
BAYESIAN ANALYSIS OF COSMIC RAY PROPAGATION: EVIDENCE AGAINST
HOMOGENEOUS DIFFUSION

G. JÓhannesson
1
, R. Ruiz de Austri

2
, A. C. Vincent

3
, I. V. Moskalenko

4,5
, E. Orlando

4,5
, T. A. Porter

4,5
, A. W. Strong

6
,

R. Trotta
7,8
, F. Feroz

9
, P. Graff

10,11
, and M. P. Hobson

9

1 Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
2 Instituto de Física Corpuscular, IFIC-UV/CSIC, Valencia, Spain

3 Institute for Particle Physics Phenomenology (IPPP), Department of Physics, Durham University, Durham DH1 3LE, UK
4 Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA

5 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA
6Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741 Garching, Germany

7 Astrophysics Group, Imperial Centre for Inference and Cosmology, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
8 Data Science Institute, William Penney Laboratory, Imperial College London, SW7 2AZ London, UK

9 Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
10 The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA

11 Department of Physics, University of Maryland, College Park, MD 20742, USA
Received 2016 February 8; accepted 2016 March 29; published 2016 June 3

ABSTRACT

We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and
propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested
sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to
separate out low-mass isotopes (p, p̄, and He) from the usual light elements (Be, B, C, N, and O). We find that the
propagation parameters that best-fit ¯p p, , and He data are significantly different from those that fit light elements,
including the B/C and 10Be/9Be secondary-to-primary ratios normally used to calibrate propagation parameters.
This suggests that each set of species is probing a very different interstellar medium, and that the standard approach
of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions
and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements
from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public
GALPROP update.
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1. INTRODUCTION

Cosmic ray (CR) physics has entered a data-driven era. Until
recently, CR observations were not accurate enough to warrant
sophisticated studies of the propagation model parameter space,
although some attempts have been made using mostly analytical
propagation codes (e.g., Maurin et al. 2001, 2002, 2010; Donato
et al. 2002; Putze et al. 2010). The launch of Payload for
Antimatter Matter Exploration and Light-nuclei Astrophysics
(PAMELA) in 2006 (Picozza et al. 2007), followed by the Fermi
Large Area Telescope (Fermi-LAT) in 2008 (Atwood
et al. 2009), and finally the Alpha Magnetic Spectrometer-02
(AMS-02) in 2011 have changed the landscape dramatically.
The technologies employed by these space missions have
enabled measurements with unmatched precision and data sets
orders of magnitude larger than earlier experiments, which allow
for searches of subtle signatures of new phenomena in CR and γ-
ray data. For example, the claimed precision of AMS-02 data
reaches 1%-3%. This requires propagation models of compar-
able accuracy in order to take full advantage of such high-quality
data. Other missions have just launched (e.g., the CALorimetric
Electron Telescope—CALET) or are awaiting launch (the
Cosmic-Ray Energetics and Mass investigation—ISS-CREAM).

Our understanding of CR propagation in the Milky Way
comes from a combination of substantial observational data and
a strong theoretical basis. These include exhaustive maps of the
distribution of gas in the Galaxy, interstellar dust, radiation
field, and magnetic field, in addition to the latest data and codes
describing particle and nuclear cross sections. Incorporation of

such information is not possible using analytic methods and a
fully numerical modeling for the treatment of CR propagation
in the Galaxy is required. This was realized about 20 years ago,
when some of us started to develop the most advanced fully
numerical CR propagation code, called GALPROP12, which is
also a de facto standard in astrophysics of CRs (Moskalenko &
Strong 1998; Strong & Moskalenko 1998). GALPROP makes
use of information from astronomy, particle, and nuclear
physics to predict CRs, γ-rays, synchrotron, and other
observables in a self-consistent manner (a review can be found
in Strong et al. 2007). The code’s output includes CR spectra
and intensities in every spatial grid point (in two dimensions
and three dimensions; 2D and 3D, respectively) in the Galaxy,
as well as the associated diffuse emissions from CR
interactions with the interstellar gas, radiation, and magnetic
fields.
The first successful attempt to embed such a detailed and

fully numerical propagation code within a Bayesian statistical
approach was made in 2011 (Trotta et al. 2011, hereafter
Paper I). This became possible because of an extensive
optimization and parallelization of the GALPROP code
(necessary for the fast evaluation of the likelihood function)
combined with highly efficient sampling algorithms employed
in the SuperBayeS (de Austri et al. 2006) package. The
advantages of such analysis are many. First, the Bayesian
sampling method used enables a statistical analysis of the entire
parameter space, rather than being limited to scanning a
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reduced number of dimensions at a time. Crucially, this allows
all relevant CR parameters to be fit simultaneously. Second, the
parameters that are not of immediate relevance can be
marginalized (integrated) over, without sacrificing computing
time. Correlations in the global parameter space are thus fully
accounted for in the resulting probability distributions. Third,
we recover statistically well defined errors for each parameter
in addition to the best fit; this constitutes one of the most
important achievements of our earlier work. Finally, a large
number of “nuisance” parameters can be incorporated, leading
to an overall more robust fit. These parameters include the
modulation potentials and experimental error rescaling para-
meters, and allow us to mitigate the effect of potential
systematic errors that could arise from the data or the
theoretical model.

This paper is novel in three ways. First, it builds on the
framework established in Paper I and improves it in several
directions. We demonstrate a first application of machine-
learning techniques to speed up the computationally expensive
inference from fully numerical codes in an automatically
supervised manner. We introduce neural network (NN) training
in the form of the BAMBI algorithm, which reduces
computational effort by 20%. The ensuing trained NN can
then in principle be used to conduct a (usually more costly)
profile likelihood analysis with almost no computational effort.
Second, we now constrain both the CR propagation model
parameters and the source abundances, using an iterative
scheme to convergence. Third, for the first time we split the
data sets used into low-mass isotopes (p, p̄, and He) and light
nuclei (Be–Si). Significantly different inelastic cross sections of
protons (and antiprotons) and heavier nuclei (∼40 mb for
protons versus ∼250 mb for carbon) result in different CR
species propagating from different distances in the Galaxy.
Treating them separately allows us to directly probe different
diffusion length scales in the Galaxy for the first time.

This paper is organized as follows: In Section 2 we give an
overview of CR propagation and the GALPROP code,
Bayesian inference, and the BAMBI/SKYNET codes. In
Section 3, we discuss the propagation model used, its
parameters and prior ranges (including source abundances),
the iterative procedure we adopt to scan both the propagation
parameters and the abundances, and the data sets adopted
(including the likelihood function used). In Section 4, we
present our results in terms of Bayesian posterior probability
distributions and give the posterior mean and best-fit
parameters, along with associated errors. In Section 5 we
discuss our findings. Section 6 gives our conclusions. In the
Appendix, we validate our NNs/SKYNET approach against a
full (non-accelerated) scan.

2. THEORY AND ALGORITHMS

2.1. CR Propagation (GALPROP Code)

A brief review of CR production and propagation relevant to
the present paper is given in Paper I and more information can
be found in a review by Strong et al. (2007).

The theoretical understanding of the CR propagation in the
interstellar medium (ISM) became a framework that the
GALPROP code for CR propagation is built around.
GALPROP numerically solves the system of partial differential
equations describing the particle transport with a given source
distribution and boundary conditions for all species of CRs.

In spite of its relative simplicity, the diffusion equation is
remarkably successful at modeling transport processes in the
ISM. Processes which enter propagation include diffusive
reacceleration and, for nuclei, nuclear spallation, secondary
particle production, radioactive decay, electron K-capture, and
stripping, in addition to energy loss from ionization and
Coulomb interactions.
The GALPROP source (injection) abundances are taken first

as the solar system abundances, which are iterated (Moska-
lenko et al. 2008) to achieve an agreement with the propagated
abundances as provided by ACE at ∼200MeV/nucleon
(Wiedenbeck et al. 2001) assuming a propagation model. The
source abundances derived for two propagation models,
diffusive reacceleration and plain diffusion, were used in many
GALPROP runs.
Galactic properties on large scales, including the diffusion

coefficient, halo size, Alfvén velocity, and/or convection
velocity, as well as the mechanisms and sites of CR
acceleration, can be probed by measuring stable and radio-
active secondary CR nuclei. The ratio of the halo size to the
diffusion coefficient can be constrained by measuring the
abundance of stable secondaries such as 5B). Radioactive
isotopes (4

10Be, 13
26Al, 17

36Cl, 25
54Mn) then allow the resulting

degeneracy to be lifted (e.g., Ptuskin & Soutoul 1998; Strong &
Moskalenko 1998; Webber & Soutoul 1998; Moskalenko
et al. 2001). However, the interpretation of the peaks observed
in the secondary-to-primary ratios (e.g., 5B/6C, [21Sc+22Ti
+23V]/26Fe) around energies of a few GeV/nucleon remains
model-dependent.
Closely connected with the CR propagation, but not related

to the present paper, is the production of the Galactic diffuse γ-
rays and synchrotron emission (Orlando & Strong 2013).
Proper modeling of the diffuse γ-ray emission, including the
disentanglement of the different components, requires well
developed models for the interstellar radiation field (ISRF) and
gas densities, together with the CR propagation (see, e.g.,
Strong et al. 2007; Ackermann et al. 2012). Global CR-related
properties of the Milky Way galaxy are calculated in Strong
et al. (2010).
The Parker (1965) equation models the modulation of CRs

as they propagate in the heliosphere. The modulated fluxes
significantly differ from the interstellar spectra below energies
of ∼20-50 GeV/nucleon, but correspond to the ones actually
measured by balloon-borne and spacecraft instruments.
Spatial diffusion, convection with the solar wind, drifts, and

adiabatic cooling are the main mechanisms that determine
transport of CRs to the inner heliosphere. These effects have
been incorporated into realistic (time-dependent, three-dimen-
sional) models (e.g., Florinski et al. 2003; Potgieter &
Langner 2004; Langner et al. 2006). The “force field”
approximation that is ordinarily used (Gleeson & Axford 1968)
instead characterizes the modulation effect as it varies over the
solar cycle using a single parameter—the “modulation
potential.” Despite having no predictive power, the force field
approximation is a useful low-energy parameterization of the
modulated spectrum for a given interstellar spectrum. A new
stochastic 2D Monte Carlo (HelMod) code (Bobik et al. 2012)
is being developed that would allow an accurate calculation of
the heliospheric modulation for an arbitrary epoch and is fully
compatible with GALPROP.
The GALPROP project now has nearly 20 years of

development behind it. The key idea behind GALPROP is
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that all CR-related data, including direct measurements, γ-rays,
sychrotron radiation, etc., are subject to the same galactic
physics and must therefore be modeled simultaneously. The
original FORTRAN90 code has been public since 1998, and a
rewritten C++ version was produced in 2001. The latest major
public release is v54 (Vladimirov et al. 2011). It is also possible
to configure and run GALPROP through a browser with
WebRun at the dedicated website.13 The website also contains
links to all galprop publications and has detailed information
on CR propagation and the GALPROP code.

We refer to Paper I and the dedicated website for a detailed
description of the code. In this work we use a development
version of the GALPROP code which is described in
Moskalenko et al. (2015), and references therein. The
development version has the possibility to vary the injection
spectrum independently for each isotope. It also includes the
dependency tree pre-built from the nuclear reaction network
and made for each species to ensure that its dependencies are
propagated before the source term is generated. This way,
special cases of b--decay (e.g., 10Be→10B) are treated properly
in one pass of the reaction network instead of the two passes
required before. This reduces the runtime of the GALPROP
code by up to a half.

2.2. Statistical Framework

Here we summarize briefly the underlying statistical frame-
work, referring the reader to Paper I for full details (see, e.g.,
Trotta 2008 for an overview of Bayesian methods). Bayesian
inference works by evaluating the posterior probability
distribution function (PDF) for the parameters of interest,
which is the normalized product of the prior PDF (summarizing
our state of knowledge before we see the data) and the
likelihood function (which contains the information supplied
by the data). Denoting byQ the vector of parameters and by D
the data, Bayes Theorem reads

( ∣ ) ( ∣ ) ( )
( )

( )Q =
Q Q

D
D

D
P

P P

P
, 1

where ( ∣ )Q DP is the posterior, ( ∣ ) ( )Q = QDP is the
likelihood function (when considered as a function of Q for
the observed data D), and ( )QP is the prior. The quantity in the
denominator of Equation (1) is the Bayesian evidence (or
model likelihood), a normalizing constant that does not depend
on Q and can be neglected when interested in parameter
inference.

Together with the model for the data (entering the likelihood,
possibly specified hierarchically; see, e.g., Shariff et al. 2015),
the priors for the parameters which enter Bayes’ theorem,
Equation (1), must be specified. Priors should summarize our
state of knowledge and/or our theoretical prejudice about the
parameters before we consider the new data, possibly informed
by the posterior from a previous measurement.

The problem is then fully specified once we give the
likelihood function (see Section 3.3 below). The posterior
distribution ( ∣ )Q DP is determined numerically by drawing
samples from it using an appropriate sampling scheme (see
Section 2.3).

2.3. The BAMBI Algorithm

In order to efficiently explore the propagation model
parameter space for a higher spatial and energy resolution
than adopted in Paper I (hence with a higher computational cost
per likelihood evaluation; see Section 3.1), in this work we
upgrade our sampling techniques. We use the BAMBI
algorithm (Graff et al. 2012), which implements the nested
sampling algorithm MULTINEST (Feroz & Hobson 2008; Feroz
et al. 2009; Feroz et al. 2013), as described by Skilling
(2004, 2006), and the NN training algorithm SKYNET (Graff
et al. 2014) to learn the likelihood function online during the
sampling and thus accelerate the sampling procedure. We
briefly describe each algorithm below.

2.3.1. MULTINEST

MULTINEST is a highly efficient implementation of the nested
sampling technique. This technique is aimed at computing the
Bayesian evidence, but is able to produce samples from the
posterior in the process of doing so (for details, see Feroz &
Hobson 2008). In nested sampling, a set of “live” points is
initially sampled from the prior distribution. The point with
lowest (log-)likelihood, min, is then replaced by a new point
that is sampled from the prior under the constraint that
 >new min. To facilitate this sampling from the constrained
prior, MULTINEST encloses the set of live points within a set of
(possibly overlapping) ellipsoids from which new samples can
be taken analytically. The ellipsoidal decomposition is chosen
in order to minimize the sum of the volumes and is well suited
to sampling from posterior distributions that exibit curving
degeneracies and/or multi-modality. If subsets of the ellipsoid
set do not overlap in parameter space, these can be identified as
separate modes and evolved independently. The sampling
converges when the Bayesian evidence is computed to within a
user-specified tolerance.
MULTINEST takes advantage of parallel computing architec-

tures by allowing each CPU to compute a proposal replacement
point simultaneously. As the run progresses, the actual
sampling efficiency (fraction of accepted samples over number
of proposal replacements) drops as the ellipsoidal approxima-
tion is less accurate and the likelihood constraint on the prior is
harder to meet. By computing N proposal samples concur-
rently, we can obtain speed increases of up to a factor of N .
This linear speed up, however, flattens once »N 1 , where ò
is the efficiency of the algorithm (i.e., the number of accepted
samples over the number of likelihood evaluations). Past this
point, a further increase in the number of CPUs does not result
in any appreciable speed advantage. The actual values used in
our scans are given in Section 2.3.2.
In addition to providing the log-likelihood and prior, the user

only needs to tune a few parameters for any specific
implementation. These are the number of live points (higher
for higher dimensional parameter spaces, and/or multi-modal
posteriors), the target efficiency (controlling the degree of
shrinkage of the ellipsoids), and the tolerance (controlling the
precision to be achieved on the evidence). The number of live
points needs to be sufficient that all posterior modes are
sampled (ideally with at least one live point in the initial set)
and we use 2000 for our analyses (which does not suffer from
multi-modality). The target efficiency affects how conserva-
tively the ellipsoidal decomposition is made and a value of 0.5
was found to be sufficient; smaller values will produce more13 http://galprop.stanford.edu/webrun
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accurate evidence values (irrelevant to the present study) but
require more samples. Lastly, we chose a tolerance of 0.5 in the
evidence calculation, as recommended in Feroz et al. (2009).

2.3.2. SKYNET and BAMBI

SKYNET (Graff et al. 2014) is an algorithm for training of
artificial NNs—computational models that are used to
approximate one or several target functions and that depend
on a number of free input parameters. In our application, the
input parameters are the free parameters in the model, Θ, and
the target function is the log-likelihood, . SKYNET implements
a feed-forward NN, where scalar values are passed from one
layer to the next over weighted connections with nonlinear
activation functions. BAMBI is a framework that joins up
MULTINEST with SKYNET: accepted samples from the MULTIN-
EST run are fed as training samples into SKYNET, which uses
them to train the NN online (i.e., as the posterior sampling
progresses).

Training is performed using a fast, approximate second-order
algorithm to find the NN weights that best approximate a value
of  for a given input Θ. This method efficiently finds an
optimal set of weights and is designed to minimize overfitting
to the training data. ℓ-2 norm regularization aids the algorithm
in finding the global optimum. A test data set, distinct from the
training data, is used to stop training when the algorithm begins
to overfit to the training data. The algorithm is described in
more detail in Graff et al. (2014).

The user must specify the size of the network, both in the
number of hidden layers and the number of nodes in each. We
use a network with a single hidden layer of 200 nodes. This
was verified to give a sufficiently accurate approximation, as
shown in the Appendix. The sigmoid activation function,

( ) ( ( ))= + -f x x1 1 exp , is used for the hidden layer and a
linear activation function, ( ) =f x x, is used for the output
layer.

Once SKYNETʼs training has reached sufficient accuracy on
likelihood values provided by MULTINEST, within BAMBI the
network is tested for the accuracy of its predictions. If the root-
mean-square error is below a user-defined threshold, the
network will be used for calculating future likelihood calls by
MULTINEST. Since the trained network is effectively an analytic
interpolating function, calls to the neural-network approxi-
mated likelihood are almost instantaneous, thus greatly
reducing the computational cost. If the predictions are
insufficiently accurate, then more samples will be generated
using the full likelihood function and training will resume once
enough new samples have been collected. This setup is
explained further and examples are provided in Graff et al.
(2012). Setting the accuracy threshold too low will require
more samples from the original likelihood and longer network
training, while setting it too high can produce unreliable
likelihood approximations that affect the accuracy of the
posterior sampling. We use a tolerance of 0.8, which led to
convergence in an acceptable amount of time, although it also
led to some spurious maxima in the likelihood. These were
removed by post-processing the posterior samples with a full
evaluation of GALPROP (which can be done in an exact
parallel way at a post-processing stage, and thus can benefit
from massive parallel processing). Our two main BAMBI scans
(see Section 3) were doubly parallelized. For the light elements
(Be–Si) we used 96 CPUs, split over 12 MPI nodes, with each
GALPROP evaluation using 8 openMP thread. For the second

scan, over ¯p p, , and He only, we were able to use 144 CPUs,
with 18 MPI processes using 8 openMP cores each. In this
configuration, full convergence of these scans required
approximately 2 million GALPROP calls each, totaling 35
CPU years in the light element case, and 5.5 CPU years for
protons and helium. Over 99% of the computing power was
used for GALPROP likelihood evaluations, with the remaining
~1% spent on BAMBI training. In both cases, the NNs
performed approximately 20% of the likelihood evaluations,
saving around 10 CPU years, or 4.5 months of real computing
time. More details are presented in the Appendix.

3. METHOD

3.1. Propagation Model and Parameters

The aim of this study is to simultaneously constrain the
propagation parameters, as in Paper I, as well as the CR source
abundances, since the latter are model-dependent.
Our benchmark model for this study is the diffusive

reacceleration (hereafter DR) model, which is by far the most
commonly used propagation model used with GALPROP (e.g.,
Moskalenko et al. 2002; Strong et al. 2004; Abdo et al. 2009;
Ackermann et al. 2012, 2015; Vladimirov et al. 2012; Ajello
et al. 2016, and references therein). The distribution of Galactic
CR sources is based on pulsars (Lorimer 2004). For this study,
we use ( ) ( ) ( )= a b- -f R R R e R R

CR 0 0 , i.e., normalized to 1 at
= =R R 8.5 kpc0 , where a = 0.475 and b = 2.166. The

profile is constant for >R 10 kpc and cuts off at R = 15 kpc.
The flattening in the outer Galaxy is suggested from Fermi
studies (Abdo et al. 2010; Ackermann et al. 2011).
In this model, the spatial diffusion coefficient is given by

( )b
r
r

=
d⎛

⎝⎜
⎞
⎠⎟D D , 2xx 0

0

where D0 is a free normalization at the fixed rigidity
r = ´4 100

3 MV. For Kolmogorov diffusion, the power-law
index is d = 1 3; however, we allow δ to freely vary. Re-
acceleration is modeled as a momentum-space diffusion where
the coefficient Dpp is related to the spatial coefficient Dxx

(Berezinskii et al. 1990; Seo & Ptuskin 1994) with

( )( )
( )

d d d
=

- -
D D

p v

w

4

3 4 4
, 3pp xx

2
Alf
2

2

where w characterizes the level of turbulence (we take w= 1
since only the quantity v wAlf

2 is relevant); the Alfvén velocity
vAlf is allowed to vary freely.

The CR injection spectrum is modeled as a broken power
law, with indices below ( n- 0) and above ( n- 1) the break as
free parameters. This is known to be necessary in DR models in
order to compensate for the large bump at low rigidities, a
consequence of the large Alfvèn velocities needed to fit the
B/C ratios below 1 GeV. While the location of this break is
typically fixed for a given study (around r = 10br GV), we
allowed it to vary in our scan. Other models are able to
reproduce the B/C ratio without a low-energy break in the
injection spectra, but at the cost of an ad hoc break in the
diffusion coefficient; these will be examined in detail in an
upcoming study. Because we are using high-energy (>TeV)
data, we must also include a second break in the injection
spectrum at 220 GV, and thus a third freely varying index n- 2
(see a discussion of the possible origin of this break in
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Vladimirov et al. 2012). We also allow for a different injection
spectrum for protons and heavier elements by setting the
power-law indices of the proton injection spectrum to
n n d¢ = + ni i for { }Îi 0, 1, 2 .

The other free model parameters are the halo height zh and
the normalization Np of the propagated CR proton spectrum at
100 GeV. This yields a total of 10 free propagation parameters,
summarized in Table 1; we label these

{ } ( )d n n n r dQ = nN D v z, , , , , , , , , . 4P p h0 Alf 0 1 2 br

For each parameter in QP we use a uniform prior distribution
whose range is informed by the results of Paper I. Although we
let more parameters vary in this analysis14, we do not expect
the posterior distributions to stray very far from the
determination of Paper I. The prior ranges (informed by the
results we obtained in Paper I) are given in Table 1, and are
discussed in greater detail in Section 3.4.

Thanks to the speed up from BAMBI and the GALPROP
code improvements mentioned in Section 2.1, we are able to
use a finer grid in this work than in Paper I, giving better
accuracy. We found that a spatial resolution ofD =r 1 kpc and
D =z 0.2 kpc and an energy grid with =+E E 1.2i i1 was a

reasonable compromise between accuracy and speed. The full
set of numerical parameters that we adjusted is shown in
Table 2.
Due to their smaller inelastic cross sections, secondary

antiprotons probe different length scales than the light
elements; the diffusion parameters that characterize their
propagation can therefore be different, and indeed we found
in our test scans that the same parameter set would not allow a
good simultaneous fit to the high- and low-mass data. We
therefore split the propagation scan into two: one, propagating
only protons, antiprotons, and helium; and one “light element”

Table 1
Summary of Input Parameters and Prior Ranges

Quantity Symbol Prior range Prior type

Propagation model parameters QP

Proton normalization (10−9 cm2 sr−1s−1 MeV−1) Np [ ]2, 8 Uniform
Diffusion coefficienta (1028 cm2 s−1) D0 [ ]1, 12 Uniform
Rigidity power-law index δ [ ]0.1, 1.0 Uniform
Alfvén speed (km s−1) vAlf [ ]0, 50 Uniform
Diffusion zone height (kpc) zh [ ]0.5, 20.0 Uniform
Rigidity of first injection break (104 MV) rbr [ ]1, 30 Uniform

Nucleus injection index below rbr n0 [ ]1.00, 2.50 Uniform

Nucleus injection index above rbr n1 [ ]n , 3.000 Uniform

Nucleus injection index above 220 GV n2 [ ]n1.5, 1 Uniform
Difference between p and heavier inj. indices dn [ ]0.0, 1.0 Uniform
Injection abundance parameters QX

a

Proton normalization (10−9 cm2 sr−1s−1 MeV−1) Np [ ]2, 8 Uniform
Helium XHe [ ]0.1, 2 ´105 Uniform
Carbon XC [ ]0.1, 6 ´103 Uniform
Nitrogen XN [ ]0.1, 5 ´102 Uniform
Oxygen XO [ ]0.1, 10 ´103 Uniform
Neon XNe [ ]0.0, 1 ´103 Uniform
Sodium XNa [ ]0.0, 5 ´102 Uniform
Magnesium XMg [ ]0.0, 1.5 ´103 Uniform

Aluminum XAl [ ]0.0, 5 ´102 Uniform
Silicon XSi [ ]0.0, 1.5 ´105 Uniform

Experimental nuisance parameters
Modulation parameters f (MV) Log-normal priorb

HEAO-3 -mHEAO 3 [ ]0, 1250
ACE mACE [ ]0, 1125
CREAM mCREAM Fixed (no modulation)
ISOMAX mISOMAX [ ]0, 1075
PAMELA mPAMELA [ ]0, 1000
Variance rescaling parameters ( =j 1 ,..., 5) tlog j [ ]-1.5, 0.0 Log-uniform on tlog j

Notes.
a The hydrogen abundance is fixed to º ´X 1.06 10H

6.
b We use a log-normal distribution, where s = 50% of the central value. Quoted limits correspond to s3 .

Table 2
GALPROP Resolution Parameters Used in This Study

Variable name Parameter Value

dr radial spacing (kpc) 1.0
dz height spacing (kpc) 0.2
Ekin_factor (log) kinetic energy spacing 1.2
timestep_factor rescaling factor when reducing timesteps 0.5
start_timestep size of initial timestep (s) 108

end_timestep size of final timestep (s) 102

timestep_repeat repeats per timestep 20
max_Z number of elements 14

14 Specifically, rbr, n0, dn—see Table 1, as well as the 10 abundance
parameters.
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scan, propagating elements from beryllium up to silicon. This
has the further advantage that the ¯p p, , and He scans do not
require computation of the full nuclear network for each
likelihood evaluation, allowing them to run quickly and in
parallel with the light element scans. Thus, at the chosen
resolution, our light element scan took approximately 9.8 CPU
minutes per evaluation (or 1.22 minutes when parallelized over
8 CPUs), while the ¯p p, , and He case was sped up to 1.25 CPU
minutes (or 9.4 seconds in real time).

The nuclear chain that we use for the light element scans
begins at 30Si and proceeds down to protons. The source
abundances of nuclei  Z6 14 have an important influence
on the B/C and 10Be/9Be ratios used in this study. We
therefore let the abundances of the 10 most important elements
vary freely, with prior ranges determined by the measured CR
abundances from ACE data at a few 100MeV/nucleon (George
et al. 2009). The isotopes that are allowed to vary are 1H, 4He,
12C, 14N, 16O, 20Ne, 22Ne, Na, 24Mg, 25Mg,26Mg, 27Al, 28Si,
29Si, and 30Si; their prior ranges are presented in Table 1. The
abundances Xi are scaled to the proton injection abundance XH,
whose absolute normalization, Np, is fixed by its final flux at
Earth, at the reference energy =E 10 GeVref

2 . We label the
10-dimensional abundance parameters set QX , defined with
respect to º ´X 1.06 10H

6.
For each part of the experiment that provides data below a

few GeV/nucleon, we must introduce an additional nuisance
parameter fj ( =j 1 ,..., 5) to account for solar modulation.
Furthermore, we introduce a set of parameters tj ( =j 1 ,..., 5)
designed to mitigate the possibility that the fit is dominated by
unknown systematic errors in the data, as explained in detail in
Section 3.3, and following the procedure introduced in Paper I.
We denote the joint set of nuisance parameters by J.

Adding the abundance parameters constitutes a significant
enlargement of the parameter space to be sampled: our full
parameter space has 30 dimensions, and it would be
computationally very costly to sample it simultaneously, even
with MULTINEST and BAMBI. Instead, we take advantage of the
fact that for a given set of propagation parameters the final CR
composition depends linearly on the injection abundance of
each isotope. Thus, the likelihood as a function ofQX for fixed

QP is obtained quickly by linear rescaling of the CR spectra
with QX . This requires us to run GALPROP only once per
nuclear species (O(10) runs) and therefore the posterior for QX
conditional on QP can be explored very quickly. Then we fix
the abundances to their posterior mean, and sample from the
posterior of QP conditional on QX . In all cases, we leave free
the applicable nuisance parameters (solar modulation potentials
mj and error rescaling parameters tj). This procedure is then
iterated with new abundances determined using propagation
parameters fixed to the posterior mean of the scan over
propagation parameters (Figure 1). This effectively amounts to
implementing a Gibbs sampling scheme as follows:

( ∣ ) ( )Q¢ ~ Q QDP , 5X X P

( ∣ ) ( )Q¢ ~ Q Q¢DP , , 6P P X

where a prime denotes the updated value of the parameter set.
We start our procedure with a scan over the abundance

parameters QX , fixing the propagation parameters to the
posterior means of a low-resolution test scan over the
propagation parametersQP using the same isotopic abundances
as in Paper I. This was followed by a propagation parameter
scan at full numerical precision using the results of the first
abundance scan, after which we performed a final abundance
scan, which yielded no significant variation with respect to the
first scan—and thus no need for a third iteration. The structure
of our three scans is illustrated in Figure 1.

3.2. CR Data and Modulation

The data selection is based on similar principles as in
Paper I. We use the most accurate CR data sets available,
preferably taken near the solar minimum to reduce the effect of
solar modulation. Table 3 lists the data we use in the analysis
(obtained from a database by Maurin et al. 2013).
To reduce the number of nuisance parameters, we limit

our data to instruments which cover many different CR species.
As in the first paper, we use data from ACE-CRIS (George
et al. 2009) for the lowest energies. Those data agree well with
data from other instruments while providing better statistics
and elemental coverage. At intermediate energies, the HEAO3-
C2 data (Engelmann et al. 1990) provides good statistics while
also agreeing with observations of other instruments. The
recent elemental data observed by PAMELA (Adriani
et al. 2014) has better statistics, but was not available at
the start of this analysis, nor was the recent determination of
the p flux by AMS-02 (Aguilar et al. 2015). Our results
should not be affected by the former because the data from the
HEAO and PAMELA instruments are compatible. We
return to the recently released proton data from AMS-02 in
Section 4.
For higher energies we decided to use only CREAM data

(Ahn et al. 2008, 2009; Yoon et al. 2011), since its small
energy binning was compatible with our method of evaluating
the likelihood from a single energy point per bin, in
contrast with the wide binning of, e.g., TRACER (Ave
et al. 2008; Obermeier et al. 2011, 2012). For additional
constraints on the propagation injection spectrum we also use
H and He data from PAMELA at intermediate energies
(Adriani et al. 2011) and CREAM at higher energies (Yoon
et al. 2011). The PAMELA data was used because of
its superior statistics and the high-energy CREAM data

Figure 1. Sets of neural-network-assisted nested sampling scans that we
perform in this work. We separate ¯p p, , and He (left) from the light elements
(right) into two separate runs. For the light elements, we also vary the elemental
abundances in separate, faster runs, which are performed iteratively with the
propagation parameter scans. Since the GALPROP output is linear in the
injection abundances, this allows extremely rapid convergence of the
abundances. We will keep the same color code throughout the text: blue for

¯p p, , and He results, magenta for light elements, and orange for the
abundances.
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can be used without an additional modulation nuisance
parameter.

For 10Be/9Be, we include ACE (Yanasak et al. 2001), which
yields the most accurate measurements at low energies. These
data are in agreement with Voyagers 1 and 2 (Lukasiak
et al. 1999), as well as Ulysses (Connell 1998) data. ISOMAX
(Hams et al. 2004) has given two data points at higher energies
(per nucleon), with very large error bars, which we nonetheless
include.

As in Paper I, we fit to the CR data in the whole energy
range from few tens MeV/n to a few TeV/n and account for
heliospheric modulation below ∼20 GeV/n. We employ here
the same method as in Paper I and use a simple force field
approximation (Gleeson & Axford 1968), which is character-
ized with the value of the modulation potential. To avoid
the uncertainty associated with the specific choice of the

modulation potential, we allow some flexibility to the fits
and include it as a free nuisance parameter (one free parameter
per experiment). Gaussian priors with mean and standard
deviation motivated by ballpark estimates of the modulation
potential are used to avoid unphysical or implausible values.
Because CREAM data start above 20 GeV/n, we do not
include a modulation parameter for that experiment as it is
irrelevant.

3.3. The Likelihood Function

We denote by { }Q = Q Q,P X the joint set of CR propaga-
tion parameters and abundances, and by { }J f t= , the joint
set of nuisance parameters. For a given value of { }JQ, , we use
GALPROP to compute the CR spectrum as a function of
energy, ( )JF QE, ,Y , for species Y. To mitigate against

Table 3
Data Used in This Analysis

Element Experiment Energy Range

Data used in the ¯p p, , and He scan
H PAMELA (’06–’08)a 0.44–1000 GeV/n

CREAM-I (’04–’05)b 3–200 TeV/n
H PAMELA (’06–’08)c 0.28–128 GeV/n
He PAMELA (’06–’08)a 0.13–504 GeV/n

CREAM-I (’04–’05)b 0.8–50 TeV/n
Data used in the light element scan and the abundance scan

B/C ACE-CRIS (’97–’98)d 72–170 MeV/n
HEAO3-C2 (’79–’80)e 0.62–35 GeV/n
CREAM-I (’04–’05)f 1.4–1450 GeV/n

10Be/9Be ACE-CRIS (’97-’99)g 81–132 MeV/n
ISOMAX (’98)h 0.51–1.51 GeV/n

B HEAO-3 (’79–’80)e 0.62–35 GeV/n
C HEAO-3 (’79–’80)e 0.62–35 GeV/n

CREAM-II (’05–’06)i 86–7415 GeV/n
N HEAO-3 (’79–’80)e 0.62–35 GeV/n

CREAM-II (’05–’06)i 95–826 GeV/n
O HEAO-3 (’79–’80)e 0.62–35 GeV/n

CREAM-II (’05–’06)i 64–7287 GeV/n
Data used in the abundance scan

Ne ACE-CRIS (’97–’98)d 85–240 MeV/n
HEAO3-C2 (’79–’80)e 0.62–35 GeV/n
CREAM-II (’05–’06)i 47–4150 GeV/n

Na ACE-CRIS (’97–’98)d 100–285 MeV/n
HEAO3-C2 (’79–’80)e 0.8–35 GeV/n

Mg ACE-CRIS (’97–’98)d 100–285 MeV/n
HEAO3-C2 (’79–’80)e 0.8–35 GeV/n
CREAM-II (’05–’06)i 27–4215 GeV/n

Al ACE-CRIS (’97–’98)d 100–285 MeV/n
HEAO3-C2 (’79–’80)e 0.8–35 GeV/n

Si ACE-CRIS (’97–’98)d 120–285 MeV/n
HEAO3-C2 (’79–’80)e 0.8–35 GeV/n
CREAM-II (’05–’06)i 27-2418 GeV/n

Notes.
a Adriani et al. (2011).
b Yoon et al. (2011).
c Adriani et al. (2010).
d George et al. (2009).
e Engelmann et al. (1990).
f Ahn et al. (2008).
g Yanasak et al. (2001).
h Hams et al. (2004).
i Ahn et al. (2009).
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undetected systematics, we follow the procedure described in,
e.g., Barnes et al. (2003). For each data set we introduce in the
likelihood a parameter tj ( )=j 1 ,..., 5 , whose function is to
rescale the variance of the data points in order to account for
possible systematic uncertainties (see Paper I for a more
detailed description). The role of the set of parameters

{ }t t t= ,...,1 5 , which we call “error bar rescaling parameters,”
is to allow for the possibility that the error bars reported by
each of the experiments underestimate the true noise.
Furthermore, τ also takes care of all aspects of the model that
are not captured by the reported experimental error: this
includes also theoretical errors (i.e., the model not being
completely correct), errors in the cross section normaliza-
tions, etc.

Assuming Gaussian noise on the observations, we take the
following likelihood function for each observation of species Y
at energy Ei

( ˆ ∣ ) ( ( ) ˆ )

( )

J
t

ps
f

s t
F Q = -

F Q - F⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P

E
,

2
exp

1

2

, ,
,

7

Y
ij j

ij

Y i Y
ij

ij j

2

2

where ( )JF QE , ,Y i is the prediction from the CR propagation

model for species Y at energy Ei, F̂Y
ij
is the measured spectrum,

and sij is the reported standard deviation. The index i runs
through the data points within each data set j. We assume bins
are independent, such that the full likelihood function is given
by the product of terms of the form given above:

( ∣ ) ( ˆ ∣ ) ( ) J fQ = F Q
= =

DP P, , . 8
j i

N

Y
ij

1

5

1

j

3.4. Choice of Priors

The full posterior distribution for the CR propagation model
parameters Q, the variance rescaling parameters τ, and the
modulation parameters f is written

( ∣ ) ( ∣ ) ( ) ( ) ( ) ( )J f t t fQ µ Q QD DP P P P P, , , . 9

The likelihood ( ∣ )t fQDP , , is given by Equations (7) and (8).
The priors ( )QP , ( )fP , and ( )tP in Equation (9) determined

in the following way. Priors on the model parameters ( )QP are
taken as uniform onQ, with ranges given in Table 1. As shown
below, the posterior is close to Gaussian and well constrained
for Q; the results should thus be fairly independent of the
choice of priors.
We take a Gaussian prior on each of the modulation

parameters. This is informed by the values provided by each
experiment (see Table 1), in order to avoid physically

Table 4
Summary of Constraints on All Propagation Parameters

¯p p, , and He scan Light element (Be, ..., Si) scan

Quantity Best-fit Posterior mean and Posterior Best-fit Posterior mean and Posterior
value standard deviation 95% range value standard deviation 95% range

Diffusion model parameters QP

D0 (10
28 cm2 s−1) 6.330 6.102 ± 1.662 [2.138, 8.205] 6.188 9.030 ± 1.610 [5.743, 11.256]

δ 0.466 0.461 ± 0.065 [0.343,0.586] 0.375 0.380 ± 0.018 [0.349, 0.412]
vAlf (km/s) 8.922 8.970 ± 1.244 [7.036, 11.254] 32.573 30.017 ± 2.461 [25.484, 34.465]
zh (kpc) 9.507 10.358 ± 4.861 [2.461, 19.034] 4.900 10.351 ± 4.202 [4.544, 19.078]
rbr (GV) 2.486 2.345 ± 0.344 [1.870,2.739] 15.782 16.687 ± 1.498 [14.051, 19.849]
n0 1.854 1.765 ± 0.229 [1.230, 2.133] 2.012 2.025 ± 0.073 [1.885, 2.155]
n1 2.352 2.358 ± 0.063 [2.230, 2.468] 2.549 2.548 ± 0.050 [2.452, 2.642]
n2 2.182 2.186 ± 0.068 [2.062, 2.308] 2.195 2.197 ± 0.088 [2.042, 2.374]

N10 p
9 (cm−2 sr−1

s−1 MeV−1)
4.798 4.791 ± 0.066 [4.672, 4.913] 4.511 4.482 ± 0.220 [4.055, 4.884]

dn 0.045 0.047 ± 0.009 [0.030, 0.064] – – —

´ -X 10He
4 10.261 10.294 ± 0.505 [9.416, 11.240] – – —

Experimental nuisance parameters
Modulation para-

meters mj

PAMELA08
mod (MV)

637.625 645.740 ± 26.694 [601.226,
696.164]

– – —

HEAO80 mod (MV) – – – 622.201 611.039 ± 93.229 [438.307, 789.523]
ACECRIS99
mod (MV)

– – – 445.975 421.682 ± 48.797 [330.972, 509.777]

ISOMAX98
mod (MV)

– – – 380.722 492.036 ± 206.243 [184.184, 958.214]

Variance rescaling parameters τ
PAMELA08 tlog −0.237 −0.277 ± 0.053 [−0.370,

−0.181]
– – —

HEAO80 tlog – – – −0.516 −0.571 ± 0.089 [−0.740, −0.407]
ACECRIS99 tlog – – – 0.000 −0.263 ± 0.209 [−0.780, −0.015]
CREAM05 tlog −0.973 −1.014 ± 0.260 [−1.440,

−0.480]
−0.704 −0.764 ± 0.140 [−1.053, −0.516]

ISOMAX98 tlog – – – −0.115 −0.604 ± 0.378 [−1.380, −0.045]
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unreasonable values. A description of the CR data sets is given
in Section 3.2.

The tj are scaling parameters in the likelihood; the
applicable prior is therefore given by the Jeffreys’ prior, which
is uniform on tlog j (see Barnes et al. 2003 or Jaynes &
Bretthorst 2003). We thus adopt the proper prior

( ) ( ) t t
=

-⎧⎨⎩P log
2 3 for for 3 2 log 0

0 otherwise
10j

j

corresponding to a prior on tj of the form

( ) ( )t tµ -P . 11j j
1

Including the nuisance parameters f and τ (which are then
marginalized over) in our analysis yields a more robust fit (as τ
can absorb the effects of potential systematic effects in the data
and f incorporates solar modulation), while simultaneously
giving more conservative constraints on the CR parameter

Figure 2. 1D marginalized posterior distributions, showing 1- and 2-sigma credible intervals, for the propagation parameters that were varied in the propagation scan.
Light blue: the constraints from ¯p p, , and He scan, using PAMELA and CREAM data only; Purple: light element scan, fitting Be, B, C, N, and O data. (Given in
Table 3.) While most of the propagation parameters overlap between runs, there is a clear ( s>2 ) separation seen in the Alfvén speed and in the low-energy injection
break rigidity rbr. Differences in the -D zh0 plane can be clearly seen in Figure 3. The injection index for p, p̄, and He is also consistently lower below the 220 GV
break, suggesting a harder source injection spectrum.
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space, since we fully account for degeneracies with all values
of the nuisance parameters that are compatible with the data.

4. RESULTS

We report the best fit and posterior mean locations, along
with confidence intervals, in Table 4. In Figure 2 we show the
one-dimensional (1D) posterior distributions obtained for the
propagation parameters in our full Multinest/BAMBI scan. We
present 2D 68% and 95% (highest posterior density) credible
regions for the most relevant propagation parameters in
Figure 3. One can see that parameters are generally well
constrained. However, it is apparent that the measurements of
the 10Be/9Be ratio used here are not sufficient to break the well
known degeneracy between D xx0 and zh. Indeed, values of the
halo height zh can range between about 4 and 20 kpc, while the
diffusion parameter normalization can be in the range [5,
11] × 1028 cm2 s−1 in the light element scan. Comparing to the

¯p p, , and He scan, we can see that the inclusion of the
radioactive-to-stable secondary ratio only marginally improves
the constraint on the halo height, mostly from below.

While the 1D posterior distribution for Dxx and zh from the
two propagation runs contain a significant overlap, the 2D
distributions show a clear separation between the two scans.
There is therefore a significant tension between using p̄ and B
for the determination of propagation parameters. This is also
evident in the vAlf posterior distributions that are clearly
separated for the two scans. These results thus strongly suggest
that the propagation parameters are not constant over the entire
Galaxy and using only the B/C ratio to determine the
propagation parameters can significantly bias the results.
The reason behind this separation can partially be gleaned

from the -z Dh 0 posterior distributions shown in Figure 3. For
a fixed diffusion parameter, ¯p p, , and He probe a halo height
that is approximately twice as large as the light elements. Since
the inferred propagation parameters represent a volume-
averaged quantity, these results indicate that ¯p p, , and He are
probing a significantly larger volume than the light elements,
and that the ISM properties vary quickly enough on these large
distances to yield a significantly different Alfvèn speed,
diffusion coefficient, and its index.

Figure 3. 2D posterior distributions, showing 1- and 2-sigma credible intervals for the p, p̄, and He scan (blue), and for the light element (Be–Si, magenta). The
posterior mean in each case is shown as a dot and the best fit as a cross.
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The posterior distributions for the injection spectrum for the
two scans are very similar at high energies, but the spectrum of
He is systematically harder than H below the break at 220 GV.
The low-energy break of the proton and He spectrum is also
lower than that of the heavier elements. Given that the power-
law indices of the proton injection spectrum are dn larger than
that of the He injection spectrum, the results indicate that the
injection spectrum of heavier elements are closer to that of the
protons rather than that of He.

Figures 4–6 show 68% and 95% posterior intervals for our
models overlaid on some of the data used in the analysis. The
data-model agreement is very good in all cases. The need for
the high-energy break is evident in the spectrum of protons and
He in Figure 6 but we can also see from the spectra of heavier
elements in Figure 4 that the high-energy break improves the
agreement between model and data. The prediction for the p̄ p
ratio of the light element scan in Figure 5 further illustrates the
tension between the two data sets because there is a clear and
significant mismatch between the data and model prediction.
Indeed, a preliminary scan which included all data sets was not
able to find an acceptable fit, yielding very large error rescaling
parameters with tPAMELA reaching the prior box boundary at

t- =log 1.5PAMELA . This is an indication that the model
cannot simultaneously fit the light element and ¯p p, , and
He data.

Note that newer p̄ production cross sections (Kachelriess
et al. 2015) yield better description of the p̄ production in
proton-proton, proton-nucleus, and nucleus-nucleus interac-
tions, but were not available at the start of this analysis. They
provide a higher p̄ yield above ¯ >E 100 GeVp . Meanwhile, the
parameterizations used in the present paper (Tan &
Ng 1983a, 1983b; Moskalenko et al. 2002) were tuned to the
p̄ data at moderate energies providing a reasonable description
in that energy range. The new cross sections are now
incorporated into the GALPROP code to be used in our future
calculations.
In Table 5 we provide the best fit, posterior means, and

confidence intervals for the abundance parameters. These are
compared with solar data in Figure 7. We also show the
previously recommended values from GALPROP (Moskalenko
et al. 2008). Abundances are in generally good agreement with
the solar values, with partial volatiles (C, N, O, Ne) being
depleted with respect to the solar abundances. This is a well
known result, as CRs are likely preferentially accelerated from
refractory-rich dust grains (Ellison et al. 1997; Meyer et al.
1997; Rauch et al. 2009; Ahn et al. 2010). The only major
change versus previous GALPROP determinations is a higher
sodium abundance, which is now brought in line with solar
system measurements.
In Figure 8 we show the posterior distributions for the

modulation potentials of the three experiments that we used

Figure 4. Spectral fluxes with 68% and 95% posterior regions from the posteriors of our light element (Be–Si) scan, shown in magenta in Figure 1, and using the
HEAO modulation posteriors. Data shown are HEAO (blue), CREAM (green), and TRACER (cyan). The best fit is shown as a black line, and the dashed lines
correspond to the LIS (unmodulated) spectra.

Figure 5. Secondary-to-primary ratio 68% and 95% posterior bands from our light element (Be–Si) scan, shown in magenta in Figure 1. The p̄ p ratio is shown to
indicate that using the same propagation parameters for hydrogen yields a very bad fit to the data. Data shown are HEAO (blue), CREAM (green), ACE (light blue),
ISOMAX (black), and PAMELA (red). The best fit is shown as a black line, and the dashed lines correspond to the LIS (unmodulated) ratios. In the left-hand panel,
we use the HEAO modulation posterior, and the solid line uses the HEAO best-fit modulation potential. The dash-dotted line is the modulated spectrum using the best
fit to the ACE-CRIS modulation potential; for clarity we do not show the posterior intervals for this case. Correspondingly, the central plot uses the ACE modulation
(BF in black), and we show the best fit using the ISOMAX best-fit modulation potential with a dash–dotted line.
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whose energy range was low enough to be affected by solar
modulation. The posterior mean values are in good agreement
with those estimated using ground-based neutron monitors
(Usoskin et al. 2011).

The τ error bar rescaling parameters for each experiment are
shown in Figure 9. These are mainly skewed toward t =log 0,
indicating no rescaling is necessary and thus good agreement
between data sets. Some tension can be seen in the CREAM
data (green points in our figures), possibly owing to the wide
binning. Finally, the ISOMAX rescaling parameter was
effectively consistent with the entire prior range, due to the
paucity of available data (two data points).

5. DISCUSSION

A considerable underprediction of the p̄ flux calculated in
reacceleration models that are tuned to the B/C ratio was first
noticed by Moskalenko et al. (2002). It has been shown that
accurate antiproton measurements during the solar minimum of
1995–1997 by the BESS instrument (Orito et al. 2000) are

inconsistent with existing propagation models at the ∼40%
level at about 2 GeV, while the stated measurement uncertain-
ties in this energy range were ∼20%. Using local CR
measurements, simple energy dependence of the diffusion
coefficient, and uniform CR source spectra throughout the
Galaxy, conventional models failed to simultaneously repro-
duce both the secondary/primary nuclei ratio and p̄ flux. The
reacceleration model designed to match secondary/primary
nuclei ratios (e.g., B/C) produces too few antiprotons because
matching the B/C ratio at all energies requires the
diffusion coefficient to be too large. The models without
reacceleration can reproduce the p̄ flux; however, the low-
energy decrease in the B/C nuclei ratio requires an ad hoc
break in the diffusion coefficient. The diffusion-convection
model was constructed specifically to reproduce the p̄ data, but
required fine tuning. These results were later confirmed by Sina
et al. (2005).
An attempt to find an acceptable solution for the reaccelera-

tion models was made by Moskalenko et al. (2003). They

Figure 6. Spectra and p̄ p ratio 68% and 95% posterior bands of our p̄ p, , He scan, shown in blue in Figure 2. The best fit is plotted in black, and the dashed lines
correspond to the LIS (umodulated) spectra. PAMELA data are shown in red. We also show recent AMS-02 (Aguilar et al. 2015, blue) for the available proton and
helium flux data, which were not available at the time of our analysis (and hence are not included in the likelihood).
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showed that the spectra of primary nuclei as measured in the
heliosphere may contain a fresh, local, “unprocessed” compo-
nent at low energies. The latter leads to an effective decrease in
both the B/C ratio at low energies and the diffusion coefficient,
thus increasing the production of antiprotons. The paper
associated the fresh component with the Local Bubble and
independent evidence for supernova activity in the solar
vicinity in the last few million years was taken as a support
to this idea.

Ptuskin et al. (2006) found that the diffusive reacceleration
model with Iroshnikov-Kraichnan spectrum of interstellar
turbulence d = 0.5 (Iroshnikov 1964; Kraichnan 1965) and
wave damping helps to alleviate the problem, though does not
solve it completely. The main idea of that paper is that the
dissipation of waves due to the resonant interaction with CR
particles may terminate the slow Kraichnan-type cascade below
wavelengths 1013 cm thus leading to the increase in the diffusion
coefficient at low rigidities. No significant effect of CR damping
was found in the case of the fast Kolmogorov cascade.

These early papers (Moskalenko et al. 2002, 2003; Ptuskin
et al. 2006) compared the predicted p̄ flux to the data collected
during the two balloon flights of the BESS instrument (Orito
et al. 2000). The total number of collected antiprotons was
between 51 and 64 per energy bin in four bins ranging from
1.52 to 3.00 GeV. Some of these antiprotons could be
secondaries produced in the atmosphere above the instrument.
The discrepancy with the predictions of the reacceleration
model could also imply possible unaccounted systematic
errors of the data analysis. However, direct measurements in
space by the PAMELA experiment (Adriani et al. 2010) made
during the next solar minimum confirmed the earlier BESS

measurements with doubled statistics in the same energy
range. Simultaneously, the PAMELA measurements of the B/
C ratio (Adriani et al. 2014) yield a value of
d = 0.397 0.007 for the index of the diffusion coefficient
that is close to the classical value of d = 1 3, hinting at the

Table 5
Summary of Constraints on Abundance Parameters

Quantity Best-fit Posterior mean and Posterior
value standard deviation 95% range

N10 p
9 (cm−2 sr−1 s−1 MeV−1) 4.512 4.544 ± 0.097 [4.369,4.715]
´ -X 10He

4 9.044 8.975 ± 0.264 [8.499, 9.508]
XC 2578.407 2553.666 ± 66.318 [2442.083, 2666.097]
XN 210.667 221.389 ± 12.245 [199.314, 246.589]
XO 3372.090 3335.543 ± 82.290 [3184.869, 3492.503]
X Ne20 304.155 306.029 ± 26.345 [259.181, 357.127]
X Ne22 97.767 94.118 ± 22.321 [50.997, 137.982]
XNa 33.578 35.931 ± 2.812 [31.065, 41.583]
X Mg24 583.254 548.250 ± 40.044 [472.095, 623.988]

X Mg25 80.104 87.010 ± 28.553 [35.980, 143.917]

X Mg26 85.998 100.340 ± 23.765 [55.965, 147.898]

XAl 79.410 78.102 ± 3.211 [72.186, 83.727]
X Si28 643.797 629.755 ± 21.512 [589.202, 669.806]
X Si29 44.661 47.725 ± 10.524 [27.996, 67.989]
X Si30 32.996 38.987 ± 8.010 [23.997, 54.992]
Experimental nuisance parameters
HEAO80 mod (MV) 593.085 591.606 ± 11.074 [573.154, 610.848]
ACECRIS99 mod (MV) 329.543 340.231 ± 14.137 [315.514, 371.142]
PAMELA08 mod(MV) 664.817 671.463 ± 21.223 [630.303, 708.612]
Variance rescaling parameters τ
HEAO80 tlog −0.615 −0.594 ± 0.062 [−0.721, −0.478]
ACECRIS99 tlog −1.162 −1.269 ± 0.120 [−1.465, −1.037]
CREAM05 tlog −1.039 −1.008 ± 0.087 [−1.184, −0.853]
PAMELA08 tlog −1.500 −1.499 ± 0.001 [−1.499, −1.494]
TRACER06 tlog −1.712 −1.563 ± 0.185 [−1.921, −1.228]

Figure 7. 95% (light bars) and 68% (dark bars) posterior intervals from our
final abundance study. Total elemental abundances are in orange, while
individual isotopes are in green. We show the latest determination of the solar
photospheric (blue dots) elemental abundances and errors from Asplund et al.
(2009), with updated heavier (A 23) elemental abundances from Scott et al.
(2015). We also show previously used values from GALPROP (Moskalenko
et al. 2008) with open black circles.
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Kolmogorov spectrum of interstellar turbulence. Furthermore,
the preliminary AMS-02 results for the B/C ratio reported at
the AMS days meeting15 agree with the PAMELA data and
indicate a somewhat flatter index.

Agreement between BESS and PAMELA on the p̄
measurement and a hint that the index of the diffusion
coefficient is close to the Kolmogorov value support the idea
that the discrepancy with the predicted p̄ flux is inherent and
not due to experimental uncertainty. Our first scan of the
parameter space (see e.g., Paper I) quantitatively confirms this
finding. Our new results (Section 4) show significant tension
between a set of propagation parameters derived from a
standard secondary-to-primary ratio B/C, and those derived
from ¯p p, , and He data, as can be explicitly seen in Figure 5.
This tension may, in fact, reflect the properties of significantly
different Galactic volumes probed by different species.

To illustrate this point, let us calculate the effective
propagation distance for different CR species. For the
interaction timescale we have

[ ] ( )t s~ -nc , 12r
1

where sr is the total reaction cross section, ~n 1 cm−3 is the
average gas number density in the Galactic disk, and c is the

speed of light. The effective propagation distance can be
estimated as

( )t
s

r
r

á ñ ~ ~
d⎛
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⎞
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⎛
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⎞
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D
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6
. 13

r

0
1 2

0
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In the case of nuclear species, the total reaction cross section is
approximately

( ) ( ) ( )s »A A250 mb 12 , 14r
2 3

which is made to roughly reproduce the cross sections
published by Wellisch & Axen (1996), and corrected by H.P.
Wellisch & D. Axen (1999, private communication). and
we took (sr

12C) » 250 mb. In the case of p and
p̄, ¯s s» » 40r

p
r
p mb. The exact numbers are not very

important as we are seeking for a rough estimate of the
diffusion volume for different species at the rigidity of a
few GV.
Table 4 gives the results of the propagation parameters scan.

For the ¯p p, , and He scan, we have » ´D 6 10p
0

28 cm2 s−1 at
r = 40 GV, and d » 0.46. For the light elements (Be–Si), we
have » ´D 9 10A

0
28 cm2 s−1 at r0, and d » 0.38. The

superscripts p and A are added to distinguish between the
values derived from p̄ and B propagation parameters scans.

Figure 8. Posterior distributions of the modulation parameters for each experiment used in the fit, with 1- and 2-sigma credible intervals.

15 https://indico.cern.ch/event/381134/timetable/#20150415
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The spectral indices are somewhat different, but we can use a
single index of d » 0.4 in our estimates.

Substitution of these values into Equation (13) gives:

( )r
r

á ñ ~
d-

⎜ ⎟⎛
⎝

⎞
⎠

⎛
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⎞
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A
2.7 kpc

12
, 15A

1 3

0

2

( )r
r

á ñ ~
d⎛

⎝⎜
⎞
⎠⎟x 5.6 kpc . 16p

0

2

Even though the value of the diffusion coefficient derived from
¯p p, , and He is a factor of 1.5 smaller than that for the light

nuclei, the former probes an area ( )µá ñx 2 of the Galaxy that is
four times larger. This ratio does not depend on δ. The volume
probed by the lighter species includes a considerable area in the
inner Galaxy, where the supernova remnant (SNR) rate and the
OB star distribution reach their maxima (at a distance of about
5 kpc from the Galactic center). It is thus natural to expect that
more turbulent ISM has a smaller diffusion coefficient.

This is only an estimate, but it gives some idea of the typical
distances. Even though CRs can in principle come from larger
distances, their number density would be negligible compared
to locally produced CRs of the same species. This estimate is
consistent with the typical lifetime of CRs in the Galaxy
assuming a uniform diffusion coefficient in the disk and halo.
The best-fit halo size derived from the 10Be/9Be ratio is

»z 5 kpch in the case of the light elements, and »z 10 kpch
from the ¯p p, , and He scan (Table 4), i.e., larger than the
effective distances given by Equations (15) and (16). Their
posterior means are even larger, »z 10.35 kpch with s1 error
bars of 4.2 kpc and 4.9 kpc correspondingly.

Our results are therefore the first to definitively show that by
separating the two data sets, one can fit them with two different

reacceleration parameter sets. The significantly lower Alfvèn
speed rµv BAlf ISM , 8.9 ± 1.2 km s−1 ( ¯p p, , He) versus
30.0 ± 2.5 km s−1 (Be–Si), may hint at a smaller rB ISM ,
possibly owing to a denser ISM plasma as one approaches the
inner Galaxy.
Variations of the propagation parameters throughout the

Galaxy is not the only possible reason of the discussed
differences. Source (SNe) stochasticity (Strong & Moska-
lenko 2001) may contribute to the local fluctuations in fluxes of
individual CR species. Freshly accelerated CR particles from
relatively recent supernova (SN) explosions may or may not
lead to the increased local production of secondary species. As
was already mentioned, the presence of local sources of low-
energy primary nuclei could lead to effects that mimic the
propagation parameters variations (Moskalenko et al. 2003). In
particular, the value of the effective diffusion coefficient D0

A

could be reduced, i.e., made consistent with D0
p, by invoking an

additional component of the locally produced primary CR
nuclei. Equations (15) and (16) indicate that such sources
should be located within 1–2 kpc. Besides the Local Bubble,
other obvious candidates are the local (Orion) arm and the
Perseus arm, where the SN rate is higher than in the interarm
region (Dragicevich et al. 1999).
If instead, the value of D0

p is required to be made consistent
with D0

A, then CR sources should produce additional anti-
protons. Production of secondary nuclei in the SNR shocks was
proposed by Berezhko et al. (2003). Antiprotons are also
secondary and thus can be produced in the same process (Blasi
& Serpico 2009; see also (Kachelrieß& Ostapchenko 2013;
Cholis & Hooper 2014; Mertsch & Sarkar 2014). However, this
argument is circular unless we assume that there is a distinct
type of CR sources that is nuclei ( >Z 2) deficient and that this
type of source has enough material nearby to produce
additional antiprotons in significant amounts. The first

Figure 9. Posterior distributions of the τ rescaling parameters, with 1- and 2-sigma credible intervals.

15

The Astrophysical Journal, 824:16 (19pp), 2016 June 10 Jóhannesson et al.



Figure 10. 1D posterior distributions (with 68% and 95% credible intervals) for the different CR propagation parameters in a low-resolution, { ¯p p, , and He}
propagation scenario using MULTINEST as a sampler (no neural network speed up, magenta) and from BAMBI runs with two different values for the neural network
input parameter σ. Light blue: s = 0.5; Orange: s = 0.8. All BAMBI chains have been post-processed in the same way as in our main paper runs.
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hypothesis of the local sources producing mostly primary CR
nuclei therefore appears more reasonable.

Even though the structure of our Galaxy has been the subject
of research since the invention of the telescope in the beginning
of the seventeenth century, only now we are starting to learn
about its effects on CR fluxes.

The Galaxy is clearly not axially symmetric, yet the quality
of the CR and diffuse emission data available until recently did
not warrant propagation calculations beyond simple cylindri-
cally symmetric geometry (Strong et al. 2007). The full 3D
setup was available in GALPROP since the very beginning
(Strong & Moskalenko 1998, 2001), but it was mostly used to
test the cylindrically symmetric 2D solution. In fact, the
entirely uniform, so-called the Leaky-Box model, was
completely dominating CR modeling in the twentieth century.

Not surprisingly, the discussions on the influence of the
Galactic structures on the intensity of CRs began about a
decade ago.

The effects of the solar system’s passage through the spiral
arms on the global climate (ice ages) were discussed by Shaviv
(2003). These ideas were further developed in Shaviv et al.
(2009) in connection with the so-called positron excess
reported by PAMELA (Adriani et al. 2009) and earlier by the
HEAT experiment (Barwick et al. 1997). Clear evidence of the
increased CR density in the spiral arms is provided by the
Fermi-LAT residual maps (Ackermann et al. 2012), produced
by subtracting the GALPROP diffuse γ-ray predictions from
the Fermi-LAT skymaps. The most significant excesses
coincide with the tangential directions to the spiral arms,
which presumably contain freshly accelerated CRs. There is
currently no fully consistent model that would incorporate the
details of the Galactic structure. This is mostly connected with
the difficulty of recovering the 3D structure of our Galaxy, such
as the distributions of gas, magnetic field, SNRs, and star-
forming regions using astrophysical observations. Dependence
on the temperature gradient in the ISM is discussed in Erlykin
et al. (2016), and possible effects of the details of the Galactic
structure on CR propagation are actively discussed in the
literature using a simplified description (e.g., Becker Tjus et al.
2015; Jóhanneson et al. 2015; Kissmann et al. 2015; Orlando
et al. 2015; Porter et al. 2015; Benyamin et al. 2016). A nearby
source (see, e.g., Erlykin & Wolfendale 2015) would also lead
to similar problems.

The most complete ever scan of the parameter space for CR
injection and propagation is another landmark of the present
paper. Calculations of the CR source abundances were done in
the past (e.g., Engelmann et al. 1990; Duvernois &
Thayer 1996; Wiedenbeck et al. 2001, 2008). However, such
calculations were usually made for elemental abundances16

using the Leaky-Box model or its equivalent. By current
standards, the models and data sets (e.g., semi-empirical cross
sections) used in such calculations in the past were not detailed
enough, but reflected the current state of knowledge at that
time. The first successful attempt to find the source abundances
and propagation parameters in a self-consistent way using a
proper propagation code GALPROP was made by Moskalenko
et al. (2008). The source (injection) abundances were taken first
as the solar system abundances, which were then iterated to
achieve an agreement with the propagated abundances as
provided by ACE at ∼200MeV/nucleon (Wiedenbeck

et al. 2001) assuming a propagation model, such as diffusive
reacceleration or plain diffusion. The propagation parameters
were then re-adjusted to reflect the final source abundances.
Even though the resulting abundances are fairly close to the
previous calculation (Figure 7), the current paper accomplishes
a significantly more challenging task by performing a full NN-
assisted scan over the 20 propagation and abundance
parameters. Ten more nuisance parameters were included into
the scan to account for possible systematic errors of different
experiments. The result is the full set of best-fit values,
posterior means, and standard deviations. The latter allows the
detailed propagation calculations with meaningful constrains
for related areas and for possible signatures of new physics.
Thus far, we have only considered the reacceleration model.

Other models will be analyzed in forthcoming papers.

6. CONCLUSIONS

We have performed the largest ever—in terms of number of
free parameters, data, resolution, and computing time—study
of CR propagation using a fully numerical state-of-the art
computer code. By combining GALPROP with the BAMBI
package, we were able to perform a full NN-assisted scan over
the 20 propagation and abundance parameters, as well as 10
nuisance parameters. Two GALDEF input files based on the
best fits found here will be included in an upcoming update of
the publicly available GALPROP code11.
Our results have highlighted two important conclusions. (1)

available measurements of the radioactive species 10Be are not
sufficient to significantly remove the degeneracy between the
halo height zh and the diffusion parameter normalization D0;
and (2) The propagation parameters derived from the CR p, p̄
and He data are not compatible with those found from fitting
light elements Be–Si.
We take these results as a probable indication that the ISM

properties differ significantly enough over kiloparsec scales to
affect propagation of CRs, though we have mentioned other
interpretations. This fact has important consequences for CR
propagation studies: it is customary to use propagation
parameters calibrated to local B/C data to predict fluxes of
other CR species including electrons and positrons, both locally
and as far away from the Earth as the Galactic center, or
otherwise to assume an ad hoc functional form for the spatial
dependence of the diffusion coefficient. Such approaches are
particularly misleading in the search for physics beyond the
Standard Model, such as signals of dark matter annihilation. An
excess in antiprotons, positrons or γ-rays could indeed be an
indication of a mischaracterized ISM, rather than a need for
new physics.
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APPENDIX
VALIDATION OF BAMBI/SKYNET

Before launching our high-resolution physics scans, we
performed a series of validation scans, with the goal of
optimizing the BAMBI framework with MULTINEST as well as
determining the reliability of the trained neural nets (NNs). In
order to determine the optimal input settings for the network,
(i.e., those that maximize speed up while predicting the
likelihood function reliably), several runs were carried out with
different values for the two main settings that determine the
efficiency and accuracy of the NN training: nhid, the number of
hidden nodes; and σ, which sets the desired accuracy for the
predicted likelihood value before the network takes over as an
interpolator. These tests were carried out with fixed elemental
abundances and with a low GALPROP resolution (dr = 1.0,
dz = 0.1, Ekin = 2.0, starttimestep = 1.0e9,
endtimestep = 1.0e2, timestepfactor = 0.25, time-
steprepeat= 20) in order to rapidly obtain trained networks.

We found that a training parameter value s = 0.5 accurately
reproduced the results obtained using MULTINEST as a sampler
(and no BAMBI acceleration). However, in this case only 3%
of the likelihood evaluations were performed by the neural
nets, hence with a very minimal speed up in the computational
time. In contrast, s = 0.8 led to a good convergence with 21%
of the likelihood evaluations performed by the nets. Since some
of the resulting samples gave spurious high-likelihood regions,
we further post-processed them to remove any residual
inaccuracy. The posterior distributions from these test runs
are shown in Figure 10, where they are compared with the
posterior resulting from a full MULTINEST run.

The analysis for s = 0.5 was carried out for both
nhid = 200 and nhid = 300. Both runs led to good
parameter inference results, and the number of likelihood
evaluations computed using the network was very similar.
Based on these results, we decided to fix the input network
settings to nhid = 200 and s = 0.8, leading to reliable
parameter inference with a speed up of ~20%.
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