
Imperial College of Science and Technology
(University of London)

Department o f Management Science

A L G O R IT H M S F O R C R E W S C H E D U L IN G P R O B L E M S

by

H A L IM C H E D D A D

A thesis submitted for the degree o f
Doctor o f Philosophy o f the University o f London

and for the
Diploma of Imperial College

M ay 1987

A B S T R A C T

The crew scheduling problem (CSP) forms the basic structure of many real
life instances such as crew scheduling for airline industry,scheduling for

• buses,trains,mass transit systems,postal fleet,job shop scheduling,crew
rosterings,...etc... .Solution methods for two variants of the CSP are the subject of
this thesis. A survey o f applications and algorithms is given in the first chapter.

In Chapters 2 and 3 we consider the CSP where a set o f tasks with known
starting times and durations must be performed by a set o f crews,each crew having a
limited work-duty time period. A "cost" is incurred in following one task by another
and the objective is to minimize these "transition" costs. Two formulations of the
problem have been considered. The first is a direct 0-1 programming formulation. The
second formulation involves the representation of the CSP as a network flow problem
in an expanded graph with additional set-partitioning type constraints. We showed via

extensive computational results involving more than 250 problems with up to 150
tasks that the LP relaxation of this second formulation provides naturally integer
solution(and hence a solution to the CSP) in all cases tried.Applying the graph
expansion technique (GET) to two straigthforward extensions o f the CSP, more than
300 randomly generated problems could be solved optimally.

Chapters 4 and 5 deal with a more general and practical version of the CSP
(GCSP) in which it is assumed that the starting times of the tasks are no longer fixed
but given within time-windows. Furthermore, several types o f vehicle with different
characteristics are assumed to cover the tasks. The G CSP was first tackled with G E T
which proved to be very effective for problems for which the task time-windows are
narrow. However as the time-window increases , it becomes impossible to use G E T

♦ because o f the size o f the graph which grows exponentially with the size o f the
problem. In our attempt to solve larger GCSP's,a tree search algorithm has been
devised. Using Lagrangian relaxation ,one o f the most successful integer
programming techniques to obtain lower bounds ,six different integer programming
formulations o f the problem were considered and compared.The results obtained with
this tree search procedure were satisfactory. Thus all randomly generated GCSP's of
size varying between 10 and 50 tasks and with a time-window allowed to vary in the
range [0,24 hours] were solved optimally.

Finally,conclusions with ideas for future research, are given in the last
chapter.

A C K N O W L E D G E M E N T S

Firstly, I would like to express my deep thanks to my supervisor Prof.

Nicos Christofides for his constant help, encouragement and advice throughout the

course of this research.

I am very grateful to the Algerian Ministry o f Higher Education for giving

me the opportunity to carry out this work. Their financial support is gratefully

acknowledged.

I would like to thank my fellow researchers in the management science

research unit for their friendliness and team-work spirit Thanks also to A. Khelifa and

A. Shaikh for their invaluable help in the typing o f the thesis.

Last, but not least, I am very much indebted to my Parents and all my

Brothers for their encouragement during my research years and for being such an

understanding Family during these hard times.

To FE R H A T and H O URIA
M y Parents.

Contents Page

T A B L E O F C O N T E N T S

A B S T R A C T i

A C K N O W L E D G E M E N T S ii

C O N T E N T S iii

C H A P T E R O N E : IN TRO DUCTIO N 1

1- IN TRO DUCTIO N 1

1-1 The Airline Crew Scheduling Problem (ACSP) 2
1-2 Bus Crew Scheduling 3
1- 3 Scheduling of Navy Fuel O il Tankers 4

2- T H E BASIC CR EW SCH ED U LIN G PROBLEM (BCSP) 6

2- 1 A Direct Graph Representation of the BCSP 7
2-2 A Graph-Theoretical Definition of the BCSP 11
2-3 A Minimum Cost Network Flow Formulation of the B CSP 12

3- A N IN TRO DUCTIO N T O N P-CO M PLETEN ESS 14

4- T H E CR EW SCH ED U LIN G P R O B LEM (CSP) 20

5- CSP EXTEN SIO N S 22

5-1 The Multiple Depot CSP 22
5-3 The ACSP with Rest Periods 25

6- T H E G E N E R A L CREW SCH ED U LIN G PRO BLEM (GCSP) 26

7- SO LVIN G T H E CSP 28

7-1 Exact Methods for Solving the ACSP 29
7-2 Heuristic Algorithms for fie CSP 31

C H A P T E R T W O : A D IRECT FO R M U LA TIO N O F T H E CSP 42

1- IN TRO DUCTIO N 42

2- TO E PR O B LEM FO R M U LA TIO N 44

2-1 Construction o f Network G a. Algorithm A 1. 44
2-2 The Problem Formulation 47
2-3 Choice of the Objective Function 49
2-4 A Greedy Algorithm for Finding the Minimum Number of

Crews Required to Cover all Tasks o f the CSP.Algorithm A2. 50

Contents Page

3- T H E SO LUTIO N TECH N IQ U E : A CU TTIN G -PLA N E
ALG O R ITH M . 51

3-1 Introduction 51
3-2 Derivation of the Logical Cuts.Algorithm A3. 55
3-3 A Heuristic Algorithm for Finding a MIS in Network G.

Algorithm A4. 58
3- 4 The CSP Cutting-Plane Algorithm.Algorithm A5. 59

4- C O M PU TA TIO N A L R ESU LTS 59

4- 1 The Data Generation 66
4-2 Computational Results for Algorithm A2 66
4-3 Computational Results for Algorithm A5 67
4- 4 Drawback of the CSP Cutting-Plane A1 gorithm 67

5- T H E LA G R A N G IA N R ELA X A TIO N 68

5- 1A CSP Formulation Suitable for the Lagrangian Relaxation 68
5-2 Expressing the Tim e Constraints as Linear Constraints.

Algorithm A6. 69
5-3 A Brief Description o f Lagrangian Relaxation 7 3
5-4 Generating the Time Constraints. Algorithm A7. 75

6- C O M P U TA TIO N A L R ESU LTS FO R T H E LA G R A N G IA N
R ELA X A TIO N 76

7- CO N CLU SIO N 81

C H A P T E R T H R E E : A FO R M U LA TIO N O F T H E CSP B A S E D O N
G R A PH TH E O R E TIC A L CO N CEPTS 82

1- INTRO DUCTIO N 82

2- E X A M P LE ILLU STR ATIN G T H E M AIN ID EA
O F T H E FO R M U LA TIO N 83

3- T H E G R A PH EXPAN SIO N A LG O R ITH M .A LG O R ITH M A8. 86

4- T H E PR O B LEM FO R M U LA TIO N 88

5- W O R ST C A S E A N ALYSIS O F T H E SIZE O F N ETW O R K G 89

6- C O M PU TA TIO N A L R ESU LTS 89

7- EXTEN SIO N S O F T H E CSP 93

7-1 The A CSP with Rest Periods 93
7-2 The Multiple Depot CSP 99
7-3 Computational Results for the two CSP Extensions 104

8- A P PEN D IX : A R E T H E E X T R E M E POINTS O F T H E CSP
PO LYTO PE IN TEG ER ? 107

Page

116

116

121

121
122
127
128

128

128
129
134

134

134
135
136

139

139
139
143

147

147
149

152

152

154

158
160
165
168
170
175

177

177

- V -

Contents

C H A P T E R F O U R : T H E G E N E R A L C R EW SCH ED U LIN G P R O B LEM

1- INTRO DUCTIO N

2- T H E BASIC TIM E W INDOW CSP (TCSP)

2-1 Introduction
2-2 Example
2-3 Algorithm A 1 1
2- 4 Problem Formulation

3- T H E M U LTIP LE V EH IC LE T Y P E CSP (VCSP)

3- 1 Introduction
3-2 Example of Constructing G v
3- 3 Construction o f Network G v Representative of a VCSP

4- SO LVIN G T H E G CSP W ITH G E T

4- 1 Algorithm A12
4-2 Example
4- 3 Problem Formulation

5- A M ODIFIED VERSION OF T H E G R A P H EXPAN SIO N
TECH N IQ U E

5- 1 Introduction
5-2 Algorithm A13
5- 3 Example

6- CO M PU TA TIO N A L RESULTS

6- 1 Efficiency of G E T when the Time-Windows are Small
6-2 Inefficiency o f G E T for GCSP's with Large Time-Windows

C H A P T E R F IV E : A T R E E S E A R C H P R O C ED U R E FO R T H E G CSP

1- INTRO DUCTIO N

2- SIX G CSP FO R M U LA TIO N S

2-1 Network Flow Formulation 1
2-2 Network Flow Formulation 2
2-3 An Assignment Formulation
2-4 A Shortest Path Formulation
2-5 A Shortest Weight-Constrained Path Formulation
2-6 A Graph Expansion Based Formulation

3- C O M P U TA TIO N A L R ESU LTS O F T H E SIX GCSP
FO RM ULATIO N S

3-1 The Test Problems

Contents
-vi -

Page

3-2 The Generation Process 185
3-3 Some Details about the Lagrangian Relaxation 185
3- 4 Comparison o f the Computational Results 185

4- T H E T R E E SEA R CH P R O CED U R E 189

4- 1 Description of the Tree Search Algorithm 189
4-2 Comparison of Two Heuristics 190

4-2.1 A Greedy Heuristic 190
• 4-2.2 A Heuristic Based on The Shortest Weight Constrained

Path 192
4-3 A Simple Reduction Test 194
4-4 The Branching Process 195
4-5 The Partitioning Process 197
4-6 Graph Reduction 198
4-7 Choice of Tasks p0 and qg 199
4-8 Fathoming Tests 200
4-9 Backtracking Process 200
4-10 Task Ordering 201
4-11 Solving the Relaxed Problem in the Tree 201
4-12 Example 202
4-13 Reducing the Size of the Tree 204

5- Computational Results of the Tree Search Procedure 204

6- Conclusion 214

C H A P T E R SIX : CO N CLU SIO N S 217

R E F E R E N C E S 222

Chapter 1 1

C H A P T E R 1

IN T R O D U C T IO N

1- Introduction .

The crew scheduling problem (CSP) and all its extensions form the basic

structure o f many real life problems such as crew scheduling for airline industry

[2],scheduling for buses [147], trains [3,62], garbage trucks [34], mass transit

systems [16,144], job shop scheduling problems [105,106], crew rosterings [33],

...etc...

In this section we present two of the main applications o f the CSP . These are

the airline CSP and the bus C S P . Also one o f the earliest application o f the CSP to a

navy problem [52] is presented.

Chapter 1 2

1-1 The A irlin e Crew Scheduling Problem (ACSP).

One of the most important and most well known problems facing airline

companies is the airline crew scheduling problem (ACSP) [2].

Having established a timetable of the flights' schedule,the airline company is

faced with the problem of producing another timetable for assigning crews to flights.

This new timetable must be in accordance with the union regulations and it should be

devised in such a way that all flights are covered and that the total crew cost is

minimized. The problem is usually broken into two phases :

(i) Daily or weekly crew schedules,called "rotations" are constructed;

(ii) The rotations are grouped together to form "rosterings" ie monthly

schedules.

From now on,we w ill be dealing only with a variant o f the first phase which is
the

commonly called "airline crew scheduling problem". The second phase refered to as

the "bid-lines problem" has been considered by several other authors[58,75].

Defining a flight-leg as being a non-stop trip between a pair o f cities(or towns),

a rotation is a round trip which consists of sequences o f flight-legs, the first of which

and the last of which must respectively originate and terminate at the crew base. Each

sequence of flight-legs is called a "duty period", ie a period o f time during which a

crew may operate a plane without a rest break. The duty periods within a rotation

might be separated by long rest periods,called "layovers",intended for sleeping. The

formation o f rotations must be in accordance with union regulations and company

policy. The aim of the company is to minimize the cost o f operating the crews

~ The union regulations guarantee the following:

(a) The duration o f each duty period must be less than or equal to a given time T;

(b) Between any two consecutive duty periods there should be a minimum

period of rest tim e;

Chapter 1 3

(c) Each crew should have a sufficient time at the crew base.

These are the main union regulations for all airline companies,and depending on the

importance to the company additional rules might be considered

1-2 Bus Crew Scheduling.

Another important application of the CSP is in the area of bus crew scheduling.

In public bus scheduling the process involves the revision o f timetables which generate

a series o f trips to be run and then the allocation o f vehicles and drivers to be assigned

to these jobs. The process is usually broken into two phases : first the trips or routes

are generated then the fleet is scheduled. This sequential process is necessary because

otherwise the problem would become computationally intractable due to its very large

size. Added to this is the complication due to the union rules which govern the

assignement of drivers (and buses) to trips over a working period.

A much simpler case o f this bus scheduling problem which involves less

complex rules and which is very closely related to our problem is the school bus

scheduling problem(SBSP) [31,100,126]. Like the general case,the SBSP involves

two steps:first a set of routes or trips are generated for each school such that all bus

stops are visited and the students are delivered at a given time. Then,the drivers and

buses must be scheduled to cover the trips.

Now let us consider the problem : the routing phase generates a set of trips

for each school k= l,...,K where K is the number o f schools. For each trip we know

the starting place(first stop) and finishing place(last stop),the total trip time

duration,and the starting and finishing times o f the trip. Once these parameters have

been deteimined,each trip can be considered as one task which does not depend on the

school.The problem consists o f finding the minimum cost fleet required to cover all

trips. The main contribution to cost in the objective function is due to vehicle operating

costs which are a function of the number o f vehicles(crews) used and the total time

Chapter 1 4

each vehicle is used(trip time and deadhead time). The deadhead time cy for a single

crew serving two trips is the time required to go from the finishing place of trip i to the

starting place of trip j.

In practice a few additional constraints exist:

(i) each driver cannot work more than a given number of hours over the daily planning

period;

(ii) a window on the due date (starting time and finishing time) o f each task might be

established giving an earliest and latest possible finish time;

(iii) either all buses have sufficient capacity to process any trip or some buses would

be able to process only a subset of trips;

(iv) the buses might be housed at more than one depot

1-3 Scheduling o f Navy Fuel O il Tankers.

Consider tablel-1. Each row corresponds to a pick-up point and each column

correponds to a discharge point. The sequence o f figures ty inside box(i j) represent

the times a tanker is to begin loading at pick-up point i in order to deliver at

discharge-point j.

In addition we are given two arrays ay and dy which represent respectively the

loading-traveling time from i to j and the unloading-travel time from i to j. These are

represented in table 1-2 and table 1-3.

The problem consists o f finding the minimum number o f tankers to meet the

fixed schedule established in table 1-1. This problem is a network flow problem [63].

Thus the procedure k which consists o f loading fully a tanker at a pick-up point i to

deliver to a discharge-point j can be viewed as a task k whose starting place is i,whose

finishing place is j and whose starting time ty is given in table 1-1. The duration of the

task is defined by the loading-traveling time ay (tablel-2). The unloading-traveling

time dy o f table 1-3 represent the empty travel times. The empty travel time d ̂for a

Chapter 1 5

tanker serving two tasks k and k' is the time required to unload the tanker at i and

traveling to j where i is the finishing place of task k and j is the starting place of task

k ’.

Table l-l : Starting-times (minutes).

Delivery point C Delivery point D

Pick-up point A
Pick-up point B

50,400 200
350 75,150

Table 1-2 : Loading
Travel-Times(minutes)

To C D
From

A 50 100
B 150 100

Table 1-3 : Unloading Travel-Times(minutes)

To A B
From

C 25 20
D 40 50

2- The Basic Crew Scheduling Problem .

A ll combinatorial optimization problems can be divided into two main groups

[105]. There is a vast majority of problems which,from a computing point of view,are

hard to solve and a tiny minority which consists of all the easy problems for which

efficient (ie increasing polynomially with problem size) solution techniques already

exist. Loosely speaking,the problems o f the first type belong to the class of

NP-complete problems while the remaining ones are refered to as polynomial

Chapter 1 6

problems. Because of its importance in understanding the complexity of hard and easy

combinatorial problems [131],the notion of NP-completeness is dealt with in greater

detail in section 3 where the meanings o f "hard","easy",nNP-complete"

and"polynomial" problems are given.

A ll the problems tackled in this thesis fall into the class o f NP-complete

problems. The common characteristic o f problems in this class is that most can be

viewed as "easy" problems with additional constraints. For our particular case, the

easy problem on which all the problems considered are based can be defined as

follow s:

"A set o f n tasks is given,the i^ 1 task being defined by a starting time ST^a

starting place SL^a finishing time FTj and a finishing place FLj. A number of

crews(say,K) are available to perform the above tasks. A feasible work-schedule for a

given crew consists o f an ordered sequence of tasks ij^ .-.i,. so that:

ST. > FT. -h A(FL. ,SL.) k=2,...,r (1-1)
*k *k-l *k-l *k

where A(FLp,SLq) is the travel time between locations FLp and S Lq and is given for

all location pairs.

A feasible solution to the problem consists of assigning feasible schedules to

crews,as above,so that every task is performed once only by some crew.

The cost of a schedule ii^,.*.^ f°r a single crew is taken to b e :

Y d . + Y C ..
& ‘k

where B f = {l,2,..., r } (1 -2)

and where tL is the cost o f performing task ik,and C:: is the cost o f distance travelledKk+1
(from FL: to S L :) and time taken (from FT: to ST:) in following the execution of

K K+1 K+1
task ik by the execution o f task ik+1. Since all tasks are required to be performed

exactly once,the sum of the first cost terms in (1 -2) for all crews is a constant 2 d;

Chapter 1 7

where B m={l,2,...,m}. Hence complete schedules are distinguished in cost only by

the sum of the second terms in (1 -2) and,therefore,we w ill take only the second terms

in (1 -2) to be the cost of the schedule ij^ .- i,-

The objective function of the problem is,therefore,to find a set of feasible

schedules, so that every task is performed exactly once,and the sum

of the costs o f the schedules is minimized

In the course o f the thesis,we w ill refer to this problem as the basic crew

scheduling problem(BCSP). The B CSP can be efficiently solved using a minimum

cost network flow formulation. This w ill be discussed in section 2-4,but before this

we need to represent the problem in graph theoretic terms.

ed
2-1 A D irect G raph Representation o f the B C S P .

Let us illustrate the main idea of constructing the graph G u representing the

BCSP on the following example.

Consider the input data of a BCSP given in tables 1-4 and 1-5:

Table 1-4 : Input Data of the BCSP.

Task Starting
time

(minutes)
Finishing

time
(minutes)

Starting
location

Finishing
location

1 50 150 A B
2 80 170 A C
3 250 380 D A
4 350 450 C D
5 550 650 B A

Chapter 1 8

Table 1-5 : Distances between
Locations.

A B C D

A 0 100 90 130
B 100 0 150 50
C 90 150 0 100
D 130 50 100 0

Table 1-4 gives for each task (column 1) its starting time (column 2),its

finishing time (column 3), its starting location (column 4) and its finishing location

(column 5).

The time durations(in minutes) required to get from any location i (i=A,B,C,D) to any

other location j(j=A,B,C,D) are given in table l-5.lt is worthwhile noting that we have

assumed that the time required to get from location i to location j is the same as that

required to go from j to i. In real life problems (say in the case of an airline problem)

this is not always the case.

(i) Task-arcs representation: If we represent each task by a directed arc

(a ^) on a time axis we obtain fig u re l.l . oqfresp.pj) represent the initial (resp.

final) extremity of arc i (i=l,...,5). The couple of figures above each arc represent the

cost C| and the time duration(in minutes) % = FTj -STj o f the corresponding task

respectively.

In fact these arcs can be represented in such a way to get the directed graph

of figure 1.2. These arcs w ill be refered to as "task-arcs". It is worthwhile noting that

they have been numbered in an increasing order o f their starting times. This way of

ordering the task-arcs w ill be adopted in the rest of the thesis. Also,we will sometimes

Chapter 1 9

refer to the task-arcs as "required-arcs".

(ii) Linking-arcs representation.^ graph we express the fact that two tasks

of the B CSP can be covered by the same crew,by linking the two corresponding

task-arcs. More precisely,we join the final extremity of the first task-arc (say(Oj,Pj)) to

the initial extremity of the second task-arc (say (otj,Pj)) with a directed arc going from

(a^pj) to (otj,Pj) (ie linking pj with ocj). Arc (p̂ ocj) w ill be called a "linking-arc".It

has a cost Cy and time duration x- = STj - F T i

Two task-arcs and (0Cj,pj) o f G j are linked if the following condition is

satisfied:

STj > FTj + TCFL^SLj) (1-3)

where STj (resp. FTj) is the starting (resp. finishing) time of task j (resp. i) and

T (FL i,SLj) is the time duration for going from the finishing location F L A of task i to

the starting location SLj of task j.

Figure 1-1 : A 5 Task-BCSP.

(0,100) (0,130) (0,100)
* 1 01 °S % *5 05°

(minutes)
0 50 too 150 200 2SO 900 950 400 450 500 550 600

(0,90) (0,100)
a 2 02 04

Taking the cost o f a possible transition from task i to task j to be computed as

100+(STj - F T j) we obtain graph Gjj o f figure 1-3. As for G u, the couple of figures

associated with each linking-arc represent its cost and its time duration (in minutes).

Let us illustrate how the linking-arcs departing from task-arc (a^Pj) have been

constructed:

Chapter 1 10

Figure 1-2 : Network Gj,

(minutes)

SO 100 150 200 250 300 350 400 450 500 550 600

(0,100)
o — ----O
a 1 Pi

(0,90)o » o
*2

(0,130)
— * —

0-3

(0 , 100)o » Q a4 04

(0 ,100)o » o a5 h

Figure 1-3 : Network GJj

SO 100 150 200 250

(0 ,100)

300 350 400 450 500 550 600

(0,90) o > ■
'N v\\ \ (200,100)

'NiU (0,130)

\ V \a3
^ 1300,200)

(0,100)

*4
\ (480,380)

(270,170)

t - O x
\ \\

(200,100)

. N (0,100)

Chapter 1 11

(a) can we link task-arc (a^Pj) and (c^ ^) ?

No. Because : ST2=80 < F T j+ T C F L ^ S L ^ l50+100=250

(ie condition (1-3) is violated)

(b) can we link task-arc (ocj,Pj) and (03^ 3) ?

Yes. Because: ST3=250 > FTj+TOFL^SI^) =150+50=200

(ie condition (1-3) is satisfied)

(c) and similarly with task-arcs (oc4,p4) and (a5,p5), they are linked with

(a^pj) because condition (1-3) is satisfied for each one of them .

(iii) Source-arcs and Sink-arcs. B y adding a super-source p s and a

super-sink a R ,and joining ps and a R with respectively the starting nodes and

finishing nodes of the task-arcs,we obtain the network G u representative of the BCSP

given in figure 1-4.

The arcs joining Ps to the initial extremities o f the task-arcs are called

source-arcs and the arcs joining the final extremities of the task-arcs to a R are called

sink-arcs. A cost cs ̂(resp. c^) and a time-duration xs j (resp. xi>R) are associated

with each source-arc (pg.ctj) (resp. sink-arc (pj,aR)). They are represented in G u by

the couple of figures beside each arc.

2 -2 A G raph-Theoretical D efin ition o f the B C S P .

In this section a new definition o f the BCSP in terms o f graph G u is given.

Before this,let us consider the two following useful definitions.

Definition 1. A path P in G u is a sequence o f directed arcs

P K ^ .a ^ X a .p . , .a Xa. ,p.)(p. ,«*))
k+1 k+1 k+1 k+1

Definition 2. The cost (time) of a path P is the sum o f the costs (times) o f the arcs

that form P.

Chapter 1

F igure 1-4 : Network Gu

Chapter 1 12

Exam ple. For the network G u of figure 1-4, the following sequence of arcs is a path

P of G.

P=((ps,a1)(a1,p1)(p1,a3)(cx3,P3)(P3,a5)(a5,p5)(P5,(xR))

the length of P is

Lp = 0 + + T1>3 + I3 + T3j5 + !5 + 0
Lp = 0+ 100 +100 +130 +170 +100 + 0 = 600

the cost of P is

Cp = Cs,l + £l + c l,3 + 3̂ + c3,5 + £5 + C5,R

C p = 0 + 0 + 200 + 0 + 270 + 0 + 0 = 470

Definition 3. Graph definition of the BCSP.

The BCSP is to minimize the cost o f covering all the task-arcs of the associated

network G u,with a given number o f paths(say,K) such that each task-arc must be

covered once and only once by a path.

2-3 A M in im um Cost Netw ork Flow Form ulation o f the B C S P .

B C SP is an easy problem. As shown by Ford and Fulkerson [63] it can

efficiently be solved by using a minimum cost network flow formulation which can be

described as follow s:

If in network G u we let

Xy = 1 if arc (PpOtj) is in the optimal solution ;

= 0 otherwise;

Chapter 1 13

the BCSP becomes:

M in X cijxij O -4)
(Pj.otjJeN

subject to :

S xij - X xPi
jeV+ peV‘J 1 r 1

0 fo r i= l,...,n
J K fori= S

-K for i= R
(1-5)

xy e { 0 #l} (1 -6)

where N is the set of all linking-arcs,source-arcs and sink-arcs,

v N fjK P j.a p e N)

V ^ U k p j . a J e N }

K is the number of paths(crews) with which we want to cover the task-arcs of

g u;
n is the number o f tasks.

Clearly, this is a classical minimum cost network flow formulation where

constraints (1-5) express the conservation of flow at each node of G u. A variant of the

B C SP is used in a portion o f the R U C U S program [28] which was developed for

scheduling vehicles and crews for mass transit systems.

Exam ple. Consider the BCSP represented by network G u of figure 1-4. Let us

assume that the number in crews in the problem is 3 . Using a minimum cost network

flow algorithm[63] we obtain the optimal solution of the BCSP represented in figure

1-5.

Chapter 1 14

Figure 1-5 : Optimal Solution o f the 5 task-BCSP.

0 100 200 300 400 500 600• • • 1 • » . « . « ♦ » »

3- A n Introduction to NP-CompIeteness.

A ll problems can be divided into two main groups. The first one which consists

of all undecidable problems has been known only for the last 50 years. In 1936,Turing

[143] proved that some problems are so "hard" that no algorithm at all can be given for

solving them ie they are "undecidable”. The second group which fortunately represents

the vast majority o f problems consists o f all the decidable problems. This group in its

turn can be split up into two categories of problems.

To help the reader understand more easily the definition of each category we

need to introduce the following concepts :

(i) the way programs run on actual computers is that at any time,whatever the

algorithm is doing,there is only one thing it could do next. Such computers(and

Chapter 1 15

algorithms) are called deterministic.

(ii) Because o f its usefulness in understanding the theory o f complexity the

concept of non-determinism was introduced. W ith this we assume that there exists a

computer with the following power: when an algorithm is faced with a choice of

several options,it has the capability to "guess" the right one. This is o f course an

"unreasonable" and "unrealistic" assumption.

(iii) Given a problem of size n (in our case n is the number of tasks) and a real

function t(n) in n we say that an algorithm runs in time 0 (t(n)) if the computing time to

execute the algorithm f(n) is such that

I f(n) I < c I t(n) I

where c is a constant and IAI is the absolute value o f A . For example, if t(n) is a

polynomial we say that the algorithm runs in polynomial time and if t(n) is exponential

we say that it runs in exponential time. One example [96,149] of an algorithm that has

exponential time complexity is the well known simplex algorithm for linear problems

[51]. It is worthwhile noting that if t(n) is a logarithmic function it is considered as if it

is a polynomial.

W ith these principles in hand we are ready to define the class of decidable

problems.

The first subgroup of this class consists of all problems that cannot be solved in

polynomial time,not even with a non-deterministic machine. This group was first

discovered in the 1960's [83]. In fact at that time,the problems that fell into this

category were artificial in that they were basically constructed for this purpose. And it

is only in the beginning o f the 1970's that some natural problems have been shown to

belong to this category [59,119]. As far as the level o f difficulty in solving the

problems is concerened this category o f problems comes directly after the class of

undecidable problems.

The second subgroup of decidable problems is made up of all the problems that

can be solved in polynomial time with a non-deterministic machine. It is called the

Chapter 1 16

NP-class. Because most o f the practical known problems and for this matter most of

the combinatorial optimization problems are non-deterministically polynomial [95],we

w ill be dealing from now on only with this class o f problems.

Now let us ask the following question : Are all the problems in class-NP "easy"

or "hard" to solve ?

Clearly before answering such a question we need first o f all to define "easy"

and "hard". Although there is no rigorous or exact definition for either term, normally

a problem is considered to be "easy" if there exists an algorithm that can solve it in

polynomial time. If no such algorithm exists then the problem is "hard". To illustrate

this,consider table 1-6 which compares the performance of different time complexity

functions(f(n) which is given in column 1). Assuming that each computing operation

takes one microsecond each entry of the table gives the execution computing time of an

algorithm that runs in time 0(f(n)) when it is applied to a problem of size n. The first

row o f the table gives the size o f the problem and the first column represents the

complexity function. It is clear that as soon as we pass from polynomial problems to

exponential problems it becomes impossible to solve even small problems. One might

argue that if we use a faster computer we can considerably reduce the execution time.

Tablel-7 compares the performance of an exponential algorithm (2n) when it is run on

computers with different speed. You can see that even if we can devise a computer

which is one m illion times faster than the current ones this w ill produce only slight

improvement in the execution time of an exponential algorithm (2n).

A ll the problems that can be solved in polynomial time by a deterministic

algorithm are said to belong to class P. They are "easy" and they all also belong to

class NP. Clearly if a problem can be solved in polynomial time by a deterministic

machine then it can automaticly be solved in polynomial time by a non-deterministic

machine.

Table 1-6 : Comparison of Different Time Complexity Functions

\ n
f (n > v

10 20 30 40 50 75 10 0 15 0

Lo g (n) 2 .3 2 .9 3 .4 3 .6 3 .9 4 .3 4 .6 5 .0
m seconds m seconds m seconds m seconds m seconds m seconds m seconds m seconds

n 10 20 30 40 50 75 10 0 15 0
m seconds m seconds m seconds m seconds m seconds m seconds m seconds m seconds

nLo g(n) 23 60 10 2 14 7 19 5 323 460 7 5 1
m seconds m seconds m seconds m seconds m seconds m seconds m seconds m seconds

n2 10 0 400 900 0 .0 0 16 0 .0 0 2 5 0 .0 0 5 6 0 .0 1 0 .0 2
m seconds m seconds m seconds se co n d s se co n d s se co n d s se co n d s se co n d s

n3 0 .0 0 1 0.0 0 8 0 .0 2 7 0 .0 6 4 0 .1 2 5 0 .4 2 0 1 3 .3 7 5
se co n d s seco nd s seco n d s se co n d s se co n d s se co n d s se co n d s se co n d s

n4 0 .0 1 0 . 1 6 0 .8 1 2 .5 6 6 .2 5 3 1 . 6 10 0 1 5 . 6
se co n d s seco n d s se co n d s se co n d s se co n d s se co n d s se co n d s m in u te s

n5 0 . 1 3 .2 2 4 .3 1 . 7 0 5 .2 3 9 .5 2 .7 8 39
se co n d s seco n d s se co n d s m in u te s m in u te s m in u te s h o u rs h o u rs

2 ° 0 .0 0 1 1 .0 5 1 7 . 9 1 2 . 7 3 5 .7 1 1 . 9 4 .0 2 x 10 4 .5 x 1 0
seco n d s se co n d s m in u te s d a y s y e a r s c e n t u r ie s c e n t u r ie s c e n t u r ie s

Table 1-7 s Performance of an Exponential algorithm when run on Computers
with Different Speeds. (Largest problem solved in 10 hours).

computer
speed(*)

1 10 100 1000 10000 100000 1000000

Largest
Problem

35 38 42 45 48 52 55

oo

Chapter 1

Chapter 1 19

Now going back to our original question of whether, theNP problems are easy or

hard,we can put the question in the following simple way :

is class P = class NP ?

(a) To prove that class P = class NP we need to show that each problem of NP

is in P ie for each problem of NP there exists a polynomial deterministic algorithm that

can solve i t ;

(b) To prove that class P * class NP it is sufficient to exhibit a single NP

problem which does not belong to P ie for which no deterministic algorithm exists

which can solve it in polynomial time.

Up till now,inspite of the considerable amount of effort that has gone into

answering this question nobody has been able to prove or disprove this equality. This

is indeed a very frustrating situation especially when we know that a huge number of

real life problems can be solved in polynomial time with a non-deterministic algorithm

but for which no one has been able to produce a polynomial deterministic algorithm to

solve one single such problem.

There is a class in NP (i.e. a subgroup of NP) in which every problem PQ has

the property that every other problem in subgroup can be polynomially reduced to i t .

Thus, if P q can be solved with a polynomial time algorithm then so can every problem

in subgroup and if any problem in subgroup is intractable then Pq also must be

intractable . These problems in a sense are the "hardest" in NP . They are called NP

complete problems . The importance of this class is that to prove that P=NP it is

sufficient to solve a single NP-complete problem in polynomial time using a

deterministic algorithm.

Given a non-deterministic polynomial problem,to determine if it is NP-complete

all we need to prove is that there exists a known NP-complete problem which is

polynomially reducible to it That is there exists a polynomial algorithm that reduces

one problem into the other and vice versa. Cook[46] proved that if such reduction

between the two problems is possible then any polynomial time algorithm for the

Chapter 1 20

second problem can be converted into a corresponding polynomial time algorithm for

the first problem and vice-versa.

The first problem in the list of NP-complete problems which run into thousands

is the satisfiability problem proved by Cook[47].Subsequently Karp [94] presented a

collection o f results proving that many well known combinatorial problems4ncluding

the travelling salesman problem, are NP-complete. A ll the other problems in that list

were,over the last 15 years,proved to be NP-complete using the principle of

polynomial reducibilty.

4- The Crew Scheduling Problem (CSP).

A feasible work-schedule ,in the BCSP, for a given crew was defined as

consisting o f an ordered sequence of tasks so that:

ST. £ F T . + A(FL. , SL.) U -o r
■k V i V i V k- 2....... r

where A (FLp,S L q) is the travel time betwen the finishing place of task p and the

starting place of task q, ST: is the starting time of task ik and FT: is the finishing time
k k-1

of task ik-1.

In the crew scheduling problem we w ill be considering, the schedule above is

required to be o f duration no more than T hours, called the "work duty period" ,ie
FT. - ST. < T (1-7)

li "

This constraint,commonly encountered in practice,corresponds to fuel

restrictions(on vehicles),maintenance considerations,union requirements,...etc...

Whereas the BCSP can be efficiently solved using a polynomial algorithm the

CSP is NP-complete [15,16,32].

A ll the formulations o f the CSP and the formulations o f all the C SP ’s

extensions,we have considered,are based on either expansions or modifications of the

Chapter 1 21

network G representative of the CSP. Consequently a description of the procedure for

constructing G is necessary . This w ill be dealt with in this section.

Consider network G u, o f figure 1 -4,representative o f the 5 task-BCSP of

table 1-1. If we assume that an additional time constraint which restricts the work duty

period to be less than 400 minutes has been imposed on the problem ,then it w ill

become meaningless and unnecessary to link in G u the pair o f task-arcs that w ill

produce paths o f length greater than 400 minutes. Thus,linking-arc (pj,a5) has to be

discarded since the path that w ill result by considering it ie

P = ((P5.ai)(a1,P1)(P1,a5)(a5,p5)(p5>aR))

has length 600 minutes and this violates the lim it on the work duty period. For the

same reason linking-arc (P2,a5) also has to be eliminated. The resulting graph G is

representated in figure 1-6.

Figure 1-6 : Network G representing a 5 task-CSP.

0 100 200 900 400 500 600
1 1 1 1 J *____________I_________■_________ I_________ l_________ a____________a_________a_______ a ■

The procedure for constructing network G representative of a CSP is the same as that,

of section 2-2, for representing graph G u of the B C S P . The only difference is that 2

conditions , instead o f one , have to be satisfied before any 2 task-arcs can be joined .

These are as follows :

Two task-arcs i and j (i precedes j) can be covered by a same crew i f :

(i) STj > FTj +A(FLi,SLj)

Chapter 1 22

This condition has already been considered earlier.

(ii) FTj - STj < T

This is the additional condition. It means that the time required to fly both tasks i and j

must be less than or equal to the work duty period T. FTj is the finishing time o f task j

and ST; is the starting time of task i.

The graph G = (X = A U B ,U = R U N 1U N 2) now consists o f the set o f vertices

X= A U B where

A= {ai | i= l,...,m }U{aR }

and

B={Pj I i= l... m}U{ps }

and the set of arcs U = RUN 1U N 2 where

R is the set of task-arcs

N j is the set of linking-arcs

N 2 is the set of source and sink-arcs.

The CSP is now the problem of covering (once only) every arc in R by paths

from Ps to aR of time-length less than or equal to T and having a minimum total cost.

5- CSP's Extensions.

A t the end of chapter 3 ,two straightforward extensions of the problem w ill be

considered. These are:

5-1 The Multiple Depot CSP (DCSP).

When considering the CSP we im plicitly assumed that there was a single crew

base out o f which all the tasks were serviced. In some real problems,we might have

several crew bases with known capacities ie each crew base can house no more than a

Chapter 1 23

given number of vehicles(used by the crews). Also each crew should return at the end

of the trip to the crew base from which it has first departed. This problem that we will

call multiple depot CSP (DCSP) [35] is harder than the CSP.

Consider the D CSP defined in table 1-8 and whose work duty period is

assumed to be 270 minutes. Assuming we have 2 depots,a feasible solution involving

4 crews w ill look like the one depicted in graph G of figure 1-7. The costs of the

linking-arcs are taken to be equal to their durations.

Table 1-8 : A 10 Task-DCSP.

Task Starting
time

(minutes)
Finishing

time
(minutes)

1 50 110
2 65 140
3 80 140
4 125 185
5 150 210
6 160 220
7 215 275
8 250 310
9 260 320

10 305 365

Chapter 1 24

Figure 1-7 : A Feasible Solution for the 10 Task-2 Depot DCSP.

Chapter 1 25

5-2 The Airline Crew Scheduling Problem with Rest Periods.

This problem which is a pure extension of the CSP is encountered mainly in the

airline industry.

The main assumptions on which the airline CSP (ACSP) is based are:

(i) the company's planning period is one day o f 24 hours;

(ii) by the end of each day all crews must have returned to the home base.

From these two assumptions we deduced the assumption that layovers were not

necessary and also that the only union regulation required is the lim it on the maximum

number of hours a crew can fly in one duty period.

As we said previously these two assumptions are fairly reasonable for small to

medium size companies. However for most of the large companies that operate 24

hours and which cover long intercontinental flights,these assumptions cannot be

made;especially when we are seeking an exact solution to the problem.

Consequently,for the large airline companies we need to assume :

(iii) the company's planning period is one week(instead of one day);

(iv) A ll crews must come back to the home base by the end of the week;

Under these conditions,the union rules become:

(a) each crew cannot fly more than a given number of hours in one duty period;

(b) between any two consecutive duty periods there must be a layover of at least T j

hours and at most T 2 hours (Tj < T 2);

(c) Each rotation cannot last more than a given number o f days.

W hile rule (b) guarantees a sufficient period o f rest time between any two consecutive

duty periods^ule (c) restricts the time spent outside the crew base.

This problem is an extension o f the ACSP. It w ill be refered to as A CSP with

rest periods and is dealt with in chapter 3.

Chapter 1 26

6- The G eneral Crew Scheduling Problem (G CSP).

In the definition o f the CSP we assumed im plicitly that the starting times and

finishing times o f each task were specified Hence if we were given any pair o f tasks

we could have easily said whether they can be covered by a same crew or not.

However,the problem becomes more complicated when the starting and

finishing times of some or all tasks are given as time intervals(the duration of the task

remaining the same regardless o f its starting time). Thus,for example,in an airline

context where tasks represent flight-legs,the flight Algiers-London starting at 12.30

am and finishing at 3.00 pm would be assumed to start,say ,in the time interval

12.15am - 12.45am and terminates between 2.45pm and 3.15pm. In this case it is not

always possible to say whether 2 tasks can be covered by the same crew or not. To

illustrate this consider two tasks i and j with i starting within the time-interval

[8.00-8.30am] and finishing within [12.00-12.30am] and with j starting within

[12.20am-1.00pm] and terminating within [3.00pm-3.40pm]. The duration o f task i is

assumed to be 4 hours. Also assume that the finishing location o f task i is the starting

location o f task j. If in the final schedule we decided that task i starts at 8.00am then it

would be possible to link it with task j since i w ill end at 12 .00am and j cannot start

before 12.20am. Whereas if task i starts at 8.30am and task j starts at 12.20am then it

w ill be impossible to link the two tasks. Consequently the construction of the acyclic

graph G representative of a CSP is no longer valid.

Considering a crew and the corresponding vehicle as a single package,the above

problem gets more complicated if we allow the company to have several types of

vehicles with different characteristics(these are mainly range restrictions on the

vehicles). If each task can be covered by only one specific type o f vehicle then the

problem w ill result in solving M different CSP's (with time-windows) where M is the

number o f types o f vehicles. However, complications arise when we assume that

oi

Chapter 1

Figure 1-8 : Network G T representing a 7 Task- GCSP.

100 200 900 400 500 500 700 BOO— « »

(4 0 6 0) 4 (140,160)

0--*--- °R.Pi
(6 0 9 0) 2 (210.240]O > Oqa, Pa

(I7y 2 5) j ^ (275 J2 5)

(400) 1 (sop)sr—
(430(410) 1 2 (865,366)

o «■ ~ On a5 ps
(520575)0— 6—<*6

(735775)

™^06
(57Q 630l j f670730)

a7 7̂

Table 1-9 : A 7 Task-GCSP •

Task
Window
Starting
time

(minutes)
Duration

time
(minutes)

Vehicle
Type

1 40-60 100 1
2 60-90 150 2
3 175-225 100 i;2
4 400-400 100 l
5 430-470 150 1 ?2
6 525-575 200 2
7 570-630 100 1

Chapter 1 28

each task has, in fact, several types o f vehicles by which it can be serviced. For

example, in the airline context the flight Algiers-Paris can be covered by a B-737,a

B727 or an A320 whereas the flight Algiers-London can be serviced only by a B737.

We w ill refer to this problem as the general crew scheduling problem(GCSP). It

consists o f a CSP in which the tasks have flexible(not fixed) due dates (ie starting

times and finishing times) and in which several types o f vehicles o f diffem t

characteristics are available to service all tasks.

To fix the ideas consider the G CSP represented in table 1-9. W e assume we

have 2 types o f vehicles for 4 crews. Also the work duty period is assumed to be 450

minutes. A graph G T representing only the task-arcs is depicted in figure 1-8 . The

figures above the task-arcs represent the vehicles'types and those at the beginning and

terminal vertices of a task arc are the time intervals for the possible start-time and finish

time of the arcs. Clearly the linking-arcs cannot be represented. Thus,if we consider

tasks 1 and 4 it w ill be impossible to link them if taskl starts at 40 minutes,but if task

1 starts any time after 50 minutes then a path that includes both tasks w ill be feasible.

For this reason, the graph's representation presented in section 2-1 cannot be applied

to this problem.

7- Solving the C S P .

The airline industry is the area in which a lot of effort has been made to solve the

crew scheduling problem. The importance o f solving exactly the A CSP or at least to

improve the current best known solution is better understood when we know that crew

costs represent 10% to 15% o f the company's total cost. As mentioned in [75],an

improvement o f 1% in the current solution o f the A CSP in A lita lia ,corresponds to a

profit of more than half million dollars per year.

For the last twenty five years,many authors have tried to tackle the problem

using one o f the two approaches:

Chapter 1 29

(a) M athem atical techniques : although this approach provides the exact solution

of the A C SP it is very limited in that only small to medium size problems,of up to 150

flights per week [113,114] can be solved. For a small company this is a reasonable

size problem but for larger companies which can have up to 1000 flights per week [5]

it is very small.(see Arabeyre et A1 [2] for a very good account of the ACSP).

(b) heuristic algorithms : the advantage of this approach over the first one is that it

can handle real life problems for small and large companies. However the solution

produced is approximate and in some cases they can be even worse than manually

produced ones.

Progress is being made,nowadays,in improving the efficiency of the heuristics

[4,5,6,88] and in devising mathematical techniques to solve larger ACSP's[2,81].

7-1 Exact M ethods for Solving the A C S P .

Several mathematical programming formulations have been suggested for the

A CSP . The oldest and most dominant one is the set partitioning /set covering

formulation [138] which is as follows :

d-8)
jeft

subject to :

for each flight-leg i d-9)

X . € {0,1} (1- 10)

where £2 is the set o f all rotations

Chapter 1 30

aij = 1 if flight-leg i is covered by rotation j ;

= 0 otherwise;

and Cj is a cost associated with rotation j.

Constraints (1-9) express the fact that each flight-leg must be covered by one

and only one rotation. If we replace (1-9) b y :

the problem obtained is a set covering problem (SCP) and constraints (1-11) w ill

express the fact that each flight-leg should be covered by at least one rotation. In other

terms,a flight-leg can be covered by more than one rotation. This is a real life situation

refered to as "deadheading*' in which the crew travels as passengers in order to

position themselves to start a new flight-leg or to return to the home base.

The procedure for solving the above SPP or SCP consists of the following

steps:

(i) Generating a ll the feasible rotations: First, all the flight-legs are joined

together to form flying duty periods. The duty periods and the layovers are combined

together to form a rotation. Hence, a rotation w ill be a sequence o f the form(duty

period,layover,duty period,...,layover,duty period). Both duty periods and layovers

are formed according to union regulations.

(ii) Reducing the num ber o f rotations : In the previous step,the number of

feasible rotations generated for a real life ACSP w ill run into thousands if not millions.

Hence the reduction step is necessary so as to be able to solve a reasonable size

problem.This reduction can be done by either:

(a) using dominance and logical comparison; or

(b) put a limit on the maximum length of a rotation or eliminate all rotations with

layovers at an undesirable station.

(Hi) Solving the SPP (or SCP)[112].

Christofides and Paixao [44] proposed a very effective technique to solve large

for each flight -leg i (M l)
n

Chapter 1 31

scale SCP’s. This technique is based on the state-space relaxation method [43]. It is

reported in [44] that SCP’s of up to 400 rows and 4000 columns have been solved to

optimality. Also,it is worthwhile consulting the SPP survey of Balas and Padberg

[14]. As far as the A CSP is concerned,the solution techniques used up till now consist

o f the cutting-plane methods[68],the implicit enumeration procedures[70,lll] and

group theoretic approaches[134,140,141]. In the cutting-plane method the most used

packages are based on Gomory's algorithm[80] and Martin's accelerated euclidean

algorithm [116]. This latter one proved to be quite satisfactory and some ACSP's of

up to 900 flight-legs (formulated as SPP) could be solved to optimality[75].

It is clear that the size o f the matrix o f the SPP formulation of the ACSP

depends mainly on the planning period. Two factors play an important role in the

choice of the planning period. These are the period of time in which the flight-legs are

repeated and the period of time over which the union regulations operate.

For most airline companies(mainly the small and medium sized ones),the flights

repeat daily. Hence a planning period of 24 hours is sufficient to tackle the problem.

However,the largest companies which cover intercontinental flights that can last up to

12 hours need to perform weekly schedules. But even for some o f these

companies,because of the large size of the problem,the A C SP is first formulated on a

daily basis. For this puipose,the company assumes complete daily periodicity and

determine the minimum cost set o f rotations covering each flight. Repeating each

rotation on each day will enable it to cover all flights.

7-2 Heuristic Algorithms for the CSP.

In this section we present some heuristics for solving approximately the CSP.

The first two heuristics are widely used because o f their efficiency and also because

they are easy to code. These w ill be described in detail and illustrated on examples.

Chapter 1 32

7-2.1 The Concurrent Scheduler.[35].

This is a simple intuitive approach that has proved quite successful in practice

for solving a variety o f constrained scheduling problems. In our context ,the algorithm

can be described as follow s:

Step 1 : Number the tasks in an increasing order o f their starting time. Assign taskl

tocrew l.

Step 2 : For k=2 to the number o f tasks: If it is feasible to assign task k to an existing

crew then assign it to the crew that involves the minimum linking-arc cost.

Else, create a new crew and assign task k to it.

Depending on whether the CSP or one o f its extensions are involved,the

appropriate feasibility check would be applied in step 2.

This algorithm is in fact a member of the class of greedy heuristics which have

become popular in recent years because of their simplicity[110]. Also ,it is reported in

[33] ,that this algorithm is widely used in practice.

E x a m p le .

Now let us apply the concurrent scheduler to the 10 task-CSP represented in

table 1-8. W e assume the work duty period to be equal to 200 minutes . The cost ĉ

of a linking-arc (p^oij) is taken to be equal to its time duration and all other costs are 0.

Step 1 : - The tasks are already ordered;

- C 1 = {1}

Step 2 : * k=2

- Task 2 overlaps with task 1; Hence C j = {2}

* k=3

- Task 3 overlaps with both task 1 and task 2 ; Hence C 3 = {3}

*k=4

- Task 4 overlaps with tasks 2 and 3 ;

Chapter 1 33

- Task4 can be linked with task 1; Hence C 4 = {4}

* k=5

- Task 5 overlaps with task 4 ;

- Task5 can be linked only with one of tasks 1,2 or 3 ;

- Choosing the minimum cost link we get C 3={ 3,5}

*k=6
- Task 6 overlaps with both tasks 4 and 5;Hence it can belong to neither C j

nor C 3;

- Task 6 can be linked only with task 2 ; Hence C 2 = {6 }

* k=7

- Task 7 overlaps with task 6; Hence it cannot belong to C 2;

- Task 7 cannot be linked with task 1 because of the restriction on the work

duty period; Hence it cannot belong to C j;

- Task 7 can be linked with both tasks 3 and 5; Hence C 3 = {3,5,7}

*k=8
- Task 8 overlaps with task 7; Hence it cannot belong to C 3;

- Task 8 can be linked with neither task 1 nor task 2 because of the restriction

on the work duty period; Hence it can belong neither to C j nor to C 2*,

- Hence C 4 = {8}

*k=9

- Task 9 overlaps with both tasks 7 and 8; Hence it can belong to neither C 3

nor C 4;

- Task 9 can be linked with neither task 1 nor task 2 because o f the restriction

on the work duty period; Hence it can belong neither to C j nor to C 2;

- Hence C 5 = {9}

*k=10
- Task 10 overlaps with both tasks 8 and 9; Hence it can belong to neither C4

nor C 5;

Chapter 1 34

- Task 10 can be linked with none of tasks 1 ,2 or 3 because of the restriction

on the work duty period; Hence it can belong to none of or C 3;

- Hence C 6 = {10}

The heuristic solution to the 10 task-CSP is :

Tasks 1 and 4 are assigned to crew 1;

Tasks 2 and 6 are assigned to crew 2 ;

Tasks 3,5 and 7 are assigned to crew 3 ;

Task 8 is assigned to crew 4 ;

Task 9 is assigned to crew 5 ;

Task 10 is assigned to crew 6 ;

The total cost is 345.

7-2.2 Tw o Step Approaches.[35].

This heuristic concerns only the multiple depot CSP (DCSP). This problem can

be viewed as crew scheduling/clustering problem in the sense that the output is a set of

crew schedules clustered by depot. This interpretation suggests two classes of

approaches:

(i) the first one consists of clustering the tasks and then schedule the crews over

each cluster,

(ii) the second one consists o f scheduling the crews and then cluster the tasks.

Both approaches are widely used in practice[33].

It is worthwhile mentioning at this point that costs are attached for bringing a

crew from the depot to the tasks' starting place and from the tasks' finishing place to

the depot.

As far as the first type heuristic is concerned,a weight that measures the

proximity o f the task to the corresponding depot is associated to each task/cluster pair.

Given these weights,an assignment of tasks to clusters(depots) that minimizes the total

Chapter 1 35

weight can be found by solving a simple transportation problem. The CSP is then

solved over each cluster using the concurrent scheduler. The second type heuristic

consists o f first solving the CSP over the entire task set. Then a transportation problem

that assigns entire crew schedules to depots is set-up in the same manner as above.

These two approaches are in fact sim ilar to the vehicle routing

approaches[22,76,99,120] (see also [42] or [109] for a definition o f the vehicle

routing problem) in that in both the routing and scheduling problems we either group

the required tasks into clusters,one cluster representing each depot,and then solve a

single depot routing or scheduling problem or we form routes or schedules first and

then assign these routes or schedules to the appropriate depot.

Now, let us apply the second approach,which consists of clustering first the

tasks,to the D CSP represented by the graph of figure 1-7. The work duty period is

assumed to be 200 minutes,the costs associated with the linking-arcs are equal to their

time durations zero cost is incurred to each task-arc. The costs from the depots to the

tasks' starting places and from the tasks' finishing places to the depots are given in

tablel-10 .

The first step in this second heuristic consists of first solving the CSP. This can

be done using the concurrent scheduler. The heuristic solution as found in section

7-2.1 is:

^={1,4} ; C2={2) ; C3={3,6] ; C4={7,10) ; C5={8) ; C6={9)

where Cj (j=l,6) is the crew schedule and the numbers 1,2,...,10 are the tasks. Now

let us give a weight Wjj to each crew-schedule Cj, with

wjj = PCdj.Oj) + PCpj^) i= U ; j= l,.*>6

where 0Cj(resp. pj) is the starting place (resp. finishing place) o f the first (resp. last)

task o f crew schedule j ; dj is depot i ; P(m,k) is the cost from m to k (given by table

1- 10).

The second step o f the algorithm consists of solving a transportation problem

that w ill minimize the costs of assigning the crew schedules to the depot This can be

Chapter 1

performed by solving the minimum cost network flow problem of figure 1-9.

Table 1-10 : Costs of the Source and Sink-Arcs

Task Place Depotl Depot2

a i 80 20
±

p, 40 70

o a2 40 70
£.

p2 80 20

<5 a3 60 30
P3 30 80

4
a4 60 30
P4 80 20
a5 40 70

O
P 5 60 30

c.
CLq 80 20

o
Pc 90 40

*7 a? 80 20
/

P7 30 80

8 a8 30 80

00ca. 60 30

Q a9 40 70
P9 60 30

10 a io 90 40
P10 40 70

Chapter 1 37

S and R are respectively a dummy source and sink . The C^s represent the crew

schedule and the dj's represent the 2 depots. The two figures (in brackets) associated

with each arc give respectively the cost and capacity of the arc. W e have assumed that

depot 1 has a capacity of 2 vehicles and depot 2 has a capacity of 5 vehicles. The input

flow is equal to the number of crew schedules ie 6. The optimal solution becomes :

crew schedules 5 and 6 are assigned to depot 1,

crew schedules 1,2,3 and 4 are assigned to depot 2 .

Figure 1- 9 : Network Associated with Table 1-10.

ci

7-2.3 An Interchange Heuristic[137],

This procedure can be viewed as an adaptation o f the 2-opt algorithm for the

TSP [107]. Assuming that a starting solution is already available (this can be done

using the concurrent scheduler), the heuristic effects interchanges between the

components of this schedule to improve costs. An interchange affects only 2 crew

schedules,say 1 and 2. It joins the first half of crew schedule 1 with the second half of

Chapter 1 38

crew schedule 2 and the first half o f crew schedule 2 with the second half of crew

schedule 1. In this case the costs of the two new crew schedules must be compared to

the costs of the two old crew schedules.

This algorithm has proved to be quite efficient for the D CSP and related

problems. More details about this heuristic can be found in [137].

7-2.4 A Set Covering Based H euristic.

This approach [142] consists of first enumerating all possible feasible rotations

for a single crew. Now ,let:

ajj = 1 if task i is in rotation j ;

= 0 otherwise;

and let

Xj = 1 if rotation j is to be used;

=0 otherwise.

Also let Cj be the total cost of rotation j. Then the master scheduling problem is simply

the set covering problem(SCP) [112]:

d-12)

subject to :

all tasks i d-13)

x .e {0,1 } (1-14)

Chapter 1 39

There are 2 problems associated with solving directly the SCP. The first is that

all feasible rotations could not possibly be enumerated for a large problem in a

reasonable amount o f time. The second is that there is no efficient exact algorithm for

solving such large SCP[129].

Toregas[142] suggested the following heuristic:

Step 1 : Let S be an empty set;

Step 2 : Generate a set C of unique (not previously generated) task-schedules,

and add C to S ;

Step 3 : Solve the associated set covering problem with columns S ;

Step 4 : Retain the schedule in the optimal solution from step 3 and delete the unused

schedules from S ;

Step 5 : If the time lim it is exceeded,then STOP,else G O TO Step 2.

Clearly,the main step in this algorithm is step 3 which consists of solving the related

SCP. Toregas claimed that the set covering problem can be solved(most o f the time)

by relaxing the integrality constraint and solving the associated linear program. If the

solution X* is non-integral cutting-planes can be added to the linear program

constraint set,and the linear program is then solved again. Few cuts are usually

required to produce integral solutions,although some counter-examples have been

found. An alternative way of solving the SCP is to apply any of the existing SCP's

heuristics[45,87,129].

7-2.5 O rlo ff's heuristic [125] .

This algorithm, like the interchange heuristic, can be viewed as an adaptation

of the 3-opt algorithm for the TSP [107,108] . O rloff argued that , in fact , the

problem can be viewed as a special case o f the travelling salesman problem[41] .

Consequently Lin's heuristic can be applied directly . But before this , a feasible

Chapter 1 40

schedule has to be built and then Lin's heuristic [107] , which is an improvement

routine on the existing solution, is applied.

The analogy between this problem and the TSP can be defined as follows : a

solution to the problem consists o f a set of M paths which cover all N tasks . But a

solution can equivalently be considered to be a set of M cycles, centered at the depot,

such that each cycle C j (i=l,...,M) is o f the form Cj = d —» Pj —» d where Pi is one

of the M paths that form the solution. Then there is a one-to-one relationship between

feasible schedule solutions and feasible travelling salesman tours on the set N with

depot d added. If two tasks i and j can not be assigned to a common crew schedule ,

then Cy = °o . Otherwise Cy w ill be the deadhead cost of following one task by the

other. C id and are large.

One of the main steps in this algorithm is to determine a good starting feasible

solution . This can be performed by using one of the two previous heuristics .

Alternatively we can use the "swapping routine" o f Orloff [126].

In this routine a sequence of matching problems [39] is solved to build

schedules by optimally matching segments together. The matching problem starts with

the set o f N tasks and generates a set o f minimal cost task pairs and singletons , by

matching each task i to another task j , or matching a task i to itself. These task pairs

and singletons are schedule segments . The costs o f matching these new tasks

(schedule segments) are then calculated and a new matching problem is solved which

generates a set o f minimal cost task pairs , i.e ., task quadruples , triples , pairs and

singletons. The costs of matching these new tasks together are then calculated, and a

new set o f minimal cost tasks are generated. This procedure continues until no new

matchings are obtained.

If matching two schedule segments is infeasible then the cost is set to infinity .

A matching may be infeasible because of one of the three reasons:

(i) The time length o f the resulting crew schedule exceeds the work duty period.

Chapter 1 41

(ii) The earliest finish time o f one schedule segment may be greater than the

latest start time for the other segment.

(iii) None of the vehicles' types that can cover one schedule segment can cover

the other schedule segment.

O rloff reported in his paper that this algorithm has proved to be very efficient in

practice. Unfortunately, he did not report any computational results.

Chapter 2 42

CHAPTER 2

A DIRECT FORMULATION OF THE CSP

1- INTRODUCTION

The solution of the BCSP consists o f a set o f K (K is the number o f crews of

the B C S P) disjoint paths which cover all task-arcs of network G u(see chapter 1). Two

paths of G u are said to be disjoint if they have no arc in common . In the network G u

o f figure 1-4 the two following paths are disjoint.

P1= (Ps,a 1)(a1,p1)(P1,a3)(a3,P3)(P3>a 5)(aJ,pJ)(p5,aR)

P2= (Ps,a2)(c^,p2)(P2,a4)(a4>p4)(p4,aR)

The solution of the BCSP is not always feasible for the CSP. I f , for example ,

we consider the solution o f the BCSP given in figure 1-5 and if we assume that the

Chapter 2 43

work duty period is 400 minutes, then this solution w ill not be feasible for the CSP .

Thus, path P= (Ps,a1)(a1)P1)(Pi,a4)(a4,P4)(P4,a5)(aJ>pJ)(PJ,aR) which is in the

solution has length 600 minutes and violates the rule that limits the number of working

hours in a duty period (in this case 400 minutes). Consequently , additional

constraints which express this restriction should be considered in the formulation of

the problem. These constraints will be refered to as time constraints since they express

a limit on the working tim e.

The formulation of the CSP is presented in section 2 . In fact this formulation is

not based directly on network G but on another network G a which is an extended

version o f G . This w ill also be discussed in section 2. Section 3 deals with the

solution technique . A t first we wanted to use a combination o f two integer

programming techniques , namely the cutting-planes (C-P) method [93] and the

branch and bound procedure [21,67].The idea was to start solving the linear relaxation

o f the CSP . If the solution is optimal for the CSP we stop , otherwise we add

additional constraints (cutting-planes) that w ill force the solution to integrality . In

case the optimal solution has not been reached after a predetermined number of cuts the

C-P algorithm is embedded into a branch and bound procedure . The cutting-planes

were a combination of logical [92] and Gomory's cuts [80].

Out of 101 randomly generated CSP’s , 81 were solved optimally directly by an

LP package . For the rest we needed to use only the C-P algorithm to reach to the

optim al. There was no need for branch and bound. These results w ill be presented in

section 4. Unfortunately, only problems of up to 30 tasks could be considered. This

was due to the limitations imposed by the existing LP packages which could not

handle such large size problems. In our attempt to solve larger problems , the

Lagrangian relaxation [60] was considered. This is one of the most successful integer

programming techniques. Its application to the CSP is dealt with in section 5 and the

computational results are presented in section 6 .

Chapter 2 44

2- T H E P R O B L E M F O R M U L A T IO N .

2-1 Construction o f Netw ork G a .AIgorithm A l.

As we said in the previous section , the CSP formulation presented in this

chapter is based on a network G a which is an extension of network G . The procedure

for constructing such a network will be first explained on the following example :

2-1.1 Exam ple .

Consider in figure 2.1 network G representative of a 3 task-CSP.

Figure 2-1 : Network G.

0 too 200 300 400 500
_i______i ■ «- » « - I * « ■■« ...» i-----------►

■*>

W --------

The working duty period is assumed to be 400 minutes and the number o f paths

with which we want to cover all task-arcs o f G is 2 .

Now , consider task-arc (aj,pj) . It can be covered either by pathl or path 2.

Hence , we can duplicate it into two arcs : (a^pj) corresponds to the 1st path and

(a^Pj) corresponds to the 2nd path . But in the optimal solution only one arc w ill be

covered . Similarly, arcs (o^^) and (ccjjpj) can be duplicated in the same manner.

Assuming a super source Pg (resp. pg) and a super sink (resp.) for path 1

Chapter 2 45

(resp. 2), and joining pg with aj (j=l,2,3 ; i= l,2) . Also joining pj (j=l,2,3) with a R

(i= l,2) we obtain network G a of figure 2.2 .

Figure 2-2 : Network G a

o 100 200 300 400
‘ ‘ ‘ 1 500—------ ►

2-1.2 General Procedure for Constructing G a. A lgorithm A1 .

Step 1 : To each task-arc (a^pj) of G there correspond K arcs (a],p|) (a^p^),...,

in G a where K is the number o f paths with which we want to cover G (and

G a). These arcs of G a w ill be called "task-arcs” and have the same cost c ̂ and

duration time x]f as arc (oĉ pj) of G .

Step 2 : For each p= l,...,K , link all the task-arcs (aP,pP),..., (ocP,P{j) (see section

1-4, chapter 1); n is the number o f task-arcs of G . The cost cjj and duration time xP of

arc (pP,aP) (p=l,...,K),called ” linking-arc', are the same as the cost and duration

time of arc (p ĉcj) of G.

Step 3 : Create K super-sources ps,..., Ps and K super-sinks a R,..., a R and

join each super-source pP (resp. super-sink ocP) (p=l,...,K) with all aP (resp. pP)

(i=l,...,n) . A ll the arcs (pP,aP) (called "source-arcs') and all the arcs (pP,aP)

Chapter 2 46

(called "sink-arcs') have costs and duration times 0.

In the previous example (2.1.1) , G a can be considered as the union of 2

disjoint graphs G a and G | identical to G and corresponding to paths 1 and 2

respectively. Thus G a is given in figure 2.3 and G a in figure 2.4.

Figure 2-3 : Network G a

0 100 200 300 400 500

/ i
1

■>

0 100 200 300 400 500
—1---------- >

Figure 2-4 : Network G|

In general G a can be defined as the union of K disjoint graphs G a ..., G a all

identical to G. There are as many graphs as there are paths k (k=l,...,K).

Applying algorithm A1 to network G , we obtain network:

G a = (X a = X a U X a ,U a = U a U U |)

where X a is the set o f vertices, U a is the set of arcs and where:

X a = { txP I i= l,...,n and p= l,...,K) U { og / p = l... K)

X a = { PP I i= l,...,n and p= l,...,K) U { pP / p=l,...,K}

Chapter 2 47

U a = { (oJ>, PP) I i= l,...,n and p= l... K}

U | = {set o f all linking-arcs (pg,),p=l,...,KJ U

{ (Pg, 0̂)l i= l,...,n and p=l,...,K} U

K P ? ,a P) l i= l,...,n and p=l,...,K}

where n is the number of task-arcs o f G ;

K is the number o f paths with which we want to cover G ;

og and (p=l,...,K) are the sinks and the sources respectively,of G a;

The cost and duration time of each arc of G a are described in algorithm A 1 .

2-2 The Problem Form ulation .

The number o f paths with which we want to cover G (or G a) is K and the

number o f task-arcs o f G is n .

= 0 otherwise.

The CSP can now be formulated as :

(2- 1)

subject to :

f 0 , i= l,...,n
{ 1 , i=S

-1 , i=R
k= l... K

(2-2)

Chapter 2 48

i= l,...,n (2-3)

n
X w + X ^ X T k=1- - ’K

< ^ eU2 Je VUt
XpeJO,!}

(2-4)

In the objective function, only the costs o f the linking-arcs w ill be considered.

There is no need for including the costs o f the source and sink-arcs because each one

o f them has cost and duration time 0 .The choice of such an objective function is

explained in section 2.3 .

Constraints (2-4) are time constraints . They ensure that, in a daily schedule ,

each crew cannot operate more than the working duty period fixed by union

requirements . In network G a (and G) ,they mean that the length o f each one o f the K

paths with which we want to cover G must be less than or equal to a given length T.

The partitioning constraints (2-3) guarantee that each task must be performed

once only by just one crew.

The flow constraints (2-2) express the flow conservation at each node of the

graph G a. Thus , the above formulation consists of a minimum cost network flow

problem defined by (2-2) and (2-3) with the additional constraints given by (2-4).

The conservation o f flow at each node o f G a could also be expressed in the

following w ay:

X x«k=
ieV.

for i= l,...,n andk=l,...,K (2-5)

Chapter 2 49

X xijk= xia<

X X s i k = 1

(Ps,a)elf2

X xiRk= 1

fori= l,...,n andk=l,...,K

fork= l,...,K

fork= l,...,K

(2-6)

(2-7)

(2-8)

f 1 if arc (ak, e U* is in the optimal solution
where x..k = -j 1 1 1 (2-9)

[0 otherwise

It is clear that constraints (2-2) are equivalent to constraints (2-5), (2-6) ,(2-7)

and (2-8). How ever, for the sake of simplicity we have prefered constraints (2-2) to

express the conservation of flow at each node of G a .

2-3 Choice o f the Objective Function .

In all C S P 's considered from now on we assume that the given number of

crews (K), with which we want to operate all the tasks subject to union regulations ,

is the minimum possible. It is clear that if K is small enough then the C S P , as defined

in section 2-2 can be infeasible. For example in the airline problem , the solution that

w ill result would be the least vehicle solution that minimizes deadhead mileage.This is

a reasonable assumption if the plane capital costs are large compared to the costs

attached with deadheadings. However, if the costs attached with deadheadings are of

the same order as the plane capital costs, then one way of tackling the problem will be

to fix the number o f planes ,K, equal to different values K j,K 2,...,K m (all greater

than the minimum number of planes required) and for each value of K , minimize the

Chapter 2 50

deadhead mileage . The solution o f each problem Pj (i=l,...,m) corresponding to

K^is the sum of the minimum cost deadhead mileage and the capital costs o f the Kj

planes .The overall solution to the A C SP that minimizes both the capital costs and
\

deadhead mileage is the minimum cost solution o f the m ACSP's.

N o w , the natural question that comes to one's mind is : How can we determine

the minimum number o f crews so as to cover all tasks ? This problem is an

NP-complete problem [15] . Several exact and heuristic algorithms have been

suggested for this problem [117,123,146].

In our case we are using the greedy heuristic algorithm that is given in section

2-4. This algorithm has proved to be very effective (as it can be seen from the results

presented in section 4).

2-4 A Greedy A lgorithm for F ind ing the M in im um N um ber o f Crew s

Required to Cover all Tasks o f the C S P . A lgorithm A2 .

2-4.1 Definition .Let I be a set of tasks of the CSP and assume that all the tasks of

I are to be covered by a single crew P . A task j e I can be covered by a crew p if and

only if for any i e I , crew P can cover both tasks i and j (ie , assuming i precedes j ,

STj > F T i + A(FLi,SLj) and FTj - STj < T .

2-4.2 A lgorithm A2 .

Let I be the list o f tasks that w ill be covered by the current crew and p be the

minimum number o f crews required to cover all tasks o f the C S P . Also let F be the

set o f all tasks that have not been assigned to crews yet and let n̂ be the cardinality of

F. The algorithm is as follow s:

Step 0 : 1=0, F= set o f all tasks o f the CSP ,p = l, n̂ = IFI , j= 0 ; G O TO STEP 1;

Step 1 : j=j+l ; If the jth task (ij,say) o f F cannot be covered by crew p, G O TO

STEP 2 . E lse , set 1= I U {i j } and G O T O STEP 2 ;

Chapter 2 51

Step 2 : If j= nf (ie all tasks of F have been scanned) G O T O STEP 3 ; Else G O TO

STEP 1;

Step 3 : F=F-I (ie remove all tasks o f I from F) . If F= 0 S T O P ; Else p= p+ l,

iif = IFI , 1=0 ,j= 0 ; G O T O STEP 1.

For the example o f table 1-6 the value obtained by algorithm A2 is 3 . (The

work duty period has been assumed to be 400 minutes).

2- 4.3 Com plexity o f A lgorithm A2 .

In step 1 , C(j-1) comparisons are required for each j (j=l,...,nf) where C is a

constant. Hence for each crew p , all the steps require Qn^(nf -l)/2 operations at most

(Q is a constant).

Assuming that in the worst case we need n crews to cover all n tasks of the

CSP, the algorithm w ill require (in that case) Q'n3 operations (Q' is a constant).

Thus , we can say that algorithm A2 runs in time O(n^), where n is the number of

tasks of the CSP.

3- The Solution Technique : A Cutting-Planes A lgorithm .

3-1. Introduction .

The technique used to solve the CSP is a combination o f logical and Gomory's

cutting-planes (C-P).

In 1958 , Gomory [79] published the first paper on cutting-planes theory.This

is one o f the solution techniques o f integer programming (I-P)[20,68,139].It is

described in detail in [68] .Gomory [80] proved theoretically that his C-P algorithm

converges (ie the optimal solution o f the problem is found) after a finite number of

iterations.lt has been noticed by several authors [132] however that for most of the

Chapter 2 52

medium or large size IP problems the algorithm did not converge fast enough.The

explanation o f this often poor performance of the C-P algorithm was given by many

authors [132] .What happens in fact is that the convergence of the algorithm to the

integer optimal solution is very rapid during the first few cuts . Subsequently , this

increase slows down and the cutting-planes become ineffective , making the

convergence to the optimal solution very slow. Figure 2-5 shows the convergence of

the Gomory's algorithm applied to a 10 task-CSP representing a linear problem of 49

constraints and 200 variables . As it can be seen , the algorithm reaches 95% of the

optimal solution after the addition of 5 cuts only .However at the 13th cut the optimal

solution has not been reached yet. Actually the algorithm reached 98% of the optimum

after the addition of 30 cuts.

Figure 2-5 : Convergence of the Gomory C-P Algorithm

Applied to a 10 Task-CSP.

OPTIMUM 59 t
Integer

58

57 o

nunber of
J ►cuts

2 3 4 5 6 7 8 9 10 11 12 13

Chapter 2 53

Table 2-1 : A 10 Task-CSP

Task Starting
time

(minutes)
Finishing

time
(minutes)

1 22 64
2 85 169
3 151 255
4 193 230
5 266 324
6 322 364
7 352 398
8 385 469
9 412 492
10 493 530

Other types o f C -P algorithm s were suggested by various authors

[8,9,77,78,148,150]but none of them could produce satisfactory results . Their

common problem was their slow convergence when approaching the optimal solution.

This series of unseccessful results did not mean that the C-P algorithm should be

rejected.

In 1973 , Rubin [132] suggested a clever way of using the C-P method.He

argued that since the C-P algorithm is very efficient during the first few cuts then at

the precise point where the cutting-planes become redundant this algorithm should be

stopped and embedded into a branch and bound procedure [7,20,50,101] in order to

accelerate the convergence to the optimum.For example if we consider figure 2.5

which shows the convergence of the Gomory's C-P algorithm when applied to the 10

task-CSP of table2-l we can see that after the addition of cut 10 , the convergence to

Chapter 2 54

the optimum becomes very slow . Hence Gomory's C-P algorithm can be stopped at

this point and embedded in a branch and bound procedure .It has been noticed that

when the cutting-planes are combined with branch and bound they perform quite well

[12,49].

One year later , Owen [124] proposed a new type o f cutting-planes called

logical or disjunctive cuts [10,13]. These are linear equalities(or inequalities) that

express logical conditions derived from the problem . This simple idea can be

illustrated as follow s: consider the two following constraints

2xj - x2+5x3>3 (2-10)

3x j+ 4 x 2 - 2x3 > 2 (2-11)

the following constraint is the strongest common weakening of (2- 10) and (2-1 1)

max(2,3)xj + max(-l,4)x2 + max(5,-2)x3 > min(3,2)

ie 3xj + 4x2 + 5x3 > 2 (2-12)

Assuming that (2-10) and (2-11) are cutting-planes for a certain problem and assuming

that we do not know which one is valid we can be sure that (2-12) is a valid cut .It is

called a disjunctive or logical cut.

Unlike all the previous cuts the logical cuts depend entirely on the structure of

the problem considered and the way in which they are derived may vary from one

problem to another. A very good account o f the theory o f disjunctive cuts has been

given by Jeroslow [92] . Also as far as the practical side o f these cutting-planes is

concerned we should mention the excellent work of Balas and Padberg [14] on the set

partitioning problem.In that paper, among the several I-P techniques that have been

suggested the application o f logical cuts has proved to be very effective.

The derivation of the logical cuts for the CSP is explained in section 3-2.

Inspired by Rubin's idea we first wanted to combine the cutting-plane algorithm

(ie logical and Gomory's) with the branch and bound procedure. Fortunately, we did

not need to go that far . Thus, 80% of the 101 problems (of size up to 30 tasks)

randomly generated were solved just by an LP package. For the rest we only needed to

Chapter 2 55

apply the combination o f the two types o f C-P in order to get convergence to the

optimum. There was no need for branch and bound for these 101 problems .

3-2. Derivation o f the Log ical Cuts .A lgorithm A3.

As far as the theory of Gomory's cutting-planes is concerned the interested

reader is refered to [68,139].In this section we w ill be dealing with the derivation of

the logical cutting-planes .The idea of deriving the logical cuts for the CSP is very

simple and w ill be first explained on the following example.

3-2.1 Exam ple .

Consider the 5 task-CSP represented by network G of figure 2.6.Let us assume

that the work duty period is 400 minutes and that we want to cover G with 3 paths .

Figure 2-6 : Network G

o 100 200 300 400 500 600 700

H-----

/
*

It is clear that the task-arcs (a4,p4) and (a5,p5) cannot be covered by the same path.

Also neither of them can belong to a path starting with task-arc (a^pj) .This is simply

because the length o f such a path would be greater than the work duty period .

Consequently (a^pj), (a4,p4) and (oc5,p5) must be covered by 3 different paths .

Chapter 2 56

Hence we can , from the start, assign task-arc (a^pj) to path 1, task-arc (a4,p4) to

path 2 and task-arc (a5,p5) to path 3. Expressing this logical condition in mathematical

terms leads us to the following logical cuts:

(2-13)X1R1 + x121+x131_1
MR2
l5R3

= 1

= 1

(2-14)

(2-15)

where is as defined in section 2-2 .

Now , let us consider task-arc (o^^) • None of task-arcs (a4,p4) and (a5,p5)

can be covered by a path that covers (c^ ^) • Hence we can say that task-arc (c^ ^)

w ill neither be in path 2 nor in path 3 . The logical cuts corresponding to these logical

conditions are:

X2R2 +x232 = 0 (2-16)

X2R3 +x233 = 0 (2-17)

Now we give the general procedure for deriving the logical cuts.

3-2.2 D efin ition .

Given a network G , representative o f a CSP , and its set B o f task-arcs we

define an independent set IC B as being a set o f task-arcs no two o f which can be

covered by a same feasible path (ie a path with length less than or equal to the work

duty period) . A lso we define a maximum independent set (MIS) as being an

independent set with maximal cardinality.

In example 3-1 task-arcs (o^Pj) and (a4,p4) of G form an independent set and

task-arcs (a^Pj), (a4,p4) and (a^p^ form a MIS .

3-2.3 A lgorithm A3 .

The input to the algorithm is a network G representing a C S P .

Step 1 : Determine a maximum independent set IcB .(B is the set o f all task-arcs of

Chapter 2 57

network G) . Let I = { (a:,P:),..., (a^p:)}
1 1 It h

Step 2 : Assign each arc (04$:) (k=l,...,h) o f I to a different path Pk (k=l,...,h)
k k

ie add the following logical cuts to the problem formulation

(P: ,0L) 6 LL

k=l... h

where and are as defined in section 2-2 .

Step 3 : Let I' = B - 1 = { (a ^ p j) (a ^ P O }. For each arc (a^pj) m=h+l,...n,
M h+1 n " m m

determine the list L m of all task-arcs o f I that cannot be covered by a path that covers

(«i;Pi)-
m m

Step 4 : For each (<X:,p:) for which L m * 0 Jet Pt ,...,P t be the set o f pathsm m I1 m
associated with the task-arcs o f L m. Add the following logical cu t:

m ___

1 1k=l _ a m
= 0

(Pi 0)eU2

This means that task-arc (oci,pi) w ill be covered by none of the paths Pt ,...,Pt .m m 1 m
The algorithm is stopped when all arcs (a^pf) for which L m ^0 have been

m m

considered.

3-2.4 Exam ple .

Consider network G o f figure 2.6.

Step 1 : maximum independent set I = { (a^p^, (a4,p4),(ct5,p5) };

B= {(a^Pj), (0 2 .P2), (a3,p3),(a4>p4),(a5,p5) }

Step 2 : for arc (a^pj) : x12j + x 131 + x 1R1 = 1

for arc (a4,p4) : x4R2 = 1

for arc (05^ 5) : x5R3 = l

where aR is the sink.

Step 3 : 1' = { (a2,p2), (0C3,P3) }

* Consider task-arc (a^p^ : = 0

Chapter 2 58

can (cx2,(32) be in a same path with (a^pj) ? Y e s ; 1 ^ = 0

can (cx2,p2) be in a same path with (a4,p4) ? N o ; L j ={ (a4,P4) }

can (ot2,p2) be in a same path with (a5,p5) ? N o ; L 2 ={ (a5,p5), (a4,p4)}

* Consider task-arc (03^ 3): L 3 = 0

can (cx3,p3) be in a same path with (a^Pj) ? Y e s ; L 3 = 0

can (0(3^ 3) be in a same path with (a4,p4) ? Y e s ; L 3 = 0

can (ct3,p3) be in a same path with (0(5^ 5) ? Y e s ; L 3 = 0

Step 4 : * Consider task-arc (o^,p2) : L 2 1 0

Add the following cut to the problem:

x232 + x233 + X2R2 + X2R3
* Consider task-arc (063̂ 3): L 3 = 0 . S T O P .

3-3 A H eu ristic A lgorithm for F in d in g a M IS in Netw ork G .

A lgorithm A4.

The input to the algorithm is a network G representing an n task-K crew CSP .

Step 0 : Let M be a maximal independent set o f task-arcs of G . M={ (a ^ p j)} ; i= l

G O TO STEP 1;

Step 1 : i= i+ l.

If there is no linking-arc joining task-arc (oc^) with one of the task-arcs of

M then G O TO STEP 2 ;Else task-arc (a^pj) cannot belong to M . G O TO STEP 3 ;

Step 2 : Add task-arc (04,ft) to M ; M = M U { (cx^ft)}; G O TO STEP 3 ;

Step 3 : If i=n all task-arcs of G have been scanned, S T O P ; Else G O T O STEP 1.

In step 1 o f Algorithm A4 ,the statement "if there is no linking-arc joining

task-arc (Oj^) with one o f the task-arcs o f M " means "if no crew can cover task i

with one o f the tasks corresponding to M".

It is easy to show that algorithm A4 runs in time 0(n2).

Chapter 2 59

3-4 The C S P Cutting-Planes A lgorithm : A lgorithm A5 .

Now that we have described how we generate the logical cuts and that we have

explained the concept o f Gomory’s cutting-planes we are ready to describe the

algorithm based on the two types o f cuts and that we w ill call , for the sake of

sim plicity, CSP cutting-plane algorithm.

A lgorithm A 6 : Let us call (P) the CSP formulated as in section 2-2. The

algorithm consists of the following steps :

Step 0 : Solve the linear relaxation o f (P). If the solution is not integer G O TO

STEP 1; Else STOP ,the current solution is optim al.

Step 1 : Using Algorithm A3,generate the logical cuts and add them to problem (P)

.The resulting problem is called (P'). G O TO STEP 2 ;

Step 2 : Using Gomory's cutting-planes solve problem (P'). STOP.

4- Com putational Results .

To test the algorithm presented so far in this chapter more than 100 CSP's of

size ranging from 5 to 30 tasks were randomly generated. The results are summarized

in tables 2-2,2-3 and 2-4.

In table 2-2 we present the computational results o f the 81 CSP's solved with

linear programming. Table 2-3 gives the performance of the CSP algorithm A5 applied

to the 20 remaining CSP's. In both tables 2-2 and 2-3 we give the performance of the

heuristic algorithm A2 . In table 2-4 we compare the performance of an algorithm

based only on Gomory’s cuts with that o f algorithm A5.Before considering the results

of each algorithm, let us describe the data generation process.

Chapter 2 60

Table 2-2 (a) : Computational Results for the 81 CSP's Solved with
Linear Programming.

Problem
Number

of
Tasks

Heuristic Algorithm LP Results
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

Size of
LP

[rowsxcol]
Time*

1 5 3 3 0 0.06 18 29x 81 0.4
2 5 2 2 0 0.06 27 2 lx 66 0.2
3 5 2 2 0 0.07 32 2 lx 54 0.2
4 5 2 2 0 0.06 25 21X 50 0.2
5 6 3 3 0 0.08 27 33X 108 0.6
€ 6 3 3 0 0.07 24 33x 93 0.6
7 6 2 2 0 0.06 36 24x 70 0.2
8 6 2 2 0 0.06 45 24x 72 0.2
9 7 3 3 0 0.07 36 37x 108 0.6
10 7 3 3 0 0.08 32 37x 114 0.7
11 7 2 2 0 0.09 40 27X 119 0.4
12 7 3 3 0 0.08 32 37x 141 0.7
13 8 4 4 0 0.09 36 52x 216 1.2
14 8 2 2 0 0.09 54 3Ox 102 0.5
15 8 4 4 0 0.08 32 52x 184 1.1
16 8 2 2 0 0.09 50 30x 106 0.5
17 9 3 3 0 0.10 48 45x 147 0.9
18 9 2 2 0 0.10 63 33x 102 0.6
19 9 4 4 0 0.10 42 57x 200 1.5
20 9 4 4 0 0.10 40 57x 192 1.4

* Seconds of CYBER 855 (Fortran Compiler)
+ MNC1 ■ Minimum Number of Crews (exact)
++ MNC2 - Minimum Number of Crews (heuristic)

Chapter 2 61

Table 2-2 (b) : Computational Results for the 81 CSP's Solved with
Linear Programming

Problem Number
of

Tasks

Heuristic Algorithm
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

LP Results Size of
LP

[rowsxcol]
Time*

21 10 5 5 0 0.11 38 75x 310 2.1
23 10 5 5 0 0.11 60 75x 265 2.1
24 10 4 4 0 0.10 48 62X 216 1.3
25 10 3 3 0 0.12 56 49x 201 1.1
26 11 3 3 0 0.13 72 53X 177 1.3
27 11 5 7 2 0.13 36 109X 476 4.6
28 11 5 5 0 0.13 48 81X 380 2.3
29 11 5 5 0 0.11 54 8lx 345 2.3
30 12 3 3 0 0.13 63 57x 246 1.5
31 12 4 4 0 0.13 72 72x 252 1.9
32 12 4 6 2 0.14 54 102X 444 3.8
33 12 3 3 0 0.13 70 57x 234 1.5
34 13 3 4 1 0.13 81 77x 260 2.2
35 13 5 5 0 0.15 68 93X 385 3.4
36 13 4 4 0 0.13 72 77x 304 2.3
37 13 3 3 0 0.13 90 61X 243 1.2
38 14 5 5 0 0.15 89 99X 375 4.0
39 14 6 6 0 0.14 72 116x 450 5.0
40 14 5 5 0 0.15 78 99x 435 4.1
41 14 5 5 0 0.16 66 99x 520 4.1

* Seconds of CYBER 855 (fortran Compiler)
+ MNC1 ■ Minimum Number of Crews (exact)
++ MNC1 « Minimum Number of Crews (heuristic)

Chapter 2 62

Table 2-2 (c) : Computational Results for the SlCSP's Solved with
Linear Programming.

Problem Number
of

Tasks

Heuristic Algorithm
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

LP Results
Size of

LP[rowsxcol]
Time*

44 15 6 6 0 0.17 71 123x 582 5.3
45 15 4 4 0 0.17 88 87x 380 3.0
48 16 6 6 0 0.18 108 130x 654 5.4
52 17 7 8 1 0.18 81 177x 848 8.9
53 17 6 7 1 0.18 90 157x 693 8.4
54 17 7 7 0 0.19 108 157X 770 8.5
55 17 5 5 0 0.19 95 117x 425 5.1
56 18 7 7 0 0.19 99 165X 735 8.7
58 18 5 7 2 0.19 78 165x 686 8.7
59 18 6 6 0 0.18 90 144x 832 7.1
60 19 5 5 0 0.21 112 129x 585 4.8
61 19 6 6 0 0.20 117 151X 792 7.8
62 19 5 5 0 0.20 93 129x 585 4.8
63 19 5 5 0 0.19 106 129x 765 4.9
66 20 7 7 0 0.22 104 181X 749 4.5
68 20 7 7 0 0.21 104 18lx 959 9.7
69 21 7 7 0 0.21 102 189x 812 10.7
70 21 6 7 1 0.22 126 189x 749 10.9
71 21 6 6 0 0.21 140 165x 720 8.7
72 21 6 6 0 0.21 129 165X 840 8.8

* Seconds of CYBER 855 (Fortran Compiler)
+ MNCl - Minimum Number of Crews (exact)
++ MNCl - Minimum Number of Crews (heuristic)

Chapter 2 63

Table 2-2 (d) : Computational Results for the 81cSP's Solved with
Linear Programming

Problem Numberof
Tasks

Heuristic Algorithm
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

LP Results
Size of

LP
[rowsxcol]

Time*

73 22 7 7 0 0.22 120 197x1022 12.3
74 22 7 7 0 0.22 135 197X 770 12.2
75 22 7 7 0 0.24 129 197X1015 12.8
76 22 7 7 0 0.24 135 197X 861 12.5
77 23 7 9 2 0.24 126 257X1053 19.0
79 23 8 8 0 0.25 135 231X1272 18.1
80 23 8 8 0 0.24 116 231x 968 18.1
81 24 7 7 0 0.25 136 213X1113 15.9
82 24 9 9 0 0.24 135 267x1305 20.7
83 24 8 9 1 0.25 120 267x1125 20.2
84 24 7 8 1 0.26 144 240X1120 18.6
90 26 8 9 1 0.27 153 287x1494 21.1
91 26 8 8 0 0.28 149 258x1152 19.1
92 26 8 8 0 0.27 181 258X1232 19.6
93 26 8 8 0 0.26 162 258x1296 19.6
94 27 9 9 0 0.29 120 297X1431 20.8
95 27 9 9 0 0.27 128 297X1836 22.0
96 28 8 8 0 0.29 160 276X1232 20.4
97 28 10 12 2 0.29 129 400x1924 57.0
98 29 8 8 0 0.29 168 285x1472 20.6
99 29 10 10 0 0.29 152 349x1390 29.2

* Seconds of CYBER 855 (Fortran Compiler)
+ MNC1 ■ Minimum Number of Crews (exact)
++ MNC2 - Minimum Number of Crews (heuristic)

Table 2-3 t Computational Results for the 20 CSP'a Solved with the CSP Cutting-Plane Algorithm

Problem
Number
of

Tasks

Heuristic Algorithm
HNC1+ MNC2++ Error Tims*

Optimal
Solution
Value

Linear
Solution
Value

CSP Cutting-Plane
Sise of

Gap LP
[%] [rowsxcol]

Algorithm
Number of
Preassigned
Tasks

Number of
Gomory
Cuts

Lower
bound
Value

Time*

22 10 4 4 0 0.11 59 48.4 18 62X 224 7 1 59 1.8
42 15 6 8 2 0.16 56 51.0 9 159X 792 10 3 56 9.8
43 15 6 6 0 0.16 81 68.8 15 123X 618 9 8 81 7.9
46 IS 4 4 0 0.16 96 90.2 6 B7X 619 6 1 96 3.2
47 16 4 4 0 0.17 99 80.2 19 92X 432 10 1 99 4.3
49 16 4 4 0 0.18 90 79.2 12 92x 416 7 6 90 4.8
50 16 5 5 0 0.17 113 105.1 7 111X 510 8 2 113 5.5
51 16 4 5 1 0.18 88 68.6 22 111X 615 8 7 88 8.3
57 18 7 7 0 0.19 88 85.4 3 165X 833 9 1 88 9.1
64 20 6 6 0 0.20 112 112.0 0 158X 672 9 2 112 9.6
65 20 7 8 1 0.22 96 88.3 9 204X1096 10 1 96 14.0
67 20 6 6 0 0.21 127 101.7 21 158X 70S 9 15 127 16.3
71 23 8 8 0 0.23 120 114.1 5 231x1016 11 1 120 20.3
•5 25 • 10 2 0.25 120 91.3 24 305X1730 13 19 120 36.2
•6 25 9 9 0 0.25 128 113.9 11 277x1431 11 5 129 24.3
•7 25 7 7 0 0.25 162 150.7 7 221X1099 10 12 162 21.8
•8 25 9 11 2 0.26 126 108.4 14 333X1694 14 2 126 32.3
89 25 7 7 0 0.27 151 144.9 4 221X 882 15 2 151 15.2
100 30 9 9 0 0.31 168 166.4 1 327X1674 16 2 168 31.4
101 30 11 11 0 0.31 171 148.2 13 393X1694 17 16 171 56.3

* Seconds of CYBER 855 (Fortran Compiler)
♦ MNC1 ■ Minimum Number of Crewe (exact)
++ MNC2 " Minimum Number of Crews (heuristic)

Chapter 2 65

Table 2-4 : Comparison of the Gomory C-P Algorithm and the CSP C-P Algorithm.

Problem
Number

of
Tasks

Optimal
Solution

Value
Linear

Solution
Value

Size
Of
LP

Gomory
Number

of
Cuts

C-P Algorithm
Value of
Lower Gap
Bound [%]

CSP C-
Number

of
Cuts

P Algorithm
Value of
Lower
Bound

1 10 59 4 8 . 4 6 2 x 224 20 5 6 . 0 5 . 1 1 OPT
2 15 56 5 1 . 0 159X 792 15 OPT OPT 3 OPT
3 15 81 6 8 . 8 123X 618 20 7 9 . 2 2 . 2 8 OPT
4 15 96 9 0 . 2 8 7 x 619 10 OPT OPT 1 OPT
5 16 99 8 0 . 2 9 2 x 432 16 OPT OPT 1 OPT
6 16 90 7 9 . 2 9 2 x 41 6 20 9 0 . 0 0. 6 OPT
7 16 113 1 0 5 . 1 l l l x 5 10 20 1 0 9 . 4 3 . 2 2 OPT
8 16 88 6 8 . 6 111X 615 20 8 4 . 0 4 . 5 7 OPT
9 18 88 8 5 . 4 165X 833 4 OPT OPT 1 OPT

10 20 112 1 1 2 . 0 15BX 672 19 OPT OPT 2 OPT
11 20 96 8 8 . 3 204X 1096 20 9 3 . 3 2 . 8 1 OPT
12 20 127 1 0 1 . 7 158X 708 20 1 2 3 . 2 3 . 0 15 OPT
13 23 120 1 1 4 . 1 2 3 1 x 1 0 1 6 20 1 2 0 . 0 0. 1 OPT
14 25 120 9 1 . 3 305X 1730 20 1 1 4 . 2 4 . 8 19 OPT
15 25 128 1 1 3 . 9 277X 1431 20 1 2 8 . 0 0. 5 OPT
16 25 162 1 5 0 . 7 221X 1099 7 OPT OPT 12 OPT
17 25 126 1 0 8 . 4 333X1693 15 OPT OPT 2 OPT
18 25 151 1 4 4 . 9 2 2 1 x 882 18 OPT OPT 2 OPT
19 30 168 1 6 6 . 4 3 2 7 x 1 6 7 4 17 1 6 8 . 0 0. 2 OPT
20 30 171 1 4 8 . 2 393X1694 20 1 6 9 . 1 1 . 1 16 OPT

* "OPT" means that the lower bound is optimal

Chapter 2 66

4-1 The Data Generation Process .

For each one of the 101 problems, we needed to generate the cost coefficients

o f the linking-arcs , the duration times o f the tasks and their starting times . The

working duty period was assumed in all cases to be equal to 6 hours. The number of

crews was provided by the heuristic algorithm A 2 .

A ll the data were randomly generated according to a uniform distribution . The

durations (resp. starting tim es) were assumed to vary within the range [45 minutes to

2 hours 30 minutes] (resp. [00.00 hours to 24.00 hours]). Each cost coefficient c-

associated with linking-arc (P̂ cXj) has been generated according to the following

form ula:

Cjj = (1+ a) dy

where dy = duration o f linking-arc (Pj,(Xj)

= starting time of task j - finishing time o f task i

and

a = random number generated by the uniform ditribution U(0,1)

4-2 Computational Results for Algorithm A2.

The heuristic algorithm A 2 , for finding the minimum number o f crews required

to process all tasks , has proved to be very effective . Thus out o f the 101 randomly

generated CSP's ,it has produced the exact minimum number o f crews (M NC) in 84

cases . For the remaining problems , it has given the M N C with an error o f 1 in 10

problems and an error o f 2 for 7 others .Column 3 ,of tables 2.2 and 2.3 .which gives

the exact value of M N C was obtained using the algorithm described in the next chapter

Chapter 2 67

4-3 Computational Results for Algorithm A5 .

The first obvious remark that one can make by just looking at table 2-2 is that

most o f the CSP's considered (80%) were solved at step 0 o f the algorithm ie by just

using an L P package . This shows the tightness o f the formulation o f the problem

(section 2-2) .The LP package used in our case is the X M P package of Marsten [112].

The remaining 20 problems which could not be solved by the LP package were

tackled by using algorithm A5. The results are shown in table 2-3 .

Comparing the results produced by the Gomory's fractional C-P algorithm with

those obtained with algorithm A5 we can clearly see from table 2.4 that without the

addition o f the logical cuts to the CSP we would have been forced to embed the

algorithm into a tree search.In fact, by adding the logical cuts we have strengthened

the CSP's formulation and subsequently only few Gomory's cuts were required to

reach the optimum while for the same set of problems when we have removed the

logical cuts many more Gomory's cuts were needed and in half o f the cases the

algorithm was not converging at a ll.

As far as the choice of the source row (in Gomoiy's algorithm) is concerned we

have noticed , after trying several possibilities , that the best strategy consists of

cutting first on the variables (with the highest fractional part in the optimal tableau)

which correspond to the linking-arcs; if all such variables are integer then choose the

ones corresponding to the task-arcs ; in the last resort, cut on the source and sink -

arcs' variables . Also because of the limitations in computer storage we have decided

to set the maximum number of cuts allowed to 20.

4-4 Drawback of the CSP Cutting-Plane Algorithm .

The cutting-plane computing program used to solve the CSP is based on the

linear programming package o f Marsten. It is reported in [112] that the largest linear

Chapter 2 68

problems that have been solved with this package had 1500 constraints and 7000

variables . In our case , a problem of n tasks and K crews w ill have more than nK

constraints.If we assume that in graph G , representative o f CSP , each task-arc is

linked on average with 7 other task-arcs (which is quite a reasonable assumption) then

the problem w ill have more than 7nK variables . Thus , for example , a 50 task-20

crew CSP w ill have more than 1000 constraints and 7000 variables.

Consequently, because o f limitations on the size o f the problem imposed by LP

packages, this formulation is very restricted. Only small to medium size CSP ’s of up

to at most 50 tasks can be solved.

5- The Lagrangian Relaxation M ethod .

The branch and bound (B&B) procedure is the most successful and most widely

used technique in integer programming (IP). Thus , all the commercial general IP

packages are based on this technique [27,64,102,130] and for most of the packages

that solve particular IP problems it is still the B & B procedure which is used .

The most important step in the B & B method is the determination o f the lower

bound of the problem (see [67] for a detailed description of the B & B method) . To

obtain an upper bound to the IP problem (assume it is a minimization problem)

heuristic algorithms are usually used . However , for the lower bound several

techniques [26,37,43,68,70] have been proposed to obtain good lower bounds to the

problem. Among these techniques one o f the most efficient and most successful is the

Lagrangian relaxation.

5-1 A C S P Form ulation Suitable for the Lagrangian Relaxation .

The CSP is formulated as an unconstrained CSP plus additional constraints

Chapter 2 69

which express the fact that all optimal paths o f network G (ie the network

representative o f the C S P) must be o f length T or smaller, where T is the work duty

period.

The formulation is as follow s:

If in network G we let

Xjj = 1 if arc (p t̂Xj) is in the optimal solution;

= 0 otherwise;

then, the CSP becomes:

min X cij xij (2-18)
(Pj.Oj) 6 N

subject to :

+
- Y * .JL,d pi II

for i= l,...,n
for i=S
for i=R

(2-19)

JeVi pe V‘ r i

Xjj must form K paths of length less than or equal to T .

Xjje{ 0,1 }
where Cjj,N,V'j7Vj",K and n are as defined in section 2.3 (chapter 1).

(2-20)

(2 - 21)

5-2 Expressing the Time Constraints as Linear Constraints .Algorithm

A6.

C learly , the problem which consists o f (2-18),(2-19) and (2-21) is a minimum

cost network flow problem .In this section we w ill consider the best way of

expressing constraints (2-20) that we w ill call "time-constraints'.

Chapter 2 70

5-2.1 Exam ple .

Consider the 7 task-3 crews CSP represented by network G of figure 2.7. We

assume the work duty period to be 400 minutes .

Figure 2-7 : Network G

P SO_____ ISO 250 350 450 5gO 6g0 7SO 850

07

Dropping the time constraints from the CSP and solving the remaining problem as a

minimum cost network flow problem we obtain the optimal solution Xg which consists

of the following paths :

Pl= (Ps*oti)(a i»Pi)(Pi»a2)(a2»P2^^2,a3^a 3»P3^3,a5̂ â5*P5̂ (P5»a 6^a 6’P6^P6’a R̂

P2= (Ps,a4)(a4,p4)(p4,aR)

P 3= (Ps>tt7)(G7»P7)(P7f0tR)

The cost of Xq is 340 .

Chapter 2 71

Clearly this solution is not feasible for the CSP since the length o f path Pj (ie

750minutes) exceeds the work duty period (ie 400 minutes).Consequently we need to

add time constraints to the relaxed problem so as to eliminate x0 . In fact, all we need

to add is just one constraint that w ill prevent the formation of path Pj in the optimal

solution . Paths P2 and P3 do not violate the time restriction .

A t first we wanted to express the time constraint as follows :

100x12+50x12+140x23+10x23+100x35+30x35+120x56+50x56+150x6R < 400

ie 150x12+150x23+130x35+170x56+150x6R < 400 (2-22)

This is the way we expressed the time constraints in section 2.5.Unfortunately it is not

correct to express the time constraints in this way because by doing so we eliminate the

following feasible solution Xj of the C S P :

Xj consists of the following paths :

p l= (Ps>al)(a l>Pl)(Pl-a 2)(a 2>P2)(P2-a 3)(a 3-P3)(P3’a R)

p2= (Ps’a 5) («5>P5) (P5,a 6)(«6>P6)(P6'a R)

^3= (PS>a 4)(a 4’P4)(Ps’a 7)(a 7’P7)(P7>a R)
C learly , Xj is a feasible solution for the CSP of figure 2.7 because each one of

Pj,P2 and P3 has length less than or equal to 400 minutes and they cover all task-arcs

o f G. Now to see that Xj is cut o ff by constraint (2-22) we just need to check that

(2-22) is violated for X j .

Indeed in Xj we have :

x12=1 ’ x23=1 ’ x35=^ ; x56=1 ’ X6R=1
Hence the left-hand side of (2-22) becomes

150x1 + 150x1 + 130x0 + 170x1 + 150x1 =620>400

Therefore, we cannot express the time constraints as in constraint (2-22).

Now, let us consider path P j . Knowing that each xy = 0 or 1 , P j is well

defined by the following constraint:

x12+x23+x35+x56 = 4 (2 ' 23)

If we want to eliminate the formation of Pj in the optimal solution we need to add the

Chapter 2 72

following constraint to the relaxed problem of the C S P :

x 12+x23+x35+x56 — h O 24)
where h is a constant to be determined . If we set h=l we w ill eliminate a feasible

solution that has task-arcs (a ^ P j) and (a2,p2) in one path and task-arcs (a5,p5)

and (cc6,P6) in another path .Hence h=l is not possible .Similarly if we set h=2 we

w ill eliminate solution Xj defined above .Indeed , in Xj we have the left-handside of

(2-24) equal to x i2+x23+x35+x56 = 1+1+0+1 = 3

Finally , the time constraint that prevents the formation o f Pj in the optimal

solution is

x 12+x23+x35+x56 ̂ 3 (2‘ 25)
In fact one can do better. By remarking that task-arcs (a ^ P j), (a2,p2) and (c^ Pj)

form a maximal path P4, in that any task-arc added to P4 w ill violate the time

restriction, we can write the time constraint as

x 12+x23+x35 < 2 (2-26)

and by remarking that task-arcs (a5,p5) and (a6,p6) form a maximal path we can

write the time constraint:

x35+x56^ 1 (2-21)

Hence constraints (2-26) and (2-27) express the time constraints that prevent the

formation o f path Pj in the optimal solution o f the CSP o f figure 2.7 .Constraints

(2-26) and (2-27) are together stronger than constraint (2-25). Thus path P5 is

eliminated by constraint (2-26) but is not eliminated by constraint (2-25), where P5 is

P5= (ps,a 1)(a1 ,pI)(P1,a 2)(o2)p2)(P2,a 3)(a3)p3)(P3,a 5)(a5,p5) (p5>a R)

5-2.2 Algorithm A6 .

Given a path P of length greater than the work duty period , the following

algorithm expresses the time constraints relatively to P.

Chapter 2 73

We said previously that any path P= (o ,̂ph) (Ph’a R)

of G is well defined by its set of linking-arcs A= { (R.0O,..., (P„,cxJ }
N * hk A

Hence if we are given A we can easily form P . In the algorithm when we say " a path

formed by the arcs of A " we mean the path whose linking-arcs are the arcs of A .

Step 0 : Let be the linking-arcs of P ; set i= l and A ={ hj }

G O TO STEP 1;

Step 1 : i= i+ l; A= A U {hj} ;If the path formed by the arcs of A has length greater

than T , G O TO STEP 2 ; Else G O TO STEP 3

Step 2 : Add the following time constraint to the CSP

^ X j . < | A | - l (IAI = cardinality of A) (2-28)
(P.,a)eA

Set A = { h j }; G O TO STEP 3

Step 3 : If i = k STOP ; Else G O TO STEP 1 .

Algorithm A 6 runs in time O(n) where n is the number o f linking-arcs of path P.

5-3 A B rie f Description o f Lagrangian Relaxation .

W e saw in the previous section that given a path P whose length exceeds the

work duty period the corresponding time constraint is of the form :

y. x. < hlj(P.,a)eA(p)

where h is a suitable constant and A(P) is the set of linking-arcs of P.

The extra constraints which express the restriction on the maximum length of

optimal paths (o f G) cannot all be added to the CSP at the same time because then-

number increases exponentially with the size of the CSP (ie number o f tasks) .

Consequently, they are added when necessary and relaxed in a Lagrangian w ay.

Chapter 2 74

A t this point it is worthwhile explaining the main idea of the Lagrangian

relaxation technique . For more details the interested reader is refered to

[61,71,74,135].

Let us assume that a set o f r time constraints have been determined. Instead of

solving the CSP directly the Lagrangian relaxation consists o f solving the following

easier problem (pu):

r

V X V h)
(^.ol) € N fc=l (P L , a) G A ^

(2-29)

subject to : (2-19) and (2-21)

where Pk is the path corresponding to the kth (k=l,...,r) time constraint and A(Pk) is

its set of linking-arcs .
>.0

Clearly , given ulfU2*<"»uk this problem is a minimum cost network flow

problem which can easily be solved . Also one can easily prove that the optimum of

(Pu) (say Z u) is a lower bound to the optimum of the CSP (say Z) ie Z u < Z .

Depending on the values of the Lagrange multipliers U j,^ ,...,^ the value of this

lower bound Z u is different. Since the main aim o f the Lagrangian relaxation is to

determine a good lower bound to the CSP to be embedded in a branch and bound

scheme the problem becomes one of solving:

max z = max minu Q U X y c.. x.. +
lj lj(p.,a)€N XvX

w (Pra)eA(p£

(2-30)

subject to (2-19) and (2-21)

There are several methods for solving this problem [l,18,19,69,121].However, the

most widely used is subgradient optimization [48,86]. This is due to the fact that it is

very simple to program and that it has performed well for most IP problems solved by

Lagrangian relaxation [11,73,136].

Chapter 2 75

Starting with an initial value U® = (u° ...,uj) ,the subgradient optimization

method consists of generating a series o f Lagrange multiplier vectors {Uk+1} defined

by uk+1 = uk + ^ (2 ^ x*.-h) m = l,...,r (2-59)

where is the optimal solution of problem (^k) and ^ is given b y :

*k =
U z - Z j)

X " X xij - h^
m=l

(2-60)

in which
]|t

Z is a feasible solution to CSP.lt can be found by a heuristic;

is the optimum °f<5>

IIAI12 is the Euclidean norm of A ;

and X is a parameter which is initially set to 2 and is halved if after

a given number of iterations there is no increase in the

optimal value of (P^).

5-4 Generating the T im e Constraints .A lgorithm A7.

In the previous section we have made the assumption that a set o f r time

constraints (which is a small subset o f the large set of all time constraints) has been

determined. The following is an algorithm which describes the dynamic way in which

the time constraints are generated.

A lgorithm A7.

Step 0 : Set C = 0 a n d i= O . G O T O STEP 1 .

Step 1 : Solve the CSP without considering the time constraints (this is a minimum

cost network flow problem) . If all paths o f the solution have length T (ie the work

duty period) or less S T O P : the solution is optimal for the C S P ; Else add all the paths

with length greater than T to C . G O TO STEP 2.

Chapter 2 76

Step 2 : i= i+ l ; I f i> 5 S T O P ; Else express all the paths in C as time constraints

(using algorithm A 6) , add them to the current problem and relax them in a Lagrangian

way .G O TO STEP 3 .

Step 3 : Perform 20 subgradient iterations on the relaxed problem. A t each iteration

add all the paths ,that violate the work duty period, to C . G O TO STEP 2.

6- Com putational Results for the Lagrangian Relaxation .

A total of 60 CSP's (see table 2.5) were randomly generated according to the

data generation process described in section 4 .

As far as the parameters of the subgradient optimization are concerned the initial

values o f the Lagrange multipliers were set to zero ; after few tests on some problems

we have noticed that the most suitable value for the step size was 4 . Also , the value

of the upper bound was set initially to infinity and whenever a feasible solution was

found in the course of algorithm A7 the upper bound was updated.

A ll problems were considered in 3 groups as follows :

G ro u p l . Twenty CSP's were randomly chosen from the 81 problems generated in

section 4 for which the optimal solution was found after using just an LP package. As

it can be seen from table 2-5, except for 5 problems, the quality o f the lower bound is

quite good. Furthermore, when compared with the results of table 2-2 we can see that

less computing time than for the linear relaxation was necessary to obtain these

bounds. One should not forget that none o f the problems considered were solved to

optimality by the Lagrangian relaxation and to achieve this we need to embed the

technique in a tree search which means that more computing time w ill be required.

G roup 2 . The 20 CSP's of section 4 for which the addition o f the cutting-planes

was necessary to obtain the optimum were then tested . Clearly , the quality of the

lower bound obtained with the Lagrangian relaxation (table2-5) for this set of

Chapter 2 77

problems was in general poor.Thus for some problems the bound was more than 20%

away from the optimum. Hence,if we wanted for this specific problem to embed this

bound in a tree search procedure we would have to explore thousands o f nodes before

we could find the optimal solution.

G roup 3 : In an attempt to solve larger CSP's , twenty problems o f size varying

between 35 and 55 tasks were then randomly generated . In 70% o f the cases the

Lagrangian relaxation could produce lower bounds in the range of 96%-100% which

represent good quality bounds to be embedded into a tree search procedure. However,

for the 6 other problems the quality of the bound was not that good. Thus for the 35

tasks problem it dropped to 78% which is basically a very poor bound. For this group

of problems the optimal solution was found by the algorithm described in chapter 3 .

me*

193
329
386
391
460
458
378
501
526
614
628
767
823
985
718
053
940
299
736
975

Chapter 2

Group 1

Table 2-5 : Computational Results for
Lagrangian Relaxation

Problem
Number

of
Tasks

Value of
Optimal
Solution

Value of
Lower
Bound

Gap
[%]

1 5 18 17.15 4.7
2 11 72 68.98 4.2
3 12 70 67.97 2.9
4 13 68 66.71 1.9
5 14 89 87.13 2.1
6 14 72 71.21 1.1
7 14 78 78 ** 0.
8 15 71 68.09 4.1
9 16 108 105.95 1.9
10 17 95 92.63 2.5
11 18 90 87.84 2.4
12 19 117 115.25 1.5
13 21 126 124.99 0.8
14 21 140 140 ** 0.
15 22 135 128.93 4.5
16 23 126 126 ** 0.
17 24 136 129.20 5.0
18 26 153 148.41 3.0
19 28 160 159.84 0.1
20 29 168 163.63 2.6

* Seconds of CYBER 855 (Fortran Compiler)
** Non-Optimal Solution

Chapter 2 79

Group 2

Table 2-5 : Computational Results for
Lagrangian Relaxation

Problem
Number

of
Tasks

Value of
Optimal
Solution

Value of
Lower
Bound

Gap
[%]

Time*

1 10 59 48.31 18.1 0.350
2 15 56 50.37 10.1 0.481
3 15 81 67.95 16.1 0.507
4 15 96 89.43 6.8 0.434
5 16 99 79.38 19.8 0.629
6 16 90 77.20 14.2 0.626
7 16 113 103.62 8.3 0.559
8 16 88 67.68 23.0 0.538
9 18 88 85.10 3.3 0.644
10 20 112 108.53 3.1 0.769
11 20 96 86.20 10.2 0.817
12 20 127 98.10 22.8 0.985
13 23 120 108.93 9.2 1.264
14 25 120 91.09 24.1 1.255
15 25 128 112.21 12.3 1.308
16 25 162 144.33 10.9 1.370
17 25 126 107.71 14.5 0.939
18 25 151 138.79 8.1 1.408
19 30 168 158.57 5.6 1.942
20 30 171 145.39 14.9 1.952

* Seconds of CYBER 855 (Fortran Compiler)

Chapter 2 80

Group 3

Table 2-5 : Computational Results for
Lagrangian Relaxation

Problem
Number

of
Tasks

Value of
Optimal

Solution
Value of
Lower
Bound

Gap
C%3

Time*

1 35 207 201.20 2.8 2.262
2 35 200 196.20 1.9 2.783
3 35 216 214.71 0.6 2.646
4 35 225 175.50 22.0 2.097
5 40 252 232.59 7.7 3.645
6 40 208 195.32 6.1 3.673
7 40 234 227.45 2.8 3.885
8 40 243 240.08 1.2 3.179
9 45 279 263.37 5.6 4.611
10 45 248 240.81 2.9 3.560
11 45 256 252.16 1.5 4.518
12 45 279 272.30 2.4 4.274
13 50 297 294.32 0.9 5.032
14 50 315 309.65 1.7 4.748
15 50 264 264 ** 0 . 5.230
16 50 301 255.35 15.2 5.901
17 55 304 304 ** 0 . 5.975
18 55 351 348.89 0.6 6.270
19 55 296 271.43 8.3 6.730
20 55 322 314.92 2.2 6.127

* Seconds of CYBER 855 (Fortran Compiler)
** Non-Integer Solution

Chapter 2 81

7- Conclusion .

The formulation of the CSP presented in section 2-2 has proved to be so tight

that 80% of the 101 CSP's randomly generated were exactly solved by the use of just

an LP package. A lso the CSP cutting-plane algorithm which is based on logical and

Gomory's cutting-planes has proved to be quite useful in solving the remaining

problems.

How ever, because of the very large size o f the formulation and because of the

limitations imposed by LP packages (on which the cutting-plane program is based)

only CSP's of up to 30 tasks have been solved . In order to solve larger problems

Lagrangian relaxation was investigated on another formulation . In its original form

this formulation consists only of a B CSP .The time constraints are dynamically

generated in the course of the Lagrangian relaxation algorithm. As they are generated,

they are added to the problem and subsequently relaxed in a Lagrangian fashion .

In addition to being able to tackle CSP's o f size up to 55 tasks , the Lagrangian

relaxation technique has proved in some cases to be an efficient tool for obtaining good

lower bounds . Thus we can say that in 60% of the cases tried the quality of the bound

was quite satisfactory . However for some cases it can be as bad as 20% away from

the optimum. Thus in 40% of the CSP's tested we found the Lagrangian relaxation to

be poor.

In summary , the CSP cutting-planes algorithm based on an efficient

formulation o f the CSP has proved to be much better than the Lagrangian relaxation .

It would have been worth further investigation had it not been for the fact that the

procedure o f the next chapter proved to be a vastly superior method for all CSP test

problems.

Chapter 3 82

C H A P T E R 3

A F O R M U L A T IO N O F T H E C S P B A S E D

O N G R A P H T H E O R E T I C A L C O N C E P T S

1- IN T R O D U C T IO N .

W e saw in the previous chapter why the direct formulation o f the CSP was

inadequate for large problems (more than 50 tasks). In an attempt to overcome this

drawback a new formulation o f the CSP w ill be given in this chapter . Like the

previous one it is a network flow based formulation . The network G on which this

formulation is based is an expansion o f the network G of a CSP (see section 3).

In G , all the paths have length equal to the working duty period or less .

Consequently , the time constraints w ill not be considered in the formulation which

consists of flow constraints and additional partitioning type constraints.

In section 2 , an example w ill be given which explains the main idea of

Chapter 3 83

converting network G representative o f a CSP into network G and the possible

reduction o f G into a smaller network G . The general algorithm of expanding any

network G , representing a CSP , into a network G and the reduction o f G into G w ill

be described in detail in section 3 . Section 4 deals with the formulation o f the

problem. The problem is solved by using just a linear programming package . In

section 5 we study the worst case analysis o f the size o f network G on which the

formulation is based . Very good results for 270 randomly generated CSP's are ,

presented in section 6 . Two straightforward extensions o f the problem are

considered in section 7 . The good results obtained for the 270 CSP's led us to ask

ourselves about the possible integrality o f the extreme points of the convex polytope of

the CSP .This is discussed in section 8 .

2- Exam ple H lustrating the M ain Idea o f the Form ulation .

Consider network G , o f figure 3-1 ,which represents a 4 task-CSP . For each

task i (i=l,...,4) of the C S P , le t :

P(i) = set of all paths of G that have arc (a ^) as the first task-arc.

For example, corresponding to the second task of the CSP represented by G we have:

P(2) ={(PS, a2)(a2,p2)(p2- a3)(a3,p3)(p3> aR))u{(Ps, a2)(a2>p2)(p2, aR)}

u { (Ps, a2)(a2,p2)(p2, a4)(a4,p4)(P4, aR) }

Now , if we consider task-arc it *s clear that it can belong either to a

path o f P(l) or to a path of P(2) . Hence we can represent task 2 by 2 directed

task-arcs (c^ ,^)an£* having the same starting and finishing times as

Chapter 3 84

Figure 3-1 : Network G Representing a 4 Task-CSP.

0 100 200 300 400 500 6001 ■■« -- « « ■ « »

tO.TOO) ___________(0£}
/ B» ’

10.1001 fe _______________ —

' V s*

5 ^ _ '1200)00)
'(SToi------

* 4 0 4

0^230)

0______100_____200 300 400 500 600 ■*>

Figure 3-2 : Network G

Chapter 3 85

(a^p^. I f »in the optimal solution arc (a^,p2) is chosen this w ill mean that task 2

w ill be covered by the same crew that starts from task 1 . Similarly , if arc (a^P^) is

picked up then this means that one of the crews w ill start its route by covering task 2 .

In the rest o f this section , we w ill express this fact by saying that arc (oĉ P)̂ (resp.

(a2,P2)) represents task 2 in P(l) (resp. P(2)) . Repeating the same procedure of

representing by task-arcs each task in the possible P(i)' s , and joining all the task-arcs

corresponding to the same P(i) ,(i=l,...,4) , we get network G o f figure 3-2.

Furthermore this new network G can be reduced in size . Thus , it can easily be seen

that task-arcs (a4,p4), (a4,p4) and (a4,pj) can be coalesced. This is because they all

have the same end , ie they all have no succeeding task-arc . For the same reason ,

task-arcs (03 ,p3) and (013^ 3) can also be coalesced . But (a^P^ and (02 ,P2) cannot

be coalesced because they do not have the same end : arc (a2,P2) is linked with

(a4,P4) and (03^ 3) , whereas (a^p^ has no link at all with the arcs that represent

task 3 (ie (oc^p*) and (a^p^)).

The network G obtained by coalescing (a4,P4), (a4,p4) and (a4,p4) together

and by coalescing (a^p*) and (0(3^ 3) together is given in figure 3-3.

Figure 3-3 : Network G.

O 100 200 300 400 590 600

Fina lly , before going on to the next section, it is worthwhile noting that:

(i) Networks G ,G and G are all alike in that they have the same structure , ie they all

Chapter 3 86

have task-arcs, linking-arcs and source (sink)-arcs;

(ii) To each task i o f the C S P , there corresponds a unique task-arc (a ^) in G and a

set of task-arcs (aj,p{), (a ? (o £ p £) in G (or G) which represents task i in

the possible P(k)'s ,k=l,...,p ;

(iii) For each task i of the C S P , the source ps o f network G (or G) is linked with the

task-arc (ps, a}) that represents i in P(i). This is because all the other task-arcs that

represent i in the other P(j)'s have to belong to paths starting with previous task

arcs. Consequently , there is no need to consider the source arcs that link them

with the source. However, the sink a R is linked with all the task-arcs o f G(and

G) ;

(iv) It is clear that in each set of task-arcs of G (or G) one and only one arc must be

covered;

(v) The length of any path of G is less than or equal to the work duty period since

only the task-arcs corresponding to the same P(i) have been linked together.

3- The G raph Expansion A lgorithm A 8.

Let us assume that the tasks are ordered and renumbered in ascending order of

their starting time x®.

Let P (k) be the family o f all paths o f network G from the source ps to the sink

a R whose first task-arc corresponds to task k . Consider a task-arc (a ^) in G .

C learly , arc (a^pj) must belong to one o f the paths Pk ,k= l,...,i so that
F V STk^T and FTk+A(FLkiSL^STi (3-1)

Let us denote the set of those k which satisfy the above condition for a given i by Q j.

Step 1 : Task-arcs

Each task i corresponds to a set o f IQjl arcs (ajlp?), p e Qj . The pth copy o f this

arc,ie (a ? $, is a representation o f (oci,pi) in the family P(p) . The cost and time

duration o f arcs (a£p£), p e Q i are the same as those for arc (a^pj) in G , and their

Chapter 3 87

totality (for i=l,...,m) is referred to as the task-set o f G .

Step 2 : Linking,source and sink-arcs .

(i) From a 'super-source’ vertex p s add the source-arcs (Ps,a|) for i= l,...,m

(corresponding to arcs (p^cq) in G);

(ii) To a 'super-sink' vertex a R add the sink-arcs (Pj,aR) for i= l,...,m , and p e Q i?

(corresponding to arcs (pj,aR) in G) ;

(iii) Add linking-arcs (Pj^oy k e Q j ; for i= l,...,m , p e Q i ^corresponding to the

linking-arcs (pĵ oq) o f G).

The cost and time duration o f all these arcs are the same as for their corresponding arcs

in G .

Step 3 : Reduction Process .

Graph G above can be reduced in size somewhat by some very simple equivalence

conditions , to produce a new graph that we w ill call G . In particular, consider a
P p *** ~

task i and all the arcs (oq,pp ,p e Qj which represent i in G . Let V j be the set of

terminal vertices o f arcs which emanate from vertex p jo f graph G . Let W [be the set

of task-arcs corresponding to the linking-arcs of G whose initial vertices are in V j . We

assume a dummy task-arc (say (n+1)) corresponding to the case where a R (ie the sink
/s/ ^

of G) belongs to V.*.If W f is the same set for all p e S c Q. then any path p e S which
p V

"covers” task i w ill have the same 'future' (ie w ill follow the same subpath to ocR)

regardless o f its 'past' (ie the subpath followed to reached task i). Thus , the arcs

(aj!pJ)forpe S can be coalesced into a single arc (Gyp*) so that every arc emanating

from p f in G now emanates from pj and every arc terminating at a f in G now

terminates at of. G is the graph with all such arcs coalesced and Q: the equivalents
J L a p

The above algorithm which transforms G into G clearly produces a graph G in

which all paths are time feasible . Indeed, the penalty paid for ensuring this path

feasibility is firstly that the graph is enlarged , and secondly that we must now add

"set-partitioning" type constraints to express the fact that for a given task i , only one

Chapter 3 88

of the arcs in the set represented by Q i needs to be "covered" by the ps to a R paths in

G .

4- The Problem Form ulation .

ri
Let y .. = *{

Vq [0
if non-required arc (P?, a?) e N of (j
is in the solution 1 J
otherwise

The problem now becomes:

Minim ize / c..y. .

subject to :

f 0 , i= l,...,m ; p e q\ 1 I v * A— j

Z y -u - X yj i H K - i=s • p=1_ P*q _ V p [-K , i=R , p=l
j eV.+ j eV. Jq i Q ip q

X X yj i =
peqjevr qp

p

i= l,...,m

^ . e {0,1 } ,V (pF,a .q) e N
p'q

(3-2)

(3-3)

(3-4)

(3-5)

Constraints (3-3) above are the flow conservation constraints and constraints

(3-4) are set-partitioning type constraints expressing the fact that each task must be

performed exactly once.

Chapter 3 89

5 - W orst Case Analysis o f the Size of network G .

If in the CSP there are m tasks , the maximum number o f task-arcs in the

expanded graph G is m(m+l)/2 which leads to m(m+l) + 2 vertices . This condition

occurs when all task are disjoint in time and T (the shift tim e) is very large. If ,as in

all real problems , the shift time allows a maximum of k tasks to be performed by a

single crew-schedule then the maximum number o f task-arcs in G is k m . Under these

conditions, the maximum number of non-required arcs terminating at the initial vertex

o f a task-arc is also k ; so that the maximum number o f linking-arcs in G is k2m .

Therefore, the formulation defined by (3-2)-(3-5) contains at most k^m variables and

(k+l)m + 2 constraints . Thus , for any real-world CSP the problem in formulation

(3-2)-(3-5) is o f very much smaller size than the problem in formulation (2-l)-(2-4),

and well within the capabilities of existing LP codes.

6- Com putational Results .

Use o f linear programming to obtain bounds from the formulation presented in

the previous section led to computational experience (see table 3-1) whereby in all 270

test problems generated and solved , the LP solution was integer in all cases , and

hence no tree-search was necessary.

A ll problems were randomly generated in 4 groups as follow s:

G roup 1 : CSP ’s varied in size from 10 to 30 tasks , and a total of 100 problems

were generated . For each problem the duty period was taken to be T =6 hours , and

each task had a random starting time in the range 00.00 to 24.00 hours and a duration

that varied randomly from 45 minutes to 2 hours 30 minutes. The cost coefficient cy

of the linking-arcs were generated according to the formula:

Cy = (1 + a) djj

where dy is the duration (in minutes) from the end of task i to the beginning of task j ,

Chapter 3 90

and a is a randomly generated constant in the range 0 to 1 . In all problems , the

number of crews M assumed was the minimum number M * feasible for the CSP . A

uniform distribution was used to generate all random numbers.

G roup 2 : CSP's varied in size from 40 to 80 tasks , all other details as for group 1.

A total of 60 problems were generated.

G roup 3 : CSP's varied in size from 35 to 150 tasks with a duty period o f T= 6

hours, but with no two tasks overlapping in tim e. The same randomly generated task

duration as in group 1 was used but with an unlimited (instead o f 24 hours) planning

horizon. A total of 60 problems were generated.

G roup 4 : CSP's generated from the same 25 task-problem by varying the cost

coefficients thus producing 50 test problems.

From table3-l it is seen that CSP's o f quite practical size (about 100 or so

tasks) can be solved optimally by the algorithm based on the formulation o f section 4 .

As a means o f comparison , it is worthwhile to note here that problems in groups 2

and 3 were too large to be solved by the formulation (and algorithm) of the previous

chapter.

Rem ark 1 : F in d in g the m inim um num ber o f crews , o f the C S P ,

required to cover all tasks .

W e have already mentioned in section 2-3 (chapter2) that the problem o f finding

the minimum number o f crews (M NC) required to cover all tasks of the CSP is an

NP-complete problem .The current formulation o f the CSP (section 4) can be used for

this purpose. The idea is based on the fact that if a number m of crews is used which

is less than M N C then solving the formulation o f the CSP with any LP package w ill

lead to an infeasibility of the problem.

The method we have adopted to determine the M N C of all the 270 CSP's of

table 3-1 was as follow s:

(i) Use the greedy algorithm of section 2-4 (chapter 2) to determine a heuristic

value o f the M N C .Let m ̂be this value;

Chapter 3 91

(ii) B y setting M N C = m ,̂ m^-l, mg-2,... we solve with the LP package the

corresponding CSP's . Whenever an infeasibility is found then we know that

M N C= ihq + 1 where m ̂ is the number of crews of the "infeasible" C S P .

It is worthwhile to mention that in more than 80% of the cases the M N C was

obtained directly by the heuristic algorithm and for all the remaining problems the

difference between the M N C and its heuristic value never exceeds 2 .

Remark 2 : An attempt to generate a CSP with a non-integer

LP-solution.

If we can prove that all the extreme points o f the linear polytope (say P) o f the

C S P , as formulated in section 4 , are integer then we can say that the CSP can always

be solved with an LP package. To prove this is not an easy task. This is discussed in

more details in section 8 .

Now , to prove that the CSP cannot always be solved with an LP package it

suffices to produce a single problem for which the optimal solution o f its linear

relaxation is not integer. Problems o f group 4 (see table 3-1) have been generated with

this purpose in m ind. A ll these problems were generated from the same 25 task-CSP

by varying the cost coefficients. This means that they all have the same polytope (say

P25) but have different objective functions. The optimal solution of each one of them

correspond to a different extreme point of the polytope.

In doing so , we have tried to find a non-integer extreme point o f the polytope

P25 . But it was in va in . Although we can say that the 50 extreme points (of P25) we

have considered are all integer this does not mean that there does not exist a

non-integer extreme point o f P25. Simply because the number o f these extreme points

runs into thousands and to be able to claim this we have to keep varying the cost

coefficients till all the extreme points of P25 are tested . Clearly , this is practically

impossible. In these circumstances we think that some effort should be made in trying

to prove that the CSP can always be solved with an LP package. This is discussed in

section 8 .

Tabla 3-1 t Computational Parforaanca of tha Graph Expansion Algorithm.

Problaa
Nuabar
of

Tasks
Nuabar
of

Problaas
8isa of tha LP Problaa

[rovsxcolumns}
minimum avaraga maximum

Sisa of Expandad Graph
[Task-Arcs]

ainiaua avaraga aaxiaua
Tima*

Expansion Tima LP Solution Tima
ainiaua avaraga maximum minimum avaraga maximum

10-14 20 25x 59 3 OX 75 38x 94 15 18 24 0.1 0.2 0.2 0.2 0.4 0.6

15-1# 20 4 lx 98 49X 132 57x 151 26 31 38 0.2 0.3 0.3 0.8 1.0 1.3

Group 1 20-24 20 59x 151 62x 171 66x 190 39 40 42 0.3 0.4 0.4 1.0 1.2 1.6
*

25-29 20 77X 239 S3X 263 9lx 298 52 57 62 0.5 0.5 0.6 2.1 2.5 2.9

30 20 S8X 283 9IX 298 92x 321 58 61 62 0.5 0.6 0.6 2.1 2.9 3.2

40 20 129X 494 132X 509 153x 632 89 92 113 0.8 0.9 0.9 4.5 6.5 8.4

Group a CO 20 21IX 732 222X 864 262X 984 151 162 202 1.0 1.7 2.3 15.6 17.4 19.2

80 20 385x2018 386X2179 390x2239 305 306 310 4.1 4.2 5.1 29.6 34.7 37.8

35 10 112X 319 12IX 323 128X 338 77 86 93 0.6 0.6 0.6 4.8 5.3 5.4

Group 3 50 20 1S0X 473 1S5X 482 192X 487 130 135 142 0.9 1.0 1.1 8.9 10.2 9.3

70 20 314x1810 317X1821 332X1997 239 242 257 2.4 3.1 3.4 20.7 23.4 30.1

150 10 722x6048 726X6119 737X6280 572 576 587 10.7 11.6 12.9 200.3 210.2 218.5

Group 4 25 50 77x 239 79x 242 80x 260 52 54 55 0.5 0.5 0.5 2.1 2.2 2.2

* Saconda of CYBER BSS (Fortran Coapilar)
VO

Chapter 3

Chapter 3 93

7- Extensions of the CSP .

Two straightforward extensions o f the crew shceduling problem are considered

in this section . Each extension corresponds to a more realistic version of the CSP . It

basically consists o f the CSP plus one or two additional constraints . The graph

expansion technique was modified and applied to each problem accordingly.

Like the CSP , a linear programming package was sufficient to solve all the

randomly generated problems.

Without loss o f generality , we w ill assume that the CSP is an airline crew

scheduling problem . Also we w ill suppose that each crew is associated with a single

plane and vice versa. Hence the terms 'crew' and 'plane' w ill be used interchangably.

7-1 The Airline Crew Scheduling Problem with Rest Periods .

7-1.1 Introduction .

In the airline crew scheduling problem (ACSP) the planning period was

assumed to be one day o f 24 hours . This is indeed the case for most airline

companies. However for some companies (the largest ones) a weekly planning period

is much more desirable . This is because of the type of flights they cover . One such

type consists o f the intercontinental flights which can take up to 15 hours and can start

at any time of the day (8.00am,4.00pm,3.00am,...etc...) . Consequently , the union

regulations require that each crew who cover such type of flights should have a rest of

at least a given number of hours (say 12) between any two consecutive trips.

The new airline crew scheduling problem ACSP1 is :

"minimize the cost of constructing crew pairings such that:

(a) each flight must be covered once by one and only one crew (the number of

flights N and crews K are known);

(b) the planning period is one week of 7 days;

Chapter 3 94

(c) the flying duty period T 0 ,ie the maximum period o f time during which a

crew operate without stop , is fixed and the same for all crews;

(d) the crew rest period (CRP) between any two consecutive trips must be

greater than a time T j and smaller than T 2 (of course T 2 > T j) "

A crew pairing consists o f a set o f trips separated by crew rest periods. A trip is

in turn made up of a set o f flight-legs covered by a crew without interruption.

Using the graph expansion algorithm A 8 o f section 3 , we first expand the

network G representative o f an A C S P into a network G in which all paths satisfy

condition (c) above. Then, network G is in its turn modified into network G in which

all paths satisfy (a),(b) and (d).

An example explaining this modification is given in section 7-1.2 . Then the

general algorithm A9 for converting network G into G is described in section 7-1.3 .

Based on G , a minimum cost network flow problem formulation plus additional

partitioning type constraints has been devised .One hundred seventy randomly

generated problems of size varying between 5 and 50 flights have been solved using

just an LP package. The results are presented in section 7-3.

7-1.2 Exam ple .Consider the ACSP1 represented by network G o f figure 3-4 . In

fact this is just a subgraph o f the whole graph G . In reality , G contains many more

flight-arcs since the planning period is supposed to be one week . In figure 3-4 only

the first 10 flight-arcs have been represented. This will be enough to explain the main

• idea o f algorithm A9 . Although the network o f figure 3-4 is just a subgraph of G , in

what follows we w ill refer to it as G .

The flying duty period T 0 is assumed to be 600 minutes , the minimum and

maximum crew rest periods (CRP) are respectively equal to T 1=700 minutes and

T 2=1000 minutes .Using algorithm A 8 o f section 3 , we obtain network G of figure

3-5 . For the purposes o f clarity the linking-arcs and sink-arcs o f G have not been

represented.

100 200 300 400 600

~ ^ D-
/ \ H

1 \ \ ------- -
1 \ - A
\ V /
\\

\
\

\ *•/
-0*2-

/
\ \ a*
\ \

-O"
o

600 700 800 000 1000 1100 1200 1300 1400
— •------- ■------------------------------- --- ►

“r
o

0,

-1-V4>
*■. \

\ V 7
\

\
\

fli
- I K

f \

\ a(
\

'^ 4 > .MO

(W*
s■nn
itt

a
%o

O

■ o1̂0 VOUl

Chapter 3

Chapter 3 98

If in G we assume that a trip consists only o f flight-arc (a j,p j) , a crew

covering this trip w ill need a rest o f minimum CRP of 700 minutes and maximum

CR P of 1000 minutes . Hence the next trip covered by this crew w ill have either

(cc^Py) or (a|,p|) as first flight-arc . This is because the difference dj (resp. d2)

between the starting time of (<Xy,P̂) (resp. (cx|,p|)) and the finishing time of (a^pj)

is such that T 1<d1<T2(resP* T 1<d2<T2). W e express this fact by joining arc (a^pj)

with both (oty.pj) and (a|,p|). These arcs w ill be called "rest-arcs" and costs w ill

be attached to them since they have the same function as the linking-arcs.
/ V a.

Applying the same reasoning to all flight-arcs o f G we get network G which is

represented in figure 3-6 . It is exactly the same as network G except that it has

rest-arcs in addition. For the sake of clarity only the rest-arcs departing from arc

(aj,p|) have been represented.

7-1.3 A lgorithm A9.

In this subsection, a detailed description o f the algorithm that converts G into G

is given . For each flight f of the A CSP we w ill use P(f) to be the set of all paths of G

that have arc (i,j) (corresponding to f) as first flight-arc . G is the network

representative o f an A C S P .

First, algorithm A 8 is applied to network G to obtain a network G in which no

path has length greater than the flying duty period. Subsequently, G is used as input

for algorithm A9 which consists of the follow ing:

Step 0 : i = 0 ; G O T O STEP 1;

Step 1 : i = i + 1 . Consider flight i and set j = i . G O TO STEP 2 ;

Step 2 : j = j + 1. Consider flight j (j>i) and compute

d = starting time of flight j - finishing time of flight i

G O TO STEP 3 ;

Step 3 : If d<Tl or d>T2 G O TO STEP 4 ;Else link all flight-arcs of G corresponding

1 1

Chapter 3 99

to flight i with the flight-arc corresponding to P(j) .G O TO STEP 4 ;

Step 4 : If all flights j's have been scanned G O TO STEP 5 ; Else G O TO STEP 2;

Step 5 : If all flights i's have been scanned S T O P ; Else G O T O STEP 1.

The output o f algorithm A9 is network G and the new arcs generated in step 3

are called "rest-arcs".

7-2 The M u ltip le Depot A irlin e Crew Scheduling Problem [35].

7-2.1 Introduction .

In the airline crew scheduling problem (A C S P), we assumed im plicitly that

there was one single depot from which all the planes depart and to which they all

return . Also the costs of bringing a plane from the depot to any flight’s starting place

and from any flight's ending place to the depot were assumed to be n il.

This section deals with a more practical version of the problem . That is to

suppose that the airline company has not only one depot but several depots . Also each

depot has got a known capacity ie it cannot house more than a given number of planes.

This problem is called the multiple-depot A CSP (DCSP or ACSP2) and is defined as

follows:

"minimize the cost o f covering a certain number of flight-legs by a given number of

planes (or crews) such that:

(a) each crew is assigned to only one plane;

(b) each flight must be covered by one and only one plane;

(c) the planning period is one day of 24 hours;

(d) the flying duty period T q is fixed and the same for all crews;

(e) the company has a given number o f depots (say L) ;

(f) each plane must return , at the end of its journey , to the same depot from

which it has departed;

Chapter 3 100

(g) costs are attached to the operation o f bringing a plane from a depot to a

flight's starting place or from a flight's finishing place to the depot

The network representative G D of an ACSP2 is exactly the same as the network

G representative o f an A CSP except that in G D we assume L super-sources and L

super-sinks (L is the number of depots).Since each flight o f ACSP2 can be covered by

one and only one plane which comes from one depot, we can represent each flight by

L flight-arcs (one for each depot). Linking the flight-arcs corresponding to the same

depot together in the same manner as in G we obtain L different networks, each with a

source Pg and sink a R corresponding to depot i . A unique network GDresults by

joining all sources pj,pg... p§ (resp. sinks a^ ,a^ ,...,a^) to a super-source ps

(resp. super-sink a R).

An example explaining how to obtain Gj^ from G is given in section 7-2.2 and

the general procedure is given in section 7-2.3.Applying algorithm A8 of section 3 to

each one of the subnetworks of G D we obtain a network G D in which all the above

conditions of the ACSP2 are satisfied .We conclude this whole section by giving some

good computational results . Thus , for all the 170 randomly generated problems , the

optimal integer solution was found in all cases by just using an LP package . The

results are presented in section 7-3 .

7-2.2 Exam ple .

Consider the 6 flight - 4 planes ACSP2 represented by network G of figure 3-7

in which two depots o f capacity 3 and 2 respectively are given. For the sake o f clarity

the source and sink-arcs have not been represented.Also let us assume that the flying

duty period is 500 minutes . Source pg (i=l,2) and sink a^(i=l,2) correspond to

depot i (i=l,2).

This network is clearly the same as the network representative of an A CSP

except that we assume 2 sources and 2 sinks .Each flight i (i=l,...,6) can be covered

by a plane coming either from depot 1 or depot 2 . Hence we can represent each flight i

Chapter 3 101

Figure 3-7 : Network G .

8CN o o

Q r r ?

oOr~~

o
s

sin

8 ’<r

?Q=̂

lcr̂ " f
/

/
/

\

/
/

/
/

\

* v
/

8.
CM l

Ad

o o
-«£• WC1«

O ’

Chapter 3 102

Figure 3-8 : Network G D .

Chapter 3 103

by 2 flight-arcs , one corresponding to depot 1 and the other to depot 2 . If we link

together all the flight-arcs corresponding to the same depot, and then join them to the

corresponding source and sink, we obtain 2 similar networks . Finally joining Pg and

ps (resp, aR and aR) to a super-source (resp. super-sink) we obtain network G D of

figure 3-8. The following remarks concerning G D can be m ade:

(a) Network G D is made up of 2 subnetworks corresponding respectively to the

2 depots;

(b) each subnetwork o f G D can be considered as a network representative of 6

flights ACSP. Consequently algorithm A 8 o f section 3 can be applied separately to

each subnetwork in order to obtain 2 subnetworks G D and G D in which all paths have

duration less than or equal to the flying duty period;

(c) costs are attached to each linking-arc, source-arc and sink-arc;

(d) arc(ps,p1s) (resp. (Ps,pg)) and (aR, a R) (resp.(aR, a R)) have capacity 3

(resp.2);

(e) the total input flow (from Ps) is 4 (ie the number o f planes).

7-2.3 A lgorith m A10.

In this section , we present a procedure for constructing the network G D

representative of a ACSP2 with n flights , K planes and L depots (d j,...^) of known

capacities. As input to the algorithm we have network G representative o f the ACSP

which consists of the same flights as the ACSP2 and the same number o f planes.

Step 1 : Construct L disjoint networks G j,...,Gl all identical to G . Network G i

(1< i < L) corresponds to depot dj and has got source pg and sink aR .G O TO STEP2 ;

Step 2 : Join all sources Pg,..., Ps with a super-source Ps and all sinks ocR,..., a R

with a super-sink a R .G O TO STEP 3;

Step 3 : Set the capacity of each arc (Ps , pg) and (a R, a R) equal to that of the

depot d j; set the capacities of all other arcs to 1; G O TO STEP 4 ;

Step 4 : Attach costs to the source-arcs and sink-arcs o f each network G i (l<i<L).

Chapter 3 104

Set the input flow equal to the number of planes of the problem.

As output to this algorithm we obtain network G D representative of a ACSP2.

Since each Gj (i=l,...,L) o f G D is identical to G if we apply algorithm A 8 to each one

of them we obtain a network G D made up o f L networks G l 5...,GL all identical to G

in which all paths have duration smaller than or equal to the flying duty period. Each

flight of the ACSP2 has in each G j (i= l,...,L) several corresponding flight-arcs .

Hence out o f all the flight-arcs of G D corresponding to that flight only one w ill be in

the optimal solution.

7-3 Com putational Results for the Tw o C S P 's Extensions .

For each extension o f the CSP (table 3-3) a total of 190 problems were

randomly generated in two groups :

G roup 1 : Problems varied in size from 10 to 50 tasks . A total of 140 problems

were genrated for each one of the multiple depot CSP and the CSP with rest periods .

The cost coefficients c- o f the linking-arcs were generated as in section 6,ie according

to the form ula:

Cy = (1 + a) djj

where dy is the duration (in minutes) from the end of task i to the beginning of task j

and a is a randomly generated number in the range 0 to 1. A ls o , in all problems the

number o f crews was taken to be the minimum number M * feasible for each problem.

The way of finding M * has already been explained in section 6 (remark 1). A ll the

other details are given in table 3-2.

G roup 2 . For each CSP's extension , the problems were generated from the same

25 task-problem by varying the cost coefficients thus producing 50 test problems . By

doing this we were trying to generate a problem with a non-integer LP solution . This

has already been explained and discussed in section 6 .

Chapter 3 105

Table 3-2 : Some Details about the Randomly Generated Processof the Problems of Table 3-3.

CSP with rest period Multiple Depot CSP

Task Starting Time Vary uniformly in the range [0,Iweek]
Vary Uniformly in the range [0,24hours]

Maximum Duty Period (hours) 12 6

Maximum Rest Period (hours) 16 N/A

Minimum Rest Period (hours) 12 N/A

Number of Depots N/A 2 depots for DCSP's of up to 20 tasks;3 depots for larger DCSP's.

N/A : non-applicable

Table 3-3 : Average Computational Results for the 2 CSP'S Extensions

P ro b le m
Number

o f
T a s k s

Number
o f

P ro b le m s

S i z e o f LP +
[ro w sx co lu m n s]
C S P 1* C S P 2**

S i z e o f G
[T a s k -A r c s]
C S P 1 CSP2

T im e + +
E x p a n s io n T im e L P S o l u t io n T im e

C S P 1 CSP2 C S P 1 CSP2

1 0 - 1 4 20 39 x 10 8 5 2 x 1 6 7 26 40 0 .2 0 .4 0 .7 1 . 1

1 5 - 1 9 20 69 x 200 8 7 x 289 49 68 0 .3 0 . 7 1 . 9 2 . 5

2 0 -2 4 20 9 6 x 33 2 1 5 2 X 450 7 3 1 2 6 0 . 5 1 . 1 4 . 1 8 . 1 .

G ro u p 1 2 5 -2 9 20 l l l x 399 1 8 3 x 860 82 1 5 5 0 .7 1 . 6 4 . 7 1 0 . 2

30 20 10 4 x 398 2 1 3 X 899 7 2 18 0 0 .7 2 . 2 4 . 7 1 5 . 6

40 20 1 4 4 x 600 3 4 2 x 1 7 0 1 10 2 300 1 . 2 4 .0 7 . 7 3 1 . 2

50 20 2 6 3X 996 4 7 3 x 19 5 8 2 1 0 420 4 . 1 1 0 . 1 1 9 . 5 6 6 .8

G ro u p 2 2 5 50 1 1 6 x 420 1 8 9 x 780 88 16 2 0 . 7 1 . 6 5 . 2 1 1 . 3

* C S P 1 * CSP w it h r e s t p e r io d ;
** CSP2 ■ M u l t ip l e d e p o t CSP ;
+ S i z e o f L P « S i z e o f L i n e a r P ro g ram m ing P ro b le m ?
+ + S e c o n d s o f CYBER 8 5 5 (F o r t r a n C o m p ile r) .

Chapter 3 107

8-APPENDIX : Are the Extreme Points of the CSP Polytope Integer ?

As a consequence o f the results obtained in the previous section , the natural

question that comes to one's mind is :

"Does the linear relaxation of the formulation o f the CSP always provide the optimal

integer solution o f the problem ?"

In this section, we w ill make an attempt to answer this question.

Our problem is in fact just a particular case of the following more general

problem .

Consider the integer programming problem (P)

min cx (3-6)

subject to

Ax = b (3-7)

x integer (3-8)

x £ 0 (3-9)

and its relaxation (LP) (ie constraint (3-8) is dropped); where

A is an mxn matrix of real numbers;

C is a non-negative vector o f n real numbers

and b is an m-vector of real numbers;

Let P’ = conv { x e R n I A x= b; x integer }; P' is the convex hull of the integer points

of P ;andlet P"= { x e R n I Ax= b; x > 0 }.

The question is : "under which conditions on the matrix A and the m-vector b ,do (P)

and (LP) have always the same optimal solution, independently of the cost vector c ? "

The first paper that dealt with this problem is the one published in 1956 by

Hoffman and Kruskal [89] who gave a necessary and sufficient condition for the 2

polytopes P' and P" to be equal. If these 2 polytopes are equal then , independently

of the cost c considered , the two problems (P) and (LP) w ill have always the same

optimal solution. A t this point it is worthwhile to remark that the converse is not true

Chapter 3 108

(as we w ill see later) . Before stating the theorem of Hoffman and Kruskal we need to

give the following necessary definition:

Definition : A matrix A is totally unimodular if and only if the determinant of each

square submatrix o f A is equal to 0,1 or -1 .

Theorem 1 (Hoffman and K ru sk a l) : If the matrix A o f problem (P) is totally

unimodular then P = P ’.The converse holds true.

An example o f problems that have totally unimodular matrices is the class of

network flow problems .It is well known that for this class o f problems the integer

problem and its linear relaxation have always the same optimal solution[17].

In our case , we are only interested in the first part o f the theorem. How ever,

with just definition 1 in hand it was not an easy task to determine if the matrix A of the

CSP was totally unimodular . Fortunately , the work o f Camion [36] came to our

rescue. In that paper it was proved that:

Theorem 2 (C am ion) : A matrix A (with 0,+l and -1 entries) is totally unimodular

if and only if for every square Eulerian submatrix A y we have :

y , aj = 0 modulo 4 (3-10)
id

where

D efin ition: A submatrix A y of A is said to be Eulerian if and only i f :

V i e I ^ a ! = 0 m° ti2 (3-11)
jeJ

V j e J ^ a ! - ® m od2 (3-12)
i d

in other words if the sum of elements in any column or in any row of A y is even .

After applying theorem 2 to our case (note that the matrix o f the CSP has only

0,+l and -1 entries) we found out that the matrix o f the CSP is not totally unimodular.

The following is a counter-example.

Exam ple : Consider ,in figure 3-9, network G representing a 3 task-CSP and its

Chapter 3 109

expansion , network G in figure 3-10.

Figure 3 -9 : Network G.

Figure 3-10 : Network G.

Chapter 3 110

Table 3-4 : Matrix A

Chapter 3 111

Let A be the corresponding constraints matrix. It is represented in table 3-4.

If in matrix A we consider the submatrix A y which consists o f :

columns 1,2 ,3 ,5 ,7,8 and 9 ; and

rows 1,2,3,4,7,10 and 11

we can easily see that A U (see table 3-5) is Eulerian , since the sum of elements in

any row and in any column is even. However,

X a! = sum of all elements of A = 2
J lyjjj

i.e. 5 1 aj ^ 0 mod 4
id

Hence A is not totally unimodular.

The fact that the matrix o f the CSP is not totally unimodular does not answer our

initial question . Thus , if P'= P" this does not mean that (P) and (LP) cannot have

always the same optimal solution .For example Berge (1972) proved that if a matrix A

is balanced, but not necessarily unimodular then

SOL(P) = SOL(LP) (3-13)

where SOL(P)(resp. SOL(LP)) is the optimal solution o f (P)(resp.(LP)). This

implies, of course, that each unimodular matrix is balanced.

Two years later, in \91AJPadberg generalized the notion of balanced matrices to

introduce the notion of perfect matrices. He showed that if a matrix A is perfect then

(3-13) is satisfied. He also proved that each balanced matrix is perfect

Unfortunately, these 2 results (of Berge and Padberg) cannot be applied to our

case because they are restricted to 0-1 matrices only and the matrix of the CSP has

0,+ l and -1 entries .Consequently, we w ill lim it ourselves to just giving the

corresponding references [30] for Berge and [128] for Padberg .

From now on, we w ill consider a completely different approach from the one

discussed above. Since we know that the class of network flow problems have totally

unimodular matrices then all we need to do is to check if the CSP is equivalent to a

Chapter 3 112

network flow problem . In which case , we would have answered our question .

This idea was first suggested by Iri [91] who gave a necessary and sufficient

condition for an integer programming problem to be convertible into a network flow

problem .

For this purpose , the matrix A o f the IP problem must be transformed first, by

row operations and column permutations, into a matrix of the form

A = [I/ L]

where I is an mxm identity matrix; and

L is an mx(n-m) matrix .

Theorem 3 (Iri 1966). Let A be the matrix of an integer programming problem

(P). The two following statements are equivalent:

(i) (P) can be converted into a network flow problem;

(ii) L is the cut-set matrix of a graph.

To define the cut-set of a graph we need to introduce the following notions :

A graph G is connected if there is a path from any vertex to any other vertex ie G has

to be in one piece . An example o f connected graph (Gj) is given in figure

3-11.Removing edge e5 from G j we obtain the disconnected graph G 2 shown in figure

3-12.

Figure 3-11: A Connected Graph G j Figure 3-12: A Disconnected Graph G 2

e20— ■— c)

A----
e3
S— -— i

e6

e4 e5 e7

el
>
e6

e7

Now,given a graph G=(X,E) where X is the set o f vertices and E is the set of edges,
Q

a disonnecting set o f G is a set o f edges ,say D c E , whose removal disconnects
s

G.Futhermore, if D does not contain any diconnecting set ie if no proper subset of D

Chapter 3 113

is a disconnecting set then D w ill be called "cutset".

In graph G 3 of figure 3-13 the set D=(ej,e10,e9,e4) is a disconnecting set. The

disconnected graph G 4 obtained after the removal of E is shown in figure 3-14.

Figure 3-13: Graph G 3 F igure 3-14: Graph G 4

Finally , the set D ’=(e2,e3) is a cutset in that it is a disconnecting set and none of

its subsets (ie {e2} or {e3}) disconnects the graph.For a more rigourous definition of

cut-sets and spanning-trees the reader is refered to [29,39,54,82].

Now, going back to Iri's theorem we have not been able to prove or disprove

that in general the matrix A of a CSP is the cutset matrix of a graph . However for

some given CSP's (by "given" we mean that the input data of the problem are known)

condition (ii) of Iri's theorem has been proved to be satisfied . The following is one

such example:

Exam ple :

Consider the network G of figure 3-9 and its expanded network G (figure3-10).

The constraints matrix corresponding to the formulation of the CSP is presented in

table 3-4.

By row operations and column permutations, matrix A becomes A' as shown in

table 3-6. In fact it has been transformed in such a way to have the required form

Chapter 3 114

Table 3-6 : Matrix A*

7

Figure 3-15 : Graph G A

Chapter 3 115

A'=[l/L] .According to the definition of the cut-set matrix of a graph, it is clear that A'

is the cutset matrix o f graph G A of figure 3-15. Each column of A is represented by an

arc in G A. The arcs corresponding to the columns of the identity-matrix I are in dotted

lines and form a spanning-tree .This shows that the CSP represented by the graph of

figure 3-4 can be exactly soved by a linear programming algorithm.

Chapter 4 116

C H A P T E R 4

T H E G E N E R A L C R E W S C H E D U L IN G P R O B L E M

1- Introduction .

The general CSP (GCSP) which was introduced in chapter 1 and which w ill be

considered in this chapter and in the next one consists of a CSP plus the two following

conditions:

(i) In all problems considered so far the scheduling problem has always

assumed that the starting and ending times for each task were specified .

Complications arise, however, if there exists a time-window in which a task must be

carried o u t: that is to say , task i must be completed between 8.00am and 8.30am .

W ith no time-windows , the set of tasks that can follow any particular task can be

specified a priori and an acyclic network as the one representing the CSP can be

constructed. With time-windows, the set o f feasible tasks that can follow a given task

cannot be specified beforehand and hence this acyclic network cannot be form ed. For

Chapter 4 117

Figure 4-1 : Network G

O 50 100 150 200 250 300 35(3» » * * — - ■ 1 1 ■ 1 — *j|

125-75)o— C75-125)
ft

(5o-ioo; 1
a 2

(125-175)

(lffi-185) j2^-260)

(200) (300)
a 4 04°

(220:280) _
»5

(2 ^ 3 0)

Table 4-1 : A 5 Task-GCSP .

Task
Window
Starting
time

(minutes)
Duration

time
(minutes)

1 25-75 50
2 50-100 75
3 165-185 75
4 200-200 100
5 220-280 50

Chapter 4 118

example consider the G CSP presented in table 4-1. The work duty period is assumed

to be equal to 200 minutes . The graph G which consists only o f the task-arcs is

represented in figure 4-1.

To show that an acyclic network cannot be formed consider tasks 1 and 2 . If a

crew start their trip by covering task 1 at any time between ,say 25 and 30 minutes ,

they w ill be able to next cover task 2 if it starts at time Xj greater than 80 minutes .

However if the trip o f this same crew starts ,say at time 75 minutes , then it w ill be

impossible for them to cover task 2 . Now even if we decide to link in graph G

task-arcs 1 and 2 with a linking-arc we w ill be ignoring a number of feasible solutions

that can be optimal and consequently the resulting solution w ill only be approximate.

(ii) Assuming that the crew and the corresponding vehicle form a single resource

package the problem becomes more difficult if we allow the possibility that vehicles

with different characteristics are available to service the tasks . In most cases the

characteristic is vehicle capacity. For example, in the school bus scheduling problem

[31] mini-buses can service the small schools and the regular buses can service the

large schools and either vehicle can service the medium size schools. For each task the

set of vehicles that may service it is specified .Assuming we want to cover the tasks of

the G CSP o f table 4-1 with 3 crews who w ill be using 2 vehicle types , the optimal

solution to the problem is depicted in figure 4-2. The cost c- o f linking 2 tasks i and j

in the optimal solution (or more precisely following task i with task j) is the difference

of time between the starting time of task j and the finishing time of task i . The types of

vehicle that can cover any task are given in table 4-2.

The general CSP (GCSP) consists in fact o f 2 extensions o f the CSP . If we

ignore the existence o f time-windows ie if the starting and the finishing times o f each

task are specified beforehand then we w ill be dealing with a multiple vehicle type CSP

(VCSP) which is similar to the multiple depot CSP (see section 7-2 o f chapter 3).

Now if in the GCSP we assume there is only one type o f vehicle the resulting problem

Chapter 4 119

w ill consist of solving a CSP with the additonal requirement that the due times are

given within time windows . This problem w ill be refered to as basic time-window

CSP (TCS P). Each one of these two problems (ie VCSP and TCSP) is clearly harder

than the C S P .

Figure 4-2 : Optimal Solution of the 5 Task-GCSP.

__________ 50________ 100 150 200 250 300 350

25o- 75
"~?0i*
J Z i 13

Pa

175o-
a 3

200o—
a4

250

/
M

300o
0 4

301o
0 5

Table 4-2 : Vehicle Types’ Assignment to the Tasks
of the 5 Task-GCSP.

Motivated by the series o f successful results obtained with the application of the graph

expansion technique (GET) to the CSP and its extensions we will attempt to generalize

G E T to more general problems .In section 2 we w ill be describing the application of

Chapter 4 120

G E T to the T C S P . The results obtained, when the "average time window" is narrow,

proved to be of the same quality as those obtained with the CSP . In this context the

"average time-window " is the sum of all the task time-windows divided by the

number o f tasks. When the "average time-window" gets bigger the size of the

expanded graph becomes so large that no existing LP package can solve the

corresponding linear program . Consequently , only small TCSP's o f size up to 15

tasks could be solved to optimality when the time-window can be very large ie take

any value between 00.00 and 24.00 hours .In section 3 the application o f G E T to the

V C S P is shown to be as efficient as in the case o f the multiple depot CSP (see

previous chapter) . A ll one hundred ninety randomly generated problems of size

varying between 10 and 50 tasks were solved optimally using just an LP package .

The expanded graph was constructed using an algorithm similar to that used for the

multiple depot CSP .Section 4 deals with the application o f G E T to G CSP . It is

particularly shown via extensive computational results that G E T is very efficient

provided the "average time-window" is sm all. Unfortunately as it increases,the size of

the problem that existing L P packages can handle decreases. To overcome this

drawback other approaches based on integer programming techniques w ill be

considered in the next chapter to deal with the case where the "average time-window"

gets larger .However we also consider a modified version o f G E T which , although it

produces an expanded network o f about the same size as the one obtained with the

previous G E T it is particularly useful when considering the G CSP with rest periods .

This is discussed in section 5 .More than one hundred fifty problems of each type (ie

TCSP, V C S P and GCSP) were randomly "generated and solved to optimality using just

an LP package. The computational results are presented in sections 6 .

Chapter 4 121

2- The Basic T im e W indow Crew Scheduling Problem (TCSP).

2 - 1 Introduction .

The basic time-window crew scheduling problem (TCSP) is defined as follows:

" minimize the cost o f covering a certain number o f tasks (n,say) by a given number

(K , say) o f crews in such a way that:

(a) each task must be covered once only by one crew ;

(b) the planning period is one day of 24 hours;

(c) the work duty period is the same for all crews;

(d) each task can have either:

(dl) a fixed and specified starting-time;

(d2) a starting time given within a time-window;

(e) the duration o f each task is constant regardless of when it starts

Unlike network G representative o f a CSP , network G q representative o f a

TC S P is not acyclic . However with a slight modification o f G q , we can obtain a

network G t which has the same properties as G .

Applying the graph expansion algorithm A 8 (see section 3, chapter 3) to G t we

get a network G t in which all paths have duration less than or equal to T . An example

explaining the conversion o f G q into G t is first given in section 2.2. Then the general

procedure of modifying G t into G t is explained in section 2.3 . Section 2.4 deals with

the formulation o f TCSP (based on network G t) which is a minimum cost network

flow problem plus additional partitioning type constraints . As with the C S P , an LP

package was sufficient to solve all 170 randomly generated problems of size varying

between 10 and 50 tasks . The results are presented in section 6 .Before considering

the next section it is worthwhile to mention that heuristic algorithms have been devised

to solve the TCSP or its variants [55,115,125,137].

Chapter 4 122

2 -2 Exam ple .

Consider the TCSP represented by the data of table 4-3 , in which the work duty

period is assumed to be 7 hours 30 minutes. Except for task2, the starting times of all

tasks are given within a time-window . For example task 4 starts between 12.10am

and 12.30am and hence finishes between 14.10am and 14.30am.

Table 4-3 : A 4 Task-TCSP .

Task
Window
Starting
time

(hr & mn)
Duration

time
(minutes)

1 6.50-7.00 90
2 9.00 120
3 12.00-12.20 150
4 12.10-12.30 120

The corresponding graph G q , in which only the task-arcs are represented , is

depicted in figure 4-3 . Unlike network G representative of a CSP it is impossible to

represent the linking-arcs in G q . Indeed, if we assume that task 1 starts at 7.00 and

task 3 at 12.00 it w ill be possible to link the two corresponding task-arcs in G q .
However if task 1 starts at 6.50 and task 3 starts at 12.10 it w ill be impossible to link

Chapter 4 123

Figure 4-3 : Network G q

§
r>Q.

nd

oS<6

a

4

6

12
10

-12
-3

0
__

_a
__

__
__

__
__

m-v
+w

Chapter 4 124

Figure 4-4 : Network G t of the 4 Task-TCSP.

o_,cc

3 Jf2Q$ 59
s?

_o a

Chapter 4 125

To overcome this problem we need to make the following assumption : "Instead of

considering the tasks starting-times within continuous time-intervals we w ill consider

them within discrete time-intervals. Thus , task 3 , for example , which is to start

between 12.00 and 12.20 w ill be assumed to start either at 12.00 or 12 .10 or 12.20 .

Sim ilarly taskl (resp. 4) is assumed to start either at 6.50 or 7.00 (resp. 12.10 or

12.20 or 12.30).

W e express this fact by representing task 1 (resp. 3 and 4) by 2 (resp. 3)

task-arcs as shown in network G t o f figure 4.4 . Like network G representative of a

C S P , network G t consists o f :

(a) task-arcs : to each task i of the TCSP corresponds a set o f task-arcs ;

(b) linking-arcs : these are the arcs that link the task-arcs . The conditions for

joining two task-arcs i and j (or more precisely to join the final extremity of task-arc

i with the initial extremity (Xj of task-arc j) are exactly the same as for G .Also since in

G t a task is represented by a set of task-arcs we have to consider in G the extra

condition that 2 task-arcs correponding to the same task cannot be linked;

(c) source-arcs and sink-arcs : like G , a super-source Ps and super-sink a R

is linked with the starting or initial nodes ô 's o f the task-arcs and all the finishing

nodes pj's of the task-arcs are linked to a R.

It is worth wile noting that although we know which task-arc correspond to wich

task, we assume when forming the source-arcs and sink-arcs that each task-arc of G t

corresponds to a different task. Consequently , we can consider network G t o f figure

4-4 as the network representative o f a 9 task-CSP with a work duty period of 7 hours

30 minutes .Hence algorithm A 8 can be applied to G t . The resulting network G t is

represented in figure 4-5 . For the purposes o f clarity , only the linking-arcs

corresponding to paths starting from the first task-arc have been represented. The only

modification that should be added to Algorithm A 8, before applying it to graph G t , is

that 2 task-arcs corresponding to the same task o f TCSP cannot be linked.

Finally , for each set o f task-arcs of G t , corresponding to a same task of

Chapter 4 126

TCSP, one and only one task-arc is picked up in the optimal solution .

Figure 4-5 : Network G t

+

1100

12-30 __________ 1 £ 0
> » <•- » ■■ i

Chapter 4 127

2-3 A lgorithm A l l .

This section deals with the procedure of converting a network G 0 representative

o f a T C S P into a network G t which has the same properties as network G

representative o f a CSP .In the T C S P each task is defined by a continuous

time-interval in which it must start (this time -interval w ill be refered to as

starting-time-interval) and by the duration o f the task . Consequently , network G q

w ill consist only o f task-arcs; the linking-arcs being impossible to represent as shown

in the previous example.

2-3.1 The A lgorithm .

The algorithm is based on the following assumption : ’’ the starting time interval

(xj, x̂) of each task i of the TCSP is assumed to be discrete ie task i can start every M

minutes after Xj.

Step 0 : Consider the starting time intervals of all the tasks and set the step-interval

M ; Set i = 0 and G O TO STEP 1;

Step 1 : i = i + 1 ;Consider task i with interval [xj, ^ \ . Represent task i by task-arcs

starting respectively at x],x] +M,x] +2M,...etc... and o f duration that o f task i ; G O TO

STEP 2 ;

Step 2 : If all tasks i's have been scanned G O TO STEP 3; Else G O TO STEP 1;

Step 3 : Link each task-arc o f G t with the source (resp.sink) to form the source-

(resp. sink-) arcs ;G O TO STEP 4 ;

Step 4 : L ink every pair of task-arcs i and j o f G t (i precedes j) if all following

conditions are satisfied:

(a) starting time of task j is greater than finishing time of task i ;

Chapter 4 128

(b) the difference between the finishing time of task j and the starting time of

task i is less than or equal to the work duty period T 0;

(c) task-arcs i and j do not correspond to the same task.

2-3.2 The Size of Gf .

Depending on the size o f the starting time intervals we can choose the

step-interval in such a way that each task o f the TCSP is represented by at most p

task-arcs . Hence if n is the number of tasks of the TCSP , G t w ill correspond to at

most a pn-task CSP.

2-4 The Problem Formulation .

After applying algorithm A 8 to network G t (obtained in section 2-3 as output of

algorithm A 1 1) we obtain a network G t (similar to network G o f section 3,chapter3)

in which all paths have duration less than or equal to the work duty period T .

The formulation of the TCSP based on G t is exactly the same as that of the CSP

which is based on G (see section 4 , chapter 3).

3- The Multiple Vehicle Type Crew Scheduling Problem (VCSP) .

3-1 Introduction .

The multiple vehicle type crew scheduling problem (VCSP) is defined as :

Chapter 4 129

" minimize the cost of covering a certain number (say, n) o f tasks by a given number

(say , K) o f crews in such a way that:

(a) the crew and the corresponding vehicle form a single resource package;

(b) each task must be covered once only by a single crew ;

(c) the work duty period T 0 is fixed and is the same for all crews;

(e) the K vehicles are of L (1< L <K) types and the set o f vehicle types that can

cover a specific task is given for all tasks

If in condition (e) the number M o f types o f vehicle is equal to 1 then the VCSP

becomes a C S P . Also if there is no task that can be covered by more than one type of

vehicle the V C SP w ill consist o f M different CSP's .If we assume that each type of

vehicle is housed at a different depot the V CSP w ill be equivalent to the multiple depot

CSP (section 7-2, chapter 3) with the extra condition that to each depot there is a

certain number of tasks that can be covered by the vehicles housed at this depot.

Consequently a network G y representative of a VCSP which is similar to the network

Gj) representative of a multiple depot CSP can be constructed.

An example explaining the construction o f G y is given in section 3.2. Section

3.3 deals with the general procedure of forming G y . Subsequently the problem is

formulated as a minimum cost network flow problem plus additional set partitioning

type constraints.

3-2 Exam ple o f Constructing G v .

Consider the 5 task - 3 vehicle V C S P represented in table 4-4 in which 2

vehicles are assumed to be o f the same type and the last vehicle o f another type. The

work duty period is assumed to be 600 minutes .Column 4 indicates the type of

vehicle that can cover the corresponding task . Thus task-arc (ocj.pj) and (a4,P4)

Chapter 4 130

(resp. (a2,P2) (a 5»Ps)) can be covered only by the 1st (resp. 2nd) vehicle

type.Whereas task-arc (a 3,P3) can be covered by either type . The graph G

representative of the corresponding 5 task - CSP is depicted in figure 4-6.

Table 4-4 : A 5 Task- VCSP .

Task
Starting
time

(minutes)
Duration

time
(minutes)

Vehicle
Type

1 50 100 1
2 200 150 2
3 400 100 i;2
4 550 200 l
5 550 100 2

Now assume that the vehicles of the 1st (resp. 2nd) type are housed at depot 1

(resp. 2) . The V C S P becomes a multiple depot CSP . Consequently , the same

procedure, described in section7-2 (chapter3), for constructing the graph G o

representative of a multiple depot CSP can be applied here. The resulting network G y

representative of a VCSP is represented in figure 4-7 . It is similar to GQexcept that:

(a) In each subnetwork k (k=l,2) of G y , only the task-arcs that can be covered

by vehicle's type k have been considered. Thus in the first subnetwork corresponding

• to type 1, task-arcs (oc2,p2) anc* (a 5*Ps) have been omitted since they cannot be

covered by this type o f vehicle . For the same reason task-arcs (aj,pj) and (ajp^)

are not represented in the second subnetwork corresponding to the vehicles of type 2 ;

(b) the flow in (Ps,d {) and (D2,aR) is equal to the number o f vehicles o f the

first type ie 2 . Similarly the flow in (ps,DJ) and (D2,aR) is equal to 1;
1 2(c) there is no cost attached to the arcs departing from D j and D j or arriving at

D 2 and D 2 .

Chapter 4 131

Figure 4-6 : Network G.

O
ncr

P-*

O a IS)

Chapter 4 132

Figure 4-7 : Network Gy.

Chapter 4 133

Figure 4-8 : Network Gy.

Chapter 4 134

3- 3 Construction of Network G y representative of a V C S P .

If we assume that each type of vehicle is housed at a different depot, network

G v becomes exactly the same as network G D representative o f a multiple depot CSP

(see section 7,chapter 3) with the exception that:

(i) A ll source-arcs and sink-arcs of G v have zero cost;

(ii) In each subnetwork G k (k=l,...,L) (where L is the number o f vehicle's

types) the task-arcs that cannot be covered by type k of vehicle are omitted.

Consequently , from this point onwards the V C S P can be considered as a

multiple depot CSP and both the formulation and the solution technique presented in

section 7 o f chapter 3 can be applied to solve the V C S P .

F in a lly , it is worthwhile to mention that after applying algorithm A8 to G v we

obtain the expanded graph G v o f figure 4-8 in which no path has length greater than

the work duty period .

4- Solving the GCSP with GET .

4-1 The Algorithm A12 .

Now that the graph expansion technique (GET) has proved to be quite effective

for both the V CSP and the TCSP (in the case where the time-windows are relatively

small) it becomes worthwhile applying the technique to the G C S P . In this section an

algorithm A12 is described which expands the graph G T representative of a G CSP into

a graph G T with the following properties:

(i) A ll paths of G T have length equal to or smaller than the work duty period

(ii) A ll the tasks in any one path of G T can be covered by at least one common

vehicle's type;

(iii) The starting time o f each task in any one path w ill be within the

Chapter 4 135

corresponding allowed time-window.

Algorithm A12 is a 2-phase algorithm which consists of a combination of three

algorithms . Like the TC S P it is not possible to directly represent the G CSP by an

acyclic graph . So the first phase of the algorithm consists o f constructing the acyclic

graph G t representative o f the G CSP . For this , we need to apply sequentially

algorithm A l l and algorithm A10 (the V S C P version) . In the second phase the

graph's expansion algorithm A8 is applied to G T to obtain G T.

Algorithm A12 proceeds as follow s:

P H A S E 1 :

Step 1 : B y dropping the multiple vehicle constraint (ie by assuming we have only

one single vehicle type) we obtain a TCSP . Apply algorithm A l l to construct the

graph G t representative o f a T C S P ;

Step 2 : I f , having G t as input, we take into consideration the multiple vehicle type

constraint the problem becomes a V C S P . Apply algorithm A10 with graph G t as input

to construe the graph G T representative of both the TCSP and the VCSP;

P H A S E 2

Step 3 : Apply the graph’s expansion algorithm A8 to G T. The resulting expanded

graph w ill be refered to as G T.

4-2 Exam ple .

To illustrate the application o f Algorithm A14 consider the G CSP defined by the

input data of table 4-5 . W e assume 2 vehicles o f different type are available to cover

all the 4 tasks. Also the work duty period is assumed to be 7 hours 30 minutes .

The application o f step 1 of Algorithm A12 w ill result in the network o f figure

4-4. Applying step 2 to G t we obtain network G T , o f figure 4-9 , representative of a

G CSP. Finally, at the end of Algorithm A12 we get the expanded network G T of

figure 4-10.

Chapter 4 136

Table 4-5 : A 4 Task-GCSP •

Task
Window
Starting
time

(hr & mn)
Duration

time
(minutes)

Type of
vehicle

1 6.50-7.00 90 1
2 9.00 120 1 ? 2
3 12.00-12.20 150 2
4 12.10-12.30 120 1

When applying algorithm A l l (ie step 1 of algorithm A 12) the smallest time unit was

taken to be 10 minutes . For the sake of clarity not all the linking-arcs of graph G T of

figure 4-10 have been represented .The ones represented are indicated by dotted lines

in the figure.

4-3 Problem Formulation .

Like the CSP and the TCSP , the G CSP can be formulated as a minimum cost

network flow problem plus additional partitioning type constraints . The formulation

which is based on network G T is exactly the same as that o f the TCSP (see section

2-4) with the exception that G t is replaced by G T .

Relaxing the integrality constraints , we have been able to solve (ie find the

integer programming solution) all the 100 randomly generated GCSP's using just an

LP package. The results are presented in section 6.

Chapter 4
137

Figure 4-9 : Network Gx .

Chapter 4 138

Figure 4-10 : Network GT.

Chapter 4 139

5- A M odified Version of the G raph Expansion Technique .

5-1 Introduction .

As the average task time-window increases the size of the largest G CSP that can

be solved decreases. Thus, if we consider an average time-window of 10 hours and a

step size o f 15 minutes the largest size G CSP that can be handled w ill not have more

than 10 tasks . This is due on the one hand to the enormously large size of the

expanded graph G T on which the problem formulation is based and on the other hand

to the limitations imposed by the existing LP packages.

In this section we present a modified version of the graph expansion technique

which produces an expanded network G T smaller than G T as the average time window

increases . Actually the importance of this technique becomes more apparent when

considering the G CSP with rest-periods as the network representative obtained with

this technique is much smaller than the one obtained with the previous technique.

Algorithm A 13 , which expands the network G T representative of a G CSP into
— /

another network G T is described in section 5-2. It is then illustrated by the example of

section 5-3.Like all the CSP's considered so far the problem was first formulated as a

minimum cost network flow problem plus additional set partitioning type constraints

(the formulation is exactly the same as the one presented in section 4-3 except that the
— /

graph on which it is based is G T) , then it was solved using just an LP package. The

corresponding results are presented in section 6 .

5-2 A lgorithm A13 .

This algorithm consists o f expanding network G T representative of a G CSP into

another network G T which has the same properties as network G T but which has the

additional advantage of a smaller size as the average time-window gets larger.

Chapter 4 140

Before we explain the main idea o f the algorithm we w ill introduce some useful

definitions and remarks that w ill facilitate the description of the algorithm.

Given V types of vehicles , network G T consists of V independent subnetworks

N j,...,N y . B y "independent" we mean that 2 nodes belonging to different

subnetworks need never be linked . In this new expansion each subnetwork w ill be

considered separately and independently o f the others ie each subnetwork Nj

(i=l,...,V) w ill be expanded into another subnetwork Nj (i=l,...,V) in which all paths

have length less than or equal to the work duty period.
— /

The size o f G T in terms of nodes (of the network) can be reduced by half if

instead o f representing the tasks o f G C S P by task-arcs we represent them by

task-nodes.

Given a task i and its starting time-window [ST],ST^| we saw in algorithm A 12

(section 4-1) that this time-window was divided into smaller discrete intervals

[ST],ST]+M,ST|+2M,...,ST?=ST]+KM] where M is the step size , K is equal to

(ST?-STj)/M and STj+kM(k=0,l,...,K) is a possible starting time for task i. In graph

theoretic terms we represent this fact by assuming that K task-nodes nQ,nj,...,n^ in

G t represent task i . If task-node nj is picked up in the optimal solution this w ill mean

that task i is to start at time ST]+jM . In what follows to each task-node n o f

subnetwork Nj we w ill associate 2 numbers : a node starting time pn and a node

finishing time qn . These are respectively the times at which the corresponding task

would start and finish if node n was picked up in the optimal solution.

5-2.1 Main Idea of the Algorithm i

The main idea of the algorithm can be explained as follows : assume that the

work duty period is equal to 6 hours and that the schedule is performed over a

planning period o f 24 hours . A lso let M be the step size . For the sake o f simplicity

we let M be one hour . A path P in subnetwork Nj must have a length o f at most 6

Chapter 4 141

hours . This means that if for example it starts at 10.00am it must finish before

4.00pm. Within this time-period the only task-nodes of Nj that can be covered by path

P are those nodes n for which :

pn > 10.00am and qn < 4.00pm (4-1)

A ll other nodes have no chance of belonging to P .

Let E jq be the subnetwork o f Nj associated with the task-nodes o f Nj that

satisfy (4-1) . Now if we let P starting at time x (x=0,l»2,—»24hours) , E x can be

defined as follow s:

Ex = (x X) (4-2)

where

= { task-nodes of Nj / pn > x and qn < x+6 } (4-3)

and

U x = set of all linking-arcs of Nj associated with x[. (4-4)

Clearly , each feasible path P (by "feasible" we mean "of length at most

6hours") o f N j belongs to at least one Ex (x=0,l,...,24). A lso each task-node of Nj

can be in several E x's.

Duplicating each task-node n of Nj as many times as it appears in the E x's we

obtain network G ^ N jU ^ lL .U N y where Nj = Eg U e | U ... U E ^ .

5-2.2 The Algorithm A13 .

As we mentioned above since network G T representative o f a G CSP consists of

V (number o f vehicle's types) "independent" subnetworks Nj's , in this graph

expansion technique each Nj w ill be expanded separately and the more general

network G j w ill consist o f the union o f all expanded subnetworks Nj's.

The following is an algorithm which describes how to expand subnetwork Nj of

G t into another subnetwork Nj in which all paths have length at most equal to the

work duty period.

Chapter 4 142

Step 0 : Set x = 0 ; G O TO STEP 1 ;

Step 1 : If no task-node n o f Nj has a node starting time pn equal to xM G O TO

STEP 2 ; Else consider subnetwork e != (X j,Ux) where:

X[={ task-nodes n of Nj /pn> xM and qn< xM +T0}

and U,[=set of all linking-arcs of N T associated with .

G O TO STEP 2;

Step 2 : If xM > 24-Tq (hours) G O TO STEP 3 ;Else set x=x+l and G O TO STEP 1;

Step 3 : Duplicate each task-node n of N , as many times as it appears in the E x's ;

Ni = E|UE;U...UEi
where x = number o f E x's generated; G O TO STEP 4 ;

Step 4 : Reduction Process .

Remove from each E x (x=l,...,x) all the "isolated" task-nodes.

(A task-node is isolated if it has no predecessor).

5-2.3 Rem ark .

(a) In step 2 of the algorithm the inequality condition

xM > 24-Tq (hours) (4-5)

assumes that both M and T q are given in hours. I f , however, they are

expressed in minutes then the condition becomes :

xM > 24x60 - T q (minutes); (4-6)

(b) Knowing that the planning period is one day o f 24 hours the logical question

that one might ask is :" why have we not considered the E x's for which :

24 - TO < xM < 24 (4-7)

The reason behind this is that all the E x s that satisfy (4-7) are in fact included

in E^q with x0 = (24-Tq)/M . Hence there is no need to consider the subsequent

Chapter 4 143

5-3 Example .

Consider the 3 task- G C S P , of table 4-6 , with a work duty period of 300

minutes and with M = 1 hour (60 minutes). the network G 0 which consists only of

the task-arcs is depicted in figure 4-11 . The dotted lines represent the starting time

windows of the tasks .

Applying the first phase of algorithm A12 to the input data o f the problem we

obtain network G T , representative of a G C S P , o f figure 4-12 . For convenience , the

task-arcs have been replaced by task-nodes and for the sake of clarity the source-arcs

and sink-arcs associated with task-nodes corresponding to task 1 have not all been

represented.

Figure 4-11 : Network G q

0 1 2 3 4 5 6 7 8
■ ‘ ----------- 1 ‘ * » 1 1)

(hours)

1o-------------------------- — O- ■ p o
a1 Pi

o *2
1,2 -OP2

o---------- o -
» 3

■*— op3

Table 4-6 : A 3 Task-GCSP •

Task
Window
Starting
time

(minutes)
Duration

time
(minutes)

Type of
vehicle

1 60-360 90 1
2 60-120 120 1/2
3 180-240 60 2

Chapter 4 144

Figure 4-12 : Network G j

oJL 60 120 180 240_a— 300 360« 420 440

— -\
\ w

\ W
v — \ W
^ ^ — - X

1

/
\

A

/

'22

Chapter 4 145

Chapter 4 146

_ /
Figure 4-14 : Network G y

Chapter 4 147

Network G T o f figure 4-13 is the expanded network produced from G T by applying
_ /

the first 3 steps o f algorithm A 13. The reduced version (network G T) shown in figure
^ /

4-14 has been obtained from G T by removing all the task-nodes that have no

predecessor.

6- Computational Results .

Out o f a total o f 190 problems , o f size varying between 10 and 50 tasks ,

randomly generated for each one of TCSP ,V CSP and G C SP , the optimal integer

solution was found in all cases by using just a linear programming code [112]. The

LP code was applied to the linear relaxation of each problem.

6-1 Efficiency of the Graph Expansion Technique when the

Time-Windows are Small .

To test the algorithms presented in this chapter more than 500 problems of size

ranging from 10 to 50 tasks were randomly generated in two groups . The results are

summarized in table 4-7.

For each one of the TCSP , the V C S P and the G CSP a total o f 140 problems

were considered in the first group and 50 problems in the second group . Our aim in

considering the problems o f the second group , which were all generated from the

same 25 task-problem by varying the cost coefficients , was to try to generate a

problem for which the solution of the linear relaxation of the problem was not integer.

The reason for adopting this approach has already been dealt with in section 8

(chapter3). As it can be seen from table 4-7 we have been unsuccessful in achieving

this aim . Thus , all the 150 problems generated in this group (50 for each one of

TCS P ,V CS P and GCSP) have been solved to optimality by a linear programming

package.

Chapter 4 148

For the problems of the first group , the work duty period was assumed , in all

cases , to be equal to 6 hours . The number o f crews was taken to be the minimum

number K* feasible for each problem . The duration o f each task was assumed to

vary within the range [45minutes,2hours30minutes].Also the cost coefficients Cjj

associated with linking-arc (p^otj) has been generated according to the formula :

cij = dij
where djj = duration o f linking-arc (p̂ cCj)

= starting time o f task j - finishing time of task i

For the V C S P the starting time o f each task was uniformly generated in the

range [00.00-24.00hours] and for the TCSP only one vehicle type was assumed .

The remaining parameters were generated as follows :

(i) Generating the Starting Time Windows .

For both the TCSP and G CSP the step size was taken to be M = 15 minutes and

the length o f each time window was uniform ly generated in the range

[0-60minutes].The beginning o f the time window was made to vary in the range

[0,24hours].

(ii) Generating the Vehicle Types .

Two and three types of vehicle were assumed for VCSP's o f various sizes.For

problems with 2 vehicle types the approach we took in deciding which type of vehicle

w ill be assigned to which task was purely random and based on the following ru le :

"For each task i , i= l,...,n generate a random number a* in the range [0,1].

(a) If 0.00< (Xj <0.33 then task i can be covered by vehicle type 1 only ;

(b) If 0.33< Oj <0.66 then task i can be covered by vehicle type 2 o n ly ;

(c) If 0.66< oq <1 then task i can be covered by both types o f vehicle."

For problems with three types o f vehicle the same idea was used to decide for

each task which type of vehicle w ill be assigned to i t .

Chapter 4 149

(iii) Comparison of the 2 Expanded Networks GT and GT .

Out o f the 190 randomly generated TCSP's it has been noticed that in 60% of

the cases the size o f network G T was slightly smaller than that o f network G T .

Network G T is the expanded version o f network G T (representative o f a GCSP)

obtained from algorithm A12 which is based on the expansion technique presented in

the previous chapters , whereas network G T is the homologous of G T obtained with

the expansion technique of the previous section .

Subsequently, the time window of each task was allowed to vary uniformly in

the range [00.00-24.00hours] and 100 randomly generated G CSP ’s were generated to
- — / - *

compare the size of G T and G T . In 73 problems the size o f G T was smaller than that

of G t . For the rest, network G T had a smaller size in 12 problems and in 15 problems

both networks had the same size .

6-2 Inefficiency of the GET for GCSP's with Large Time Windows.

As we mentioned previously the results of table 4-7 were obtained by assuming

that the time-window of each task varies uniformly in the range [00-60minutes] and

that the step size was supposed to be 15 minutes .Clearly, this means that each task of

the G CSP w ill be represented in G T by at most 4 task-nodes (in each subnetwork N T

o f G t).

Let M be the step size and D be the average length o f a task time window. If D

increases and M remains 15 minutes then the largest size of G CSP that we w ill be able

to solve with existing L P packages w ill decrease . The only example we have

considered to illustrate this claim was by letting D=10 hours and M=15 minutes . The

largest size G CSP we could solve with the G E T involved not more than 10 tasks and 2

types of vehicle . This was due to the limitations imposed by the LP package which

Table 4-7 : Average Computational Results for the TCSP , VCSP and GCSP .

Problem
Number
of

Tasks
Number

of
Problems

Size of the LP Problem
[rowsxcolumns]

TCSP* VCSP** GCSP***
Size of Expanded Graph

[Task-Arcs]
TCSP VCSP GCSP

Time*
Expansion Time LP Solution Time

TCSP VCSP GCSP TCSP VCSP GCSP

10-14 20 78X 320 45X 159 123X 539 63 30 108 0.6 0.2 0.9 2.1 0.9 5.5

15-19 20 lllx 461 7lx 266 147x 637 91 51 127 0.8 0.4 0.9 4.6 1.9 7.7

20-24 20 172X 739 88X 330 224x 993 147 63 199 0.9 0.6 2.1 8.9 2.3 18.0

Group 1 25-29 20 230X1003 129X 515 480X2222 200 100 450 2.3 0.9 8.9 17.9 5.8 75.8

30 20 288X1278 149X 600 526X2438 256 117 494 3.2 1.0 10.1 19.6 8.2 148.3

40 20 437x1966 204x 829 694x3219 395 162 652 7.2 1.6 19.7 62.1 11.1 169.5

50 20 507X2268 274x1132 935X4355 455 222 883 9.3 2.4 28.5 91.3 20.1 NC

Group 2 25 50 216x 946 118x 468 432x1999 189 91 405 1.8 0.8 7.7 16.2 4.8 53.1

* TCSP - Time-window CSP ;
** VCSP - Multiple vehicle types CSP /*** GCSP - General CSP ;
+ Seconds of CYBER 855 (Fortran Compiler) .

Ui
o

Chapter 4

Chapter 4 151

could not handle the corresponding linear problem of 850 rows and 3500 columns .

Now if we increase M , as D increases , in such a way that D/M < 4 then

whatever value of D we consider problems of the same size as those o f table 4-7 could

be handled with G E T . However, although the problems w ill certainly be solved with

just an LP package , the solution obtained although integer might be just a heuristic

o n e .

This problem of solving large GCSP's with large task time-wimdows w ill be

dealt with in the next chapter.

Chapter 5 152

C H A P T E R 5

A T R E E S E A R C H P R O C E D U R E F O R T H E G C S P

1- IN T R O D U C T IO N .

W e consider a tree search procedure that has proved to be quite efficient for

reasonably large size GCSP's involving up to 50 tasks and with a task's time window

allowed to vary in the range [00.00-24.00 hours] . This type o f problems was

impossible to solve with the graph's expansion technique considered in the previous

chapter. This was due to the enormously large size of the expanded network which

produced an LP problem that could not be handled by any code.

The success of any tree search procedure depends entirely on the quality of the

lower bound and the upper bound to the problem . To obtain a good lower bound

several different integer programming formulations were considered and were

Chapter 5 153

subsequently all relaxed in a Lagrangian fashion[71]. The different resulting lower

bounds were compared and two formulations were picked-up as possible candidates to

be embedded in the tree search procedure. A ll this is discussed in section 2.

The first formulation which is based on a shortest constrained path problem

(SCPP) [56] was chosen because over all the problems tested it produced each time a

better lower bound than all the other formulations . Because o f the relatively long

computing time required to get this bound a second candidate, a shortest path problem

(SPP) based formulation , was also considered . The choice o f the SPP formulation

was motivated by two factors. As far as the quality of the lower bound is concerned it

performed as well as all the remaining formulations (except the SCPP) and from the

computing time point of view it was much better than all the others.

A t this point it is worthwhile to mention that an algorithm that runs in

polynomial time has been suggested , in section 2 , to solve the SCPP which is

considered to be , in general, an NP-complete problem [66]. W e are not saying that

this algorithm can solve any SCPP but we can claim that we have been able to exhibit a

particular case of the SCPP which can be solved in polynomial tim e.

As far as the upper bound to the problem is concerned two efficient heuristics

are presented in section 4 . Actually this section deals with the whole tree search

procedure used for our problem. Each step o f the procedure is explained in detail.

W e know that when the task's time window tends to be small the graph's

expansion technique is the most suitable technique to solve the G CSP (see chapter 4)

but when the task's time window becomes large it is preferable to use the tree search

procedure. In section 6 we discuss the variations o f the efficiency o f the reduction test

when the task average time window varies.

Finally the computational results are presented in two sections. The ones related

to finding the lower bound are presented in section 3 and the computational results for

the tree-search procedure, including those o f the heuristics, are dealt with in section 5

Chapter 5 154

2- SIX G C S P F O R M U L A T IO N S .

The aim of this section is to obtain a good lower bound that w ill be embedded in

the tree search procedure . To achieve this six different integer programming

formulations o f the G CSP are considered . For each formulation the Lagrangian

relaxation, one o f the most successful integer programming techniques for obtaining

lower bounds , has been applied . A ll problem formulations are based on a network

G t representative of the G CSP (G_p(\/̂ Â)) except formulation 6 which is based
_ /

on the expanded network G T obtained with algorithm A13 (section 5,chapter4).

To remind the reader o f the structure o f network G T we consider a 10

task-GCSP the data o f which are given in table 5-1 and which is represented by

network G q o f figure 5-1. The dotted lines represent the starting time windows of the

tasks. Note that only the task-arcs can be represented (by the segments at the end of

each time-window). The task time window varies between half an hour (for task 7) to

20 hours (for task 1). Three crews operating 3 vehicles o f 2 types are assumed. The

work duty period is 7 hours . Using algorithm A12 of section 4 (chapter 4) we obtain

network G T , of figure 5-2, representative of the 10 task-GCSP. For convenience the

task-arcs have been repesented by task nodes and for the sake o f clarity only the

linking-arcs departing from task node have been represented.

Task

1
2
3
4
5
6
7
8
9

10

155

Table 5-1 : A 10 Task-GCSP.

Starting
Time-Window
[minutes]

Duration
[minutes]

Vehicles
Type

[60-1260] 135 2
[75- 165] 75 1
[75-1080] 90 17 2
[90- 660] 105 i;2
[105- 840] 60 2
[150- 885] 105 1
[165- 195] 75 1
[255- 735] 90 1
[330-1320] 60 1 ? 2
[345- 765] 150 2

Chapter 5 156

Figure 5-1 : Network Gq.

Chapter 5 157

Figure 5-2 : Network G'p.

Chapter 5 158

2-1 Network Flow Formulation 1.

If we let Xjjk = 1 if arc (i j) e A;t is covered by crew k in the optimal solution;

= 0 otherwise;

then the problem becomes:
K

k=l A,
(5-1)

k=1,...,K

subject to :

£ v * 2 T for k=
(i.j)e at

K
S X xijk = 1 fo rp= l,...,N

(i.j)6Fp k=l

S xijk = X xmik for each node i 6 VT
Je ^ me r_1(i)

2 ^ xSik = S xiRk = 1 s • source; R : sink
i e r (S) i 6 r_1(R)

(5-2)

(5-3)

(5-4)

(5-5)

Xjjk € {0,1} (5-6)

where : K = number o f crews;

N = number of tasks;

T = work duty period.

Fp= set of all arcs of G T whose initial node correspond to task p .

T(i) (resp. r -1©) = set o f all immediate successors (resp. predecessors) of

n o d e i.

In the objective function , only the costs o f the linking-arcs have been

considered. The reason for not considering the costs of the other arcs has already been

Chapter 5 159

explained in chapter 2 (section 2-3). Constraints (5-3) guarantee that each task must

be covered once and only once by a single crew . This is accomplished by making sure

that among all the task-nodes that represent task i (i=l,...,N) only one task-node w ill

be picked-up in the optimal solution . Constraints (5-2) ensure that the length of each

path o f network G T does not exceed the work duty period. In other words each crew

is guaranteed that they w ill not be working more than the work duty period. The flow

conservation at each node of G T is expressed by constraints (5-4) and (5-5).

2-1.1 Two Problem Relaxations .

Tw o straightforward Lagrangian relaxations can be derived from the above

formulations as follow s:

Relaxation 1 :
>,o

Let us assume Xk (k=l,...,K) and Dp (p=l,...,N) are two Lagrange multipliers

attached to constraints (5-2) and (5-3) respectively. Relaxing constraints (5-2) and

(5-3) in a Lagrangian fashion, we obtain :
K K N

X<cij+Vij+vxi*- TX v Xv* (5-7)
k=l p=l

subject to : constraints (5-4) and (5-5)

The relaxed problem being a minimum cost network flow problem , it can

efficiendy be solved by any network flow algorithm [63].

Relaxation 2 :
>/0

Let us assume A.k (k= l,...,K) are the Lagrange m ultipliers attached to

constraints(5-2) and 8* (k=l,...,K; i e VT) are the Lagrange multipliers attached to

Chapter 5 160

constraints (5-4) and (5-5). Relaxing constraints (5-2),(5-4) and (5-5) in a Lagrangian

way ,we get:

Min X X <cij+ V ij + 3k * W (5-8)

subject to :

X X x i j k = 1 P = 1 . - . N (5 -9)
(i , j) e F k = l

x i jk e 1 0 . 1 } (5 -1 0)

The relaxed problem can easily be solved by inspection . It has a matrix of the

form:

11.. 1 0 0
0

00
11... 1

0
11... 1

0 11... -1
0 11... 1

2-2 Network Flow Formulation 2 .

N o w , instead of considering variables o f the type x ^ we define the following

variable:

Chapter 5 161

Let Xjj = 1 if arc (i j) is in the optimal solution;

= 0 otherwise;

The problem becomes:

M in } c..x.. JL-i y y
(i,j)eA ,̂

subject to :

(X|j) must form K paths of length T or less

(i.j)e Fp

= 1

X xy = X x ji
jeHi) j e p \i)

p= l,...,N

for each node i € VT

X X Si = X XjR
ieIXs) j e r_1(R)

K S : source; R : sink

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

2-2.1 The Tim e Constraints .Expressing linearly the time constraints , using x ̂,

is itself a difficult problem . For this , we consider 3 options to represent these

constraints:

(i) F irst option : It consists o f listing all paths o f G T whose length exceeds T

(duty period), and then for each such path P express the time constraints as :

I t.x.. y y < T (5-16)

Clearly this option is impractical. The number of such constraints grows exponentially

Chapter 5 162

with the size of the problem (ie number of tasks).

(ii) Second option : Each path P of length > T consists of elementary

subpaths Pj (i=l,2,3,...) whose length is greater than T but which do not contain any

subpath of length > T . Thus in the path (of figure 5.3) of length 14hours 15 minutes ,

there are 4 elementary paths (1,2,3,4) ; (2,3,4,5) ; (3,4,5,6) and (5,6,7) .In this

example T is assumed to be equal to 360 minutes.

Figure 5-3 : An Infeasible Path

1h

Clearly by imposing the time constraints on all these elementary paths of G T ,

we im plicitly impose them on any path of length greater than T . Hence instead of

considering all the paths of G T of length greater than T , we need only consider the

"elementary" paths and add to the problem the following constraints :

y , t.jX» < T p : elementary path (5-17)
p

Unfortunately we had to discard this approach because the number o f such paths

is still large .Thus for a G CSP of Ntasks and M vehicles' types the number of such

constraints is approximately :

FN M a5

where F is a constant, a is the average number of nodes that can be linked with a

node.

Chapter 5 163

(iii) T h ird option : A CSP version of this option has been given in chapter2,

section 2-5.7.We saw in section 5 (chapter 2) that given a path whose length exceeds

the work duty period the corresponding time constraint is of the form :
y, x.. ^ h£-4 y
A(P)

where A(P) is the set of linking-arcs of P and h is a suitable constant determined by

algorithm A6.

2-2.2 The Form ulation .

If we let Xy = 1 if arc(ij) is in the optimal solution;

= 0 otherwise;

The problem becomes:

Min X V i i (5' 18)

subject to :

y x . < hu Q c L (5-19)
(P a)eA(Q)

-

r-HII>< 55rHIIex (5-20)
ftj)e Fp

X x« = X v for each node i € VT
jeTTi) per Vo

X XSi = X XiR = K
iertS) ier'Vl)

(5-21)

Chapter 5 164

x.j e {0,1} (5-22)

where L is the set of all paths whose length exceeds the work duty period and where

K,N,T,Fp,r(i) and r -1® are as defined in section 2-1. S and R are the source and the

sink o f G t respectively.

Like the first type network flow formulation, only the costs of the linking-arcs

have been considered in the objective function. The time constraints (5-19) ensure that

each crew schedule w ill not take more than the work duty period . The covering

constraints (5-20) guarantee that each task of the GCSP w ill be covered only once by a

single crew. Finally , we have the classical network flow constraints (5-21) which

express the conservation of flow at each node of network G T.

2-2.3 The Solution Technique .
>,o

If we let Xk(k=l,...,t) and '0p(p=l,...,N) be the Lagrange multipliers attached

to constraints (5-19) and (5-20), the relaxed problem (LP), a minimum cost network

flow problem , becomes :

where t=!LI.

Constraints (5-19) which express the restriction on the maximum length of

optimal paths (of G T) cannot all be added to the G CSP at the same time because their

number increases exponentially with the size o f the problem (ie number o f tasks).

Consequently, they are added when necessary and relaxed in a Lagrangian way.

Algorithm A7 has been used to determine a lower bound to the problem.

N
(5-23)

subject to :

constraints (5-21) and (5-23)

Chapter 5 165

2-3 An Assignment Formulation .

2-3.1 The Formulation .

If we let Xjjk = 1 if arc (i j) e AT is covered by crew k in the optimal solution;

= 0 otherwise;

then the problem becomes:

X X v u k (5-24>
Aj. k=l

subject to :

X V u k ^ T k = l.- .K (5-25)
Arp

Z £ x ijk = l p = l... N (5-26)
F k=l

P

X xijk = 1 v i e VTi€ \Ap

X * ij k = 1 V i e V
je VT

xijk€ {0,1} (5-28)

Constraints (5-25) and (5-26) are similar to constraints (5-2) and (5-3). Constraints

(5-27) are the classical assignment constraints.

Chapter 5 166

It is worthwhile noting that when we express the cost assignment matrix , we

should consider the follow ing:

(a) Cy = 0 if i=j;

(b) C” = oo if there is no arc linking i to j or if i=j=R or if i=j=S;

(c) we assume there is a dummy arc (R,S) o f cost 0 (ie CR S “ 0).

2-3.2 Exam ple .

Let us consider the G CSP represented by the network G o f figure 5.4. Assume

T= 5 hours and IN TER = 1 hour. Each time-window is divided into small intervals of

1 hour duration each.

The subnetwork G T corresponding to vehicle's type 2 is given in figure 5.5 and

the assignment matrix is represented in table 5.2 .

2-3.3 The Relaxed Problem .

If we let X^ (k=l,...,K) and t)D (p=l,...,N) be the Lagrange multipliers attached

to constraints (5-25) and (5-26) respectively, the relaxed problem becomes :

K

M in y , y fe
w

(5-29)

subject to :

constraints (5-27) and (5-28)

Clearly this is an assignment problem .

Chapter 5 167

Figure 5-4: A 3 Task-GCSP.

0 60 120 180 240 300 360 420 480 540 600

1.20 0

Figure 5-5: Subnetwork G T.

Table 5-2 : The Assignment Cost Matrix.

S 1 2 3 4 5 6 T
s yo 0 0 0 0 0 0 oo

1 oo 0 Oo oo 60 120 00 0
2 oo oo 0 oo OO 60 120 0
3 00 O0 OO 0 OO oo 60 0
4 oo CP OO oo 0 oo OO 0
5 oo do oc oo OO 0 SO 0
6 0° oo OO oo oo oo 0 0
T oo oo OO OO oo oo Oo oo

Chapter 5 168

2-4 A Shortest Path Formulation .

2-4.1 The Formulation .

let X|jk = 1 if arc (i j) e AT is covered by crew k in the optimal solution;

= 0 otherwise;

the problem becomes:

K

Ar k=l

subject to :

(5-30)

I v » S T k=1’- - Kk T
(5-31)

K

S X xijk = i p = i - - n
F k=l

P

(5-32)

for k= l,...,K shortest path constraints (5-33)

XijkS {0,1} (5-34)

Constraints (5-31) and (5-32) are-exactly the same as constraints (5-2) and

(5-3). A lso in the objective function only the costs o f the linking-arcs have been

considered.

Chapter 5 169

2-4.2 The Relaxed Problem .

>0
If we let Xfc (k=l,...,K) and 'Op(p=l,...,N) be the Lagrange multipliers attached

to constraints (5-31) and (5-32) respectively, the relaxed problem becomes :

M in X £ < cij+ V ij+vi>x*
Gj, k=l

K N

- t 2 A - 2 > p
k=l p=l

(5-35)

subject to :

constraints (5-33) and (5-34)

2-4.3 Solving The Shortest Path Problem .

Since graph G T is acyclic , there exists a numbering of its nodes such that there

exists an arc directed from i to j only if i < j . Assuming that the nodes are so

numbered we have applied dynamic programming [23,24,57,122] which is :

Uj = shortest path from S to node j

U s = 0
U . = min { U k + a , .} , j= 1 ,2 ,...,N ,R (5-36)

J k<j J

akj is the cost of the arc that links node k to node j ;

akj = +oo if there is no arc between k and j ;

aSj = ajR = 0 for all j e VT ;

Now if we let Ej = set of all direct predecessors o f j , equations (5-36) become :

us=o
II = min { l^+ a ..} , j= l ,2 ... N ,R
J ke E. Jj

(5-37)

Chapter 5 170

The corresponding algorithm (based on (5-37)) runs in time 0(n2) .

2-5 A Shortest Weight-Constrained Path Formulation .

2-5.1 The problem Formulation .

The shortest path formulation described in the previous section can be written as

follow s:

K

(i.j)€AjK=i

subject to :

K

F k=l
P

shortest path constraints

Aj

. shortest path constraints

Chapter 5 171

X V^jK - T
/Vt
shortest path constraints

Xjjk6 {0,1}

Alternatively it can be formulated as:

M in
K
ZmU Cij?Sjk (5-38)

subject to :

X X xijk = 1 P - 1 - - N (5-39)
F k=l

P

fork= l,...,K shortest weight-constrained path constraints (5-40)

Xjjk 6 {0,1} (5-41)

2-5.2 The Relaxed Problem .

If we let Xp (p=l,...,N) be the Lagrange multipliers attached to constraints

(5-39), the relaxed problem becomes:

X £ <cij+ v x*A'T —̂1
(5-42)

Chapter 5 172

subject to : constraints (5-40) and (5-41)

This is a shortest-weigth-constrained path problem [56].

2-5.3 S o lv in g the Shortest W e ig h t-C o n stra in e d P ath P rob lem .

A lgorith m A14.

Meggido[l 18] has proved that this problem is NP-complete even if the graph G

is directed . How ever, nothing has been said about the case where G is acyclic . In

what follows we w ill not attempt to prove (or disprove) that it is also NP-complete for

an acyclic graph but we w ill give a procedure for finding the shortest

weight-constrained path in G T that runs in time 0(M n2) where:

M =
T - min {dj}
___ i__

IN TER
(5-43)

in which dj is the duration of task i ;

T is the work duty period;

IN TER is the time duration between 2 consecutive nodes (of G T)

corresponding to the same task.

In addition to the cost c- associated with arc (i,j) e G T, let arid V i be two

weights associated with arc (i j) and node i respectively .And let the weight of a path

P=(S,i1,i2»-,im,R) b e :

W = W .
P S1i

+ V. +W . . + V. +.‘1 1112 •+ Vm + V mR

Theorem : The procedure described below for finding the shortest path of weight W

less than or equal to T .from the source S to the sink R,runs in time 0(M n2) where M

is as defined in (5-43).

Chapter 5 173

(A) - Assum ptions .

(a) The planning period of 24 hours is divided into small intervals of time (of 15

minutes,or 30 minutes,..etc...). We w ill refer to these intervals as time-units . In all

our computational results we assume a time-unit o f 15 minutes;

(b) The window starting time W S T j, the window finishing time W FTi , and the

duration dj of each task i are given as multiples of the time-unit;

(c) W ST j'SjW FT j's and dj's are expressed in terms o f the time-unit;

(d) In G T , to each node j we associate the corresponding time Kj.

(B) - A lgorithm A14.

W e saw , in section 4 , that in an acyclic graph , dynamic programming

equations for finding the shortest path from node S to node n are:

Vj = shortest path from node 1 to node j

v1 = 0
v. = min {v .+ a ..) (j= l,...,n)

k<j J

In our case they become :

Vj = shortest path from the source S to node j

vs = 0 (5-44)
v. = min {v .+ a..} (j=1,...,R)
J k e F . J

J

where Fj = set of nodes k (k<j) of G T that are linked to j .

Now to find the shortest path (of weight smaller than or equal to T) from S to R

we need to determine the shortest paths (of weight<T) from S to all nodes of G T.

In the shortest path (of weigth<T) from S to node j the first node i after S is

such that:

w ith:

Kj-Mj < Kj < Kj (5 -4 5)

Chapter 5 174

T - V .
M . - - - - - - J-

J IN TER

If we let E k be the set of nodes that satisfy (5-45) and if we assume a dummy source

Sk that is linked to all nodes o f E k with arcs of cost and weight zero, we w ill have

Finding the shortest path

(of weight<T)ffom

S toj

Finding the shortest

path from Sk to j

Hence dynamic programming equations for finding the shortest path from Sk to

nodej become:
(k)U m = shortest path from Sk to m e E k

U„ =0 (5-46)

U ® = min { + a^} m e E j ,
m he F m

Now if we generalize this idea and define

Ek = (ie G t / k < K j < k+T } k=l,...,kmax

where M| is as defined in (5-43) and
_ 1440 - T

max “ IN TER

and if we assume dummy sources Sk(linked to all nodes o f E k with arcs o f cost and

weight zero) fk=l,...,kmax dynamic programming equations for finding the shortest

path (of weight less than or equal to T) , from S to R , are:
(k)U : = shortest path from Sk to j e Eĵ

U- =0

ne r1.

(5-47)

Chapter 5 175

Clearly the shortest path (of weight < T) from S to j is :
k.

U .3 where k. = K . - M .
j J j j

and the shortest path (of weight < T) from S to R is :
k.

U T = min {U.J + aT) (5-48)

(C)- W orst Case Analysis o f A lgorithm A14 .

In the worst case and for each node j of G T we have to compute U j, M j times.

As far as computing time is concerned, this is equivalent to applying the algorithm for

finding the shortest path (in G T) from S to R , M times (M is as defined in (5-43)).

Hence we can say that Algorithm A16 , based on equations (5-47),(5-48) runs

in time 0(M n2) .

2-6 A G raph Expansion Based Form ulation .

2-6.1 The Problem Form ulation .

If we let Xjj = 1 if arc(ij) is in the optimal solution;

= 0 otherwise;

The problem becomes:

subject to :

(5-49)

F
P

X..y = 1 P = 1.....N (5-50)

Chapter 5 176

x . for each node i e V
P1

(5-51)

(5-52)

where G T is the expanded version of G T obtained as output of algorithm A13 ;
A

N is the number o f tasks;

K is the number of crews ;

T(i) (resp. r^ i)) is the set of successors (resp.predecessors) of node i ;

Fp is the set of nodes of G T correspnding to task p .

This formulation has already been presented in chapter 4 (section 4). It is based

on network G T , which is the expanded version o f G T , obtained by applying

algorithm A13 to G T. In chapter 4 , the problem was solved by relaxing the integrality

constraints (5-52) and using an LP package . In this section we w ill be relaxing

constraints(5-50) in a Lagrangian fashion and solving the resulting minimum cost

network flow problem using a netflow package which can handle problems of much

larger size than the ones solved with the LP code.

2-6.2 The Relaxed Problem .

If we let Xp(p=l,...,N) be the Lagrange multipliers attached to constraints

(5-50) the relaxed problem becomes:

Chapter 5 177

N

M in 'V (c..+ XJx.. -JLav ij v ij JLu p
, P=1

(5-53)

subject to :

constraints (5-51) and (5-52)

where constraints (5-51) and (5-52) are the network flow constraints.

3- Computational Results of the Six GCSP's Formulations .

3-1 The Test Problems .

A ll the results considered in this chapter have been obtained by testing all the

different formulations and algorithms on ten randomly generated GCSP's o f size

varying from 10 to 50 tasks . Tables 5-3 and 5-4 give the size , in terms of number of

task-nodes and arcs , of network G T representative of the G CSP and its expanded

network G T respectively.

As we saw in the previous section all the first five GCSP's formulations were

based on G T whereas the graph expansion based formulation was based on G T.

Depending on the number n of tasks of the GCSP considered each problem has

been assumed to have the following number V of vehicle types:

(a) if n < 15 then V = 2

(b) if 20 < n < 30 then V=3

(c) if 30 < n < 45 then V=4

(d) if n = 50 then V=5

Table 5-3 : Size of Network G of the 10 Test-Problems

Problem NumberofTaBks
Number of Vehicle Types

NumberofCrews Network 1 Network 2 Network 3 Network 4 Network 5 Number of Total Vertices
Number of Total Arcs

1 5 2 2 1644 613 * * * 148 2257
t 90] [58]

2 10 2 3 2987 3891 * * * 238 6878[113] [125]

3 15 2 4 5241 10309 * * * 305 15550[128] [177]

4 20 3 5 5551 6344 19212 * * 517 31107[130] [142] [245]

5 25 3 6 7532 7946 24018 • * 582 39496[150] [160] [272]

6 30 3 7 15667 16935 11831 * * 633 44433[218] [226] [189]

7 35 4 8 7852 10826 18882 13934 * 788 51494[167] [181] [236] [204]

8 40 4 10 4365 12420 14035 30902 * 848 61722
[138] [190] [207] [313]

9 45 4 12 13380 14697 19905 36029 * 956 84011[149] [217] [243] [347]

10 50 5 12 53404 18718 16715 14748 12339 1220 115924
[302] [238] [247] [225] [208]

T a b le 5 -4 : S i z e o f N e tw o rk G o f t h e 1 0 T e s t -P r o b le m s •

P ro b le m
Number

o f
T a s k s

Number o f
V e h i c l e

T y p e s

Number
o f

C rew s

T o t a l
Number o f

N odes

T o t a l
Number o f

A r c s

Maximum
N odes i n a

N e tw o rk

Maximum
A r c s i n a

N e tw o rk

1 5 2 2 17 0 8 1 0 3 3 0 58 5 6 1

2 1 0 2 3 350 4 4 0 7 7 0 86 1 5 7 2

3 1 5 2 4 54 30 1 2 1 6 2 4 1 7 0 5 3 7 3

4 20 3 5 9 9 52 2 3 5 8 3 6 2 1 9 9805

5 2 5 3 6 1 1 3 6 8 3 2 1 2 7 5 2 5 3 1 3 1 8 4

6 30 3 7 1 3 7 2 7 4 6 13 3 0 2 1 8 10 9 0 8

7 3 5 4 8 18 0 8 2 6 2 3 1 4 5 2 5 6 1 5 7 8 1

8 40 4 1 0 20440 8 15 0 8 3 283 18 6 5 3

9 45 4 1 2 2 10 6 9 8 7 2 5 3 8 2 8 5 1 9 1 2 5

1 0 50 5 1 2 2 1 7 6 6 9 6 4 3 2 5 2 1 2 19 5 9 0
XJ
VO

Chapter 5

Table 5-5 : Computational Results for the Network Flow Formulation 1 .

Problem NumberofTasks
Number of Vehicles
Types

Numberof
Crews

Value of
Optimal
Solution

(1]RunningTime+
[1]LowerBound

[1]Gap
[%]

[2]RunningTime+
12]LowerBound

[2]Gap
[%]

1 5 2 2 45 2.27 40.19 10.75 * * *

2 10 2 3 105 4.46 99.53 5.21 • * *

3 15 2 4 165 8.94 156.60 5.09 * * *

4 20 3 5 225 * * * 15.80 208.82 7.19

5 25 3 6 285 * * * 20.01 250.74 12.02

6 30 3 7 345 * * * 22.44 331.41 3.94

7 35 4 8 405 * * * 26.34 396.45 2.11

8 40 4 10 450 * * * 31.48 371.88 17.36

9 45 4 12 495 * * * 30.52 473.37 4.37

10 50 5 12 570 * * * 45.35 522.01 8.42

+ Seconds of CYBER 855 (Fortran Compiler).

ooO

Chapter 5

T a b le 5 -6 : C o m p u tatio n a l R e s u lt s f o r Network Flow F o rm u la tio n 2 .

Problem
Number

o f
T a sk s

Number o f
V e h ic le s

Types

Number
o f

Crews

V a lu e o f
O p tim al
S o lu t io n

Running
Tim e*

Lower
Bound

Gap
[%]

1 5 2 2 45 1 .5 6 4 0 .0 9 1 0 . 9 1

2 10 2 3 10 5 2 .2 0 9 2 .0 5 1 2 .3 3

3 1 5 2 4 16 5 3 .6 6 7 13 8 .9 8 1 5 .7 6

T a b le 5 -7 : C o m p u tatio n a l R e s u lt s f o r th e A ssignm ent F o rm u la tio n e

Problem
Number

o f
T a sk s

Number o f
V e h ic le s

Types

Number
o f

Crews

V a lu e o f
O p tim al
S o lu t io n

Running
Tim e*

Lower
Bound

Gap
[%]

1 5 2 2 45 2 .3 2 4 0 .8 9 9 .1 4

2 10 2 3 10 5 5 . 1 2 9 9 .6 1 5 . 1 2

3 1 5 2 4 16 5 1 0 .7 5 1 5 7 . 0 1 4 .84

+ Seconds o f CYBER 855 (F o r tr a n C o m p iler)
oo

Chapter 5

Table 5-8 : Computational Results for the Shortest Path Formulation .

Problem NumberofTasks
Number of Vehicles Types

Numberof
Crews

Value of
Optimal
Solution

[1]RunningTime+
tl]LowerBound

[1]Gap
[*]

[2]RunningTime+
[2]LowerBound

[2]Gap
[%]

1 5 2 2 45 0.97 41.15 8.55 * 44.48 1.14

2 10 2 3 105 2.62 99.81 4.94 • 102.73 2.16

3 15 2 4 165 5.45 157.46 4.57 * 163.42 0.97

4 20 3 5 225 11.24 209.61 6.84 * 218.00 3.11

5 25 3 6 285 14.36 251.57 11.73 * 276.42 3.01

6 30 3 7 345 16.35 335.20 2.84 • 344.33 0.19

7 35 4 8 405 18.72 335.38 17.19 * 388.35 4.11

8 40 4 10 450 22.88 419.13 6.86 * 438.17 2.63

9 45 4 12 495 23.44 450.60 8.97 * 469.06 5.24

10 50 5 12 570 30.13 550.79 3.37 * 556.78 2.32

+ Seconds of CYBER 855 (Fortran Compiler).
[1] The initial Lagrange multipliers are set to 0 .
[2] The initial Lagrange multipliers are set to - min c-.i ‘

ooto

Chapter 5

• • • •

T a b le 5 -9 : C o m pu tatio nal R e s u lt s f o r th e S h o r te s t H e ig h t C o n stra in e d P ath F o rm u la tio n .

■ 1 ' ■ 1 - ■■■

Problem
Number

o f
T a sk s

Number o f
V e h ic le s

Types

Number
o f

Crews

V a lu e o f
O ptim al
S o lu t io n

Running
Time+

Lower
Bound

Gap
[%]

1 5 2 2 45 2 .5 9 4 4 .2 1 1 .7 6

2 10 2 3 105 10 .6 2 10 4 .8 0 0 .1 9

3 1 5 2 4 16 5 2 1 .4 5 1 6 2 .3 7 1 .5 9

4 20 3 5 225 6 1 .2 4 2 2 1 .0 6 1 . 7 5

5 25 3 6 285 7 9 .3 7 2 7 8 .9 0 2 .1 4

6 30 3 7 345 8 0 .3 6 3 4 1 .6 5 0 .9 7

7 35 4 8 405 8 2 .8 7 404.84 0.04

8 40 4 10 450 14 7 .8 8 444.06 1 .3 2

9 45 4 12 495 1 3 0 .7 6 490.94 0 .8 2

1 10
50 5 12 570 1 9 5 . 1 3 558 .8 9 1 .9 5

+ Seconds o f CYBER 855 (F o r tra n C o m p ile r) .
oo

Chapter 5

Table 5-10 : Computational Results for the Graph Expansion Based Formulation •

Problem NumberofTasks
Number of Vehicles Types

NumberofCrews
Value ofOptimalSolution RunningTime+ LowerBound Gap

[%]

1 5 2 2 45 8.04 44.01 2.20

2 10 2 3 105 25.81 104.33 3.50

3 15 2 4 165 72.43 164.09 0.55

4 20 3 5 225 142.79 222.95 0.91

5 25 3 6 285 192.77 282.18 0.99

6 30 3 7 345 267.87 340.10 1.42

7 35 4 8 405 362.67 403.54 0.36

+ Seconds of CYBER 855 (Fortran Compiler)•
oo4̂

Chapter 5

Chapter 5 185

3-2 The Generation Process .

For each task i , le t :

W STj be the window starting time of task i ;

W FTj be the window finishing time of task i ;

dj be the duration o f task i ;

then we have:

W STj = 1440 a (minutes)

W FTj = W STj + (1440-WSTi)a (minutes)

dj = 45 + 120a (minutes)

where a is a randomly generated number in the range [0,1].

The work duty period was assumed in all cases to be equal to 7 hours (ie 420 minutes)

and the smallest time interval was taken to be 15 minutes.

3-3 Some Details about the Lagrangian Relaxation .

Except in the case o f the shortest path and shortest weight constrained path

formulations the initial Lagrange multipliers have been set to zero . In all cases , the

step size o f the subgradient optimization was taken to be equal to 4 and the value of the

initial upper bound was that given by the heuristic (see section 5-4). For all relaxations

we performed 20 subgradient iterations. However for the second relaxation of the first

type network flow formulation 100 subgradient iterations were performed.

3-4 Comparison of the Computational Results .

For each problem the following pieces o f information have been considered

(tables 5-5 thru 5-10):

(i) the size of the problem in terms of the number o f tasks (column 2) and the

Chapter 5 186

number o f crews (column 4);

(ii) the number o f vehicle's types (column 3). It is worthwhile noting at this

point that the assignment of tasks to vehicle's types has already been explained in

section 6 (chapter 4);

(iii) the value of the optimal solution (column 5) was obtained later after the use

of the tree search procedure (see sections 4 and 5).

For each formulation and for each problem we presented the follow ing

information:

(iv) the value o f the lower bound obtained by relaxing the corresponding

formulation in a Lagrangian fashion;

(v) the gap between the lower bound and the optimal solution value . This gap

gives an idea o f how far is the lower bound from the optimal solution value . It is

equal to :
optimal solution value - lower boundgap = —i -

optimal solution value

(vi) and finally the computing time expressed in CP seconds of the C Y B E R 855

using the fortran compiler FTN5 .

The following general remarks concerning each formulation can be derived from

tables 5-5 thru 5-10.

3-4.1 The F irst Type Netw ork Flow Form ulation (Table 5-5) .

Both relaxations of the G CSP have been considered to determine a lower bound

to the problem . W ith the 1st relaxation only problems o f up to 15 tasks could be

tackled. This was due to the limitations imposed by the network flow package which

is considered quite effective in solving network flow problems . For larger problems

of up to 50 tasks we needed to use the second relaxation which does not require any

special purpose package since it can easily be solved by inspection.

Chapter 5 187

It is worthwhile noting that the table does not compare the performance of the 2

relaxations since it can easily be proved [68] that the bound obtained with the 2nd

relaxation can be in the best case as good as the one obtained with the first relaxation.

The use o f the second relaxation was motivated by our wish to solve larger GCSP's .

3-4.2 The Second Type Network Flow Formulation (Table 5-6).

Like the previous formulation and due to the same reason only problems of up

to 15 tasks could be tackled with the network flow package used . It is worthwhile

mentioning here that each time we add new time constraints the Lagrangian relaxation

procedure is started by setting the initial multipliers equal to those which have

produced the best bound with the previous problem (ie before adding the current time

constraints) .

3-4.3 The Assignment Formulation (Table 5-7) .

Several efficient algorithms and packages have been devised to solve the

assignment problem [39] . Due to the limitations imposed by the package only

problems of up to 15 tasks could be tackled.

3-4.4 The Shortest Path Formulation (Table 5-8) .

Table 5-8 compares the performance of the Lagrangian relaxation o f the shortest

path formulation when the Lagrange multipliers are set to 0 and when they are set to

the lowest arc’s cost. C learly, in the latter case we can see that the convergence to the

Chapter 5 188

optimal solution (although not completely achieved) is much faster.

3-4.5 The Shortest Weight Constrained Path Formulation (Table 5-9).

Like the previous formulation all the 10 randomly generated problems of size

varying between 10 and 50 tasks could be tackled . Taking into account the better

performance o f the Lagrangian relaxation o f the shortest path formulation when the

multipliers are set initially to the minimum arc's cost we decided to adopt the same

strategy with this formuation of the G C S P .

3-4.6 The Graph Expansion Based Formulation (Table 5-10).

Due to the limitations imposed by the network flow package used , only

problems of up to 35 tasks could be considered. Comparing these results (table 5-10)

with those o f tables 5-6 and 5-7 the natural question that comes to one's mind is :
A*/

"knowing that the size o f the expanded network G T is much larger than that of G T

why is it that with the network flow formulation based on G T only problems of up to

15 tasks could be tackled while with this approach which is based on G T much larger

GCSP's could be handled ?". This is due to the fact that the resulting minimum cost

network flow problem is solved not on the entire network (whether G T or G T) in one

go but on the corresponding subnetworks (see section 5,chapter 4) and since the

subnetworks o f G T are much smaller than those o f G T (although many more in

number) this answers the above question.

Chapter 5 189

3-4.7 Choosing the M ost Perform ant Form ulation to be Em bedded in

the Tree Search Procedure .

Tw o formulations have been chosen as candidates to be embedded in the tree

search procedure . As far as the quality o f the lower bound and the size o f the G CSP

are concerned the shortest weight constrained path formulation is clearly the one which

has performed better than all the others. It w ill be the first candidate formulation to be

embedded in the tree search procedure (section 4) for obtaining lower bounds.

The choice o f another candidate was motivated by the fact that a lot of

computing time was required to obtain this bound in the case of the shortest weight

constraint path . This other candidate is the shortest path formulation for which a much

smaller computing time was necessary to get a lower bound not as good as that of the

first candidate but of the same quality as all the others.

4 - The Tree Search Procedure [7,20,50,101].

4-1 Description o f the Tree Search A lgorithm .

In this section we w ill give a general description o f the general tree search

algorithm. The details are considered in the other sections.

Step 0 : Apply a heuristic algorithm to determine a feasible solution to the problem ie

an upper bound (say Z u) ; go to step 1;

Step 1 : Consider node 0

* Determine a lower bound to the problem by solving the relaxed problem (shortest

path or constrained shortest path) ;let be this lower bound;

Chapter 5 190

* If Z b=Zu STOP ,the solution produced by the heuristic is optimal;

* E ls e , paritition node 0 into nodes 1,2,...(see section 4.5);

* Set i= l and go to step 2 ;

Step 2 : Consider node i

* Reduce the size o f the graph corresponding to node i (see section 4.6);

* Solve the relaxed problem (see section 4.11)

* G o to step 3 ;

Step 3 : Fathoming tests

* If node i is fathomed go to step 4 ;

* E lse , go to step 5 ;

Step 4 : Backtracking Process

* Backtrack to ancestor's nodes;

* Set i to be the first non-explored node(and non-fathomed);

* In case all the nodes have been fathomed , STO P , the optimal solution to the

problem is the feasible one with minimum cost;

* Else , go to step 2 ;

Step 5 : Branching process

* G o to step 6 ;

Step 6 : Partitioning process

* Partition node i into nodes i^ ,. . .

* Set i= ij and go to step 2 ;

4-2 Comparison of Two Heuristics .

4-2.1 A Greedy Heuristic .

The algorithm consists o f the following steps:

Chapter 5 191

Step 0 : * Set R=0 ; i=0

* For each type of vehicle pj (i=l,...,V) , form a list LIST(i) of all tasks

that can be covered by type p4 ;(V is the number of vehicle types);

* Go to step 1;

Step 1 : * Set i= i+ l; consider type o f vehicle P j; go to step 2;

Step 2 : * Set R=R+1; form route R ; go to step 3 ;

Step 3 : * Remove all the tasks of R from LIST(j), j=i,...,V ;

* if LIST(i) is empty go to step 4 ; else go to step 2 ;

Step 4 : * If LIST(j) = 0 for j= i+ l,...,V STOP ;else go to step 1 .

The main step in the above algorithm is step 2 which consists of forming route R . It

can be described as follows : " Let i* be the last task in route R . Also let STi+ and

FTj* be respectively the starting and finishing times of task i* in route R .

Step 2-0 ; * Determine the non-assigned task iQ which can be covered by the current

vehicle type and which has the least window starting time W S T j;

* Set i* = i0 and STj* = W S T j; go to step 2-1;

Step 2-1 : * Among the non-assigned tasks which can be covered with the current

type of vehicle determine the one (say ic) which satisfies both following properties :

(a) task ic can be linked to task i* ie FTj* < W FT i ;

(b) the addition o f task ic to route R w ill not produce an overflow of the route R

ie the length o f the resulting path w ill not exceed the work duty period;

* Go to step 2-2;

Step 2-2 : If no task has ben found in step 2-1 return to the main algorithm ie

step3;Else set i* = ic , STj* = minimum(WSTj,FTj*); go to step 2-1.

Exam ple : If we apply the above algorithm to the 10 task-GCSP of figure 5-1 we

obtain the following solution :

* Vehicle type 1 : It consists of the following two routes :

Chapter 5 192

Route 1 :

- Task 2 starts at time 75 ;

- Task 7 starts at time 165 ;

- Task 4 starts at time 255 ;

- Task 8 starts at time 375;

Route 2 :

- Task 6 starts at time 150;

- Task 3 starts at time 270;

- Task 9 starts at time 385;

* Vehicle type 2 : It consists of the following route :

Route 3 :

- Task 10 starts at time 345 ;

- Task 5 starts at time 510;

- Task 1 starts at time 585 ;

Total Cost : 105

4-2.2 A H euristic Based on The Shortest W eight Constrained Path .

This heuristic is based on an adapted version o f the approach described in

section 2-5.

The problem with the procedure suggested in that section which consists of

finding the shortest weight constrained path in G T is that some tasks might be

repeated- By this we mean that in that shortest path we might find two nodes (or more)

corresponding to the same task.

In what follows we first suggest a method of tackling this problem (ie finding

the shortest weight constrained path without repeated tasks) and then we describe the

corresponding heuristic for finding a feasible solution to the G C S P .

Chapter 5 193

(A) - F in d in g the Shortest W eight Constra ined Path w ithout Repeated

Tasks .

The algorithm of section 5 was based on the following dynamic programming

equations:

U ® = shortest path from Sk to Eĵ

U„ = 0 (5-47)

J le F. 1 *
J

where Ek,Fj and Sk are as defined in section 2-5.3 .

Now if we assume T = 7 hours and the minimum task duration equal 1 hour ,

then each route w ill contain at most 5 tasks (the minimum cost o f linking 2 tasks being

15 minutes) .Hence in any feasible path of G T , each node k cannot have more than 4

task-parents .A task-parent is defined as follows :

"if a path P o f G T consists of nodes P=(i 1 2̂ 3̂4445) ^ F=(fi»f2^3»^4^5) *s

corresponding set o f tasks then fj (j=l,...,4) is called the task-parent o f nodes

ij+l»ij+2»—45 • Consequently , if we define :
/

Fj = { k<j / k is linked to j and the task corresponding to j is not a task-parent of K }
/

then equations (5-47) with Fj replaced by Fj w ill give the shortest weight constrained

path, without repeated tasks, from the source S to the sink R .

Before going to the next section, it is worthwhile noting that the corresponding

procedure still runs in time 0(n2) .

(B) - The A lgorithm .

(i) Assum ptions . It is clear that with the current cost coefficients the shortest

weight constrained path , without repeated tasks , from S to R w ill have cost zero .

This is because S and R are linked to all nodes o f G T with arcs o f cost 0 . For this let

Chapter 5 194

us assume C j^ = max and let us define new costs:

cij= cij-cmax for all (i j) E G T

This implies that the new costs are non-positive. By choosing the costs in that way we

can achieve actually two aim s:

(i) minimze gap = duty period - length of route . Hence we w ill use the minimum

number o f crews to cover all tasks;

(ii) minimize the total cost.

(ii) The A lgorithm

Step 0 : Let G j,...,G m be the subnetworks of G T corresponding to the m types of

vehicle; G o to step 1

Step 1 : For each i=l,...,m determine the shortest weight constrained path PA without

repeated nodes in G i ; Go to step 2 ;

Step 2 : Let P* be the shortest path among and let F* be the corresponding

set o f tasks ; Remove all the nodes corresponding to the tasks of F* from all Gj's ; Go

to step 3 ;

Step 3 : If all G A 's are empty S T O P ; Else go to step 1 .

4-3 A Sim ple Reduction Test .

The size of network G T can be reduced further by eliminating the arcs that have

no chance to be in the optimal solution . The following is a very simple test that has

proved to be quite efficient.

Consider an N task- K crew G CSP . In graph theoretic terms , a feasible

solution Xq o f the problem consists o f K paths o f G T containing N nodes

corresponding to the N tasks. The natural question that comes to mind i s h o w many

non-required arcs does Xq possess?". It can easily be proved that x0 consists o f N -K

Chapter 5 195

linking-arcs. Now assume we have a feasible solution Xq with value Zq . What is the

maximum cost cmax an arc o f Xq can have ?. Let cmin be the minimum cost of a

linking-arc of Xq. Since Xq has got exactly N -K linking-arcs, in the worst case N -K -l

of these arcs w ill have cost cmin. Hence,

W < *0 - (N -K-l) Cmin (5-54)

in our case we have made the assumption in all our problems that c ^ =15 minutes .

Hence any arc o f G T whose cost violates condition (5-54) is eliminated since it w ill

have no chance of being in the optimal solution.

In the tree search , the feasible solution Xq is at first provided by one o f the two

heuristics suggested in section 4-2 . In the process o f going down the tree , whenever

a better feasible solution is found , constraint (5-54) is applied to remove more arcs

from G t and thus reducing its size . This is particularly useful when we know that, in

general ,in a tree search procedure the optimal solution is often found at the early stage

of building the tree.

4-4 The B ranching Process .

A t first we tried the classical branching which consists of branching on a single

variable. The results obtained were not satisfactory. S o , we decided to adopt another

branching strategy which can be described as follows :

Consider the following set o f constraints which are found in both the shortest

path formulation and the constrained shortest path formulation:
K

X X V = 1 P= 1- - N (5-55)
F k=l

P

where N is the number of tasks o f the problem;

K is the number of crews;

Fp is the set o f arcs ,o f network GT, whose initial node corresponds to task p;

Chapter 5 196

Xjjk = 1 if arc (i j) is covered by crew k in the optimal solution;

= 0 otherwise.

These constraints ensure that each task must be covered once only by a single

crew . They mean that among all the arcs leaving all the nodes of G T, corresponding to

task p (p=l,...,N) , only one arc should be picked up in the optimal solution .

Now if we want 2 tasks p and q (p precedes q) to be directly linked in the

optimal solution we need to impose the following constraint:
K

X X xijk = 1 (5-56)
F k=l p.q

where Fp q is the set of all arcs of G T whose initial node corresponds to task p and

terminal node to task q .

If we do not want p and q to be directly linked in this order we just have to

im pose:
K

X X V = 0 (5-57)
0J)eFp qk=l

Having chosen 2 tasks p0 and qQ (how ? see section 4-7) our branching strategy is as

fo llow s:

Before saying something on the choice o f tasks p0 and qQ , and before giving

Chapter 5 197

more details about the branching strategy (see section 4.7) we first consider the

partitioning process.

4-5 The Partition ing Process .

W e saw in the reduction test that an arc o f G T can be eliminated if it has length

greater than:

cmax = z0 " (N-K-l) Cm[n
where Zq is the value o f the best feasible solution found so fa r , cmin is the minimum

arc's cost . For our computational results we have noticed that for all problems

considered the maximum length o f an arc does not exceed 60 minutes ie

cmaY=60minutes . Hence with the assumption that the costs of the arcs are multiple of

15 minutes the only values it can take are 15,30,45 and 60 minutes . This encouraged

us in choosing the following partitioning strategy :

Going back to the branching technique and considering constraint (5-56), if we

take into account the fact that the only values an arc o f Fp can take are 15,...,M

(where M can be equal to 15 or 30 or 45 or 60) then node i o f the tree is partitioned as

follows : Figure 5-6 : Partitioning o f node i.

*

Chapter 5 198

where m = M/15 and

for t=15,...,M ; Fpq is the set o f arcs o f G T with cost t that join vertices of G T

corresponding to task p to vertices of G T corresponding to

taskq;

or alternatively Fp>q = { (i,j) e Fp q / Cy = t }

4-6 Graph Reduction .

In the tree search procedure the size o f network G T can be reduced using one or

some of the following reduction tests :

(i) By imposing constraints (5-57) to the problem all arcs o f F a can be

eliminated from G T ;

(ii) Consider the following constraint:

arc o f duration t (t=15,...,M) . Hence we can consider tasks p and q as forming a

single task k with the following characteristics:

* the duration dk of task k = duration o f task p + duration of task q + 1

* the starting time window W STk of k is such that:

* task k can be covered by the type of vehicle that can cover both tasks p and q ;

As a consequence o f this , and going back to figure 5.6 the problem at nodes

j l J m wiU smaller than the problem at node i by one task. This means that the

K

(5-58)

It means that tasks p and q (in this order) w ill be linked in the optimal solution by an

W STk = max(WSTp,W STq - dp -15)

* the finishing time window of task k is given by :

W FTk = min (W FTp,W FTq - dp -15)

Chapter 5 199

deeper we go down the tree the smaller the problem becomes.

(iii) As a consequence o f (ii) , if in the tree's path from node 0 to node K a

certain task schedule has been found which is full up (ie the addition o f any other task

w ill result in a schedule o f length greater than the duty period) then all the

corresponding tasks w ill be removed from the sons' nodes (and successors' nodes)

and the number of crews w ill be reduced by one.

(iv) Whenever the best upper bound to the problem has been updated, the

reduction test of section 4.3 is applied to remove more arcs from the graph.

4-7 Choice of Tasks p0 and q0 .

The branching strategy is a depth first search . Starting from node 0 of the tree,

we go down the tree trying to build feasible schedules. Whenever a node is fathomed

(see section 4-8) we backtrack (see section 4-9) and continue our descent down the

tree.

Assume that at a certain node i o f the tree a set o f crew schedules has already

been found. The choice of tasks p0 and qQ should be made in such a way :

* to complete an existing crew schedule; or

* to start a new schedule in case all the existing schedules are full up .

It is whorthwhile to note that if we want to complete an existing schedule we

must have one of the two following cases:

* p0 is the last task o f the schedule and q̂ is not in the schedule; or

* q ̂is the first task of the schedule and p0 is not in the schedule.

However if a new schedule is started then any 2 tasks not already assigned can be

chosen . Also we have to make sure when choosing the tasks to branch on that their

addition w ill not result in a schedule which violates the time restriction .

Finally assume that we are at node i o f the tree (see figure 5-6) and that we have

chosen the two tasks p0 and qQ to branch o n , the next node that w ill be explored after

Chapter 5 200

node i is node jj ie the node corresponding to constraint (5-58) with F.J® .
XTO

4-8 Fathom ing Tests .

A node i of the tree is fathomed if one of the following conditions is satisfied:

(i) the value o f the lower bound (say, ẑ) at that node is greater than or equal to the

value of the current upper bound (say.z^;

(ii) the solution at node i is feasible . In this case if the value o f Zq o f this solution is

such that Zq < zu then update the value of the current upper bound by setting zu=z0 ;

(iii) the number o f remaining crews w ill not be able to cover all the remaining tasks.

B y remaining we mean that if we consider in the tree the path from node 0 to node i ,

then all the tasks that have not been considered are called remaining tasks.

(iv) the solution is infeasible.

4-9 B acktrack ing Process.

Consider figure 5-6. Let us first present the following definitions :

(i) Father node : node i is said to be the father node o f nodes j m+i»

(ii) Son node : nodes jj j2»***dm+l ^ 8011 n(X ês ncK̂ e i *

(iii) Brother node : nodes j 1d2»—Jm+i m caUed brother nodes ;

(iv) Uncle node : the brothers o f node i are the uncles o f nodes j i J2»—Jm+l •

W ith these definitions in hand , the backtracking process can be described as

follow s:

If a node k is fathomed then the next node to be considered after it is its nearest

brother node. In case all the brother nodes have been fathomed then try to explore the

nearest uncle node to the father node and so on and so forth ...etc... If all nodes have

been fathomed stop the tree search procedure : the optimal solution to the problem is

Chapter 5 201

the best integer solution found so fa r.

4-10 Task Ordering .

In the branching process, when choosing the next pair o f tasks to branch on we

have im plicitly assumed that the tasks are ordered. So the natural question is how are

they ordered ?

F irs t, the tasks are divided into groups . Each group correspond to a certain

type of vehicle ie they are as many groups as there are vehicle types . The first group

corresponds to the first vehicle type , the second group corresponds to the second

vehicle type etc ...

A task that can be covered by more than one vehicle type w ill be considered in

all the corresponding groups . W ithin the group the tasks are ordered in ascending

• order o f their window starting times . In case o f ties the task with the shortest time

window is first considered . Finally it is worthwhile noting that if in the branching

process a task has been already assigned to a certain schedule, then this task w ill not

be considered in any son node or descendent node .

4-11 Solving the Relaxed Problem in the Tree .

To obtain a lower bound to the problem at every node o f the tree we considered,

• in the 2 previous sections 2 and 3 , several different formulations o f the G CSP and

compared the corresponding lower bounds obtained from the Lagrangian relaxation .

The shortest weight constrained path formulation (SWCP) proved to be the best one in

that the quality o f the lower bound obtained ,over all 10 randomly generated G C SP 's,

was better than all the others.

So we first thought that this w ill be the formulation that w ill be embedded in the

tree search procedure for obtaining lower bounds. However when we noticed that the

Chapter 5 202

computing time required to get such a lower bound was considerably large compared

to the other formulations which are based on network G T we decided to embed both

this formulation and the shortest path formulation in the tree search procedure and then

choose the one that performs better overall. The shortest path formulation was chosen

among the other formulations because in addition o f producing lower bounds as good

as the others(except the SW CP) the corresponding algorithm was much faster.

4-12 Example .

Let us consider the 10 tasks-3 crew G CSP of figure 5-1. The optimal solution

was obtained by the heuristic. But for the sake o f explaining very briefly how the tree

search procedure works , we assumed the upper bound to be equal to 120 and we run

the program with this upper bound. The tree we obtained is represented in figure5-7 .

The tasks have been ordered as follows :

* Group 1 consists o f tasks 2,3,4,6,7,8 and 9 ;

* Group 2 consists o f tasks 1,3,4,5,9,10 .

Using a depth first search a feasible integer solution was found at node 10 .

Backtracking to the father node 7 and comparing the values o f the lower bounds of

respectively nodes 7 and 10 we could fathom nodes 11 and 12 without investigating

them . A t this point it is worthwhile explaining the meaning o f the different figures

associated with the tree search o f figure5-7 . The figures inside the circles (which

represent the nodes) represent the order in which the nodes are visited. The terminal

nodes at the extremities o f the dotted branches mean that they did not need to be

considered as they were fathomed before investigation . The dotted arrows show the

direction in which the tree was explored. The figures beside each node give the value

of the corresponding lower bound.

Going back to where we stopped (ie fathoming nodes 11 and 12) the

backtracking process was carried out from father to grand-father,fathoming on our

Chapter 5 203

Figure 5-7 : Tree Search o f the 10 task-GCSP (table5-l).

\ am=o
\ 23

A«,t=^ £ i xijk

FEASIBLE
SOLUTION

Nod 0 B

i

Chapter 5 204

way the brothers, till we finally arrived back to the head node 1 which is in its turn

fathomed due to the fact that its lower bound was equal to the value of the feasible

solution found at node 10 . This shows that this feasible solution is optimal for the

whole problem .

4-13 Reducing the Size of the Tree.

When generating the input data we have made the following assumptions :

(a) The planning period o f 24 hours is divided into small intervals of time of 15,or

30,...,or 60 minutes,...etc.... W e w ill refer to these intervals as time unit. In all our

computational results we assume a time unit of 15 minutes;

(b) The window starting tim e, the window finishing time and the duration of each task

are given as multiples of 15 .

As a direct consequence of th is, the value of the optimal solution w ill be equal

to a multiple o f 15 . Hence the value o f the lower bound can each time be rounded off

to the first multiple o f 15 greater than or equal to the value o f this lower bound.

5- Computational Results of the Tree Search Procedure .

Table 5-11 compares the performance of the two heuristic algorithms presented

• in section 4-2 . It is clear that the heuristic based on the shortest weight constrained

path formulation (SWCP) has performed much better, in all cases considered , than

the greedy heuristic.

Using the reduction test o f section 4-6 we show in tables 5-12 and 5-13 the

effect of this test on respectively the size of network G T and the computational times of

the shortest path and SW CP formulations . It has been noticed that the larger the

average time window is and the more efficient the test becomes . This w ill be

Chapter 5 205

discussed in section 6 .

Com paring, in table 5-14 , the tree search procedures based on respectively the

shortest path and the SW CP formulations we noticed that although a smaller number

o f nodes needed to be explored in the latter case to obtain the optimal solution , the

overall computing time required by the former formulation has proved to be much

better. In table 5-15 we give more information about the tree search procedure based

on the shortest path formulation.

In section 2-5.3 we made the reasonable assumption that the planning period of

24 hours was divided into smaller intervals o f time of 15 minutes called time units .

This means that since the cost coefficients represent the time durations of the

corresponding arcs then they all are multiples o f 15 . As a result o f this the lower

bound at each node can be rounded off to the nearest multiple of 15 . Table 5-16

presents the new values of the lower bounds of the shortest path problem formulation

when the "modulo 15" consideration is taken into account. Finally the corresponding

inprovements in time of the tree search procedure are shown in table 5-17.

Table 5-11 : Computational Results for the Two Heuristic Algorithms

Problem NumberofTasks
Number of Vehicles Types

NumberofCrews
Value of
OptimalSolution

[1]Running
Time+

CDUpperBound
[1]Gap
[%]

[2]RunningTime+
[2]UpperBound

[2]Gap
[%]

1 5 2 2 45 0.01 45 0 0.13 45 0

2 10 2 3 105 0.01 105 0 0.46 105 0

3 15 2 4 165 0.01 165 0 1.31 165 0

4 20 3 5 225 0.01 255 13.33 2.65 225 0

5 25 3 6 285 * * * 4.11 315 10.52

6 30 3 7 345 0.02 405 17.39 6.95 360 4.34

7 35 4 8 405 0.02 420 3.70 9.28 405 0

8 40 4 10 450 * * * 12.55 480 6.67

9 45 4 12 495 0.02 585 18.18 14.01 525 6.06

10 50 5 12 570 0.03 630 10.53 18.97 585 2.62

+ Seconds of CYBER 855 (Fortran Compiler).[1] Heuristic 1 ;
[2] Heuristic 2 ;

Table 5-12 : Size of Network After the Reduction Process .

Problem
Number of

Task* Network 1 Network 2 Network 3 Network4 Networks Number of Vertices Number of Area after Reduction
Number of Arcs before Reduction

Proportion of Arcs Eliminated

1 5 * * * * * * * a *

2 10 * • * * * * * * *

3 15 * * * * * * * * *

4 20 * * * * * * * * *

5 25 1255 1324 2076 150 160 582 6585 39496 83.3%

6 30 758 837 578 218 226 633 2173 44433 95.1%

7 35 * * * * * * * * *

8 40 621 1789 2006 4471 138 848 8887 61722 85.6%

9 45 1297 1405 1947 3475 149 956 8124 84011 90.3%

10 50 3869 1402 1285 1090 967 1220 8613 115924 92.6%

too■ o

Chapter 5

Table 5-13 : Computational Results for the Shortest Path and Shortest Weight Constrained Path
Formulations after the Reduction of Gr .

Problem
Numberof
Tasks

Number of
Vehicles
Types

Number
of

Crews
[1]Running

Time+
tl]Running

Time+
[1]Improvement

[%]
[2]Running

Time+
[2]Running

Time+
[2]Improvement

[%]

1 5 2 2 * * * * * *

2 10 2 3 * * * * * *

3 15 2 4 * * * * * *

4 20 3 5 * * * * * *

5 25 3 6 14.4 5.4 62.2 79.4 25.5 67.8

6 30 3 7 16.2 4.4 72.7 80.4 21.0 73.9

7 35 4 8 * * • * * *

8 40 4 10 22.9 5.7 75.0 147.9 41.6 71.9

9 45 4 12 23.4 8.6 63.1 130.8 43.5 66.7

10 50 5 12 30.1 4.3 85.7 195.1 30.9 84.2

+ Seconds of Cyber 855 (Fortran Compiler) .
[1] Shortest Path Formulation .
[2] Shortest Weight Constrained Path Formulation to

o
oo

Chapter 5

Table 5-14 : Computational Results for the Tree Search Procedure .Comparison of the Shortest Path and the Shortest Weight Constrained Path Formulations .

Problem
Numberof
Tasks

Number of Vehicles Types
NumberofCrews

Value ofOptimalSolution

[1]Number of Nodes
Explored

[1]
RunningTime+

[1]Optimum Given by Heuristic

[2]Number of Nodes
Explored

[2]
RunningTimet

[2]Optimum
Given by Heuristic

1 5 2 2 45 * * yes * * yes

2 10 2 3 105 * * yes * * yes

3 15 2 4 165 * * yes * * yes

4 20 3 5 225 * * yes * * yes

5 25 3 6 285 972 432.7 no 440 920.4 no

6 30 3 7 345 139 60.8 no 206 388.4 no

7 35 4 8 405 * * yes * * yes

8 40 4 10 450 625 402.3 no 340 1215.9 no

9 45 4 12 495 1036 800.2 no 364 1300.3 no

10 50 5 12 570 715 297.2 no 470 1056.4 no

+ Seconds of CYBER 855 (Fortran Compiler).[1] Shortest Path Formulation .[2] Shortest Weight Constrained Path Formulation .

toOVO

Chapter 5

Table 5-15 : Computational Results for the Tree Search Procedure (based on the shortest path).

Problem
NumberofTasks

Number of
Vehicles Types

Numberof
Crews

Value of
Optimal
Solution

LoverBound Upper
Bound

Gap
(%]

Number of
Nodes Total

Time*
Time+ at
Node 0

1 5 2 2 45 44.5 45 1.14 * * *

2 10 2 3 105 102.7 105 2.16 * * *

3 15 2 4 165 163.4 165 0.97 * * *

4 20 3 5 225 218.0 225 3.11 * * *

5 25 3 6 285 276.4 315 3.01 972 432.7 5.4

6 30 3 7 345 344.3 360 0.19 139 60.8 4.4

7 35 4 8 405 388.4 405 4.11 * * *

8 40 4 10 450 438.2 480 2.63 625 402.3 5.7

9 45 4 12 495 469.1 525 5.24 1036 800.2 8.6

10 50 5 12 570 556.8 585 2.32 715 197.2 4.3

+ Seconds of CYBER 855 (Fortran Compiler).

Chapter 5
210

T a b le 5 - 1 6 : Bounds C o m pariso n f o r t h e S h o r t e s t P a th F o r m u la t io n .

Problem
Humber

o f
T a s k s

Number o f
V e h ic le

T yp e s

Number
o f

Crew s

P r e v io u s
Lower
Bound

New
Lower
Bound

P r e v io u s
Gap
[%]

New
Gap
[%]

1 5 2 2 4 4 . 5 45 1 . 1 0 .

2 1 0 2 3 1 0 2 . 7 1 0 5 2 . 2 0.

3 1 5 2 4 1 6 3 . 4 1 6 5 1 . 0 0.

4 20 3 5 2 1 8 . 0 225 3 . 1 0.

5 25 3 6 2 7 6 . 4 285 3 . 0 0.

6 30 3 7 3 4 4 . 3 345 0 . 2 0.

7 35 4 8 3 8 8 . 4 390 4 . 1 3 . 7

8 40 4 1 0 4 3 8 . 2 450 2 . 6 0.

9 45 4 1 2 4 6 9 . 1 480 5 . 2 3 . 0

1 0 50 5 1 2 5 5 6 . 8 570 2 . 3 0.

Chapter 5

Table 5-17 : Computational Results for the Tree Search Procedure Based on the New Lover Bounds (of table 5-16)

Problem
Numberof
Tasks

Number of
Vehicles
Types

Number
of

Crews
Value of
Optimal
Solution

tl]Lower
Bound

[1]Upper
Bound

[1]Gap
[*]

12]Number of Nodes
(2)TotalTime+

[2]Time+ at
Node 0

1 5 2 2 45 45.0 45 0. a * a

2 10 2 3 105 105.0 105 0. * a a

3 15 2 4 165 165.0 165 0. a a a

4 20 3 5 225 225.0 225 0. a a a

5 25 3 6 285 285.0 315 0. 118 76.7 5.4

6 30 3 7 345 345.0 360 0. 175 133.2 4.4

7 35 4 8 405 390.0 405 3.70 a a a

8 40 4 10 450 450.0 480 0. 269 181.7 5.7

9 45 4 12 495 480.0 525 3.03 528 428.4 8.6

10 50 5 12 570 570.0 585 0. * a a

+ Seconds of CYBER 855 (Fortran Compiler).[1] Node 0 of the Tree .
[2] Remaining Nodes of the Tree .

Table 5-18 : Efficiency of the Reduction Test when
the Average Time-Window Varies.

Average
Time-Window

[hours]
Size of G40

[arcs]
Size of G40
After

Reduction
Percentage

of eliminated
Arcs [%]

1 10540 8438 19.9
2 21505 17204 20.0
3 29920 15229 49.1
4 43732 23195 47.0
5 55887 17625 68.5
6 59160 20244 65.8
7 76033 8485 88.8
8 80877 11242 86.1
9 93713 14017 85.0
10 104932 10750 89.8

to

Chapter 5

Chapter 5 214

6- Conclusion .

A branch and bound procedure based on the Lagrangian relaxation o f a shortest

path formulation o f the G CSP has been considered in this chapter. W ith this technique

GCSP's that could not be tackled with the graph's expansion o f the previous chapter,

have been solved to optimality . The problems considered varied in size between 10

and 50 tasks and had a task time window allowed to vary between 0 and 24 hours.

Lagrangian relaxation was used to determine at each node o f the tree a lower

bound to the problem. The formulation of the problem as a shortest path problem plus

additional time constraints was decided after 5 other integer programming formulations

were considered and the corresponding computing times and lower bounds were

compared . Although the Lagrangian lower bound o f the shortest path based

formulation was not the best one , the computing time that was required to get it was

considerably better than all the others . To determine a good upper bound to the GCSP

two heuristic algorithms were considered . The one that performed better was

subsequently used to produce an upper bound to each one o f the test problems

considered. It is based on a polynomial algorithm used to solve the shortest weight

constrained path relaxation of the G C S P .

Using a very simple but efficient reduction test the large size o f the

coresponding network G T of the test problems was substantially reduced. This is one

o f the factors that improved the efficiency o f the tree search procedure . It has been

noticed that as the average task time window o f the problem increases the reduction

test becomes more and more efficient as'it can be seen from the results o f table 5-18

which show the proportion of arcs eliminated from network G 40 by the reduction test

when the average task time window varies between 1 and 10 hours . G 40 is the

network representative o f a 40 task-GCSP with 3 types o f vehicle. W e can see from

table 5-18 that when the average task time window converegs to 1 hour the reduction

test becomes almost useless . However when this average time-window is small the

Chapter 5 215

size o f the corresponding network is as a result also sm all. Hence we basically do not

need at all to use any reduction test in this case. In fact the need o f reducing the size of

network G 40 becomes necessary only when it gets larger ie when the average time

window increases and in this case the test proved to be quite efficient. Hence we can

say that for a given G CSP , whatever is the range in which the average time window

varies , by using the reduction test when necessary a reasonable size network G T can

be obtained to work o n .

Chapter 6 217

C H A P T E R 6

C O N C LU S IO N S

Two versions of the crew scheduling problem have been considered . The

first version called simply crew scheduling problem (CSP) has been solved

efficiently using just an LP package. A tree search procedure based on Lagrangian

relaxation was used to solve the second version that was called general crew

scheduling problem (G CSP). The difference between the 2 versions is that in the

first one the starting and finishing times o f each task were specified and fixed

beforehand , whereas in the 2nd version the starting time of each task is given

within time-windows. Also while only one type o f vehicle has been assumed in

the case o f CSP to service all tasks, several types o f vehicle are considered to

cover the tasks o f the G C S P .

A t first the CSP was formulated as a minimum cost network flow problem

plus additional time constraints. The formulation proved to be so effective that out

Chapter 6 218

of all 101 randomly generated problems of size varying between 5 and 30 tasks ,

eighty one were solved to optimality by using just an LP package . For the

remaining problems a cutting-plane algorithm has been devised . This algorithm

consists o f a combination of logical cuts and Gomory's cuts . When the logical

cuts were first added only few Gomoiy's cuts were necessary to reach the optimal

solution.

The drawback of this technique is that only small problems o f up to 30 tasks

could be tackled . This was due to the limitations imposed by the existing LP

codes which cannot handle the very large size linear problems produced by the

formulatiom as the number o f tasks increases . To overcome this drawback

another formulation and another integer programming solution technique were

considered. In this formulation which is still based on the minimum cost network

flow problem , the additional time constraints were generated, in a dynamic w ay,

as needed and subsequently relaxed in a Lagrangian fashion . Our aim in using

the Lagrangian relaxation was to derive good lower bounds for the problem that

w ill be embedded in the tree search procedure. Unfortunately , the quality o f the

bound was so poor, (20% away from the optimum for certain problems), that the

idea was dropped.

Using graph theoretic concepts , we then derived a graph expansion

technique that proved to be very effective. The technique consists o f expanding

the network G representative o f the CSP into another network G in which all paths

are feasible for the CSP .As a result o f this the problem was then formulated as a

minimum cost network flow problem plus additional set-partitioning type

constraints (instead o f time constraints) which guarantee that each task must be

covered once only by a single crew . W ith such a formulation in hand we first

thought o f relaxing the set partitioning type constraints in a Lagrangian fashion

and solve the relaxed problem with a minimum cost network flow package to

Chapter 6 219

g
obtain^good lower bound that would be embedded in a tree search procedure .

Fortunately, we did not need to go that fa r. Thus out of more than 250 randomly

generated CSP's o f size varying between 10 and 150 tasks , the optimal integer

solution was found in all cases by just solving the linear relaxation o f the problem

with an LP package . These results are surprisingly good , especially when we

know that the CSP is an N P complete problem . Then we tried to determine

whether it is always the case that the solution o f the linear relaxation o f the CSP is

optim al. Many attempts were made, unsuccessfully, to produce a single example

for which this does not apply but each time an example was produce it was

subsequently solved exactly with the LP package. To prove that the problem can

always be solved by an LP package is itself a very hard problem and only partial

proofs could be produced. It is worthwhile to mention at this point that the proof

of the integrality o f the extreme points o f the CSP's polytope is o f great

importance in the area o f algorithms' complexity . Thus this proof w ill solve a

problem that in spite o f the huge effort deployed to solve i t , nobody up till now

has been able to prove (or disprove). This is to prove that problem complexity

class P is equal to class N P .

Decomposition algorithms [53,104] have been devised to solve large scale

linear programming problems which involve thousands o f rows and hundreds of

variables. It is worthwhile noting that taking advantage of the fact the the solution

o f the linear relaxation o f the problem is optim al, large size CSP's which can

involve hundreds o f tasks can be solved efficiently with one such decomposition

method.

Using an adapted version o f the graph expansion technique (GET) two

different extensions o f the CSP were subsequently considered and solved in

exactly the same manner as the CSP ie just using an LP package. These versions

Chapter 6 220

(i) the multiple depot CSP in which several depots o f known capacity are

assumed. Each crew (or vehicle) must return at the end of the day to its original

depot;

(ii) the CSP with rest periods : in this problem encountered mainly in the

airline industry the planning period is supposed to be one week o f 7 days .

Between any 2 consecutive trips each crew is to have a rest period o f at least T j

hours and at most T 2 hours (Tj <T2) where T x and T 2 are given;

The G CSP was first tackled with the graph expansion technique. For the

GCSP's that have small task time windows the G E T has proved to be as effective

as for the CSP .Thus , GCSP's o f up to 50 tasks could be optimally solved using

just an LP package . However as the time window increases it becomes

impossible to use G E T . this is due to the enormously large size o f the expanded

network that no existing LP package could handle . Thus when the task average

time window is allowed to vary between 00.00 and 24.00 hours only GCSP's of

up to 10 tasks could be solved.

In our attempt to solve larger size GCSP's a branch and bound procedure

based on the Lagrangian relaxation of a shortest path problem formulation o f the

G CSP was devised . Using the Lagrangian relaxation to obtain lower bounds for

the tree search procedure six different integer programming formulations were

considered. After comparing the corresponding running times and lower bounds

produced two formulations were chosen as possible candidates to be embedded in

the tree search procedure . And finally it appeared that the shortest path based

formulation, although the corresponding bound was not the best found, was the

most suitable and the most performant to be embedded in the tree search

procedure.

The success o f any branch and bound procedure depends entirely on the

quality o f both the upper and lower bounds o f the problem . To find a good upper

Chapter 6 221

bound to the G C SP two heuristics algorithms have been considered and

compared. The one that performed better was subsequently used to determine

upper bounds to the problem. It is based on a polynomial algorithm that has been

devised to solve the shortest weight constrained problem (applied to our case).

The results obtained with this tree search procedure, the efficiency o f which

was improved by some reduction tests , were satisfactory . Thus all randomly

generated GCSP's o f size varying between 10 and 50 tasks and with a task time

window allowed to vary in the range [00.00-24.00hours] were solved to

optimality.

References 222

R E F E R E N C E S

1. Agmon S. [1954], " The Relaxation for Linear Inequalities", Canadian Journal of
Math.. V o l 6, pp382-392.

2. Arabeyre J.P., Feam ley /., Steiger F.C. and Teather W. [1969], "The Airline
Crew Scheduling Problem : a survey", Transportation Science. V o l 3, ppl40-163.

3. Assad A. [1980], "Models for Rail Transportation," Transportation Research.
V o l 14 A , pp205-220.

4. Baker E. [1979], "Efficient Heuristic Solutions for the Airline Crew Scheduling
Problem". D .B .A thesis, University of Maryland, College Park, Maryland.

5. Baker E. , Bodin L J)., Finnegan W.F. and Ponder R J . [1979], "Efficient
Heuristic Solutions to an Airline Crew Scheduling Problem", A IEE Transactions.
V o l 11, pp79-84.

6. Baker E., Bodin L ., and Fisher M. [1980], "The Developm ent and
Implementation o f a Heuristic Set Covering Based System for A ir Crew
Scheduling," Working Paper No.80-015, University o f Maryland.

7. Balas E. [1965], "An Additive Algorithm for Solving Linear Programs with
Zero-One Variables", Operations Research. V o l 13, pp517-546.

8. Balas E. [1971], "Intersection Cuts-A New Type of Cutting-Plane for Integer
Programming," Operations Research. V o l 19, ppl9-30.

9. Balas E. [1974], "Intersection Cuts from Disjunctive Constraints," Man. Res.
Rep. No. 330, Camegie-Mellon University, February, 1974.

10. Balas E. [1975], "Disjunctive Programming : Cutting-Planes from Logical
Conditions," Talk Given at SIG M AP-U W Conference, April 1974, Published in
O .L . Mangasarian, R .R . M eyer, and S .M . Robinson (Eds).,Nonlinear
Programming, Vo l 2, Academic Press, New York.

11. Balas E. and Christofides N. [1981], "A Restricted Lagrangian Approach for the

References 223

Travelling Salesman Problem," Mathematical Programming. V o l 21, pl9.

12. Balas E. and Ho A .[1980], "Set Covering A lgorithm s U sing
Cutting-Planes,Heuristics and Subgradient Optimization : A Computational Study",
Mathematical Programming. Study 12, Combinatorial Optimization, pp37-60.

13. Balas E. and Jeroslow R. [1975], "Strengthening Cuts for M ixed Integer
Programs," M SSR no. 359, GSIA, Camegie-Mellon University, February.

14. Balas E. and Padberg M. [1979], "Set Partitioning - a Survey," In
Combinatorial Optimization, N. Christofides, A . M ingozzi, P. Toth and C. Sandi
(Editors).

15. Ball M. [1980], "A Comparison of Relaxation and Heuristics for certain Crew
and Vehicle Scheduling Problems", presented at the National ORSA/TIMS Meeting.
Washington D .C..

16. Ball M., Bodin L. and Dial R. [1980], "Experimentation with a Computerized
System for Scheduling Mass Transit Vehicles and Crews," Presented at the
International Workshop on Urban Passenger,Vehicle,and Crew Scheduling, the
University o f Leeds, England.

17. Bazaraa M.S. and Jarvis J J . [1977], "Linear Programming and Network
Flows". John W iley & Sons, New York.

18. Bazaraa M S . and Goode J J . [1979], "A Survey o f Various Tactics for
Generating Lagrangean Multipliers in the Context of Lagrangian Duality", European
Journal of Operational Research. V o l 3, pp 322-338.

19. Bazaraa M S . and Shetty C M . [1979], "Nonlinear Programming : Theory and
A lgorithms". John W iley & Sons, New York.

20. Beale E M L . [1965], "Survey o f Integer Programming", Operational Research
Ouartelv. V o l 16, pp219-228.

21. Beale E .M J . [1979], "Branch and Bound Methods for Mathematical
Programming Systems", Annals o f Discrete Mathematics. V o l 5: Discrete
Optimization II. pp 201-219.

22. Beasley JJ1983], "Route First-Cluster Second Methods for Vehicle Routing,
Omega. V o l 11, pp403-408.

23. Bellman R. [1957], "Dynam ic Programming". Princeton University Press,
Princeton, N.J.

24. Bellman R. and Dreyfus S.E. [1957], "Applied Dynam ic Programming".
Princeton University Press, Princeton, N.J.

25. Bellmore M., Bennington G. and Lubore S. [1971], "A Multivehicle Tanker
Scheduling Problem," Transportation Science. V o l 5, No 1, pp36-74.

26. Benders J. [1962], "Partitioning Procedures for Solving M ixed Variable
Programming Problems," Numerische Mathematic. V o l 4.

27. Benichou M. et A l [1971], "Experiments in M ixed Integer Linear
Programming," Mathematical Programming. V o l 1, pp76-94.

28. Bennington G.E. and Rebibo K X . [1975], "Overview of the R U CU S Vehicle
and Scheduling Program (BLOCKS)", in Workshop on Automated Techniques for
Scheduling o f Vehicle Operations for Urban Public Transportation Systems, held in
Chicago, Bergmann D. and Bodin L . editors.

29. Berge CJ1970], "Graphes et Hvpergraphes." Dunod,Paris.

30. Berge C.[1972], "Balanced Matrices", Mathematical Programming. V o l 2,
pp19-31.

31. Bodin L.and Berman L. [1979], "Routing and Scheduling o f School Buses by
Computer," Transportation Science. V o l 13, pp l 13-129.

32. Bodin L .and Golden B. [1981], "Classification in Vehicle Routing and
Scheduling." Networks.V o l ll.pp97-108.

33. Bodin L., Golden B., Assad A. and Ball M. [1982], "The State of the Art in the
Routing and Scheduling o f Vehicles and Crews", Computers and Oper. Res.. Vo l

References 225

10, pp63-212.

34. Bodin L .and Kursh S. [1978], "A Computer-Assisted System for the Routing
and Scheduling of Street Sweepers," Operations Research. V o l 26, pp525-537.

35. Bodin L., Rosenfield D. and Kydes A. [1978], "UCOST, A M icro Approach to
a Transit Planning Problem", Journal of Urban Analysis. V o l 5, No 1, pp 47-69.

36. Camion P.[1965], "Characterization o f Totally Unimodular Matrices", Proc.
Am . Math. Soc.. V o l 16, ppl068-1073.

37. Chalmet L.G . and Gelders L F .[1976], "Lagrangian Relaxations for a
Generalised Assignment-Type Problem", Katholieke Universiteit Leuven, Working
Paper, No 76-121.

38. Cheddad H. and Christofides N. [1986], "Algorithms for Crew Scheduling
Problems", Working Paper. Department of Management Science, Imperial College,
University o f London.

39. Christofides N . [1975a], "Graph Theory, an Algorithmic Approach". Academic
Press.

40. Christofides N. [1975b], "Vehicle Routing," R A IRO Rech. Oper.. V o l 10,
pp55-70.

41. Christofides N. [1979], "The Travelling Salesman Problem," in Combinatorial
Optimization (edited by N. Christofides,A. Mingozzi,P.Toth and C. Sandi), John
W iley & Sons.

42. Christofides N. [1985], "Vehicle Routing," In E .L Lawler, J.K . Lenstra,
A .H .G . Rinnoy Kan, D .B . Shmoys (eds.), The Travelling Salesman Problem,
W iley, Chichester, Ch.12.

43. Christofides N., Mingozzi A., and Toth PJ1981], "State-Space Relaxation
Procedures for the Computation o f Bounds to Routing Problems," Networks. Vo l
11, ppl45-164.

44. Christofides N. and Paixao J. [1982], "State-Space Relaxation Algorithms for

)

References 226

the Set-Covering Problem," Imperial College Report No IC,OR,81/12.

45. Chvatal V. [1979], "A Greedy Heuristic for the Set-Covering Problem",
Mathematics of Operations Research. V o l 4, pp233-235.

46. Cook, S A . [1971], "The Com plexity o f Theorem Proving Procedures,"
Proc.3rd Ann. A C M Symp. on Theory of Computing, Association for Computing

» Machinery, New York, 151-158.

47. Cook, S A . [1973], "A Hierarchy for Nondeterministic Tim e Coomplexity," L
Comput. System S c i., V o l 7, pp 343-353.

48. Crow der H .[1974], "Com putational Improvement o f Subgradient
Optimization," IBM Technical Report R C 4907, Yorktown Heights, New York.

49. Crowder H., Johnson E L . and Padberg M. [1983], "Solving Large-Scale
Zero-One Linear Programming Problems", Operations Research. V o l 31, No 5, pp
803-834.

50. Dakin RJ.[1965], "A Tree Search Algorithm for Mixed-Integer Programming
Problems," Computer Journal. V o l 8, pp250-255.

51. Dantzig G. [1963], Linear Programming and Extensions. Princeton University
Press, Princeton, N.J.

52. Dantzig G. and Fulkerson D. [1954], "Minim izing the Number o f Tankers to
Meet a Fixed Schedule", Naval Research Logistics Quarterly. Vo l 1, pp 217-222.

• 53. Dantzig G. and Wolfe P. [1961], "The Decomposition Algorithm for Linear
Programming," Econometrica. V o l 9, No. 4.

54. Deo N. [1974], "Graph Theory with Applications to Engineering and Computer
Science". Prentice-Hall.

55. D esrosiers J., and D esrochers M. , Soumis F.[1984], "Routing with
Time-Window by Column Generation," Networks. Vo l 14, pp545-565.

56. Desrosiers J., Pelletier P., and Soumis F. [1983], "Plus Court Chemin avec

References 227

Contraintes d'Horaires," R.A.I.R.O . Rech. Oper.. V o l 17, pp357-377.

57. D reyfus S.E. and Law A.M. [1977], "The Art and Theory o f Dynamic
Programming". Academic Press, New York.

58. Finnegan W. [1977], "A Network M odel for Bidline Generation", in F E C
Technical Report, Federal Express Corporation, Memphis, TN.

59. Fisher M J . and M.O. Rabin [1974], "Super-Exponential Com plexity o f
Presburger Arithmetic," in R.M .Karp (ed), Complexity o f Computation, American
Mathematical Society, Provedence, RI, 27-41.

60. Fisher M L . [1981], "The Lagrangian Relaxation Method for Solving Integer
Programming Problems", Management Science. V o l 27, No 1, pp 1-18.

61. Fisher M L . [1985], "An Applications Oriented Guide to Lagrangian
Relaxation", Interfaces. V o l 15, No 2, pp 10-21.

62. Florian M., Guerin G., and Bushel G. [1976], "The Engine Scheduling
Problem in a Railway Network," INFOR Journal. V o l 14, ppl21-138.

63. Ford L. and Fulkerson D. [1962], "Flows in Networks". Princeton University
Press, Princeton, New Jersey.

64. Forrest J J.H ., Hirst J.P.H., and Tomlin J A . /7974/,"Practical Solution of
Large Mixed Integer Programming Problems with UMPIRE," Management Science.
V o l 20, pp736-773.

65. Gallo G. and Pallottino S. [1986], "Shortest Path Methods, a Unifying
Approach", Mathematical Programming Study. V o l 26, pp 38-64.

66. Garey M R . and Johnson D.S. [1979], "Computers and Intractability: a Guide
to the Theory o f NP-Completeness". Freeman & Co, San Francisco.

67. G arfinkel R .S. [1979], "Branch And Bound Methods for Integer
Programming", in Combinational Optimization, Christofides N „ Mingozzi A ., Toth
P. and Sandi C. editors, John W iley & Sons, pp 1-20.

References 228
*

68. Garfinkel R.S. and Nemhauser GJL. [1972], "Integer Programming". John
W iley & Sons.

69. Gavish B. [1978], "On Obtaining the "Best" Multipliers for a Lagrangean
Relaxation for Integer Programming", Computers and Operations Research. Vo l 3,
pp 322-338.

70. Geoffrion A M . [1967], "Integer Programming by Implicit Enumeration and
Balas' Method", SIAM Review. V o l 9, pp 178-190.

71. Geoffrion A M . [1974], "Lagrangean Relaxation for Integer Programming",
Mathematical Programming Study. Vo l 2, pp 82-114.

72. Geoffrion A M . and Graves G. [1974], "Multicommodity Distribution System
Design by Benders Decomposition," Management Science. V o l 20, pp822-844.

73. Geoffrion A M . and Mac Bride R. [1978], "Lagrangian Relaxation Applied to
Capacitated Facility Location Problems", AIIE transactions. V o l 10, pp40-47.

74. Geoffrion A M . andM arsten R.E. [1972], "Integer Programming Algorithms: A
Framework and State-of-the-Art Survey", Management Science. V o l 18, No 9, pp
465-491.

75. Giannessi F. and Nicoletti B. [1979], "The Crew Scheduling Problem: A
Travelling Salesman Approach," in Combinational Optimization, Christofides N.,
Mingozzi A ., Toth P. and Sandi C. editors, John W iley & Sons.

76. G illetB. and Miller L.[1974], "A Heuristic Algorithm for the Vehicle Dispatch
Problem," Operations Research. V o l 22, pp340-349.

77. Glover F. [1968], "Surrogate Constraints", Operations Research. V o l 16, No 4,
pp 741-749.

78. Glover F. [1973], "Convexity Cuts and Cut Search," Operations Research. Vo l
21, ppl23-134.

79. Gomory R.E. [1958], "An Algorithm for the M ixed Integer Problem,

RM-2597, R A N D Corporation.

80. Gomory R.E. [1963], "An Algorithm for Integer Solutions to Linear
Programs," In Graves and W olfe (Eds), Recent Advances in Mathematical
Programming, pp269-302.

81. Graham R., Lawler E., Lenstra J., and Rinnoy Kan A. [1970], "Optimization
and Approximization in Deterministic Sequential and Scheduling: a survey," Annals
of Discrete Mathematics. V o l 5, pp287-326.

82. Harary F. [1971], "Graph Theory". Addison-Wesley.

83. Hartmanis J. and Stearns R.E. [1965], "On the Computational Complexity of
Algorithm," Trans. Amer. Math. Soc.. V o l 117, pp285-306.

84. H eld M. and Karp R.M. [1970], "The Travelling Salesman Problem and
Minimum Spanning Trees," Operations Research. V o l 18, pp l 138-1162.

85. H eld M. and Karp R.M. [1971], "The Traveling Salesman Problem and
Minimum Spanning Trees: Part n," Mathematical Programming. V o l 1, pp6-25.

86. H eld M., Wolfe P. and Crowder HJ*. [1974], "Validation o f Subgradient
Optimization", Mathematical Programming. V o l 6, pp 62-88.

87. Hey A.[1980], "A lgorithms for the Set Covering Problem". Ph.D. Thesis,
Department of Management Science, Imperial College, London.

88. Hinson J . and 5. Mulherkar [1975], "Improvements to the Clarke and Wright
Algorithm as Applied to an Airline Scheduling Problem," Technical Report, Federal
Express Corporation.

89. Hoffman A J . and Kruskal JJB. [1956], "Integral Boundary Points o f Convex
Polyhedra", in H.W .Kuhn and A .W . Tucker (eds), Linear Inequalities and Related
Systems, Annals o f Mathematics Studies, No 38, Princeton, N.J.

90. Horowitz E. and Sahni S. [1978], "Fundamentals of Computer Algorithms".
Pitman.

References 229

References 230

91. Iri M J1966], "A Criterion for the Reducibility o f a Linear Programming
Problem to a Linear Network-flow Problem", R A A G Research Notes. Third Series,
No 98.

92. Jeroslow R.E. [1977], "Cutting-Plane Theory‘.Disjunctive Methods", Annals of
Discrete Mathematicacs. V o l 1, pp293-339.

93. Jeroslow R.E. [1979], "An Introduction to the Theory o f Cutting-Planes",
Annals of Discrete Mathematics. Vol 5: Discrete Optimization n . pp 71-95.

94. Karp, R M . [1972], "Reducibility among Combinatorial Problems," in R .E.
M illet and J.W . Thatcher (eds), Complexity of Computer Computations, Plenum
Press, New York, pp85-103.

95. Karp, R.M . [1975], "On the Com plexity o f Combinatorial Problems,"
Networks . V o l 5, pp45-68.

96. Klee V. and Minty G J . [1972], "How Good is the Simplex Algorithm ?", in
Inequalities HI. O. Shisha Editor, Academic Press, pp 159-175.

97. Klingman D. [1977], "Finding Equivalent Network Formulations for
Constrained Network Formulations," Management Science. Vo l 23, No. 7.

98. Klingman D. and Russel R. [1975], "Solving Constrained Transportation
Problems," Operations Research. Vo l 23, No. 1.

99. Krolak P. and Nelson J. [1972], "A Family of Truck Load Clustering Heuristics
for Vehicle Routing Problems," Technical Report 78-2, Department of Computer
Science, Vanderbilt University, Nashville, TN .

100. Krolak P. and Williams M. [1978], "Computerized School Bus Routing,"
Technical Report 78-1, Department o f Computer Science, Vanderbilt University,
Nashville, TN .

101. Land A. and Doig A.G. [1960], "An Automatic Method for Solving Discrete
Programming Problems," Econometrica. V o l 28, pp497-520.

102. Land A. and Powell S. [1960], "Computer Codes for Problems of Integer

References 231*

Programming," Presented at the Conference on Discrete Optimization, Vancouver,
B .C .

103. Lawler E L . and Wood D.E. [1960], "Branch-and-Bound Methods: A
Survey," Operations Research. V o l 14, pp699-719.

104. Lasdon L.S. [1970], "Optim ization Theory for Large Systems". The
Macmillan Company.

105. Lenstra J X . and Rinnoy Kan AJ1.G. [1979], "Computational Complexity of
Discrete Optimization Problems", Annals o f Discrete Mathematics. V o l 4: Discrete
Optimization I. pp 121-140.

106. Lenstra J X . and Rinnoy Kan AJ1.G. [1981], "Com plexity o f Vehicle
Routing and Scheduling Problems", in Proceedings of the International Workshop
on Current and Future Directions in the Routing and Scheduling o f Vehicles and
Crews, Golden B .L . and Bodin L .D . editors, N etw orks. V o l 11, No 2, pp
221-228.

107. Lin SJ1965], "Computer Solution o f the TSP," Bell System Tech. J.. V o l 44,
pp2245.

108. Lin S. and Kernighan B.W. [1973], "An Effective Heuristic Algorithm for the
Travelling Salesman Problem," Operations Research. Vol 21, p498.

109. Lucena A. [1986], "Algorithms for the Vehicle Routing Problem," Ph.D
Thesis, Department of Management Science, Imperial College, London.

110. M affioli F. [1979], "The Complexity o f Combinatorial Algorithms and the
Challenge of Heuristics", Combinatorial Optimization. Christofides N ., M ingozzi
A., Toth P. and Sandi C. editors, John W iley & Sons, pp 107-129.

111. Marsten R.E. [1974], "An Algorithm for Large Set-Partitioning Problems,"
Management Science, Vo l 20, pp774-787.

112. Marsten R.E. [1981], "The Design o f the X M P Linear Programming Library",
A C M Transactions on Mathematical Software. Vo l 7, No 4, pp 481-497.

References 232

113. M arsten R.E., M uller M., and Killion C.[1978], "Crew Planning at Flying
Tiger : A Successful Application o f Integer Programming," Technical Report No.
553, Management Information Systems Dept., University of Arizona, Tucson, AZ.

114. Marsten R.E. and Sheparsdon F. [1981], "Exact Solution o f Crew Scheduling
Problems Using the Set Partitioning Model: Recent Successful Applications", in
Proceedings o f the International Workshop on Current and Future Directions in the
Routing and Scheduling o f Vehicles and Crews, Golden B .L . and Bodin L.D .
editors, Networks. V o l 11, No 2, pp 165-177.

115. Martin G.E. [1981], "Aircraft Scheduling Considered as an N-Task,M-Parallel
Machine Problem with Start-Times and Deadlines," INFOR. V o l 19, No 2.

116. Martin G.T. [1963], "An Accelerated Euclidean Algorithm for Integer Linear
Programming," In Graves and W olfe (Eds), Recent Advances in Mathematical
Programming.

117. M artin-Lof A .[1970], "A Branch and Bound Algorithm for Determining the
M inim al Fleet size o f a Transportation System," Transportation Science. V o l 4,
pp159-163.

118. Megiddo N. [1977], Private Communication. (A2.3)

119. M eyer A Jl., and L J . Stockmeyer [1972], "The Equivalence problem for
Regular Expressions with Squaring Requires Exponential Time," Proc. 13th Ann.
Symp. on Switching and Automata Theory, IEEE Computer Society, Long Beach,
C A , ppl25-129.

120. M ole R. and Johnson D. and Wells K. [1983], "Combinatorial Analysis of
Route First-Cluster Second Vehicle Routing," Omega. Vol 11, pp507-512.

121. Motzkin T. and Schoenberg I J . [1954], "The Relaxation Method for Linear
Inequalities," Canadian Journal of Math.. V o l 6, pp393-404.

122. Nemhauser G X . [1966], "Introduction to Dynamic Programming". John
W iley & Sons, New York.

References 233

123. Orlin J. [1982], "Minimizing the Number of Vehicles to Meet a Fixed Periodic
Schedule : An Application o f Periodic Posets," Operations Research. V o l 30,
pp760-776.

124. Owen G. [1973], "Cutting-Planes for Programs with Disjunctive Constraints,"
Journal o f Optimization Theory and its Applications. Vol 11, pp49-55.

125. O rloff S.C. [1976], "Route Constrained Fleet Scheduling", Transportation
Science. Vol.10. No. 2. pp!49-168.

126. O rloff S.C. [1973], "Routing and Scheduling a Fleet of Vehicles:The school
Bus Problem." unpublished dissertation, Cornell University, Ithaca, New York.

127. Orloff S.C. [1974], "A Fundamental Problem in Vehicle Routing," Networks
4, pp35-64.

128. Padberg M.W.[1975], "Characterisations o f Totally Unimodular , Balanced
and Perfect Matrices", in Roy B.(ed),Combinatorial Programming,Methods and
Applications, pp275-284, D . Reidel Publishing Company, Dowrecht-Holland.

129. Paixao J. [1983], "A lgorithms for Large Scale Set Covering Problems". PhD
Thesis, Department o f Management Science, Imperial College, University of
London.

130. Roy B., Benayoun R., and Tergny J. [1970], "From S.E.P Procedure to the
M ixed Ophelie Program," in J.Abadie (ed), Integer and Nonlinear Programming,
American Elsevier, pp419-436.

131. Rardin RJL. and Lin B.W. [1978], "What Makes Integer Programming
Problems Hard to Solve: A n Em pirical Study", Opsearch. V o l 15, Nos 2 & 3, pp
65-77.

132. Rubin D.[1973], "A Hybrid Cutting-Planes Enumeration Algorithm for Integer
Programming", 43rd National Meeting of O RSA, Milwaukee, M ay 11th.

133. Sandi C. [1976], "A Direct Method for Linear Inequalities," Presented at Euro
n , Stockholm, Sweden, Nov.29-Dec. 1.

References 234

134. Shapiro J. [1968], "Group Theoretic Algorithms for the Integer Programming
Problem : Extension to a General Algorithm," Operations Research. V o l 16,
pp928-947.

135. Shapiro J J 7. [1979b], "A Survey of Lagrangean Techniques for Discrete
Optimization", Annals o f Discrete Mathematics. V o l 5: Discrete Optimization n .
pp l 13-138.

136. Shepardson F. and Marsten R.E. [1980], "A Lagrangian Relaxation Algorithm
for the Tw o Duty Period Scheduling Problem", Management Science. V o l
26,pp274-281.

137. Smith B. and Wren A. [1981], "VAM PIRES and TA S C : Tw o Successfully
Applied Bus Scheduling Programs", in Computer Scheduling of Public Transport:
Urban Passenger Vehicle and Crew Scheduling, Wren A . editor, North Holland
Publishing Company, pp 97-124.

138. Spitzer M. [1961], "Solution to the Crew Scheduling Problem ",AGIFORS
Symposium.

139. Taha H.A. [1975], "Integer Programming: Theory. Applications and
Computations". Academic Press.

140. Thiriez H.M. [1969], "Airline Crew Scheduling : a Group Theoretic
Approach",
Flight Transportation Laboratory, Report R69-I, Department o f Aeronautics and
Astronautics, M .I.T., Cambridge, Mass.

141. Thiriez H M . [1971], "The Set Covering Problem : a Group Theoretic
Approach", Revue Francaise d'Autom atique.Inform atique et Recherche
Operationelle. V o l 3, pp83-104.

142. Toregas C. and C. ReVelle [1972], "Location under Tim e or Distance
Constraints," Papers of the Regional Science Association , V o l 28, ppl33-143.

143. Turing A.[1936], "On Computable Numbers,with an Application to the
Entscheidungsproblem," Proc. London Math. Soc. Ser. 2 , V o l 42, pp230-265.

References 235

144. Ward R., Durant P. and Hallman A . [1981], "A Problem Decomposition
Approach to Scheduling the Drivers and Crews o f Mass Transit Systems", in
Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew
Scheduling, Wren A . editor, North Holland Publishing Company, pp 297-312.

145. Werra D. [1981], "On Some Characterisations o f Totally Unimodular
Matrices", Mathematical Programming. Vo l 20, pp 14-21.

146. Wolters J.[1979], "Minim izing the Number o f Aircraft for a Transportation
Network," European Journal o f Operational Research. V o l 3, pp394-402.

147. Wren A. [1981], "General Review of the Use o f Computers in Scheduling
Buses and their Crews," Computer Scheduling o f Public Transport : Urban
Passenger Vehicle and Crew Scheduling, A . Wren,ed,North-Holland Publishing
Co., pp3-16.

148. Young R D . [1971], "Hypercylindrically-Deduced Cuts in Zero-One Integer
Programs," Operations Research. V o l 19, ppl393-1405.

149. Zadeh, N. [1973], "A Bad Network Problem for the Simplex Method and
Other Minimum Cost Flow Algorithms," Math. Programming, V o l 5, pp255-266.

150. ZwartP . [1972], "Intersection Cuts for Separable Programming," Washington
University, St. Louis, January.

