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There are many cases where one needs to limit the
X-ray dose, or the number of projections, or both,
for high frame rate (fast) imaging. Normally, it
improves temporal resolution but reduces the spatial
resolution of the reconstructed data. Fortunately, the
redundancy of information in the temporal domain
can be employed to improve spatial resolution.
In this paper, we propose a novel regularizer for
iterative reconstruction of time-lapse computed
tomography. The non-local penalty term is driven
by the available prior information and employs
all available temporal data to improve the spatial
resolution of each individual time frame. A high-
resolution prior image from the same or a different
imaging modality is used to enhance edges which
remain stationary throughout the acquisition time
while dynamic features tend to be regularized
spatially. Effective computational performance
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together with robust improvement in spatial and temporal resolution makes the proposed
method a competitive tool to state-of-the-art techniques.

1. Introduction
In many situations in X-ray tomographic imaging, it is not possible to collect enough data for
good-quality reconstructions using conventional filtered backprojection techniques [1]. Examples
can be found in medical imaging, where the accumulated dose must be kept to a minimum and in
the imaging of quickly evolving events, where the time per projection or the number of projections
must be severely reduced in order to capture the temporal dynamics of the scanned sample. In
such cases, iterative techniques can provide better reconstructions [2].

When dealing with iterative image reconstruction there is a strong need for regularization
techniques which impose a priori information on the desired solution [2,3]. The nature of this
information can be different, for example, some local or non-local (NL) neighbour correlations can
be encouraged [4]. In some cases, additional information can be extracted not only from the spatial
domain but also from the temporal space [5,6]. Sometimes, it is possible to augment the main
reconstruction dataset with supplementary information using the same or a different imaging
modality [7,8]. Normally, the other modality dataset will have different image characteristics, such
as intensity, resolution, geometry and noise variation. This can restrict the ‘direct’ embedding of
the prior information into the reconstruction process [8].

Previously, there have been successful attempts to improve spatial resolution in time-
lapse tomography using prior information [9–12]. This supplementary information is normally
obtained before the time-lapse experiment (e.g. a pre-scan at high resolution) and regarded as the
reference image. For example, in [10], the assumption about the prior image is provided without
the explicit use of regularization which leads to improvement in resolution. The use of a high-
resolution image to regularize the main dataset is already a well-established approach, and one of
the most common approaches in this area is prior image constrained compressed sensing (PICCS)
[9], which employs a high-quality prior image in the sparse regularization framework to improve
spatial resolution.

In [11], supplementary information is provided to improve an NL regularization strategy.
NL image regularization [13], which is based on successful NL denoising methods [14], has
been commonly applied to image reconstruction problems [15–17] and also to time-lapse
reconstruction [11,12,18].

In this paper, we present a novel multi-modal NL regularization technique which uses a
supplementary dataset to drive a spatio-temporal (ST) regularization process for time-lapse
tomography. We use a prior image of higher resolution that can be from the same or a different
imaging modality, which distinguishes our method from the previously proposed mono-modal
algorithms [9–12]. Additionally, the proposed algorithm employs all the available temporal
information (not just adjacent time frames as in [18]) which greatly improves the signal-to-
noise ratio (SNR) of reconstructions. The prior image is used to select the most structurally
valuable neighbours for temporal regularization (a pre-classification strategy), which also leads
to improved spatial resolution and substantially accelerates numerical performance.

In common with [12], we aim to minimize the computational complexity and achieve a
sufficient trade-off for ST resolution while using NL regularizers. While the method in [12]
sacrifices temporal resolution to improve spatial resolution, we aim to restore the desirable
balance by introducing a constraint which restricts regularization across dissimilar time frames.

The proposed method is compared to the state-of-the-art PICCS regularization technique and
shows much more promising results when the given prior image is not ideal (noisy and/or
partially uncorrelated with the imaged dataset).

It should be noted that in the current state our method is well suited for a specific class of video
denoising or time-lapse reconstruction problems. Specifically, our technique has the potential to
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significantly enhance edges which remain stationary throughout the acquisition experiment while
dynamic features tend to be regularized spatially. In material science, our method is well suited
to problems such a fluid flow through rigid porous structures such as rocks [12], solid oxide fuel
cells [19] and bioscaffolds [20].

2. Method

(a) Parallel beam time-lapse tomography
A discrete representation of the stationary attenuation coefficients to be reconstructed can be
written as a system of linear equations

bj =
N∑

i=1

ajixi + δj, (2.1)

where bj, j = 1, . . . , M is the measured projection data (sinogram) and M is the total number
of projections, xi, i = 1, . . . , N is the discrete distribution of attenuation coefficients to be
reconstructed (N is the total number of image elements) and δj is the noise component in the
measurements bj. Weights aji ∈ [0, 1] (contribution of element i to the value detected in the bin j)
form the sparse system matrix A : R

N → R
M.

Let us consider a problem in which part of the image changes over time and the other part
remains effectively stationary. Writing equation (2.1) in a matrix–vector form and adding the
temporal dimension gives

bk = Akxk + δk, k = 1, 2, . . . , K, (2.2)

where K is a total number of three-dimensional time frames. Similar to the algorithm in [12] we
use all available time frames.

The explicit (direct) solution for (2.2) can be written as x̂k = A†
kbk with a pseudo-inverse

A†
k = (ATA)−1

k AT
k bk. This direct inversion (if practically possible) is highly sensitive to noise due to

amplification of high-frequency components: x̂k = A†
kbk = A†

k(Akxk + δk) = xk + A†
kδk. In our case,

the system of equations (2.2) is severely underdetermined (M � N) and the system matrix A is
ill-conditioned. To find an approximate solution x̂ from the undersampled noisy measurements,
one can choose regularized iterative techniques instead of direct approaches [2,3].

In this paper, we aim at reconstructing iteratively the set of images xk while adding a novel ST
regularization penalty.

(b) Regularized time-lapse iterative reconstruction algorithm
Define X := (xT

1 , xT
2 , . . . , xT

K)T as the vector containing all images of the time-lapse series and
similarly define the measured projections vector as B := (bT

1 , bT
2 , . . . , bT

K)T. Therefore, the system
of equations to solve is B = AX, where the block diagonal matrix A is given as follows:

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 0 . . . 0

0 A2 0

...
. . .

...

0 0 . . . AK

⎤
⎥⎥⎥⎥⎥⎦ . (2.3)

The traditional approach to solve a linear system of equations, such as (2.1), is to find the best
fit x̂ to the exact x using the least-squares (LS) approximation [21]. In other words, one would like
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to minimize the �2 norm between the forward projections and the measured projection data:

X̂ = arg min
X

{ 1
2 ‖B − AX‖2

2}, (2.4)

where X̂ := (x̂T
1 , x̂T

2 , . . . , x̂T
K)T. The optimization problem (2.4) is quadratic and can be solved using

gradient-based techniques, such as the conjugate gradient least-squares (CGLS) algorithm [21].
To turn (2.4) into a well-posed problem, one has to regularize the solution X by adding a penalty
term R(X), resulting in the following regularized problem:

X̂ = arg min
X

{
β

2
‖B − AX‖2

2 + R(X)
}

︸ ︷︷ ︸
Φ(X)

, (2.5)

where β is a regularization parameter which represents the trade-off between the data fidelity
and the regularization term.

The gradient of the cost function Φ(X) can be calculated as follows:

∇Φ(X) = βAT(AX − B) + ∇R(X). (2.6)

Rather than using direct minimization approaches (e.g. gradient descent) to solve problem (2.5)
one can use splitting techniques [22]. The idea is to split the data fidelity and regularization terms
using proximity operators. This approach leads to simpler stackable optimization problems, such
as forward–backward splitting (FBS) or Bregman-type methods [15]. Applied to our minimization
problem (2.5), the estimate X̂ can be computed using the following two-step FBS algorithm:

Vn+1 = Xn − τ [AT(AXn − B)]

and Xn+1 = arg min
X

(
R(X) + β

2
‖X − X0‖2

2

)
; X0 = Vn+1.

⎫⎪⎬
⎪⎭ (2.7)

In the above algorithm, one can see that the first step solves the unregularized LS problem, and the
second is the data term dependent image denoising step [15]. To accelerate convergence of (2.7),
we will replace the gradient descent (GD) minimization (first step) with the CGLS algorithm [21].
Although CGLS converges faster than GD, the overall convergence proof for (2.7) method does
not hold anymore [22]; however, in practice this combination provides successful results [18]. The
main focus of our interest here is the nature of the penalty term R(X).

(c) Non-local means-based spatio-temporal regularization
The discrete representation of the ST regularization term is based on NL gradient [15,16] and
given by

R(X) =
K∑

k=1

N∑
i

∑
j∈Ns(i)

ωi,j(xk)(xj − xi,k)2, (2.8)

where the search domain Ns is restricted to the volumetric neighbourhood size of Nsearch ×
Nsearch × K with the number of neighbours equal to N2

searchK. Note that the volumetric search
area Ns includes all time-frames K. Non-negative and symmetric weights ωi,j are calculated as
follows:

ωi,j(x) = exp

(
−
∑

l∈Np(xi,l−xj,l)2

h2

)
, (2.9)

where Np is a quadratic similarity patch size of Nsim × Nsim and parameter h corresponds to the
noise level in x.
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The Euler–Lagrange equation of the second minimization problem in (2.7) with the penalty
term (2.8) is as follows:

K∑
k=1

N∑
i

∑
j∈Ns(i)

ωi,j(xk)(xj − xi,k) + β(X − X0) = 0. (2.10)

With the weight term fixed, the Euler–Lagrange equation (2.10) is linear and GD-based schemes
can be used to find the solution. Here we used the fixed point minimization scheme to solve (2.10)
efficiently [23]

Xn+1 =
βX0 +∑K

k=1
∑N

i
∑

j∈Ns(i) ωi,j(xk)xj

β
∑K

k=1
∑N

i
∑

j∈Ns(i) ωi,j(xk)
. (2.11)

As can be seen from the ST regularizer (2.8), there is no special treatment for xi,t; t =
[1, 2, . . . , K] \ {k} elements which are dissimilar to xi,k. When the intensity of xi,t is different from
the intensity of xi,k element there is a probability that the information in t frame is quite different
from the current time frame k. Therefore, if regularization is unconstrained for t frame it can
potentially lead to over-smoothing of dynamic (or dissimilar) features [12]. Similar to the method
introduced in [17], we constrain the regularization across potentially dissimilar time frames with
the following rule:

γ <
xi,k

xi,t
<

1
γ

; t = 1, 2, . . . , K, (2.12)

where γ is a constant. For every ith element in time frame k, we check that the ith element in
different time frame t is similar in terms of intensity. If elements are dissimilar ((2.12) is not
fulfilled) the temporal frame t is not considered for regularization within the search space Ns(i).
During our experiments, we found that condition (2.12) and the choice of γ is critical to avoid
smoothing of dynamic features.

Although the proposed ST penalty term can handle random noise in reconstructed images
much better than just a spatial penalty, the current implementation is computationally infeasible.
In the next section, we will show how additional information can be embedded into (2.8) to
improve spatial resolution and significantly reduce computational time.

(d) Embedding structural information into spatio-temporal regularization
Let zi, i = 1, . . . , N be a supplementary dataset, then the structural information can be extracted
from z in the following way. The following similarity measure is calculated as:

ϕ(z) =
N∑
i

∑
j∈Nr(i)

∑
l∈Np

(zi,j,l − zj,i,l)
2, (2.13)

where Nr is a quadratic similarity patch size of Nsearch × Nsearch. The vector ϕ, calculated for
every zi, provides distribution of similarity values within the window Nr. Smaller values in ϕ

demonstrate higher similarity to zi and by sorting values from low to high, one can choose n0 of
the most similar to zi elements:

n0 = �(Nsearch)2np�; np ∈ (0, 1], (2.14)

where np is an empirically chosen parameter which controls the number of jth elements in Nr

taken to build a structural set.
Let us define a structural set Sz(i, n0, Nr) which consists of n0 most similar to zi elements within

the quadratic window Nr. The set Sz(i, n0, Nr) is created according to the selection rule (2.14). If the
supplementary image z has an improved resolution over xk and images have structural similarity
(at least partially), then one can use the set Sz(i, n0, Nr) to drive the regularization process. The
main aim of structural set Sz(i, n0, Nr) is to reduce dimensionality of the volumetric search space
Ns(i) in (2.8). The modified set N̂s(i) has the same spacial dimensions as Ns(i), but the number of
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neighbours for regularization process is reduced to n0K. One can see that n0K � N2
searchK when

np � 1 in (2.14).
This approach is similar to the one which is used for multi-modal image reconstruction [8];

however since it is NL, it is more stable to noise than just using local voxel absolute differences
[12]. This means that the proposed technique is a much more robust way of extracting additional
information from a prior image which also can be degraded with noise or image artefacts.

(e) Pseudocode for the proposed non-local spatio-temporal algorithm
Here we present a pseudocode for time-lapse tomographic reconstruction using the proposed
structurally driven NLST penalty (2.8).

Algorithm 1 . Iterative image reconstruction using the NLST regularization using structural
information.
Initialize: X = 0, z, β, Nsearch, Nsim, np, γ , h, MaxOuter, MaxInner, ε

while m < MaxOuter do

CGLS step to obtain estimate Vm+1

set X0 = Vm+1

while n < MaxInner

calculate Xn+1using (2.11)

check that ‖Xn+1 − X‖2
2 < ε

n = n + 1

end

set Vm+1 = Xn+1

check that ‖Vm+1 − X‖2
2 < ε

m = m + 1

end

3. Numerical experiments
In this section, two different numerical experiments are performed, which demonstrate the
improvement of the proposed NLST technique over a state-of-the-art PICCS method [17]. The
aim of the PICCS method is the same as the method proposed and involves the integration of a
prior image into the reconstruction process to improve ST resolution. The optimization problem
for PICCS using the total variation (TV) penalty [24] and a prior image z is given as follows:

x̂k = arg min
xk

[
α‖xk − z‖TV+(1 − α)‖xk‖TV + λ

2
‖bk − Akxk‖2

2

]
; α ∈ [0, 1]. (3.1)

We perform PICCS optimization with respect to each time frame xk. The main goal of (3.1) is to
find the best approximation to each time frame xk when z is available and the trade-off between
xk and z is controlled by the parameter α. Note that PICCS is not using all available temporal
information as the NLST method but is based solely on the prior image z and the current time
frame xk. We optimized (3.1) using FBS splitting where the LS term was solved independently
with CGLS and the PICCS minimization sub-problem was performed with the GD method using
the time-step parameter τ (table 1).
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Table 1. Parameters for the image reconstruction experiment (figure 5).

parameter method value description

MaxOuter NLST 11 outer iterations (CGLS) number in algorithm 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MaxInner NLST 1 inner iterations number in algorithm 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nsearch NLST 11 the size of the searching window
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nsim NLST 3 the size of the similarity window
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

np NLST 0.05 the number of n0 neighbours (2.14)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β NLST 2.6 regularization parameter (2.11)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h NLST 0.15 noise-dependent threshold (2.9)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ NLST 0.9 parameter in (2.12)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MaxOuter PICCS 12 outer iterations (CGLS) number
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MaxInner PICCS 25 inner GD iterations number
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ PICCS 0.01 regularization parameter (3.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α PICCS 0.4 trade-off parameter (3.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ PICCS 0.001 time-step parameter for GD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε NLST and PICCS 1 × 10−5 an iteration tolerance constant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To avoid storing the large sparse matrix A, we used on-the-fly forward and backward
projection operations of the GPU accelerated modules from the ASTRA toolbox [25]. C-
OMP implementation using a Matlab wrapper of the proposed NLST algorithm (2.8) is freely
available [26].

To quantify our results, we use two measures. The first measure is the root mean square error
(RMSE):

RMSE(x̄, x̂) =
√√√√ 1

N

N∑
i=0

(x̄i − x̂i)2, (3.2)

where x̄ is the exact image and x̂ is a reconstructed image. And the second is the structural
similarity index (SSIM) [27] which is given as

SSIM(x̄, x̂) = (2μx̄μx̂ + C1) + (2σx̄x̂ + C2)

(μ2
x̄ + μ2

x̂ + C1)(σ 2
μx̄

+ σ 2
μx̂

+ C2)
; SSIM ∈ [−1, 1], (3.3)

where μ and σ are the mean intensity and standard deviation of image block, respectively (we
used an 8 × 8 quadratic patch). σx̄x̂ denotes the cross-correlation and C1,2 are small constants to
avoid singularity [27]. SSIM is a more advanced quality measure than RMSE (3.2), as it considers
image degradation as a visually perceived change in structural information. The SSIM value
equals 1 if images are identical.

We optimized thoroughly all the reconstruction parameters (see §3a) and the optimal
parameters are given in table 1. The videos with reconstructed data (experimental and real) are
available in the electronic supplementary material.

(a) Image reconstruction of modelled data
Similar to [12], a synthetic dynamically changing phantom for time-lapse tomographic image
reconstruction was created as follows. First, a high-quality reconstruction based on an X-ray
projection dataset collected for a rock sample (porous granitic gravel), which was acquired on a
Nikon XTH 225 ST cone beam scanner at the Manchester X-ray facility, was reconstructed with the
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(a) (b)

dynamic
stationary

(c)

Figure 1. (a) Reconstruction of the porous granitic gravel sample from 2000 projections using the Feldkamp algorithm;
(b) realistic rock phantom created from the image; (c) rendered three-dimensional phantom (x, y + time) where stationary
and dynamic ROIs are shown.

Feldkamp algorithm. This reconstruction is displayed in figure 1a. Based on this reconstruction,
the rock region was extracted and all other attenuation values were set to zero, resulting in the
image displayed in figure 1b. Next, fluid flow was simulated in the void space region, where the
time points at which fluids enters a certain voxel were randomly generated by applying a global
thresholding operation on a two-dimensional Perlin noise image [28]. The stationary and dynamic
regions of interest (ROIs) are shown in figure 1c.

In this experiment, we simulated two cases, namely cases where 45 and 25 projections were
taken per time frame (30 time frames in total) resulting in 1350 and 750 projections, respectively.
Projections were collected using the golden ratio (GR) firing-order technique [29]. The GR
scanning approach is used to obtain projections in a non-sequential order. The basic idea is
to adapt the angular sequence of projections so that any subsets of chronologically contiguous
projections contain sufficient information for reconstruction. This technique is well suited to
iterative reconstruction methods, because one can divide the scan into an arbitrary number of
subscans which are normally sampled below the Nyquist rate. Each projection was generated
with a strip kernel [1] and a higher resolution version of the phantom, i.e. on an 800 × 800 isotropic
pixel grid. Poisson distributed noise was applied to the projection data, assuming an incoming
beam intensity of 30 000 (photon count). Reconstructions were calculated on a 300 × 300 isotropic
pixel grid and with a linear projection model [1], thus avoiding the ‘inverse crime’ of generating
the data with the same model as the model that is used for calculating the reconstruction. In total,
30 different time frames were reconstructed by subdividing the simulated projection data into 30
distinct subsets of 45 and 25 projections each.

For a fair comparison of the CGLS–PICCS and CGLS–NLST methods, we initially optimized
the parameters (see parameters in table 1). In figure 2, we present the result of the final
optimization procedure for α of PICCS and β of the NLST method. Other parameters previously
chosen to be optimal (or nearly optimal) are fixed as shown in table 1.

In figure 3, we show the obtained RMSE values for the CGLS, CGLS–PICCS and CGLS–NLST
methods for cases when 45 and 25 projections are used to reconstruct each time frame. One can
see that the proposed CGLS–NLST method outperforms CGLS–PICCS in both cases. Notably, for
the case reconstructed from 25 projections per time frame the difference in RMSE values between
NLST and PICCS becomes more apparent (figure 3b). Those results demonstrate that the proposed
method is more robust in dealing with under-sampled noisy projection data.

The SSIM values were calculated for the reconstructed datasets and shown in figure 4. The
time frames k = 1, 7, 15, 22 from the whole reconstructed dataset X̂ for 45 projections are shown
in figure 5. One time frame k = 22 is shown in figure 6 where reconstruction from 25 projection
angles is performed.

For reconstructions with the CGLS–PICCS and CGLS–NLST methods (figures 5 and 6), we
used the reference image which was reconstructed with the CGLS method from 1350 noisy
dynamically changing projections (figure 5 (top)). Note that the reference image is noisy and
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Figure 2. Optimization procedure to find the optimal values of (a) α selection for the PICCS method (3.1) and (b) β selection
for the NLSTmethod (2.11). The optimization was performed with respect to RMSE values in stationary and dynamic ROIs of the
phantom (figure 1c).
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Figure 3. RMSE values for thewhole dataset X̂ reconstructedwith differentmethods from (a) 45 and (b) 25 projections per time
frame k. The proposed regularization method outperforms the CGLS–PICCS and CGLS methods.
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Figure 4. SSIM values for thewhole dataset X̂ reconstructedwith differentmethods from (a) 45 and (b) 25 projections per time
frame k. The proposed method slightly outperforms the CGLS–PICCS method for 45 projections reconstruction case and more
significantly for 25 projections.
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Figure 5. Two-dimensional reconstructions of 30 time frames (45 projections each), of which four time frames are shown.
The presented images were reconstructed using the CGLS method (10 iterations), CGLS–PICCS and CGLS–NLST methods. The
reference image (top) is reconstructed with the CGLS method (15 iterations) from 1350 noisy projections and contains averaged
dynamic ROI. The images reconstructed with the proposed method demonstrate high spatial and temporal resolution and low
level of noise.

dynamic resolution is lost through time averaging in the reconstruction process. In figures 5 and 6,
one can see that the CGLS–PICCS method is able to improve spatial resolution while using the
reference image; however the noise level is high. The proposed CGLS–NLST method delivers
significant improvement in spatial and temporal resolution and SNR.

Reconstruction from 25 projections per time frame (figure 6) demonstrates that the
proposed method strongly outperforms CGLS–PICCS for under-sampled noisy projection data.
Quantitatively, there is also a significant difference in values between the two methods (figures 3
and 4).

The choice of np parameter in (2.14) is important since it reduces the search space (less time
for computation) and also drives the regularization process based on the reference image which
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Figure6. Two-dimensional reconstructions of 30 time frames (25 projections each), ofwhichone time frame (k = 22) is shown.
For reconstructionwith CGLS–PICCS and CGLS–NLST the same reference image used as in figure 5 (top). The CGLS–NLSTmethod
strongly outperforms the CGLS–PICCS method here.
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RMSE stationary

R
M

SE
 d

yn
am

ic

0.0562 0.0564 0.0566 0.0568

0.096

0.097

0.098

0.099

0.050.07
0.09

0.13

0.15

0.17 0.19
0.01 ~ 4 s
0.03 ~ 8 s
0.05 ~ 15 s
0.07 ~ 20 s
0.09 ~ 24 s
0.11 ~ 32 s

   ....
      1 ~ 5 min

time of computation for
one NLST iteration (2.11)

with respect to np value

Figure 7. The effect of the np parameter on the accuracy of reconstruction and the computation time. The optimal value is np =
0.09 and the computation speed is less than 30 s for one fixed point iteration (2.11). The data parameters are 300 × 300 × 30
pixels and 4 Intel CPU cores i5 (2.5 GHz) were used.

results in improved resolution. In figure 7, we demonstrate that the optimal value for np is around
0.09 and the computation time with this value is less than 30 s for one fixed point iteration (2.11).
This is more than 10 times faster than if we take the whole searching space np = 1, n0 = (Nsearch)2.

4. Real data tomographic reconstruction
Here we present numerical results for a real tomographic reconstruction problem of dynamically
evolving objects. Tomographic inversion in this case is severely under-determined and projection
data are contaminated by random noise and artefacts (rings and streaks).

The tomographic experiment (experiment ee10500-1) was performed at I12 JEEP beamline
facility of the Diamond Light Source synchrotron (Harwell, UK). The flow of potassium iodide
solution through a bead-pack was imaged by suspending the flow outlet tube over the centre of
a rotating 15 mm diameter sample holder thereby allowing a controlled supply of fluid into the
sample (bimodal glass beads 1 : 1 by mass of 0.5 mm and 1 mm diameter). The column of beads
was rotating at approximately 3 Hz. The sample was illuminated with direct monochromatic
X-rays of 53 keV energy. A Vision Research Miro 310M camera was used to acquire the images
using a 200–900 µs exposure and a projection acquisition rate of 1080 frames per second. Prior to
flow, a high-resolution ‘dry’ scan was obtained with 1800 projections in 180◦. During the flow a
continuous sequence of over 18 000 dynamically evolving ‘wet’ projections were acquired with
180 projections over 180◦.

We down-sampled the resulting data to 500 projections for the ‘dry’ scan and the dynamically
evolving data (‘wet’) to 90 projections per time frame. The size of each two-dimensional XY slice
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CGLS CGLS–NLSTreference CGLS–PICCS

Figure8. MagnifiedROI of the glass beads dataset (one horizontal slice fromone of the 30 volumetric time frames) showing the
ingress of the liquid. The ‘dry’ reference image is reconstructed with 20 CGLS iterations and used in the CGLS–PICCS and CGLS–
NLST algorithms. One can see that the CGLS–NLST method gives the best spatial resolution and sharpest contrast between the
liquid and glass particles.

Figure 9. Rendered time-lapse sequence of the liquid ingress into the glass beads is shown. The volumes (only 50 slices are
shown) were reconstructed using the CGLS–NLST method from 90 projections per time frame (time frames k = 1, 7, 15 were
taken).

is 1024 × 1024 pixels and due to parallel geometry each slice can be reconstructed independently.
The ‘dry’ scan was reconstructed iteratively (20 iterations) with CGLS (figure 8) and used as
a prior image for the CLGS–PICCS and CGLS–NLST methods. The reference image has sharp
contrast (all sizes of glass particles are visible), but some level of noise and reconstruction
artefacts are present. We reconstructed 30 dynamically changing volumes and one slice of one
of the time frames, where liquid is present, is shown for the CGLS, CGLS–PICCS and CGLS–
NLST methods (figure 8) and show how the dynamic information within the datasets can be
rendered for subsequent qualitative and quantitative analysis (figure 9). The CGLS reconstruction
has poorer resolution and higher noise level. The CGLS–PICCS successfully embeds the prior
information into the reconstruction resulting in higher resolution, but overall the reconstruction
is noisy. The proposed CGLS–NLST method produces denoised image with the sharpest contrast
and distinctly outlined liquid front (central ROI). The sharp contrast between liquid and glass
particles will significantly alleviate the post-processing step.

Here we comment on the process of choosing the optimal parameters for the compared
methods for real data reconstruction. Although the CGLS–PICCS method has a smaller number
of controlled parameters (table 1), it has been much more difficult (compared to the CGLS–NLST
method) to find the optimal (visually pleasing) parameters for CGLS–PICCS. In contrast to the
CGLS–NLST method, we used exactly the same set of parameters as in table 1 (only β was
chosen differently); however for the CGLS–PICCS method we were optimizing for the λ and α

parameters. If the prior image is not ideal (as in our case), it is more difficult with CGLS–PICCS to
find the best trade-off between the noise level present in the data and the prior image as well as
to avoid blurring of dynamically changing features. We conclude that the proposed CGLS–NLST
method is robust to noise in the prior images, is aware of dynamic features (different from the
prior image) present in the data and is easy to use.
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5. Discussion
Exploiting all the available time frames in ST regularization is a challenging task and a good
balance is required between spatial and temporal resolution. For the proposed method, we
assume that some features are fixed in time and can be spatially enhanced by the temporal
correlation. Because of this requirement, not every time-lapse tomographic dataset is suitable for
the proposed method. The approach is thus limited to cases where some features are aligned in
time (otherwise there is no benefit of using this approach) and the prior image is registered to the
main dataset. Although the computation time on multiple CPUs (OMP realization in C language
[26]) is significantly reduced with the proposed approach (which makes it feasible even for large
datasets), a GPU implementation has the potential to accelerate this method even further with a
massive thread parallelization.

The reference image can be obtained by scanning the object for a longer period of time prior
to the dynamic experiment. If the prior image is not available, one can use the reconstructed
image (as a reference) from all collected projection data as is shown in the modelled numerical
experiment (see §3a). If there is no direct way to obtain a good estimate to constrain regularization,
one should consider methods similar to [12].

6. Conclusion
In this paper, we presented results of a novel ST regularization technique which is based on
NL methods for image denoising. Our method is generalized to employ all available temporal
information and the supplementary data. By employing the temporal correlation of repetitively
imaged objects and available prior information, it is possible to achieve a higher spatial resolution,
SNR and speed of computation in comparison to the state-of-the-art reconstruction algorithms.

In the current state, this method has the potential for dynamic tomographic applications where
some parts of the imaged object are fixed and others are varying over time. The flexibility of the
proposed regularizing penalty and ease of computer implementation make it transferable across
a wide range of imaging applications.
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