considers the occurrence of a process fault and the second
one considers the occurrence of a sensor fault.

Case 1 (Process Fault): The process fault is considered
to be a fault that results in the reduction of the mass
of the link, which occurs abruptly at time T x

0 = 225 s.
Specifically, the fault function is given by φ(x(t), u(t) =
[0, 0,−θx((m +�m)gh/Jl) sin(x (4)(t)), 0]	, where θx ∈
[−1, 0] represents the percentage change of the mass, which
in this example is considered θx = −0.5. At first, in order
to demonstrate effectiveness of the proposed scheme, we
obtain the fault detection results without the use of filtering
or learning. These results, which are shown in Fig. 4, are
obtained by using suitable bounds on the noise magnitude and

Fig. 4. Process fault detection without the use of learning or filtering.

Fig. 5. Process fault detection with the integrated filtering and learning
approach.

modeling uncertainty in order to guarantee no-false alarms
as described in Remark 2. As it can be seen from Fig. 4,
the detection thresholds are too conservative to be crossed by
their respective residuals, and hence, the fault is not detected.
On the other hand, by using the integrated filtering and
learning approach proposed in this paper, we have successful
fault detection, as it can be seen from Fig. 5 that shows
the residual r (k) and corresponding detection threshold r̄ (k)

for each measurement y(k), k = 1, . . . , 4. Specifically, the
residual exceeds its threshold in the case of the estimator that
monitors y(3) at about Td = 225.5 s, and hence, the fault is
detected.

After the fault is detected, the process and sensor fault
estimation models are activated, and their results are shown
in Fig. 6(a) and (b), respectively. As it can be seen from
Fig. 6(b), in FIE for y(4), the residual exceeds its sensor
identification threshold at ∼241 s, and hence, the case of
a sensor fault is excluded, and the occurrence of a process
fault is concluded. In addition, note that in Fig. 6(a), all
the residuals remain below their corresponding process fault
identification thresholds after the end of the learning. The
process fault, including the modeling uncertainty η(3) + φ(3)

and its estimation η̂(3)L ,2, is shown in Fig. 7, where it is seen
that the function has been learned very well.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. FIEs for (a) process fault and (b) sensor fault in the occurrence of a process fault.

Fig. 7. (a) Learning of process fault including modeling uncertainty.
(b) Learned process fault including modeling uncertainty after the end of
learning.

Case 2 (Sensor Fault): At time T y
0 = 225 s, two sensors

(2 and 3) become faulty by measuring the state variables
x (2) and x (3) with a constant sensor bias σ (2) = 0.07 and
σ (3) = −0.07, respectively (in addition to noise). Fig. 8
shows the residual r (k) and corresponding detection threshold
r̄ (k) for each measurement y(k), k = 1, . . . , 4. As it can be
seen from Fig. 8, the residual exceeds its threshold in the
case of the estimators that monitor y(1) and y(4). The fault
is detected the first time the threshold is exceeded at time
Td = 226.5 s.

Fig. 8. Sensor fault detection.

After the fault is detected, the process and sensor fault
estimation models are activated, and their results are shown
in Fig. 9(a) and (b), respectively. As it can be seen from
Fig. 9(b), all the residuals remain below their sensor identifica-
tion thresholds, whereas in Fig. 9(a), the residuals of the FIEs
that monitor y(1) and y(4) exceed their corresponding process
fault identification thresholds immediately after the end of the
training phase at time Td + TL ,2 = 425 s. Therefore, the case
of a process fault is excluded, and the occurrence of a sensor
fault is concluded. The estimation of the sensor fault σ̂ (t) is
shown in Fig. 10, in which it can be seen that the sensor fault
is estimated correctly.
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Fig. 9. FIEs for (a) process fault and (b) sensor fault in the occurrence of a sensor fault.

Fig. 10. Learned sensor fault.

VIII. CONCLUSIONS

In this paper, a unified fault diagnosis approach for process
and sensor faults in a class of continuous-time, nonlinear
systems with modeling uncertainties, and measurement noise
is presented, which integrates learning with filtering techniques
for obtaining tight detection thresholds. The scheme exploits
the filtering framework to deal with the learning and noise
attenuation tasks in a two-stage filtering process for design-
ing the required signals both tasks. By using the learned
function in the design of the residual signal and exploiting
the noise attenuation of a general class of filters, enhanced
fault detectability is achieved. When a fault is detected,
two estimation models, one for process and one for sensor
faults, are initiated in order to learn the potential fault that

has occurred. Through the design of suitable residual and
identification thresholds, the fault type can be determined, and
the estimation of the fault is obtained.

Future research efforts will be devoted in designing decen-
tralized and distributed fault diagnosis scheme for distributed
systems in which the fault effects can propagate among
subsystems.
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