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Abstract—The class of orthogonal relay channels in which
the orthogonal channels connecting the source terminal to the
relay and the destination, and the relay to the destination,
depend on a state sequence, is considered. It is assumed that
the state sequence is fully known at the destination while it is
not known at the source or the relay. The capacity of this class
of relay channels is characterized, and shown to be achieved by
the partial decode-compress-and-forward (pDCF) scheme. Then
the capacity of certain binary and Gaussian state-dependent
orthogonal relay channels are studied in detail, and it is shown
that the compress-and-forward (CF) and partial-decode-and-
forward (pDF) schemes are suboptimal in general. To the best
of our knowledge, this is the first single relay channel model
for which the capacity is achieved by pDCF, while pDF and
CF schemes are both suboptimal. Furthermore, it is shown
that the capacity of the considered class of state-dependent
orthogonal relay channels is in general below the cut-set bound.
The conditions under which pDF or CF suffices to meet the
cut-set bound, and hence, achieve the capacity, are also derived.

Index Terms—Capacity, channels with state, relay chan-
nel, decode-and-forward, compress-and-forward, partial decode-
compress-and forward.

I. INTRODUCTION

We consider a state-dependent orthogonal relay channel, in
which the channels connecting the source to the relay, and the
source and the relay to the destination are orthogonal, and are
governed by a state sequence, which is assumed to be known
only at the destination. We call this model the state-dependent
orthogonal relay channel with state information available at
the destination, and refer to it as the ORC-D model. See Figure
1 for an illustration of the ORC-D channel model.

Many practical communication scenarios can be modelled
by the ORC-D model. For example, consider a cognitive
network with a relay, in which the transmit signal of the
secondary user interferes simultaneously with the received
primary user signals at both the relay and the destination.
After decoding the secondary user’s message, the destination
obtains information about the interference affecting the source-
relay channel, which can be exploited to decode the primary
transmitter’s message. Note that the relay may be oblivious
to the presence of the secondary user, and hence, may not
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have access to the side information. Similarly, consider a
mobile network with a relay (e.g., a femtostation), in which
the base station (BS) operates in the full-duplex mode, and
transmits on the downlink channel to a user, in parallel to the
uplink transmission of a femtocell user, causing interference
for the uplink transmission at the femtostation. While the
femtostation, i.e., the relay, has no prior information about this
interfering signal, the BS knows it perfectly and can exploit
this knowledge to decode the uplink user’s message forwarded
by the femtostation.

The best known transmission strategies for the three termi-
nal relay channel are the decode-and-forward (DF), compress-
and-forward (CF) and partial decode-compress-and-forward
(pDCF) schemes, which were all introduced by Cover and
El Gamal in [2]. In DF, the relay decodes the source message
and forwards it to the destination together with the source
terminal. DF is generalized by the partial decode-and-forward
(pDF) scheme in which the relay decodes and forwards only
a part of the message. In the ORC-D model, pDF would be
optimal when the channel state information is not available
at the destination [3]; however, when the state information
is known at the destination, fully decoding and re-encoding
the message transmitted on the source-relay link renders the
channel state information at the destination useless. Hence, we
expect that pDF is suboptimal for ORC-D in general.

In CF, the relay does not decode any part of the message,
and simply compresses the received signal and forwards the
compressed bits to the destination using Wyner-Ziv coding
followed by separate channel coding. Using CF in the ORC-
D model allows the destination to exploit its knowledge of the
state sequence; and hence, it can decode messages that may not
be decodable by the relay. However, CF also forwards some
noise to the destination, and therefore, may be suboptimal
in certain scenarios. For example, as the dependence of the
source-relay channel on the state sequence weakens, i.e.,
when the state information becomes less informative, CF
performance is expected to degrade.

pDCF combines both schemes: part of the source message
is decoded by the relay, and forwarded, while the remaining
signal is compressed and forwarded to the destination. Hence,
pDCF can optimally adapt its transmission to the dependence
of the orthogonal channels on the state sequence. Indeed, we
show that pDCF achieves the capacity in the ORC-D channel
model, while pure DF and CF are in general suboptimal. The
main results of the paper are summarized as follows:

e We derive an upper bound on the capacity of the ORC-
D model, and show that it is achievable by the pDCF



scheme. This characterizes the capacity of this class of
relay channels.

¢ Focusing on the multi-hop binary and Gaussian models,
we show that applying either only the CF or only the DF
scheme is in general suboptimal.

e We show that the capacity of the ORC-D model is
in general below the cut-set bound. We identify the
conditions under which pure DF or pure CF meet the cut-
set bound. Under these conditions the cut-set bounds is
tight, and either DF or CF scheme is sufficient to achieve
the capacity.

While the capacity of the general relay channel is still an
open problem, there have been significant achievements within
the last decade in understanding the capabilities of various
transmission schemes, and the capacity of some classes of
relay channels has been characterized. For example, DF is
shown to be optimal for physically degraded relay channels
and inversely degraded relay channels in [2]. In [3], the
capacity of the orthogonal relay channel is characterized, and
shown to be achieved by the pDF scheme. It is shown in
[4] that pDF achieves the capacity of semi-deterministic relay
channels as well. CF is shown to achieve the capacity in
deterministic primitive relay channels in [5]. While all of these
capacity results are obtained by using the cut-set bound for
the converse proof [6], the capacity of a class of modulo-sum
relay channels is characterized in [7], and it is shown that the
capacity, achievable by the CF scheme, can be below the cut-
set bound. The pDCF scheme is shown to achieve the capacity
of a class of diamond relay channels in [8].

The state-dependent relay channel has also attracted con-
siderable attention in the literature. Key to the investigation
of the state-dependent relay channel model is whether the
state sequence controlling the channel is known at the nodes
of the network, the source, relay or the destination in a
causal or non-causal manner. The relay channel in which
the state information is non-causally available only at the
source is considered in [9], [10], and both causally and non-
causally available state information is considered in [11].
The model in which the state is non-causally known only
at the relay is studied in [12] while causal and non-causal
knowledge is considered in [13]. Similarly, the relay channel
with state causally known at the source and relay is considered
in [14], and state non-causally known at the source, relay
and destination in [15]. Recently a generalization of pDEF,
called the cooperative-bin-forward scheme, has been shown
to achieve the capacity of state-dependent semi-deterministic
relay channels with causal state information at the source and
destination [16]. The compound relay channel with informed
relay and destination are discussed in [17] and [18]. The
state-dependent relay channel with structured state has been
considered in [19] and [20]. To the best of our knowledge,
this is the first work that focuses on the state-dependent relay
channel in which the state information is available only at the
destination.

The rest of the paper is organized as follows. In Section
IT we provide the system model and our main result. Section
IIT is devoted to the proofs of the achievability and converse
for the main result. In Section IV, we provide two examples
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Fig. 1. Orthogonal state-dependent relay channel with channel state informa-
tion available at the destination, called the ORC-D model.

demonstrating the suboptimality of pDF and CF schemes on
their own, and in Section V we show that the capacity is in
general below the cut-set bound, and we provide conditions
under which pure DF and CF schemes meet the cut-set bound.
Finally, Section VII concludes the paper.

We use the following notation in the rest of the paper:

X! 2 (X, Xig1, . X;) fori < j, X™ 2 (Xy,...,X,)
for the complete sequence, X, £ ¢, and Z"\' £
(Zla'--7Z7L717Zi+17"'aZn)-

II. SYSTEM MODEL AND MAIN RESULT

We consider the class of orthogonal relay channels depicted
in Figure 1. The source and the relay are connected through a
memoryless channel characterized by p(yr|z1, ), the source
and the destination are connected through an orthogonal mem-
oryless channel characterized by p(y2|x2, z), while the relay
and the destination are connected by a memoryless channel
p(y1|x g, z). The three memoryless channels depend on an
independent and identically distributed (i.i.d.) state sequence
{Z}1_,, which is available at the destination. The input and
output alphabets are denoted by X1, X5, Xgr, V1, Vs and Vg,
and the state alphabet is denoted by Z.

Let W be the message to be transmitted to the destination
with the assistance of the relay. The message W is assumed
to be uniformly distributed over the set W = {1,...,M}.
An (M, n,v,) code for this channel consists of an encoding
function at the source:

AL M} = A7 x X (1)
a set of encoding functions { f,;}7_; at the relay, whose output

at time ¢ depends on the symbols it has received up to time
i —1:

Xri = fri(Yr1, .., YR(=1)), i=1,..,m, 2
and a decoding function at the destination
g: Y x Vi x Z" —={1,..,M}. 3)
The probability of error, v, is defined as
R -
Up 2 M;Pr{g(Yl Y3 ZM) #wW =w). (@)

The joint probability mass function (pmf) of the involved
random variables over the set W x Z™ x AT* x X' x AR x
Vi x Vi x Vi is given by

n
p(wa zna Z‘?, $§L7 x?% y;% y?a yg) :p(w) Hp(zl)p(xlu x?ilw)'
i=1

P(YRril2i, x1:)P(T Ri \ygl)p(ylﬂxm, 2i)p(y2i|T2i, 2i).



A rate R is said to be achievable if there exists a sequence
of (2% n,v,) codes such that lim,,_, o, v, = 0. The capacity,
C, of this class of state-dependent orthogonal relay channels,
denoted as ORC-D, is defined as the supremum of the set of
all achievable rates.

We define Ry and R; as follows, which can be thought as
the capacities of the individual links from the relay to the des-
tination, and from the source to the destination, respectively,
when the channel state sequence is available at the destination:

Ry £ max I(Xg; Y1|2),

p(zr)

Ry 2 max I(Xy; Y3|Z). (5)
p(z2)

Let p*(xr) and p*(x2) be the channel input distributions
achieving R; and R,, respectively.
Let us define P as the set of all joint pmf’s given by

P = {p<u7x17zayRagR) : (6)
p(U»$1a27yR7§R) = p(ua‘rl)p(z)p(yl?‘xhZ)p(g1?|y1?7u)}v

where U and Yj are auxiliary random variables defined over
the alphabets &/ and Vg, respectively.

The main result of this work, provided in the next theorem,
is the capacity of the class of relay channels described above.

Theorem 1. The capacity of the ORC-D relay channel is given
by

C =sup Ry + I(U;Yr) + I(X1;Y|UZ),
P
st. Ry > I(U;YR) + I(Yr; Yr|UZ), (7)
where [U| < |X1| 4+ 3 and |Vgr| < |U||Vr| + 1.

Proof. The achievability part of the theorem is proven in
Section III-A, while the converse proof can be found in Section
II-B. O

In the next section, we show that the capacity of this class
of state-dependent relay channels is achieved by the pDCF
scheme. To the best of our knowledge, this is the first single-
relay channel model for which the capacity is achieved by
pDCEF, while the pDF and CF schemes are both suboptimal
in general. In addition, the capacity of this relay channel is in
general below the cut-set bound [6]. These issues are discussed
in more detail in Sections IV and V.

It follows from Theorem 1 that the transmission over the
relay-destination and source-destination links can be indepen-
dently optimized to operate at the corresponding capacities,
and these links in principle act as error-free channels of
capacity R; and Ry, respectively. We also note that the
relay can acquire some knowledge about the channel state
sequence Z" from its channel output Y7, and could use
it in the transmission over the relay-destination link, which
depends on the same state information sequence. In general,
non-causal state information available at the relay can be
exploited to increase the achievable throughput in multi-user
setups [21], [22]. However, it follows from Theorem 1 that
this knowledge is useless. This is because the channel state
information acquired from Y7 can be seen as delayed feedback
to the relay, which does not increase the capacity in point-to-
point channels.
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Fig. 2. The ORC-D as a class of primitive relay channel.
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Fig. 3. The ORC-D is a particular case of the state dependent orthogonal
relay channel with orthogonal components.

A. Comparison with previous relay channel models

Here, we compare ORC-D with other relay channel
models in the literature, and discuss the differences
and similarities. The discrete memoryless relay channel
consists of four finite sets X, Xg, ) and Yg, and a
probability distribution p(y,yr|r,zr). In this setup, X
corresponds to the source input to the channel, Y to the
channel output available at the destination, while Yg is
the channel output available at the relay, and Xpg is the
channel input symbol chosen by the relay. We note that the
three-terminal relay channel model in [2] reduces to ORC-
D by setting X" = (X, X7), Y™ = (Y, Y3, 2Z™),
and p(y,yrlzizr) = py1,¥2,Yr, 2|71, 22,2R) =
p(2)p(yrl|z1, 2)p(y1|2 Rs 2)P(Y2|22, 2).

By considering the channel from the relay to the destination
as an error-free link with finite capacity, the ORC-D is
included in the class of primitive relay channels proposed
in [5] and [23] as seen in Figure 2, for which the channel
distribution satisfies p(y, yr|z,zr) = p(y,yr|z). Although
the capacity of this channel remains unknown in general, it
has been characterized for certain special cases. CF has been
shown to achieve the cut-set bound, i.e., to be optimal, in
[5], if the relay output, Yg, is a deterministic function of the
source input and output at the destination, i.e., Yr = f(X,Y).
The capacity of a class of primitive relay channels under a
particular modulo sum structure is shown to be achievable
by CF in [7], and to be below the cut-set bound. Theorem 1
provides the optimality of pDCF for a class of primitive relay
channels, not included in any of the previous relay models
for which the capacity is known. It is discussed in [23] that
for the primitive relay channel, CF and DF do not outperform
one another in general. It is also noted that their combination
in the form of pDCF might not be sufficient to achieve the
capacity in general. We will see in Section IV that both DF
and CF are in general suboptimal, and that pDCF is necessary
and sufficient to achieve the capacity for the class of primitive




relay channels considered in this paper.

It is also interesting to compare the ORC-D model with
the orthogonal relay channel proposed in [3], in which
the source-relay link is orthogonal to the multiple-access
channel from the source and relay to the destination, i.e.,
p(Y,yrlz,2R) = p(y|r2,2R)P(YR|T1,TR). The capacity for
this model is shown to be achievable by pDF, and co-
incides with the cut-set bound. For the ORC-D, we have
Py, yrlz, 2R) = P(2)p(Y2l|22, 2)P(Y1|T R, 2)P(YR|T1, 2R, 2),
i.e., given the channel inputs, the orthogonal channel outputs
at the relay and the destination are still dependent due to Z.
Therefore, the ORC-D does not fall within the class of orthog-
onal channels considered in [3]. We can consider the class of
state dependent relay channel with orthogonal components sat-
isfying p(y, z, yr|z, 2r) = p(2)p(y|z2, TR, 2)p(YR|T1, TR, 2)
as shown in Figure 3. This class includes the orthogonal relay
channel in [3] and the ORC-D as a particular cases. However,
the capacity for this class of state dependent relay channel
remains open in general.

III. PROOF OF THEOREM 1

We first show in Section III-A that the capacity claimed
in Theorem 1 is achievable by pDCF. Then, we derive the
converse result for Theorem 1 in Section III-B.

A. Achievability

We derive the rate achievable by the pDCF scheme for
ORC-D using the achievable rate expression for the pDCF
scheme proposed in [2] for the general relay channel. Note
that the three-terminal relay channel in [2] reduces to ORC-
D by setting X™ = (X7, X?) and Y™ = (Y*, Y], Z"), as
discussed in Section II-A.

In pDCF for the general relay channel, the source applies
message splitting, and the relay decodes only a part of the
message. The part to be decoded by the relay is transmitted
through the auxiliary random variable U", while the rest of the
message is superposed onto this through channel input X”.
Block Markov encoding is used for transmission. The relay
receives Y and decodes only the part of the message that
is conveyed by U". The remaining signal Y7 is compressed
into )A/}Q‘. The decoded message is forwarded through V™,
which is correlated with U", and the compressed signal is
superposed onto V™ through the relay channel input X7. At
the destination the received signal Y is used to recover the
message. See [2] for details. The achievable rate of the pDCF
scheme is given below.

Theorem 2. (Theorem 7, [2]) The capacity of a relay channel
p(y, yrlx, xR) is lower bounded by the following rate:

Ryper = supmin {I(X;Y,Yg|Xg,U) + I(U; Yg|Xg, V),
I(X,XgY)— I(Yg; YR|X, X, U, Y)},
st. I(Yr;Yg|Y, Xg,U) <I(Xg;Y|V), (8)

where the supremum is taken over all joint pmf’s of the form

p(v)p(ulv)p(z|u)p(zr|v)p(Y, yrlZ, TR)P(UR|TR, YR, 1)

Since ORC-D is a special case of the general relay channel
model, the rate R,pcr is achievable in an ORC-D as well. The
capacity achieving pDCF scheme for ORC-D is obtained from
(8) by setting V' = (), and generating X} and X" independent
of the rest of the variables with distribution p*(xg) and
p*(x1), respectively, as given in the next lemma.

Lemma 1. For the class of relay channels characterized by
the ORC-D model, the capacity expression C defined in (7) is
achievable by the pDCF scheme.

Proof. See Appendix A. O

The optimal pDCF scheme for ORC-D applies indepen-
dent coding over the source-destination and the source-relay-
destination branches. The source applies message splitting.
Part of the message is transmitted over the source-destination
branch and decoded at the destination using Y3* and Z™. In
the relay branch, the part of the message to be decoded at the
relay is transmitted through U™, while the rest of the message
is superposed onto this through the channel input X7'. At the
relay the part conveyed by U™ is decoded from Yy, and the
remaining signal Y7 is compressed into f/ﬁ using binning
and assuming that Z" is available at the decoder. Both U™
and the bin index corresponding to Y[{ are transmitted over
the relay-destination channel using X7. At the destination,
Xg is decoded from Y{*, and U™ and the bin index are
recovered. Then, the decoder looks for the part of message
transmitted over the relay branch jointly typical with YIQ
within the corresponding bin and Z".

B. Converse

The proof of the converse consists of two parts. First we
derive a single-letter upper bound on the capacity, and then,
we provide an alternative expression for this bound, which
coincides with the rate achievable by pDCF.

Lemma 2. The capacity of the class of relay channels char-
acterized by the ORC-D model is upper bounded by

Ry = supmin{Ry + I(U; Yr) + I(X1; Yr|UZ), (9)
P

Ri+ Ry — I(Yr; Y| X1UZ)}.  (10)

Proof. See Appendix B. [

As stated in the next lemma, the upper bound R,,;,, given in
Lemma 2, is equivalent to the capacity expression C given in
Theorem 1. Since the achievable rate meets the upper bound,
this concludes the proof of Theorem 1.

Lemma 3. The upper bound on the achievable rate R, given
in Lemma 2 is equivalent to the capacity expression C in
Theorem 1.

Proof. See Appendix C. O

IV. THE MULTIHOP RELAY CHANNEL WITH STATE:
SUBOPTIMALITY OF PURE PDF AND CF SCHEMES

We have seen in Section III that the pDCF scheme is
capacity-achieving for the class of relay channels characterized



by the ORC-D model. In order to prove the suboptimality
of the pure DF and CF schemes for this class of relay
channels, we consider a simplified system model, called the
multihop relay channel with state information available at the
destination (MRC-D), which is obtained by simply removing
the direct channel from the source to the destination, i.e.,
Ry =0.

The capacity of this multihop relay channel model and
the optimality of pDCF follows directly from Theorem 1.
However, the single-letter capacity expression depends on the
joint pmf of X, Yr, Xgr and Y; together with the auxiliary
random variables U and YR. Unfortunately, the numerical
characterization of the optimal joint pmf of these random
variables is very complicated for most channels. A simple and
computable upper bound on the capacity can be obtained from
the cut-set bound [24]. For MRC-D, the cut-set bound is given
by

Rcs :min{Rl,rr(laﬁf(Xl;YﬂZ)}. (11)
p(z1

Next, we characterize the rates achievable by the DF and
CF schemes for MRC-D. Since they are special cases of
the pDCF scheme, their achievable rates can be obtained by
particularizing the achievable rate of pDCF for this setup.

1) DF Scheme: If we consider a pDCF scheme that does
not perform any compression at the relay, i.e., Yr = 0, we
obtain the rate achievable by the pDF scheme. Note that the
optimal distribution of X g is given by p*(z; ). Then, we have

Rypr = min{R;, sup I(U;YRr)}. (12)
p(w1,u)

From the Markov chain U — X; — Yg, we have I(U;Yg) <
I(X1;YR), where the equality is achieved by U = X;. That
is, the performance of pDF is maximized by letting the relay
decode the whole message. Therefore, the maximum rate
achievable by pDF and DF for MRC-D coincide, and is given
by

Rpr = Rppr = min{ Ry, n(la)§ I(X1;YR)}. (13)
p(z1

We note that considering more advanced DF strategies based
on list decoding as in [23] does not increase the achievable
rate in the MRC-D, since there is no direct link.

2) CF Scheme: 1If the pDCF scheme does not perform any
decoding at the relay, i.e., U = V = (3, pDCF reduces to CF.
Then, the achievable rate for the CF scheme in MRC-D is
given by

Rer = sup I(X1;YR|Z)
st. Ry > I(Yg;Ygr|Z),

over p(z1)p(2)p(yrlz1, 2)p(Irlyr).  (14)

A. Multihop Parallel Binary Symmetric Channel

In this section we consider a special MRC-D as shown in
Figure 4, which we call the parallel binary symmetric MRC-
D. For this setup, we characterize the optimal performance
of the DF and CF schemes, and show that in general pDCF
outperforms both, and that in some cases the cut-set bound is
tight and coincides with the channel capacity. This example
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Fig. 4. The parallel binary symmetric MRC-D with parallel source-relay
links. The destination has side information about only one of the source-relay
links.

proves the suboptimality of both DF and CF on their own for
ORC-D.

In this scenario, the source-relay channel consists of two
parallel binary symmetric channels. We have X; = (X{, X?),
Yo = (VA YZ) and p(yrler,2) = plyklel, 2)p(ydle?)
characterized by

YVi=X{®N@®Z and Y3=X7® Ny,

where N; and N, are i.i.d. Bernoulli random variables with
Pr{N; = 1} = Pr{N, = 1} = 4, i.e., N; ~ Ber(d) and
Ny ~ Ber(d). We consider a Bernoulli distributed state Z,
Z ~ Ber(p,), which affects one of the two parallel channels,
and is available at the destination. We have X! = X2 = Y} =
V=N =Ny =Z={0,1}.
From (11), the cut-set bound is given by
Rcs = min{ Ry, max I(X{ X% YEYAIZ)}
plryTy

= min{ Ry, 2(1 — h2(4))}, (15)

where h(-) is the binary entropy function defined as hy(p) =

—plogp — (1 —p)log(l —p).
The maximum DF rate is achieved by Xi ~ Ber(1/2) and
X% ~ Ber(1/2), and is found to be

Rpr = min{R;, max [(X]X%YAY2)}
p(zia?)
= min{Rl, 2 — h2(5 *pz) — hQ(CS)},

where ax 3£ a(l — ) + (1 — a)B.
Following (14), the rate achievable by the CF scheme in the
parallel binary symmetric MRC-D is given by

Rcp = max [(X1 X2, Ygr|2),
st. Ry > I(YEYZ: Yr|Z)

over p(2)p(z12)p(yg |2, o 1)p(YR|v2)p(IrYRYE)-

(16)

a7)

Let us define h; *(g) as the inverse of the entropy function
ha(p) for ¢ > 0. For ¢ < 0, we define hy*(¢) = 0.

As we show in the next lemma, the achievable CF rate
in (17) is maximized by transmitting independent channel
inputs over the two parallel links to the relay by setting
X1 ~ Ber(1/2), X? ~ Ber(1/2), and by independently
compressing each of the channel outputs Y} and Y3 as
Vi = YA ®Q and Y3 = Y2 @ Q. respectively, where
Q1 ~ Ber(hy*(1 — Ry/2)) and Qo ~ Ber(hy '(1 — Ry/2)).
Note that for R; > 2, the channel outputs can be compressed
errorlessly. The maximum achievable CF rate is given in the
following lemma.
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Fig. 5. Achievable rates and the cut-set upper bound for the parallel binary
symmetric MRC-D with respect to the binary noise parameter d, for Ry = 1.2
and p, = 0.15.

Lemma 4. The maximum rate achievable by CF over the
parallel binary symmetric MRC-D is given by

Rep =2 (1 — ho (5*112—1 (1 — %
Proof. See Appendix D.

Now, we consider the pDCF scheme for the parallel binary
symmetric MRC-D. Although we have not been able to
characterize the optimal choice of (U, Yr, X 1, X?%) in general,
we provide an achievable scheme that outperforms both DF
and CF schemes and meets the cut-set bound in some regimes.
Let X{ ~ Ber(1/2) and X7 ~ Ber(1/2) and U = X7, i.e., the
relay decodes the channel input X7, while Y} is compressed
using Yz = YA + Q, where Q ~ Ber(hy (2 — ha(8) — Ry)).
The rate achievable by this scheme is given in the following
lemma.

(18)

O

Lemma 5. A lower bound on the achievable pDCF rate over
the parallel binary symmetric MRC-D is given by

RpDCF > min{Rl, 2 — hg((S)—hg (5* h;l (2 - hg(é)—Rl))}

Proof. See Appendix E. O

We notice that for p, < hy ' (2 — ha(8) — Ry), or equiv-
alently, 6 < hy 1 (2 — ha(p,) — Ry), the proposed pDCF is
outperformed by DF. In this regime, pDCF can achieve the
same performance by decoding both channel inputs, reducing
to DF.

Comparing the cut-set bound expression in (15) with Rpy in
(16) and RcF in (18), we observe that DF achieves the cut-set
bound if Ry < 2—h(d*p.)— h(d) while Rcr coincides with
the cut-set bound if R; > 2. On the other hand, the proposed
suboptimal pDCF scheme achieves the cut-set bound if R >
2—hy(6), i.e., for & > hy ' (2— Ry ). Hence, the capacity of the
parallel binary symmetric MRC-D in this regime is achieved
by pDCF, while both DF and CF are suboptimal, as stated in
the next lemma.

Lemma 6. If Ry <2 and § > h§1(2 — Ry), pDCF achieves
the capacity of the parallel binary symmetric MRC-D, while
pure CF and DF are both suboptimal under these constraints.
For Ry > 2, both CF and pDCF achieve the capacity.

The achievable rates of DF, CF and pDCEF, together with
the cut-set bound are shown in Figure 5 with respect to ¢
for Ry = 1.2 and p, = 0.15. We observe that in this setup,
DF outperforms CF in general, while for § < h; 1(2 — Ry —
ha(p.)) = 0.0463, DF outperforms the proposed suboptimal
pDCF scheme as well. We also observe that pDCF meets the
cut-set bound for § > hy (2 — R;) = 0.2430, characterizing
the capacity in this regime, and proving the suboptimality of
both the DF and CF schemes when they are used on their own.

B. Multihop Binary Symmetric Channel

In order to gain further insights into the proposed pDCF
scheme, we look into the binary symmetric MRC-D, in which,
there is only a single channel connecting the source to the
relay, given by

Yr=X1ONDZ, (19)
where N ~ Ber(d) and Z ~ Ber(p,).

Similarly to Section IV-A, the cut-set bound and the maxi-
mum achievable rates for DF and CF are found as

Rcs = min{Ry, 1 — ha(6)}, (20)
Rpr = min{Ry,1 — ha(d x p.)}, 21
Rerp =1 —hy(6 % hy '(1 = Ry))), (22)

where Rpr is achieved by X; ~ Ber(1/2), and Rcr can be
shown to be maximized by X; ~ Ber(1/2) and Yz = Yz ®Q,
where Q ~ Ber(hy ' (1—R;)) similarly to Lemma 4. Note that,
for Yr independent of Z, i.e., p., = 0, DF achieves the cut-set
bound while CF is suboptimal. However, CF outperforms DF
whenever p. > hy ' (1 — Ry).

For the pDCF scheme, we consider binary (U, X1, YR), with
U ~ Ber(p), a superposition codebook X; = U & W, where
W ~ Ber(q), and Yz = Yz ® Q with Q ~ Ber(a). As
stated in the next lemma, the maximum achievable rate of
this pDCF scheme is obtained by reducing it to either DF or
CF, depending on the values of p, and R;.

Lemma 7. For the binary symmetric MRC-D, pDCF with
binary (U, X1,YR) achieves the following rate.
max{Rpr, Rcr } (23)

_Jmin{Ry, 1 — ha(6xp.)} ifp. < hy'(1— Ry),
1= he(Oxhy (1= Ry)) ifp. >hyt(1— Ry).

Rypcr

This result justifies the pDCF scheme proposed in Section
IV-A for the parallel binary symmetric MRC-D. Since the
channel p(y?|xs) is independent of the channel state Z, the
largest rate is are achieved if the relay decodes X7 from Y3.
However, for channel p(yi|z1,z), which depends on Z, the
relay either decodes X1, or compress Y2, depending on p,.
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Fig. 6. The multihop Gaussian relay channel with source-relay channel state
information available at the destination.

C. Multihop Gaussian Channel with State

Next, we consider an AWGN multihop channel, called
Gaussian MRC-D, in which the source-relay link is charac-
terized by Yr = X; + V, while the destination has access
to correlated state information Z. We assume that V' and
Z are zero-mean jointly Gaussian random variables with a
covariance matrix

Czv = Llo ﬂ : (24)
The channel input at the source has to satisfy the power con-
straint E[|X7|?] < nP. Finally, the relay and the destination
are connected by a noiseless link of rate ; (see Figure 6 for
the channel model).

In this case, the cut-set bound is given by

. 1 P
Rcs = m1n{R172log (1 + 1—,02>}

It easy to characterize the optimal DF rate, achieved by a
Gaussian input, as follows:

(25)

Rpr = min {Rl, % log(1 + P)} . (26)

For CF and pDCF, we consider the achievable rate when
the random variables (X1, U, }73) are constrained to be jointly
Gaussian, which is a common assumption in evaluating achiev-
able rates, yet potentially suboptimal. For CF, we generate
the compression codebook using Ye = Yr + @, where
Q ~ N(0, 02). Optimizing over 03, the maximum achievable
rate is given by

P+ 22R1(1 _ p2)
P+1-p? ) )
For pDCF, we let U ~ N(0,aP;), and X; = U + T to
be a superposition codebook where 7' is independent of U
and distributed as T ~ N(0,aP;), where @ £ 1 — a. We
generate a quantization codebook using the test channel Vi =
Yr 4+ @ as in CF. Next lemma shows that with this choice
of random variables, pDCF reduces either to pure DF or pure
CF, similarly to the multihop binary model in Section IV-B.

1
Rcrp = Ry — 3 log ( (27)

Lemma 8. The optimal achievable rate for pDCF with jointly
Gaussian (X1,U,YR) is given by
Rypcr = max{Rpr, Rcr} (28)
{min {Ry,1/2log(1 + P)}  if p? <272F1(1 4 P),

Ry = Ylog (PHERUSA) i g2 5 0721 4 P),

Proof. See Appendix F. O
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Fig. 7. Achievable rates and the cut-set upper bound for the multihop AWGN
relay channel with source-relay channel state information at the destination
for R1 =1 and P = 0.3.

In Figure 7 the achievable rates are compared with the cut-
set bound. It is shown that DF achieves the best rate when
the correlation coefficient p is low, i.e., when the destination
has low quality channel state information, while CF achieves
higher rates for higher values of p. It is seen that pDCF
achieves the best of the two transmission schemes. Note also
that for p = 0 DF meets the cut-set bound, while for p = 1
CF meets the cut-set bound.

Although this example proves the suboptimality of the DF
scheme for the channel model under consideration, it does
not necessarily lead to the suboptimality of the CF scheme
as we have constrained the auxiliary random variables to be
Gaussian.

V. COMPARISON WITH THE CUT-SET BOUND

In the examples considered in Section IV, we have seen that
for certain conditions, the choice of certain random variables
allows us to show that the cut-set bound and the capacity
coincide. For example, we have seen that for the parallel binary
symmetric MRC-D the proposed pDCF scheme achieves the
cut-set bound for § > hy L2 - R;), or Gaussian random
variables meet the cut-set bound for p = 0 or p = 1 in
the Gaussian MRC-D. An interesting question is whether the
capacity expression in Theorem 1 always coincides with the
cut-set bound or not; that is, whether the cut-set bound is tight
for the relay channel model under consideration.

To address this question, we consider the multihop binary
channel in (19) for Z ~ Ber(1/2). The capacity C of this
channel is given in the following lemma.

Lemma 9. The capacity of the binary symmetric MRC-D with
Yr=X1®N®Z, where N ~ Ber(d) and Z ~ Ber(1/2), is
achieved by CF and pDCF, and is given by
C=1—ha(5xhy (1 - Ry)). (29)
Proof. See Appendix G. O

From (20), the cut-set bound is given by Rcs = 1 — ha(9).
It then follows that in general the capacity is below the cut-set
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Fig. 8. Achievable rates, capacity and cut-set upper bound for the multihop
binary relay channel with respect to 6 for Ry = 0.25 and p, = 0.5.

bound. Note that for this setup, Rpr = 0 and pDCF reduces
to CF, i.e., R,pcr = Rcr. See Figure 8 for comparison of
the capacity with the cut-set bound for varying  values.

CF suffices to achieve the capacity of the binary symmetric
MRC-D for Z ~ Ber(1/2). While in general pDCF outper-
forms DF and CF, in certain cases these two schemes are
sufficient to achieve the cut-set bound, and hence, the capacity.
For the ORC-D model introduced in Section II, the cut-set
bound is given by

Rcs :Rg+min{R1,Ir(1a)§I(X1;YR|Z)}. (30)
p(z1
Next, we present four cases for which the cut-set bound is
achievable, and hence, is the capacity:

Case 1) If I(Z;YRr) = 0, the setup reduces to the class of
orthogonal relay channels studied in [3], for which the
capacity is known to be achieved by pDF.

Case 2) If H(Yr|X1Z) = 0, ie., Yg is a deterministic
function of X7 and Z, the capacity, given by

Ry 4+ min{ Ry, H(l&); I(X1;YR|Z)},
p(z1

is achievable by CF.

Case 3) If max,,,)I[(X1;Yr) > Ry, the capacity, given by
C = Ry + Ry, is achievable by pDF.

Case 4) Let argmaxy ;) [(X1;YR|Z) = p(z1). If Ry >
H(Yg|Z) for Yg induced by p(z1), the capacity, given
by Ry + I(X1;Yr|Z), is achievable by CF.

Proof. See Appendix H. O

These cases can be observed in the examples from Section
IV. For example, in the Gaussian MRC-D with p = 0, Yg
is independent of Z, and thus, DF meets the cut-set bound
as stated in Case 1. Similarly, for p = 1 CF meets the cut-
set bound since Yy is a deterministic function of X and Z,
which corresponds to Case 2.

For the parallel binary symmetric MRC-D in Section IV-A,
pDCF achieves the cut-set bound if § > h; (2 — R;) due
to the following reasoning. Since Y} is independent of X{,

from Case 1, DF should achieve the cut-set bound. Once X 11
is decoded, the available rate to compress Y5 is given by R —
I(X31;Y1) = Ry —1+h2(9), and the entropy of Y conditioned
on the channel state at the destination is given by H (Y3|Z) =
1 — hy(0). For § > hy '(2 — Ry) we have Ry — I(X;;Y;) >
H (Y3|Z). Therefore the relay can compress Y3 losslessly, and
transmit to the destination. This corresponds to Case 4. Thus,
the capacity characterization in the parallel binary symmetric
MRC-D is due to a combination of Case 1 and Case 4.

VI. CONCLUSION

We have considered a class of orthogonal relay channels, in
which the channels connecting the source to the relay and the
destination, and the relay to the destination, depend on a state
sequence, known at the destination. We have characterized the
capacity of this class of relay channels, and shown that it is
achieved by the partial decode-compress-and-forward (pDCF)
scheme. This is the first three-terminal relay channel model
for which the pDCF is shown to be capacity achieving while
partial decode-and-forward (pDF) and compress-and-forward
(CF) schemes are both suboptimal in general. We have also
shown that, in general, the capacity of this channel is below
the cut-set bound.

APPENDIX A
PROOF OF LEMMA 1

In the rate expression and joint pmf in Theorem 2, we set
X" = (X7, X5), Y™ = (Y, Y5", Z™), V = (), and generate
X% and X3 independent of the rest of the random variables
with distributions p*(zgr) and p*(x3), which maximize the
mutual information terms in (5), respectively. Under this set
of distributions we have

I(X;YYR‘XRU) I(X1X27Y1YQYRZ|XR, )
(XlXQ,YgYR|XRUZ)

(X9 Ya|Z) + I(X1; YR|UZ)
= Ry + I(X1;YR|UZ>

= 1=

I
I

(U;
I(XXR,Y) = I(XlXQXR,}/lY2Z)
Y (XX p: YiY2|2)
9 I(Xmi i) + 1(Xa:Ya|2) = R + Ro,
I(Vi; YR|XXRUY) = I(Vr; Ya|Xp X1 XoUY1 Yo Z)
D (Vi Yr| X p X1 XU Y Z)
9 (Ve YR X1 UZ),
I(Yr; YR|Y XRU) = I(Yr; Yr|Y1Y2ZXRgU)
W 1(Vi: YR|U2),

I(XRr;Y|V) = I(Xgp; Y1Y2Z) = I(XRg; Y1) = Ry,
where (a) is due to the Markov chain (X;X5) — X —
Yl, (b ),(c) (e),(f),(g),(h) are due to the independence

f (U,X;) and Xpg, and (d) is due to the Markov chain
(Y1Y2) (XoXRr2) — X;.



Then, (8) reduces to the following rate

R =supmin{I(U;Yg) + Ry + I(X1;Yr|UZ), (1)
P
Ro+ Ry — I(Yr; Yr|X1UZ)},
st. Ry > I(Yg; YR|UZ). (32)

Focusing on the joint distributions in P such that the minimum
in R is achieved for the first argument, i.e.,

Ry — I(Ygr:; YR|X\UZ) > I(U; Yg) + I(X1; Yr|U Z),

and using the chain rule for the mutual information, the rate
achievable by pDCF is lower bounded by

R >sup Ry + I(U; YR) + I(X1; Yr|UZ)
P

st. Ry > I(U;YR) + I(X1Yr: YR|IUZ), (33)
Ry > I(YR: Yr|UZ). (34)
From (33), we have
Ry > I(U;Yg) + I(X\Yr; Yr|UZ)
W 1U;YR) + I(V; YU Z)
> I(Yr; YRIUZ), (35)
where (a) is due to the Markov chain Yz — (UYg) — (X1Z).

Hence, (33) implies (34), i.e., the latter condition is redundant,
and R > C. Therefore the capacity expression C in (7) is
achievable by pDCF. This concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

Consider any sequence of (2"% n,uv,) codes such that
lim,, o0 v, — 0. We need to show that B < R,,.

Let us define U; £ (Vi ' X7, Z2"V) and Vi £ (Y{1,,).
For such Yg; and U;, the following Markov chain holds

YR’L - (U“YRZ) - (X1i7X2i7ZiaY1ia}/2i7XRi)' (36)
From Fano’s inequality, we have
HWI|Y'YS' Z") < nep, (37)

such that ¢,, — 0 as n — oo.
First, we derive the following set of inequalities related to
the capacity of the source-destination channel.

nR = H(W)

@ IWYIYR|Z) + HOW Y'Y 2"

()
< I(XTX3Y7YSZ™) + nep, (38)
where (a) follows from the independence of Z™ and W; and

(b) follows from Fano’s inequality in (37).

We also have the following inequalities:

[X3: V|27 = S H(Yail 27V ") — H(Yail Y3 X3)

=1
(a) n
<> H(Yai|Zi) -

=1
n

= I(Xoi; Y2l Zi)

=1

b
Y I (Xaqs Yo Zo Q)

H(Y5|Z; X5;)

(c)
S ’I’LI()(QQ/7 YVQQ' |ZQ')

(d)

< nRs, (39

where (a) follows since conditioning reduces entropy, (b)
follows by defining Q' as a uniformly distributed random
variable over {1,...,n} and (Xaq/,Y2q:, Zg/) as a pair of
random variables satisfying Pr{Xs;, = x2,Ys; = y2,2Z; =
2} = Pr{Xogr = 72, Yqr = y2. 2 = AQ = i} for
i = 1,..,n, (c) follows from the Markov chain relation
Q' — Xag — Yaq and (d) follows from the definition of Ry
in (5). Following the same steps, we obtain

(X3 Y Z") < nR;. (40)
Then, we can bound the achievable rate as,
nR = I(W;Y"Y;'Z") + HW|Y{*'YS' Z"™)

W YrYEZ) + e

© 1wy 27 + I YR Y9 Z) + ney

S I( X3, Y Z™) + IWYYS Z™) + ney,
< Ry + HOPIYEZ") — HYPIWZ™) + e,

(e)
< nRy+ H(YP|Z") —
(f)

HYP WX Z™) + nep
nRs + I(X7 YN Z™) + ne,
{L|Y17LZ7L) + nen

= nRy+ Y H(Xy|X75 ) —

i=1

(h) T

<Rzt
i=1 L

H(mem} -

(9)
< nRy+ H(XT) - H(X

H(XMY]Z™) + ney
LY 2™\ YRy)
H(XMYZ") + ney

I(Yzéflzn\ix?iﬂ% Yri)

—I(XTiin YRi|Y1iﬁlzn\i) + H(Xli\Yéle"\iXﬁH)

(X Y}ézlz“\ﬂxm] ~HXPYPZ) + nes
9 Ry + ) [I (YA 2N X s Vi)

+H(X1i|Y1§112n\iXﬁ'+1)} — H(X{'Y{"Z") + ne,



= nRy + Z [ (Ui; Yri) + H(XMU)}
(Xl ‘Y1 Z") + ney,

< nRg—i—Z[ (Us; Yri) + H(X1:|U;)
—H(X1i|UiZiYRi)} + nen

k

© R2+Z[ (Us; Yra) + 1(Xui; YrilUi Z3) | + nen,

where (a) is due to Fano’s inequality; (b) is due to the chain
rule and the independence of Z™ from W; (c¢) is due to the
data processing inequality; (d) is due to the Markov chain
relation Y3"— (W, Z™)—Y7" and (39); (e) is due to the fact that
conditioning reduces entropy, and that X" is a deterministic
function of W; (f) is due to the Markov chain relation Y7" —
X7 —W; (g) is due to the independence of Z™ and X7 (4)
follows because

Z (X1 Y5 20V X ) =
i1

I(X1i§Y1$1|Xﬁ+1Zn\i)

5 =
=11

s
I
—

where (1) is due to the independence of Z" and X}'; and (m)
is the conditional version of Csiszar’s equality [24]. Inequality
(j) is due to the following bound,

=Y H(Xu|X[ 2"
=1

H(X{Y"2")

> > H(Xy|Yi ' Xp 27V
=1

(n) . i— n ny n
= ZH(X1i|YR11X11:+1Z Y1i+1)

i=1

=Y H(Xu|UiZiVri),

i=1

(41)

where (n) is follows from the Markov chain relation Xy; —
(Vi ' X7 Z7Y ) — YY), and noticing that Xp; =
fri(YET"). Finally, (k) is due to the fact that Z; independent
of (Xli; Ul)

We can also obtain the following sequence of inequalities

nRi4+nRs
(a)
> I(Xp; Y"1 27) + (X3 Y5 | Z27)
)
= H(Y;'|Z") - H(Y;' | X3 Z")
+H (Y'Y Z") — H(Y\" | XRZ™)
= HY"Y;'|Z") = H(Y;'| X3 Z") — H(Y{"|XRZ")
9 HOYYP|Z") - HOPIXPXEYRZ")
—H(Y"|XpX{ X3YRY5'Z")
42)

I(X{liﬂ;YRi‘Y}%IlZn\i)a

@
> HY"Y'|Z2") - HY" YL | XT X5 YR Z™)

= I(V"Y3 XT X5 YR|Z")

= H(XTX VY| 27) + T(YVYy S YR XY X5 27)
©

> nR+ I(Y"Y3: YEIXTXPZ™) — ne,

DR+ IV YRIXTZ") — ney

= nR+ Y IV YRi| X7V Z") — e,
i=1

> nR+ > IV YRl X7V Z7) = ney
=1

(9)
> nR+ Z T YR XY Z™) — ney,

=1

n
=nR+ Z I(Yri; Yri| X1:Ui Zi) — ney,

i=1

where (a) follows from (39) and (40); (b) is due to the fact that
conditioning reduces entropy; (c) is due to the Markov chains
Yo —(X52")— (XPY3) and Y{'— (X5 2") (X} X5 YR Y3):
(d) follows since conditioning reduces entropy; (e) is due
to the expression in (38); (f) is due to the Markov chain
(YRY) — (X7 Z™) — (X3Y3") and; (g) is due to the Markov
chain (Y{},,) — (X{,Yg, ' Z2") — Xi7

A single letter expression can be obtained by using the
usual time-sharing random variable arguments. Let () be a time
sharing random variable uniformly distributed over {1, ...,n},
independent of all the other random variables. Also, define a
set of random variables (X1, Yrg, Ug, }A/RQ, Zg) satisfying

Pr{Xig = 21,Yro = yr,Ug = u, Yrq = Ur, Zq = 2|Q = i}
= Pr{Xy; = =1, Yri = yr, Ui = w, Yri = ip, Zi = 2} (43)

fori=1,...,n

Define U £ (Uq, Q). Yr £ Yrq. X1 £ X1q. Yrq = Yr and
Z 4 Zg. We note that the pmf of the tuple (X1, Yz, U, Yg, Z)
belongs to P in (6) as follows:

p(u, 1, YR, 2, UR)

= p(qwczaﬁczaym’z@’@m)

p(q,uqQ, 11Q)P(2QYRrRQURQ|Y, UQT1Q)

p(4, uq, 210)p(2ql4, uq, 210)P(YRQ, IRrQl¢: ug, 210, 2Q)
plq

A

(,l

v

q,uqQ, le)p@)p(yRQ‘% UQ,r1Q, ZQ)
: (yRQ|q,UQ7$1Q72Q7yRQ)

b N
¢ (q,uq@, 71Q)p(2)p(yrl|T1, 2)P(URQ|T, UQ, 710, 2Q, YRQ)

p(q
p(q,uq, 11Q)p(2)p(yr|71, 2)P(JRQ|T; UQ, YRQ)
= p(u, z1)p(2)p(yrlz1, 2)p(Ir|u, yr),

(,

where (a) follows since the channel state Z" is i.i.d; and
thus p(zglg, ug, r10) = p(2¢lq) = p(z); (b) follows since

P(Yrqle, uq: 119, 2¢) = P(YrQle, T1Q,2q) = P(yrlz1, 2);
(c) follows from the Markov chain in (36).



Then, we get the single letter expression,

1 & .
R< Ry + - Z[I(Ui;YRi) + I( X145 YrilUi Z3)] + €n
=1
= Ry + I(Uq: Yro|Q) + I(X10: YrolUgZoQ) + €
< Ry + I(UqQ; Yrq) + 1(X1qQ; YrQQ|UQZq) + €n
=Ry + I(U;Yr) + I(X1; YR|UZ) + €5,

and
R
1+ Iip 2 +n;(3 ri| X1 ) — ne

= R+ I(Yrq; YrolX10UoZoQ) — ney
= R+ I(Yr;Yr|X1UZ) — ne,.
The cardinality of the bounds on the alphabets of U and Yi

can be found using the usual techniques [24]. This completes
the proof.

APPENDIX C
PROOF OF LEMMA 3

Now, we will show that the expression of R,, in (9) is
equivalent to the expression C in (7). First we will show that
C < R,,p. Consider the subset of pmf’s in P such that

Ri+Ry — I(Yr; YR|X1UZ)
> Ry + I(U; Yr) + I(X1; YR|UZ),

(44)
(45)

holds. Then, similarly to (35) in Appendix A this condition is
equivalent to

Ry > I(U;YR) + I(Yg;: Yr|UZ). (46)

Hence, we have C < R,,;,.

Then, it remains to show that C > R,,. As Ry can be
extracted from the supremum, it is enough to show that,
for each (X,,U, Z, YR,YR) tuple with a joint pmf p, € P
satisfying

R(pe) < I(U; Yg) + I(X1; YR|U Z),

where R(p.) £ Ry — I()A/R; Yr|X1UZ), 47

there exist random variables (X7, U*, Z, Y}, Y5;) with joint
pmf p} € P that satisfy

R(p.) = I(U";Yr) + I(X{; Y3|U*Z) and

R(pe) < Ry — I(Y3; YR|XIU*Z). (48)

This argument is proven next.

Let B denote a Bernoulli random variable with parameter
A € [0,1], i.e., B = 1 with probability A, and B = 0 with
probability 1 — A. We define the triplets of random variables:

C (U,X1,YR) if B=1,
UL X, V) = 49
( 1, Yg) {(X1,X1,@) it B0, 49)
and
7" "o A (Xl,Xl,@) lf B - 1,
Ul XV = 50

We first consider the case R(p.) > I(X1;YR). Let U* =

(U',B), X; = X,, Y} = (Yg,,B). For A =1,

(U YR) + I(XT; YAUZ) = I(U; YR) + 1(X1; Yr|U Z)
> R(pe), &1y

and for A =0,

I(U* YR) + I(XT; YU Z) = I(X1; Ya)
< R(pe).

As I(U*;Yg) + I(X};Y;|U*Z) is a continuous function of
A, by the intermediate value theorem, there exists a A € [0, 1]
such that I(U*;Yg) + I(X{;Y5|U*Z) = R(p.). We denote
the corresponding joint distribution by p}.

We have

(52)

I(V3:; YR|X{U*Z) = I(Yp: Yr| X U ZB)
= M (Yg; Yr|X1UZ)

< I(Yg; Yr|X\UZ), (53)
which implies that p} satisfies (48) since
R(p.) = Ry — I(Yr; Y| X1UZ)
<Ry —I(Y3 YR|IXIU*Z). (54)

Next we consider the case R(p.) < I(Xg;Y1). We define
U* = (U ,B), X{ = X, and Yj; = (Y, B). Then, for
A=1,

(U YR) + I(XT; YRU*Z) = I(X1; Vi)
> R(pe)7
and for A = 0,

I(U* YR) + I(X5;YEU*Z) =0

< R(pe). (55)

Once again, as [(U*; Yg)+I(X}; Y;|U*Z) is a continuous
function of A, by the intermediate value theorem, there exists
a A € [0,1] such that I(U*; Yg) + I(X};Y5|U*Z) = R(p).
Again, we denote this joint distribution by p’. On the other
hand, we have I(Y}5; Yr|X;U*Z) = 0, which implies that

R(pe) = Ri — I(Yr; Yr|X1UZ)
<Ry

=Ry — I(Y}; YR|IX[U*Z). (56)

That is, p} also satisfies (48).

We have shown that for any joint pmf p. € P satisfying
(47), there exist another joint pmf, p}, that satisfies (48). For
a distribution satisfying (48) we can write

Ry > I(U*;YR) + I(X{; YEIU* Z) + (Y YR| X{U* Z)
= I(U*;Yr) + I(YRX{; YU Z)
W LU YR) + IV} Ya|U*Z)
where (a) is due to Markov chain X} — (YR ZU*) — Y. This
concludes the proof.



APPENDIX D
PROOF OF LEMMA 4

Before deriving the maximum achievable rate by CF in
Lemma 4, we provide some definitions that will be used in
the proof.

Let X and Y be a pair of discrete random variables, where
X ={1,2,..,n} and Y = {1,2,...,m}, for n,m < oco. Let
Py € A, denote the distribution of Y, where A denotes
the (k — 1)-dimensional simplex of probability k-vectors. We
define T'xy as the n X m stochastic matrix with entries
Txy (j,i) = Pr{X = j|Y = i}. Note that the joint distribution
p(z,y) is characterized by T'xy and py.

Next, we define the conditional entropy bound from [25],
which lower bounds the conditional entropy between two
variables. Note the relabeling of the variables in [25] to fit
our model.

Definition 1 (Conditional Entropy Bound). Let py € A,,
be the distribution of Y and Txvy denote the channel matrix
relating X and Y. Then, for q € A, and 0 < s < H(Y),
define the function

= inf H(X|W).

p(wly): XY -W,

H(Y|W)=s, py=q.

That is, Fr,, (q,s) is the infimum of H(X|W) given a
specified distribution q and the value of H(Y|W). Many
properties of Fr,, (q,s) are derived in [25], such as its
convexity on (q, s) [25, Theorem 2.3] and its non-decreasing
monotonicity in s [25, Theorem 2.5].

Consider a sequence of N random variables Y =

Fry,(q,s) (57)

(Y1,...,Yn) and denote by q; the distribution of Y;, for
i = 1,...,N, by q¥) the joint distribution of Y and by
e Zil q; the average distribution. Note that Y7, ..., Y

can have arbitrary correlation. Define the sequence X =
(X1,...,Xn), in which X, ¢ =1, ..., N, is jointly distributed
with each Y; through the stochastic matrix T'xy and denote
by T)((J\Q the Kronecker product of N copies of the stochastic
matrix T'xy.

Then, the theorem given in [25, Theorem 2.4] can be
straightforwardly generalized to non i.i.d. sequences as given
in the following lemma.

Lemma 10. For N € Z*, and 0 < Ns < H(Y), we have
Froo(q™, Ns) > NFry, (q.9), (58)
where equality holds for i.i.d. Y; components following q.

Proof. Let W, X,Y be a Markov chain, such that H(Y|W) =
Ns. Then, using the standard identity we have

N
H(Y|W) =Y HX[Y{™ W),

(59)

k=1

N
H(X|W) = H(XX{™,W). (60)

k=1

Letting s, = H(Y;|Y*™ 1, W), we have

1 N

v kz_l Sk = 8. 61)

Also, from the Markov chain X}, — (Y'ffl, w) —X’ffl, we
have

H(X, X7 W) 2 HXG YT XL W) (62)
= H(X,|YY 1 w). (63)

Applying the conditional entropy bound in (57) we have
H(X3[YY™ W) > Proy (an, st)- (64)

Combining (60), (62) and (64) we have
N
H(X|W) 2 Z Fryy (qu Sk) > NFrpy, (qv 5)7
k=1
where the last inequality follows from the convexity of
Fr(q,s) in q and s and (61).
If we let W, X, Y be N independent copies of the
random variables W, X,Y, that achieve Fr.,(q,s), we

have H(Y|W) = Ns and H(X|W) = F,m(q") =
XY

NFry, (q,s). Therefore, F ) (V) < NFr,(q,s), and

the equality holds for i.i.d. co)fﬁ/ponents of Y. O

Now, we look into the binary symmetric channel YV =
X & N where N ~ Ber(d). Due to the binary modulo-sum
operation, we have X =Y & N, and we can characterize the
channel T'xy of this model as

1-9 1)
Txy = { 51— 5} ‘

When Y and X are related through channel T'xy in (65),
Fr.. (q,s) is characterized as follows [25].

(65)

Lemma 11. Let Y ~ Ber(q), i.e., q = [q,1 — q|, and Txy be
given as in (65). Then the conditional entropy bound is

Fryy (q,5) = ha(6 % hy ' (5)), for 0 < s < ha(q).

In the following, we use the properties of Fr., (q,s) to
derive the maximum rate achievable by CF in the parallel
binary symmetric MRC-D. From (17), we have

I(YR, Y2 VR|Z) = (X} @ Ny @ Z, X2 @ Ny; V| Z)
=I(X] & N\, X2 @ Ny Y| 2).

Let us define Y2 £ X{ ® N; and Yi £ (Y2, Y2), and
the channel input X £ (X{, X?). Note that the distribution of
Yz, given by q(2), determines the distribution of X via T)((ZQ/,
the Kronecker product of T'xy in (65). Then, we can rewrite
the achievable rate for CF in (17) as follows

Rep = I(X,YR|Z)

= max
p(x)p(2)p(YRIX)P(JRI|VR,2)

st. Ry > I(Yg; Yr|Z). (66)

Next, we derive a closed form expression for Rcy. First,
we note that if R, > 2, we have H(YRr) < R; and Rcr =
2(1 — h(d)), i.e., CF meets the cut-set bound.

For fixed q?, if H(Yg) < R; < 2, the constraint in
(66) is satisfied by any Y, and can be ignored. Then, due
to the Markov chain X — Y — Yz Z, and the data processing
inequality, the achievable rate is upper bounded by

Rer < I(X, Yr) = H(Y ) — 2h(5) < Ry — 2h(3).(67)



For Ri < H (Y r) < 2, the achievable rate by CF is upper
bounded as follows.

(@)

Rer = H(X) — H(X|ZYR)

max
p(x)p(2)p(YR|X)P(IRIYR,2)
st. HYR|ZYR) > H(YR) — Ry
(b)
< max

PP RIX)P(w]Y R) -
S.t. H(YR|W> > H(YR) — Ry

= max [H(X)— min H(X|W)]
p(x)p(¥ rlx) p(w|¥r)

S.t. H(YR|W> > H(YR) — Ry
[H(X) - FT)<(2})/ (q(2)’ S)]

H(X) - HX|W)

= max B
p(x)p(¥r|x),0<s<H(YR)

s.t. s > H(YR) — Ry
[H(X) - F

d
= max (2)
Txy

p(x)p(¥ rIX)

(a®, H(YR) — Ry)]

(e)
< max
p(x)p(¥ r|X)

[H(X) - 2FTXY (q7 (H(YR) - Rl)/Z)]v

where (a) follows from the independence of Z from X and
Y r; (b) follows since optimizing over W can only increase the
value compared to optimizing over (Z, Yz); (c) follows from
the definition of the conditional entropy bound in (57); (d)
follows from the nondecreasing monotonicity of FT;(f‘)/ (q?, s)

in s; and (e) follows from Lemma 10, and q £ [¢,1 — ¢] =
(a1 + qq) is the average distribution of Y.

Now, we lower bound H (Y ). Since conditioning reduces
entropy, we have H(Yg) > H(Yg|NiNy) = H(X), and
then we can lower bound H(Yg) as follows:

max{H(X),R;,} < H(YR) < 2. (68)
Let v £ (max{H(X), R, } — R1)/2. Then, we have
Rer (69)
< max [HX) ~2Fry, (@),

p(x)P(Yr %)
= max [H(X) = 2ho(dxhy ' (v))]
P()P(YRI%)
s.t. 0 < v < ha(q)

maxH(X) = 2ha(0 % by ' (v)]

s.t. By <max{H(X),R1} <2+ R,

= max[H(X) = 2ha (6 by (max{ H(X), i} — F1)/2))
s.t. max{H(X),R;} <2

= max [2a — 2ha (6 x hy ' ((max{2a, R} — R1)/2))]

0<a<l1
s.t. max{R1,2a} <2,

where (a) follows from (68) and Fr., (q,s) being non-
decreasing in s; equality (b) follows from the definition of
Fry, (g, s) for the binary symmetric channel; (c) follows since
ha(g) < 1, and we are enlarging the optimization domain; (d)
follows since there is no loss in generality by reducing the opti-
mization set, since max{H (X), Ry} > R; and from (68), any

(X,YR) following p(x,yr) satisfy max{H(X), R} < 2;
and (e) follows from defining H(X) £ 2a, for 0 < a < 1.
Then, for 2a < Ry, we have

max
0§&SR1/2

and for 2o > R, we have

Rep < max  [2a— 2he(0 % hy H(a — Ry /2))]. (71)

Ry /2<a<l
Now, we solve (71). Let us define f(u) £ ho(d * hy *(u))
for 0 < u < 1. Then, we have the following lemma from [26].

Lemma 12 ( [26]). Function f(u) is convex for 0 < u < 1.

We define g(a) £ a — ho(d * hy ' (o — Ry /2)), such that
Rcor < maxg, j2<a<129(a). We have that g(«) is concave
in «, since is a shifted version by «, which is linear, of the
composition of the concave function —f(u) and the affine
function o — Ry /2.

Proposition 1. g(«) is monotonically increasing for Ry /2 <
a<1l+Ry/2

Proof. Using the chain rule for composite functions, we have

d*g(a
D o Rij2),
where f”(u) £ d?f/du?(u).

Since g(«) is convex, and is defined over a convex region, it
follows that its unique maximum is achieved either for " (a—
R1/2) =0, or at the boundaries of the region. It is shown in
[26, Lemma 2] that f”(u) > 0 for 0 < u < 1. Therefore,
the maximum is achieved either at w = 0 or at ©w = 1, or
equivalently, for &« = Ry /2 or « = 1+ Ry /2. Since g(R1/2) =
R1/2 — hg(é) and g(l + R1/2) = R1/2, ie., g(Rl/Q) <
g(1+ Ry/2), it follows that g(«) is monotonically increasing
inafor R1/2<a<1+ Ryi/2. O

(72)

From Proposition 1 if follows that for R1/2 < a < 1, g(«)
achieves its maximum at « = 1. Then, for 2o > R, we have

Ror < 2(1 — ho(§xhy (1 — R1/2))). (73)
Thus, from (70) and (73), for R; < H(YR) we have

Rcr < 2max{R;/2 — ha(8),1 — ho(§ x hy '(1 — R1/2))}
=2(1 - ho(§xhy ' (1 — R1/2))), (74)

where the equality follows from Proposition 1 by noting that
the first element in the maximum coincides with g(R;/2) =
R1/2 — h2(0), and the second one coincides with g(1).

Finally, Rcr is upper bounded by the maximum over the
joint distributions satisfying H(Y z) < R; given in (67), and
the upper bound for the joint distributions satisfying R; <
H(YR) given in (74). Since (67) coincides with g(R1/2),
(74) serves as an upper bound on Rcr when Ry < H(YR).

Next, we show that the upper bound in (74) is achievable
by considering the following variables

X! ~Ber(1/2), X?~Ber(1/2), Yg= (Y3 V3
Yi=YE®Q1, Qi ~Ber(hy;'(1—Ry/2)).
Vi =YE & Qa, Qs ~Ber(hy (1 - Ry/2)).



Let Q; ~ Ber(v) for i = 1,2. Then from the constraint in
(17) we have
I(Yg, Y VR|Z)
= H(Yr|Z) - H(YR|YzY32)
= H(X; &N @ Q1, X7 ©No®Q2) — H(Q1,Q2)
W 2 2h,(v),

where (a) follows since Xi ~ Ber(1/2), i = 1,2 and from
the independence of )1 and Q2. We have 2hs(v) > 2 — Ry,
and thus, v > hy '(1 — Ry /2).
Then, the achievable rate in (17) is given by
I(X;Yg|Z) = H(Yg|Z) — H(Yr|XZ)
= H(X] ® N1 @ Q1, X7 ® N2 © Q)
—H(N1 ® Q1, N2 ® Q)
=2-—2h(0xv)
<2 —2hy(6 % hy ' (1 — Ry /2)),
where the last inequality follows from the bound on v. This
completes the proof.

APPENDIX E
PROOF OF LEMMA 5

From (7), the achievable rate for the proposed pDCF scheme
is given by
Ryper = I(X{;YR) + I(X7; VR|Z)
st. Ry > I(XL;YE) 4+ I(YE; Yr|2).
First, we note that the constraint is always satisfied for the
choice of variables:
I(X1;YR) + I(Yi; Yr|Z)
= H(Yi)-HN)+HX{ o N ©Q) — H(Q)
1 —ho(0) + 1 — ha(hy ' (2 — h(5) — Ry))
= R17
where H(Y2) = 1 since X| ~ Ber(1/2) and H(X? & Ny @

Q) = 1 since X? ~ Ber(1/2). Then, similarly the achievable
rate is given by

(75)

Ryper = I(X{;YR) + I(X?;Yr|Z)
=HYR) -HN)+HXleoNoQ)-HVaeQ)
=1—ho(8) +1—ha(6%hy (2 —h(5) — R1)),

which completes the proof.

APPENDIX F
PROOF OF LEMMA 8

By evaluating (7) with the considered Gaussian random
variables, we get

1 aP aP
R=Zlog (14— ) (14— —
2 °g< +aP+1>< +(1—,02>+ag)

~ 2
_aP 1+ozP+(1 p?) .
aP+1 oz

1
s.t. Ry > 3 log (1 +

We can rewrite the constraint on Ry as,

] s (P+1)(@P+1-p?
o, > fla) = 2R (aP +1)— (P+1)

(76)

Since R is increasing in o7, it is clear that the optimal o7 is
obtained by o2 = f(c), where « is chosen such that f(a) > 0.
It is easy to check that f(«) > 0 for

a€ {O,min{(l — 272k <1+ ]13) 1H .

Now, we substitute 02 = f(«) in (76), and write the achiev-
able rate as a function of « as

(77)

R(a) = 5 log G(a) (78)
where
A aP aP
o & (1+ 5555 ) ()
_ 2281 (1 + P)(1 — p2 + aP) 79

(1—p2)22R1(1+aP)+aP(1+P)

We take the derivative of G/(«) with respect to a:
a 22 P(14+ P)(1—p?) (P+1—221p%)

[P(1+ P)a+22P1(1+aP)(1—p2)*
We note that if p? > 2=F1(P+1), then G'(a) < 0, and hence,
G(«) is monotonically decreasing. Achievable rate R is max-
imized by setting a* = 0. When p? < 2751 (P +1), we have
G’(a) > 0, and hence a* = min {(1 —271) (1 + +5),1} =
1, since we have (1 —27%1) (1+ 1) > (14 52) > L.

G'(a)

APPENDIX G
PROOF OF LEMMA 9

In order to characterize the capacity of the binary symmetric
MRC-D, we find the optimal distribution of (U, X;,Yg) in
Theorem 1 for Z ~ Ber(1/2). First, we note that U is

independent of Yy since
I(U;YRr) < I(X1;YR) =0, (80)

where the inequality follows from the Markov chain U — X7 —
YR, and the equality follows since for Z ~ Ber(1/2) the
channel output of the binary channel Yp = X1 & N ¢ Z is
independent of the channel input X; [6]. Then, the capacity
region in (7) is given by

C =sup {I(Xy;Yr|UZ) : Ry > I(Yg; Yr|UZ)},
where the supremum is taken over the set of pmf’s in the form
p(u, x1)p(2)p(yrley, 2)p(Irlyr, u)-

Let us define Y £ X; @ N. The capacity is equivalent to
C =sup {I(Xy;Ya|UZ): HY|YUZ) > H(Y|U) — R},

over the joint pmf’s of the form
p(u, 21)p(2)p(Yle1)p(Ir|Y, u, 2), (81)

where we have used the fact that Y is independent from Z.



For any joint distribution for which 0 < H(Y|U) < Ry,
the constraint in (81) is also satisfied. It follows from the
Markov chain X; —Y — Y5 given U, Z, and the data processing
inequality, that

c< r(nax){I(Xl,YlZU) H(Y|U) < Ri} (82)
plu,r1
= {nax){H(Y|U) ho(8) : H(Y|U) < Ry}
plu,1
< Ry — ha(6).

We next consider the joint distributions for which R; <
H(Y|U). Let p(u) = Pr[U = u] for u = 1, .., ||, and we can

write
I(X;YR|UZ) = H(X,|U) — Zp H(X:|YrZu)(83)
and
I(YR;?RWZ) 2 <?~?R|UZ>
H(Y|U) - Zp H(Y|YRpZu), (84)

where (a) follows from the definition of Y, and (b) follows
from the independence of Z from Y and U.

For each wu, the channel input X; corresponds to a binary
random variable X, ~ Ber(uu), where v, £ Pr[X; = 1|U =

u] = p(1lu) for w = 1,..., [U|. The channel output for each
X, is given by Y, = X 6]9 N. We denote by ¢, = Pr[Yu =
1] = Pr[Yg = 1|U = uJ. Similarly, we define Y, as Yy for
each u value. Note that for each u, X, — Y, — Yu form a
Markov chain.

Then, we have H (X1 |u) = ha(v,) and H(Y |u) = ha(d *
V). We define s, £ H(Y|YrZu), such that 0 < s, <
H(Y,). Substituting (83) and (84) in (81) we have

C = max U) H(X YrZu
p(uwl)P(lﬁRlyR,u) 1| ZP 1| " )}
st. Ry > H(Y|U) — Zp H(Y|YrZu)

O H(X,|U) —

max |
p(u,z1),

ZP(U)FTXY (qus SU)]

st. Ry > H(Y|U) — Zp(u)su, 0<s, <HY,)

®

= Inax
P(%Tl

s.t. Ry > H(YlU

H(X,|U) - Zp Vo (6 % by (s4))]

—
INe

Zp u)sy, 0 < s, < H Y
max H(X;|U) —
p(u,z1)

(o)
st Yplw

where (a) follows from the definition of Fr, ., (q,s) for
channel Y,, = X,,® N, which for each v has a matrix Txy as
in (65), (b) follows from the expression of Fr,.,. (g, s) for the
binary channel Txy in Lemma 11, (¢) follows from noting
that —ho(6 % hy '(s,)) is concave on s, from Lemma 12 and

applying Jensen’s inequality. We also drop the conditions on
Su, Which can only increase C.

Then, similarly to the proof of Lemma 4, we have
H(Y|\U)> H(Y|UV) = H(X;|U), and we can upper bound
the capacity as follows

H(X:|U) — hs (5*h2_1 <Zp(u)su>>]

s.t. Zp(u)su > max{H(X1|U),R:1} — Ry

C < max
p(z1,u)

< max o — ho(dx hy
0<a<1

Hmax{a, R} — R1)), (85)
where we have defined o & H(X;|U).

The optimization problem can be solved similarly to the
proof in Appendix D as follows. If 0 < o < R;, we have
5 >0 and

C < Ogn(lngi%l o — hg(é) = R1 — h2(6) (86)
For R; < a <1, we have
C< max a—ho(dxhy'(a— Ry)). (87)

R1<a<l

Then, it follows from a scaled version of Proposition 1 that
the upper bound is maximized for o = 1. Then, by noticing
that (86) corresponds to the value of the bound in (87) for
a = Ry, it follows that

C<1—hy(§xhy'(1— Ry)). (88)

This bound is achievable by CF. This completes the proof.

APPENDIX H
PROOF OF THE CUT-SET BOUND OPTIMALITY
CONDITIONS

Cases 1 and 2 are straightforward since under these assump-
tions, the ORC-D studied here becomes a particular case of
the channel models in [27] and [5], respectively.

To prove Case 3 we use the following arguments. For any
channel input distribution to the ORC-D, we have

I(X1;YR|Z) = H(X1|Z) — H(X1|YR, Z)
> H(X1) — H(X1|YR) (89)
= I(X1;YR),

where we have used the independence of X; and Z, and the
fact that conditioning reduces entropy. Then, the condition
maxp(z,) [(X1;Yr) > Ry, implies max,(,,) [(X1;Yr|Z) >
R;; and hence, the cut-set bound is given by Rcs = Ro+ Ry,
which is achievable by DF scheme.

In Case 4, the cut-set bound is given by Ry +
min{Rl, (Xl,YR|Z)} = R2 + I(Xl,YR‘Z) since Rl >
H(YR|Z). CF achieves the capacity by letting X7 be dis-
tributed with j(z;), and choosing Yz = Y. This choice is
always possible as the CF constraint

Ry > I(Yg;Yr|Z) = H(YR|Z) — H(YR|Z,YR) = H(Yr|Z),

always ljoldg. Then, the achievaple rate for CF is Rcp =
Ro+I1(X1;YR|Z) = Ry+1(X1;YR|Z), which is the capacity.
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