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Abstract 11 

The first systematic study of the temporal evolution of the pore-size-distribution (PSD) in 12 
mature cement pastes following one and two cycles of drying and rewetting is presented. 13 
The PSD is measured using 1H nuclear magnetic resonance (NMR) relaxometry. For 14 
millimetre sized paste samples dried fairly strongly, the volume of water taken up shortly 15 
after rewetting slightly exceeds the pre-drying amount. The volume of water in pores > 10 16 
nm far exceeds that in smaller pores. This reverses the situation observed prior to drying. 17 
Over subsequent days the water distribution reverts to its original form, so that the 18 
dominant fraction is again in the smaller pores. Since the total water content scarcely 19 
changes, this indicates a re-arrangement of the nano-scale porosity. Over two drying-20 
rewetting cycles, both reversible and irreversible changes are seen. The effect is not 21 
observed in moderately dried pastes. 22 

  23 
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Introduction 24 

A better understanding of the shrinkage of cementitious materials when exposed to the 25 
ambient environment is of practical engineering importance for their use in construction. 26 
Shrinkage can lead to cracking [1] that in turn can accelerate degradation processes which 27 
may ultimately impair structural integrity if no remedial measures are taken. Shrinkage at 28 
constant temperature can be divided into two major categories: autogeneous shrinkage, 29 
which occurs during hydration of sealed samples and is thus essentially a homogeneous 30 
process caused by hydration and not related to loss of water by evaporation; and drying 31 
shrinkage, which results from the evaporation of water into the external environment and is 32 
thus inhomogeneous and highly sensitive to relative humidity gradients.  However, both 33 
forms of shrinkage involve the same basic components that come into play at different 34 
states of water saturation and which can be correlated with different parts of the water 35 
sorption isotherm as a function of relative humidity, and thus with specific equivalent pore 36 
size ranges [2-4]. Both drying shrinkage and water sorption exhibit reversible and 37 
irreversible components as well as reversible hysteresis as a function of relative humidity at 38 
constant temperature. However the irreversible component is mainly limited to the first 39 
drying step [5]. These phenomena are believed to be mainly due to the volume changes in 40 
the calcium-silicate-hydrate (C-S-H) gel which constitutes the principal matrix phase in 41 
cement paste (which is itself the principal matrix phase in concretes and mortars) and which 42 
has a complex porous microstructure capable of significant evolution with time and with 43 
changing conditions of humidity and temperature. However the lack of clear methods to 44 
investigate quantitatively such a complex microstructure has inhibited substantive progress 45 
in understanding these phenomena. 46 
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Nuclear magnetic resonance (NMR) 1H relaxometry has been shown to be a powerful tool 47 
for the quantitative characterisation of the nano- and micro-porosity of cement pastes [6] 48 
thanks to proportionality between the 1H relaxation rate of water in pore spaces and the 49 
pore surface to volume ratio. This proportionality, that is based on an averaging of the 50 
relaxation rate of a few rapidly relaxing molecules adsorbed on the pore surface and many 51 
more slowly relaxing molecules in the pore bulk is well established for many materials types. 52 
It is explained in the pioneering works of Zimmerman and Brittin, [7], Brownstein and Tarr 53 
[8] and D’Orazio et al. [9]. 54 

In one particular study of cement, the NMR sorption isotherm was measured [10,11]. The 55 
total signal strength was shown to correlate with the total adsorbed water as a function of 56 
humidity throughout the first drying and wetting cycle. Moreover, the signal was 57 
decomposed into fractions of water in different pore type environments so that a pore-size 58 
resolved isotherm could be measured. The key advantage of the method is that the probe is 59 
the water inherent in the sample. The method is non-destructive so enabling time course 60 
studies in as-prepared materials without recourse to drying if so wished. Basic experiments 61 
are quick (minutes) and may be carried out on relatively inexpensive bench-top equipment. 62 
Recent reviews describe the technique in ways targeted at the cement-user community 63 
[12,13]. 64 

In this report we describe the first systematic study of the time-dependent changes in C-S-H 65 
porosity occurring in cement paste after a cycle of drying and rewetting. The study is carried 66 
out using laboratory bench-top low-field 1H NMR relaxometry. The work was inspired by the 67 
recent results of Fischer et al. [14] who reported unilateral surface GARField and laboratory 68 
GARField 1H NMR measurements of concrete and mortar samples that showed an 69 
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immediate (1-day) increase in capillary water upon rewetting samples after initial drying and 70 
compared to pre-drying. This increase then fell back towards pre-drying levels over the 71 
subsequent 2 to 7 days. The use of a GARField system enabled the measurements to be 72 
made with spatial resolution. Spatial resolution allowed discernment of local changes in 73 
porosity as a wetting front passed during water ingress experiments. The changes would not 74 
have been seen without spatial localisation. The bulk ingress of water would have masked 75 
the effect. However, the use of GARField inhibited accurate assessment of the state of 76 
water in the very smallest pores, so that only one side of the story was revealed.  Bench top 77 
1H NMR allows all the porosity to be measured, including the smallest gel pores but at the 78 
expense of requiring small samples that are implicitly assumed to be uniformly saturated. 79 

Samples are measured immediately before drying and during re-wetting. The results 80 
indicate that there is reorganisation of the microstructure of cement hydrate gel after 81 
rewetting compared to before drying. The changes are biggest in samples that are dried to a 82 
state of empty gel pores and interlayer spaces. The results also show that a substantial 83 
fraction, but not all, of the changes are reversible on a timescale of 24 - 48 hours after 84 
rewetting. Measurements have been made, and changes seen over two cycles of drying and 85 
wetting.   86 

The story that emerges complements, and takes further, recent work of Maruyama et al. 87 
[15] and Jennings et al. [16]. Maruyama et al. published a comprehensive study of 88 
microstructural and bulk property (especially length) changes in hardened cement paste 89 
measured using a range of techniques during the first drying. They conclude that during first 90 
drying there is an increase in the volume of larger pores and a decrease in the volume of 91 
smaller pores. Working with the colloidal model of cements [4], they attribute the former to 92 
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a consolidation of C-S-H globules and the latter to a densification of C-S-H within individual 93 
globules but note too that the results are consistent with the alternate microstructural 94 
model due to Feldman and Sereda [17]. By studying the different effects of short (hours) 95 
and long (months) term drying they separate the effects of shrinkage from microstructural 96 
rearrangements. Jennings et al. also showed how a careful analysis of sorption isotherm 97 
cycles could be used to infer microstructural changes and information on drying shrinkage. 98 
They additionally make the observation that water in interlayer spaces does not dry from 99 
the C-S-H above a relative humidity (RH) of circa 25%, a result that confirms previous 100 
conclusions drawn from NMR data [10], and go on to say that, once removed, this water 101 
does not fully resaturate these spaces, even at 100% RH. This later conclusion is less clearly 102 
supported by the NMR evidence. Our new work reported here augments these earlier 103 
studies by looking at the time dependence of microstructural changes that occur during 104 
water adsorption, following desorption. 105 

Methods 106 

Two completely independent sets of samples were prepared and analysed for the first 107 
sorption cycle: one in the Surrey University laboratories (NMR frequency 20 MHz) and one 108 
in the LafargeHolcim laboratories (NMR frequency 23.5 MHz). The results are in excellent 109 
agreement. Thereafter, the severity of drying was investigated at LafargeHolcim, the second 110 
sorption cycle at Surrey.  111 

The materials and methods are given for samples prepared in the Surrey laboratories. Minor 112 
differences for samples made at LafargeHolcim are presented as footnotes. White cement 113 
powder with the composition: 62.9% C3S; 19.1% C2S; 7.2% C3A; 5.2% C$·0.5H; 2.4% CH and 114 



7  

2.2% CCത was used1. Typically water was added to 80 g of the anhydrous cement in the water 115 
to cement (w/c) ratio 0.4 by mass and mixed using the protocols established by Nanocem 116 
(www.nanocem.org) and published by us elsewhere [10]. Samples were cast in moulds of 117 
about 1 cm3 volume and curing begun at room temperature under a small excess of 118 
saturated calcium hydroxide (CH) solution2 which was added about 1 hour after casting, just 119 
as the sample was starting to set, in order to compensate for water taken up by the 120 
hydration reaction. After 1 day, the samples were transferred with solution to small, sealed 121 
containers for convenience and curing continued for a total of 28 days at 20 ± 1°C. At the 122 
end of the curing period, samples were individually crushed into millimetre-sized pieces to 123 
enable subsequent rapid drying and re-wetting and to avoid the problems associated with a 124 
spatially non-uniform distribution of water that occurs for larger samples, which might mask 125 
the effects we seek to measure. For instance, during wetting of a large sample, the 126 
evolution of porosity change near a water ingress front would be at a much “younger” stage 127 
of development than near the sample surface as the surface would have contacted water 128 
for a longer period. Crushed samples were measured by NMR “as-prepared”. 129 

Crushed samples were subsequently dried. Drying methods were used as follows: drying at 130 
60°C under slightly reduced pressure (0.85-0.95 bar) for an extended period of one month; 131 
drying at either 40°C or 60°C under slightly reduced pressure for a short period of 2 or 3 132 
days respectively; drying at room temperature in a 23% relative humidity (RH) environment 133 
for 3 days; and slow drying over saturated salt solutions and silica gel3 by progressive 134 
lowering the RH down to about 15% over a period of about 1 month. Previous NMR work 135 

                                                           
1  65.3% C3S; 26.9% C2S; 2.9% C3A; 2.1% CH and 0.8% CCത; 1.4% CSത at LafargeHolcim 
2 PURELAB® water was used at LafargeHolcim 
3 KH2PO4 (96% RH); (NH4)2SO4 (80%); Mg(NO3)2 (55%) ; MgCl26H2O (33%)[18,19]. Silica gels 23 and 15% 
measured. 



8  

suggests that drying for a short period at 40°C to 60°C or at 23% RH is sufficient to remove 136 
water from the gel porosity but not to remove water from the C-S-H inter-layer spaces 137 
[10,20].  138 

Dried samples were measured by NMR and then immersed in, and stored under, saturated 139 
CH solution2 in order to rewet them. They were only removed from the solution for the brief 140 
periods (a few minutes) necessary for NMR measurements at various wetting times. 141 

For 1H NMR relaxometry measurements, the crushed pieces of sample (the same pieces for 142 
any one experimental series) were dabbed dry with filter paper and placed in the bottom of 143 
a 10 mm diameter NMR tube. The free space was taken up by a solid glass rod to limit 144 
evaporation into the space above the sample and the whole assembly sealed with 145 
Parafilm®. A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence experiment was used for all 146 
measurements. As we have previously shown, the 1H T2 relaxation time distribution can be 147 
calculated from the measured CPMG echo sequence decay and directly reflects the pore 148 
size distribution of water filled porosity in the sample. The typical π/2 pulse length,  tπ/2, was 149 
5 µs; 256 log-spaced echoes were recorded from 60 µs to 880 ms; the experimental 150 
repetition time was 1 s and 512 averages were recorded. With these parameters it took 151 
about 8.5 minutes to record the CPMG data4.  Additionally, when the measurement was not 152 
thought to be time-critical, in so much as the water distribution was not expected to change 153 
significantly during the measurement period, a quadrature echo sequence was also run. 154 
From this experiment it is possible to determine additionally the fraction of all hydrogen 155 
protons combined in crystalline hydrates such as Portlandite (calcium hydroxide) and 156 
ettringite. Here, single quadrature or “solid” echoes were recorded for pulse gaps, τ, in the 157 
                                                           
4 π/2: 6.5 µs; echo range 58 µs to 65 ms; 1024 averages at 0.565 s repetition time taking 9.6 minutes at LafargeHolcim 
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range 12 to 54 µs. The signals were decomposed into “solid” and “liquid” fractions, and 158 
these were extrapolated back to zero pulse gap using Gaussian and exponential curves 159 
respectively. Further details of the measurement and analysis procedures are to be found in 160 
the literature [12,13]. Samples were weighed at every significant point of the sample 161 
preparation and measurement process. 162 

The CPMG data can be analysed in multiple ways. That which makes the least a priori 163 
assumptions about the results involves an inverse Laplace transform of the echo decay to 164 
reveal the quasi-continuous T2 distribution. We have previously analysed much data this 165 
way. The major problem is that the method requires a signal-to-noise ratio (SNR) in excess 166 
of several hundred. Here we have used small pieces of crushed sample which immediately 167 
lowers the SNR per scan. We have not wanted to increase the number of averages unduly 168 
for fear of changing the water or porosity distribution during the measurement time. Also, 169 
some samples were very dry, limiting the SNR for want of signal from water in the sample. 170 
With lower SNR, peaks in the inverse Laplace transform can become broadened or merged 171 
masking the effects we seek to measure. In consequence, in addition to inverse Laplace 172 
analysis, we have also performed constrained multi-exponential fitting using as constraints 173 
the expected number of peaks and the T2 relaxation time values of as prepared material 174 
now well-known from earlier published studies [6,21].  175 

The exponential fitting was constrained as follows. First, the “as-prepared” material was fit 176 
to a four component exponential decay for which the three shortest time constants were 177 
forced in the ratio 1:3:9. The actual relaxation time values of water in the smallest pores 178 
depend on the pore size and level of paramagnetic impurities in the sample. However, 179 
previous work says that they occur in this ratio, associated with, in order, water in interlayer 180 
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spacing spaces in the gel hydrates, water in gel pores and water in interhydrate pores5. The 181 
fourth time constant was set equal to 40 ms – a generic value for large pores that has 182 
marginal effect on the quality of the data fitting. The amplitudes were left to float, so 183 
making a fit with 5 free parameters (4 amplitudes and the shortest time constant). 184 
Thereafter, the time constants were maintained fixed across a sample set so that in analysis 185 
of re-wet material only the 4 amplitudes were varied.  186 

Results 187 
(a) C-S-H desorption-adsorption cycle and swelling. 188 

                                                           
5 This assignment pre-supposes that the water reservoirs associated with different pore sizes are isolated. In practice, pores of different size are connected and there is exchange of water / nuclear magnetisation between them. The critical observation is that this exchange is slow as was previously demonstrated, and indeed exploited, to measure the inter pore exchange rate [22]. Distinct relaxation modes are seen. If the exchange were fast compared to the relaxation rate, then a single relaxation mode with an average relaxation time reflecting the combined pore size would be observed. In the case of the C-S-H interlayer space, the discussion in the paper is in terms of 1H in water. However, this does not preclude 1H in silanol groups. While the small size of the interlayer may cause a small systematic error in the calculation of the pore size due to the absence of an identifiably “bulk” water reservoir in the pore and uncertainty about the surface relaxivity, it does not alter the fact that a distinct relaxation reservoir is observed.  
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Figure 1: A quadrature echo decay for an “as-prepared” sample for τ = 12 µs (top); 
the solid fraction as a function of τ together with back extrapolation to tπ/2  pulse 
gap (middle); and a log-log plot of the CPMG decay together with a constrained 
multi-exponential fit as described in the text. The CPMG decay is normalised to 
74.6% at t = 0. 

 189 

  190 
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Figure 1 shows an example of data recorded for a sample of cement paste (w/c = 0.4; cured 191 
for 28 days). The top plot is the quadrature echo signal for a pulse gap τ = 12 μs together 192 
with a fit to a Gaussian echo centred on 2τ, representing the water used to create crystalline 193 
phases such as CH, and an exponential decay representing the mobile liquid. The central 194 
part of the figure shows the Gaussian amplitude back-extrapolated to τ = tπ/2 6 from which 195 
the combined and mobile water fractions are calculated. They are 25.4 ± 2.0% and 74.6 ± 196 
2.0% respectively, in good agreement with previous results. The error is determined from 197 
repeat analyses across a range of samples. The lowest part of the figure shows the 198 
normalised CPMG decay and a four component, five free parameter constrained 199 
exponential fit as described in the previous section that decomposes the mobile water into 200 
components representing water in different pore types. The data is plotted in real (not 201 
magnitude) mode. Negative points of course do not plot on the log scale and the plateau 202 
beyond 104 μs is merely a reflection of the noise level.  The amplitudes and relaxation times 203 
of the different components are presented in Table 1.  204 

Assignment 
 

Characteristic size 
(nm) 

Amplitude 
(%) 

T2 relaxation time            
(μs) 

Crystalline phases  25.4 10 
Hydrate interlayers 1 22.9 185 
Gel pores 3-5 49.1 555 
Interhydrate pores 10-20 2.6 1665 
Capillary pores 103 ≈0.0 40000 
Table 1. The assignment of water populations in “as-prepared” cement, with their 205 
characteristic pore sizes, NMR amplitudes and T2 relaxation times. 206 
                                                           
6 τ is measured pulse centre to pulse centre; so tπ/2 equates to zero gap between two pulses.  
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 207 

The negligible water fraction in capillary pores evidences, as has been observed before, the 208 
self-desiccation of samples of centimetre size during curing (i.e. pre-crushing in this work), 209 
notwithstanding that the samples are supposedly cured underwater [23].  210 
 211 

 
Figure 2. The evolution of water components of a sample: as prepared; after drying 
and then after 2, 4, and 8 hours and ≈1, 2, 5 and 12 days of rewetting expressed as 
a percentage of the NMR-total water in the “as-prepared” sample. The sample was 
oven dried at 60°C and 0.9 bar for 1 month. 

 212 

 213 

Figure 2 shows the evolution of the different water fractions of a 28-day cured sample after 214 
drying and then periodically during the first two weeks of re-wetting. The sample is oven 215 
dried at 60°C for one month at 0.9 bar. It is evident that there is minimal mobile water 216 
remaining in the hydrate interlayer spaces and almost none in larger pores of the sample 217 
after drying compared to pre-drying. What follows concerns the subsequent rewetting. The 218 
discussion is further aided by inspection of Figure 3. This figure shows the combined water 219 
in the interlayer and gel pores and the combined water in interhydrate and capillary pores 220 
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as well as their sum, the total mobile water. We continue to use names already introduced 221 
to differentiate between pores of different size where the meaning is clear. However, since 222 
we will envisage that some gel pores collapse to a size comparable to the interlayer and so 223 
enlarge others gel pores to a size comparable to the interhydrate, we also introduce the 224 
terminology “finer porosity” to reflect pores less than about 10 nm and “coarser porosity” 225 
for pores greater than about 10 nm. Hence Figure 3 shows water in these two categories. 226 

 227 

 
Figure 3. The evolution of mobile water in finer (<10 nm) and coarser (>10 nm) 
porosity for sample dried for 1 month at 60°C expressed as a percentage of the 
total mobile water. 

 228 
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The first observation is that the total filled porosity of the sample very quickly re-establishes 230 
itself to its pre-drying value, Figure 3. It gets to 87% in 2 hours and exceeds the pre-drying 231 
value after 1 day. This is reasonable because the crushed samples contain a significant 232 
number of capillary pores that are empty due to self-desiccation in the “as-prepared” 233 
material notwithstanding the so-called underwater curing. It is also possible that the largest 234 
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pores dried slightly during crushing. However, the former explanation is more likely since 235 
the increase is larger for a sealed-cured sample (data not shown here).  236 

The second observation offers far greater insight. It is that the distribution of water 237 
between finer (<10 nm) and coarser (>10 nm) hydrate porosity changes dramatically during 238 
rewetting. It is seen most obviously in Figure 3. After 2 hours the amount of water in the 239 
finer porosity is approximately 17% the total pre-drying mobile water whereas the 240 
combined amount of water in coarser porosity is about 70% - about four times greater. This 241 
contrasts very strongly with pre-drying when the finer porosity was the dominant fraction, 242 
about 96%, while the coarser porosity was less than 4%, about 25 times smaller. However, 243 
by about 1 day, the volume of finer porosity water has increased dramatically while the 244 
coarser porosity water has decreased. The two fractions are approximately equal. At 12 245 
days, the finer porosity water is approaching equilibrium, but has not regained the pre-246 
drying volume, (80% compared to 96%). This indicates that only part of the refilling of the 247 
gel porosity is reversible on this timescale. The volume of coarser porosity water has 248 
continued to decrease correspondingly but remains much greater than pre-drying.  249 

Figure 2 provides additional information. In the early stages of re-wetting, all the interlayer / 250 
gel pore water is seen as interlayer water. At 12 days, the amount of interlayer water is 251 
almost exactly equal to that pre-drying. The reduction in water in the finer porosity is 252 
associated almost entirely with the gel pores. For the coarser porosity, the increase in water 253 
in pores of interhydrate size (circa 20 nm) accounts almost exactly for the decrease in gel 254 
pore water. It is the capillary pores that account for the increase in the overall total of 255 
mobile water. This fact supports the idea that the total increase results from a filling of 256 
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previously unfilled capillary porosity. If the data had sufficient signal to noise, a proper 257 
inverse Laplace transform might reveal details more precisely. 258 

 259 

(b) Severity of drying and C-S-H reswelling 260 

The same story does not carry over to a sample oven dried at 40°C and 0.9 bar for a short 261 
period of just 2 days, Figure 4(d). Although, as before, the sample re-wets quickly, getting 262 
near the pre-drying level within 2 hours, the distribution of water between the finer 263 
porosity and coarser porosity remains essentially unchanged throughout the rewetting 264 
period. There is no subsequent evolution of the amount of water in different pore types. 265 

Potentially, two factors are at play in these phenomena: the severity of drying and the 266 
duration of drying / storage. Table 2 seeks to separate the factors. It provides an indicator of 267 
the drying severity, measured as the fraction of the interlayer and gel pore water removed 268 
by drying. It is seen that oven drying for one month at 60°C is most severe. Drying at 40°C 269 
for 2 days is least severe by this measure. 270 

 271 

Drying Duration of drying Gel pore and interlayer 
water removed (%). 

60°C oven at 0.9 bar 1 month 91 
60°C oven at 0.9 bar 3 days 81 
Progressively down to 15% 
RH at 20°C 

1 month 64 
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Direct to 23% RH at 20°C 3 days 54 
40°C oven at 0.9 bar 2 days 44 
Table 2: The duration and severity of the different drying regimes, the latter measured by 272 
NMR as the fraction of finer porosity water removed from the cement paste. 273 

 274 

 
Figure 4: The combined finer and coarser pore water for samples dried: (a) at 60°C 
for 3 days; (b) slowly down to 15% RH; (c) directly to 23% RH; and (d) at 40°C for 2 
days. 

 275 
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The data in other parts of Figure 4 allow us to explore the severity of drying more closely. 277 
Figure 4a is for a sample dried at 60°C for 3 days. The shorter drying period at the same 278 
temperature compared to the sample discussed in the previous section, is about 10% less 279 
severe (Table 2). Presumably in consequence, the sample dried for 3 days shows a C-S-H re-280 
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organisation effect upon rewetting less strong than that for the sample dried for a month, 281 
Figure 3. Additionally, the amount of coarse porosity seen after 11 days rewetting is 282 
reduced while the amount of finer porosity is increased. Notwithstanding, these differences 283 
are much less than those discussed in the following paragraphs for samples dried in other 284 
ways. Hence, the result suggests that on the timescale of 3 days to one month, timelapse 285 
during drying the drying time is not an overly critical factor in driving initial changes.  286 

The data shown in Figures 4b and c were obtained from samples that were dried 287 
progressively down to 15% at room temperature for 1 month and directly to 23% RH at 288 
room temperature for 3 days. Both drying regimes are less severe than the 60°C drying. 289 
Over half of the finer porosity water is removed. In both cases, the samples re-adsorb water 290 
to the overall pre drying level within the first two hours and do not show any subsequent 291 
redistribution. This is akin to the sample least severely dried at 40°C. However the 292 
distribution of water between finer and coarser porosity in the sample taken down to 15% 293 
RH is slightly different post-drying compared to pre-drying, whereas it is more-or-less the 294 
same in the taken to 23% RH. In the 15% RH sample, there is a little more water in coarser 295 
porosity, less in finer porosity post drying. Again we conclude that, at least for these drying 296 
conditions, the period of drying is not significant. However, what clearly differentiates 297 
between samples behaving as in Figure 3 from those in Figure 4d is whether or not the 298 
drying has significantly impacted the water content in the interlayer spaces. Drying at 60°C 299 
removes a large fraction of interlayer water; drying at 40°C does not. 300 

(c) The second drying cycle. 301 

The fact that both reversible and irreversible changes are seen in the foregoing data 302 
prompts the question as to what happens after a second cycle of drying and rewetting. 303 
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Samples either oven dried at 60°C for one month or progressively dried over saturated salt 304 
solutions to 15% RH during 1 month and then rewet were both dried for a second cycle 305 
using different combinations of the same two drying methods, so: oven-oven; RH salts-306 
oven; oven-RH salts; and RH salts-RH salts. They were then rewet for a second time. Figure 5 307 
shows the second cycle results. To aid comparison with the first cycle, the figure also 308 
includes the water fractions in different pore sizes before (i.e. as prepared) and after the 1st 309 
cycle as previously described. 310 

In the case of sample dried twice in the oven, Figure 5a, there is a clear second round of 311 
evolution of the volume of water in different pore types. The initial invasion occurs during 312 
the first two hours and takes the total mobile water to a level almost identical to that after 313 
12 days of rewetting during the first cycle; that is a little more than in the “as-prepared” 314 
sample. Again however, initially there is a greater fraction of water in the coarser porosity 315 
than in the finer porosity. Once more as well, while the total remains approximately 316 
constant, this division reverts over the subsequent few days to one with the greater fraction 317 
in the finer porosity. Indeed, the values after 5 days are very close to those at the end of the 318 
first cycle. This suggests that the second cycle changes correspond exclusively to the 319 
reversible parts of the changes in the first cycle.  320 

In the case of the sample dried above salt solutions in the first cycle and in the oven during 321 
the second, Figure 5b, a time dependence of rewetting that was not seen in the first cycle is 322 
now seen. The final state reached is very similar to that at the end of the first cycle. The 323 
implication again is that the second cycle changes are reversible, even though the first cycle 324 
was very different. In the case of the sample oven dried first cycle and above salt solutions 325 
in the second, Figure 5c, the rewetting is quick and, once achieved in two hours, there is 326 
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very little change in either the total water content or in the division of water between the 327 
different pore types. The second cycle is behaving very similarly to the salt solution dried 328 
sample in the first. Notwithstanding, there is a very small change in the division of water 329 
between the pores at the end of the first and second cycles. The finer porosity water 330 
fraction in the second cycle is a little lower than in the first; the coarser porosity fraction 331 
correspondingly more. However this difference is small and, overall, it seems that most, if 332 
not all, of the irreversible changes occurred in the first cycle. Given that drying above salt 333 
solutions produced no time varying organisation of the porosity in the first or second cycle 334 
when combined with oven drying in the other cycle, then it seems unlikely that it will create 335 
time dependence in a sample dried above salt solutions in both cycles. This is shown to be 336 
the case, Figure 5d.  337 

 
Figure 5. The evolution of the finer and coarser pore water during a second cycle 
of drying and rewetting: (a) oven dried 1st cycle – oven dried 2nd cycle; (b) dried 
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above salt solutions – oven dried; (c) oven – salts; and (d) salts – salts. To aid 
recognition of reversible and irreversible effects the first column is the “as 
prepared” sample and the second column the sample at the end of the first 
cycle. 

 338 

Discussion 339 

An explanation of our data is drawn schematically in Figure 6. The schematic is for a sample 340 
in which the gel porosity is completely emptied of water and then refilled. Figure 6a shows 341 
some C-S-H sheets separated by interlayer spaces. Gel pores are seen between regions of 342 
locally aggregated sheets. The gel pores are filled with water, drawn as circles. The 343 
interlayer spaces also contain water but this is not shown. The gel pores are a few (3-5) 344 
nanometres in size. Interhydrate pores are slightly larger and are original-mix water filled 345 
spaces between regions of C-S-H into which further C-S-H could possibly grow. However 346 
these are not drawn. As water is removed from the system, Figure 6b, we imagine that 347 
surface energy or disjoining pressure forces distort the local arrangement of the sheets so as 348 
to “zip them up” into locally-thicker stacks. The surface forces overcome local bending 349 
stresses in order to do this. The result is the average gel pore size increases although the 350 
total volume does not, at least to a degree measurable by NMR. When water reinvades the 351 
sample, it initially finds larger pores that are apparently more comparable to interhydrate 352 
pores in size. With time, the “zipped” sheets “unzip”. That is they relax in response to the 353 
changed balance of surface forces and bending stresses. Something closer to the original 354 
microstructure re-appears.  355 
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It is very noticeable that we see this result most prominently with the two most severe 356 
drying methods: 2-3 days and 1 month at 60°C. We do not see it with the least severe 357 
methods. A key difference is that the more severe drying removes a significant fraction 358 
(over half) of the interlayer water. Perhaps with less severe drying, sufficient water is 359 
retained in the smallest spaces to prevent large surface energy or disjoining pressure forces 360 
from building up. Local “zipping” of sheets cannot occur. The vapour pressure of water is 361 
about 3 times higher at 40°C than at 20°C, and 9 times higher at 60°C. So, if the laboratory 362 
atmosphere is circa 60% RH at 20°C, then a sample in an unsealed oven at 60°C experiences 363 
about 7% RH, quite sufficient to impact the interlayer in an equilibrated sample. However, 364 
40°C leads to 20% RH and is much less impactful. It is striking that our results show the 365 
greatest effects for the most severely dried samples but that the drying rate does not seem 366 
to be a primary indicator of change. This contrasts with the work of Maruyama et al. [15] 367 
who emphasise the importance of drying rate on the shrinkage strain of hardened cement 368 
paste during the first desorption process although the timescales in this work do not extend 369 
as far as those  explored by Maruyama et al. 370 

One surprise in our data is that we do not see more interlayer water in samples that show 371 
the evolving porosity at the end of the rewetting period compared to pre-drying. Figure 6 372 
makes clear that if the average gel pore size at the end is increased, then this increase is 373 
accompanied by locally thicker stacks of layers. The number of interlayers is increased. One 374 
explanation is simply that we are unable to resolve differences of this magnitude. However, 375 
we think this is unlikely. Another explanation is that some of the original water that is 376 
removed from interlayer spaces is not replaced. This decrease in water per interlayer 377 
compensates for the increase in the number of interlayers.  378 
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It is well known that the first drying cycle of cement paste yields a mixture of reversible and 379 
irreversible changes in sorption isotherms and shrinkage. However, these differences tend 380 
to be associated with the high RH end of the drying spectrum [4,15,16]. To first order, only 381 
reversible changes are seen after the first cycle. We note that in this work, the changes are 382 
associated with the most severe drying, that is the low RH end of the spectrum. However, 383 
there are reversible and irreversible changes. Close comparison of the data in Figures 3 and 384 
5 suggests that irreversibility continues to be associated with the first cycle only.  385 

Maruyama et al. discuss the shrinkage mechanism in terms of Jennings’ colloidal model of 386 
cement microstructure [4]. They conclude that the increase in porosity due to larger pores 387 
occurs by the flocculation of C-S-H globules whereas the decrease in porosity due to smaller 388 
pores arises from densification of the C-S-H through the loss of interlayer water. Thus they 389 
are seen as different processes. Moreover they are believed to occur in different ranges of 390 
RH. This is because the Kelvin Laplace equation links RH to the size of emptying pores. If the 391 
increase in apparent proper (micron) capillary porosity that we see through the filling of 392 
previously empty pores (Figure 2) is removed from the equation, then the growth in coarser 393 
porosity is almost exactly matched by the loss of finer porosity. Given that Maruyama et al. 394 
describe different processes associated with different parts of the microstructure and 395 
different RH ranges, it is therefore surprising that the growth in finer porosity that we see in 396 
re-wetting is so closely mirrored by the decline in coarser porosity. It seems much more 397 
likely to us that they are opposite sides of a single process. Such a single process can be built 398 
on rearrangements of C-S-H sheets at the gel pore scale based on a Feldman and Sereda 399 
type micro-structural model [17] as we have depicted in Figure 6. However, our explanation 400 
is unable to explain the conclusion of Maruyama et al.: that the two processes come about 401 
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at different ranges of RH. Macroscopic drying shrinkage, to which NMR is not sensitive, may 402 
provide part of the answer. 403 

 404 

 
Figure 6. Top left: A schematic of the water in the gel pores of an “as-prepared” 
paste. The solid lines are the hydrate backbone sheets of the C-S-H gel. The 
circles are water molecules. The interlayer water between the sheets is not 
shown. As a guide to scale, the layer spacing is about 1.5 nm. Top right: The 
hydrate after sufficient drying to remove almost all the water from the gel pores. 
Surface forces cause some sheets to distort and “zip-up”. Bottom left: the same 
structure shortly after rewetting. The exact same amount of water as top left is 
shown, but it is now in fewer, and, on average, slightly larger pores. Bottom 
right: after a few days the hydrate partially relaxes closer to the original 
microstructure. Again, the same amount of water is shown. The pores are 
smaller. 

 405 

 406 
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Notwithstanding the comments immediately above, there is ongoing controversy as to 407 
whether or not C-S-H is a quasi continuous [17] or colloidal particle like layered structure 408 
[4]. While the data in this work has been interpreted in terms of the quasi continuous 409 
model, it would be possible to rework the discussion in terms of the colloidal model. 410 
Nothing in the new data is incompatible with either. 411 

Conclusion 412 

We have provided compelling NMR evidence for the redistribution of porosity between fine 413 
(<10 nm) and coarser (>10 nm) spaces in cement gel occasioned by cycles of drying and 414 
rewetting. In “well” dried material, coarse (20 nm) pores are created at the expense of 415 
collapsing gel pores. When the sample is rewet, these effects are reversed over a period of 416 
days. The degree of the change is linked to the severity of the drying. In a first sorption 417 
cycle, part of the redistribution is reversible, part is not. In a second cycle the changes 418 
appear to be entirely reversible. Aspects of the results mirror observations of macroscopic 419 
length changes made by Maruyama et al. However, we suggest that a completely self-420 
consistent picture of all the published data, by us and by others, has not yet emerged. 421 
Future experiments with much finer control of the drying rate and drying severity as well as 422 
measurements targeted on the very first minutes of rewetting might further elucidate the 423 
matter. 424 
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