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A B S T R A C T

The crew scheduling problem (CSP) forms the basic structure of many real 
life  instances such as crew scheduling for airline industry,scheduling for

•  buses,trains,mass transit systems,postal fleet,job shop scheduling,crew
rosterings,...etc... .Solution methods for two variants of the CSP are the subject of 
this thesis. A  survey o f applications and algorithms is given in the first chapter.

In Chapters 2 and 3 we consider the CSP where a set o f tasks with known 
starting times and durations must be performed by a set o f crews,each crew having a 
limited work-duty time period. A  "cost" is incurred in following one task by another 
and the objective is to minimize these "transition" costs. Two formulations of the 
problem have been considered. The first is a direct 0-1 programming formulation. The 
second formulation involves the representation of the CSP as a network flow problem 
in an expanded graph with additional set-partitioning type constraints. We showed via

# extensive computational results involving more than 250 problems with up to 150
tasks that the LP  relaxation of this second formulation provides naturally integer 
solution(and hence a solution to the CSP) in all cases tried.Applying the graph 
expansion technique (GET) to two straigthforward extensions o f the CSP, more than 
300 randomly generated problems could be solved optimally.

Chapters 4 and 5 deal with a more general and practical version of the CSP 
(GCSP) in which it is assumed that the starting times of the tasks are no longer fixed 
but given within time-windows. Furthermore, several types o f vehicle with different 
characteristics are assumed to cover the tasks. The G CSP was first tackled with G E T  
which proved to be very effective for problems for which the task time-windows are 
narrow. However as the time-window increases , it becomes impossible to use G E T

♦  because o f the size o f the graph which grows exponentially with the size o f the
problem. In our attempt to solve larger GCSP's,a tree search algorithm has been 
devised. Using Lagrangian relaxation ,one o f the most successful integer 
programming techniques to obtain lower bounds ,six different integer programming 
formulations o f the problem were considered and compared.The results obtained with 
this tree search procedure were satisfactory. Thus all randomly generated GCSP's of 
size varying between 10 and 50 tasks and with a time-window allowed to vary in the 
range [0,24 hours] were solved optimally.

Finally,conclusions with ideas for future research, are given in the last
chapter.
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Chapter 1 1

C H A P T E R  1

IN T R O D U C T IO N

1- Introduction .

The crew scheduling problem (CSP) and all its extensions form the basic 

structure o f many real life problems such as crew scheduling for airline industry 

[2],scheduling for buses [147], trains [3,62], garbage trucks [34], mass transit 

systems [16,144], job shop scheduling problems [105,106], crew rosterings [33], 

...etc...

In this section we present two of the main applications o f the CSP . These are 

the airline CSP and the bus C S P . Also one o f the earliest application o f the CSP to a 

navy problem [52] is presented.
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1-1 The  A irlin e  Crew  Scheduling Problem  (ACSP).

One of the most important and most well known problems facing airline 

companies is the airline crew scheduling problem (ACSP) [2].

Having established a timetable of the flights' schedule,the airline company is 

faced with the problem of producing another timetable for assigning crews to flights. 

This new timetable must be in accordance with the union regulations and it should be 

devised in such a way that all flights are covered and that the total crew cost is 

minimized. The problem is usually broken into two phases :

(i) Daily or weekly crew schedules,called "rotations" are constructed;

(ii) The rotations are grouped together to form "rosterings" ie monthly 

schedules.

From now on,we w ill be dealing only with a variant o f the first phase which is 
the

commonly called "airline crew scheduling problem". The second phase refered to as 

the "bid-lines problem" has been considered by several other authors[58,75].

Defining a flight-leg as being a non-stop trip between a pair o f cities(or towns), 

a rotation is a round trip which consists of sequences o f flight-legs, the first of which 

and the last of which must respectively originate and terminate at the crew base. Each 

sequence of flight-legs is called a "duty period", ie a period o f time during which a 

crew may operate a plane without a rest break. The duty periods within a rotation 

might be separated by long rest periods,called "layovers",intended for sleeping. The 

formation o f rotations must be in accordance with union regulations and company 

policy. The aim of the company is to minimize the cost o f operating the crews

~ The union regulations guarantee the following:

(a) The duration o f each duty period must be less than or equal to a given time T;

(b) Between any two consecutive duty periods there should be a minimum 

period of rest tim e;
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(c) Each crew should have a sufficient time at the crew base.

These are the main union regulations for all airline companies,and depending on the 

importance to the company additional rules might be considered

1-2 Bus Crew  Scheduling.

Another important application of the CSP is in the area of bus crew scheduling. 

In public bus scheduling the process involves the revision o f timetables which generate 

a series o f trips to be run and then the allocation o f vehicles and drivers to be assigned 

to these jobs. The process is usually broken into two phases : first the trips or routes 

are generated then the fleet is scheduled. This sequential process is necessary because 

otherwise the problem would become computationally intractable due to its very large 

size. Added to this is the complication due to the union rules which govern the 

assignement of drivers (and buses) to trips over a working period.

A  much simpler case o f this bus scheduling problem which involves less 

complex rules and which is very closely related to our problem is the school bus 

scheduling problem(SBSP) [31,100,126]. Like the general case,the SBSP involves 

two steps:first a set of routes or trips are generated for each school such that all bus 

stops are visited and the students are delivered at a given time. Then,the drivers and 

buses must be scheduled to cover the trips.

Now let us consider the problem : the routing phase generates a set of trips 

for each school k= l,...,K  where K  is the number o f schools. For each trip we know 

the starting place(first stop) and finishing place(last stop),the total trip time 

duration,and the starting and finishing times o f the trip. Once these parameters have 

been deteimined,each trip can be considered as one task which does not depend on the 

school.The problem consists o f finding the minimum cost fleet required to cover all 

trips. The main contribution to cost in the objective function is due to vehicle operating 

costs which are a function of the number o f vehicles(crews) used and the total time
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each vehicle is used(trip time and deadhead time). The deadhead time cy for a single 

crew serving two trips is the time required to go from the finishing place of trip i to the 

starting place of trip j.

In practice a few additional constraints exist:

(i) each driver cannot work more than a given number of hours over the daily planning 

period;

(ii) a window on the due date (starting time and finishing time) o f each task might be 

established giving an earliest and latest possible finish time;

(iii) either all buses have sufficient capacity to process any trip or some buses would 

be able to process only a subset of trips;

(iv) the buses might be housed at more than one depot

1-3 Scheduling o f Navy Fuel O il Tankers.

Consider tablel-1. Each row corresponds to a pick-up point and each column 

correponds to a discharge point. The sequence o f figures ty inside box(i j) represent 

the times a tanker is to begin loading at pick-up point i in order to deliver at 

discharge-point j.

In addition we are given two arrays ay and dy which represent respectively the 

loading-traveling time from i to j and the unloading-travel time from i to j. These are 

represented in table 1-2 and table 1-3.

The problem consists o f finding the minimum number o f tankers to meet the 

fixed schedule established in table 1-1. This problem is a network flow problem [63]. 

Thus the procedure k which consists o f loading fully a tanker at a pick-up point i to 

deliver to a discharge-point j can be viewed as a task k whose starting place is i,whose 

finishing place is j and whose starting time ty is given in table 1-1. The duration of the 

task is defined by the loading-traveling time ay (tablel-2). The unloading-traveling 

time dy o f table 1-3 represent the empty travel times. The empty travel time d  ̂for a
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tanker serving two tasks k and k' is the time required to unload the tanker at i and 

traveling to j where i is the finishing place of task k and j is the starting place of task 

k ’.

Table l-l : Starting-times (minutes).

Delivery point C Delivery point D

Pick-up point A 
Pick-up point B

50,400 200 
350 75,150

Table 1-2 : Loading 
Travel-Times(minutes)

To C D
From

A 50 100
B 150 100

Table 1-3 : Unloading Travel-Times(minutes)

To A B
From

C 25 20
D 40 50

2- The Basic Crew  Scheduling Problem .

A ll combinatorial optimization problems can be divided into two main groups 

[105]. There is a vast majority of problems which,from a computing point of view,are 

hard to solve and a tiny minority which consists of all the easy problems for which 

efficient (ie increasing polynomially with problem size) solution techniques already 

exist. Loosely speaking,the problems o f the first type belong to the class of 

NP-complete problems while the remaining ones are refered to as polynomial
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problems. Because of its importance in understanding the complexity of hard and easy 

combinatorial problems [131],the notion of NP-completeness is dealt with in greater 

detail in section 3 where the meanings o f "hard","easy",nNP-complete" 

and"polynomial" problems are given.

A ll the problems tackled in this thesis fall into the class o f NP-complete 

problems. The common characteristic o f problems in this class is that most can be 

viewed as "easy" problems with additional constraints. For our particular case, the 

easy problem on which all the problems considered are based can be defined as 

follow s:

"A set o f n tasks is given,the i^ 1 task being defined by a starting time ST^a 

starting place SL^a finishing time FTj and a finishing place FLj. A  number of 

crews(say,K) are available to perform the above tasks. A  feasible work-schedule for a 

given crew consists o f an ordered sequence of tasks ij^ .-.i,. so that:

ST. > FT. -h A(FL. ,SL. ) k=2,...,r (1-1)
*k *k-l *k-l *k

where A(FLp,SLq) is the travel time between locations FLp and S Lq and is given for 

all location pairs.

A  feasible solution to the problem consists of assigning feasible schedules to 

crews,as above,so that every task is performed once only by some crew.

The cost of a schedule ii^,.*.^ f°r a single crew is taken to b e :

Y d .  + Y  C .. 
&  ‘k

where B f = {l,2,..., r } ( 1 -2 )

and where tL is the cost o f performing task ik,and C:: is the cost o f distance travelledKk+1
(from FL: to S L :) and time taken (from FT: to ST: ) in following the execution of

K K+1 K+1
task ik by the execution o f task ik+1. Since all tasks are required to be performed 

exactly once,the sum of the first cost terms in (1 -2) for all crews is a constant 2 d;
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where B m={l,2,...,m}. Hence complete schedules are distinguished in cost only by 

the sum of the second terms in (1 -2) and,therefore,we w ill take only the second terms 

in (1 -2) to be the cost of the schedule ij^ .- i,-

The objective function of the problem is,therefore,to find a set of feasible 

schedules, so that every task is performed exactly once,and the sum

of the costs o f the schedules is minimized

In the course o f the thesis,we w ill refer to this problem as the basic crew 

scheduling problem(BCSP). The B CSP  can be efficiently solved using a minimum 

cost network flow formulation. This w ill be discussed in section 2-4,but before this 

we need to represent the problem in graph theoretic terms.

ed
2-1 A  D irect G raph Representation o f the B C S P .

Let us illustrate the main idea of constructing the graph G u representing the 

BCSP on the following example.

Consider the input data of a BCSP given in tables 1-4 and 1-5:

Table 1-4 : Input Data of the BCSP.

Task Starting
time

(minutes)
Finishing

time
(minutes)

Starting
location

Finishing
location

1 50 150 A B
2 80 170 A C
3 250 380 D A
4 350 450 C D
5 550 650 B A
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Table 1-5 : Distances between 
Locations.

A B C D

A 0 100 90 130
B 100 0 150 50
C 90 150 0 100
D 130 50 100 0

Table 1-4 gives for each task (column 1) its starting time (column 2),its 

finishing time (column 3), its starting location (column 4) and its finishing location 

(column 5).

The time durations(in minutes) required to get from any location i (i=A,B,C,D) to any 

other location j(j=A,B,C,D) are given in table l-5.lt is worthwhile noting that we have 

assumed that the time required to get from location i to location j is the same as that 

required to go from j to i. In real life problems (say in the case of an airline problem) 

this is not always the case.

(i) Task-arcs representation: If we represent each task by a directed arc 

( a ^ )  on a time axis we obtain fig u re l.l . oqfresp.pj) represent the initial (resp. 

final) extremity of arc i (i=l,...,5). The couple of figures above each arc represent the 

cost C| and the time duration(in minutes) % = FTj -STj o f the corresponding task 

respectively.

In fact these arcs can be represented in such a way to get the directed graph 

of figure 1.2. These arcs w ill be refered to as "task-arcs". It is worthwhile noting that 

they have been numbered in an increasing order o f their starting times. This way of 

ordering the task-arcs w ill be adopted in the rest of the thesis. Also,we will sometimes
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refer to the task-arcs as "required-arcs".

(ii) Linking-arcs representation.^ graph we express the fact that two tasks 

of the B CSP  can be covered by the same crew,by linking the two corresponding 

task-arcs. More precisely,we join the final extremity of the first task-arc (say(Oj,Pj)) to 

the initial extremity of the second task-arc (say (otj,Pj)) with a directed arc going from 

(a^pj) to (otj,Pj) (ie linking pj with ocj). Arc (p̂ ocj) w ill be called a "linking-arc".It 

has a cost Cy and time duration x- = STj - F T i

Two task-arcs and (0Cj,pj) o f G j are linked if  the following condition is 

satisfied:

STj > FTj + TCFL^SLj) (1-3)

where STj (resp. FTj ) is the starting (resp. finishing) time of task j (resp. i) and 

T (FL i,SLj) is the time duration for going from the finishing location F L A of task i to 

the starting location SLj of task j.

Figure 1-1 : A  5 Task-BCSP.

(0,100) (0,130) (0,100)
* 1 01 °S % *5 05°

(minutes)
0 50 too 150 200 2SO 900 950 400 450 500 550 600

(0,90) (0,100)
a 2 02 04

Taking the cost o f a possible transition from task i to task j to be computed as 

100+(STj - F T j) we obtain graph Gjj o f figure 1-3. As for G u, the couple of figures 

associated with each linking-arc represent its cost and its time duration (in minutes).

Let us illustrate how the linking-arcs departing from task-arc (a^Pj) have been 

constructed:
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Figure 1-2 : Network Gj,

(minutes)

SO 100 150 200 250 300 350 400 450 500 550 600

(0,100)
o — ----O
a 1 Pi

(0,90)o » o 
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Figure 1-3 : Network GJj
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(a) can we link task-arc (a^Pj) and (c^ ^ ) ?

No. Because : ST2=80 < F T j+ T C F L ^ S L ^ l50+100=250 

(ie condition (1-3) is violated)

(b) can we link task-arc (ocj,Pj) and (03^ 3) ?

Yes. Because: ST3=250 > FTj+TOFL^SI^) =150+50=200 

(ie condition (1-3) is satisfied)

(c) and similarly with task-arcs (oc4,p4) and (a5,p5), they are linked with 

(a^pj) because condition (1-3) is satisfied for each one of them .

(iii) Source-arcs and Sink-arcs. B y adding a super-source p s and a 

super-sink a R ,and joining ps and a R with respectively the starting nodes and 

finishing nodes of the task-arcs,we obtain the network G u representative of the BCSP  

given in figure 1-4.

The arcs joining Ps to the initial extremities o f the task-arcs are called 

source-arcs and the arcs joining the final extremities of the task-arcs to a R are called 

sink-arcs. A  cost cs  ̂(resp. c^ ) and a time-duration xs j (resp. xi>R) are associated 

with each source-arc (pg.ctj) (resp. sink-arc (pj,aR)). They are represented in G u by 

the couple of figures beside each arc.

2 -2  A  G raph-Theoretical D efin ition o f the B C S P .

In this section a new definition o f the BCSP  in terms o f graph G u is given. 

Before this,let us consider the two following useful definitions.

Definition 1. A  path P in G u is a sequence o f directed arcs

P K ^ .a ^ X a .p . , .a  Xa. ,p. )(p. ,«*))
k+1 k+1 k+1 k+1

Definition 2. The cost (time) of a path P is the sum o f the costs (times) o f the arcs 

that form P.
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F igure 1-4 : Network Gu
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Exam ple. For the network G u of figure 1-4, the following sequence of arcs is a path 

P of G.

P=((ps,a1)(a1,p1)(p1,a3)(cx3,P3)(P3,a5)(a5,p5)(P5,(xR))

the length of P is

Lp = 0 + + T1>3 + I3 + T3j5 + !5 + 0
Lp = 0+  100 +100 +130 +170 +100 + 0 = 600

the cost of P is

Cp = Cs,l + £l + c l,3 + 3̂ + c3,5 + £5 + C5,R 

C p = 0 + 0 + 200 + 0 + 270 + 0 + 0 = 470

Definition 3. Graph definition of the BCSP.

The BCSP is to minimize the cost o f covering all the task-arcs of the associated 

network G u,with a given number o f paths(say,K) such that each task-arc must be 

covered once and only once by a path.

2-3 A  M in im um  Cost Netw ork Flow  Form ulation o f the B C S P .

B C SP  is an easy problem. As shown by Ford and Fulkerson  [63] it can 

efficiently be solved by using a minimum cost network flow formulation which can be 

described as follow s:

If in network G u we let

Xy = 1 if  arc (PpOtj) is in the optimal solution ;

= 0 otherwise;
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the BCSP becomes:

M in  X  cijxij O -4)
(Pj.otjJeN

subject to :

S xij - X xPi
jeV+ peV‘J 1 r 1

0 fo r i= l,...,n  
J K  fori= S  

-K for i= R
(1-5)

xy e { 0 #l} (1 -6)

where N  is the set of all linking-arcs,source-arcs and sink-arcs,

v N fjK P j.a p e  N)

V ^ U k p j . a J e N }

K  is the number of paths(crews) with which we want to cover the task-arcs of

g u;
n is the number o f tasks.

Clearly, this is a classical minimum cost network flow formulation where 

constraints (1-5) express the conservation of flow at each node of G u. A  variant of the 

B C SP  is used in a portion o f the R U C U S  program [28] which was developed for 

scheduling vehicles and crews for mass transit systems.

Exam ple. Consider the BCSP  represented by network G u of figure 1-4. Let us 

assume that the number in crews in the problem is 3 . Using a minimum cost network 

flow algorithm[63] we obtain the optimal solution of the BCSP  represented in figure

1-5.
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Figure 1-5 : Optimal Solution o f the 5 task-BCSP.
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3- A n  Introduction to NP-CompIeteness.

A ll problems can be divided into two main groups. The first one which consists 

of all undecidable problems has been known only for the last 50 years. In 1936,Turing 

[143] proved that some problems are so "hard" that no algorithm at all can be given for 

solving them ie they are "undecidable”. The second group which fortunately represents 

the vast majority o f problems consists o f all the decidable problems. This group in its 

turn can be split up into two categories of problems.

To help the reader understand more easily the definition of each category we 

need to introduce the following concepts :

(i) the way programs run on actual computers is that at any time,whatever the 

algorithm is doing,there is only one thing it could do next. Such computers(and
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algorithms) are called deterministic.

(ii) Because o f its usefulness in understanding the theory o f complexity the 

concept of non-determinism was introduced. W ith this we assume that there exists a 

computer with the following power: when an algorithm is faced with a choice of 

several options,it has the capability to "guess" the right one. This is o f course an 

"unreasonable" and "unrealistic" assumption.

(iii) Given a problem of size n (in our case n is the number of tasks) and a real 

function t(n) in n we say that an algorithm runs in time 0 (t(n)) if  the computing time to 

execute the algorithm f(n) is such that

I f(n) I < c I t(n) I

where c is a constant and IAI is the absolute value o f A . For example, if  t(n) is a 

polynomial we say that the algorithm runs in polynomial time and if  t(n) is exponential 

we say that it runs in exponential time. One example [96,149] of an algorithm that has 

exponential time complexity is the well known simplex algorithm for linear problems 

[51]. It is worthwhile noting that if  t(n) is a logarithmic function it is considered as if  it 

is a polynomial.

W ith these principles in hand we are ready to define the class of decidable 

problems.

The first subgroup of this class consists of all problems that cannot be solved in 

polynomial time,not even with a non-deterministic machine. This group was first 

discovered in the 1960's [83]. In fact at that time,the problems that fell into this 

category were artificial in that they were basically constructed for this purpose. And it 

is only in the beginning o f the 1970's that some natural problems have been shown to 

belong to this category [59,119]. As far as the level o f difficulty in solving the 

problems is concerened this category o f problems comes directly after the class of 

undecidable problems.

The second subgroup of decidable problems is made up of all the problems that 

can be solved in polynomial time with a non-deterministic machine. It is called the
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NP-class. Because most o f the practical known problems and for this matter most of 

the combinatorial optimization problems are non-deterministically polynomial [95],we 

w ill be dealing from now on only with this class o f problems.

Now let us ask the following question : Are all the problems in class-NP "easy" 

or "hard" to solve ?

Clearly before answering such a question we need first o f all to define "easy" 

and "hard". Although there is no rigorous or exact definition for either term, normally 

a problem is considered to be "easy" if  there exists an algorithm that can solve it in 

polynomial time. If no such algorithm exists then the problem is "hard". To illustrate 

this,consider table 1-6  which compares the performance of different time complexity 

functions(f(n) which is given in column 1). Assuming that each computing operation 

takes one microsecond each entry of the table gives the execution computing time of an 

algorithm that runs in time 0(f(n)) when it is applied to a problem of size n. The first 

row o f the table gives the size o f the problem and the first column represents the 

complexity function. It is clear that as soon as we pass from polynomial problems to 

exponential problems it becomes impossible to solve even small problems. One might 

argue that if  we use a faster computer we can considerably reduce the execution time. 

Tablel-7 compares the performance of an exponential algorithm (2n) when it is run on 

computers with different speed. You can see that even if  we can devise a computer 

which is one m illion times faster than the current ones this w ill produce only slight 

improvement in the execution time of an exponential algorithm (2n).

A ll the problems that can be solved in polynomial time by a deterministic 

algorithm are said to belong to class P. They are "easy" and they all also belong to 

class NP. Clearly if  a problem can be solved in polynomial time by a deterministic 

machine then it can automaticly be solved in polynomial time by a non-deterministic 

machine.



Table 1-6 : Comparison of Different Time Complexity Functions

\  n 
f ( n > v

10 20 30 40 50 75 10 0 15 0

Lo g (n ) 2 .3 2 .9 3 .4 3 .6 3 .9 4 .3 4 .6 5 .0
m seconds m seconds m seconds m seconds m seconds m seconds m seconds m seconds

n 10 20 30 40 50 75 10 0 15 0
m seconds m seconds m seconds m seconds m seconds m seconds m seconds m seconds

nLo g(n) 23 60 10 2 14 7 19 5 323 460 7 5 1
m seconds m seconds m seconds m seconds m seconds m seconds m seconds m seconds

n2 10 0 400 900 0 .0 0 16 0 .0 0 2 5 0 .0 0 5 6 0 .0 1 0 .0 2
m seconds m seconds m seconds se co n d s se co n d s se co n d s se co n d s se co n d s

n3 0 .0 0 1 0.0 0 8 0 .0 2 7 0 .0 6 4 0 .1 2 5 0 .4 2 0 1 3 .3 7 5
se co n d s seco nd s seco n d s se co n d s se co n d s se co n d s se co n d s se co n d s

n4 0 .0 1 0 . 1 6 0 .8 1 2 .5 6 6 .2 5 3 1 . 6 10 0 1 5 . 6
se co n d s seco n d s se co n d s se co n d s se co n d s se co n d s se co n d s m in u te s

n5 0 . 1 3 .2 2 4 .3 1 . 7 0 5 .2 3 9 .5 2 .7 8 39
se co n d s seco n d s se co n d s m in u te s m in u te s m in u te s h o u rs h o u rs

2 ° 0 .0 0 1 1 .0 5 1 7 . 9 1 2 . 7 3 5 .7 1 1 . 9 4 .0 2 x 10 4 .5 x 1 0
seco n d s se co n d s m in u te s d a y s y e a r s c e n t u r ie s c e n t u r ie s c e n t u r ie s



Table 1-7 s Performance of an Exponential algorithm when run on Computers 
with Different Speeds. (Largest problem solved in 10 hours).

computer 
speed(*)

1 10 100 1000 10000 100000 1000000

Largest
Problem

35 38 42 45 48 52 55

oo

Chapter 1
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Now going back to our original question of whether, theNP problems are easy or 

hard,we can put the question in the following simple way :

is class P = class NP ?

(a) To  prove that class P = class NP we need to show that each problem of NP 

is in P ie for each problem of NP there exists a polynomial deterministic algorithm that 

can solve i t ;

(b) To prove that class P * class NP it is sufficient to exhibit a single NP 

problem which does not belong to P ie for which no deterministic algorithm exists 

which can solve it in polynomial time.

Up till now,inspite of the considerable amount of effort that has gone into 

answering this question nobody has been able to prove or disprove this equality. This 

is indeed a very frustrating situation especially when we know that a huge number of 

real life problems can be solved in polynomial time with a non-deterministic algorithm 

but for which no one has been able to produce a polynomial deterministic algorithm to 

solve one single such problem.

There is a class in NP (i.e. a subgroup of NP) in which every problem PQ has 

the property that every other problem in subgroup can be polynomially reduced to i t . 

Thus, if  P q can be solved with a polynomial time algorithm then so can every problem 

in subgroup and if  any problem in subgroup is intractable then Pq also must be 

intractable . These problems in a sense are the "hardest" in NP . They are called NP 

complete problems . The importance of this class is that to prove that P=NP it is 

sufficient to solve a single NP-complete problem in polynomial time using a 

deterministic algorithm.

Given a non-deterministic polynomial problem,to determine if  it is NP-complete 

all we need to prove is that there exists a known NP-complete problem which is 

polynomially reducible to it  That is there exists a polynomial algorithm that reduces 

one problem into the other and vice versa. Cook[46] proved that if  such reduction 

between the two problems is possible then any polynomial time algorithm for the
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second problem can be converted into a corresponding polynomial time algorithm for 

the first problem and vice-versa.

The first problem in the list of NP-complete problems which run into thousands 

is the satisfiability problem proved by Cook[47].Subsequently Karp [94] presented a 

collection o f results proving that many well known combinatorial problems4ncluding 

the travelling salesman problem, are NP-complete. A ll the other problems in that list 

were,over the last 15 years,proved to be NP-complete using the principle of 

polynomial reducibilty.

4- The Crew  Scheduling Problem  (CSP).

A  feasible work-schedule ,in the BCSP, for a given crew was defined as

consisting o f an ordered sequence of tasks so that:

ST. £ F T . + A(FL. , SL. ) U -o r
■k V i V i V  k- 2....... r

where A (FLp,S L q) is the travel time betwen the finishing place of task p and the

starting place of task q, ST: is the starting time of task ik and FT: is the finishing time
k k-1

of task ik-1.

In the crew scheduling problem we w ill be considering, the schedule above is

required to be o f duration no more than T  hours, called the "work duty period" ,ie 
FT. - ST. < T  (1-7)

li "

This constraint,commonly encountered in practice,corresponds to fuel 

restrictions(on vehicles),maintenance considerations,union requirements,...etc...

Whereas the BCSP  can be efficiently solved using a polynomial algorithm the 

CSP is NP-complete [15,16,32].

A ll the formulations o f the CSP and the formulations o f all the C SP ’s 

extensions,we have considered,are based on either expansions or modifications of the
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network G  representative of the CSP. Consequently a description of the procedure for 

constructing G  is necessary . This w ill be dealt with in this section.

Consider network G u, o f figure 1 -4,representative o f the 5 task-BCSP of 

table 1-1. If we assume that an additional time constraint which restricts the work duty 

period to be less than 400 minutes has been imposed on the problem ,then it w ill 

become meaningless and unnecessary to link in G u the pair o f task-arcs that w ill 

produce paths o f length greater than 400 minutes. Thus,linking-arc (pj,a5) has to be 

discarded since the path that w ill result by considering it ie

P = ((P5.ai)(a1,P1)(P1,a5)(a5,p5)(p5>aR)) 

has length 600 minutes and this violates the lim it on the work duty period. For the 

same reason linking-arc (P2,a5) also has to be eliminated. The resulting graph G  is 

representated in figure 1-6.

Figure 1-6 : Network G  representing a 5 task-CSP.

0 100 200 900 400 500 600
1 1 1 1 J  *____________I_________■_________ I_________ l_________ a____________a_________a_______ a ■

The procedure for constructing network G  representative of a CSP is the same as that, 

of section 2-2, for representing graph G u of the B C S P . The only difference is that 2 

conditions , instead o f one , have to be satisfied before any 2  task-arcs can be joined . 

These are as follows :

Two task-arcs i and j (i precedes j) can be covered by a same crew i f :

(i) STj > FTj +A(FLi,SLj)
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This condition has already been considered earlier.

(ii) FTj - STj < T

This is the additional condition. It means that the time required to fly both tasks i and j 

must be less than or equal to the work duty period T. FTj is the finishing time o f task j 

and ST; is the starting time of task i.

The graph G = (X = A U B ,U = R U N 1U N 2) now consists o f the set o f vertices 

X= A U B  where

A= {ai | i= l,...,m }U{aR } 

and

B={Pj I i= l... m}U{ps }

and the set of arcs U = RUN 1U N 2 where 

R is the set of task-arcs 

N j is the set of linking-arcs 

N 2 is the set of source and sink-arcs.

The CSP is now the problem of covering (once only) every arc in R  by paths 

from Ps to aR of time-length less than or equal to T  and having a minimum total cost.

5- CSP's Extensions.

A t the end of chapter 3 ,two straightforward extensions of the problem w ill be 

considered. These are:

5-1 The Multiple Depot CSP (DCSP).

When considering the CSP we im plicitly assumed that there was a single crew 

base out o f which all the tasks were serviced. In some real problems,we might have 

several crew bases with known capacities ie each crew base can house no more than a
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given number of vehicles(used by the crews). Also each crew should return at the end 

of the trip to the crew base from which it has first departed. This problem that we will 

call multiple depot CSP (DCSP) [35] is harder than the CSP.

Consider the D CSP defined in table 1-8 and whose work duty period is 

assumed to be 270 minutes. Assuming we have 2 depots,a feasible solution involving 

4 crews w ill look like the one depicted in graph G  of figure 1-7. The costs of the 

linking-arcs are taken to be equal to their durations.

Table 1-8 : A 10 Task-DCSP.

Task Starting
time

(minutes)
Finishing

time
(minutes)

1 50 110
2 65 140
3 80 140
4 125 185
5 150 210
6 160 220
7 215 275
8 250 310
9 260 320

10 305 365



Chapter 1 24

Figure 1-7 : A  Feasible Solution for the 10 Task-2 Depot DCSP.
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5-2 The Airline Crew Scheduling Problem with Rest Periods.

This problem which is a pure extension of the CSP is encountered mainly in the 

airline industry.

The main assumptions on which the airline CSP (ACSP) is based are:

(i) the company's planning period is one day o f 24 hours;

(ii) by the end of each day all crews must have returned to the home base.

From these two assumptions we deduced the assumption that layovers were not 

necessary and also that the only union regulation required is the lim it on the maximum 

number of hours a crew can fly in one duty period.

As we said previously these two assumptions are fairly reasonable for small to 

medium size companies. However for most of the large companies that operate 24 

hours and which cover long intercontinental flights,these assumptions cannot be 

made;especially when we are seeking an exact solution to the problem. 

Consequently,for the large airline companies we need to assume :

(iii) the company's planning period is one week(instead of one day);

(iv) A ll crews must come back to the home base by the end of the week;

Under these conditions,the union rules become:

(a) each crew cannot fly more than a given number of hours in one duty period;

(b) between any two consecutive duty periods there must be a layover of at least T j 

hours and at most T 2 hours (Tj < T 2);

(c) Each rotation cannot last more than a given number o f days.

W hile rule (b) guarantees a sufficient period o f rest time between any two consecutive 

duty periods^ule (c) restricts the time spent outside the crew base.

This problem is an extension o f the ACSP. It w ill be refered to as A CSP  with 

rest periods and is dealt with in chapter 3.
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6- The G eneral Crew  Scheduling Problem  (G CSP).

In the definition o f the CSP we assumed im plicitly that the starting times and 

finishing times o f each task were specified Hence if  we were given any pair o f tasks 

we could have easily said whether they can be covered by a same crew or not.

However,the problem becomes more complicated when the starting and 

finishing times of some or all tasks are given as time intervals(the duration of the task 

remaining the same regardless o f its starting time). Thus,for example,in an airline 

context where tasks represent flight-legs,the flight Algiers-London starting at 12.30 

am and finishing at 3.00 pm would be assumed to start,say ,in the time interval 

12.15am - 12.45am and terminates between 2.45pm and 3.15pm. In this case it is not 

always possible to say whether 2 tasks can be covered by the same crew or not. To 

illustrate this consider two tasks i and j with i starting within the time-interval 

[8.00-8.30am] and finishing within [12.00-12.30am] and with j starting within 

[12.20am-1.00pm] and terminating within [3.00pm-3.40pm]. The duration o f task i is 

assumed to be 4 hours. Also assume that the finishing location o f task i is the starting 

location o f task j. If in the final schedule we decided that task i starts at 8.00am then it 

would be possible to link it with task j since i w ill end at 12 .00am and j cannot start 

before 12.20am. Whereas if  task i starts at 8.30am and task j starts at 12.20am then it 

w ill be impossible to link the two tasks. Consequently the construction of the acyclic 

graph G  representative of a CSP is no longer valid.

Considering a crew and the corresponding vehicle as a single package,the above 

problem gets more complicated if  we allow the company to have several types of 

vehicles with different characteristics(these are mainly range restrictions on the 

vehicles). If each task can be covered by only one specific type o f vehicle then the 

problem w ill result in solving M  different CSP's (with time-windows) where M  is the 

number o f types o f vehicles. However, complications arise when we assume that
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Figure 1-8 : Network G T representing a 7 Task- GCSP.
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Table 1-9 : A 7 Task-GCSP •

Task
Window
Starting
time

(minutes)
Duration

time
(minutes)

Vehicle
Type

1 40-60 100 1
2 60-90 150 2
3 175-225 100 i;2
4 400-400 100 l
5 430-470 150 1 ?2
6 525-575 200 2
7 570-630 100 1
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each task has, in fact, several types o f vehicles by which it can be serviced. For 

example, in the airline context the flight Algiers-Paris can be covered by a B-737,a 

B727 or an A320 whereas the flight Algiers-London can be serviced only by a B737.

We w ill refer to this problem as the general crew scheduling problem(GCSP). It 

consists o f a CSP in which the tasks have flexible(not fixed) due dates (ie starting 

times and finishing times) and in which several types o f vehicles o f diffem t 

characteristics are available to service all tasks.

To fix the ideas consider the G CSP  represented in table 1-9. W e assume we 

have 2 types o f vehicles for 4 crews. Also the work duty period is assumed to be 450 

minutes. A  graph G T representing only the task-arcs is depicted in figure 1-8 . The 

figures above the task-arcs represent the vehicles'types and those at the beginning and 

terminal vertices of a task arc are the time intervals for the possible start-time and finish 

time of the arcs. Clearly the linking-arcs cannot be represented. Thus,if we consider 

tasks 1 and 4 it w ill be impossible to link them if  taskl starts at 40 minutes,but if  task 

1 starts any time after 50 minutes then a path that includes both tasks w ill be feasible. 

For this reason, the graph's representation presented in section 2-1 cannot be applied 

to this problem.

7- Solving the C S P .

The airline industry is the area in which a lot of effort has been made to solve the 

crew scheduling problem. The importance o f solving exactly the A CSP  or at least to 

improve the current best known solution is better understood when we know that crew 

costs represent 10% to 15% o f the company's total cost. As mentioned in [75],an 

improvement o f 1% in the current solution o f the A CSP  in A lita lia ,corresponds to a 

profit of more than half million dollars per year.

For the last twenty five years,many authors have tried to tackle the problem 

using one o f the two approaches:
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(a) M athem atical techniques : although this approach provides the exact solution 

of the A C SP  it is very limited in that only small to medium size problems,of up to 150 

flights per week [113,114] can be solved. For a small company this is a reasonable 

size problem but for larger companies which can have up to 1000 flights per week [ 5] 

it is very small.(see Arabeyre et A1 [2] for a very good account of the ACSP).

(b) heuristic algorithms : the advantage of this approach over the first one is that it 

can handle real life problems for small and large companies. However the solution 

produced is approximate and in some cases they can be even worse than manually 

produced ones.

Progress is being made,nowadays,in improving the efficiency of the heuristics 

[4,5,6,88] and in devising mathematical techniques to solve larger ACSP's[2,81].

7-1 Exact M ethods for Solving the A C S P .

Several mathematical programming formulations have been suggested for the 

A CSP . The oldest and most dominant one is the set partitioning /set covering 

formulation [138] which is as follows :

d-8)
jeft

subject to :

for each flight-leg i d-9)

X .  € {0,1} ( 1- 10)

where £2 is the set o f all rotations
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aij = 1 if  flight-leg i is covered by rotation j ;

= 0 otherwise;

and Cj is a cost associated with rotation j.

Constraints (1-9) express the fact that each flight-leg must be covered by one 

and only one rotation. If we replace (1-9) b y :

the problem obtained is a set covering problem (SCP) and constraints (1-11) w ill 

express the fact that each flight-leg should be covered by at least one rotation. In other 

terms,a flight-leg can be covered by more than one rotation. This is a real life situation 

refered to as "deadheading*' in which the crew travels as passengers in order to 

position themselves to start a new flight-leg or to return to the home base.

The procedure for solving the above SPP or SCP consists of the following

steps:

(i) Generating a ll the feasible rotations: First, all the flight-legs are joined 

together to form flying duty periods. The duty periods and the layovers are combined 

together to form a rotation. Hence, a rotation w ill be a sequence o f the form(duty 

period,layover,duty period,...,layover,duty period). Both duty periods and layovers 

are formed according to union regulations.

(ii) Reducing the num ber o f rotations : In the previous step,the number of 

feasible rotations generated for a real life ACSP  w ill run into thousands if  not millions. 

Hence the reduction step is necessary so as to be able to solve a reasonable size 

problem.This reduction can be done by either:

(a) using dominance and logical comparison; or

(b) put a limit on the maximum length of a rotation or eliminate all rotations with 

layovers at an undesirable station.

(Hi) Solving the SPP (or SCP)[112].

Christofides and Paixao [44] proposed a very effective technique to solve large

for each flight -leg i ( M l )
n
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scale SCP’s. This technique is based on the state-space relaxation method [43]. It is 

reported in [44] that SCP’s of up to 400 rows and 4000 columns have been solved to 

optimality. Also,it is worthwhile consulting the SPP survey of Balas and Padberg 

[14]. As far as the A CSP  is concerned,the solution techniques used up till now consist 

o f the cutting-plane methods[68],the implicit enumeration procedures[70,lll] and 

group theoretic approaches[134,140,141]. In the cutting-plane method the most used 

packages are based on Gomory's algorithm[80] and Martin's accelerated euclidean 

algorithm [116]. This latter one proved to be quite satisfactory and some ACSP's of 

up to 900 flight-legs (formulated as SPP) could be solved to optimality[75].

It is clear that the size o f the matrix o f the SPP formulation of the ACSP  

depends mainly on the planning period. Two factors play an important role in the 

choice of the planning period. These are the period of time in which the flight-legs are 

repeated and the period of time over which the union regulations operate.

For most airline companies(mainly the small and medium sized ones),the flights 

repeat daily. Hence a planning period of 24 hours is sufficient to tackle the problem. 

However,the largest companies which cover intercontinental flights that can last up to 

12 hours need to perform weekly schedules. But even for some o f these 

companies,because of the large size of the problem,the A C SP  is first formulated on a 

daily basis. For this puipose,the company assumes complete daily periodicity and 

determine the minimum cost set o f rotations covering each flight. Repeating each 

rotation on each day will enable it to cover all flights.

7-2 Heuristic Algorithms for the CSP.

In this section we present some heuristics for solving approximately the CSP. 

The first two heuristics are widely used because o f their efficiency and also because 

they are easy to code. These w ill be described in detail and illustrated on examples.
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7-2.1 The  Concurrent Scheduler.[35].

This is a simple intuitive approach that has proved quite successful in practice 

for solving a variety o f constrained scheduling problems. In our context ,the algorithm 

can be described as follow s:

Step 1 : Number the tasks in an increasing order o f their starting time. Assign taskl 

tocrew l.

Step 2 : For k=2 to the number o f tasks: If it is feasible to assign task k to an existing 

crew then assign it to the crew that involves the minimum linking-arc cost. 

Else, create a new crew and assign task k to it.

Depending on whether the CSP or one o f its extensions are involved,the 

appropriate feasibility check would be applied in step 2.

This algorithm is in fact a member of the class of greedy heuristics which have 

become popular in recent years because of their simplicity[110]. Also ,it is reported in 

[33] ,that this algorithm is widely used in practice.

E x a m p le .

Now let us apply the concurrent scheduler to the 10 task-CSP represented in 

table 1-8. W e assume the work duty period to be equal to 200 minutes . The cost ĉ  

of a linking-arc (p^oij) is taken to be equal to its time duration and all other costs are 0. 

Step 1 : - The tasks are already ordered;

- C 1 = {1}

Step 2 : * k=2

- Task 2 overlaps with task 1; Hence C j  = {2}

* k=3

- Task 3 overlaps with both task 1 and task 2 ; Hence C 3 = {3}

*k=4

- Task 4 overlaps with tasks 2 and 3 ;
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- Task4 can be linked with task 1; Hence C 4 = {4}

* k=5

- Task 5 overlaps with task 4 ;

- Task5 can be linked only with one of tasks 1,2 or 3 ;

- Choosing the minimum cost link we get C 3={ 3,5}

*k=6
- Task 6 overlaps with both tasks 4 and 5;Hence it can belong to neither C j 

nor C 3;

- Task 6 can be linked only with task 2 ; Hence C 2 = {6 }

* k=7

- Task 7 overlaps with task 6; Hence it cannot belong to C 2;

- Task 7 cannot be linked with task 1 because of the restriction on the work 

duty period; Hence it cannot belong to C j;

- Task 7 can be linked with both tasks 3 and 5; Hence C 3 = {3,5,7}

*k=8
- Task 8 overlaps with task 7; Hence it cannot belong to C 3;

- Task 8 can be linked with neither task 1 nor task 2 because of the restriction 

on the work duty period; Hence it can belong neither to C j nor to C 2*,

- Hence C 4 = {8}

*k=9

- Task 9 overlaps with both tasks 7 and 8; Hence it can belong to neither C 3 

nor C 4;

- Task 9 can be linked with neither task 1 nor task 2 because o f the restriction 

on the work duty period; Hence it can belong neither to C j nor to C 2;

- Hence C 5 = {9}

*k=10
- Task 10 overlaps with both tasks 8 and 9; Hence it can belong to neither C4 

nor C 5;
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- Task 10 can be linked with none of tasks 1 ,2  or 3 because of the restriction 

on the work duty period; Hence it can belong to none of or C 3;

- Hence C 6 = {10}

The heuristic solution to the 10 task-CSP is :

Tasks 1 and 4 are assigned to crew 1;

Tasks 2 and 6 are assigned to crew 2 ;

Tasks 3,5 and 7 are assigned to crew 3 ;

Task 8 is assigned to crew 4 ;

Task 9 is assigned to crew 5 ;

Task 10 is assigned to crew 6 ;

The total cost is 345.

7-2.2 Tw o Step Approaches.[35].

This heuristic concerns only the multiple depot CSP (DCSP). This problem can 

be viewed as crew scheduling/clustering problem in the sense that the output is a set of 

crew schedules clustered by depot. This interpretation suggests two classes of 

approaches:

(i) the first one consists of clustering the tasks and then schedule the crews over 

each cluster,

(ii) the second one consists o f scheduling the crews and then cluster the tasks. 

Both approaches are widely used in practice[33].

It is worthwhile mentioning at this point that costs are attached for bringing a 

crew from the depot to the tasks' starting place and from the tasks' finishing place to 

the depot.

As far as the first type heuristic is concerned,a weight that measures the 

proximity o f the task to the corresponding depot is associated to each task/cluster pair. 

Given these weights,an assignment of tasks to clusters(depots) that minimizes the total
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weight can be found by solving a simple transportation problem. The CSP is then 

solved over each cluster using the concurrent scheduler. The second type heuristic 

consists o f first solving the CSP over the entire task set. Then a transportation problem 

that assigns entire crew schedules to depots is set-up in the same manner as above.

These two approaches are in  fact sim ilar to the vehicle routing 

approaches[22,76,99,120] (see also [42] or [109] for a definition o f the vehicle 

routing problem) in that in both the routing and scheduling problems we either group 

the required tasks into clusters,one cluster representing each depot,and then solve a 

single depot routing or scheduling problem or we form routes or schedules first and 

then assign these routes or schedules to the appropriate depot.

Now, let us apply the second approach,which consists of clustering first the 

tasks,to the D CSP represented by the graph of figure 1-7. The work duty period is 

assumed to be 200 minutes,the costs associated with the linking-arcs are equal to their 

time durations zero cost is incurred to each task-arc. The costs from the depots to the 

tasks' starting places and from the tasks' finishing places to the depots are given in 

tablel-10 .

The first step in this second heuristic consists of first solving the CSP. This can 

be done using the concurrent scheduler. The heuristic solution as found in section 

7-2.1 is:

^={1,4} ; C2={2) ; C3={3,6] ; C4={7,10) ; C5={8) ; C6={9) 

where Cj (j=l,6) is the crew schedule and the numbers 1,2,...,10 are the tasks. Now  

let us give a weight Wjj to each crew-schedule Cj, with

wjj = PCdj.Oj) + PCpj^) i= U  ; j= l,.*>6 

where 0Cj(resp. pj) is the starting place ( resp. finishing place) o f the first (resp. last) 

task o f crew schedule j ; dj is depot i ; P(m,k) is the cost from m to k (given by table

1- 10).

The second step o f the algorithm consists of solving a transportation problem 

that w ill minimize the costs of assigning the crew schedules to the depot This can be
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performed by solving the minimum cost network flow problem of figure 1-9.

Table 1-10 : Costs of the Source and Sink-Arcs

Task Place Depotl Depot2

a i 80 20
±

p, 40 70

o a2 40 70
£.

p2 80 20

<5 a3 60 30
P3 30 80

4
a4 60 30
P4 80 20
a5 40 70

O
P 5 60 30

c.
CLq 80 20

o
Pc 90 40

*7 a? 80 20
/

P7 30 80

8 a8 30 80

00ca. 60 30

Q a9 40 70
P9 60 30

10 a io 90 40
P10 40 70
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S and R  are respectively a dummy source and sink . The C^s represent the crew 

schedule and the dj's represent the 2 depots. The two figures (in brackets) associated 

with each arc give respectively the cost and capacity of the arc. W e have assumed that 

depot 1 has a capacity of 2 vehicles and depot 2 has a capacity of 5 vehicles. The input 

flow is equal to the number of crew schedules ie 6. The optimal solution becomes : 

crew schedules 5 and 6 are assigned to depot 1, 

crew schedules 1,2,3 and 4 are assigned to depot 2 .

Figure 1- 9 : Network Associated with Table 1-10.

ci

7-2.3 An Interchange Heuristic[137],

This procedure can be viewed as an adaptation o f the 2-opt algorithm for the 

TSP [107]. Assuming that a starting solution is already available (this can be done 

using the concurrent scheduler), the heuristic effects interchanges between the 

components of this schedule to improve costs. An interchange affects only 2 crew 

schedules,say 1 and 2. It joins the first half of crew schedule 1 with the second half of
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crew schedule 2 and the first half o f crew schedule 2 with the second half of crew 

schedule 1. In this case the costs of the two new crew schedules must be compared to 

the costs of the two old crew schedules.

This algorithm has proved to be quite efficient for the D CSP  and related 

problems. More details about this heuristic can be found in [137].

7-2.4 A  Set Covering Based H euristic.

This approach [142] consists of first enumerating all possible feasible rotations 

for a single crew. Now ,let:

ajj = 1 if  task i is in rotation j ;

= 0 otherwise;

and let

Xj = 1 if  rotation j is to be used;

=0 otherwise.

Also let Cj be the total cost of rotation j. Then the master scheduling problem is simply 

the set covering problem(SCP) [112]:

d-12)

subject to :

all tasks i d-13)

x .e  {0,1 } (1-14)
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There are 2 problems associated with solving directly the SCP. The first is that 

all feasible rotations could not possibly be enumerated for a large problem in a 

reasonable amount o f time. The second is that there is no efficient exact algorithm for 

solving such large SCP[129].

Toregas[142] suggested the following heuristic:

Step 1 : Let S be an empty set;

Step 2 : Generate a set C  of unique (not previously generated) task-schedules, 

and add C  to S ;

Step 3 : Solve the associated set covering problem with columns S ;

Step 4 : Retain the schedule in the optimal solution from step 3 and delete the unused 

schedules from S ;

Step 5 : If the time lim it is exceeded,then STOP,else G O  TO  Step 2.

Clearly,the main step in this algorithm is step 3 which consists of solving the related 

SCP. Toregas claimed that the set covering problem can be solved(most o f the time) 

by relaxing the integrality constraint and solving the associated linear program. If the 

solution X* is non-integral cutting-planes can be added to the linear program 

constraint set,and the linear program is then solved again. Few cuts are usually 

required to produce integral solutions,although some counter-examples have been 

found. An alternative way of solving the SCP is to apply any of the existing SCP's 

heuristics[45,87,129].

7-2.5 O rlo ff's  heuristic [125] .

This algorithm, like the interchange heuristic, can be viewed as an adaptation 

of the 3-opt algorithm for the TSP  [107,108] . O rloff argued that , in fact , the 

problem can be viewed as a special case o f the travelling salesman problem[41] . 

Consequently Lin's heuristic can be applied directly . But before this , a feasible
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schedule has to be built and then Lin's heuristic [107] , which is an improvement 

routine on the existing solution, is applied.

The analogy between this problem and the TSP can be defined as follows : a 

solution to the problem consists o f a set of M  paths which cover all N  tasks . But a 

solution can equivalently be considered to be a set of M  cycles, centered at the depot, 

such that each cycle C j (i=l,...,M) is o f the form Cj = d —» Pj —» d where Pi is one 

of the M  paths that form the solution. Then there is a one-to-one relationship between 

feasible schedule solutions and feasible travelling salesman tours on the set N  with 

depot d added. If two tasks i and j can not be assigned to a common crew schedule , 

then Cy = °o . Otherwise Cy w ill be the deadhead cost of following one task by the 

other. C id and are large.

One of the main steps in this algorithm is to determine a good starting feasible 

solution . This can be performed by using one of the two previous heuristics . 

Alternatively we can use the "swapping routine" o f Orloff [126].

In this routine a sequence of matching problems [39] is solved to build 

schedules by optimally matching segments together. The matching problem starts with 

the set o f N  tasks and generates a set o f minimal cost task pairs and singletons , by 

matching each task i to another task j , or matching a task i to itself. These task pairs 

and singletons are schedule segments . The costs o f matching these new tasks 

(schedule segments) are then calculated and a new matching problem is solved which 

generates a set o f minimal cost task pairs , i.e ., task quadruples , triples , pairs and 

singletons. The costs of matching these new tasks together are then calculated, and a 

new set o f minimal cost tasks are generated. This procedure continues until no new 

matchings are obtained.

If matching two schedule segments is infeasible then the cost is set to infinity . 

A  matching may be infeasible because of one of the three reasons:

(i) The time length o f the resulting crew schedule exceeds the work duty period.
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(ii) The earliest finish time o f one schedule segment may be greater than the 

latest start time for the other segment.

(iii) None of the vehicles' types that can cover one schedule segment can cover 

the other schedule segment.

O rloff reported in his paper that this algorithm has proved to be very efficient in 

practice. Unfortunately, he did not report any computational results.
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CHAPTER 2

A DIRECT FORMULATION OF THE CSP

1- INTRODUCTION

The solution of the BCSP  consists o f a set o f K  ( K  is the number o f crews of 

the B C S P ) disjoint paths which cover all task-arcs of network G u(see chapter 1). Two 

paths of G u are said to be disjoint if  they have no arc in common . In the network G u 

o f figure 1-4 the two following paths are disjoint.

P1= (Ps,a 1)(a1,p1)(P1,a3)(a3,P3)(P3>a 5)(aJ,pJ)(p5,aR)

P2= (Ps,a2)(c^,p2)(P2,a4)(a4>p4)(p4,aR)

The solution of the BCSP  is not always feasible for the CSP. I f , for example , 

we consider the solution o f the BCSP given in figure 1-5 and if  we assume that the
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work duty period is 400 minutes, then this solution w ill not be feasible for the CSP . 

Thus, path P= (Ps,a1)(a1)P1)(Pi,a4)(a4,P4)(P4,a5)(aJ>pJ)(PJ,aR) which is in the 

solution has length 600 minutes and violates the rule that limits the number of working 

hours in a duty period ( in this case 400 minutes ). Consequently , additional 

constraints which express this restriction should be considered in the formulation of 

the problem. These constraints will be refered to as time constraints since they express 

a limit on the working tim e.

The formulation of the CSP is presented in section 2 . In fact this formulation is 

not based directly on network G  but on another network G a which is an extended 

version o f G  . This w ill also be discussed in section 2. Section 3 deals with the 

solution technique . A t first we wanted to use a combination o f two integer 

programming techniques , namely the cutting-planes (C-P) method [93] and the 

branch and bound procedure [21,67].The idea was to start solving the linear relaxation 

o f the CSP  . If the solution is optimal for the CSP we stop , otherwise we add 

additional constraints (cutting-planes) that w ill force the solution to integrality . In 

case the optimal solution has not been reached after a predetermined number of cuts the 

C-P algorithm is embedded into a branch and bound procedure . The cutting-planes 

were a combination of logical [92] and Gomory's cuts [80].

Out of 101 randomly generated CSP’s , 81 were solved optimally directly by an 

LP  package . For the rest we needed to use only the C-P algorithm to reach to the 

optim al. There was no need for branch and bound. These results w ill be presented in 

section 4. Unfortunately, only problems of up to 30 tasks could be considered. This 

was due to the limitations imposed by the existing LP  packages which could not 

handle such large size problems. In our attempt to solve larger problems , the 

Lagrangian relaxation [60] was considered. This is one of the most successful integer 

programming techniques. Its application to the CSP is dealt with in section 5 and the 

computational results are presented in section 6 .
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2- T H E  P R O B L E M  F O R M U L A T IO N  .

2-1 Construction o f Netw ork G a .AIgorithm  A l.

As we said in the previous section , the CSP formulation presented in this 

chapter is based on a network G a which is an extension of network G  . The procedure 

for constructing such a network will be first explained on the following example :

2-1.1 Exam ple .

Consider in figure 2.1 network G  representative of a 3 task-CSP.

Figure 2-1 : Network G.

0 too 200 300 400 500
_i______i ■ «- » « - I * « ■■« ...» i-----------►

■*>

W --------

The working duty period is assumed to be 400 minutes and the number o f paths 

with which we want to cover all task-arcs o f G  is 2 .

Now , consider task-arc (aj,pj) . It can be covered either by pathl or path 2. 

Hence , we can duplicate it into two arcs : (a^pj) corresponds to the 1st path and 

(a^Pj) corresponds to the 2nd path . But in the optimal solution only one arc w ill be 

covered . Similarly, arcs (o^^) and (ccjjpj) can be duplicated in the same manner. 

Assuming a super source Pg (resp. pg ) and a super sink ( resp. ) for path 1
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(resp. 2), and joining pg with aj (j=l,2,3 ; i= l,2 ) . Also joining pj (j=l,2,3) with a R 

(i= l,2) we obtain network G a of figure 2.2 .

Figure 2-2 : Network G a

o 100 200 300 400
‘ ‘ ‘ 1 500—------ ►

2-1.2 General Procedure for Constructing G a. A lgorithm  A1 .

Step 1 : To each task-arc (a^pj) of G  there correspond K  arcs (a],p|) (a^p^),..., 

in G a where K  is the number o f paths with which we want to cover G  (and 

G a). These arcs of G a w ill be called "task-arcs” and have the same cost c  ̂ and 

duration time x]f as arc (oĉ pj) of G .

Step 2 : For each p= l,...,K , link all the task-arcs (aP,pP),..., (ocP,P{j) (see section

1-4, chapter 1); n is the number o f task-arcs of G . The cost cjj and duration time xP of 

arc (pP,aP) (p=l,...,K),called ” linking-arc', are the same as the cost and duration 

time of arc (p ĉcj) of G.

Step 3 : Create K  super-sources ps,..., Ps and K  super-sinks a R,..., a R and 

join each super-source pP (resp. super-sink ocP ) (p=l,...,K) with all aP (resp. pP) 

(i=l,...,n) . A ll the arcs (pP,aP) (called "source-arcs') and all the arcs (pP,aP)
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(called "sink-arcs') have costs and duration times 0.

In the previous example (2.1.1) , G a can be considered as the union of 2 

disjoint graphs G a and G | identical to G  and corresponding to paths 1 and 2 

respectively. Thus G a is given in figure 2.3 and G a in figure 2.4.

Figure 2-3 : Network G a

0 100 200 300 400 500

/ i
1

■>

0 100 200 300 400 500
—1---------- >

Figure 2-4 : Network G|

In general G a can be defined as the union of K  disjoint graphs G a ..., G a all 

identical to G. There are as many graphs as there are paths k (k=l,...,K).

Applying algorithm A1 to network G , we obtain network:

G a = ( X a = X a U X a ,U a = U a U U | )  

where X a is the set o f vertices, U a is the set of arcs and where:

X a = { txP I i= l,...,n  and p= l,...,K) U  { og / p = l... K )

X a = { PP I i= l,...,n and p= l,...,K) U  { pP / p=l,...,K}
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U a = { ( oJ>, PP ) I i= l,...,n and p= l... K}

U | = {set o f all linking-arcs ( pg, ),p=l,...,KJ U

{ (Pg, 0̂  )l i= l,...,n and p=l,...,K} U  

K P ? ,a P ) l i= l,...,n and p=l,...,K}

where n is the number of task-arcs o f G ;

K  is the number o f paths with which we want to cover G  ;

og and (p=l,...,K) are the sinks and the sources respectively,of G a;

The cost and duration time of each arc of G a are described in algorithm A 1 .

2-2 The Problem  Form ulation .

The number o f paths with which we want to cover G  (or G a) is K  and the 

number o f task-arcs o f G  is n .

= 0 otherwise.

The CSP can now be formulated as :

(2- 1)

subject to :

f 0 , i= l,...,n  
{ 1 , i=S 

-1  , i=R
k= l... K

(2-2)
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i= l,...,n (2-3)

n
X  w + X ^ X  T  k=1- - ’K

< ^ eU2 Je VUt
XpeJO,!}

(2-4)

In the objective function, only the costs o f the linking-arcs w ill be considered. 

There is no need for including the costs o f the source and sink-arcs because each one 

o f them has cost and duration time 0 .The choice of such an objective function is 

explained in section 2.3 .

Constraints (2-4) are time constraints . They ensure that, in a daily schedule , 

each crew cannot operate more than the working duty period fixed by union 

requirements . In network G a (and G) ,they mean that the length o f each one o f the K  

paths with which we want to cover G  must be less than or equal to a given length T.

The partitioning constraints (2-3) guarantee that each task must be performed 

once only by just one crew.

The flow constraints (2-2) express the flow conservation at each node of the 

graph G a. Thus , the above formulation consists of a minimum cost network flow  

problem defined by (2-2) and (2-3) with the additional constraints given by (2-4).

The conservation o f flow at each node o f G a could also be expressed in the 

following w ay:

X x«k=
ieV.

for i= l,...,n andk=l,...,K (2-5)
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X xijk= xia<

X  X s i k =  1

(Ps,a)elf2

X xiRk= 1

fori= l,...,n  andk=l,...,K

fork= l,...,K

fork= l,...,K

(2-6)

(2-7)

(2-8)

f 1 if  arc (ak, e  U* is in the optimal solution 
where x..k = -j 1 1 1 (2-9)

[0  otherwise

It is clear that constraints (2-2) are equivalent to constraints (2-5), (2-6) ,(2-7) 

and (2-8). How ever, for the sake of simplicity we have prefered constraints (2-2) to 

express the conservation of flow at each node of G a .

2-3 Choice o f the Objective Function .

In all C S P 's  considered from now on we assume that the given number of 

crews (K ), with which we want to operate all the tasks subject to union regulations , 

is the minimum possible. It is clear that if  K  is small enough then the C S P , as defined 

in section 2-2 can be infeasible. For example in the airline problem , the solution that 

w ill result would be the least vehicle solution that minimizes deadhead mileage.This is 

a reasonable assumption if  the plane capital costs are large compared to the costs 

attached with deadheadings. However, if  the costs attached with deadheadings are of 

the same order as the plane capital costs, then one way of tackling the problem will be 

to fix the number o f planes ,K, equal to different values K j,K 2,...,K m (all greater 

than the minimum number of planes required) and for each value of K , minimize the
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deadhead mileage . The solution o f each problem Pj (i=l,...,m) corresponding to 

K^is the sum of the minimum cost deadhead mileage and the capital costs o f the Kj

planes .The overall solution to the A C SP  that minimizes both the capital costs and
\

deadhead mileage is the minimum cost solution o f the m ACSP's.

N o w , the natural question that comes to one's mind is : How can we determine 

the minimum number o f crews so as to cover all tasks ? This problem is an 

NP-complete problem [15] . Several exact and heuristic algorithms have been 

suggested for this problem [117,123,146].

In our case we are using the greedy heuristic algorithm that is given in section

2-4. This algorithm has proved to be very effective (as it can be seen from the results 

presented in section 4).

2-4 A  Greedy A lgorithm  for F ind ing  the M in im um  N um ber o f Crew s 

Required to Cover all Tasks o f the C S P . A lgorithm  A2 .

2-4.1 Definition .Let I be a set of tasks of the CSP and assume that all the tasks of 

I are to be covered by a single crew P . A  task j e I can be covered by a crew p if  and 

only if  for any i e I , crew P can cover both tasks i and j ( ie , assuming i precedes j , 

STj > F T i + A(FLi,SLj ) and FTj - STj < T .

2-4.2 A lgorithm  A2 .

Let I be the list o f tasks that w ill be covered by the current crew and p be the 

minimum number o f crews required to cover all tasks o f the C S P . Also let F  be the 

set o f all tasks that have not been assigned to crews yet and let n̂  be the cardinality of 

F. The algorithm is as follow s:

Step 0 : 1=0, F= set o f all tasks o f the CSP ,p = l, n̂ = IFI , j= 0 ; G O TO  STEP 1; 

Step 1 : j=j+l ; If the jth task (ij,say) o f F  cannot be covered by crew p, G O TO  

STEP 2 . E lse , set 1= I U  {i j } and G O T O  STEP 2 ;
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Step 2 : If j= nf (ie all tasks of F  have been scanned) G O T O  STEP 3 ; Else G O TO  

STEP 1;

Step 3 : F=F-I (ie remove all tasks o f I from F ) . If F= 0 S T O P ; Else p= p+ l, 

iif = IFI , 1=0 ,j= 0 ; G O T O  STEP 1.

For the example o f table 1-6 the value obtained by algorithm A2 is 3 . (The 

work duty period has been assumed to be 400 minutes).

2- 4.3 Com plexity o f A lgorithm  A2 .

In step 1 , C(j-1) comparisons are required for each j (j=l,...,nf) where C  is a 

constant. Hence for each crew p , all the steps require Qn^(nf -l)/2 operations at most 

(Q is a constant).

Assuming that in the worst case we need n crews to cover all n tasks of the 

CSP, the algorithm w ill require (in that case ) Q'n3 operations (Q' is a constant). 

Thus , we can say that algorithm A2 runs in time O(n^), where n is the number of 

tasks of the CSP.

3- The Solution Technique : A  Cutting-Planes A lgorithm  .

3-1. Introduction .

The technique used to solve the CSP is a combination o f logical and Gomory's 

cutting-planes (C-P).

In 1958 , Gomory [79] published the first paper on cutting-planes theory.This 

is one o f the solution techniques o f integer programming (I-P)[20,68,139].It is 

described in detail in [68] .Gomory [ 80] proved theoretically that his C-P algorithm 

converges (ie the optimal solution o f the problem is found) after a finite number of 

iterations.lt has been noticed by several authors [132] however that for most of the



Chapter 2 52

medium or large size IP problems the algorithm did not converge fast enough.The 

explanation o f this often poor performance of the C-P algorithm was given by many 

authors [132] .What happens in fact is that the convergence of the algorithm to the 

integer optimal solution is very rapid during the first few cuts . Subsequently , this 

increase slows down and the cutting-planes become ineffective , making the 

convergence to the optimal solution very slow. Figure 2-5 shows the convergence of 

the Gomory's algorithm applied to a 10 task-CSP representing a linear problem of 49 

constraints and 200 variables . As it can be seen , the algorithm reaches 95% of the 

optimal solution after the addition of 5 cuts only .However at the 13th cut the optimal 

solution has not been reached yet. Actually the algorithm reached 98% of the optimum 

after the addition of 30 cuts.

Figure 2-5 : Convergence of the Gomory C-P Algorithm  

Applied to a 10 Task-CSP.

OPTIMUM 59 t
Integer

58

57 o

nunber of 
J ►cuts

2 3 4 5 6 7 8 9 10 11 12 13
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Table 2-1 : A 10 Task-CSP

Task Starting
time

(minutes)
Finishing

time
(minutes)

1 22 64
2 85 169
3 151 255
4 193 230
5 266 324
6 322 364
7 352 398
8 385 469
9 412 492
10 493 530

Other types o f C -P  algorithm s were suggested by various authors 

[8,9,77,78,148,150]but none of them could produce satisfactory results . Their 

common problem was their slow convergence when approaching the optimal solution. 

This series of unseccessful results did not mean that the C-P algorithm should be 

rejected.

In 1973 , Rubin [132] suggested a clever way of using the C-P method.He 

argued that since the C-P algorithm is very efficient during the first few cuts then at 

the precise point where the cutting-planes become redundant this algorithm should be 

stopped and embedded into a branch and bound procedure [7,20,50,101] in order to 

accelerate the convergence to the optimum.For example if  we consider figure 2.5 

which shows the convergence of the Gomory's C-P algorithm when applied to the 10 

task-CSP of table2-l we can see that after the addition of cut 10 , the convergence to
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the optimum becomes very slow . Hence Gomory's C-P algorithm can be stopped at 

this point and embedded in a branch and bound procedure .It has been noticed that 

when the cutting-planes are combined with branch and bound they perform quite well 

[12,49].

One year later , Owen [124] proposed a new type o f cutting-planes called 

logical or disjunctive cuts [10,13]. These are linear equalities( or inequalities) that 

express logical conditions derived from the problem . This simple idea can be 

illustrated as follow s: consider the two following constraints

2xj - x2+5x3>3 (2-10)

3x j+ 4 x 2 - 2x3 > 2 (2-11)

the following constraint is the strongest common weakening of (2- 10) and (2-1 1 ) 

max(2,3)xj + max(-l,4)x2 + max(5,-2)x3 > min(3,2) 

ie 3xj + 4x2 + 5x3 > 2 (2-12)

Assuming that (2-10) and (2-11) are cutting-planes for a certain problem and assuming 

that we do not know which one is valid we can be sure that (2-12) is a valid cut .It is 

called a disjunctive or logical cut.

Unlike all the previous cuts the logical cuts depend entirely on the structure of 

the problem considered and the way in which they are derived may vary from one 

problem to another. A  very good account o f the theory o f disjunctive cuts has been 

given by Jeroslow [92] . Also as far as the practical side o f these cutting-planes is 

concerned we should mention the excellent work of Balas and Padberg [14] on the set 

partitioning problem.In that paper, among the several I-P techniques that have been 

suggested the application o f logical cuts has proved to be very effective.

The derivation of the logical cuts for the CSP is explained in section 3-2.

Inspired by Rubin's idea we first wanted to combine the cutting-plane algorithm 

( ie logical and Gomory's) with the branch and bound procedure. Fortunately, we did 

not need to go that far . Thus, 80% of the 101 problems (of size up to 30 tasks) 

randomly generated were solved just by an LP  package. For the rest we only needed to
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apply the combination o f the two types o f C-P in order to get convergence to the 

optimum. There was no need for branch and bound for these 101 problems .

3-2. Derivation o f the Log ical Cuts .A lgorithm  A3.

As far as the theory of Gomory's cutting-planes is concerned the interested 

reader is refered to [68,139].In this section we w ill be dealing with the derivation of 

the logical cutting-planes .The idea of deriving the logical cuts for the CSP is very 

simple and w ill be first explained on the following example.

3-2.1 Exam ple .

Consider the 5 task-CSP represented by network G  of figure 2.6.Let us assume 

that the work duty period is 400 minutes and that we want to cover G  with 3 paths .

Figure 2-6 : Network G

o 100 200 300 400 500 600 700

H-----

/
*

It is clear that the task-arcs (a4,p4) and (a5,p5) cannot be covered by the same path. 

Also neither of them can belong to a path starting with task-arc (a^pj) .This is simply 

because the length o f such a path would be greater than the work duty period . 

Consequently (a^pj), (a4,p4) and (oc5,p5) must be covered by 3 different paths .
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Hence we can , from the start, assign task-arc (a^pj) to path 1, task-arc (a4,p4) to 

path 2 and task-arc (a5,p5) to path 3. Expressing this logical condition in mathematical 

terms leads us to the following logical cuts:

(2-13)X1R1 + x121+x131_1
MR2
l5R3

=  1 

=  1

(2-14)

(2-15)

where is as defined in section 2-2 .

Now , let us consider task-arc (o^^) • None of task-arcs (a4,p4) and (a5,p5) 

can be covered by a path that covers (c^ ^ ) • Hence we can say that task-arc (c^ ^ ) 

w ill neither be in path 2 nor in path 3 . The logical cuts corresponding to these logical 

conditions are:

X2R2 +x232 = 0 (2-16)

X2R3 +x233 = 0 (2-17)

Now we give the general procedure for deriving the logical cuts.

3-2.2 D efin ition  .

Given a network G  , representative o f a CSP , and its set B o f task-arcs we 

define an independent set IC B as being a set o f task-arcs no two o f which can be 

covered by a same feasible path ( ie a path with length less than or equal to the work 

duty period ) . A lso we define a maximum independent set (MIS) as being an 

independent set with maximal cardinality.

In example 3-1 task-arcs (o^Pj) and (a4,p4) of G  form an independent set and 

task-arcs (a^Pj), (a4,p4) and (a^p^ form a MIS .

3-2.3 A lgorithm  A3 .

The input to the algorithm is a network G  representing a C S P .

Step 1 : Determine a maximum independent set IcB .(B  is the set o f all task-arcs of
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network G ) . Let I = { (a:,P:),..., (a^p:)}
1 1 It h

Step 2 : Assign each arc (04$:) (k=l,...,h) o f I to a different path Pk (k=l,...,h)
k k

ie add the following logical cuts to the problem formulation

(P: ,0L) 6 LL

k=l... h

where and are as defined in section 2-2 .

Step 3 : Let I' = B  - 1 = { ( a ^ p j) ( a ^ P O  }. For each arc (a^pj) m=h+l,...n,
M  h+1 n " m m

determine the list L m of all task-arcs o f I that cannot be covered by a path that covers

(«i;Pi)- 
m m

Step 4 : For each (<X:,p:) for which L m * 0 Jet Pt ,...,P t be the set o f pathsm m I1 m
associated with the task-arcs o f L m. Add the following logical cu t:

m  ___

1 1k=l _ a m
= 0

(Pi 0)eU2

This means that task-arc (oci,pi) w ill be covered by none of the paths Pt ,...,Pt .m m  1 m
The algorithm is stopped when all arcs (a^pf) for which L m ^0 have been

m m

considered.

3-2.4 Exam ple .

Consider network G  o f figure 2.6.

Step 1 : maximum independent set I = { (a^p^, (a4,p4),(ct5,p5) };

B= {(a^Pj), (0 2 .P2), (a3,p3),(a4>p4),(a5,p5) }

Step 2 : for arc (a^pj) : x12j + x 131 + x 1R1 = 1 

for arc (a4,p4) : x4R2 = 1 

for arc (05^ 5) : x5R3 = l 

where aR is the sink.

Step 3 : 1' = { (a2,p2), (0C3,P3) }

* Consider task-arc (a^p^ : = 0
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can (cx2,(32) be in a same path with (a^pj) ? Y e s ; 1 ^  = 0

can (cx2,p2) be in a same path with (a4,p4) ? N o ; L j  ={ (a4,P4) }

can (ot2,p2) be in a same path with (a5,p5) ? N o ; L 2 ={ (a5,p5), (a4,p4)}

* Consider task-arc (03^ 3): L 3 = 0 

can (cx3,p3) be in a same path with (a^Pj) ? Y e s ; L 3 = 0 

can (0(3^ 3) be in a same path with (a4,p4) ? Y e s ; L 3 = 0 

can (ct3,p3) be in a same path with (0(5^ 5) ? Y e s ; L 3 = 0 

Step 4 : * Consider task-arc (o^,p2) : L 2 1 0

Add the following cut to the problem:

x232 + x233 + X2R2 + X2R3 
* Consider task-arc (063̂ 3): L 3 = 0 . S T O P .

3-3 A  H eu ristic  A lgorithm  for F in d in g  a M IS  in  Netw ork G . 

A lgorithm  A4.

The input to the algorithm is a network G  representing an n task-K crew CSP . 

Step 0 : Let M  be a maximal independent set o f task-arcs of G  . M={ (a ^ p j)} ; i= l 

G O TO  STEP 1;

Step 1 : i= i+ l.

If there is no linking-arc joining task-arc (oc^) with one of the task-arcs of 

M  then G O TO  STEP 2 ;Else task-arc (a^pj) cannot belong to M . G O TO  STEP 3 ; 

Step 2 : Add task-arc (04,ft) to M  ; M = M  U { (cx^ft)}; G O TO  STEP 3 ;

Step 3 : If i=n all task-arcs of G  have been scanned, S T O P ; Else G O T O  STEP 1.

In step 1 o f Algorithm A4 ,the statement "if there is no linking-arc joining 

task-arc (Oj^) with one o f the task-arcs o f M  " means "if no crew can cover task i 

with one o f the tasks corresponding to M".

It is easy to show that algorithm A4 runs in time 0(n2).
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3-4 The C S P  Cutting-Planes A lgorithm  : A lgorithm  A5 .

Now that we have described how we generate the logical cuts and that we have 

explained the concept o f Gomory’s cutting-planes we are ready to describe the 

algorithm based on the two types o f cuts and that we w ill call , for the sake of 

sim plicity, CSP cutting-plane algorithm.

A lgorithm  A 6 : Let us call (P) the CSP formulated as in section 2-2. The 

algorithm consists of the following steps :

Step 0 : Solve the linear relaxation o f (P ). If the solution is not integer G O TO  

STEP 1; Else STOP ,the current solution is optim al.

Step 1 : Using Algorithm A3,generate the logical cuts and add them to problem (P) 

.The resulting problem is called (P'). G O TO  STEP 2 ;

Step 2 : Using Gomory's cutting-planes solve problem ( P'). STOP.

4- Com putational Results .

To  test the algorithm presented so far in this chapter more than 100 CSP's of 

size ranging from 5 to 30 tasks were randomly generated. The results are summarized 

in tables 2-2,2-3 and 2-4.

In table 2-2 we present the computational results o f the 81 CSP's solved with 

linear programming. Table 2-3 gives the performance of the CSP algorithm A5 applied 

to the 20 remaining CSP's. In both tables 2-2 and 2-3 we give the performance of the 

heuristic algorithm A2 . In table 2-4 we compare the performance of an algorithm 

based only on Gomory’s cuts with that o f algorithm A5.Before considering the results 

of each algorithm, let us describe the data generation process.
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Table 2-2 (a) : Computational Results for the 81 CSP's Solved with
Linear Programming.

Problem
Number

of
Tasks

Heuristic Algorithm LP Results
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

Size of 
LP

[rowsxcol]
Time*

1 5 3 3 0 0.06 18 29x 81 0.4
2 5 2 2 0 0.06 27 2 lx 66 0.2
3 5 2 2 0 0.07 32 2 lx 54 0.2
4 5 2 2 0 0.06 25 21X 50 0.2
5 6 3 3 0 0.08 27 33X 108 0.6
€ 6 3 3 0 0.07 24 33x 93 0.6
7 6 2 2 0 0.06 36 24x 70 0.2
8 6 2 2 0 0.06 45 24x 72 0.2
9 7 3 3 0 0.07 36 37x 108 0.6
10 7 3 3 0 0.08 32 37x 114 0.7
11 7 2 2 0 0.09 40 27X 119 0.4
12 7 3 3 0 0.08 32 37x 141 0.7
13 8 4 4 0 0.09 36 52x 216 1.2
14 8 2 2 0 0.09 54 3Ox 102 0.5
15 8 4 4 0 0.08 32 52x 184 1.1
16 8 2 2 0 0.09 50 30x 106 0.5
17 9 3 3 0 0.10 48 45x 147 0.9
18 9 2 2 0 0.10 63 33x 102 0.6
19 9 4 4 0 0.10 42 57x 200 1.5
20 9 4 4 0 0.10 40 57x 192 1.4

* Seconds of CYBER 855 (Fortran Compiler)
+ MNC1 ■ Minimum Number of Crews (exact)
++ MNC2 - Minimum Number of Crews (heuristic)
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Table 2-2 (b) : Computational Results for the 81 CSP's Solved with
Linear Programming

Problem Number
of

Tasks

Heuristic Algorithm 
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

LP Results Size of 
LP

[rowsxcol]
Time*

21 10 5 5 0 0.11 38 75x 310 2.1
23 10 5 5 0 0.11 60 75x 265 2.1
24 10 4 4 0 0.10 48 62X 216 1.3
25 10 3 3 0 0.12 56 49x 201 1.1
26 11 3 3 0 0.13 72 53X 177 1.3
27 11 5 7 2 0.13 36 109X 476 4.6
28 11 5 5 0 0.13 48 81X 380 2.3
29 11 5 5 0 0.11 54 8lx 345 2.3
30 12 3 3 0 0.13 63 57x 246 1.5
31 12 4 4 0 0.13 72 72x 252 1.9
32 12 4 6 2 0.14 54 102X 444 3.8
33 12 3 3 0 0.13 70 57x 234 1.5
34 13 3 4 1 0.13 81 77x 260 2.2
35 13 5 5 0 0.15 68 93X 385 3.4
36 13 4 4 0 0.13 72 77x 304 2.3
37 13 3 3 0 0.13 90 61X 243 1.2
38 14 5 5 0 0.15 89 99X 375 4.0
39 14 6 6 0 0.14 72 116x 450 5.0
40 14 5 5 0 0.15 78 99x 435 4.1
41 14 5 5 0 0.16 66 99x 520 4.1

* Seconds of CYBER 855 (fortran Compiler)
+ MNC1 ■ Minimum Number of Crews (exact)
++ MNC1 « Minimum Number of Crews (heuristic)
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Table 2-2 (c) : Computational Results for the SlCSP's Solved with
Linear Programming.

Problem Number
of

Tasks

Heuristic Algorithm 
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

LP Results 
Size of 

LP[rowsxcol]
Time*

44 15 6 6 0 0.17 71 123x 582 5.3
45 15 4 4 0 0.17 88 87x 380 3.0
48 16 6 6 0 0.18 108 130x 654 5.4
52 17 7 8 1 0.18 81 177x 848 8.9
53 17 6 7 1 0.18 90 157x 693 8.4
54 17 7 7 0 0.19 108 157X 770 8.5
55 17 5 5 0 0.19 95 117x 425 5.1
56 18 7 7 0 0.19 99 165X 735 8.7
58 18 5 7 2 0.19 78 165x 686 8.7
59 18 6 6 0 0.18 90 144x 832 7.1
60 19 5 5 0 0.21 112 129x 585 4.8
61 19 6 6 0 0.20 117 151X 792 7.8
62 19 5 5 0 0.20 93 129x 585 4.8
63 19 5 5 0 0.19 106 129x 765 4.9
66 20 7 7 0 0.22 104 181X 749 4.5
68 20 7 7 0 0.21 104 18lx 959 9.7
69 21 7 7 0 0.21 102 189x 812 10.7
70 21 6 7 1 0.22 126 189x 749 10.9
71 21 6 6 0 0.21 140 165x 720 8.7
72 21 6 6 0 0.21 129 165X 840 8.8

* Seconds of CYBER 855 (Fortran Compiler)
+ MNCl - Minimum Number of Crews (exact)
++ MNCl - Minimum Number of Crews (heuristic)
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Table 2-2 (d) : Computational Results for the 81cSP's Solved with
Linear Programming

Problem Numberof
Tasks

Heuristic Algorithm 
MNC1+ MNC2++ Error Time*

Optimal
Solution
Value

LP Results 
Size of 

LP
[rowsxcol]

Time*

73 22 7 7 0 0.22 120 197x1022 12.3
74 22 7 7 0 0.22 135 197X 770 12.2
75 22 7 7 0 0.24 129 197X1015 12.8
76 22 7 7 0 0.24 135 197X 861 12.5
77 23 7 9 2 0.24 126 257X1053 19.0
79 23 8 8 0 0.25 135 231X1272 18.1
80 23 8 8 0 0.24 116 231x 968 18.1
81 24 7 7 0 0.25 136 213X1113 15.9
82 24 9 9 0 0.24 135 267x1305 20.7
83 24 8 9 1 0.25 120 267x1125 20.2
84 24 7 8 1 0.26 144 240X1120 18.6
90 26 8 9 1 0.27 153 287x1494 21.1
91 26 8 8 0 0.28 149 258x1152 19.1
92 26 8 8 0 0.27 181 258X1232 19.6
93 26 8 8 0 0.26 162 258x1296 19.6
94 27 9 9 0 0.29 120 297X1431 20.8
95 27 9 9 0 0.27 128 297X1836 22.0
96 28 8 8 0 0.29 160 276X1232 20.4
97 28 10 12 2 0.29 129 400x1924 57.0
98 29 8 8 0 0.29 168 285x1472 20.6
99 29 10 10 0 0.29 152 349x1390 29.2

* Seconds of CYBER 855 (Fortran Compiler)
+ MNC1 ■ Minimum Number of Crews (exact)
++ MNC2 - Minimum Number of Crews (heuristic)



Table 2-3 t Computational Results for the 20 CSP'a Solved with the CSP Cutting-Plane Algorithm

Problem
Number
of

Tasks

Heuristic Algorithm 
HNC1+ MNC2++ Error Tims*

Optimal
Solution
Value

Linear
Solution
Value

CSP Cutting-Plane 
Sise of 

Gap LP 
[%] [rowsxcol]

Algorithm 
Number of 
Preassigned 
Tasks

Number of 
Gomory 
Cuts

Lower
bound
Value

Time*

22 10 4 4 0 0.11 59 48.4 18 62X 224 7 1 59 1.8
42 15 6 8 2 0.16 56 51.0 9 159X 792 10 3 56 9.8
43 15 6 6 0 0.16 81 68.8 15 123X 618 9 8 81 7.9
46 IS 4 4 0 0.16 96 90.2 6 B7X 619 6 1 96 3.2
47 16 4 4 0 0.17 99 80.2 19 92X 432 10 1 99 4.3
49 16 4 4 0 0.18 90 79.2 12 92x 416 7 6 90 4.8
50 16 5 5 0 0.17 113 105.1 7 111X 510 8 2 113 5.5
51 16 4 5 1 0.18 88 68.6 22 111X 615 8 7 88 8.3
57 18 7 7 0 0.19 88 85.4 3 165X 833 9 1 88 9.1
64 20 6 6 0 0.20 112 112.0 0 158X 672 9 2 112 9.6
65 20 7 8 1 0.22 96 88.3 9 204X1096 10 1 96 14.0
67 20 6 6 0 0.21 127 101.7 21 158X 70S 9 15 127 16.3
71 23 8 8 0 0.23 120 114.1 5 231x1016 11 1 120 20.3
•5 25 • 10 2 0.25 120 91.3 24 305X1730 13 19 120 36.2
•6 25 9 9 0 0.25 128 113.9 11 277x1431 11 5 129 24.3
•7 25 7 7 0 0.25 162 150.7 7 221X1099 10 12 162 21.8
•8 25 9 11 2 0.26 126 108.4 14 333X1694 14 2 126 32.3
89 25 7 7 0 0.27 151 144.9 4 221X 882 15 2 151 15.2
100 30 9 9 0 0.31 168 166.4 1 327X1674 16 2 168 31.4
101 30 11 11 0 0.31 171 148.2 13 393X1694 17 16 171 56.3

* Seconds of CYBER 855 (Fortran Compiler)
♦ MNC1 ■ Minimum Number of Crewe (exact)
++ MNC2 " Minimum Number of Crews (heuristic)
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Table 2-4 : Comparison of the Gomory C-P Algorithm and the CSP C-P Algorithm.

Problem
Number

of
Tasks

Optimal
Solution

Value
Linear

Solution
Value

Size
Of
LP

Gomory
Number

of
Cuts

C-P Algorithm 
Value of 
Lower Gap 
Bound [%]

CSP C- 
Number 

of
Cuts

P Algorithm 
Value of 
Lower 
Bound

1 10 59 4 8 . 4 6 2 x  224 20 5 6 . 0 5 . 1 1 OPT
2 15 56 5 1 . 0 159X 792 15 OPT OPT 3 OPT
3 15 81 6 8 . 8 123X 618 20 7 9 . 2 2 . 2 8 OPT
4 15 96 9 0 . 2 8 7 x  619 10 OPT OPT 1 OPT
5 16 99 8 0 . 2 9 2 x  432 16 OPT OPT 1 OPT
6 16 90 7 9 . 2 9 2 x  41 6 20 9 0 . 0 0. 6 OPT
7 16 113 1 0 5 . 1 l l l x  5 10 20 1 0 9 . 4 3 . 2 2 OPT
8 16 88 6 8 . 6 111X 615 20 8 4 . 0 4 . 5 7 OPT
9 18 88 8 5 . 4 165X 833 4 OPT OPT 1 OPT

10 20 112 1 1 2 . 0 15BX 672 19 OPT OPT 2 OPT
11 20 96 8 8 . 3 204X 1096 20 9 3 . 3 2 . 8 1 OPT
12 20 127 1 0 1 . 7 158X 708 20 1 2 3 . 2 3 . 0 15 OPT
13 23 120 1 1 4 . 1 2 3 1 x 1 0 1 6 20 1 2 0 . 0 0. 1 OPT
14 25 120 9 1 . 3 305X 1730 20 1 1 4 . 2 4 . 8 19 OPT
15 25 128 1 1 3 . 9 277X 1431 20 1 2 8 . 0 0. 5 OPT
16 25 162 1 5 0 . 7 221X 1099 7 OPT OPT 12 OPT
17 25 126 1 0 8 . 4 333X1693 15 OPT OPT 2 OPT
18 25 151 1 4 4 . 9 2 2 1 x  882 18 OPT OPT 2 OPT
19 30 168 1 6 6 . 4 3 2 7 x 1 6 7 4 17 1 6 8 . 0 0. 2 OPT
20 30 171 1 4 8 . 2 393X1694 20 1 6 9 . 1 1 . 1 16 OPT

* "OPT" means that the lower bound is optimal
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4-1 The Data Generation Process .

For each one of the 101 problems, we needed to generate the cost coefficients 

o f the linking-arcs , the duration times o f the tasks and their starting times . The 

working duty period was assumed in all cases to be equal to 6 hours. The number of 

crews was provided by the heuristic algorithm A 2 .

A ll the data were randomly generated according to a uniform distribution . The 

durations (resp. starting tim es) were assumed to vary within the range [45 minutes to 

2 hours 30 minutes] (resp. [00.00 hours to 24.00 hours] ). Each cost coefficient c- 

associated with linking-arc (P̂ cXj) has been generated according to the following 

form ula:

Cjj = (1+ a) dy

where dy = duration o f linking-arc (Pj,(Xj)

= starting time of task j - finishing time o f task i 

and

a  = random number generated by the uniform ditribution U(0,1)

4-2 Computational Results for Algorithm A2.

The heuristic algorithm A 2 , for finding the minimum number o f crews required 

to process all tasks , has proved to be very effective . Thus out o f the 101 randomly 

generated CSP's ,it has produced the exact minimum number o f crews (M NC) in 84 

cases . For the remaining problems , it has given the M N C  with an error o f 1 in 10 

problems and an error o f 2 for 7 others .Column 3 ,of tables 2.2 and 2.3 .which gives 

the exact value of M N C  was obtained using the algorithm described in the next chapter
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4-3 Computational Results for Algorithm A5 .

The first obvious remark that one can make by just looking at table 2-2 is that 

most o f the CSP's considered (80%) were solved at step 0 o f the algorithm ie by just 

using an L P  package . This shows the tightness o f the formulation o f the problem 

(section 2-2) .The LP  package used in our case is the X M P  package of Marsten [112].

The remaining 20 problems which could not be solved by the LP  package were 

tackled by using algorithm A5. The results are shown in table 2-3 .

Comparing the results produced by the Gomory's fractional C-P algorithm with 

those obtained with algorithm A5 we can clearly see from table 2.4 that without the 

addition o f the logical cuts to the CSP we would have been forced to embed the 

algorithm into a tree search.In fact, by adding the logical cuts we have strengthened 

the CSP's formulation and subsequently only few Gomory's cuts were required to 

reach the optimum while for the same set of problems when we have removed the 

logical cuts many more Gomory's cuts were needed and in half o f the cases the 

algorithm was not converging at a ll.

As far as the choice of the source row ( in Gomoiy's algorithm) is concerned we 

have noticed , after trying several possibilities , that the best strategy consists of 

cutting first on the variables (with the highest fractional part in the optimal tableau ) 

which correspond to the linking-arcs; if  all such variables are integer then choose the 

ones corresponding to the task-arcs ; in the last resort, cut on the source and sink - 

arcs' variables . Also because of the limitations in computer storage we have decided 

to set the maximum number of cuts allowed to 20.

4-4 Drawback of the CSP Cutting-Plane Algorithm .

The cutting-plane computing program used to solve the CSP is based on the 

linear programming package o f Marsten. It is reported in [112] that the largest linear
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problems that have been solved with this package had 1500 constraints and 7000 

variables . In our case , a problem of n tasks and K  crews w ill have more than nK  

constraints.If we assume that in graph G  , representative o f CSP , each task-arc is 

linked on average with 7 other task-arcs (which is quite a reasonable assumption) then 

the problem w ill have more than 7nK variables . Thus , for example , a 50 task-20 

crew CSP w ill have more than 1000 constraints and 7000 variables.

Consequently, because o f limitations on the size o f the problem imposed by LP  

packages, this formulation is very restricted. Only small to medium size CSP ’s of up 

to at most 50 tasks can be solved.

5- The Lagrangian Relaxation M ethod .

The branch and bound (B&B) procedure is the most successful and most widely 

used technique in integer programming (IP). Thus , all the commercial general IP 

packages are based on this technique [27,64,102,130] and for most of the packages 

that solve particular IP problems it is still the B & B  procedure which is used .

The most important step in the B & B  method is the determination o f the lower 

bound of the problem ( see [67] for a detailed description of the B & B  method ) . To 

obtain an upper bound to the IP problem (assume it is a minimization problem ) 

heuristic algorithms are usually used . However , for the lower bound several 

techniques [26,37,43,68,70] have been proposed to obtain good lower bounds to the 

problem. Among these techniques one o f the most efficient and most successful is the 

Lagrangian relaxation.

5-1 A  C S P  Form ulation Suitable for the Lagrangian Relaxation .

The CSP is formulated as an unconstrained CSP plus additional constraints
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which express the fact that all optimal paths o f network G  (ie the network 

representative o f the C S P ) must be o f length T  or smaller, where T  is the work duty 

period.

The formulation is as follow s:

If in network G  we let

Xjj = 1 if  arc (p t̂Xj) is in the optimal solution;

= 0 otherwise; 

then, the CSP becomes:

min X  cij xij (2-18)
(Pj.Oj) 6 N

subject to :

+
- Y  * .JL,d pi II

for i= l,...,n  
for i=S 
for i=R

(2-19)

JeVi pe V‘ r i

Xjj must form K  paths of length less than or equal to T .

Xjje{ 0,1 }
where Cjj,N,V'j7Vj",K and n are as defined in section 2.3 (chapter 1).

(2-20)

(2 - 21)

5-2 Expressing the Time Constraints as Linear Constraints .Algorithm 

A6.

C learly , the problem which consists o f (2-18),(2-19) and (2-21) is a minimum 

cost network flow problem .In this section we w ill consider the best way of 

expressing constraints (2-20) that we w ill call "time-constraints'.
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5-2.1 Exam ple .

Consider the 7 task-3 crews CSP represented by network G  of figure 2.7. We 

assume the work duty period to be 400 minutes .

Figure 2-7 : Network G

P SO_____ ISO 250 350 450 5gO 6g0 7SO 850

07

Dropping the time constraints from the CSP and solving the remaining problem as a 

minimum cost network flow problem we obtain the optimal solution Xg which consists 

of the following paths :

Pl=  (Ps*oti)(a i»Pi)(Pi»a2)(a2»P2^^2,a3^a 3»P3^3,a5̂  â5*P5̂  (P5»a 6^a 6’P6^P6’a R̂  

P2= (Ps,a4)(a4,p4)(p4,aR)

P 3= (Ps>tt7)(G7»P7)(P7f0tR)

The cost of Xq is 340 .
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Clearly this solution is not feasible for the CSP since the length o f path Pj (ie 

750minutes) exceeds the work duty period (ie 400 minutes).Consequently we need to 

add time constraints to the relaxed problem so as to eliminate x0 . In fact, all we need 

to add is just one constraint that w ill prevent the formation of path Pj in the optimal 

solution . Paths P2 and P3 do not violate the time restriction .

A t first we wanted to express the time constraint as follows : 

100x12+50x12+140x23+10x23+100x35+30x35+120x56+50x56+150x6R < 400 

ie 150x12+150x23+130x35+170x56+150x6R < 400 (2-22)

This is the way we expressed the time constraints in section 2.5.Unfortunately it is not 

correct to express the time constraints in this way because by doing so we eliminate the 

following feasible solution Xj of the C S P :

Xj consists of the following paths :

p l= (Ps>al)(a l>Pl)(Pl-a 2)(a 2>P2)(P2-a 3)(a 3-P3)(P3’a R) 

p2= (Ps’a 5) («5>P5) (P5,a 6)(«6>P6)(P6'a R) 

^3= (PS>a 4)(a 4’P4)(Ps’a 7)(a 7’P7)(P7>a R)
C learly , Xj is a feasible solution for the CSP of figure 2.7 because each one of 

Pj,P2 and P3 has length less than or equal to 400 minutes and they cover all task-arcs 

o f G. Now to see that Xj is cut o ff by constraint (2-22) we just need to check that 

(2-22) is violated for X j .

Indeed in Xj we have :

x12=1 ’ x23=1 ’ x35=^ ; x56=1 ’ X6R=1 
Hence the left-hand side of (2-22) becomes

150x1 + 150x1 + 130x0 + 170x1 + 150x1 =620>400  

Therefore, we cannot express the time constraints as in constraint (2-22).

Now, let us consider path P j . Knowing that each xy = 0 or 1 , P j is well 

defined by the following constraint:

x12+x23+x35+x56 = 4 (2 ' 23)

If we want to eliminate the formation of Pj in the optimal solution we need to add the
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following constraint to the relaxed problem of the C S P :

x 12+x23+x35+x56 — h O 24)
where h is a constant to be determined . If we set h=l we w ill eliminate a feasible

solution that has task-arcs (a ^ P j) and (a2,p2 ) in one path and task-arcs (a5,p5 ) 

and (cc6,P6 ) in another path .Hence h=l is not possible .Similarly if  we set h=2 we 

w ill eliminate solution Xj defined above .Indeed , in Xj we have the left-handside of

(2-24) equal to x i2+x23+x35+x56 = 1+1+0+1 = 3

Finally , the time constraint that prevents the formation o f Pj in the optimal 

solution is

x 12+x23+x35+x56 ̂  3 (2‘ 25)
In fact one can do better. By remarking that task-arcs (a ^ P j), (a2,p2 ) and (c^ Pj)

form a maximal path P4, in that any task-arc added to P4 w ill violate the time 

restriction, we can write the time constraint as

x 12+x23+x35 < 2 (2-26)

and by remarking that task-arcs (a5,p5 ) and (a6,p6 ) form a maximal path we can 

write the time constraint:

x35+x56^ 1 (2-21)

Hence constraints (2-26) and (2-27) express the time constraints that prevent the 

formation o f path Pj in the optimal solution o f the CSP o f figure 2.7 .Constraints 

(2-26) and (2-27) are together stronger than constraint (2-25). Thus path P5 is 

eliminated by constraint (2-26) but is not eliminated by constraint (2-25), where P5 is 

P5= (ps,a 1)(a1 ,pI)(P1,a 2)(o2)p2)(P2,a 3)(a3)p3 )(P3,a 5)(a5,p5 ) (p5>a R)

5-2.2 Algorithm A6 .

Given a path P of length greater than the work duty period , the following 

algorithm expresses the time constraints relatively to P.
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We said previously that any path P= (o ,̂ph) (Ph’a R)

of G  is well defined by its set of linking-arcs A= { (R.0O,..., (P„,cxJ }
N * hk A

Hence if  we are given A  we can easily form P . In the algorithm when we say " a path 

formed by the arcs of A  " we mean the path whose linking-arcs are the arcs of A  .

Step 0 : Let be the linking-arcs of P ; set i= l and A  ={ hj }

G O TO  STEP 1;

Step 1 : i= i+ l; A= A  U {hj} ;If the path formed by the arcs of A  has length greater 

than T , G O TO  STEP 2 ; Else G O TO  STEP 3 

Step 2 : Add the following time constraint to the CSP

^ X j . < | A | - l  (IAI = cardinality of A) (2-28)
(P.,a)eA

Set A  = { h j }; G O TO  STEP 3 

Step 3 : If i = k STOP ; Else G O TO  STEP 1 .

Algorithm A 6 runs in time O(n) where n is the number o f linking-arcs of path P.

5-3 A  B rie f Description o f Lagrangian Relaxation .

W e saw in the previous section that given a path P whose length exceeds the 

work duty period the corresponding time constraint is of the form :

y. x. < hlj(P.,a)eA(p)

where h is a suitable constant and A(P) is the set of linking-arcs of P.

The extra constraints which express the restriction on the maximum length of 

optimal paths ( o f G  ) cannot all be added to the CSP at the same time because then- 

number increases exponentially with the size of the CSP ( ie number o f tasks ) . 

Consequently, they are added when necessary and relaxed in a Lagrangian w ay.
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A t this point it is worthwhile explaining the main idea of the Lagrangian 

relaxation technique . For more details the interested reader is refered to 

[61,71,74,135].

Let us assume that a set o f r time constraints have been determined. Instead of 

solving the CSP directly the Lagrangian relaxation consists o f solving the following 

easier problem (pu):

r

V  X  V h)
(^.ol) € N  fc=l ( P L , a ) G A ^

(2-29)

subject to : (2-19) and (2-21)

where Pk is the path corresponding to the kth (k=l,...,r) time constraint and A( Pk ) is 

its set of linking-arcs .
>.0

Clearly , given ulfU2*<"»uk this problem is a minimum cost network flow  

problem which can easily be solved . Also one can easily prove that the optimum of 

(Pu) (say Z u) is a lower bound to the optimum of the CSP (say Z) ie Z u < Z  . 

Depending on the values of the Lagrange multipliers U j,^ ,...,^  the value of this 

lower bound Z u is different. Since the main aim o f the Lagrangian relaxation is to 

determine a good lower bound to the CSP to be embedded in a branch and bound 

scheme the problem becomes one of solving:

max z = max minu Q U X y  c.. x.. +
lj lj(p.,a)€N XvX

w  (Pra)eA(p£

(2-30)

subject to (2-19) and (2-21)

There are several methods for solving this problem [l,18,19,69,121].However, the 

most widely used is subgradient optimization [48,86]. This is due to the fact that it is 

very simple to program and that it has performed well for most IP problems solved by 

Lagrangian relaxation [11,73,136].
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Starting with an initial value U® = (u° ...,uj) ,the subgradient optimization 

method consists of generating a series o f Lagrange multiplier vectors {Uk+1} defined

by uk+1 = uk + ^ (2 ^  x*.-h) m = l,...,r (2-59)

where is the optimal solution of problem (^k) and ^ is given b y :

*k =
U z - Z j )

X " X xij - h^
m=l

(2-60)

in which
]|t

Z  is a feasible solution to CSP.lt can be found by a heuristic; 

is the optimum °f<5>

IIAI12 is the Euclidean norm of A ;

and X is a parameter which is initially set to 2 and is halved if  after

a given number of iterations there is no increase in the 

optimal value of ( P^).

5-4 Generating the T im e Constraints .A lgorithm  A7.

In the previous section we have made the assumption that a set o f r time 

constraints (which is a small subset o f the large set of all time constraints ) has been 

determined. The following is an algorithm which describes the dynamic way in which 

the time constraints are generated.

A lgorithm  A7.

Step 0 : Set C  = 0 a n d i= O . G O T O  STEP  1 .

Step 1 : Solve the CSP without considering the time constraints (this is a minimum 

cost network flow problem ) . If all paths o f the solution have length T  (ie the work 

duty period) or less S T O P : the solution is optimal for the C S P ; Else add all the paths 

with length greater than T  to C . G O TO  STEP 2.
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Step 2 : i= i+ l ; I f i> 5  S T O P ; Else express all the paths in C  as time constraints 

(using algorithm A 6) , add them to the current problem and relax them in a Lagrangian 

way .G O TO  STEP 3 .

Step 3 : Perform 20 subgradient iterations on the relaxed problem. A t each iteration 

add all the paths ,that violate the work duty period, to C . G O TO  STEP 2.

6- Com putational Results for the Lagrangian Relaxation .

A  total of 60 CSP's (see table 2.5) were randomly generated according to the 

data generation process described in section 4 .

As far as the parameters of the subgradient optimization are concerned the initial 

values o f the Lagrange multipliers were set to zero ; after few tests on some problems 

we have noticed that the most suitable value for the step size was 4 . Also , the value 

of the upper bound was set initially to infinity and whenever a feasible solution was 

found in the course of algorithm A7 the upper bound was updated.

A ll problems were considered in 3 groups as follows :

G ro u p l . Twenty CSP's were randomly chosen from the 81 problems generated in 

section 4 for which the optimal solution was found after using just an LP  package. As 

it can be seen from table 2-5, except for 5 problems, the quality o f the lower bound is 

quite good. Furthermore, when compared with the results of table 2-2 we can see that 

less computing time than for the linear relaxation was necessary to obtain these 

bounds. One should not forget that none o f the problems considered were solved to 

optimality by the Lagrangian relaxation and to achieve this we need to embed the 

technique in a tree search which means that more computing time w ill be required. 

G roup 2 . The 20 CSP's of section 4 for which the addition o f the cutting-planes 

was necessary to obtain the optimum were then tested . Clearly , the quality of the 

lower bound obtained with the Lagrangian relaxation (table2-5) for this set of
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problems was in general poor.Thus for some problems the bound was more than 20% 

away from the optimum. Hence,if we wanted for this specific problem to embed this 

bound in a tree search procedure we would have to explore thousands o f nodes before 

we could find the optimal solution.

G roup 3 : In an attempt to solve larger CSP's , twenty problems o f size varying 

between 35 and 55 tasks were then randomly generated . In 70% o f the cases the 

Lagrangian relaxation could produce lower bounds in the range of 96%-100% which 

represent good quality bounds to be embedded into a tree search procedure. However, 

for the 6 other problems the quality of the bound was not that good. Thus for the 35 

tasks problem it dropped to 78% which is basically a very poor bound. For this group 

of problems the optimal solution was found by the algorithm described in chapter 3 .
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Chapter 2

Group 1

Table 2-5 : Computational Results for
Lagrangian Relaxation

Problem
Number

of
Tasks

Value of 
Optimal 
Solution

Value of 
Lower 
Bound

Gap
[%]

1 5 18 17.15 4.7
2 11 72 68.98 4.2
3 12 70 67.97 2.9
4 13 68 66.71 1.9
5 14 89 87.13 2.1
6 14 72 71.21 1.1
7 14 78 78 ** 0.
8 15 71 68.09 4.1
9 16 108 105.95 1.9
10 17 95 92.63 2.5
11 18 90 87.84 2.4
12 19 117 115.25 1.5
13 21 126 124.99 0.8
14 21 140 140 ** 0.
15 22 135 128.93 4.5
16 23 126 126 ** 0.
17 24 136 129.20 5.0
18 26 153 148.41 3.0
19 28 160 159.84 0.1
20 29 168 163.63 2.6

* Seconds of CYBER 855 (Fortran Compiler) 
** Non-Optimal Solution
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Group 2

Table 2-5 : Computational Results for
Lagrangian Relaxation

Problem
Number

of
Tasks

Value of 
Optimal 
Solution

Value of 
Lower 
Bound

Gap
[%]

Time*

1 10 59 48.31 18.1 0.350
2 15 56 50.37 10.1 0.481
3 15 81 67.95 16.1 0.507
4 15 96 89.43 6.8 0.434
5 16 99 79.38 19.8 0.629
6 16 90 77.20 14.2 0.626
7 16 113 103.62 8.3 0.559
8 16 88 67.68 23.0 0.538
9 18 88 85.10 3.3 0.644
10 20 112 108.53 3.1 0.769
11 20 96 86.20 10.2 0.817
12 20 127 98.10 22.8 0.985
13 23 120 108.93 9.2 1.264
14 25 120 91.09 24.1 1.255
15 25 128 112.21 12.3 1.308
16 25 162 144.33 10.9 1.370
17 25 126 107.71 14.5 0.939
18 25 151 138.79 8.1 1.408
19 30 168 158.57 5.6 1.942
20 30 171 145.39 14.9 1.952

* Seconds of CYBER 855 (Fortran Compiler)
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Group 3

Table 2-5 : Computational Results for
Lagrangian Relaxation

Problem
Number

of
Tasks

Value of 
Optimal 

Solution
Value of 
Lower 
Bound

Gap
C%3

Time*

1 35 207 201.20 2.8 2.262
2 35 200 196.20 1.9 2.783
3 35 216 214.71 0.6 2.646
4 35 225 175.50 22.0 2.097
5 40 252 232.59 7.7 3.645
6 40 208 195.32 6.1 3.673
7 40 234 227.45 2.8 3.885
8 40 243 240.08 1.2 3.179
9 45 279 263.37 5.6 4.611
10 45 248 240.81 2.9 3.560
11 45 256 252.16 1.5 4.518
12 45 279 272.30 2.4 4.274
13 50 297 294.32 0.9 5.032
14 50 315 309.65 1.7 4.748
15 50 264 264 ** 0 . 5.230
16 50 301 255.35 15.2 5.901
17 55 304 304 ** 0 . 5.975
18 55 351 348.89 0.6 6.270
19 55 296 271.43 8.3 6.730
20 55 322 314.92 2.2 6.127

* Seconds of CYBER 855 (Fortran Compiler) 
** Non-Integer Solution
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7- Conclusion .

The formulation of the CSP presented in section 2-2 has proved to be so tight 

that 80% of the 101 CSP's randomly generated were exactly solved by the use of just 

an LP  package. A lso the CSP cutting-plane algorithm which is based on logical and 

Gomory's cutting-planes has proved to be quite useful in  solving the remaining 

problems.

How ever, because of the very large size o f the formulation and because of the 

limitations imposed by LP  packages (on which the cutting-plane program is based ) 

only CSP's of up to 30 tasks have been solved . In order to solve larger problems 

Lagrangian relaxation was investigated on another formulation . In its original form 

this formulation consists only of a B CSP  .The time constraints are dynamically 

generated in the course of the Lagrangian relaxation algorithm. As they are generated, 

they are added to the problem and subsequently relaxed in a Lagrangian fashion .

In addition to being able to tackle CSP's o f size up to 55 tasks , the Lagrangian 

relaxation technique has proved in some cases to be an efficient tool for obtaining good 

lower bounds . Thus we can say that in 60% of the cases tried the quality of the bound 

was quite satisfactory . However for some cases it can be as bad as 20% away from 

the optimum. Thus in 40% of the CSP's tested we found the Lagrangian relaxation to 

be poor.

In summary , the CSP cutting-planes algorithm based on an efficient 

formulation o f the CSP has proved to be much better than the Lagrangian relaxation . 

It would have been worth further investigation had it not been for the fact that the 

procedure o f the next chapter proved to be a vastly superior method for all CSP test 

problems.
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C H A P T E R  3

A  F O R M U L A T IO N  O F  T H E  C S P  B A S E D  

O N  G R A P H  T H E O R E T I C A L  C O N C E P T S

1- IN T R O D U C T IO N  .

W e saw in the previous chapter why the direct formulation o f the CSP was 

inadequate for large problems (more than 50 tasks). In an attempt to overcome this 

drawback a new formulation o f the CSP  w ill be given in this chapter . Like the 

previous one it is a network flow based formulation . The network G  on which this 

formulation is based is an expansion o f the network G  of a CSP ( see section 3).

In G  , all the paths have length equal to the working duty period or less . 

Consequently , the time constraints w ill not be considered in the formulation which 

consists of flow constraints and additional partitioning type constraints.

In section 2 , an example w ill be given which explains the main idea of
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converting network G  representative o f a CSP into network G  and the possible 

reduction o f G  into a smaller network G  . The general algorithm of expanding any 

network G  , representing a CSP , into a network G  and the reduction o f G  into G  w ill 

be described in detail in section 3 . Section 4 deals with the formulation o f the 

problem. The problem is solved by using just a linear programming package . In 

section 5 we study the worst case analysis o f the size o f network G  on which the 

formulation is based . Very good results for 270 randomly generated CSP's are , 

presented in section 6 . Two straightforward extensions o f the problem are 

considered in section 7 . The good results obtained for the 270 CSP's led us to ask 

ourselves about the possible integrality o f the extreme points of the convex polytope of 

the CSP .This is discussed in section 8 .

2- Exam ple H lustrating the M ain  Idea o f the Form ulation .

Consider network G  , o f figure 3-1 ,which represents a 4 task-CSP . For each 

task i (i=l,...,4) of the C S P , le t :

P(i) = set of all paths of G  that have arc ( a ^ )  as the first task-arc.

For example, corresponding to the second task of the CSP represented by G  we have: 

P(2) ={(PS, a2)(a2,p2)(p2- a3)(a3,p3)(p3> aR))u{(Ps, a2)(a2>p2)(p2, aR)} 

u { (Ps, a2)(a2,p2)(p2, a4)(a4,p4)(P4, aR) }

Now , if  we consider task-arc it *s clear that it can belong either to a

path o f P(l) or to a path of P(2) . Hence we can represent task 2 by 2 directed 

task-arcs (c^ ,^ )an£* having the same starting and finishing times as
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Figure 3-1 : Network G  Representing a 4 Task-CSP.
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Figure 3-2 : Network G
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(a^p^. I f »in the optimal solution arc (a^,p2) is chosen this w ill mean that task 2 

w ill be covered by the same crew that starts from task 1 . Similarly , if  arc (a^P^) is 

picked up then this means that one of the crews w ill start its route by covering task 2 . 

In the rest o f this section , we w ill express this fact by saying that arc (oĉ P )̂ (resp. 

(a2,P2) ) represents task 2 in P(l) (resp. P(2)) . Repeating the same procedure of 

representing by task-arcs each task in the possible P(i)' s , and joining all the task-arcs 

corresponding to the same P(i) ,(i=l,...,4) , we get network G  o f figure 3-2. 

Furthermore this new network G  can be reduced in size . Thus , it can easily be seen 

that task-arcs (a4,p4), (a4,p4) and (a4,pj) can be coalesced. This is because they all 

have the same end , ie they all have no succeeding task-arc . For the same reason , 

task-arcs (03 ,p3) and (013^ 3) can also be coalesced . But (a^P^ and (02 ,P2) cannot 

be coalesced because they do not have the same end : arc (a2,P2) is linked with 

(a4,P4) and (03^ 3) , whereas (a^p^ has no link at all with the arcs that represent 

task 3 (ie (oc^p*) and (a^p^)).

The network G  obtained by coalescing (a4,P4), (a4,p4) and (a4,p4) together 

and by coalescing (a^p*) and (0(3^ 3) together is given in figure 3-3.

Figure 3-3 : Network G.

O 100 200 300 400 590 600

Fina lly , before going on to the next section, it is worthwhile noting that:

(i) Networks G ,G  and G  are all alike in that they have the same structure , ie they all
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have task-arcs, linking-arcs and source (sink)-arcs;

(ii) To each task i o f the C S P , there corresponds a unique task-arc ( a ^ )  in G  and a

set of task-arcs (aj,p{), ( a ? ( o £ p £ )  in G  (or G) which represents task i in 

the possible P(k)'s ,k=l,...,p ;

(iii) For each task i of the C S P , the source ps o f network G  (or G) is linked with the 

task-arc (ps, a}) that represents i in P(i). This is because all the other task-arcs that 

represent i in the other P(j)'s have to belong to paths starting with previous task 

arcs. Consequently , there is no need to consider the source arcs that link them 

with the source. However, the sink a R is linked with all the task-arcs o f G(and

G ) ;

(iv) It is clear that in each set of task-arcs of G  (or G) one and only one arc must be 

covered;

(v) The length of any path of G  is less than or equal to the work duty period since 

only the task-arcs corresponding to the same P(i) have been linked together.

3- The G raph  Expansion A lgorithm  A 8.

Let us assume that the tasks are ordered and renumbered in ascending order of 

their starting time x®.

Let P (k) be the family o f all paths o f network G  from the source ps to the sink 

a R whose first task-arc corresponds to task k . Consider a task-arc ( a ^ )  in G  . 

C learly , arc (a^pj) must belong to one o f the paths Pk ,k= l,...,i so that
F V STk^T and FTk+A(FLkiSL^STi (3-1)

Let us denote the set of those k which satisfy the above condition for a given i by Q j. 

Step 1 : Task-arcs

Each task i corresponds to a set o f IQjl arcs (ajlp?), p e Qj . The pth copy o f this 

arc,ie ( a ? $  , is a representation o f (oci,pi) in the family P(p) . The cost and time 

duration o f arcs (a£p£), p e Q i are the same as those for arc (a^pj) in G  , and their
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totality (for i=l,...,m) is referred to as the task-set o f G .

Step 2 : Linking,source and sink-arcs .

(i) From a 'super-source’ vertex p s add the source-arcs (Ps,a|) for i= l,...,m  

(corresponding to arcs (p^cq) in G );

(ii) To a 'super-sink' vertex a R add the sink-arcs (Pj,aR) for i= l,...,m , and p e Q i? 

(corresponding to arcs (pj,aR) in G ) ;

(iii) Add linking-arcs (Pj^oy k e Q j ; for i= l,...,m , p e Q i ^corresponding to the 

linking-arcs (pĵ oq) o f G  ).

The cost and time duration o f all these arcs are the same as for their corresponding arcs 

in G .

Step 3 : Reduction Process .

Graph G  above can be reduced in size somewhat by some very simple equivalence 

conditions , to produce a new graph that we w ill call G  . In particular, consider a
P p *** ~

task i and all the arcs (oq,pp ,p e Qj which represent i in G . Let V j be the set of

terminal vertices o f arcs which emanate from vertex p jo f graph G . Let W [be the set 

of task-arcs corresponding to the linking-arcs of G  whose initial vertices are in V j . We 

assume a dummy task-arc (say (n+1 )) corresponding to the case where a R (ie the sink
/s/ ^

of G) belongs to V.*.If W f is the same set for all p e S c  Q. then any path p e S which 
p  V

"covers” task i w ill have the same 'future' (ie w ill follow the same subpath to ocR) 

regardless o f its 'past' (ie the subpath followed to reached task i). Thus , the arcs 

(aj!pJ)forpe S can be coalesced into a single arc (Gyp*) so that every arc emanating

from p f in G  now emanates from pj and every arc terminating at a f  in G  now 

terminates at of. G  is the graph with all such arcs coalesced and Q: the equivalents
J L  a p

The above algorithm which transforms G  into G  clearly produces a graph G  in 

which all paths are time feasible . Indeed, the penalty paid for ensuring this path 

feasibility is firstly that the graph is enlarged , and secondly that we must now add 

"set-partitioning" type constraints to express the fact that for a given task i , only one
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of the arcs in the set represented by Q i needs to be "covered" by the ps to a R paths in 

G .

4- The Problem  Form ulation .

ri
Let y .. = *{

Vq [0
if  non-required arc (P?, a?) e N  of (j 
is in the solution 1 J 
otherwise

The problem now becomes:

Minim ize /  c..y. . 

subject to :

f 0 , i= l,...,m  ; p e q\ 1 I v * A— j

Z  y  -u  -  X  yj i H  K - i=s • p=1_ P*q _ V p [-K , i=R , p=l
j eV.+ j eV. Jq i Q ip q

X X yj i =
peqjevr qp 

p

i= l,...,m

^ . e {0,1 } ,V (pF,a .q) e N  
p'q

(3-2)

(3-3)

(3-4)

(3-5)

Constraints (3-3) above are the flow conservation constraints and constraints 

(3-4) are set-partitioning type constraints expressing the fact that each task must be 

performed exactly once.
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5 - W orst Case Analysis o f the Size of network G  .

If in the CSP there are m tasks , the maximum number o f task-arcs in the 

expanded graph G  is m(m+l)/2 which leads to m(m+l) + 2 vertices . This condition 

occurs when all task are disjoint in time and T  ( the shift tim e) is very large. If ,as in 

all real problems , the shift time allows a maximum of k tasks to be performed by a 

single crew-schedule then the maximum number o f task-arcs in G  is k m . Under these 

conditions, the maximum number of non-required arcs terminating at the initial vertex 

o f a task-arc is also k ; so that the maximum number o f linking-arcs in G  is k2m . 

Therefore, the formulation defined by (3-2)-(3-5) contains at most k^m variables and 

(k+l)m + 2 constraints . Thus , for any real-world CSP the problem in formulation 

(3-2)-(3-5) is o f very much smaller size than the problem in formulation (2-l)-(2-4), 

and well within the capabilities of existing LP  codes.

6- Com putational Results .

Use o f linear programming to obtain bounds from the formulation presented in 

the previous section led to computational experience (see table 3-1) whereby in all 270 

test problems generated and solved , the LP  solution was integer in all cases , and 

hence no tree-search was necessary.

A ll problems were randomly generated in 4 groups as follow s:

G roup 1 : CSP ’s varied in size from 10 to 30 tasks , and a total of 100 problems 

were generated . For each problem the duty period was taken to be T =6 hours , and 

each task had a random starting time in the range 00.00 to 24.00 hours and a duration 

that varied randomly from 45 minutes to 2 hours 30 minutes. The cost coefficient cy 

of the linking-arcs were generated according to the formula:

Cy = (1 + a) djj

where dy is the duration (in minutes) from the end of task i to the beginning of task j ,
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and a  is a randomly generated constant in the range 0 to 1 . In all problems , the 

number of crews M  assumed was the minimum number M * feasible for the CSP . A  

uniform distribution was used to generate all random numbers.

G roup 2 : CSP's varied in size from 40 to 80 tasks , all other details as for group 1. 

A  total of 60 problems were generated.

G roup 3 : CSP's varied in size from 35 to 150 tasks with a duty period o f T= 6 

hours, but with no two tasks overlapping in tim e. The same randomly generated task 

duration as in group 1 was used but with an unlimited (instead o f 24 hours) planning 

horizon. A  total of 60 problems were generated.

G roup 4 : CSP's generated from the same 25 task-problem by varying the cost 

coefficients thus producing 50 test problems.

From table3-l it is seen that CSP's o f quite practical size ( about 100 or so 

tasks) can be solved optimally by the algorithm based on the formulation o f section 4 . 

As a means o f comparison , it is worthwhile to note here that problems in groups 2 

and 3 were too large to be solved by the formulation ( and algorithm) of the previous 

chapter.

Rem ark 1 : F in d in g  the m inim um  num ber o f crews , o f the C S P  , 

required to cover all tasks .

W e have already mentioned in section 2-3 (chapter2) that the problem o f finding 

the minimum number o f crews (M NC) required to cover all tasks of the CSP is an 

NP-complete problem .The current formulation o f the CSP (section 4) can be used for 

this purpose. The idea is based on the fact that if  a number m of crews is used which 

is less than M N C  then solving the formulation o f the CSP with any LP  package w ill 

lead to an infeasibility of the problem.

The method we have adopted to determine the M N C  of all the 270 CSP's of 

table 3-1 was as follow s:

(i) Use the greedy algorithm of section 2-4 (chapter 2) to determine a heuristic 

value o f the M N C  .Let m  ̂be this value;
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(ii) B y setting M N C  = m ,̂ m^-l, mg-2,... we solve with the LP  package the 

corresponding CSP's . Whenever an infeasibility is found then we know that 

M N C= ihq + 1 where m  ̂ is the number of crews of the "infeasible" C S P .

It is worthwhile to mention that in more than 80% of the cases the M N C  was 

obtained directly by the heuristic algorithm and for all the remaining problems the 

difference between the M N C  and its heuristic value never exceeds 2 .

Remark 2 : An attempt to generate a CSP with a non-integer 

LP-solution.

If we can prove that all the extreme points o f the linear polytope ( say P ) o f the 

C S P , as formulated in section 4 , are integer then we can say that the CSP can always 

be solved with an LP  package. To prove this is not an easy task. This is discussed in 

more details in section 8 .

Now , to prove that the CSP cannot always be solved with an LP  package it 

suffices to produce a single problem for which the optimal solution o f its linear 

relaxation is not integer. Problems o f group 4 (see table 3-1) have been generated with 

this purpose in m ind. A ll these problems were generated from the same 25 task-CSP 

by varying the cost coefficients. This means that they all have the same polytope (say 

P25) but have different objective functions. The optimal solution of each one of them 

correspond to a different extreme point of the polytope.

In doing so , we have tried to find a non-integer extreme point o f the polytope 

P25 . But it was in va in . Although we can say that the 50 extreme points (of P25) we 

have considered are all integer this does not mean that there does not exist a 

non-integer extreme point o f P25. Simply because the number o f these extreme points 

runs into thousands and to be able to claim this we have to keep varying the cost 

coefficients till all the extreme points of P25 are tested . Clearly , this is practically 

impossible. In these circumstances we think that some effort should be made in trying 

to prove that the CSP can always be solved with an LP  package. This is discussed in 

section 8 .



Tabla 3-1 t Computational Parforaanca of tha Graph Expansion Algorithm.
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Nuabar
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Tasks
Nuabar
of

Problaas
8isa of tha LP Problaa 

[rovsxcolumns} 
minimum avaraga maximum

Sisa of Expandad Graph 
[Task-Arcs]

ainiaua avaraga aaxiaua
Tima*

Expansion Tima LP Solution Tima 
ainiaua avaraga maximum minimum avaraga maximum

10-14 20 25x 59 3 OX 75 38x 94 15 18 24 0.1 0.2 0.2 0.2 0.4 0.6

15-1# 20 4 lx 98 49X 132 57x 151 26 31 38 0.2 0.3 0.3 0.8 1.0 1.3

Group 1 20-24 20 59x 151 62x 171 66x 190 39 40 42 0.3 0.4 0.4 1.0 1.2 1.6
*

25-29 20 77X 239 S3X 263 9lx 298 52 57 62 0.5 0.5 0.6 2.1 2.5 2.9

30 20 S8X 283 9IX 298 92x 321 58 61 62 0.5 0.6 0.6 2.1 2.9 3.2

40 20 129X 494 132X 509 153x 632 89 92 113 0.8 0.9 0.9 4.5 6.5 8.4

Group a CO 20 21IX 732 222X 864 262X 984 151 162 202 1.0 1.7 2.3 15.6 17.4 19.2

80 20 385x2018 386X2179 390x2239 305 306 310 4.1 4.2 5.1 29.6 34.7 37.8

35 10 112X 319 12IX 323 128X 338 77 86 93 0.6 0.6 0.6 4.8 5.3 5.4

Group 3 50 20 1S0X 473 1S5X 482 192X 487 130 135 142 0.9 1.0 1.1 8.9 10.2 9.3

70 20 314x1810 317X1821 332X1997 239 242 257 2.4 3.1 3.4 20.7 23.4 30.1

150 10 722x6048 726X6119 737X6280 572 576 587 10.7 11.6 12.9 200.3 210.2 218.5

Group 4 25 50 77x 239 79x 242 80x 260 52 54 55 0.5 0.5 0.5 2.1 2.2 2.2

* Saconda of CYBER BSS (Fortran Coapilar)
VO
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7- Extensions of the CSP .

Two straightforward extensions o f the crew shceduling problem are considered 

in this section . Each extension corresponds to a more realistic version of the CSP . It 

basically consists o f the CSP plus one or two additional constraints . The graph 

expansion technique was modified and applied to each problem accordingly.

Like the CSP , a linear programming package was sufficient to solve all the 

randomly generated problems.

Without loss o f generality , we w ill assume that the CSP is an airline crew 

scheduling problem . Also we w ill suppose that each crew is associated with a single 

plane and vice versa. Hence the terms 'crew' and 'plane' w ill be used interchangably.

7-1 The Airline Crew Scheduling Problem with Rest Periods .

7-1.1 Introduction .

In the airline crew scheduling problem (ACSP) the planning period was 

assumed to be one day o f 24 hours . This is indeed the case for most airline 

companies. However for some companies (the largest ones) a weekly planning period 

is much more desirable . This is because of the type of flights they cover . One such 

type consists o f the intercontinental flights which can take up to 15 hours and can start 

at any time of the day (8.00am,4.00pm,3.00am,...etc...) . Consequently , the union 

regulations require that each crew who cover such type of flights should have a rest of 

at least a given number of hours (say 12 ) between any two consecutive trips.

The new airline crew scheduling problem ACSP1 is :

"minimize the cost of constructing crew pairings such that:

(a) each flight must be covered once by one and only one crew (the number of 

flights N  and crews K  are known);

(b) the planning period is one week of 7 days;
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(c) the flying duty period T 0 ,ie the maximum period o f time during which a 

crew operate without stop , is fixed and the same for all crews;

(d) the crew rest period (CRP) between any two consecutive trips must be 

greater than a time T j and smaller than T 2 (of course T 2 > T j ) "

A  crew pairing consists o f a set o f trips separated by crew rest periods. A  trip is

# in turn made up of a set o f flight-legs covered by a crew without interruption.

Using the graph expansion algorithm A 8 o f section 3 , we first expand the 

network G  representative o f an A C S P  into a network G  in which all paths satisfy 

condition (c) above. Then, network G  is in its turn modified into network G  in which 

all paths satisfy (a),(b) and (d).

An example explaining this modification is given in section 7-1.2 . Then the 

general algorithm A9 for converting network G  into G  is described in section 7-1.3 . 

Based on G  , a minimum cost network flow problem formulation plus additional 

partitioning type constraints has been devised .One hundred seventy randomly 

generated problems of size varying between 5 and 50 flights have been solved using 

just an LP  package. The results are presented in section 7-3.

7-1.2 Exam ple .Consider the ACSP1 represented by network G  o f figure 3-4 . In 

fact this is just a subgraph o f the whole graph G  . In reality , G  contains many more 

flight-arcs since the planning period is supposed to be one week . In figure 3-4 only 

the first 10 flight-arcs have been represented. This will be enough to explain the main

• idea o f algorithm A9 . Although the network o f figure 3-4 is just a subgraph of G , in

what follows we w ill refer to it as G .

The flying duty period T 0 is assumed to be 600 minutes , the minimum and 

maximum crew rest periods (CRP) are respectively equal to T 1=700 minutes and 

T 2=1000 minutes .Using algorithm A 8 o f section 3 , we obtain network G  of figure

3-5 . For the purposes o f clarity the linking-arcs and sink-arcs o f G  have not been 

represented.
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If in G  we assume that a trip consists only o f flight-arc (a j,p j)  , a crew 

covering this trip w ill need a rest o f minimum CRP of 700 minutes and maximum 

CR P  of 1000 minutes . Hence the next trip covered by this crew w ill have either 

(cc^Py) or (a|,p|) as first flight-arc . This is because the difference dj (resp. d2) 

between the starting time of (<Xy,P̂ ) (resp. (cx|,p|)) and the finishing time of (a^pj) 

is such that T 1<d1<T2(resP* T 1<d2<T2). W e express this fact by joining arc (a^pj) 

with both (oty.pj)  and (a|,p|). These arcs w ill be called "rest-arcs" and costs w ill 

be attached to them since they have the same function as the linking-arcs.
/ V  a.

Applying the same reasoning to all flight-arcs o f G  we get network G  which is 

represented in figure 3-6 . It is exactly the same as network G  except that it has 

rest-arcs in addition. For the sake of clarity only the rest-arcs departing from arc 

(aj,p|) have been represented.

7-1.3 A lgorithm  A9.

In this subsection, a detailed description o f the algorithm that converts G  into G  

is given . For each flight f  of the A CSP  we w ill use P(f) to be the set of all paths of G  

that have arc (i,j) (corresponding to f) as first flight-arc . G  is the network 

representative o f an A C S P .

First, algorithm A 8 is applied to network G  to obtain a network G  in which no 

path has length greater than the flying duty period. Subsequently, G  is used as input 

for algorithm A9 which consists of the follow ing:

Step 0 : i = 0 ; G O T O  STEP 1;

Step 1 : i = i + 1 . Consider flight i and set j = i . G O TO  STEP 2 ;

Step 2 : j = j + 1. Consider flight j (j>i) and compute

d = starting time of flight j - finishing time of flight i 

G O TO  STEP 3 ;

Step 3 : If d<Tl or d>T2 G O TO  STEP 4 ;Else link all flight-arcs of G  corresponding

1 1
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to flight i with the flight-arc corresponding to P(j) .G O TO  STEP 4 ;

Step 4 : If all flights j's have been scanned G O TO  STEP 5 ; Else G O TO  STEP 2; 

Step 5 : If all flights i's have been scanned S T O P ; Else G O T O  STEP 1.

The output o f algorithm A9 is network G  and the new arcs generated in step 3 

are called "rest-arcs".

7-2 The M u ltip le  Depot A irlin e  Crew  Scheduling Problem  [35].

7-2.1 Introduction .

In the airline crew scheduling problem (A C S P ), we assumed im plicitly that 

there was one single depot from which all the planes depart and to which they all 

return . Also the costs of bringing a plane from the depot to any flight’s starting place 

and from any flight's ending place to the depot were assumed to be n il.

This section deals with a more practical version of the problem . That is to 

suppose that the airline company has not only one depot but several depots . Also each 

depot has got a known capacity ie it cannot house more than a given number of planes. 

This problem is called the multiple-depot A CSP  (DCSP or ACSP2) and is defined as 

follows:

"minimize the cost o f covering a certain number of flight-legs by a given number of 

planes (or crews) such that:

(a) each crew is assigned to only one plane;

(b) each flight must be covered by one and only one plane;

(c) the planning period is one day of 24 hours;

(d) the flying duty period T q is fixed and the same for all crews;

(e) the company has a given number o f depots (say L ) ;

(f) each plane must return , at the end of its journey , to the same depot from 

which it has departed;
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(g) costs are attached to the operation o f bringing a plane from a depot to a 

flight's starting place or from a flight's finishing place to the depot

The network representative G D of an ACSP2 is exactly the same as the network 

G  representative o f an A CSP  except that in G D we assume L  super-sources and L  

super-sinks (L is the number of depots).Since each flight o f ACSP2 can be covered by 

one and only one plane which comes from one depot, we can represent each flight by 

L  flight-arcs (one for each depot). Linking the flight-arcs corresponding to the same 

depot together in the same manner as in G  we obtain L  different networks, each with a 

source Pg and sink a R corresponding to depot i . A  unique network GDresults by

joining all sources pj,pg... p§ (resp. sinks a^ ,a^ ,...,a^ ) to a super-source ps

(resp. super-sink a R).

An example explaining how to obtain Gj^ from G  is given in section 7-2.2 and 

the general procedure is given in section 7-2.3.Applying algorithm A8 of section 3 to 

each one of the subnetworks of G D we obtain a network G D in which all the above 

conditions of the ACSP2 are satisfied .We conclude this whole section by giving some 

good computational results . Thus , for all the 170 randomly generated problems , the 

optimal integer solution was found in all cases by just using an LP  package . The 

results are presented in section 7-3 .

7-2.2 Exam ple .

Consider the 6 flight - 4 planes ACSP2 represented by network G  of figure 3-7 

in which two depots o f capacity 3 and 2 respectively are given. For the sake o f clarity 

the source and sink-arcs have not been represented.Also let us assume that the flying 

duty period is 500 minutes . Source pg (i=l,2) and sink a^(i=l,2) correspond to 

depot i (i=l,2).

This network is clearly the same as the network representative of an A CSP  

except that we assume 2 sources and 2 sinks .Each flight i (i=l,...,6) can be covered 

by a plane coming either from depot 1 or depot 2 . Hence we can represent each flight i



Chapter 3 101

Figure 3-7 : Network G  .
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Figure 3-8 : Network G D .
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by 2 flight-arcs , one corresponding to depot 1 and the other to depot 2 . If we link 

together all the flight-arcs corresponding to the same depot, and then join them to the 

corresponding source and sink, we obtain 2 similar networks . Finally joining Pg and 

ps (resp, aR and aR) to a super-source (resp. super-sink) we obtain network G D of 

figure 3-8. The following remarks concerning G D can be m ade:

(a) Network G D is made up of 2 subnetworks corresponding respectively to the 

2  depots;

(b) each subnetwork o f G D can be considered as a network representative of 6 

flights ACSP. Consequently algorithm A 8 o f section 3 can be applied separately to 

each subnetwork in order to obtain 2 subnetworks G D and G D in which all paths have 

duration less than or equal to the flying duty period;

(c) costs are attached to each linking-arc, source-arc and sink-arc;

(d) arc( ps,p1s) (resp. ( Ps,pg)) and (aR, a R ) (resp.(aR, a R )) have capacity 3 

(resp.2);

(e) the total input flow (from Ps) is 4 (ie the number o f planes).

7-2.3 A lgorith m  A10.

In this section , we present a procedure for constructing the network G D 

representative of a ACSP2 with n flights , K  planes and L  depots (d j,...^ ) of known 

capacities. As input to the algorithm we have network G  representative o f the ACSP  

which consists of the same flights as the ACSP2 and the same number o f planes.

Step 1 : Construct L  disjoint networks G j,...,Gl  all identical to G  . Network G i 

(1< i < L) corresponds to depot dj and has got source pg and sink aR .G O TO  STEP2 ; 

Step 2 : Join all sources Pg,..., Ps with a super-source Ps and all sinks ocR,..., a R 

with a super-sink a R .G O TO  STEP 3;

Step 3 : Set the capacity of each arc ( Ps , pg) and ( a R, a R ) equal to that of the 

depot d j; set the capacities of all other arcs to 1; G O TO  STEP 4 ;

Step 4 : Attach costs to the source-arcs and sink-arcs o f each network G i (l<i<L).
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Set the input flow equal to the number of planes of the problem.

As output to this algorithm we obtain network G D representative of a ACSP2. 

Since each Gj (i=l,...,L) o f G D is identical to G  if  we apply algorithm A 8 to each one 

of them we obtain a network G D made up o f L  networks G l 5...,GL  all identical to G  

in which all paths have duration smaller than or equal to the flying duty period. Each 

flight of the ACSP2 has in each G j (i= l,...,L) several corresponding flight-arcs . 

Hence out o f all the flight-arcs of G D corresponding to that flight only one w ill be in 

the optimal solution.

7-3 Com putational Results for the Tw o C S P 's  Extensions .

For each extension o f the CSP (table 3-3) a total of 190 problems were 

randomly generated in two groups :

G roup 1 : Problems varied in size from 10 to 50 tasks . A  total of 140 problems 

were genrated for each one of the multiple depot CSP and the CSP with rest periods . 

The cost coefficients c- o f the linking-arcs were generated as in section 6,ie according 

to the form ula:

Cy = (1 + a) djj

where dy is the duration (in minutes) from the end of task i to the beginning of task j 

and a  is a randomly generated number in the range 0 to 1. A ls o , in all problems the 

number o f crews was taken to be the minimum number M * feasible for each problem. 

The way of finding M * has already been explained in section 6 (remark 1). A ll the 

other details are given in table 3-2.

G roup 2 . For each CSP's extension , the problems were generated from the same 

25 task-problem by varying the cost coefficients thus producing 50 test problems . By 

doing this we were trying to generate a problem with a non-integer LP  solution . This 

has already been explained and discussed in section 6 .
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Table 3-2 : Some Details about the Randomly Generated Processof the Problems of Table 3-3.

CSP with rest period Multiple Depot CSP

Task Starting Time Vary uniformly in the range [0,Iweek]
Vary Uniformly in the range [0,24hours]

Maximum Duty Period ( hours ) 12 6

Maximum Rest Period ( hours ) 16 N/A

Minimum Rest Period ( hours ) 12 N/A

Number of Depots N/A 2 depots for DCSP's of up to 20 tasks;3 depots for larger DCSP's.

N/A : non-applicable



Table 3-3 : Average Computational Results for the 2 CSP'S Extensions

P ro b le m
Number

o f
T a s k s

Number
o f

P ro b le m s

S i z e  o f  LP +
[ ro w sx co lu m n s] 
C S P 1*  C S P 2**

S i z e  o f  G 
[ T a s k -A r c s ]  
C S P 1  CSP2

T im e + +
E x p a n s io n  T im e  L P  S o l u t io n  T im e  

C S P 1 CSP2 C S P 1  CSP2

1 0 - 1 4 20 39 x  10 8 5 2 x  1 6 7 26 40 0 .2 0 .4 0 .7 1 . 1

1 5 - 1 9 20 69 x 200 8 7 x  289 49 68 0 .3 0 . 7 1 . 9 2 . 5

2 0 -2 4 20 9 6 x  33 2 1 5 2 X  450 7 3 1 2 6 0 . 5 1 . 1 4 . 1 8 . 1  .

G ro u p  1 2 5 -2 9 20 l l l x  399 1 8 3 x  860 82 1 5 5 0 .7 1 . 6 4 . 7 1 0 . 2

30 20 10 4 x  398 2 1 3 X  899 7 2 18 0 0 .7 2 . 2 4 . 7 1 5 . 6

40 20 1 4 4 x  600 3 4 2 x 1 7 0 1 10 2 300 1 . 2 4 .0 7 . 7 3 1 . 2

50 20 2 6 3X  996 4 7 3 x 19 5 8 2 1 0 420 4 . 1 1 0 . 1 1 9 . 5 6 6 .8

G ro u p  2 2 5 50 1 1 6 x  420 1 8 9 x  780 88 16 2 0 . 7 1 . 6 5 . 2 1 1 . 3

* C S P 1  *  CSP w it h  r e s t  p e r io d  ;
** CSP2 ■  M u l t ip l e  d e p o t CSP ;
+  S i z e  o f  L P  «  S i z e  o f  L i n e a r  P ro g ram m ing  P ro b le m  ?
+ +  S e c o n d s  o f  CYBER 8 5 5  ( F o r t r a n  C o m p ile r )  .
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8-APPENDIX : Are the Extreme Points of the CSP Polytope Integer ?

As a consequence o f the results obtained in the previous section , the natural 

question that comes to one's mind is :

"Does the linear relaxation of the formulation o f the CSP always provide the optimal 

integer solution o f the problem ?"

In this section, we w ill make an attempt to answer this question.

Our problem is in fact just a particular case of the following more general 

problem .

Consider the integer programming problem (P)

min cx (3-6)

subject to

Ax = b (3-7)

x integer (3-8)

x £ 0 (3-9)

and its relaxation (LP) (ie constraint (3-8) is dropped); where 

A  is an mxn matrix of real numbers;

C  is a non-negative vector o f n real numbers 

and b is an m-vector of real numbers;

Let P’ = conv { x e R n I A x= b; x integer }; P' is the convex hull of the integer points 

of P ;andlet P"= { x e R n I Ax= b; x > 0 }.

The question is : "under which conditions on the matrix A  and the m-vector b ,do (P) 

and (LP) have always the same optimal solution, independently of the cost vector c ? " 

The first paper that dealt with this problem is the one published in 1956 by 

Hoffman and Kruskal [89] who gave a necessary and sufficient condition for the 2 

polytopes P' and P" to be equal. If these 2 polytopes are equal then , independently 

of the cost c considered , the two problems (P) and (LP) w ill have always the same 

optimal solution. A t this point it is worthwhile to remark that the converse is not true
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(as we w ill see later) . Before stating the theorem of Hoffman and Kruskal we need to 

give the following necessary definition:

Definition : A  matrix A  is totally unimodular if  and only if  the determinant of each 

square submatrix o f A  is equal to 0,1 or -1 .

Theorem  1 (Hoffman and K ru sk a l) : If the matrix A  o f problem (P) is totally 

unimodular then P  = P ’.The converse holds true.

An example o f problems that have totally unimodular matrices is the class of 

network flow problems .It is well known that for this class o f problems the integer 

problem and its linear relaxation have always the same optimal solution[17].

In our case , we are only interested in the first part o f the theorem. How ever, 

with just definition 1 in hand it was not an easy task to determine if  the matrix A  of the 

CSP was totally unimodular . Fortunately , the work o f Camion [36] came to our 

rescue. In that paper it was proved that:

Theorem  2 (C am ion) : A  matrix A  (with 0,+l and -1 entries) is totally unimodular 

if  and only if  for every square Eulerian submatrix A y  we have :

y ,  aj = 0 modulo 4 (3-10)
id

where

D efin ition: A  submatrix A y  of A  is said to be Eulerian if  and only i f :

V i e  I ^ a ! = 0  m° ti2  (3-11)
jeJ

V j e  J ^ a !  -  ® m od2 (3-12)
i d

in other words if  the sum of elements in any column or in any row of A y  is even .

After applying theorem 2 to our case ( note that the matrix o f the CSP has only 

0,+l and -1 entries) we found out that the matrix o f the CSP is not totally unimodular. 

The following is a counter-example.

Exam ple : Consider ,in figure 3-9, network G  representing a 3 task-CSP and its
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expansion , network G  in figure 3-10.

Figure 3 -9  : Network G.

Figure 3-10 : Network G.
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Table 3-4 : Matrix A
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Let A  be the corresponding constraints matrix. It is represented in table 3-4.

If in matrix A  we consider the submatrix A y  which consists o f : 

columns 1,2 ,3 ,5 ,7,8 and 9 ; and 

rows 1,2,3,4,7,10 and 11

we can easily see that A U  (see table 3-5) is Eulerian , since the sum of elements in 

any row and in any column is even. However,

X a! = sum of all elements of A  = 2
J lyjjj

i.e. 5 1  aj ^ 0 mod 4
id

Hence A  is not totally unimodular.

The fact that the matrix o f the CSP is not totally unimodular does not answer our 

initial question . Thus , if  P'= P" this does not mean that (P) and (LP) cannot have 

always the same optimal solution .For example Berge (1972) proved that if  a matrix A  

is balanced, but not necessarily unimodular then

SOL(P) = SOL(LP) (3-13)

where SOL(P)(resp. SOL(LP)) is the optimal solution o f (P)(resp.(LP)). This 

implies, of course, that each unimodular matrix is balanced.

Two years later, in \91AJPadberg generalized the notion of balanced matrices to 

introduce the notion of perfect matrices. He showed that if  a matrix A  is perfect then 

(3-13) is satisfied. He also proved that each balanced matrix is perfect

Unfortunately, these 2 results (of Berge and Padberg) cannot be applied to our 

case because they are restricted to 0-1 matrices only and the matrix of the CSP has 

0,+ l and -1 entries .Consequently, we w ill lim it ourselves to just giving the 

corresponding references [30] for Berge and [128] for Padberg .

From now on, we w ill consider a completely different approach from the one 

discussed above. Since we know that the class of network flow problems have totally 

unimodular matrices then all we need to do is to check if  the CSP is equivalent to a
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network flow problem . In which case , we would have answered our question .

This idea was first suggested by Iri [91] who gave a necessary and sufficient 

condition for an integer programming problem to be convertible into a network flow 

problem .

For this purpose , the matrix A  o f the IP problem must be transformed first, by 

row operations and column permutations, into a matrix of the form 

A  = [ I/ L  ]

where I is an mxm identity matrix; and 

L  is an mx(n-m) matrix .

Theorem  3 (Iri 1966). Let A  be the matrix of an integer programming problem 

(P). The two following statements are equivalent:

(i) (P) can be converted into a network flow problem;

(ii) L  is the cut-set matrix of a graph.

To define the cut-set of a graph we need to introduce the following notions :

A  graph G  is connected if  there is a path from any vertex to any other vertex ie G  has 

to be in one piece . An example o f connected graph (Gj) is given in figure

3-11.Removing edge e5 from G j we obtain the disconnected graph G 2 shown in figure

3-12.

Figure 3-11: A  Connected Graph G j Figure 3-12: A  Disconnected Graph G 2
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Now,given a graph G=(X,E) where X  is the set o f vertices and E  is the set of edges,
Q

a disonnecting set o f G  is a set o f edges ,say D c E , whose removal disconnects
s

G.Futhermore, if  D  does not contain any diconnecting set ie if  no proper subset of D
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is a disconnecting set then D  w ill be called "cutset".

In graph G 3 of figure 3-13 the set D=(ej,e10,e9,e4) is a disconnecting set. The 

disconnected graph G 4 obtained after the removal of E  is shown in figure 3-14. 

Figure 3-13: Graph G 3 F igure  3-14: Graph G 4

Finally , the set D ’=(e2,e3) is a cutset in that it is a disconnecting set and none of 

its subsets (ie {e2} or {e3}) disconnects the graph.For a more rigourous definition of 

cut-sets and spanning-trees the reader is refered to [29,39,54,82].

Now, going back to Iri's theorem we have not been able to prove or disprove 

that in general the matrix A  of a CSP is the cutset matrix of a graph . However for 

some given CSP's (by "given" we mean that the input data of the problem are known) 

condition (ii) of Iri's theorem has been proved to be satisfied . The following is one 

such example:

Exam ple :

Consider the network G  of figure 3-9 and its expanded network G  (figure3-10). 

The constraints matrix corresponding to the formulation of the CSP is presented in 

table 3-4.

By row operations and column permutations, matrix A  becomes A' as shown in 

table 3-6. In fact it has been transformed in such a way to have the required form
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Table 3-6 : Matrix A*

7

Figure 3-15 : Graph G A
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A'=[l/L] .According to the definition of the cut-set matrix of a graph, it is clear that A' 

is the cutset matrix o f graph G A of figure 3-15. Each column of A  is represented by an 

arc in G A. The arcs corresponding to the columns of the identity-matrix I are in dotted 

lines and form a spanning-tree .This shows that the CSP represented by the graph of 

figure 3-4 can be exactly soved by a linear programming algorithm.
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C H A P T E R  4

T H E  G E N E R A L  C R E W  S C H E D U L IN G  P R O B L E M

1- Introduction .

The general CSP (GCSP) which was introduced in chapter 1 and which w ill be 

considered in this chapter and in the next one consists of a CSP plus the two following 

conditions:

(i) In all problems considered so far the scheduling problem has always 

assumed that the starting and ending times for each task were specified . 

Complications arise, however, if  there exists a time-window in which a task must be 

carried o u t: that is to say , task i must be completed between 8.00am and 8.30am . 

W ith no time-windows , the set of tasks that can follow any particular task can be 

specified a priori and an acyclic network as the one representing the CSP can be 

constructed. With time-windows, the set o f feasible tasks that can follow a given task 

cannot be specified beforehand and hence this acyclic network cannot be form ed. For
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Figure 4-1 : Network G
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Table 4-1 : A 5 Task-GCSP .

Task
Window
Starting
time

(minutes)
Duration

time
(minutes)

1 25-75 50
2 50-100 75
3 165-185 75
4 200-200 100
5 220-280 50
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example consider the G CSP presented in table 4-1. The work duty period is assumed 

to be equal to 200 minutes . The graph G  which consists only o f the task-arcs is 

represented in figure 4-1.

To show that an acyclic network cannot be formed consider tasks 1 and 2 . If a 

crew start their trip by covering task 1 at any time between ,say 25 and 30 minutes , 

they w ill be able to next cover task 2 if  it starts at time Xj greater than 80 minutes . 

However if  the trip o f this same crew starts ,say at time 75 minutes , then it w ill be 

impossible for them to cover task 2 . Now even if  we decide to link in graph G  

task-arcs 1 and 2 with a linking-arc we w ill be ignoring a number of feasible solutions 

that can be optimal and consequently the resulting solution w ill only be approximate.

(ii) Assuming that the crew and the corresponding vehicle form a single resource 

package the problem becomes more difficult if  we allow the possibility that vehicles 

with different characteristics are available to service the tasks . In most cases the 

characteristic is vehicle capacity. For example, in the school bus scheduling problem 

[31] mini-buses can service the small schools and the regular buses can service the 

large schools and either vehicle can service the medium size schools. For each task the 

set of vehicles that may service it is specified .Assuming we want to cover the tasks of 

the G CSP  o f table 4-1 with 3 crews who w ill be using 2 vehicle types , the optimal 

solution to the problem is depicted in figure 4-2. The cost c- o f linking 2 tasks i and j 

in the optimal solution ( or more precisely following task i with task j) is the difference 

of time between the starting time of task j and the finishing time of task i . The types of 

vehicle that can cover any task are given in table 4-2.

The general CSP (GCSP) consists in fact o f 2 extensions o f the CSP . If we 

ignore the existence o f time-windows ie if  the starting and the finishing times o f each 

task are specified beforehand then we w ill be dealing with a multiple vehicle type CSP 

(VCSP) which is similar to the multiple depot CSP (see section 7-2 o f chapter 3). 

Now if  in the GCSP we assume there is only one type o f vehicle the resulting problem
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w ill consist of solving a CSP with the additonal requirement that the due times are 

given within time windows . This problem w ill be refered to as basic time-window 

CSP (TCS P ). Each one of these two problems (ie VCSP  and TCSP) is clearly harder 

than the C S P .

Figure 4-2 : Optimal Solution of the 5 Task-GCSP.
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Table 4-2 : Vehicle Types’ Assignment to the Tasks
of the 5 Task-GCSP.

Motivated by the series o f successful results obtained with the application of the graph 

expansion technique (GET) to the CSP and its extensions we will attempt to generalize 

G E T  to more general problems .In section 2 we w ill be describing the application of
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G E T  to the T C S P . The results obtained, when the "average time window" is narrow, 

proved to be of the same quality as those obtained with the CSP . In this context the 

"average time-window " is the sum of all the task time-windows divided by the 

number o f tasks. When the "average time-window" gets bigger the size of the 

expanded graph becomes so large that no existing LP  package can solve the 

corresponding linear program . Consequently , only small TCSP's o f size up to 15 

tasks could be solved to optimality when the time-window can be very large ie take 

any value between 00.00 and 24.00 hours .In section 3 the application o f G E T  to the 

V C S P  is shown to be as efficient as in the case o f the multiple depot CSP (see 

previous chapter ) . A ll one hundred ninety randomly generated problems of size 

varying between 10 and 50 tasks were solved optimally using just an LP  package . 

The expanded graph was constructed using an algorithm similar to that used for the 

multiple depot CSP .Section 4 deals with the application o f G E T  to G CSP  . It is 

particularly shown via extensive computational results that G E T  is very efficient 

provided the "average time-window" is sm all. Unfortunately as it increases,the size of 

the problem that existing L P  packages can handle decreases. To overcome this 

drawback other approaches based on integer programming techniques w ill be 

considered in the next chapter to deal with the case where the "average time-window" 

gets larger .However we also consider a modified version o f G E T  which , although it 

produces an expanded network o f about the same size as the one obtained with the 

previous G E T  it is particularly useful when considering the G CSP with rest periods . 

This is discussed in section 5 .More than one hundred fifty problems of each type (ie 

TCSP, V C S P  and GCSP) were randomly "generated and solved to optimality using just 

an LP  package. The computational results are presented in sections 6 .
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2- The Basic T im e W indow  Crew  Scheduling Problem  (TCSP).

2 - 1  Introduction .

The basic time-window crew scheduling problem (TCSP) is defined as follows:

" minimize the cost o f covering a certain number o f tasks (n,say) by a given number 

( K , say) o f crews in such a way that:

(a) each task must be covered once only by one crew ;

(b) the planning period is one day of 24 hours;

(c) the work duty period is the same for all crews;

(d) each task can have either:

(dl) a fixed and specified starting-time;

(d2 ) a starting time given within a time-window;

(e) the duration o f each task is constant regardless of when it starts

Unlike network G  representative o f a CSP , network G q representative o f a 

TC S P  is not acyclic . However with a slight modification o f G q , we can obtain a 

network G t which has the same properties as G .

Applying the graph expansion algorithm A 8 (see section 3, chapter 3) to G t we 

get a network G t in which all paths have duration less than or equal to T . An example 

explaining the conversion o f G q into G t is first given in section 2.2. Then the general 

procedure of modifying G t into G t is explained in section 2.3 . Section 2.4 deals with 

the formulation o f TCSP  ( based on network G t ) which is a minimum cost network 

flow problem plus additional partitioning type constraints . As with the C S P , an LP  

package was sufficient to solve all 170 randomly generated problems of size varying 

between 10 and 50 tasks . The results are presented in section 6 .Before considering 

the next section it is worthwhile to mention that heuristic algorithms have been devised 

to solve the TCSP  or its variants [55,115,125,137].
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2 -2  Exam ple .

Consider the TCSP  represented by the data of table 4-3 , in which the work duty 

period is assumed to be 7 hours 30 minutes. Except for task2, the starting times of all 

tasks are given within a time-window . For example task 4 starts between 12.10am 

and 12.30am and hence finishes between 14.10am and 14.30am.

Table 4-3 : A 4 Task-TCSP .

Task
Window
Starting
time

(hr & mn)
Duration

time
(minutes)

1 6.50-7.00 90
2 9.00 120
3 12.00-12.20 150
4 12.10-12.30 120

The corresponding graph G q , in which only the task-arcs are represented , is 

depicted in figure 4-3 . Unlike network G  representative of a CSP it is impossible to 

represent the linking-arcs in G q . Indeed, if  we assume that task 1 starts at 7.00 and 

task 3 at 12.00 it w ill be possible to link the two corresponding task-arcs in G q . 
However if  task 1 starts at 6.50 and task 3 starts at 12.10 it w ill be impossible to link
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Figure 4-3 : Network G q
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Figure 4-4 : Network G t of the 4 Task-TCSP.
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To overcome this problem we need to make the following assumption : "Instead of 

considering the tasks starting-times within continuous time-intervals we w ill consider 

them within discrete time-intervals. Thus , task 3 , for example , which is to start 

between 12.00 and 12.20  w ill be assumed to start either at 12.00 or 12 .10  or 12.20  . 

Sim ilarly taskl (resp. 4) is assumed to start either at 6.50 or 7.00 (resp. 12.10 or 

12.20 or 12.30).

W e express this fact by representing task 1 (resp. 3 and 4) by 2 (resp. 3 ) 

task-arcs as shown in network G t o f figure 4.4 . Like network G  representative of a 

C S P , network G t consists o f :

(a) task-arcs : to each task i of the TCSP  corresponds a set o f task-arcs ;

(b) linking-arcs : these are the arcs that link the task-arcs . The conditions for

joining two task-arcs i and j (or more precisely to join the final extremity of task-arc

i with the initial extremity (Xj of task-arc j ) are exactly the same as for G  .Also since in 

G t a task is represented by a set of task-arcs we have to consider in G  the extra 

condition that 2 task-arcs correponding to the same task cannot be linked;

(c) source-arcs and sink-arcs : like G , a super-source Ps and super-sink a R 

is linked with the starting or initial nodes ô 's o f the task-arcs and all the finishing 

nodes pj's of the task-arcs are linked to a R.

It is worth wile noting that although we know which task-arc correspond to wich 

task, we assume when forming the source-arcs and sink-arcs that each task-arc of G t 

corresponds to a different task. Consequently , we can consider network G t o f figure

4-4 as the network representative o f a 9 task-CSP with a work duty period of 7 hours 

30 minutes .Hence algorithm A 8 can be applied to G t . The resulting network G t is 

represented in figure 4-5 . For the purposes o f clarity , only the linking-arcs 

corresponding to paths starting from the first task-arc have been represented. The only 

modification that should be added to Algorithm A 8, before applying it to graph G t , is 

that 2 task-arcs corresponding to the same task o f TCSP cannot be linked.

Finally , for each set o f task-arcs of G t , corresponding to a same task of
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TCSP, one and only one task-arc is picked up in the optimal solution .

Figure 4-5 : Network G t
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2-3 A lgorithm  A l l .

This section deals with the procedure of converting a network G 0 representative 

o f a T C S P  into a network G t which has the same properties as network G  

representative o f a CSP .In the T C S P  each task is defined by a continuous 

time-interval in  which it must start (this time -interval w ill be refered to as 

starting-time-interval) and by the duration o f the task . Consequently , network G q 

w ill consist only o f task-arcs; the linking-arcs being impossible to represent as shown 

in the previous example.

2-3.1 The A lgorithm  .

The algorithm is based on the following assumption : ’’ the starting time interval 

(xj, x̂ ) of each task i of the TCSP is assumed to be discrete ie task i can start every M  

minutes after Xj.

Step 0 : Consider the starting time intervals of all the tasks and set the step-interval 

M ; Set i = 0 and G O TO  STEP 1;

Step 1 : i = i + 1 ;Consider task i with interval [xj, ^ \ .  Represent task i by task-arcs 

starting respectively at x],x] +M,x] +2M,...etc... and o f duration that o f task i ; G O TO  

STEP  2 ;

Step 2 : If all tasks i's have been scanned G O TO  STEP 3; Else G O TO  STEP 1; 

Step 3 : Link each task-arc o f G t with the source (resp.sink) to form the source- 

(resp. sink-) arcs ;G O TO  STEP 4 ;

Step 4 : L ink every pair of task-arcs i and j o f G t (i precedes j) if  all following 

conditions are satisfied:

(a) starting time of task j is greater than finishing time of task i ;
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(b) the difference between the finishing time of task j and the starting time of 

task i is less than or equal to the work duty period T 0;

(c) task-arcs i and j do not correspond to the same task.

2-3.2 The Size of Gf .

Depending on the size o f the starting time intervals we can choose the 

step-interval in such a way that each task o f the TCSP  is represented by at most p 

task-arcs . Hence if  n is the number of tasks of the TCSP  , G t w ill correspond to at 

most a pn-task CSP.

2-4 The Problem Formulation .

After applying algorithm A 8 to network G t (obtained in section 2-3 as output of 

algorithm A 1 1) we obtain a network G t (similar to network G  o f section 3,chapter3) 

in which all paths have duration less than or equal to the work duty period T .

The formulation of the TCSP  based on G t is exactly the same as that of the CSP 

which is based on G  (see section 4 , chapter 3).

3- The Multiple Vehicle Type Crew Scheduling Problem (VCSP) .

3-1 Introduction .

The multiple vehicle type crew scheduling problem (VCSP) is defined as :
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" minimize the cost of covering a certain number (say, n) o f tasks by a given number 

(say , K) o f crews in such a way that:

(a) the crew and the corresponding vehicle form a single resource package;

(b) each task must be covered once only by a single crew ;

(c) the work duty period T 0 is fixed and is the same for all crews;

(e) the K  vehicles are of L (1< L <K) types and the set o f vehicle types that can 

cover a specific task is given for all tasks

If in condition (e) the number M  o f types o f vehicle is equal to 1 then the VCSP  

becomes a C S P . Also if  there is no task that can be covered by more than one type of 

vehicle the V C SP  w ill consist o f M  different CSP's .If we assume that each type of 

vehicle is housed at a different depot the V CSP  w ill be equivalent to the multiple depot 

CSP (section 7-2, chapter 3) with the extra condition that to each depot there is a 

certain number of tasks that can be covered by the vehicles housed at this depot. 

Consequently a network G y  representative of a VCSP which is similar to the network 

Gj) representative of a multiple depot CSP can be constructed.

An example explaining the construction o f G y  is given in section 3.2. Section

3.3 deals with the general procedure of forming G y  . Subsequently the problem is 

formulated as a minimum cost network flow problem plus additional set partitioning 

type constraints.

3-2 Exam ple o f Constructing G v .

Consider the 5 task - 3 vehicle V C S P  represented in table 4-4 in which 2 

vehicles are assumed to be o f the same type and the last vehicle o f another type. The 

work duty period is assumed to be 600 minutes .Column 4 indicates the type of 

vehicle that can cover the corresponding task . Thus task-arc (ocj.pj) and (a4,P4)
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(resp. (a2,P2) (a 5»Ps)) can be covered only by the 1st (resp. 2nd) vehicle

type.Whereas task-arc (a 3,P3) can be covered by either type . The graph G  

representative of the corresponding 5 task - CSP is depicted in figure 4-6.

Table 4-4 : A 5 Task- VCSP .

Task
Starting
time

(minutes)
Duration

time
(minutes)

Vehicle
Type

1 50 100 1
2 200 150 2
3 400 100 i;2
4 550 200 l
5 550 100 2

Now assume that the vehicles of the 1st (resp. 2nd) type are housed at depot 1 

(resp. 2) . The V C S P  becomes a multiple depot CSP . Consequently , the same 

procedure, described in section7-2 (chapter3), for constructing the graph G o  

representative of a multiple depot CSP can be applied here. The resulting network G y  

representative of a VCSP  is represented in figure 4-7 . It is similar to GQexcept that:

(a) In each subnetwork k ( k=l,2) of G y  , only the task-arcs that can be covered 

by vehicle's type k have been considered. Thus in the first subnetwork corresponding

• to type 1, task-arcs (oc2,p2) anc* (a 5*Ps) have been omitted since they cannot be

covered by this type o f vehicle . For the same reason task-arcs (aj,pj) and (ajp^) 

are not represented in the second subnetwork corresponding to the vehicles of type 2 ;

(b) the flow in ( Ps,d {) and (D2,aR) is equal to the number o f vehicles o f the

first type ie 2 . Similarly the flow in (ps,DJ) and (D2,aR) is equal to 1;
1 2(c) there is no cost attached to the arcs departing from D j and D j or arriving at 

D 2 and D 2 .
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Figure 4-6 : Network G.
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Figure 4-7 : Network Gy.
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Figure 4-8 : Network Gy.
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3- 3 Construction of Network G y  representative of a V C S P .

If we assume that each type of vehicle is housed at a different depot, network 

G v  becomes exactly the same as network G D representative o f a multiple depot CSP  

(see section 7,chapter 3) with the exception that:

(i) A ll source-arcs and sink-arcs of G v have zero cost;

(ii) In each subnetwork G k (k=l,...,L) (where L  is the number o f vehicle's 

types) the task-arcs that cannot be covered by type k  of vehicle are omitted.

Consequently , from this point onwards the V C S P  can be considered as a 

multiple depot CSP and both the formulation and the solution technique presented in 

section 7 o f chapter 3 can be applied to solve the V C S P .

F in a lly , it is worthwhile to mention that after applying algorithm A8 to G v we 

obtain the expanded graph G v o f figure 4-8 in which no path has length greater than 

the work duty period .

4- Solving the GCSP with GET .

4-1 The Algorithm A12 .

Now that the graph expansion technique (GET) has proved to be quite effective 

for both the V CSP  and the TCSP  (in the case where the time-windows are relatively 

small) it becomes worthwhile applying the technique to the G C S P . In this section an 

algorithm A12 is described which expands the graph G T representative of a G CSP into 

a graph G T with the following properties:

(i) A ll paths of G T have length equal to or smaller than the work duty period

(ii) A ll the tasks in any one path of G T can be covered by at least one common 

vehicle's type;

(iii) The starting time o f each task in any one path w ill be within the



Chapter 4 135

corresponding allowed time-window.

Algorithm A12 is a 2-phase algorithm which consists of a combination of three 

algorithms . Like the TC S P  it is not possible to directly represent the G CSP  by an 

acyclic graph . So the first phase of the algorithm consists o f constructing the acyclic 

graph G t  representative o f the G CSP  . For this , we need to apply sequentially 

algorithm A l l  and algorithm A10 (the V S C P  version ) . In the second phase the 

graph's expansion algorithm A8 is applied to G T to obtain G T.

Algorithm A12 proceeds as follow s:

P H A S E  1 :

Step 1 : B y dropping the multiple vehicle constraint (ie by assuming we have only 

one single vehicle type ) we obtain a TCSP  . Apply algorithm A l l  to construct the 

graph G t representative o f a T C S P ;

Step 2 : I f , having G t as input, we take into consideration the multiple vehicle type 

constraint the problem becomes a V C S P . Apply algorithm A10 with graph G t as input 

to construe the graph G T representative of both the TCSP and the VCSP;

P H A S E  2

Step 3 : Apply the graph’s expansion algorithm A8 to G T. The resulting expanded 

graph w ill be refered to as G T.

4-2 Exam ple .

To illustrate the application o f Algorithm A14 consider the G CSP defined by the 

input data of table 4-5 . W e assume 2 vehicles o f different type are available to cover 

all the 4 tasks. Also the work duty period is assumed to be 7 hours 30 minutes .

The application o f step 1 of Algorithm A12 w ill result in the network o f figure

4-4. Applying step 2 to G t we obtain network G T , o f figure 4-9 , representative of a 

G CSP. Finally, at the end of Algorithm A12 we get the expanded network G T of 

figure 4-10.
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Table 4-5 : A 4 Task-GCSP •

Task
Window
Starting
time

(hr & mn)
Duration

time
(minutes)

Type of 
vehicle

1 6.50-7.00 90 1
2 9.00 120 1 ? 2
3 12.00-12.20 150 2
4 12.10-12.30 120 1

When applying algorithm A l l  ( ie step 1 of algorithm A 12) the smallest time unit was 

taken to be 10 minutes . For the sake of clarity not all the linking-arcs of graph G T of 

figure 4-10 have been represented .The ones represented are indicated by dotted lines 

in the figure.

4-3 Problem Formulation .

Like the CSP and the TCSP  , the G CSP can be formulated as a minimum cost 

network flow problem plus additional partitioning type constraints . The formulation 

which is based on network G T is exactly the same as that o f the TCSP  (see section 

2-4) with the exception that G t is replaced by G T .

Relaxing the integrality constraints , we have been able to solve (ie find the 

integer programming solution ) all the 100 randomly generated GCSP's using just an 

LP  package. The results are presented in section 6.
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Figure 4-9 : Network Gx .
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Figure 4-10 : Network GT.
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5- A  M odified  Version of the G raph  Expansion Technique .

5-1 Introduction .

As the average task time-window increases the size of the largest G CSP that can

be solved decreases. Thus, if  we consider an average time-window of 10 hours and a

step size o f 15 minutes the largest size G CSP  that can be handled w ill not have more

than 10 tasks . This is due on the one hand to the enormously large size of the

expanded graph G T on which the problem formulation is based and on the other hand

to the limitations imposed by the existing LP  packages.

In this section we present a modified version of the graph expansion technique

which produces an expanded network G T smaller than G T as the average time window

increases . Actually the importance of this technique becomes more apparent when

considering the G CSP  with rest-periods as the network representative obtained with

this technique is much smaller than the one obtained with the previous technique.

Algorithm A 13 , which expands the network G T representative of a G CSP into 
— /

another network G T is described in section 5-2. It is then illustrated by the example of

section 5-3.Like all the CSP's considered so far the problem was first formulated as a

minimum cost network flow problem plus additional set partitioning type constraints

(the formulation is exactly the same as the one presented in section 4-3 except that the
—  /

graph on which it is based is G T) , then it was solved using just an LP  package. The 

corresponding results are presented in section 6 .

5-2 A lgorithm  A13 .

This algorithm consists o f expanding network G T representative of a G CSP into 

another network G T which has the same properties as network G T but which has the 

additional advantage of a smaller size as the average time-window gets larger.
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Before we explain the main idea o f the algorithm we w ill introduce some useful 

definitions and remarks that w ill facilitate the description of the algorithm.

Given V  types of vehicles , network G T consists of V  independent subnetworks

N j,...,N y . B y "independent" we mean that 2 nodes belonging to different

subnetworks need never be linked . In this new expansion each subnetwork w ill be

considered separately and independently o f the others ie each subnetwork Nj

(i=l,...,V) w ill be expanded into another subnetwork Nj (i=l,...,V) in which all paths

have length less than or equal to the work duty period.
— /

The size o f G T in terms of nodes (of the network) can be reduced by half if  

instead o f representing the tasks o f G C S P  by task-arcs we represent them by 

task-nodes.

Given a task i and its starting time-window [ST],ST^| we saw in algorithm A 12 

(section 4-1) that this time-window was divided into smaller discrete intervals 

[ST],ST]+M,ST|+2M,...,ST?=ST]+KM] where M  is the step size , K  is equal to 

(ST?-STj)/M and STj+kM(k=0,l,...,K) is a possible starting time for task i. In graph 

theoretic terms we represent this fact by assuming that K  task-nodes nQ,nj,...,n^ in 

G t  represent task i . If task-node nj is picked up in the optimal solution this w ill mean 

that task i is to start at time ST]+jM . In what follows to each task-node n o f 

subnetwork Nj we w ill associate 2 numbers : a node starting time pn and a node 

finishing time qn . These are respectively the times at which the corresponding task 

would start and finish if  node n was picked up in the optimal solution.

5-2.1 Main Idea of the Algorithm i

The main idea of the algorithm can be explained as follows : assume that the 

work duty period is equal to 6 hours and that the schedule is performed over a 

planning period o f 24 hours . A lso let M  be the step size . For the sake o f simplicity 

we let M  be one hour . A  path P in subnetwork Nj must have a length o f at most 6
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hours . This means that if  for example it starts at 10.00am it must finish before 

4.00pm. Within this time-period the only task-nodes of Nj that can be covered by path 

P are those nodes n for which :

pn > 10.00am and qn < 4.00pm (4-1)

A ll other nodes have no chance of belonging to P .

Let E jq be the subnetwork o f Nj associated with the task-nodes o f Nj that 

satisfy (4-1) . Now if  we let P starting at time x (x=0,l»2,—»24hours) , E x can be 

defined as follow s:

Ex = ( x X )  (4-2)

where

= { task-nodes of Nj / pn > x and qn < x+6 } (4-3)

and

U x = set of all linking-arcs of Nj associated with x[. (4-4)

Clearly , each feasible path P ( by "feasible" we mean "of length at most 

6hours") o f N j belongs to at least one Ex (x=0,l,...,24). A lso each task-node of Nj 

can be in several E x's.

Duplicating each task-node n of Nj as many times as it appears in the E x's we 

obtain network G ^ N jU ^ lL .U N y  where Nj = Eg U e | U ... U E ^ .

5-2.2 The Algorithm A13 .

As we mentioned above since network G T representative o f a G CSP  consists of 

V  (number o f vehicle's types ) "independent" subnetworks Nj's , in this graph 

expansion technique each Nj w ill be expanded separately and the more general 

network G j  w ill consist o f the union o f all expanded subnetworks Nj's.

The following is an algorithm which describes how to expand subnetwork Nj of 

G t  into another subnetwork Nj in which all paths have length at most equal to the 

work duty period.
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Step 0 : Set x = 0 ; G O TO  STEP 1 ;

Step 1 :  If no task-node n o f Nj has a node starting time pn equal to xM  G O TO  

STEP 2 ; Else consider subnetwork e != (X j,Ux) where:

X[={ task-nodes n of Nj /pn> xM  and qn< xM  +T0} 

and U,[=set of all linking-arcs of N T associated with .

G O TO  STEP 2;

Step 2 : If xM  > 24-Tq (hours) G O TO  STEP 3 ;Else set x=x+l and G O TO  STEP 1; 

Step 3 : Duplicate each task-node n of N , as many times as it appears in the E x's ;

Ni = E|UE;U...UEi
where x = number o f E x's generated; G O TO  STEP 4 ;

Step 4 : Reduction Process .

Remove from each E x (x=l,...,x) all the "isolated" task-nodes.

(A task-node is isolated if  it has no predecessor).

5-2.3 Rem ark .

(a) In step 2 of the algorithm the inequality condition

xM  > 24-Tq (hours) (4-5)

assumes that both M  and T q are given in hours. I f , however, they are 

expressed in minutes then the condition becomes :

xM  > 24x60 - T q (minutes); (4-6)

(b) Knowing that the planning period is one day o f 24 hours the logical question 

that one might ask is :" why have we not considered the E x's for which :

24 - TO < xM  < 24 (4-7)

The reason behind this is that all the E x s that satisfy (4-7) are in fact included 

in E^q with x0 = (24-Tq)/M . Hence there is no need to consider the subsequent
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5-3 Example .

Consider the 3 task- G C S P  , of table 4-6 , with a work duty period of 300 

minutes and with M  = 1 hour (60 minutes). the network G 0 which consists only of 

the task-arcs is depicted in figure 4-11 . The dotted lines represent the starting time 

windows of the tasks .

Applying the first phase of algorithm A12 to the input data o f the problem we 

obtain network G T , representative of a G C S P , o f figure 4-12 . For convenience , the 

task-arcs have been replaced by task-nodes and for the sake of clarity the source-arcs 

and sink-arcs associated with task-nodes corresponding to task 1 have not all been 

represented.

Figure 4-11 : Network G q
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Table 4-6 : A 3 Task-GCSP •

Task
Window
Starting
time

(minutes)
Duration

time
(minutes)

Type of 
vehicle

1 60-360 90 1
2 60-120 120 1/2
3 180-240 60 2
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Figure 4-12 : Network G j

oJL 60 120 180 240_a— 300 360« 420 440

— -\
\ w

\  W
v —  \ W
^  ^ — - X

1

/
\

A

/

'22



Chapter 4 145



Chapter 4 146

_ /
Figure 4-14 : Network G y
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Network G T o f figure 4-13 is the expanded network produced from G T by applying
_ /

the first 3 steps o f algorithm A 13. The reduced version (network G T) shown in figure
^ /

4-14 has been obtained from G T by removing all the task-nodes that have no 

predecessor.

6- Computational Results .

Out o f a total o f 190 problems , o f size varying between 10 and 50 tasks , 

randomly generated for each one of TCSP ,V CSP  and G C SP  , the optimal integer 

solution was found in all cases by using just a linear programming code [112]. The 

LP  code was applied to the linear relaxation of each problem.

6-1 Efficiency of the Graph Expansion Technique when the 

Time-Windows are Small .

To test the algorithms presented in this chapter more than 500 problems of size 

ranging from 10 to 50 tasks were randomly generated in two groups . The results are 

summarized in table 4-7.

For each one of the TCSP , the V C S P  and the G CSP  a total o f 140 problems 

were considered in the first group and 50 problems in the second group . Our aim in 

considering the problems o f the second group , which were all generated from the 

same 25 task-problem by varying the cost coefficients , was to try to generate a 

problem for which the solution of the linear relaxation of the problem was not integer. 

The reason for adopting this approach has already been dealt with in section 8 

(chapter3). As it can be seen from table 4-7 we have been unsuccessful in achieving 

this aim . Thus , all the 150 problems generated in this group (50 for each one of 

TCS P ,V CS P  and GCSP) have been solved to optimality by a linear programming 

package.
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For the problems of the first group , the work duty period was assumed , in all 

cases , to be equal to 6 hours . The number o f crews was taken to be the minimum 

number K* feasible for each problem . The duration o f each task was assumed to 

vary within the range [45minutes,2hours30minutes].Also the cost coefficients Cjj 

associated with linking-arc (p^otj) has been generated according to the formula : 

cij = dij
where djj = duration o f linking-arc (p̂ cCj)

= starting time o f task j - finishing time of task i 

For the V C S P  the starting time o f each task was uniformly generated in the 

range [00.00-24.00hours] and for the TCSP  only one vehicle type was assumed .

The remaining parameters were generated as follows :

(i) Generating the Starting Time Windows .

For both the TCSP  and G CSP the step size was taken to be M  = 15 minutes and 

the length o f each time window was uniform ly generated in the range 

[0-60minutes].The beginning o f the time window was made to vary in the range 

[0,24hours].

(ii) Generating the Vehicle Types .

Two and three types of vehicle were assumed for VCSP's o f various sizes.For 

problems with 2 vehicle types the approach we took in deciding which type of vehicle 

w ill be assigned to which task was purely random and based on the following ru le : 

"For each task i , i= l,...,n generate a random number a* in the range [0,1].

(a) If 0.00< (Xj <0.33 then task i can be covered by vehicle type 1 only ;

(b) If 0.33< Oj <0.66 then task i can be covered by vehicle type 2 o n ly ;

(c) If 0.66< oq <1 then task i can be covered by both types o f vehicle."

For problems with three types o f vehicle the same idea was used to decide for 

each task which type of vehicle w ill be assigned to i t .
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(iii) Comparison of the 2 Expanded Networks GT and GT .

Out o f the 190 randomly generated TCSP's it has been noticed that in 60% of 

the cases the size o f network G T was slightly smaller than that o f network G T . 

Network G T is the expanded version o f network G T ( representative o f a GCSP) 

obtained from algorithm A12 which is based on the expansion technique presented in 

the previous chapters , whereas network G T is the homologous of G T obtained with 

the expansion technique of the previous section .

Subsequently, the time window of each task was allowed to vary uniformly in

the range [00.00-24.00hours] and 100 randomly generated G CSP ’s were generated to
- — / - *

compare the size of G T and G T . In 73 problems the size o f G T was smaller than that

of G t . For the rest, network G T had a smaller size in 12 problems and in 15 problems 

both networks had the same size .

6-2 Inefficiency of the GET for GCSP's with Large Time Windows.

As we mentioned previously the results of table 4-7 were obtained by assuming 

that the time-window of each task varies uniformly in the range [00-60minutes] and 

that the step size was supposed to be 15 minutes .Clearly, this means that each task of 

the G CSP w ill be represented in G T by at most 4 task-nodes (in each subnetwork N T 

o f G t ).

Let M  be the step size and D  be the average length o f a task time window. If D  

increases and M  remains 15 minutes then the largest size of G CSP that we w ill be able 

to solve with existing L P  packages w ill decrease . The only example we have 

considered to illustrate this claim was by letting D=10 hours and M=15 minutes . The 

largest size G CSP  we could solve with the G E T  involved not more than 10 tasks and 2 

types of vehicle . This was due to the limitations imposed by the LP  package which



Table 4-7 : Average Computational Results for the TCSP , VCSP and GCSP .

Problem
Number
of

Tasks
Number

of
Problems

Size of the LP Problem 
[rowsxcolumns]

TCSP* VCSP** GCSP***
Size of Expanded Graph 

[Task-Arcs]
TCSP VCSP GCSP

Time*
Expansion Time LP Solution Time 

TCSP VCSP GCSP TCSP VCSP GCSP

10-14 20 78X 320 45X 159 123X 539 63 30 108 0.6 0.2 0.9 2.1 0.9 5.5

15-19 20 lllx 461 7lx 266 147x 637 91 51 127 0.8 0.4 0.9 4.6 1.9 7.7

20-24 20 172X 739 88X 330 224x 993 147 63 199 0.9 0.6 2.1 8.9 2.3 18.0

Group 1 25-29 20 230X1003 129X 515 480X2222 200 100 450 2.3 0.9 8.9 17.9 5.8 75.8

30 20 288X1278 149X 600 526X2438 256 117 494 3.2 1.0 10.1 19.6 8.2 148.3

40 20 437x1966 204x 829 694x3219 395 162 652 7.2 1.6 19.7 62.1 11.1 169.5

50 20 507X2268 274x1132 935X4355 455 222 883 9.3 2.4 28.5 91.3 20.1 NC

Group 2 25 50 216x 946 118x 468 432x1999 189 91 405 1.8 0.8 7.7 16.2 4.8 53.1

* TCSP - Time-window CSP ;
** VCSP - Multiple vehicle types CSP /*** GCSP - General CSP ;
+ Seconds of CYBER 855 (Fortran Compiler) .

Ui
o

Chapter 4
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could not handle the corresponding linear problem of 850 rows and 3500 columns .

Now if  we increase M  , as D  increases , in such a way that D/M < 4 then 

whatever value of D  we consider problems of the same size as those o f table 4-7 could 

be handled with G E T . However, although the problems w ill certainly be solved with 

just an LP  package , the solution obtained although integer might be just a heuristic 

o n e .

This problem of solving large GCSP's with large task time-wimdows w ill be 

dealt with in the next chapter.
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C H A P T E R  5

A  T R E E  S E A R C H  P R O C E D U R E  F O R  T H E  G C S P

1- IN T R O D U C T IO N .

W e consider a tree search procedure that has proved to be quite efficient for 

reasonably large size GCSP's involving up to 50 tasks and with a task's time window 

allowed to vary in the range [00.00-24.00 hours] . This type o f problems was 

impossible to solve with the graph's expansion technique considered in the previous 

chapter. This was due to the enormously large size of the expanded network which 

produced an LP  problem that could not be handled by any code.

The success of any tree search procedure depends entirely on the quality of the 

lower bound and the upper bound to the problem . To obtain a good lower bound 

several different integer programming formulations were considered and were
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subsequently all relaxed in a Lagrangian fashion[71]. The different resulting lower 

bounds were compared and two formulations were picked-up as possible candidates to 

be embedded in the tree search procedure. A ll this is discussed in section 2.

The first formulation which is based on a shortest constrained path problem 

(SCPP) [56] was chosen because over all the problems tested it produced each time a 

better lower bound than all the other formulations . Because o f the relatively long 

computing time required to get this bound a second candidate, a shortest path problem 

(SPP) based formulation , was also considered . The choice o f the SPP formulation 

was motivated by two factors. As far as the quality of the lower bound is concerned it 

performed as well as all the remaining formulations (except the SCPP) and from the 

computing time point of view it was much better than all the others.

A t this point it is worthwhile to mention that an algorithm that runs in 

polynomial time has been suggested , in section 2 , to solve the SCPP which is 

considered to be , in general, an NP-complete problem [66]. W e are not saying that 

this algorithm can solve any SCPP but we can claim that we have been able to exhibit a 

particular case of the SCPP which can be solved in polynomial tim e.

As far as the upper bound to the problem is concerned two efficient heuristics 

are presented in section 4 . Actually this section deals with the whole tree search 

procedure used for our problem. Each step o f the procedure is explained in detail.

W e know that when the task's time window tends to be small the graph's 

expansion technique is the most suitable technique to solve the G CSP (see chapter 4) 

but when the task's time window becomes large it is preferable to use the tree search 

procedure. In section 6 we discuss the variations o f the efficiency o f the reduction test 

when the task average time window varies.

Finally the computational results are presented in two sections. The ones related 

to finding the lower bound are presented in section 3 and the computational results for 

the tree-search procedure, including those o f the heuristics, are dealt with in section 5
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2- SIX  G C S P  F O R M U L A T IO N S  .

The aim of this section is to obtain a good lower bound that w ill be embedded in

the tree search procedure . To  achieve this six different integer programming

formulations o f the G CSP  are considered . For each formulation the Lagrangian

relaxation, one o f the most successful integer programming techniques for obtaining

lower bounds , has been applied . A ll problem formulations are based on a network

G t  representative of the G CSP ( G_p(\/̂  Â ) ) except formulation 6 which is based
_ /

on the expanded network G T obtained with algorithm A13 (section 5,chapter4).

To  remind the reader o f the structure o f network G T we consider a 10 

task-GCSP the data o f which are given in table 5-1 and which is represented by 

network G q o f figure 5-1. The dotted lines represent the starting time windows of the 

tasks. Note that only the task-arcs can be represented ( by the segments at the end of 

each time-window). The task time window varies between half an hour (for task 7) to 

20 hours (for task 1). Three crews operating 3 vehicles o f 2 types are assumed. The 

work duty period is 7 hours . Using algorithm A12 of section 4 (chapter 4) we obtain 

network G T , of figure 5-2, representative of the 10 task-GCSP. For convenience the 

task-arcs have been repesented by task nodes and for the sake o f clarity only the 

linking-arcs departing from task node have been represented.



Task

1
2
3
4
5
6
7
8
9

10
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Table 5-1 : A 10 Task-GCSP.

Starting
Time-Window
[minutes]

Duration
[minutes]

Vehicles
Type

[ 60-1260] 135 2
[ 75- 165] 75 1
[ 75-1080] 90 17 2
[ 90- 660] 105 i;2
[105- 840] 60 2
[150- 885] 105 1
[165- 195] 75 1
[255- 735] 90 1
[330-1320] 60 1 ? 2
[345- 765] 150 2
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Figure 5-1 : Network Gq.
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Figure 5-2 : Network G'p.
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2-1 Network Flow Formulation 1.

If we let Xjjk = 1 if  arc (i j) e A;t  is covered by crew k in the optimal solution; 

= 0 otherwise;

then the problem becomes: 
K

k=l A,
(5-1)

k=1,...,K

subject to :

£ v *  2 T  for k=
(i.j)e at

K
S  X xijk = 1 fo rp= l,...,N

(i.j)6Fp k=l

S xijk = X xmik for each node i 6 VT
Je ^  me r_1(i)

2 ^  xSik = S  xiRk = 1 s • source; R  : sink 
i e r (S) i 6 r_1(R)

(5-2)

(5-3)

(5-4)

(5-5)

Xjjk € {0,1} (5-6)

where : K  = number o f crews;

N  = number of tasks;

T  = work duty period.

Fp= set of all arcs of G T whose initial node correspond to task p .

T(i) (resp. r -1© ) = set o f all immediate successors (resp. predecessors) of

n o d e i.

In the objective function , only the costs o f the linking-arcs have been 

considered. The reason for not considering the costs of the other arcs has already been
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explained in chapter 2 (section 2-3). Constraints (5-3) guarantee that each task must 

be covered once and only once by a single crew . This is accomplished by making sure 

that among all the task-nodes that represent task i (i=l,...,N) only one task-node w ill 

be picked-up in the optimal solution . Constraints (5-2) ensure that the length of each 

path o f network G T does not exceed the work duty period. In other words each crew 

is guaranteed that they w ill not be working more than the work duty period. The flow 

conservation at each node of G T is expressed by constraints (5-4) and (5-5).

2-1.1 Two Problem Relaxations .

Tw o straightforward Lagrangian relaxations can be derived from the above 

formulations as follow s:

Relaxation 1 :
>,o

Let us assume Xk (k=l,...,K) and Dp (p=l,...,N) are two Lagrange multipliers 

attached to constraints (5-2) and (5-3) respectively. Relaxing constraints (5-2) and 

(5-3) in a Lagrangian fashion, we obtain :
K  K  N

X<cij+Vij+vxi*- TX v Xv* (5-7)
k=l p=l

subject to : constraints (5-4) and (5-5)

The relaxed problem being a minimum cost network flow problem , it can 

efficiendy be solved by any network flow algorithm [63].

Relaxation 2 :
>/0

Let us assume A.k (k= l,...,K) are the Lagrange m ultipliers attached to 

constraints(5-2) and 8* (k=l,...,K; i e VT) are the Lagrange multipliers attached to
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constraints (5-4) and (5-5). Relaxing constraints (5-2),(5-4) and (5-5) in a Lagrangian 

way ,we get:

Min X  X  <cij+ V ij + 3k * W (5-8)

subject to :

X X x i j k = 1  P = 1 . - . N  (5 -9 )
( i , j ) e F k = l

x i jk e  1 0 . 1 } ( 5 -1 0 )

The relaxed problem can easily be solved by inspection . It has a matrix of the

form:

11.. 1 0 0
0

00
11... 1

0
11... 1

0 11... -1
0 11... 1

2-2 Network Flow Formulation 2 .

N o w , instead of considering variables o f the type x ^  we define the following 

variable:
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Let Xjj = 1 if  arc (i j) is in the optimal solution; 

= 0 otherwise;

The problem becomes:

M in  }  c..x.. JL-i y y
(i,j)eA ,̂

subject to :

(X|j) must form K  paths of length T  or less

(i.j)e Fp

= 1

X xy = X x ji
jeHi) j e p \i)

p= l,...,N

for each node i € VT

X X Si =  X  XjR
ieIXs) j e r_1(R)

K  S : source; R : sink

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

2-2.1 The Tim e Constraints .Expressing linearly the time constraints , using x  ̂, 

is itself a difficult problem . For this , we consider 3 options to represent these 

constraints:

(i) F irst option : It consists o f listing all paths o f G T whose length exceeds T  

(duty period), and then for each such path P express the time constraints as :

I t.x.. y y < T (5-16)

Clearly this option is impractical. The number of such constraints grows exponentially
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with the size of the problem (ie number of tasks).

(ii) Second option : Each path P of length > T  consists of elementary 

subpaths Pj (i=l,2,3,...) whose length is greater than T  but which do not contain any 

subpath of length > T . Thus in the path (of figure 5.3) of length 14hours 15 minutes , 

there are 4 elementary paths (1,2,3,4) ; (2,3,4,5) ; (3,4,5,6) and (5,6,7) .In this 

example T  is assumed to be equal to 360 minutes.

Figure 5-3 : An Infeasible Path

1h

Clearly by imposing the time constraints on all these elementary paths of G T , 

we im plicitly impose them on any path of length greater than T  . Hence instead of 

considering all the paths of G T of length greater than T  , we need only consider the 

"elementary" paths and add to the problem the following constraints :

y ,  t.jX» < T  p : elementary path (5-17)
p

Unfortunately we had to discard this approach because the number o f such paths 

is still large .Thus for a G CSP of Ntasks and M  vehicles' types the number of such 

constraints is approximately :

FN M a5

where F  is a constant, a is the average number of nodes that can be linked with a 

node.
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(iii) T h ird  option : A  CSP version of this option has been given in chapter2, 

section 2-5.7.We saw in section 5 (chapter 2) that given a path whose length exceeds 

the work duty period the corresponding time constraint is of the form :
y, x.. ^ h£-4 y
A(P)

where A(P) is the set of linking-arcs of P and h is a suitable constant determined by 

algorithm A6.

2-2.2 The Form ulation  .

If we let Xy = 1 if  arc(ij) is in the optimal solution;

= 0 otherwise;

The problem becomes:

Min X V i i  (5' 18)

subject to :

y  x . < hu Q c L (5-19)
(P a)eA(Q)

-

r-HII>< 55rHIIex (5-20)
ftj)e Fp

X x« = X v for each node i € VT
jeTTi) per Vo

X XSi = X XiR = K
iertS) ier'Vl)

(5-21)
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x.j e {0,1} (5-22)

where L  is the set of all paths whose length exceeds the work duty period and where 

K,N,T,Fp,r(i) and r -1®  are as defined in section 2-1. S and R  are the source and the 

sink o f G t  respectively.

Like the first type network flow formulation, only the costs of the linking-arcs 

have been considered in the objective function. The time constraints (5-19) ensure that 

each crew schedule w ill not take more than the work duty period . The covering 

constraints (5-20) guarantee that each task of the GCSP w ill be covered only once by a 

single crew. Finally , we have the classical network flow constraints (5-21) which 

express the conservation of flow at each node of network G T.

2-2.3 The  Solution Technique .
>,o

If we let Xk(k=l,...,t) and '0p(p=l,...,N) be the Lagrange multipliers attached 

to constraints (5-19) and (5-20), the relaxed problem (LP), a minimum cost network 

flow problem , becomes :

where t=!LI.

Constraints (5-19) which express the restriction on the maximum length of 

optimal paths (of G T) cannot all be added to the G CSP at the same time because their 

number increases exponentially with the size o f the problem (ie number o f tasks). 

Consequently, they are added when necessary and relaxed in a Lagrangian way. 

Algorithm A7 has been used to determine a lower bound to the problem.

N
(5-23)

subject to :

constraints (5-21) and (5-23)
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2-3 An Assignment Formulation . 

2-3.1 The Formulation .

If we let Xjjk = 1 if  arc (i j) e AT is covered by crew k in the optimal solution; 

= 0 otherwise; 

then the problem becomes:

X X v u k  (5-24>
Aj. k=l

subject to :

X V u k ^ T  k = l.- .K  (5-25)
Arp

Z £ x ijk = l  p = l... N  (5-26)
F k=l 

P

X xijk =  1 v i e  VTi€ \Ap

X * ij k  = 1  V i e  V
je VT

xijk€ {0,1} (5-28)

Constraints (5-25) and (5-26) are similar to constraints (5-2) and (5-3). Constraints 

(5-27) are the classical assignment constraints.
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It is worthwhile noting that when we express the cost assignment matrix , we 

should consider the follow ing:

(a) Cy = 0 if  i=j;

(b) C” = oo if  there is no arc linking i to j or if  i=j=R or if  i=j=S;

(c) we assume there is a dummy arc (R,S) o f cost 0 (ie CR S  “  0).

2-3.2 Exam ple .

Let us consider the G CSP represented by the network G  o f figure 5.4. Assume 

T= 5 hours and IN TER  = 1 hour. Each time-window is divided into small intervals of 

1 hour duration each.

The subnetwork G T corresponding to vehicle's type 2 is given in figure 5.5 and 

the assignment matrix is represented in table 5.2 .

2-3.3 The Relaxed Problem  .

If we let X^ (k=l,...,K) and t)D (p=l,...,N) be the Lagrange multipliers attached 

to constraints (5-25) and (5-26) respectively, the relaxed problem becomes :

K

M in  y , y  fe
w

(5-29)

subject to :

constraints (5-27) and (5-28)

Clearly this is an assignment problem .



Chapter 5 167

Figure 5-4: A  3 Task-GCSP.

0 60 120 180 240 300 360 420 480 540 600

1.20 0

Figure 5-5: Subnetwork G T.

Table 5-2 : The Assignment Cost Matrix.

S 1 2 3 4 5 6 T
s yo 0 0 0 0 0 0 oo

1 oo 0 Oo oo 60 120 00 0
2 oo oo 0 oo OO 60 120 0
3 00 O0 OO 0 OO oo 60 0
4 oo CP OO oo 0 oo OO 0
5 oo do oc oo OO 0 SO 0
6 0° oo OO oo oo oo 0 0
T oo oo OO OO oo oo Oo oo
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2-4 A Shortest Path Formulation .

2-4.1 The Formulation .

let X|jk = 1 if  arc (i j) e AT is covered by crew k in the optimal solution;

= 0 otherwise; 

the problem becomes:

K

Ar k=l 

subject to :

(5-30)

I v » S T  k=1’- - Kk T
(5-31)

K

S X xijk = i  p = i - - n
F k=l 

P

(5-32)

for k= l,...,K  shortest path constraints (5-33)

XijkS {0,1} (5-34)

Constraints (5-31) and (5-32) are-exactly the same as constraints (5-2) and 

(5-3). A lso in the objective function only the costs o f the linking-arcs have been 

considered.
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2-4.2 The Relaxed Problem .

>0
If we let Xfc (k=l,...,K) and 'Op(p=l,...,N) be the Lagrange multipliers attached 

to constraints (5-31) and (5-32) respectively, the relaxed problem becomes :

M in X £ < cij+ V ij+vi>x*
Gj, k=l

K N

- t 2 A - 2 > p
k=l p=l

(5-35)

subject to :

constraints (5-33) and (5-34)

2-4.3 Solving The Shortest Path Problem .

Since graph G T is acyclic , there exists a numbering of its nodes such that there 

exists an arc directed from i to j only if  i < j . Assuming that the nodes are so 

numbered we have applied dynamic programming [23,24,57,122] which is :

Uj = shortest path from S to node j 

U s = 0
U . = min { U k + a , .} , j= 1 ,2 ,...,N ,R  (5-36)

J k<j J

akj is the cost of the arc that links node k to node j ; 

akj = +oo if  there is no arc between k and j ; 

aSj = ajR = 0 for all j e VT ;

Now if  we let Ej = set of all direct predecessors o f j , equations (5-36) become :

us=o
II = min { l^+ a ..} , j= l ,2 ... N ,R
J ke E. Jj

(5-37)
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The corresponding algorithm (based on (5-37)) runs in time 0(n2) .

2-5 A Shortest Weight-Constrained Path Formulation .

2-5.1 The problem Formulation .

The shortest path formulation described in the previous section can be written as 

follow s:

K

(i.j)€AjK=i

subject to :

K

F k=l 
P

shortest path constraints

Aj

. shortest path constraints
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X  V^jK - T
/Vt
shortest path constraints

Xjjk6 {0,1}

Alternatively it can be formulated as:

M in
K
ZmU Cij?Sjk (5-38)

subject to :

X X xijk = 1 P - 1 - - N  (5-39)
F k=l 

P

fork= l,...,K  shortest weight-constrained path constraints (5-40)

Xjjk 6 {0,1} (5-41)

2-5.2 The Relaxed Problem .

If we let Xp (p=l,...,N) be the Lagrange multipliers attached to constraints 

(5-39), the relaxed problem becomes:

X  £  <cij+ v x*A'T —̂1
(5-42)
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subject to : constraints (5-40) and (5-41)

This is a shortest-weigth-constrained path problem [56].

2-5.3 S o lv in g  the Shortest W e ig h t-C o n stra in e d  P ath  P rob lem . 

A lgorith m  A14.

Meggido[l 18] has proved that this problem is NP-complete even if  the graph G  

is directed . How ever, nothing has been said about the case where G  is acyclic . In 

what follows we w ill not attempt to prove (or disprove) that it is also NP-complete for 

an acyclic graph but we w ill give a procedure for finding the shortest 

weight-constrained path in G T that runs in time 0(M n2) where:

M  =
T  - min {dj} 
___ i__

IN TER
(5-43)

in which dj is the duration of task i ;

T  is the work duty period;

IN TER is the time duration between 2 consecutive nodes (of G T) 

corresponding to the same task.

In addition to the cost c- associated with arc (i,j) e G T, let arid V i be two 

weights associated with arc (i j)  and node i respectively .And let the weight of a path

P=(S,i1,i2»-,im,R) b e :

W  = W .
P S1i

+ V. +W . . + V. +.‘1 1112 •+ Vm + V mR

Theorem : The procedure described below for finding the shortest path of weight W  

less than or equal to T  .from the source S to the sink R,runs in time 0(M n2) where M  

is as defined in (5-43).
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(A) - Assum ptions .

(a) The planning period of 24 hours is divided into small intervals of time (of 15 

minutes,or 30 minutes,..etc...). We w ill refer to these intervals as time-units . In all 

our computational results we assume a time-unit o f 15 minutes;

(b) The window starting time W S T j, the window finishing time W FTi , and the 

duration dj of each task i are given as multiples of the time-unit;

(c) W ST j'SjW FT j's and dj's are expressed in terms o f the time-unit;

(d) In G T , to each node j we associate the corresponding time Kj.

(B) - A lgorithm  A14.

W e saw , in section 4 , that in an acyclic graph , dynamic programming 

equations for finding the shortest path from node S to node n are:

Vj = shortest path from node 1 to node j 

v1 = 0
v. = min {v .+ a ..)  (j= l,...,n )

k<j J

In our case they become :

Vj = shortest path from the source S to node j

vs = 0 (5-44)
v. = min {v .+  a..} (j=1,...,R)
J k e F .  J

J

where Fj = set of nodes k (k<j) of G T that are linked to j .

Now to find the shortest path (of weight smaller than or equal to T) from S to R  

we need to determine the shortest paths (of weight<T) from S to all nodes of G T.

In the shortest path (of weigth<T) from S to node j the first node i after S is 

such that:

w ith:

Kj-Mj < Kj < Kj (5 -4 5 )
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T - V .
M . - - - - - - J-

J IN TER

If we let E k be the set of nodes that satisfy (5-45) and if  we assume a dummy source 

Sk that is linked to all nodes o f E k with arcs of cost and weight zero, we w ill have

Finding the shortest path 

(of weight<T)ffom 

S toj

Finding the shortest 

path from Sk to j

Hence dynamic programming equations for finding the shortest path from Sk to

nodej become:
(k)U m = shortest path from Sk to m e E k

U„ =0 (5-46)

U ®  = min { + a^} m e E j ,
m he F  m

Now if  we generalize this idea and define

Ek = ( ie G t  / k < K j < k+T } k=l,...,kmax

where M| is as defined in (5-43) and
_ 1440 - T  

max “  IN TER

and if  we assume dummy sources Sk(linked to all nodes o f E k with arcs o f cost and 

weight zero) fk=l,...,kmax dynamic programming equations for finding the shortest

path (of weight less than or equal to T ) , from S to R , are:
(k)U : = shortest path from Sk to j e Eĵ

U- =0

ne r1.

(5-47)
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Clearly the shortest path (of weight < T) from S to j is : 
k.

U .3 where k. = K . - M . 
j  J j j

and the shortest path (of weight < T) from S to R  is :
k.

U T = min {U.J + aT ) (5-48)

(C)- W orst Case Analysis o f A lgorithm  A14 .

In the worst case and for each node j of G T we have to compute U j, M j times. 

As far as computing time is concerned, this is equivalent to applying the algorithm for 

finding the shortest path (in G T) from S to R  , M  times (M  is as defined in (5-43)).

Hence we can say that Algorithm A16 , based on equations (5-47),(5-48) runs 

in time 0(M n2) .

2-6 A  G raph  Expansion Based Form ulation .

2-6.1 The Problem  Form ulation .

If we let Xjj = 1 if  arc(ij) is in the optimal solution;

= 0 otherwise;

The problem becomes:

subject to :

(5-49)

F
P

X..y = 1 P = 1.....N (5-50)
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x . for each node i e V 
P1

(5-51)

(5-52)

where G T is the expanded version of G T obtained as output of algorithm A13 ;
A

N  is the number o f tasks;

K  is the number of crews ;

T(i) (resp. r^ i))  is the set of successors (resp.predecessors) of node i ;

Fp is the set of nodes of G T correspnding to task p .

This formulation has already been presented in chapter 4 (section 4). It is based 

on network G T , which is the expanded version o f G T , obtained by applying 

algorithm A13 to G T. In chapter 4 , the problem was solved by relaxing the integrality 

constraints (5-52) and using an LP  package . In this section we w ill be relaxing 

constraints(5-50) in a Lagrangian fashion and solving the resulting minimum cost 

network flow problem using a netflow package which can handle problems of much 

larger size than the ones solved with the LP  code.

2-6.2 The Relaxed Problem .

If we let Xp(p=l,...,N) be the Lagrange multipliers attached to constraints 

(5-50) the relaxed problem becomes:
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N

M in 'V  (c..+ XJx.. -JLav ij v ij JLu p
,  P=1

(5-53)

subject to :

constraints (5-51) and (5-52)

where constraints (5-51) and (5-52) are the network flow constraints.

3- Computational Results of the Six GCSP's Formulations .

3-1 The Test Problems .

A ll the results considered in this chapter have been obtained by testing all the 

different formulations and algorithms on ten randomly generated GCSP's o f size 

varying from 10 to 50 tasks . Tables 5-3 and 5-4 give the size , in terms of number of 

task-nodes and arcs , of network G T representative of the G CSP  and its expanded 

network G T respectively.

As we saw in the previous section all the first five GCSP's formulations were 

based on G T whereas the graph expansion based formulation was based on G T.

Depending on the number n of tasks of the GCSP considered each problem has 

been assumed to have the following number V  of vehicle types:

(a) if  n < 15 then V  = 2

(b) if  20 < n < 30 then V=3

(c) if  30 < n < 45 then V=4

(d) if  n = 50 then V=5



Table 5-3 : Size of Network G of the 10 Test-Problems

Problem NumberofTaBks
Number of Vehicle Types

NumberofCrews Network 1 Network 2 Network 3 Network 4 Network 5 Number of Total Vertices
Number of Total Arcs

1 5 2 2 1644 613 * * * 148 2257
t 90] [ 58]

2 10 2 3 2987 3891 * * * 238 6878[113] [125]

3 15 2 4 5241 10309 * * * 305 15550[128] [177]

4 20 3 5 5551 6344 19212 * * 517 31107[130] [142] [245]

5 25 3 6 7532 7946 24018 • * 582 39496[150] [160] [272]

6 30 3 7 15667 16935 11831 * * 633 44433[218] [226] [189]

7 35 4 8 7852 10826 18882 13934 * 788 51494[167] [181] [236] [204]

8 40 4 10 4365 12420 14035 30902 * 848 61722
[138] [190] [207] [313]

9 45 4 12 13380 14697 19905 36029 * 956 84011[149] [217] [243] [347]

10 50 5 12 53404 18718 16715 14748 12339 1220 115924
[302] [238] [247] [225] [208]



T a b le 5 -4  : S i z e o f  N e tw o rk  G o f  t h e  1 0  T e s t -P r o b le m s •

P ro b le m
Number

o f
T a s k s

Number o f  
V e h i c l e  

T y p e s

Number
o f

C rew s

T o t a l  
Number o f  

N odes

T o t a l  
Number o f  

A r c s

Maximum 
N odes i n  a  

N e tw o rk

Maximum 
A r c s  i n  a  

N e tw o rk

1 5 2 2 17 0 8 1 0 3 3 0 58 5 6 1

2 1 0 2 3 350 4 4 0 7 7 0 86 1 5 7 2

3 1 5 2 4 54 30 1 2 1 6 2 4 1 7 0 5 3 7 3

4 20 3 5 9 9 52 2 3 5 8 3 6 2 1 9 9805

5 2 5 3 6 1 1 3 6 8 3 2 1 2 7 5 2 5 3 1 3 1 8 4

6 30 3 7 1 3 7 2 7 4 6 13 3 0 2 1 8 10 9 0 8

7 3 5 4 8 18 0 8 2 6 2 3 1 4 5 2 5 6 1 5 7 8 1

8 40 4 1 0 20440 8 15 0 8 3 283 18 6 5 3

9 45 4 1 2 2 10 6 9 8 7 2 5 3 8 2 8 5 1 9 1 2 5

1 0 50 5 1 2 2 1 7 6 6 9 6 4 3 2 5 2 1 2 19 5 9 0
XJ
VO
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Table 5-5 : Computational Results for the Network Flow Formulation 1 .

Problem NumberofTasks
Number of Vehicles 
Types

Numberof
Crews

Value of
Optimal
Solution

(1]RunningTime+
[1]LowerBound

[1]Gap
[%]

[2]RunningTime+
12]LowerBound

[2]Gap
[%]

1 5 2 2 45 2.27 40.19 10.75 * * *

2 10 2 3 105 4.46 99.53 5.21 • * *

3 15 2 4 165 8.94 156.60 5.09 * * *

4 20 3 5 225 * * * 15.80 208.82 7.19

5 25 3 6 285 * * * 20.01 250.74 12.02

6 30 3 7 345 * * * 22.44 331.41 3.94

7 35 4 8 405 * * * 26.34 396.45 2.11

8 40 4 10 450 * * * 31.48 371.88 17.36

9 45 4 12 495 * * * 30.52 473.37 4.37

10 50 5 12 570 * * * 45.35 522.01 8.42

+ Seconds of CYBER 855 (Fortran Compiler).

ooO

Chapter 5



T a b le  5 -6  : C o m p u tatio n a l R e s u lt s  f o r  Network Flow  F o rm u la tio n  2 .

Problem
Number

o f
T a sk s

Number o f  
V e h ic le s  

Types

Number
o f

Crews

V a lu e  o f
O p tim al
S o lu t io n

Running
Tim e*

Lower
Bound

Gap
[%]

1 5 2 2 45 1 .5 6 4 0 .0 9 1 0 . 9 1

2 10 2 3 10 5 2 .2 0 9 2 .0 5 1 2 .3 3

3 1 5 2 4 16 5 3 .6 6 7 13 8 .9 8 1 5 .7 6

T a b le  5 -7  : C o m p u tatio n a l R e s u lt s  f o r th e  A ssignm ent F o rm u la tio n e

Problem
Number

o f
T a sk s

Number o f  
V e h ic le s  

Types

Number
o f

Crews

V a lu e  o f
O p tim al
S o lu t io n

Running
Tim e*

Lower
Bound

Gap
[%]

1 5 2 2 45 2 .3 2 4 0 .8 9 9 .1 4

2 10 2 3 10 5 5 . 1 2 9 9 .6 1 5 . 1 2

3 1 5 2 4 16 5 1 0 .7 5 1 5 7 . 0 1 4 .84

+ Seconds o f  CYBER 855 (F o r tr a n  C o m p iler)
oo
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Table 5-8 : Computational Results for the Shortest Path Formulation .

Problem NumberofTasks
Number of Vehicles Types

Numberof
Crews

Value of
Optimal
Solution

[1]RunningTime+
tl]LowerBound

[1]Gap
[*]

[2]RunningTime+
[2]LowerBound

[2]Gap
[%]

1 5 2 2 45 0.97 41.15 8.55 * 44.48 1.14

2 10 2 3 105 2.62 99.81 4.94 • 102.73 2.16

3 15 2 4 165 5.45 157.46 4.57 * 163.42 0.97

4 20 3 5 225 11.24 209.61 6.84 * 218.00 3.11

5 25 3 6 285 14.36 251.57 11.73 * 276.42 3.01

6 30 3 7 345 16.35 335.20 2.84 • 344.33 0.19

7 35 4 8 405 18.72 335.38 17.19 * 388.35 4.11

8 40 4 10 450 22.88 419.13 6.86 * 438.17 2.63

9 45 4 12 495 23.44 450.60 8.97 * 469.06 5.24

10 50 5 12 570 30.13 550.79 3.37 * 556.78 2.32

+ Seconds of CYBER 855 (Fortran Compiler).
[1] The initial Lagrange multipliers are set to 0 .
[2] The initial Lagrange multipliers are set to - min c-.i ‘

ooto
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T a b le  5 -9  : C o m pu tatio nal R e s u lt s  f o r  th e  S h o r te s t  H e ig h t C o n stra in e d  P ath  F o rm u la tio n .

■ 1 ' ■ 1 - ■■■ 

Problem
Number

o f
T a sk s

Number o f  
V e h ic le s  

Types

Number
o f

Crews

V a lu e  o f
O ptim al
S o lu t io n

Running
Time+

Lower
Bound

Gap
[%]

1 5 2 2 45 2 .5 9 4 4 .2 1 1 .7 6

2 10 2 3 105 10 .6 2 10 4 .8 0 0 .1 9

3 1 5 2 4 16 5 2 1 .4 5 1 6 2 .3 7 1 .5 9

4 20 3 5 225 6 1 .2 4 2 2 1 .0 6 1 . 7 5

5 25 3 6 285 7 9 .3 7 2 7 8 .9 0 2 .1 4

6 30 3 7 345 8 0 .3 6 3 4 1 .6 5 0 .9 7

7 35 4 8 405 8 2 .8 7 404.84 0.04

8 40 4 10 450 14 7 .8 8 444.06 1 .3 2

9 45 4 12 495 1 3 0 .7 6 490.94 0 .8 2

1 10
50 5 12 570 1 9 5 . 1 3 558 .8 9 1 .9 5

+ Seconds o f  CYBER 855 (F o r tra n  C o m p ile r ) .
oo
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Table 5-10 : Computational Results for the Graph Expansion Based Formulation •

Problem NumberofTasks
Number of Vehicles Types

NumberofCrews
Value ofOptimalSolution RunningTime+ LowerBound Gap

[%]

1 5 2 2 45 8.04 44.01 2.20

2 10 2 3 105 25.81 104.33 3.50

3 15 2 4 165 72.43 164.09 0.55

4 20 3 5 225 142.79 222.95 0.91

5 25 3 6 285 192.77 282.18 0.99

6 30 3 7 345 267.87 340.10 1.42

7 35 4 8 405 362.67 403.54 0.36

+ Seconds of CYBER 855 (Fortran Compiler)•
oo4̂
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3-2 The Generation Process .

For each task i , le t :

W STj be the window starting time of task i ;

W FTj be the window finishing time of task i ; 

dj be the duration o f task i ; 

then we have:

W STj = 1440 a  (minutes)

W FTj = W STj + (1440-WSTi)a (minutes)

dj = 45 + 120a (minutes)

where a  is a randomly generated number in the range [0,1].

The work duty period was assumed in all cases to be equal to 7 hours (ie 420 minutes) 

and the smallest time interval was taken to be 15 minutes.

3-3 Some Details about the Lagrangian Relaxation .

Except in the case o f the shortest path and shortest weight constrained path 

formulations the initial Lagrange multipliers have been set to zero . In all cases , the 

step size o f the subgradient optimization was taken to be equal to 4 and the value of the 

initial upper bound was that given by the heuristic (see section 5-4). For all relaxations 

we performed 20 subgradient iterations. However for the second relaxation of the first 

type network flow formulation 100 subgradient iterations were performed.

3-4 Comparison of the Computational Results .

For each problem the following pieces o f information have been considered 

(tables 5-5 thru 5-10):

(i) the size of the problem in terms of the number o f tasks (column 2) and the
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number o f crews (column 4);

(ii) the number o f vehicle's types (column 3). It is worthwhile noting at this 

point that the assignment of tasks to vehicle's types has already been explained in 

section 6 ( chapter 4);

(iii) the value of the optimal solution (column 5) was obtained later after the use 

of the tree search procedure (see sections 4 and 5).

For each formulation and for each problem we presented the follow ing 

information:

(iv) the value o f the lower bound obtained by relaxing the corresponding 

formulation in a Lagrangian fashion;

(v) the gap between the lower bound and the optimal solution value . This gap 

gives an idea o f how far is the lower bound from the optimal solution value . It is 

equal to :
optimal solution value - lower boundgap = —i - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

optimal solution value

(vi) and finally the computing time expressed in CP seconds of the C Y B E R  855 

using the fortran compiler FTN5 .

The following general remarks concerning each formulation can be derived from 

tables 5-5 thru 5-10.

3-4.1 The F irst Type Netw ork Flow  Form ulation (Table 5-5) .

Both relaxations of the G CSP have been considered to determine a lower bound 

to the problem . W ith the 1st relaxation only problems o f up to 15 tasks could be 

tackled. This was due to the limitations imposed by the network flow package which 

is considered quite effective in solving network flow problems . For larger problems 

of up to 50 tasks we needed to use the second relaxation which does not require any 

special purpose package since it can easily be solved by inspection.
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It is worthwhile noting that the table does not compare the performance of the 2 

relaxations since it can easily be proved [68] that the bound obtained with the 2nd 

relaxation can be in the best case as good as the one obtained with the first relaxation. 

The use o f the second relaxation was motivated by our wish to solve larger GCSP's .

3-4.2 The Second Type Network Flow Formulation (Table 5-6).

Like the previous formulation and due to the same reason only problems of up 

to 15 tasks could be tackled with the network flow package used . It is worthwhile 

mentioning here that each time we add new time constraints the Lagrangian relaxation 

procedure is started by setting the initial multipliers equal to those which have 

produced the best bound with the previous problem (ie before adding the current time 

constraints) .

3-4.3 The Assignment Formulation (Table 5-7) .

Several efficient algorithms and packages have been devised to solve the 

assignment problem [39] . Due to the limitations imposed by the package only 

problems of up to 15 tasks could be tackled.

3-4.4 The Shortest Path Formulation (Table 5-8) .

Table 5-8 compares the performance of the Lagrangian relaxation o f the shortest 

path formulation when the Lagrange multipliers are set to 0 and when they are set to 

the lowest arc’s cost. C learly, in the latter case we can see that the convergence to the
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optimal solution (although not completely achieved) is much faster.

3-4.5 The Shortest Weight Constrained Path Formulation (Table 5-9).

Like the previous formulation all the 10 randomly generated problems of size 

varying between 10 and 50 tasks could be tackled . Taking into account the better 

performance o f the Lagrangian relaxation o f the shortest path formulation when the 

multipliers are set initially to the minimum arc's cost we decided to adopt the same 

strategy with this formuation of the G C S P .

3-4.6 The Graph Expansion Based Formulation (Table 5-10).

Due to the limitations imposed by the network flow  package used , only 

problems of up to 35 tasks could be considered. Comparing these results (table 5-10) 

with those o f tables 5-6 and 5-7 the natural question that comes to one's mind is :
A*/

"knowing that the size o f the expanded network G T is much larger than that of G T 

why is it that with the network flow formulation based on G T only problems of up to 

15 tasks could be tackled while with this approach which is based on G T much larger 

GCSP's could be handled ?". This is due to the fact that the resulting minimum cost 

network flow problem is solved not on the entire network (whether G T or G T) in one 

go but on the corresponding subnetworks (see section 5,chapter 4) and since the 

subnetworks o f G T are much smaller than those o f G T (although many more in 

number) this answers the above question.
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3-4.7 Choosing the M ost Perform ant Form ulation  to be Em bedded in 

the Tree Search Procedure .

Tw o formulations have been chosen as candidates to be embedded in the tree 

search procedure . As far as the quality o f the lower bound and the size o f the G CSP  

are concerned the shortest weight constrained path formulation is clearly the one which 

has performed better than all the others. It w ill be the first candidate formulation to be 

embedded in the tree search procedure (section 4) for obtaining lower bounds.

The choice o f another candidate was motivated by the fact that a lot of 

computing time was required to obtain this bound in the case of the shortest weight 

constraint path . This other candidate is the shortest path formulation for which a much 

smaller computing time was necessary to get a lower bound not as good as that of the 

first candidate but of the same quality as all the others.

4 - The Tree Search Procedure [7,20,50,101].

4-1 Description o f the Tree Search A lgorithm  .

In this section we w ill give a general description o f the general tree search 

algorithm. The details are considered in the other sections.

Step 0 : Apply a heuristic algorithm to determine a feasible solution to the problem ie 

an upper bound (say Z u) ; go to step 1;

Step 1 : Consider node 0

* Determine a lower bound to the problem by solving the relaxed problem (shortest 

path or constrained shortest path) ;let be this lower bound;
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* If Z b=Zu STOP ,the solution produced by the heuristic is optimal;

* E ls e , paritition node 0 into nodes 1,2,...(see section 4.5);

* Set i= l and go to step 2 ;

Step 2 : Consider node i

* Reduce the size o f the graph corresponding to node i (see section 4.6);

* Solve the relaxed problem (see section 4.11)

* G o to step 3 ;

Step 3 : Fathoming tests

* If node i is fathomed go to step 4 ;

* E lse , go to step 5 ;

Step 4 : Backtracking Process

* Backtrack to ancestor's nodes;

* Set i to be the first non-explored node(and non-fathomed);

* In case all the nodes have been fathomed , STO P , the optimal solution to the 

problem is the feasible one with minimum cost;

* Else , go to step 2 ;

Step 5 : Branching process

* G o to step 6 ;

Step 6 : Partitioning process

* Partition node i into nodes i^ ,. . .

* Set i= ij and go to step 2 ;

4-2 Comparison of Two Heuristics .

4-2.1 A Greedy Heuristic .

The algorithm consists o f the following steps:
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Step 0 : * Set R=0 ; i=0

* For each type of vehicle pj (i=l,...,V) , form a list LIST(i) of all tasks 

that can be covered by type p4 ;(V is the number of vehicle types);

* Go to step 1;

Step 1 : * Set i= i+ l; consider type o f vehicle P j; go to step 2;

Step 2 : * Set R=R+1; form route R ; go to step 3 ;

Step 3 : * Remove all the tasks of R  from LIST(j), j=i,...,V ;

* if  LIST(i) is empty go to step 4 ; else go to step 2 ;

Step 4 : * If LIST(j) = 0 for j= i+ l,...,V  STOP ;else go to step 1 .

The main step in the above algorithm is step 2 which consists of forming route R  . It 

can be described as follows : " Let i* be the last task in route R  . Also let STi+ and 

FTj* be respectively the starting and finishing times of task i* in route R .

Step 2-0 ; * Determine the non-assigned task iQ which can be covered by the current 

vehicle type and which has the least window starting time W S T j;

* Set i* = i0 and STj* = W S T j; go to step 2-1;

Step 2-1 : * Among the non-assigned tasks which can be covered with the current 

type of vehicle determine the one (say ic) which satisfies both following properties :

(a) task ic can be linked to task i* ie FTj* < W FT i ;

(b) the addition o f task ic to route R  w ill not produce an overflow of the route R  

ie the length o f the resulting path w ill not exceed the work duty period;

* Go to step 2-2;

Step 2-2 : If no task has ben found in step 2-1 return to the main algorithm ie 

step3;Else set i* = ic , STj* = minimum( WSTj,FTj* ); go to step 2-1.

Exam ple : If we apply the above algorithm to the 10 task-GCSP of figure 5-1 we 

obtain the following solution :

* Vehicle type 1 : It consists of the following two routes :
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Route 1 :

- Task 2 starts at time 75 ;

- Task 7 starts at time 165 ;

- Task 4 starts at time 255 ;

- Task 8 starts at time 375;

Route 2 :

- Task 6 starts at time 150;

- Task 3 starts at time 270;

- Task 9 starts at time 385;

* Vehicle type 2 : It consists of the following route :

Route 3 :

- Task 10 starts at time 345 ;

- Task 5 starts at time 510;

- Task 1 starts at time 585 ;

Total Cost : 105

4-2.2 A  H euristic Based on The Shortest W eight Constrained Path .

This heuristic is based on an adapted version o f the approach described in 

section 2-5.

The problem with the procedure suggested in that section which consists of 

finding the shortest weight constrained path in G T is that some tasks might be 

repeated- By this we mean that in that shortest path we might find two nodes (or more) 

corresponding to the same task.

In what follows we first suggest a method of tackling this problem (ie finding 

the shortest weight constrained path without repeated tasks) and then we describe the 

corresponding heuristic for finding a feasible solution to the G C S P .
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(A) - F in d in g  the Shortest W eight Constra ined Path w ithout Repeated 

Tasks .

The algorithm of section 5 was based on the following dynamic programming 

equations:

U ®  = shortest path from Sk to Eĵ

U„ = 0 (5-47)

J le  F. 1 *
J

where Ek,Fj and Sk are as defined in section 2-5.3 .

Now if  we assume T  = 7 hours and the minimum task duration equal 1 hour , 

then each route w ill contain at most 5 tasks (the minimum cost o f linking 2 tasks being 

15 minutes) .Hence in any feasible path of G T , each node k cannot have more than 4 

task-parents .A  task-parent is defined as follows :

"if a path P o f G T consists of nodes P=(i 1 2̂ 3̂4445) ^  F=(fi»f2^3»^4^5) *s

corresponding set o f tasks then fj (j=l,...,4) is called the task-parent o f nodes

ij+l»ij+2»—45 • Consequently , if  we define :
/

Fj = { k<j / k is linked to j and the task corresponding to j is not a task-parent of K }
/

then equations (5-47) with Fj replaced by Fj w ill give the shortest weight constrained 

path, without repeated tasks, from the source S to the sink R .

Before going to the next section, it is worthwhile noting that the corresponding 

procedure still runs in time 0(n2) .

(B) - The  A lgorithm  .

(i) Assum ptions . It is clear that with the current cost coefficients the shortest 

weight constrained path , without repeated tasks , from S to R  w ill have cost zero . 

This is because S and R  are linked to all nodes o f G T with arcs o f cost 0 . For this let
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us assume C j^  = max and let us define new costs: 

cij= cij-cmax for all (i j)  E G T

This implies that the new costs are non-positive. By choosing the costs in that way we 

can achieve actually two aim s:

(i) minimze gap = duty period - length of route . Hence we w ill use the minimum 

number o f crews to cover all tasks;

(ii) minimize the total cost.

(ii) The  A lgorithm

Step 0 : Let G j,...,G m be the subnetworks of G T corresponding to the m types of 

vehicle; G o to step 1

Step 1 : For each i=l,...,m  determine the shortest weight constrained path PA without 

repeated nodes in G i ; Go to step 2 ;

Step 2 : Let P* be the shortest path among and let F* be the corresponding

set o f tasks ; Remove all the nodes corresponding to the tasks of F* from all Gj's ; Go 

to step 3 ;

Step 3 : If all G A 's are empty S T O P ; Else go to step 1 .

4-3 A  Sim ple Reduction Test .

The size of network G T can be reduced further by eliminating the arcs that have 

no chance to be in the optimal solution . The following is a very simple test that has 

proved to be quite efficient.

Consider an N  task- K  crew G CSP  . In graph theoretic terms , a feasible 

solution Xq o f the problem consists o f K  paths o f G T containing N  nodes 

corresponding to the N  tasks. The natural question that comes to mind i s h o w  many 

non-required arcs does Xq possess?". It can easily be proved that x0 consists o f N -K
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linking-arcs. Now assume we have a feasible solution Xq with value Zq . What is the 

maximum cost cmax an arc o f Xq can have ?. Let cmin be the minimum cost of a 

linking-arc of Xq. Since Xq has got exactly N -K  linking-arcs, in the worst case N -K -l 

of these arcs w ill have cost cmin. Hence,

W  < *0 - (N -K-l) Cmin (5-54)

in our case we have made the assumption in all our problems that c ^  =15 minutes . 

Hence any arc o f G T whose cost violates condition (5-54) is eliminated since it w ill 

have no chance of being in the optimal solution.

In the tree search , the feasible solution Xq is at first provided by one o f the two 

heuristics suggested in section 4-2 . In the process o f going down the tree , whenever 

a better feasible solution is found , constraint (5-54) is applied to remove more arcs 

from G t  and thus reducing its size . This is particularly useful when we know that, in 

general ,in a tree search procedure the optimal solution is often found at the early stage 

of building the tree.

4-4 The  B ranching Process .

A t first we tried the classical branching which consists of branching on a single

variable. The results obtained were not satisfactory. S o , we decided to adopt another

branching strategy which can be described as follows :

Consider the following set o f constraints which are found in both the shortest

path formulation and the constrained shortest path formulation:
K

X X V  = 1 P= 1- - N  (5-55)
F k=l 

P

where N  is the number of tasks o f the problem;

K  is the number of crews;

Fp is the set o f arcs ,o f network GT, whose initial node corresponds to task p;
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Xjjk = 1 if  arc (i j)  is covered by crew k in the optimal solution;

= 0 otherwise.

These constraints ensure that each task must be covered once only by a single

crew . They mean that among all the arcs leaving all the nodes of G T, corresponding to

task p (p=l,...,N) , only one arc should be picked up in the optimal solution .

Now if  we want 2 tasks p and q (p precedes q) to be directly linked in the

optimal solution we need to impose the following constraint:
K

X  X  xijk = 1 (5-56)
F k=l p.q

where Fp q is the set of all arcs of G T whose initial node corresponds to task p and 

terminal node to task q .

If we do not want p and q to be directly linked in this order we just have to 

im pose:
K

X X V  = 0 (5-57)
0J)eFp qk=l

Having chosen 2 tasks p0 and qQ (how ? see section 4-7) our branching strategy is as 

fo llow s:

Before saying something on the choice o f tasks p0 and qQ , and before giving
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more details about the branching strategy (see section 4.7) we first consider the 

partitioning process.

4-5 The  Partition ing Process .

W e saw in the reduction test that an arc o f G T can be eliminated if  it has length 

greater than:

cmax = z0 " (N-K-l) Cm[n
where Zq is the value o f the best feasible solution found so fa r , cmin is the minimum 

arc's cost . For our computational results we have noticed that for all problems 

considered the maximum length o f an arc does not exceed 60 minutes ie 

cmaY=60minutes . Hence with the assumption that the costs of the arcs are multiple of 

15 minutes the only values it can take are 15,30,45 and 60 minutes . This encouraged 

us in choosing the following partitioning strategy :

Going back to the branching technique and considering constraint (5-56), if  we 

take into account the fact that the only values an arc o f Fp can take are 15,...,M  

(where M  can be equal to 15 or 30 or 45 or 60) then node i o f the tree is partitioned as 

follows : Figure 5-6 : Partitioning o f node i.

*
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where m = M/15 and

for t=15,...,M ; Fpq is the set o f arcs o f G T with cost t that join vertices of G T

corresponding to task p to vertices of G T corresponding to 

taskq;

or alternatively Fp>q = { (i,j) e Fp q / Cy = t }

4-6 Graph Reduction .

In the tree search procedure the size o f network G T can be reduced using one or 

some of the following reduction tests :

(i) By imposing constraints (5-57) to the problem all arcs o f F  a can be 

eliminated from G T ;

(ii) Consider the following constraint:

arc o f duration t (t=15,...,M) . Hence we can consider tasks p and q as forming a 

single task k with the following characteristics:

* the duration dk of task k = duration o f task p + duration of task q + 1

* the starting time window W STk of k is such that:

* task k  can be covered by the type of vehicle that can cover both tasks p and q ; 

As a consequence o f this , and going back to figure 5.6 the problem at nodes 

j l  J m wiU smaller than the problem at node i by one task. This means that the

K

(5-58)

It means that tasks p and q (in this order) w ill be linked in the optimal solution by an

W STk = max(WSTp,W STq - dp -15)

* the finishing time window of task k  is given by :

W FTk = min (W FTp,W FTq - dp -15)
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deeper we go down the tree the smaller the problem becomes.

(iii) As a consequence o f ( ii) , if  in the tree's path from node 0 to node K  a 

certain task schedule has been found which is full up (ie the addition o f any other task 

w ill result in a schedule o f length greater than the duty period ) then all the 

corresponding tasks w ill be removed from the sons' nodes ( and successors' nodes) 

and the number of crews w ill be reduced by one.

(iv) Whenever the best upper bound to the problem has been updated, the 

reduction test of section 4.3 is applied to remove more arcs from the graph.

4-7 Choice of Tasks p0 and q0 .

The branching strategy is a depth first search . Starting from node 0 of the tree, 

we go down the tree trying to build feasible schedules. Whenever a node is fathomed 

(see section 4-8) we backtrack (see section 4-9) and continue our descent down the 

tree.

Assume that at a certain node i o f the tree a set o f crew schedules has already 

been found. The choice of tasks p0 and qQ should be made in such a way :

* to complete an existing crew schedule; or

* to start a new schedule in case all the existing schedules are full up .

It is whorthwhile to note that if  we want to complete an existing schedule we 

must have one of the two following cases:

* p0 is the last task o f the schedule and q̂  is not in the schedule; or

* q  ̂is the first task of the schedule and p0 is not in the schedule.

However if  a new schedule is started then any 2 tasks not already assigned can be 

chosen . Also we have to make sure when choosing the tasks to branch on that their 

addition w ill not result in a schedule which violates the time restriction .

Finally assume that we are at node i o f the tree (see figure 5-6) and that we have 

chosen the two tasks p0 and qQ to branch o n , the next node that w ill be explored after
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node i is node jj ie the node corresponding to constraint (5-58) with F.J® .
XTO

4-8 Fathom ing Tests .

A  node i of the tree is fathomed if  one of the following conditions is satisfied:

(i) the value o f the lower bound (say, ẑ ) at that node is greater than or equal to the 

value of the current upper bound (say.z^;

(ii) the solution at node i is feasible . In this case if  the value o f Zq o f this solution is 

such that Zq < zu then update the value of the current upper bound by setting zu=z0 ;

(iii) the number o f remaining crews w ill not be able to cover all the remaining tasks. 

B y remaining we mean that if  we consider in the tree the path from node 0 to node i , 

then all the tasks that have not been considered are called remaining tasks.

(iv) the solution is infeasible.

4-9 B acktrack ing  Process.

Consider figure 5-6. Let us first present the following definitions :

(i) Father node : node i is said to be the father node o f nodes j m+i»

(ii) Son node : nodes jj  j2»***dm+l ^  8011 n(X ês ncK̂ e i *

(iii) Brother node : nodes j 1d2»—Jm+i m  caUed brother nodes ;

(iv) Uncle node : the brothers o f node i are the uncles o f nodes j i  J2»—Jm+l •

W ith these definitions in hand , the backtracking process can be described as 

follow s:

If a node k is fathomed then the next node to be considered after it is its nearest 

brother node. In case all the brother nodes have been fathomed then try to explore the 

nearest uncle node to the father node and so on and so forth ...etc... If all nodes have 

been fathomed stop the tree search procedure : the optimal solution to the problem is
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the best integer solution found so fa r.

4-10 Task Ordering .

In the branching process, when choosing the next pair o f tasks to branch on we 

have im plicitly assumed that the tasks are ordered. So the natural question is how are 

they ordered ?

F irs t, the tasks are divided into groups . Each group correspond to a certain 

type of vehicle ie they are as many groups as there are vehicle types . The first group 

corresponds to the first vehicle type , the second group corresponds to the second 

vehicle type etc ...

A  task that can be covered by more than one vehicle type w ill be considered in 

all the corresponding groups . W ithin the group the tasks are ordered in ascending

• order o f their window starting times . In case o f ties the task with the shortest time

window is first considered . Finally it is worthwhile noting that if  in the branching 

process a task has been already assigned to a certain schedule, then this task w ill not 

be considered in any son node or descendent node .

4-11 Solving the Relaxed Problem in the Tree .

To obtain a lower bound to the problem at every node o f the tree we considered,

• in the 2 previous sections 2 and 3 , several different formulations o f the G CSP and

compared the corresponding lower bounds obtained from the Lagrangian relaxation . 

The shortest weight constrained path formulation (SWCP) proved to be the best one in 

that the quality o f the lower bound obtained ,over all 10 randomly generated G C SP 's, 

was better than all the others.

So we first thought that this w ill be the formulation that w ill be embedded in the 

tree search procedure for obtaining lower bounds. However when we noticed that the
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computing time required to get such a lower bound was considerably large compared 

to the other formulations which are based on network G T we decided to embed both 

this formulation and the shortest path formulation in the tree search procedure and then 

choose the one that performs better overall. The shortest path formulation was chosen 

among the other formulations because in addition o f producing lower bounds as good 

as the others(except the SW CP) the corresponding algorithm was much faster.

4-12 Example .

Let us consider the 10 tasks-3 crew G CSP  of figure 5-1. The optimal solution 

was obtained by the heuristic. But for the sake o f explaining very briefly how the tree 

search procedure works , we assumed the upper bound to be equal to 120 and we run 

the program with this upper bound. The tree we obtained is represented in figure5-7 .

The tasks have been ordered as follows :

* Group 1 consists o f tasks 2,3,4,6,7,8 and 9 ;

* Group 2 consists o f tasks 1,3,4,5,9,10 .

Using a depth first search a feasible integer solution was found at node 10 . 

Backtracking to the father node 7 and comparing the values o f the lower bounds of 

respectively nodes 7 and 10 we could fathom nodes 11 and 12 without investigating 

them . A t this point it is worthwhile explaining the meaning o f the different figures 

associated with the tree search o f figure5-7 . The figures inside the circles (which 

represent the nodes) represent the order in which the nodes are visited. The terminal 

nodes at the extremities o f the dotted branches mean that they did not need to be 

considered as they were fathomed before investigation . The dotted arrows show the 

direction in which the tree was explored. The figures beside each node give the value 

of the corresponding lower bound.

Going back to where we stopped (ie fathoming nodes 11 and 12 ) the 

backtracking process was carried out from father to grand-father,fathoming on our
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Figure 5-7 : Tree Search o f the 10 task-GCSP (table5-l).
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way the brothers, till we finally arrived back to the head node 1 which is in its turn 

fathomed due to the fact that its lower bound was equal to the value of the feasible 

solution found at node 10 . This shows that this feasible solution is optimal for the 

whole problem .

4-13 Reducing the Size of the Tree.

When generating the input data we have made the following assumptions :

(a) The planning period o f 24 hours is divided into small intervals of time of 15,or 

30,...,or 60 minutes,...etc.... W e w ill refer to these intervals as time unit. In all our 

computational results we assume a time unit of 15 minutes;

(b) The window starting tim e, the window finishing time and the duration of each task 

are given as multiples of 15 .

As a direct consequence of th is, the value of the optimal solution w ill be equal 

to a multiple o f 15 . Hence the value o f the lower bound can each time be rounded off 

to the first multiple o f 15 greater than or equal to the value o f this lower bound.

5- Computational Results of the Tree Search Procedure .

Table 5-11 compares the performance of the two heuristic algorithms presented 

• in section 4-2 . It is clear that the heuristic based on the shortest weight constrained

path formulation (SWCP) has performed much better, in all cases considered , than 

the greedy heuristic.

Using the reduction test o f section 4-6 we show in tables 5-12 and 5-13 the 

effect of this test on respectively the size of network G T and the computational times of 

the shortest path and SW CP formulations . It has been noticed that the larger the 

average time window is and the more efficient the test becomes . This w ill be
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discussed in section 6 .

Com paring, in table 5-14 , the tree search procedures based on respectively the 

shortest path and the SW CP formulations we noticed that although a smaller number 

o f nodes needed to be explored in the latter case to obtain the optimal solution , the 

overall computing time required by the former formulation has proved to be much 

better. In table 5-15 we give more information about the tree search procedure based 

on the shortest path formulation.

In section 2-5.3 we made the reasonable assumption that the planning period of 

24 hours was divided into smaller intervals o f time of 15 minutes called time units . 

This means that since the cost coefficients represent the time durations of the 

corresponding arcs then they all are multiples o f 15 . As a result o f this the lower 

bound at each node can be rounded off to the nearest multiple of 15 . Table 5-16 

presents the new values of the lower bounds of the shortest path problem formulation 

when the "modulo 15" consideration is taken into account. Finally the corresponding 

inprovements in time of the tree search procedure are shown in table 5-17.



Table 5-11 : Computational Results for the Two Heuristic Algorithms

Problem NumberofTasks
Number of Vehicles Types

NumberofCrews
Value of
OptimalSolution

[1]Running
Time+

CDUpperBound
[1]Gap
[%]

[2]RunningTime+
[2]UpperBound

[2]Gap
[%]

1 5 2 2 45 0.01 45 0 0.13 45 0

2 10 2 3 105 0.01 105 0 0.46 105 0

3 15 2 4 165 0.01 165 0 1.31 165 0

4 20 3 5 225 0.01 255 13.33 2.65 225 0

5 25 3 6 285 * * * 4.11 315 10.52

6 30 3 7 345 0.02 405 17.39 6.95 360 4.34

7 35 4 8 405 0.02 420 3.70 9.28 405 0

8 40 4 10 450 * * * 12.55 480 6.67

9 45 4 12 495 0.02 585 18.18 14.01 525 6.06

10 50 5 12 570 0.03 630 10.53 18.97 585 2.62

+ Seconds of CYBER 855 (Fortran Compiler).[1] Heuristic 1 ;
[2] Heuristic 2 ;



Table 5-12 : Size of Network After the Reduction Process .

Problem
Number of 

Task* Network 1 Network 2 Network 3 Network4 Networks Number of Vertices Number of Area after Reduction
Number of Arcs before Reduction

Proportion of Arcs Eliminated

1 5 * * * * * * * a *

2 10 * • * * * * * * *

3 15 * * * * * * * * *

4 20 * * * * * * * * *

5 25 1255 1324 2076 150 160 582 6585 39496 83.3%

6 30 758 837 578 218 226 633 2173 44433 95.1%

7 35 * * * * * * * * *

8 40 621 1789 2006 4471 138 848 8887 61722 85.6%

9 45 1297 1405 1947 3475 149 956 8124 84011 90.3%

10 50 3869 1402 1285 1090 967 1220 8613 115924 92.6%

too■ o
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Table 5-13 : Computational Results for the Shortest Path and Shortest Weight Constrained Path
Formulations after the Reduction of Gr .

Problem
Numberof
Tasks

Number of 
Vehicles 
Types

Number
of

Crews
[1]Running

Time+
tl]Running

Time+
[1]Improvement

[%]
[2]Running

Time+
[2]Running

Time+
[2]Improvement

[%]

1 5 2 2 * * * * * *

2 10 2 3 * * * * * *

3 15 2 4 * * * * * *

4 20 3 5 * * * * * *

5 25 3 6 14.4 5.4 62.2 79.4 25.5 67.8

6 30 3 7 16.2 4.4 72.7 80.4 21.0 73.9

7 35 4 8 * * • * * *

8 40 4 10 22.9 5.7 75.0 147.9 41.6 71.9

9 45 4 12 23.4 8.6 63.1 130.8 43.5 66.7

10 50 5 12 30.1 4.3 85.7 195.1 30.9 84.2

+ Seconds of Cyber 855 (Fortran Compiler) .
[1] Shortest Path Formulation .
[2] Shortest Weight Constrained Path Formulation to

o
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Table 5-14 : Computational Results for the Tree Search Procedure .Comparison of the Shortest Path and the Shortest Weight Constrained Path Formulations .

Problem
Numberof
Tasks

Number of Vehicles Types
NumberofCrews

Value ofOptimalSolution

[1]Number of Nodes 
Explored

[1]
RunningTime+

[1]Optimum Given by Heuristic

[2]Number of Nodes 
Explored

[2]
RunningTimet

[2]Optimum 
Given by Heuristic

1 5 2 2 45 * * yes * * yes

2 10 2 3 105 * * yes * * yes

3 15 2 4 165 * * yes * * yes

4 20 3 5 225 * * yes * * yes

5 25 3 6 285 972 432.7 no 440 920.4 no

6 30 3 7 345 139 60.8 no 206 388.4 no

7 35 4 8 405 * * yes * * yes

8 40 4 10 450 625 402.3 no 340 1215.9 no

9 45 4 12 495 1036 800.2 no 364 1300.3 no

10 50 5 12 570 715 297.2 no 470 1056.4 no

+ Seconds of CYBER 855 (Fortran Compiler).[1] Shortest Path Formulation .[2] Shortest Weight Constrained Path Formulation .

toOVO
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Table 5-15 : Computational Results for the Tree Search Procedure (based on the shortest path).

Problem
NumberofTasks

Number of 
Vehicles Types

Numberof
Crews

Value of
Optimal
Solution

LoverBound Upper
Bound

Gap
(%]

Number of 
Nodes Total

Time*
Time+ at 
Node 0

1 5 2 2 45 44.5 45 1.14 * * *

2 10 2 3 105 102.7 105 2.16 * * *

3 15 2 4 165 163.4 165 0.97 * * *

4 20 3 5 225 218.0 225 3.11 * * *

5 25 3 6 285 276.4 315 3.01 972 432.7 5.4

6 30 3 7 345 344.3 360 0.19 139 60.8 4.4

7 35 4 8 405 388.4 405 4.11 * * *

8 40 4 10 450 438.2 480 2.63 625 402.3 5.7

9 45 4 12 495 469.1 525 5.24 1036 800.2 8.6

10 50 5 12 570 556.8 585 2.32 715 197.2 4.3

+ Seconds of CYBER 855 (Fortran Compiler).
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T a b le  5 - 1 6 : Bounds C o m pariso n f o r t h e  S h o r t e s t P a th  F o r m u la t io n  .

Problem
Humber

o f
T a s k s

Number o f  
V e h ic le  

T yp e s

Number
o f

Crew s

P r e v io u s
Lower
Bound

New
Lower
Bound

P r e v io u s
Gap
[% ]

New
Gap
[% ]

1 5 2 2 4 4 . 5 45 1 . 1 0 .

2 1 0 2 3 1 0 2 . 7 1 0 5 2 . 2 0.

3 1 5 2 4 1 6 3 . 4 1 6 5 1 . 0 0.

4 20 3 5 2 1 8 . 0 225 3 . 1 0.

5 25 3 6 2 7 6 . 4 285 3 . 0 0.

6 30 3 7 3 4 4 . 3 345 0 . 2 0.

7 35 4 8 3 8 8 . 4 390 4 . 1 3 . 7

8 40 4 1 0 4 3 8 . 2 450 2 . 6 0.

9 45 4 1 2 4 6 9 . 1 480 5 . 2 3 . 0

1 0 50 5 1 2 5 5 6 . 8 570 2 . 3 0.
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Table 5-17 : Computational Results for the Tree Search Procedure Based on the New Lover Bounds (of table 5-16)

Problem
Numberof
Tasks

Number of 
Vehicles 
Types

Number
of

Crews
Value of
Optimal
Solution

tl]Lower
Bound

[1]Upper
Bound

[1]Gap
[*]

12]Number of Nodes
(2)TotalTime+

[2]Time+ at 
Node 0

1 5 2 2 45 45.0 45 0. a * a

2 10 2 3 105 105.0 105 0. * a a

3 15 2 4 165 165.0 165 0. a a a

4 20 3 5 225 225.0 225 0. a a a

5 25 3 6 285 285.0 315 0. 118 76.7 5.4

6 30 3 7 345 345.0 360 0. 175 133.2 4.4

7 35 4 8 405 390.0 405 3.70 a a a

8 40 4 10 450 450.0 480 0. 269 181.7 5.7

9 45 4 12 495 480.0 525 3.03 528 428.4 8.6

10 50 5 12 570 570.0 585 0. * a a

+ Seconds of CYBER 855 (Fortran Compiler).[1] Node 0 of the Tree .
[2] Remaining Nodes of the Tree .



Table 5-18 : Efficiency of the Reduction Test when
the Average Time-Window Varies.

Average
Time-Window

[hours]
Size of G40 

[arcs]
Size of G40 
After 

Reduction
Percentage 

of eliminated 
Arcs [%]

1 10540 8438 19.9
2 21505 17204 20.0
3 29920 15229 49.1
4 43732 23195 47.0
5 55887 17625 68.5
6 59160 20244 65.8
7 76033 8485 88.8
8 80877 11242 86.1
9 93713 14017 85.0
10 104932 10750 89.8

to
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6- Conclusion  .

A  branch and bound procedure based on the Lagrangian relaxation o f a shortest 

path formulation o f the G CSP has been considered in this chapter. W ith this technique 

GCSP's that could not be tackled with the graph's expansion o f the previous chapter, 

have been solved to optimality . The problems considered varied in size between 10 

and 50 tasks and had a task time window allowed to vary between 0 and 24 hours.

Lagrangian relaxation was used to determine at each node o f the tree a lower 

bound to the problem. The formulation of the problem as a shortest path problem plus 

additional time constraints was decided after 5 other integer programming formulations 

were considered and the corresponding computing times and lower bounds were 

compared . Although the Lagrangian lower bound o f the shortest path based 

formulation was not the best one , the computing time that was required to get it was 

considerably better than all the others . To determine a good upper bound to the GCSP  

two heuristic algorithms were considered . The one that performed better was 

subsequently used to produce an upper bound to each one o f the test problems 

considered. It is based on a polynomial algorithm used to solve the shortest weight 

constrained path relaxation of the G C S P .

Using a very simple but efficient reduction test the large size o f the 

coresponding network G T of the test problems was substantially reduced. This is one 

o f the factors that improved the efficiency o f the tree search procedure . It has been 

noticed that as the average task time window o f the problem increases the reduction 

test becomes more and more efficient as'it can be seen from the results o f table 5-18 

which show the proportion of arcs eliminated from network G 40 by the reduction test 

when the average task time window varies between 1 and 10 hours . G 40 is the 

network representative o f a 40 task-GCSP with 3 types o f vehicle. W e can see from 

table 5-18 that when the average task time window converegs to 1 hour the reduction 

test becomes almost useless . However when this average time-window is small the
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size o f the corresponding network is as a result also sm all. Hence we basically do not 

need at all to use any reduction test in this case. In fact the need o f reducing the size of 

network G 40 becomes necessary only when it gets larger ie when the average time 

window increases and in this case the test proved to be quite efficient. Hence we can 

say that for a given G CSP  , whatever is the range in which the average time window 

varies , by using the reduction test when necessary a reasonable size network G T can 

be obtained to work o n .
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C H A P T E R  6

C O N C LU S IO N S

Two versions of the crew scheduling problem have been considered . The 

first version called simply crew scheduling problem (CSP) has been solved 

efficiently using just an LP  package. A  tree search procedure based on Lagrangian 

relaxation was used to solve the second version that was called general crew 

scheduling problem (G CSP). The difference between the 2 versions is that in the 

first one the starting and finishing times o f each task were specified and fixed 

beforehand , whereas in the 2nd version the starting time of each task is given 

within time-windows. Also while only one type o f vehicle has been assumed in 

the case o f CSP to service all tasks, several types o f vehicle are considered to 

cover the tasks o f the G C S P .

A t first the CSP was formulated as a minimum cost network flow problem 

plus additional time constraints. The formulation proved to be so effective that out
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of all 101 randomly generated problems of size varying between 5 and 30 tasks , 

eighty one were solved to optimality by using just an LP  package . For the 

remaining problems a cutting-plane algorithm has been devised . This algorithm 

consists o f a combination of logical cuts and Gomory's cuts . When the logical 

cuts were first added only few Gomoiy's cuts were necessary to reach the optimal 

solution.

The drawback of this technique is that only small problems o f up to 30 tasks 

could be tackled . This was due to the limitations imposed by the existing LP  

codes which cannot handle the very large size linear problems produced by the 

formulatiom as the number o f tasks increases . To overcome this drawback 

another formulation and another integer programming solution technique were 

considered. In this formulation which is still based on the minimum cost network 

flow problem , the additional time constraints were generated, in a dynamic w ay, 

as needed and subsequently relaxed in a Lagrangian fashion . Our aim in using 

the Lagrangian relaxation was to derive good lower bounds for the problem that 

w ill be embedded in the tree search procedure. Unfortunately , the quality o f the 

bound was so poor, (20% away from the optimum for certain problems), that the 

idea was dropped.

Using graph theoretic concepts , we then derived a graph expansion 

technique that proved to be very effective. The technique consists o f expanding 

the network G  representative o f the CSP into another network G  in which all paths 

are feasible for the CSP .As a result o f this the problem was then formulated as a 

minimum cost network flow  problem plus additional set-partitioning type 

constraints (instead o f time constraints) which guarantee that each task must be 

covered once only by a single crew . W ith such a formulation in hand we first 

thought o f relaxing the set partitioning type constraints in a Lagrangian fashion 

and solve the relaxed problem with a minimum cost network flow package to
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g
obtain^good lower bound that would be embedded in a tree search procedure . 

Fortunately, we did not need to go that fa r. Thus out of more than 250 randomly 

generated CSP's o f size varying between 10 and 150 tasks , the optimal integer 

solution was found in all cases by just solving the linear relaxation o f the problem 

with an LP  package . These results are surprisingly good , especially when we 

know that the CSP is an N P complete problem . Then we tried to determine 

whether it is always the case that the solution o f the linear relaxation o f the CSP is 

optim al. Many attempts were made, unsuccessfully, to produce a single example 

for which this does not apply but each time an example was produce it was 

subsequently solved exactly with the LP  package. To prove that the problem can 

always be solved by an LP  package is itself a very hard problem and only partial 

proofs could be produced. It is worthwhile to mention at this point that the proof 

of the integrality o f the extreme points o f the CSP's polytope is o f great 

importance in the area o f algorithms' complexity . Thus this proof w ill solve a 

problem that in spite o f the huge effort deployed to solve i t , nobody up till now 

has been able to prove (or disprove). This is to prove that problem complexity 

class P is equal to class N P .

Decomposition algorithms [53,104] have been devised to solve large scale 

linear programming problems which involve thousands o f rows and hundreds of 

variables. It is worthwhile noting that taking advantage of the fact the the solution 

o f the linear relaxation o f the problem is optim al, large size CSP's which can 

involve hundreds o f tasks can be solved efficiently with one such decomposition 

method.

Using an adapted version o f the graph expansion technique (GET) two 

different extensions o f the CSP were subsequently considered and solved in 

exactly the same manner as the CSP ie just using an LP  package. These versions
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(i) the multiple depot CSP in which several depots o f known capacity are 

assumed. Each crew (or vehicle) must return at the end of the day to its original 

depot;

(ii) the CSP with rest periods : in this problem encountered mainly in the 

airline industry the planning period is supposed to be one week o f 7 days . 

Between any 2 consecutive trips each crew is to have a rest period o f at least T  j 

hours and at most T 2 hours (Tj <T2) where T x and T 2 are given;

The G CSP  was first tackled with the graph expansion technique. For the 

GCSP's that have small task time windows the G E T  has proved to be as effective 

as for the CSP .Thus , GCSP's o f up to 50 tasks could be optimally solved using 

just an LP  package . However as the time window increases it becomes 

impossible to use G E T . this is due to the enormously large size o f the expanded 

network that no existing LP  package could handle . Thus when the task average 

time window is allowed to vary between 00.00 and 24.00 hours only GCSP's of 

up to 10 tasks could be solved.

In our attempt to solve larger size GCSP's a branch and bound procedure 

based on the Lagrangian relaxation of a shortest path problem formulation o f the 

G CSP  was devised . Using the Lagrangian relaxation to obtain lower bounds for 

the tree search procedure six different integer programming formulations were 

considered. After comparing the corresponding running times and lower bounds 

produced two formulations were chosen as possible candidates to be embedded in 

the tree search procedure . And finally it appeared that the shortest path based 

formulation, although the corresponding bound was not the best found, was the 

most suitable and the most performant to be embedded in the tree search 

procedure.

The success o f any branch and bound procedure depends entirely on the 

quality o f both the upper and lower bounds o f the problem . To  find a good upper
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bound to the G C SP  two heuristics algorithms have been considered and 

compared. The one that performed better was subsequently used to determine 

upper bounds to the problem. It is based on a polynomial algorithm that has been 

devised to solve the shortest weight constrained problem (applied to our case).

The results obtained with this tree search procedure, the efficiency o f which 

was improved by some reduction tests , were satisfactory . Thus all randomly 

generated GCSP's o f size varying between 10 and 50 tasks and with a task time 

window allowed to vary in the range [00.00-24.00hours] were solved to 

optimality.
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