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Phonocardiography is a widely used method of listening to the heart sounds and indicate the presence of cardiac abnormalities. Each heart
cycle consists of two major sounds - S1 and S2 - which can be used to determine the heart rate. The conventional method of acoustic signal
acquisition involves placing the sound sensor at the chest where this sound is most audible. In this paper, we present a novel algorithm for
the detection of S1 and S2 heart sounds and using them to extract the heart rate from signals acquired by a small sensor placed at the neck.
This algorithm achieves an accuracy of 90.73% and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated
on more than 38 hours of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic
heart sound classification and heart rate extraction in the literature to date. The algorithm in this paper used signals from a sensor designed to
monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate making it highly useful
for long term wearable vital signs monitoring.

1. Introduction: Heart sounds have been a source of information
for diagnosis of patients’ conditions since the late nineteenth
century via the use of the stethoscope [1]. Trained doctors can
listen for abnormal heart sounds in what is commonly referred to
as cardiac auscultation. The conventional method of analysing heart
sounds is known as phonocardiography (PCG) where a microphone,
normally placed on the chest, is used to record the sounds which
can be analysed by a doctor. Each heart cycle consists of two major
sounds: S1 followed by S2. Other sounds and murmurs can indicate
abnormalities. The distance between two S1 sounds is the duration
of one heart cycle that can be used to determine the heart rate.

PCG has been used broadly for diagnosis of certain cardiac
conditions and has in the later part of the 20th century
received attention by the engineering community with the goal
of investigating signal processing techniques to achieve automatic
segmentation and marking of PCG signals. The capability of
segmenting heart sound into heart cycles and distinguishing
between cardiac phases, by appropriately detecting the first and
second heart sound, is useful since it can be used to calculate the
heart rate.

Several research groups have used different signal processing
techniques for the segmentation of the two main heart sounds -
S1 and S2 - from PCG signals for different applications including
the evaluation of heart rate. These can be broadly divided into
two categories [2]. First, those that use ECG as a reference for
synchronization of heart cycles and, second, those that rely solely
on the PCG signal without any reference. The latter approach is
appropriate for wearable devices since it relies on smaller number
of sensors. This section briefly reviews some of these techniques
that do not require ECG reference and reports their accuracy.

Liang et al. [3] presented a method for heart sound segmentation
by detecting peaks from the normalised average Shannon energy
of the low pass filtered input signal. They tested the algorithm
using 515 cardiac cycles obtained from 37 subjects and reported
sensitivities of 93% and 84% on clean and normal signals
respectively. They further improved their algorithm’s performance
by using wavelet decomposition [4] instead of low pass filtering,
with sensitivities of 96.7% and 93% on clean and normal signals.
Brusco and Nazeran [5] presented an algorithm, also using peaks
from the normalised Shannon energy, for the classification of
different heart sounds. For the segmentation of S1 and S2 sounds
they used a threshold to classify the peaks and considered the
distances between them. They achieved an overall accuracy of
79.3% for the detection of heart cycles. In another method, Kumar
et al. [2] used wavelet decomposition of the input signal to extract

high frequency components. They used Shannon energy of these
components for classification of S1 and S2 sounds and estimation of
heart rate. Their dataset consisted of a maximum of 110 minutes of
data recorded from 55 patients with 7530 heart cycles and achieved
a sensitivity of 97.95%. Wang et al. [6] also used Shannon energy
of the signal in a multistage method for the segmentation of S1
sounds. They first used wavelet transform to isolate potential S1
and S2 sounds followed by detection of S1 using Shannon energy.
They reported sensitivity of 93.2% with test data consisting of 207
heart cycles.

Gamero and Watrous [7] employed a statistical approach using
Hidden Markov Model (HMM) for the classification of S1 and S2
sounds. Their data set included 20 second recording each from 80
subjects and their algorithm achieved a sensitivity of 95%. Ricke et
al. [8] also used HMM after computing the Shannon energy of the
input signal. They reported a sensitivity of 98% on a test set that
consisted of 2286 seconds of clean (noise free) data. Using wavelet
decomposition and HMM, Lima and Barbosa [9] reported 99.1%
sensitivity for the detection of S2 sounds from 700 heart cycles.

Ari et al. [10] presented a method in which the PCG signal is
first low-pass filtered with a cutoff frequency of 150 Hz. The energy
peaks from the filtered signal are extracted using a varying threshold
that are then classified in an iterative process involving time search
and amplitude threshold reduction. They reported the algorithm’s
accuracy as 97.5% using a test set with 357 heart cycles. Yamacli
et al. [11] performed wavelet decomposition of the normalised
input signal followed by moving window integration of the squared
(energy) signal. The energy peaks are then detected by a varying
threshold which are classified as S1 or S2 based on time conditions.
With 326 heart cycles from 53 patients they reported sensitivities
of 91.47% and 88.95% for S1 and S2 classification respectively.
Gupta et al. [12] used wavelet features with a grow and learn (GAL)
algorithm to successfully segment 90.29% of 340 heart cycles with
murmurs. Finally, Chen et al. [13] presented a PCG-based heart rate
measurement method using template extraction and matching of
the filtered input signal. They used three subjects for testing and
reported a root mean square (RMS) error value in the calculation of
of heart rate as 2.4 bpm with the subjects in resting position.

In all of the methods above, the sensor to record heart sounds
was placed on the chest. Most of these sensors were either bulky or
required strapping around the chest which adds to the discomfort of
the user.

Popov et al. [14] used a different approach involving a
piezoelectric sensor placed on the throat to acquire carotid
pulse sounds. They applied autocorrelation analysis to 20-second
recording sections of bandpass filtered input signal for the
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Figure 1 (a) Acoustic sensor being worn by a subject on the neck. (b) Second

generation of the sensor with a smaller size (compared against a two pence

coin).

estimation of heart rate. They used 10 minute recordings from 8
subjects during treadmill exercise and achieved a standard deviation
of 3.4 bpm. However, the bias of the regression estimation is large.
For a heart rate of 60 bpm, the bias would be +11.75 bpm.

In our prior work we used a wearable sensor placed at the
suprasternal notch to monitor breathing [15]. The sensor, shown
in Fig. 1, acquired signals that also included heart sounds. For
the detection of respiratory rate, heart sounds are considered as
interference and need to be removed. However, once localized these
can be used to detect the S1 and S2, and subsequently the heart rate.

The signals acquired at the suprasternal notch are intrinsically
different to those observed at the surface of the chest. Signals
measured at the chest have traveled a short distance propagating
from the heart, through lung tissue and finally through muscle and
bone. This allows for the signal to be less filtered and have higher
frequency components. Signals measured at the suprasternal notch
have travelled a greater distance from the heart and principally
propagated along the arterial wall of the carotid artery. As a
result, the signals are of similar timing characteristics but of
significantly lower bandwidth. However, the use of one small sensor
to perform the dual role of respiratory and heart rate detection is
advantageous since it obviates the need for an additional sensor thus
making it more comfortable for the subjects undergoing long term
monitoring.

In this paper we present a novel algorithm for the detection
of heart rate from heart sounds acquired from a sensor placed at
the suprasternal notch, originally designed to monitor breathing.
Because, the sensor was used to monitor breathing, the heart sound
signals are much attenuated and are corrupted with respiratory
signals. The idea of the algorithm described in this paper is to
recover the heart sound signals from the respiratory signal and then
evaluate the heart rate. Section 2 explains the different stages of this
algorithm in detail. Section 3 describes the dataset of over 38 hours
of acoustic signals used to test the algorithm. The performance
of the algorithm for the calculation of heart rate is presented in
Section 3 and further discussed with conclusions in Section 4.
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Figure 2 Block diagram of the proposed algorithm showing all the

processing stages.

2. Algorithm: In this section a novel algorithm for the detection
of heart rate is presented. The input acoustic signal is first filtered
to be in the frequency of interest. It is analyzed with a CWT based
filter bank to extract peak frequencies that can be potential S1 and
S2 sounds. The peaks are later grouped together and classified with
a dynamic detection threshold using a set of rules to identify S1 and
S2 events. A block diagram of the proposed algorithm is shown in
Fig. 2 and the details of each processing stage are given below.

2.1. Pre-processing: The input signal, sampled at 2205 Hz using
a 10-bit ADC, is initially filtered with an 8th order low pass
filter with a cutoff frequency of 100 Hz. The cutoff frequency
is chosen based on the signal characteristics. The filtered signal
is subsequently downsampled by a factor of 10 to reduce data
rate for reduction of unnecessary computational complexity due
to the very high oversampling of heart sounds (originally meant
for breathing sounds). As a result, the new sampling frequency is
220.5 Hz. An example of the input signal before and after filtering
and downsampling is shown in Fig. 3.
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Figure 3 An example of input signal section before and after filtering with

a 8th order LPF at 100Hz and downsampling from 2205Hz to 220.5Hz

2.2. Peak Extraction: In order for the heart sounds to be detected
the peaks of energy in the time-frequency plane need to be
located. Because of the variation in peak frequencies between
S1 and S2 sounds as well as between different subjects a filter
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bank approach provides better resolution than a broader single
bandpass filter approach encompassing the region where energy
peaks are expected. The specifications required of this filter bank
are particular in that both time resolution and frequency resolution
are important. In other words the bandwidth of each filter needs to
be as narrow as possible whilst still guaranteeing a short enough
impulse response.

The filter bank is realized using Continuous Wavelet Transform
(CWT) filters with Meyer mother wavelet. The centre frequencies
of the filter bank were chosen to be a spread of 15 filters ranging
from 8.9 Hz all the way until 23 Hz focusing on the frequency
region where peaks are expected to occur. The output of the CWT
filter can have both positive and negative values given that the
intrinsic transformation performed is a convolution in time of the
signal and the mother wavelet. Thus, the output is squared so that
the peaks on both positive and negative side of the signal can be
utilised.

The filter bank covers a selective frequency range which extends
further than the normal bandwidth of single heart sounds S1 and
S2. Further, heart sounds can have varied peak frequencies between
different subjects. Thus, the highest squared value output of the
CWT filter bank for each sample was selected to allow for such
inter-subject variations. In some cases high amplitude artefacts can
maximize the value of the CWT filter bank output. However, these
artefacts, resulting from loud breathing, snoring or speaking have a
longer duration than heart sounds (longer than 200 ms) and can be
discriminated later in the algorithm.

A high-pass filtering is performed on the output of the filter bank
for better selection of transient-like signals once the peaks have
been extracted. This is achieved using an 8th order finite impulse
response (FIR) filter with a cutoff frequency of 40 Hz.

2.3. Signal Grouping/Segmentation and Classification: The
extracted peaks are then verified using an amplitude threshold that
varies dynamically along time as a function of the input signal.
Multiple peaks that are above the threshold and separated by less
than 100 ms are grouped together in one segment. The duration
of the segment is then defined by it starting at the first part of the
signal above threshold and finishing at the last, encompassing all
the samples in between.

The detection threshold starts off at a given value but gets
updated to a proportional value of the peak amplitude (equation 1)
when a segment is classified as heart sound following the normal
expected time conditions in the later blocks of the signal processing.
The coefficients c1 and c2 are defined to be 0.9 and 0.1 respectively
whilst the ratio factor r1 is set to 1

3
. If there is a long section where

all values are above or below the threshold then it is reset to initial
value. This long section is the time in which five S1 sounds are
expected.

thrnew = c1 × throld + c2 × r1 × peakamp(n); (1)

Once the segments are identified they are classified as either S1
or S2 using a series of time-based rules.

2.4. Segment Classification: This stage consists of a set of
conditions that are executed sequentially if the previous one fails.
These rules have been divided into two different categories. The
first category, Backward event time analysis, covers a set of three
normal scenarios and four exceptions for classification of a given
segment. The second category, Sequence pattern recognition, is
triggered when the last five segments fall within a certain time
pattern. All of these rules are explained in detail below.

2.4.1. Backward event time analysis: This method consists of
detecting S1 and S2 heart sounds based on the time separation
between detected peak segments. It is based on the time separation
between peak segments in comparison to two time variables: the

time separating an S1 heart sound and its corresponding S2 (D1);
and the time difference between two S1 sounds (D2) which is
equivalent to one heart cycle period.

The algorithm starts with D1 and D2 defined as in equation
2 and updates them dynamically as the algorithm interprets more
data (based on conditions below). The D1 to D2 ratio is calculated
based on the relationship presented by Weissler et al. [16].

For the purpose of detecting peaks when variations in D1 and
D2 occur the margin ratios k1 and k2 as described in equation 3
are introduced. These allow for peaks occurring slightly earlier or
later (-15% and +10%) with respect to the latest S1 heart sound to
be considered in the backward event time analysis. In the following
rules the segment classification at n is denoted by sc(n) while the
segment time is denoted by st(n).

D1 = 0.32 sec D2 = 0.87 sec (2)

k1 = 0.85 k2 = 1.1 (3)

Scenario 1: This condition checks for the presence of a
previously defined S1 at the antepenultimate segment sc(n− 2) to
define the current segment sc(n) as S1. If an S1 exists at n− 2,
the condition is passed if the distance between the segments is
within the expected margins. Otherwise the segment is labelled as
undefined or “don’t know” (DK).

sc(n) = S1, if











sc(n− 2) = S1

st(n)− st(n− 2)>k1×D2

st(n)− st(n− 2)<k2×D2

(4)

If this condition is passed the time distance D2 is updated as
a weighted average between the newly measured time and its
previous value as shown below.

D2 = 0.9×D2 + 0.1× (st(n)− st(n− 2)) (5)

Scenario 2: This condition looks for the presence of an S1 at the
previous segment sc(n− 1) in order to define the peak at n as S2
if the time distance to the previous segment is within the D1 time
separation expected (S1 to S2 time).

sc(n) = S2, if



















sc(n) =DK

sc(n− 1) = S1

st(n)− st(n− 1)>k1×D1

st(n)− st(n− 1)<k2×D1

(6)

If this condition is evaluated to be true the time distance D1 is
redefined as a weighted average between the newly measured time
and the previous value.

D1 = 0.9×D1 + 0.1× (st(n)− st(n− 1)); (7)

Scenario 3: This condition is similar to the previous case and
looks for the presence of an S2 at n− 1 to define the segment at
n as S1 if the distance between the present and the penultimate
segment is that expected between an S2 and an S1.

sc(n) = S1, if



















sc(n) =DK

sc(n− 1) = S2

st(n)− st(n− 1)>k1× (D2−D1)

st(n)− st(n− 1)<k2× (D2−D1)

(8)

In this condition there is no redefinition of D1 or D2 because the
analyzed time corresponds to D1-D2 which is a measure between
two different heart cycles, not directly correlated to either the
periodicity of neuromuscular excitation of the heart (D1) or the
heart cycle event sequence between and separation between two of
its sounds (D2).
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If the three normal scenarios fail to classify a segment it is
labelled as DK. If two consecutive segments are labelled as DK then
a further series of exceptions are triggered to attempt and define the
current segment.

Exception 1 and 2: These are two similar conditions (for S1 and
S2 respectively) look for a DK at n− 1 to define the peak at n
as S1 or S2 based on what was defined at n− 2 if the separation
between the n− 2 and n peaks is within the D2 margins, i.e. the
one between an S1 and an S1 or a S2 and an S2.

sc(n) = S1 or S2, if



























sc(n) =DK

sc(n− 1) =DK

sc(n− 2) = S1 or S2 respectively

st(n)− st(n− 2)> k1×D2

st(n)− st(n− 2)< k2×D2
(9)

If the segment at n− 2 was an S1 then D2 is updated using
equation 5 as in condition Scenario 1.

Exception 3: This condition is used to define the current segment
as S1 if the time distance to segment n− 2 is D2× 2−D1 and the
segment at n− 2 had previously been classified as S2. In this case
the segment at n− 1 is left as DK.

sc(n) = S1, if



























sc(n) =DK

sc(n− 1) =DK

sc(n− 2) = S2

st(n)− st(n− 2)> (k1×D2)× 2−D1

st(n)− st(n− 2)< (k2×D2)× 2−D1
(10)

Exception 4: This condition defines the current segment as S1 if
the time distance to segment n− 2 is D2−D1 and the segment
at n− 2 had previously been classified as S2. In this case, as in
Exception 3, the segment at n− 1 is left as DK.

sc(n) = S1, if



























sc(n) =DK

sc(n− 1) =DK

sc(n− 2) = S2

st(n)− st(n− 2)> (k1×D2)−D1

st(n)− st(n− 2)< (k2×D2)−D1
(11)

In the event that all exceptions fail to determine whether a
segment is S1 or S2, it is left as DK.

2.4.2. Sequence pattern recognition: The pattern recognition
strategy has been designed to provide the least possible false S1
and S2 detections. The last five peak segments must fall within
particular time location restrictions in order for a pattern to be
detected and considered as correct S1 and S2 heart sounds. This
is useful at the start of the classification when the algorithm is
initialized and after any discontinuity in peaks that could not be
dealt with by any of the Scenarios and Exception conditions.

sc(n− 4 : n) =

[S2, S1, S2,

S1, S2], if























































st(n)− st(n− 1)>k1×D1

st(n)− st(n− 1)<k2×D1

st(n)− st(n− 2)>k1×D2

st(n)− st(n− 2)<k2×D2

st(n)− st(n− 3)>k1×D1 +D2

st(n)− st(n− 3)<k2×D1 +D2

st(n)− st(n− 4)>k1×D2 +D2

st(n)− st(n− 4)<k2×D2 +D2

(12)

Patterns 1 and 2: These two patterns defined in equations
(12) and (13) respectivelylook for cases where the preceding four
segments have not been classified but happen to follow a time
separation pattern with the present segment that coincides with that
expected based on the time separations D1 and D2 at that particular
point in time. It is important to remember that the time separations
D1 and D2 are dynamic values that are updated as candidate S1 and
S2 events are detected.

sc(n− 4 : n) =

[S1, S2, S1,

S2, S1], if























































st(n)− st(n− 1) > k1×D2−D1

< k2×D2−D1

st(n)− st(n− 2) > k1×D2

< k2×D2

st(n)− st(n− 3) > k1(D2−D1) +D2

< k2(D2−D1) +D2

st(n)− st(n− 4) > k1×D2 +D2

< k2×D2 +D2

(13)

Pattern 3: This condition consists of detecting a pattern where
there is some peak time separation repetition similar to that
expected from S1 and S2 sounds but where this time separation
recognition is not limited by the D1 and D2 bounds presented
above. To detect a new pattern without these bounds, a new D2 is
defined as the time separation between the present segment at n and
the second preceding one (n− 2). This way regardless of whether
the present segment is S1 or S2, the time difference between the
two is taken as being one heart cycle duration (equation (14)).

D2x = st(n)− st(n− 2) (14)

For pattern 3 to be evaluated the newly defined D2 separation
(D2x) needs to pass one further condition. This is based on the
expected limit of heart rate variation and maximum heart rate
for pattern recognition (HRmax = 200bpm). Equation 15 defines
the upper limit of heart rate variability (increase) which has been
defined considerably high so as to only remove the cases that are
clearly above the expected ranges of HR increase and to allow for
enough dynamic variation.

HRvar limit = 3.77× (seconds since last D2 update) + 17
(15)

HRmeasured var =
60

D2x
−

60

D2last
(16)

The condition for carrying out the pattern 3 evaluation is defined
in equation 17.

Conditions for

testing pattern 3 =

{

HRmeasured var <HRvar limit

60

D2x
<HRmax

(17)

Once these conditions are met, a new value of D1 is defined based
on the correlation presented in [16], shown in equation 18.

D1x =−0.0018×
60

D2x
+ 0.456 (18)

4 Healthcare Technology Letters, pp. 4–7



sc(n− 4 : n) =

[S2, S1, S2,

S1, S2], if







































st(n)− st(n− 1) > k1×D1x

< k2×D1x

st(n)− st(n− 3) > k1×D1x +D2x

< k2×D1x +D2x

st(n)− st(n− 4) > k1×D2x +D2x

< k2×D2x +D2x
(19)

Pattern 4: This condition is effectively the same as Pattern 3 but
with the exception that D1x is defined as the last value of D1.

Pattern 5: This condition looks for time separations that would
have been caused by S1 sounds and hence separated by their
respective D2. It also needs to pass the same conditions of heart
rate variability and maximum heart rate as expressed in equation
17. The new D2 is defined based on the separation of the last two
segments (equation 20).

D2x = st(n)− st(n− 1) (20)

sc(n− 4 : n) =

[S1, S1, S1,

S1, S1], if







































st(n− 1)− st(n− 2) >k1×D2x

<k2×D2x

st(n− 2)− st(n− 3) >k1×D2x

<k2×D2x

st(n− 3)− st(n− 4) >k1×D2x

<k2×D2x
(21)

2.5. Heart rate calculation: In order for the heart rate to be
calculated based on the classification of segments as S1 or S2, heart
beat cycles need to be detected. Therefore, any S2 following an
S1 is merged to the corresponding S1 so as to form a single entity
representing a single heart beat. The number of heart beats detected
in a particular time interval is then used to calculate the heart rate
using equation 22.

Heart Rate=
num of intervals

time (sec)
× 60 (22)

3. Performance Analysis:

3.1. Database: Data was obtained as part of a clinical study which
was conducted in a sleep study room of the National Hospital for
Neurology and Neurosurgery (UK). The study was approved by the
Medicine and Healthcare products Regulatory Agency (MHRA)
and the Research Ethics Committee of the UK National Hospital
for Neurology and Neurosurgery. A wireless acoustic sensor was
placed at the suprasternal notch during night time which sampled
data at a frequency of 2205 Hz and transmitted to a nearby base
station for further analysis.

At the same time, two external devices were used to compute
reference heart rate for performance evaluation: SOMNOscreen by
SomnoMedics [17] and PULSOX 300i pulse oximeter by Konica
Minolta [18]. The SomnoMedics device provides a pulse output
calculated based on the photoplethysmography signal which is used
by a software to calculate the heart rate. The Konica Minolta pulse
oximeter also provides its own heart rate numerical output along
with the oxygen saturation based on its own photoplethysmography
sensor. Data from all three sensors was synchronized at the end of
each recording using a single reference clock and a total of over
38 hours of data recorded during sleep from ten different subjects
was evaluated. The heart rate varied differently for each subject
throughout the night. The range of variation and the median heart
rate for all subjects is shown in Fig. 4.
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Figure 4 Heart rate variation and ranges in each subject as recorded by the

reference device.

3.2. Results: The proposed algorithm computes heart rate in
a window of 60 seconds. This was compared with the values
obtained from two commercial monitors: SomnoMedics and
Konica-Minolta. They have a sampling rate of 4 Hz and 1 Hz
respectively, therefore the average value over 60 seconds from these
sensors was used to compare the output from the algorithm.

The numerical difference of the values calculated by the
algorithm and those provided by the two external devices have
been characterised by the quartile divisions of the difference spread.
The results show that in most cases the algorithm achieves a high
concentration of outcomes very close to zero difference with short
separation between quartiles. The median difference for all subjects
in both cases is less than 0.5 bpm except for S07 where the greater
than normal spread is attributed to sustained presence of snoring
throughout the night – even if not always saturating the ADC –
and the resulting necessity for the algorithm to continuously look
for patterns. The reason for this is that after a large snore which
interrupts the classification of heart sounds via the more robust
scenarios and exception conditions the algorithm needs to restart
the classification by finding a pattern which is more prone to errors
under bad signal conditions.

To determine the overall accuracy of the algorithm the percentage
of heart rate output values that fit within a narrow error margin of
±10% with respect to the values provided by the gold standard
reference devices was calculated. The results of the algorithm
expressed in this performance metric for each subject and in
comparison to each reference device are shown in Table 1. From
this it can noticed that the algorithm achieved results above 90%
for 6 of the 10 subjects (above 85% for 9 subjects) and that the
lowest value was from subject S07 for reasons explained above.
The overall weighted accuracy of the algorithm is 90.73% and
90.69% with respect to the Konica-Minolta and SomnoMedics
devices respectively based on the duration of data per subject.

4. Discussion: An algorithm for the segmentation of heart sounds
(S1 and S2) and extraction of heart rate from signals recorded at
suprasternal notch is presented in this paper. The performance of
this algorithm has been evaluated on over 38 hours of data acquired
from 10 different subjects during sleep in the clinical trial setting.
To the best of authors’ knowledge, this represents the largest data
set a heart sound classification and heart rate extraction algorithm
has been tested on. Although other studies (such as [3], [4], [11])
used data from a greater number of subjects, their total duration of
data and the number of heart cycles was significantly smaller.
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Table 1 Percentage accuracy of algorithm with respect to Konica-
Minolta and SomnoMedics devices for each subject and their weighted
average.

Subject Konica-Minolta SomnoMedics

S01 97.53% 97.37%
S02 91.97% 89.50%
S03 88.32% 89.07%
S04 95.53% 96.06%
S05 90.88% 91.45%
S06 94.15% 93.60%
S07 71.69% 73.34%
S08 86.53% 86.26%
S09 94.56% 94.62%
S10 93.69% 93.84%

W. Avg. 90.73% 90.69%

It is difficult to directly compare the results of this algorithm with
existing methods in literature since most algorithms use signals
extracted from the chest region for heart sound segmentation.
Table 2 shows the performance of several heart sound segmentation
algorithms which were discussed in Section 1, their test data size
and number of subjects used in the study. In all these cases the
sensor for data acquisition was placed on the chest except in this
work and [14] where it was placed on the neck.

Table 2 Comparison of dataset size and results obtained in this
algorithm with other works in the literature.

Reference Test data Subjects Results

[3] 515 cycles 37 93% and 84%
[4] 1165 cycles 77 96.7% and 92.9%
[5] 263 cycles - 79.30%
[2] 7530 cycles 55 97.95%
[6] 207 cycles - 93.20%
[7] 1600 sec. 80 95%
[8] 2286 sec. 9 98%
[9] 700 cycles 8 99.1% for S2
[14] 80 min. 8 3.4 bpm std dev
[10] 357 cycles 71 97.47
[11] 326 cycles 53 91.47% and 88.95%
[12] 340 cycles 41 90.29%
[13] - 3 2.4 bpm RMS error
This work 38.4 hours 10 90.70%

Table 3 shows the estimation error bias and standard deviation
in beats per minute for each subject with respect to the external
Konica-Minolta and SomnoMedics systems. Overall, for most
subjects the algorithm gives considerably good bias and standard
deviation results for a much larger dataset than that used in [14].

The sensor used for recording signals in this work was originally
designed to monitor breathing [15]. It was designed to be
comfortable and easy to use. During a pilot clinical study of its
use in apnoea detection, all the patients gave it a very high rating
on comfort level [19]. The results in this paper show that apart
from monitoring the breathing, it is also possible to extract heart
rate from the same sensor placed on the same location. This is
highly advantageous for wearable health monitors since it obviates
the need to use a different sensor to monitor heart rate. In other
words, it could reduce the number of sensors required to placed on
a patients thus making it more comfortable for them to use in long
term monitoring. However, because the algorithm is specifically
designed to work with the heart sounds obtained at the suprasternal
notch, it is unlikely to perform well as is on sounds obtained
from any other location. In that sense, the algorithm is linked to

Table 3 List of value difference bias and standard deviation (SD)
between the algorithm heart rate output and those from Konica-Minolta
and SomnoMedics device in beats per minute (bpm) for each subject.

Konica-Minolta SomnoMedics

Subject Bias (bpm) SD (bpm) Bias (bpm) SD (bpm)

S01 0.15 2.30 0.15 2.30
S02 -0.66 3.11 -0.68 3.15
S03 1.40 7.62 1.40 7.62
S04 0.45 4.62 0.45 4.62
S05 2.04 7.40 2.07 7.60
S06 0.43 5.96 0.43 5.96
S07 6.77 21.42 6.77 21.42
S08 1.57 7.23 1.57 7.23
S09 -0.43 3.26 -0.43 3.26
S10 1.01 6.78 1.01 6.78

the sensor location and will need to be adjusted to work with the
traditional heart sounds.

Although the algorithm has been tested on a much larger dataset
than any other, the number of subjects is comparatively low since
this was only a pilot study to prove the feasibility of this method.
Future work involves a greater clinical trial with a higher number
of test subjects. Overall, the results in this paper illustrate a strong
proof of concept for heart rate monitoring using acoustic signals
from the suprasternal notch. This has been demonstrated with
the development of a novel heart rate extraction algorithm and
its performance evaluation on a large dataset of over 38 hours.
The acoustic heart rate algorithm presented in this paper also
represents an advance in the field of acoustic heart rate monitoring
beyond its conventional use where sensors are placed on the chest.
These results will be highly useful for designers and researchers in
wearable health monitoring systems by opening up the possiblity
of using alternative sensor location thereby using a single sensor to
monitor multiple vital signs.
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