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Abstract— The persistence of excitation condition for se-
quences generated by time-invariant, discrete-time, autonomous
linear and nonlinear systems is studied. A rank condition
is shown to be equivalent to the persistence of excitation
of sequences generated by the class of systems considered,
consistently with the results established by the authors for the
continuous-time case. The condition is geometric in nature and
can be checked a priori for a Poisson stable system, that is,
without knowing explicitly the state trajectories of the system.
The significance of the ideas and tools presented is illustrated
by means of simple examples.

I. INTRODUCTION

The notion of persistence of excitation plays a pivotal role
in experiment design [1 – 13]. Historically, the notion of persis-
tence of excitation of a sequence has been introduced in [14]
to address the problem of estimating the parameters of a time-
invariant, discrete-time, single-input, single-output system
described by a linear ordinary difference equation. During the
past fifty years an ever-increasing variety of applications of the
notion of persistence of excitation have flourished in different
fields. Persistently exciting sequences are especially important
in the solution of least squares minimization problems arising
in the context of system identification and are strongly related
to the possibility of devising informative experiments which
involve the use of input-output data [1 – 4]. The persistence of
excitation condition is also central in the study of the stability
properties of specific classes of nonlinear systems which, in
turn, allow to establish convergence properties of adaptive
control algorithms [5 – 13]. For an in-depth discussions on
the numerous applications of the notion of persistence of
excitation the reader may consult, for example, [1 – 13] and
references therein.

In system identification and adaptive control, the notion of
persistence of excitation of a sequence is defined as the
uniform positive-definiteness of the matrix given by the
area of the sequence times its transpose over every interval
of a given length [1 – 13]. For a deterministic stationary
sequence the persistence of excitation condition corresponds
to the positive-definiteness of its covariance function at the
origin [2]. Equivalently, a deterministic stationary sequence
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is persistently exciting if its spectrum contains a sufficiently
large number of harmonics [15].

The main difficulty with testing the persistence of excitation
condition is the requirement of the explicit knowledge of the
given sequence. To circumvent this shortcoming in many
situations the persistence of excitation condition is simply
assumed to be satisfied a priori.

The present work builds upon and extends to the class
of time-invariant, discrete-time, autonomous systems the
results established by the authors in [16], where the so-called
“excitability rank condition” has been shown to be equivalent
to the persistence of excitation of signals generated by the
class of time-invariant, continuous-time, autonomous systems.
A discrete-time counterpart of the excitability rank condition
introduced in [16] is defined herein and it is shown to be
equivalent to the persistence of excitation condition. As a
consequence of our results, when the sequence is generated
by a system described by linear ordinary difference equations,
checking the persistence of excitation condition boils down
to knowing the initial condition and the position of the
eigenvalues of the matrix which describes the evolution of
the system. However, for systems described by nonlinear
ordinary difference equations nothing can be said beforehand
unless special properties of the system are known. To remedy
to this issue we show that for a Poisson stable system
the excitability rank condition needs to be checked only
at the initial condition, without knowing explicitly the state
trajectories of the system. As already stressed above, ideas and
tools presented herein and in the companion paper [16] may be
of interest for input design or in other data-driven applications,
such as the problem of output regulation [17 , 18].

The rest of the paper is organized as follows. Section II
provides elementary definitions. Section III contains our main
results, which give the discrete-time counterpart of the results
established in [16]. Section IV presents simple examples
which illustrate the theoretical results developed. Finally,
conclusions and future research directions are outlined in
Section V.

Notation: Z≥0 (resp. Z>0) denotes the set of non-negative
(resp. positive) integer numbers. R, Rn and Rp×m denote
the set of real numbers, of n-dimensional vectors with
real entries and of p × m-dimensional matrices with real
entries, respectively. R≥0 (resp. R>0) denotes the set of
non-negative (resp. positive) real numbers. C denotes the
set of complex numbers. i denotes the imaginary unit. I
denotes the identity matrix. σ(S) denotes the spectrum of the
matrix S ∈ Rν×ν . M ′ denotes the transpose of the matrix
M ∈ Rp×m. ‖ω‖ denotes the standard Euclidean norm of
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the vector ω ∈ Rν . spanV denotes the set of all finite R-
linear combinations of elements of the set V . s1 ◦ s2 denotes
the composition of the maps s1 and s2, provided it is well-
defined. The iterates of the map s are defined recursively
as sk+1 = s ◦ sk for all k ∈ Z≥0, with s0 the identity map.
No confusion should arise when superscripts are used for
powers of matrices, since the meaning of the notation is clear
from the context. The positive orbit of the map s : Rν → Rν

passing through ω ∈ Rν at time k = 0 is denoted by γ+(ω),
i.e. γ+(ω) = {sk(ω) : k ∈ Z≥0}.

II. PRELIMINARIES

Consider a discrete-time, autonomous, nonlinear system
described by equations of the form

ω+ = s(ω), (1)

in which ω(k) ∈W denotes the state of the system at time
k ∈ Z≥0, W is an open subset of Rν containing the origin
and ω+ denotes the successive state of ω. Without loss of
generality suppose that the map s : W →W is continuous,
that the set W is invariant under s, i.e. s(W ) ⊂W , and
that the origin is an equilibrium point for the system, i.e.
s(0) = 0.

Define recursively the maps

θk+1 : W →W : ω 7→ θk ◦ s(ω), k ∈ Z≥0,

with θ0 the identity map. If ω(0) = ω0 is the initial condition
of the ordinary difference equation (1) then

ω(k) = θk(ω0), k ∈ Z≥0. (2)

The sequence defined by (2) is referred to as the state sequence
of system (1).

With these premises, the definitions of excitation space,
excitation distribution and excitation rank condition for a
system governed by equations of the form (1) are similar to
the ones given in [16].

Definition 1: Consider the system (1). The excitation space
of system (1) is defined as E = span {θk, k ∈ Z≥0} .

Definition 2: Consider the system (1). The excitation
distribution of system (1) is defined as E(ω) =
span {θk(ω), k ∈ Z≥0} for all ω ∈W.

Definition 3: Consider the system (1) and the correspond-
ing excitation distribution E. The system (1) is said to satisfy
the excitation rank condition at ω ∈W if dimE(ω) = ν.
The pair (s, ω) is said to be exciting if system (1) satisfies
the excitation rank condition at ω ∈W .

We conclude this preliminary section giving the following
notion of persistence of excitation (see, e.g., [1] and references
therein).

Definition 4: A sequence ω : Z≥0 → Rν is persistently
exciting if there exists a constant N ∈ Z>0 such that the
matrix

W[k,k+N−1] =

k+N−1∑
l=k

ω(l)ω(l)′ (3)

is positive definite for all k ∈ Z≥0.

For convenience, we use W[k,k+N−1](s, ω0) to denote the
matrix defined in (3) when the sequence {ω(k)}k∈Z≥0

is
generated by the system (1) with ω(0) = ω0, to stress the
dependence of such a matrix on the map which describes the
system and on the initial condition.

III. MAIN RESULTS

To establish our main results we first consider the case
of linear systems and subsequently discuss the extension to
nonlinear systems.

A. Linear systems

Consider a discrete-time, autonomous, linear system de-
scribed by equations of the form

ω+ = Sω, (4)

in which ω(k) ∈ Rν and S ∈ Rν×ν is a constant matrix.
The following statement formalises a first geometric

characterisation of the persistence of excitation condition.
Theorem 1: Consider the system (4) with initial condition

ω(0) = ω0. The following statements are equivalent.
(L1-D) The state sequence of the system is persistently

exciting.
(L2-D) There exists a constant N ∈ Z>0 such that the

matrix W[0,N−1](S, ω) is positive definite for every
ω ∈ γ+(ω0).

(L3-D) The system (4) satisfies the excitation rank condition
at every ω ∈ γ+(ω0).
Proof: (L1-D) ⇔ (L2-D). By definition, the state

sequence of system (4) is persistently exciting if there exists
a constant N ∈ Z>0 such that the matrix W[k,k+N−1](S, ω0)
is positive definite for all k ∈ Z≥0. Replacing the summation
variable by h = l − k in (3) and taking into account that
the solution of the ordinary difference equation (4) is
ω : k → Skω0 yields

W[0,N−1](S, ω(k)) =

N−1∑
h=0

Shω(k)(Shω(k))′,

for all k ∈ Z≥0. Since the sequence {ω(k)}k∈Z≥0
uniquely

specifies the positive orbit γ+(ω0), the state sequence of
system (4) is persistently exciting if and only if there exists
a constant N ∈ Z>0 such that the matrix W[0,N−1](S, ω) is
positive definite for every ω ∈ γ+(ω0).

(L2-D) ⇔ (L3-D). To prove this equivalence note that
the matrix W[0,N−1](S, ω) is the finite reachability Gramian
associated with the pair (S, ω) at time N ∈ Z>0 (see, e.g.,
[19, Definition 4.9]). Thus, the claim is a direct consequence
of a standard result of linear systems theory [19, Corollary
4.11].

The significance of Theorem 1 is that the state of the
system (4) is persistently exciting if and only if the pair
(S, ω) is exciting for every point ω which belongs to the
positive orbit γ+(ω0). As a consequence, the state sequence
of system (4) is persistently exciting if the state trajectories
are known to lie entirely in a region where the excitability
rank condition is satisfied. Note that an objection can be



raised: it is not always possible to check the validity of
(L2) or (L3) for every ω ∈ γ+(ω0) to conclude that the state
sequence of system (4) is persistently exciting, thus making
the verification practically infeasible. To resolve this issue a
more applicable result can be established by strengthening the
hypotheses of Theorem 1 by using the following assumption.

Assumption 1: The eigenvalues of S have unitary modulus
and algebraic multiplicity one.

Theorem 2: Consider the system (4) with initial condition
ω(0) = ω0. Suppose that Assumption 1 holds. The following
statements are equivalent.
(L1-D)∗ The state sequence of the system is persistently

exciting.
(L2-D)∗ There exists a constant N ∈ Z>0 such that the

matrix W[0,N−1](S, ω0) is positive definite.
(L3-D)∗ The system (4) satisfies the excitation rank condi-

tion at ω0.
Proof: (L1-D)∗ ⇒ (L2-D)∗. This implication is trivial.

(L2-D)∗ ⇒ (L1-D)∗. By definition, the state sequence of
system (4) is persistently exciting if there exists a constant
N ∈ Z>0 such that the matrixW[k,k+N−1](S, ω0) is positive
definite for all k ∈ Z≥0. Replacing the summation variable by
h = l − k in (3) and taking into account that the solution of
the ordinary difference equation (4) is ω : k → Skω0 yields

W[k,k+N−1](S, ω0) = Sk

(
N−1∑
l=0

Slω0(Slω0)′

)
(Sk)′

= SkW[0,N−1](S, ω0)(Sk)′.

Selecting N ∈ Z>0 such that the matrix W[0,N−1](S, ω0) is
positive definite gives

W[k,k+N−1](S, ω0) ≥ αSk(Sk)′,

with α ∈ R>0 the smallest singular value of the matrix
W[0,N−1](S, ω0). Taking into account that by Assumption 1
there exists β ∈ R>0 such that

Sk(Sk)′ ≥ βI,

for every k ∈ Z≥0, the inequality

W[k,k+N−1](S, ω0) ≥ αβI,

holds for every k ∈ Z≥0 and hence the claim.
(L2-D)∗ ⇔ (L3-D)∗. The proof of this equivalence is a

direct consequence of Theorem 1 and hence it is omitted.

B. Nonlinear systems

The arguments used in the linear case can be extended to
nonlinear systems. To begin with, we establish the following
result.

Theorem 3: Consider the system (1) with initial condition
ω(0) = ω0. The following statements are equivalent.
(NL1-D) The state sequence of the system is persistently

exciting.
(NL2-D) There exists a constant N ∈ Z>0 such that the

matrix W[0,N−1](s, ω) is positive definite for every
ω ∈ γ+(ω0).

(NL3-D) The system (1) satisfies the excitation rank condi-
tion at every ω ∈ γ+(ω0).
Proof: (NL1-D) ⇔ (NL2-D).

The proof follows from the same steps of the proof of the
equivalence (L1-D) ⇔ (L2-D), with the map s playing the
role of the matrix S.

(NL2-D) ⇔ (NL3-D). To prove this equivalence select
ω ∈ γ+(ω0) and define for every k ∈ Z>0 the matrix

Θk(s, ω) =
[
θ0(ω) θ1(ω) · · · θk−1(ω)

]
.

By definition, the system (1) satisfies the excitation rank
condition at ω if there exists an integer constant N > 0 such
that rank ΘN (s, ω) = ν. This implies that system (1) satisfies
the excitation rank condition at ω if and only if the matrix

ΘN (s, ω)ΘN (s, ω)′ =W[0,N−1](s, ω)

is positive definite. Hence, since ω ∈ γ+(ω0) is arbitrary, the
claim is proved.

Remark 1: For a linear system described by equations of
the form (4), by the Cayley-Hamilton theorem [20], to check
the excitation rank condition one only needs to verify the
linear independence of a number of vectors equal to the
dimension of the system. On the contrary, for a nonlinear
system described by equations of the form (1) one may be
forced to check the linear independence of the infinitely many
vectors which span the excitation distribution. Thus, while for
linear systems it is possible to prove that the state sequence
is not persistently exciting, for nonlinear systems this is a
more difficult issue.

Before proceeding to the next result, a preliminary defini-
tion is borrowed from [21, Definition 4.1].

Definition 5: Consider the system (1). A point ω ∈W is
said to be positively Poisson stable if for every arbitrarily
small neighbourhoodN of ω and for every constant N ∈ Z≥0
there exists an integer constant k > N such that sk(ω) ∈ N .

Remark 2: For a discrete-time, autonomous, linear system
governed by equations of the form (4), the Assumption 1
given in Theorem 2 implies that all state trajectories of the
system are periodic and therefore that every initial condition
is positively Poisson stable.

Remark 3: Consider the system (4) with initial condition
ω(0) = ω0. As a direct consequence of Definition 5, if
ω0 ∈W is a positively Poisson stable point for system (1),
then there exists an increasing sequence of non-negative
integers {jk}k∈Z≥0

such that
(i) lim

k→∞
jk =∞,

(ii) lim
k→∞

sjk(ω0) = ω0.

To state a nonlinear counterpart of Theorem 2, a technical
assumption is made on the sequence {jk}k∈Z≥0

described in
Remark 3.

Assumption 2: For every sequence {jk}k∈Z≥0
that pos-

sesses the properties (i) and (ii) there exists a constant
N1 ∈ Z>0 such that the condition
(iii) jk+1 − jk ≤ N1 holds for all k ∈ Z>0.

Remark 4: The restriction described by Assumption 2 lies
in the requirement that {jk}k∈Z≥0

can be always chosen so
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Fig. 1. Diagrammatic illustration of the proof of Theorem 4 for ν = 1.

that condition (iii) holds. This latter condition expresses the
fact that the distance between two consecutive time instants
{jk}k∈Z≥0

of the subsequence {sjk(ω0)}k∈Z≥0
is bounded

by a fixed constant. Condition (iii) is satisfied in cases of
practical interest, such as linear systems, periodic systems,
almost periodic systems and systems with attractive limit
cycles, and is violated if the time required to return to a given
neighbourhood of the point ω0 grows unbounded with time.
The authors conjecture that the time-invariance property of
the class of systems considered prevents the latter behaviour,
but are not aware of results of this nature. The described
behaviour, which can occur when dealing with time-varying
systems, is further explored in Section IV.

We are now in a position to establish the following result.
Theorem 4: Consider the system (4) with initial condition

ω(0) = ω0. Suppose that the point ω0 is positively Poisson
stable and that Assumption 2 holds. The following statements
are equivalent.
(NL1-D)∗ The state sequence of the system is persistently

exciting.
(NL2-D)∗ There exists a constant N ∈ Z>0 such that the

matrix W[0,N−1](s, ω0) is positive definite.
(NL3-D)∗ The system (1) satisfies the excitation rank con-

dition at ω0.
Proof: (NL1-D)∗ ⇔ (NL2-D)∗. We only show the

implication (NL2-D)∗ ⇒ (NL1-D)∗, since the converse is
trivial.

By hypothesis, the point ω0 is positively Poisson stable
and thus, in view of Assumption 2, there exist a constant
N1 ∈ Z>0 and an increasing sequence of non-negative
integers {jk}k∈Z≥0

satisfying

lim
k→∞

jk →∞,

lim
k→∞

sjk(ω0) = ω0,

and
jk+1 − jk ≤ N1 for all k ∈ Z≥0.

Let N2 ∈ Z>0 be such that the matrix W[0,N2−1](s, ω0) is
positive definite. By continuity of ω 7→ W[0,N2−1](s, ω) it
follows that

lim
k→∞

W[0,N2−1](s, s
jk(ω0)) =W[0,N2−1](s, ω0). (5)

Since the right-hand side of (5) is positive definite by
assumption, there exists a constant N3 ∈ Z≥0 such that for

every jk ≥ N3 the inequality

W[0,N2−1](s, s
jk(ω0))=

N2−1∑
l=0

sl+jk(ω0)sl+jk(ω0)′>0 (6)

holds. Observe that adding positive semi-definite terms to
a positive definite matrix preserves the positive definiteness
property. As a consequence, as illustrated in Figure 1, since by
assumption the distance between two consecutive time instants
of the sequence {jk}k∈Z≥0

is at most N2, (6) implies that for
every k ≥ N3 the sum of all terms of the form sk(ω0)sk(ω0)′

over a moving window of length N1 +N2 is positive definite,
i.e.

k+N1+N2−1∑
l=k

sl(ω0)sl(ω0)′ > 0, k ≥ N3. (7)

This implies that the inequality

k+N1+N2+N3−1∑
l=k

sl(ω0)sl(ω0)′ > 0

is satisfied for every k ∈ Z≥0. Selecting N = N1 +N2 +N3

yields that the matrix W[k,k+N−1](s, ω0) is positive definite
for every k ∈ Z≥0, which proves the claim.

(NL2-D)∗ ⇔ (NL3-D)∗. The proof of this equivalence is
a direct consequence of Theorem 3 and hence it is omitted.

Remark 5: The authors believe that Assumption 2 is not
necessary to prove Theorem 4. This conjecture is supported
by experimental evidence and is examined further by means
of an academic example in Section IV.

IV. EXAMPLES

This section offers simple examples which illustrate the
notions and results presented in Sections II and III.

A. Linear systems

Consider a discrete-time, autonomous, linear system de-
scribed by equations of the form (4) with ω(k) ∈ R3 and
S ∈ R3×3 a constant matrix defined as

S =

 1
4 (1 + 3κ1)

√
3
4 (1− κ1) −

√
3
2 κ2√

3
4 (1− κ1) 1

4 (3 + κ1) 1
2κ2√

3
2 κ2 − 1

2κ2 κ1

 ,
in which κ1 = cosψ, κ2 = sinψ and ψ = 1

π . Assume
ω(0) = ω0 6= 0.



A direct computation shows that σ(S) = {1,±iψ} and
thus Assumption 1 holds. This implies that the matrix S
is orthogonal and hence the norm of the state trajectory of
the system is constant. As a result the positive orbit γ+(ω0)
lies entirely on a circle centred at the origin, the radius of
which depends upon the initial condition. It is interesting to
note that although the state trajectory of the system is not
periodic, since ω0 6= 0 and ψ = 1

π is irrational, the positive
orbit γ+(ω0) is a dense subset of the circle mentioned above
and hence the initial condition ω0 is a positively Poisson
stable point.

Suppose ω0 = 1
2
√
2
[ 1
√

3 2 ]′. A direct computation shows
that the matrix

Θ3(S, ω0) =
[
ω0 Sω0 S2ω0

]
(8)

is non-singular. This implies that the dimension of the
excitation distribution of the system is maximal and thus
that the pair (S, ω0) is exciting. By Theorem 2, the state
sequence of the system is therefore persistently exciting.
Conversely, assume ω0 = [ 0 0 1 ]′. Since in this case the
matrix Θ3(S, ω0), defined as in (8), can be shown to be
singular, by the same argument used above and by Remark 1
the pair (S, ω0) is not exciting. Therefore, in virtue of
Theorem 2, the state sequence of the system is not persistently
exciting.

The persistence of excitation condition (3) has been
numerically verified for the state trajectory of the considered
system and the simulations led to consistent results.

B. An academic example

The next academic example has exploratory intentions, as
the system considered falls out of the class of systems studied
in this paper. The goal of the example is twofold. First, to
support the claim that, for a system with positively Poisson
stable initial condition, Assumption 2 may be violated only
when the system is described by a time-varying difference
equation. Second, consistently with what observed in Re-
mark 5, to show that Assumption 2 is presumably not needed
to prove that a system with positively Poisson stable initial
condition produces a persistently exciting state trajectory. The
phenomenon studied in the example is motivated and partly
inspired by [22, Section VII].

Consider a discrete-time, autonomous, time-varying, linear
system described by an equation of the form1

ζ+ = e
iπ
k ζ, (9)

in which ζ(k) ∈ C denotes the state of the system at time
k ∈ Z>0. Assume ζ(0) = 1.

System (9) models the evolution of a discrete-time system
on the unit circle with an oscillatory behaviour and a period
that gradually tends to infinity (see Remark 4). In fact,
representing equation (9) in polar form, the equations which

1z1/k , with k ∈ Z>0, denotes the principal value of the k-th square
root of z ∈ C [23]. The choice of representing system (9) on the complex
plane is without loss of generality, since every point of C can be uniquely
identified with a point of R2.
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Fig. 2. Time history of the principal value of the argument ϕ(k) of the
state of system (9) with ϕ(0) = 0. The abscissae are in linear scale (top)
and in logarithmic scale (bottom).

govern the evolution of the state of the system can be rewritten
as

ρ+ = ρ, ϕ+ = ϕ+
π

k
, (10)

in which ρ(k) ∈ R>0 and ϕ(k) ∈ (−π, π] denote modulus
and principal value of the argument of the state of the
system (9) for all k ∈ Z≥0, respectively, with the usual
convention that two angles are identified if they differ by
an integer multiple of 2π. The first equation in (10) implies
that the state trajectory lies entirely on the unit circle, as
the initial condition has unitary modulus and the modulus is
constant. The second equation in (10) yields

ϕ(k) = πHk, (11)

for all k ∈ Z>0, in which

Hk =

k∑
l=1

1

l
,

with k ∈ Z>0, is the k-th harmonic number [24, p.75]. Since

lim
k→∞

(Hk−1 − ln k) = γ,

in which γ ≈ 0.57721 . . . is the Euler-Mascheroni constant
[24, p.119], the identity (11) implies that the argument has
an asymptotic logarithmic growth. As a result, every point of
the unit circle is positively Poisson stable for the system and
the oscillatory behaviour gradually “slows down” as k →∞.
Figure 2 displays the principal value of the argument ϕ of
the state of system (9) when the initial condition is ζ(0) = 1
or, what is the same, ϕ(0) = 0. To emphasise that the state
of the system visits every fixed open subset of the unit circle
with a period that increases logarithmically with time, the
abscissae are plotted in linear scale (top) and in logarithmic
scale (bottom). Nevertheless, since at each time instant the
state sequence of system (9) lies on the unit circle, the identity

k+N−1∑
l=k

|ζ(l)|2 = N (12)



holds for every N ∈ R>0 and thus, in a somewhat broad
sense2, is a persistently exciting sequence.

As already mentioned, since the difference equation (9)
is time-varying, the system does not belong to the class of
systems considered in this work. However, system (9) pro-
vides an example which serves to corroborate the conjecture
that even if condition (iii) of Assumption 2 is not satisfied a
system with positively Poisson stable initial condition should
be able to produce a persistently exciting state sequence.

V. CONCLUSION

The persistence of excitation of sequences generated by
time-invariant, discrete-time, autonomous linear and nonlinear
systems has been studied. Notions and results presented
in [16] for continuous-time systems have been extended
to the case of discrete-time systems. The significance of
the proposed geometric characterisation has been illustrated
by means of simple examples. Future work should explore
the applicability of the excitation rank condition in control-
related problems, including that of data-driven output regula-
tion [17 , 18]. Another important future research endeavour
should determine whether or not the conjectures made on
Assumption 2 hold.
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