
Abstract Interpretation and the Parallel 
Evaluation of Functional Languages.

by
Geoff'rey Livingston Burn 

August, 1986.

A thesis subm itted  fo r the degree of Doctor of 
Philosophy of the U niversity of London and fo r 

the Diploma of M embership of the Imperial College.

D epartm ent of Com puting 
Imperial College 

U niversity of London



Abstract
U nrestricted parallel evaluation of functional programs overloads the resources of a 

machine by evaluating expressions whose values are not needed fo r producing the result 
of a program. We present a semantic criterion which restricts the expressions which are 
evaluated to those which w ould eventually have been evaluated using a lazy evaluator.

U sually a programming language is designed w ith one particu lar meaning, or 
interpretation, fo r each of the constructs. By giving a different, or abstract, interpretation 
which captures ^ome property of interest, we are able to answ er questions about programs 
w ithout running them. Such interpretations are often used by a com piler to optim ise the 
execution of programs.

We develop a fram ew ork for the abstract interpretation of functional languages. For 
the first tim e we present a fram ew ork which supports all the features of functional 
languages excepting general recursive type definitions. It is applied to give an 
interpretation which specifies the definedness of a function in term s of the definedness of 
its argum ents.

Given th a t the semantic criterion allow s a certain am ount of evaluation of a function 
application, we are able to use the definedness interpretation to determ ine how much 
evaluation of the argum ents is perm itted. Previous uses of sim ilar in terpretations have 
ignored much of the inform ation that is available. By asking how much inform ation we 
have to give about argum ents in order to produce a certain am ount of inform ation about a 
function application, we are able to take into account the dynam ic context of an 
expression. This sim ple change in the way we use the abstract in terpretation means we 
can determ ine m any more sources of parallel evaluation. Evaluation of the argum ents can 
then proceed in parallel w ith the evaluation of the  application. The complete analysis 
may be im plem ented as one of the passes in a compiler, so th a t program s can be 
autom atically  annotated w ith  the parallelism inform ation.

- 2 -



Acknowledgements
1  w ould  like to thank  the  follow ing people and institu tions fo r m aking th is work 

possible.
This w ork was completed w hile working for GEC Research Ltd at the  H irst Research 

Centre, w ho supported  me financially by paying my College fees and making it possible 
to buy the books and obtain the references tha t I needed. My work w as completed for 
ESPRIT Project 415, en titled  "Parallel Architectures and Languages lo r  AIP - A VLSI 
Directed Approach", and the project was partially  funded by the EEC under the ESPRIT 
scheme. Of the people who have worked w ith me at H irst, both past and present, I 
w ould  like to especially thank M artin Evans who originally encouraged me to do a PhD, 
and Ray OfTen, who was my Lab Manager, and who, besides arranging fo r H irst to 
support me in my research, was my external supervisor and provided much 
encouragement. Peter W atkins took over my external supervision when Ray left GEC. I 
have had m any technical discussions w ith David Bevan and Rajeev Karia and David’s 
m athem atical skill has been especially helpful.

A t Im perial College, Samson A bram sky has been m ost helpful throughout the 
developm ent of th is w ork, both in giving encouragement and for his very valuable 
technical knowledge of the m athem atical foundations upon which th is thesis has been 
built. I thank  Simon Peyton Jones of U niversity College w ith  whom I have had many 
fru itfu l discussions, and w ho kept on asking questions which were hard to answ er.

M ost of all I would like to thank  my supervisor, Chris H ankin, of Imperial College. 
He has spent m any long hours w ith  me as we thrashed o u t ideas together, and has been 
especially helpful w ith  his pointers in to  the literature and his reading of all th a t I have 
w ritten . W ithou t his help and encouragement th is w ork w ould never have been 
completed.

- 3 -



Contents
Abstract 2

Acknowledgements 3

Contents 4

List of Tables 7

Chapter 1 : Introduction 8
1.1 Functional Languages, Evaluation Strategies and 8

Semantics
1.2 Evaluation Strategics and Potential for Parallelism  12
1.3 A Safe Evaluation Strategy Which A llow s Parallel 13

Evaluation
1.4 An Introduction to  A bstract Interpretation 18
1.5 The Language Used Throughout This Thesis 26

1.5.1 Syntax 26
1.5.2 Interpretations 27

1.6 Domains, Powerdomains, Functions and Algebraic Relationships 29
1.7 Overview of Thesis 32

Chapter 2 : A Framework For the Safe Abstract Interpretation 35
of Functional Languages
2.1 M otivation fo r the Definition of Abstraction and 36

Concretisation Maps
2.2 Formal Definition of Abstraction and Concretisation M aps 40
2.3 Two Useful Forms of the Definition of the  A bstraction M ap 45
2.4 Properties of A bstraction and Concretisation Maps of 46

Higher Types
2.5 Adjointness of A b s a  and C one a  50
2.6 Semi-homomorphic Property of a b s  ^  and f i x  51
2.7 A Result Relating the A bstract and S tandard  53

Interpretations

- 4 -



- .5 -
2.8 Correctness of A bstract Interpretation 54
2.9 C ontcxt-free and C ontext-sensitive Issues 56
2.10 The U ndual D uality  59
2.11 Relationship to O ther W ork 60
2.12 Conclusion 62

h a p tc r  3 : A Defined ness In te rp re ta tio n  an d  it A pp lica tio n  to 64
C h an g in g  E v a lu a tio n  S tra teg ies
3.1 Abstraction of Base Domains and Properties of A bstraction 65

Maps
3.1.1 Defining A bstract Domains and A bstraction Maps From the 65 

Definedness S tructure of the S tandard  Interpretation
3.1.2 Defining A bstract Domains and A bstraction Maps From the 6 8  

Sensible Levels of Evaluation
3.1.3 Definition of the A bstract Domains and Abstraction 69

Functions fo r Base Types
3.1.4 Some Useful Facts 71

3.2 A bstract Interpretation of C onstants 72
3.2.1 A bstract Interpretation of Strict Functions 75
3.2.2 A bstract Interpretation of the Conditional 77
3.2.3 A bstract Interpretation of h d  79
3.2.4 A bstract Interpretation of t l  80
3.2.5 A bstract Interpretation of c o n s  81
3.2.6 A bstract Interpretation of c a s e  83

3.3 Some Examples of the A bstract Interpretation of Functions 84
3.4 Correctness of the Definedness Interpretation and 8 8

C ontext-free and Context-sensitive Issues
3.5 Using the Definedness Inform ation to Safely Change the 91

Evaluation Strategy
3.6 More A bstract Domains for Base Types 96
3.7 Relationship to O ther W ork 99
3.8 Conclusion 100



- 6 -
Chapter 4 : Evaluation Transformers 102

4.1 M otivation for Evaluation Transform ers 102
4.2 Determining Evaluation Transform ers 104

4.2.1 C ontext-free Evaluation Transform ers 104
4.2.2 Context-sensitive Eva 1 nation Transformers 109
4.2.3 Using Evaluation Transform ers 11 1

4.3 Values Used for Determining Evaluation T ransform ers I 13
4.4 Evaluation Transformers, "Need" Labels and the P 114

Com binator
4.5 Relationship to O ther W ork 114
4.0 Conclusion 116

Chapter 5 : Abstract Interpretation and New Type Constructors 117
5.1 Syntax of Type Constructors 117
5.2 Interpretation of New Constructs 118
5.3 Abstraction Maps For These C onstructions 120
5.4 A Relationship Between a b s and a b s 0. XT_ fjL 122
5.5 Properties of Abstraction Maps 123
5.6 Correctness Results 126
5.7 A bstract Domains, Abstraction Maps and Evaluators 128
5.8 Relationship to O ther W ork 129
5.9 Conclusion 129

Chapter 6 : Further Work and Applications 130
6.1 Further W ork 130

6.1.1 Polymorphism 130
6.1.2 A Junction Between Operational and Denotational 131 

Semantics
6.1.3 Pragmatic Issues 132

6.2 Applications 132

References 134



List of Tables
3.1.1 Division of Domain by 6 8

3.1.2 Division of Domain by £ 2  and 69
3.2.5.1 A bstract Interpretation of c o n s  81
3.3.1 A bstract Interpretation of Binary Strict Functions 87
3.3.2 A bstract Interpretation of s u m l i s t , l e n g t h  and h c l 8 8

3.3.3 A bstract Interpretation of r e v e r s e  and t l  8 8

3.3.4 A bstract Interpretation of a p p e n d  8 8

3.3.5 A bstract Interpretation of m a p  89
4.2.1.1 A bstrac t Interpretation of a p p e n d  105
4.2.1.2 C ontex t-free Evaluation Transform ers fo r Binary S trict Functions 107
4.2.1.3 C ontex t-free  Evaluation Transform ers for s u m l i s t ,  l e n g t h  and h d  108
4.2.1.4 C ontex t-free Evaluation Transform ers for r e v e r s e  and t l  108
4.2.1.5 C ontex t-free Evaluation Transform ers for a p p e n d  108
4.2.1 . 6  C o n tex t-f ree Evaluation T ransform ers f or m a p  109
4.2.2.1 A bstract Interpretation of m a p  110
4.2.2.2 A C ontext-sensitive Evaluation T ransform er fo r m a p  1 1 1

- 7 -



Chapter 1 
Introduction

1.1. F u n c tio n a l Languages, E v a lu a tio n  S tra teg ies  an d  S em an tics.
Functional languages of the type we will be considering in th is  thesis are 

syntactically  sugared versions of the typed A-calculus w ith  constants. We w ill form ally  
introduce the language in section 1.5. The A-calculus can be viewed from tw o different 
angles. It can be regarded as a term -rew riting  system  [Church 1941], [C urry and Feys 
1958], [Plotkin 1977], [Barendregt 1984], [Klop 1985] or as a notation fo r m athem atical 
objects and operations over them [Scott 1981, 1982], [Milne and Strachey 1976], [Stoy 
1977]. The form er view is used in im plem entations of functional languages w h ils t the 
la tte r most often finds use in giving semantics to program m ing languages. This thesis 
explores the junction between the tw o  views, giving a sem antic condition w hich allow s 
the evaluation strategy to be changed while retaining the correct sem antics. By 
developing and applying a fram ew ork for abstract in terpretation  we are able to give a 
method fo r sta tically  checking the sem antic condition during com pilation. In th is and the 
following tw o sections, we w ill discuss the tw o views of the A-calculus and their 
relationship.

If wc were to regard the typed A-calculus w ith  constants as a term  rew riting  system , 
then we have to give rew rite rules for the A-calculus and  the  constants. For the A- 
calculus, the rew rite rules are usually  called o'-, /3-, and p-conversion, w hile  fo r the 
constants we have the norm al reduction rules. For example, the  rule fo r an expression

+ e l e 2

w ould (recursively) rew rite e x and e 2 i o  integers and then rew rite  the w hole expression 
to their sum .

Care m ust be taken w ith  the constructors of data objects which stan d  fo r po ten tia lly  
infinite pieces of data, for example lists. Consider the function

ints __ fro m (n ) = c o n s in .in ts  _ f r o m ( n +  l) ) .

If we chose a rew rite rule for c o n s  which (recursively) rew rote both argum ents to c o n s ,  
then an application

ints_fr o m (0 )

- 8 -



-9-
w ould be successively rew ritten as show n below :

in i s _ f r o m (0)-* c o n s (0 ,in £ s _ J r o m (0+1))

—* co n s(0 .cons( 1 . in is _ J r o m { \  +  1 ) ) )

—* c o n s { 0 ,c o n s ( 1 ,c o n s ( 2  . in is _ f r o m (2+1))))

This is ju st producing the infinite list of integers, and the com putation w ill never 
term inate. W hile it may be acceptable to do th is to the top-level expression, in an 
application

h d i in l s  _Jru m (  0 ) )

one w ould  like the value 0  to be returned. Thus a rew rite ru le  w hich caused an infinite 
com putation to first calculate the entire list in is _ J r o m (0 ) before being able to  take  the head 
of it is unacceptable. The only way to ensure such a situation  does no t occur is to have 
no rew rite rule fo r c o n s ,  so th a t we do not in itiate potentially  infinite com putations by 
evaluating one of the argum ents to c o n s .  This was the key observation of the  papers 
[Henderson and M orris 1976] and [Friedman and Wise 1976], and  a llow s the  program m er 
to use infinite lists which are a very pow erful programming paradigm  [Hughes 1984].

We are th u s  able to say th a t an evaluator w ill evaluate an expression as fa r as head 
norm al form  ( t ) ,  defined by
(t) Functional language evaluators often evaluate functions only as far as weak head normal form, 
which differs from head normal form only in the way that it treats functions [Peyton Jones 1986].
An expression which stands for a function is in weak head normal form when there is a X at the 
top-level. By only evaluating expressions to weak head normal form we remove the problem of 
having to rename variables within expressions, making implementation a lot easier [Peyton Jones 
1986]. Consider the expression

A x.((A y.A x.y)x)
which is weak head normal form but not head normal form. To reduce this to head normal form 
requires a renaming of one of the bound variables to obtain Ax.Ar.x . This is discussed further in 
section 5.7.

As well, the usual way the implementation of a functional language works is to use an evaluator which 
evaluates things to weak head normal form and then uses a strict print. That is, if the answer is a list ob
ject, it will force the evaluation of the head of the list, print it, and then repeat the process on the tail of the 
list until it reaches the end of the list (if il exists!). Unfortunately, this no longer ensures that the "expres
sion left at the end of the computation" has the same semantics as the original expression for the quite simple 
reason that this evaluation strategy now falls into any black holes, and so is not safe. Consider what hap
pens when the answer is an expression which represents con.y( 1 ,conj(JL .coru(5 ,/uZ))). The 
evaluator/print routine will force the evaluation of the first element of the list and print out

consu l ,co n s(
but unfortunately that is as far as it will get, for the evaluation of the next element of the list initiates a 
non-terminating computation. As this gives more information than just printing out



-  in -

A X-expression is in h e a d  n o r m a l  f o r m  if and only if it is of the form  

\ x  • • • Xxn° \ ( v  M  x M m ) 

where
( i )  n , m  ^  0,
( a )  v is a variable (i.e. x ° '  fo r some i ) or a constant, and 
( H i )  (\’ M , • • • M m ) is not a redex.

Definition 1.1.1

□

So fa r we have only been discussing the evaluation of an expression, bu t not saying 
how  we choose which expression to evaluate. For example, in th e  expression

+ (x 3 4) (x 5 6)
there are tw o reducible expression - (x  3 4) and (x  5 6 ). A ru le fo r choosing which se t of 
expressions to reduce next is called an e v a l u a t i o n  s t r a t e g y  (o r e v a l u a t i o n  m e c h a n i s m  or 
c o m p u t a t i o n  r u l e ) .

Given several evaluation strategies, it is natural to ask w hether they com pute the 
sam e answ er. In the case of the X-calculus, it is provable th a t all evaluation strategies 
give the same answ er i f  t h e y  t e r m i n a t e  [Barcndrcgt 1984]. From a sem antic viewpoint, we 
w ould  like to ensure th a t the evaluation mechanisms g ive  l a ^ y  S e m a n tic s  to a 
program. Thus we w ould  like to ensure th a t a com putation term inated  if the sem antics 
of the original expression w as not bottom  (undefined), and th a t the expression left had 
the correct semantics. A com putation then w ould not term inate only if the sem antics of 
the original expression w as bottom .

It can be show n th a t there are several evaluation strategies for the typed  X-calculus 
w ith  constants which preserve the sem antics of the original expression and term inate 
when the sem antics of the  expression is non-bottom  [Plotkin 1977], [Klop 1985]. Below 
we w ill discuss tw o such strategies, and in the next section, discuss the ir potential for 
parallelism .

The f u l l  s u b s t i t u t i o n  r u l e  selects every redex for reduction a t each com putation step. 
For exam ple [Downey and Sethi 1976], if we assum e th a t g  and h  are constants w hich are 
irreducible, and th a t /  is a user-defined function defined by (i.e. has the  rew rite  r u le ) :
cons( suspended_expression .suspended^expression). then this is probably acceptable at the top level.

»



f i x ) = g i f h f x . h x )

then the com putation using the fu ll substitu tion  rule w ould  s ta r t  as follow s : 
f i x )  — g i f h f x . h x )

g i g i f h f h g i f h f x  . h x )  . h h g i f h f x  . h x ) ) . h x )

- 1 1 -

A nother evaluation mechanism which is correct w ith respect to the m athem atical 
sem antics is know n variously as the c a l l - b y - n a m e  or U’f l - m o s i  o u i c r - m o s i  o r n o r m a l  o r d e r  
strategy. The dilTerent names have arisen because it has appeared in several different 
contexts; call-by-nam e because of its use in programming languages as a param eter 
passing mechanism, where the values of argum ents are passed as unevaluated  expressions 
and evaluated only  when needed [N aur 1963]; left-m ost ou ter-m ost because it reduces the 
left-m ost ou ter-m ost redex; and norm al order from the X-calculus background because it 
is the strategy which is guaranteed to find a n o r m a l  f o r m  if it exists [Barendregt 1984].

W e can illu stra te  call-by-nam e by using the same exam ple th a t  w as used for 
illustra ting  the fu ll substitu tion  rule :

f i x ) -* g i f h f x . h x )

- *  g i g i f h f h f x  . h h f x )  . h x )

C all-by-nam e can be made com putationally  more efficient by noting th a t if an 
expression is substitu ted  into another expression in several places, then it m ay end up 
being evaluated several times. By arranging th a t once the expression is reduced all other 
copies of the expression share the reduced form , com putational effort is saved. This is 
often term ed c a l l - b y - n e e d .  W hen call-by-need is combined w ith  the ru le  th a t expressions 
are only reduced to head norm al form , we have an evaluation stra tegy  w hich is usually 
called l a z y  e v a l u a t i o n .  It is nam ed this because the evaluator is lazy, not doing any 
reduction of an expression un til it is forced to do so to produce a result.



- 12 -
1.2. Evaluation Strategies and Potential for Parallelism.

Initiating a non-term inating com putation in a sequential machine is fa ta l, because it 
means th a t the whole com putation is undefined. In a parallel machine, because there  is 
more than one processor, com putation may be able 1 o proceed even if there are some 
infinite com putations taking place. However, we w ill argue th a t it is still no t sensible to 
evaluate every possible redex in an expression in parallel because th is could sw am p the 
resources of a parallel machine. In the th ird  section we w ill use th is in tu ition  to develop 
a semantic criterion for allow ing parallel evaluation.

In the previous section we introduced tw o evaluation strategies which gave the 
correct semantics of programs. At first sight, the fu ll substitu tion  rule seems to  be the 
best candidate for im plem entation on a parallel machine, fo r we can perform  a ll o f the 
reductions at each step in parallel.

U nfortunately , th is com putation rule has m any disadvantages w hich render it 
impractical. Consider the conditional expression :

i f  co n d ition  th en  e  j else e

The fu ll substitu tion  rule w ill cause some evaluation to be done on all three of the 
expressions c o n d it io n , e } and e 2. However, we note th a t only  one of e x and e 2 w ill ever 
be n e e d e d  in the sense th a t the value of one of them  m ust be determ ined (according to  the 
tru th  of the c o n d i t i o n ) to obtain the value of the expression, and  so any evaluation of the 
expression which is not needed is "w asted"(f). W hile th is m ay not seem a big 
disadvantage because we have saved some tim e on the evaluation of the expression w hich 
is needed, we m ust be careful not to overload the finite resources of our machine. Thus, 
"wasted" means more than just wasting tim e com puting som ething which is no t needed, 
bu t also means w ithholding resources from the evaluation of an expression w hich we 
know  w ill need to be evaluated, for example, the  co n d itio n  in the  above.

A possible w ay to bypass the problem of w asting resources evaluating expressions 
which are not needed is to prioritise tasks so th a t a higher p rio rity  is given to expressions 
whose values we know are needed than for expressions w hich are more "speculative". 
Thus, again using the exam ple of the conditional, the evaluation of the co n d itio n  w ould  
have higher priority  than  the evaluation of either c , or e 2- If we do this, then we
(t) In fact, we often use the conditional for exactly this reason - to stop the evaluator from 
evaluating an expression unless it needs it. Consider the function :

fa c lo r ia l{n )  =  i f  n — 0  th en  1 else  n * fa c to r ia l(n — l )  

where one does not wish to evaluate fa c to r ia lfn — 1) when n S  0.



introduce fu rth e r problem s, for the priority  of tasks inay change over time. For example, 
if the condition  w as to evaluate to true  in the above example, then c 1 w ould become a 
"vital" task, because we now need its value.

Perhaps more serious than the problem of having to introduce and manage a priority  
system  is w h at m ust be done about the com putations of expressions whose values we 
discover are not needed. If we are to make maximum use of the finite resources of our 
machine, then we w ould like to stop the evaluation of unneeded expressions. The 
problem here is th a t the evaluation of the unw anted expression has generally initiated  the 
evaluation of subexpressions, which also m ust be slopped, and so on. W hile th is m ay be 
possible, we can imagine the situation  w here the spawning of sub tasks proceeds faste r 
than messages can be sent to stop tasks.

One final nail th a t we w ill drive into the  coffin of the fu ll sub stitu tio n  rule is th a t  it 
requires more com putation steps than o ther m ethods [Vuillem in 1974].

If we look carefully a t the above discussion, we can see th a t  the source of the 
problem is th a t 1 he full substitu tion  rule evaluates expressions whose values are never 
needed.

C all-by-nam e is an evaluation mechanism which ensures th a t  we only  evaluate 
expressions w hen they are needed. However, it has the u n fo rtu n a te  side-effect th a t only 
one reduction step is done a t a time, and so is a sequential evaluation  strategy w ith  no 
potential for parallelism  -  hardly useful fo r a parallel machine! ( t )  The rest of th is thesis 
allow s us to get around this problem - ensuring tha t we do no more evaluation than  is 
needed, bu t a t the same time allow ing parallel evaluation.

1.3. A Safe Evaluation Strategy Which Allows Parallel Evaluation.
Because a sequential evaluator only  evaluates one expression a t a time, and ca ll-b y - 

name only evaluates expressions whose values are needed, then call-by-nam e is a sensible 
evaluation stra tegy  for a sequential machine. However, call-by-nam e is overly pessimistic 
about needed expressions when it comes to  a parallel architecture. It is in tu itive ly  
obvious th a t the  values of both c j and e 2 arc needed in the expression

(t) An astute reader may notice that when the top-level redex is something like + Cj e 2 that 
call-by-name would evaluate firstly e j and then e«>, whereas it is perfectly safe to evaluate both e j 
and e 2 in parallel because the function needs both of the values to be able to return a value. Un
fortunately the parallelism generated by such strict operators is not sufficient to warrant the build
ing of a parallel machine [l’eyton Jones 1984]. However, the method of abstract interpretation can 
be seen to generalise this idea to finding out similar information about user-defined functions.

- 13 -



- 14 -
+ e  j e 2

and so can be evaluated in parallel.
In th is section we w ill give our semantic criterion for changing the evaluation 

strategy from call-by-narne to strategies which involve the parallel evaluation of some of 
the argum ents to functions. F irstly  however, we m ust define some term s.

Suppose we have a language E x p . We form the language E x p m by taking the
completion of the language obtained by adding a constant fla for each type cr to E x p .  

The constants Cla  represent com putations which for all finite num bers of steps, and hence 
in the lim it, re turn  no inform ation (or value). For any type cr, is a form al bottom  
elem ent, and in any interpretation of the type a  w ill have the bottom  element as its 
in terpretation. Completion allows infinite expressions. The sem antics of E x p is extended 
to E x p m in the usual way [Guessarian 1981] so tha t we can give the semantics of an 
expression in E x p m . Then we can make the following definition :
Definition 1.3.1:

A function
i  '■ E x p -» E x p „.

is an eva lu a to r  if it preserves the semantics of e . Thai is, if e 6 E x p , then the 
semantics of e and £(e) are identical.

□
It is w orth  noting w hy we have included all the things we have in the definition of 

E x p ao. In section 1.1 we introduced the idea of not evaluating the  expressions w hich were 
argum ents to c o n s .  T hus it is not necessarily true th a t an evaluator w ill term inate  w ith  
an expression containing no redices. The element flg. is needed to represent com putations 
which are try ing  to evaluate an expression which has sem antics J_, th a t is, a com putation 
which is infinite bu t returns no inform ation. It can appear embedded in a da ta  structu re . 
Finally we need to extend the language to include infinite expressions (if  the language 
does not already include them ) because we can evaluate expressions which represent 
infinite objects. As an example of th is we gave the definition of the  function

int s fr o m (  n ) =  cnns( n .in ts  fro m { n + 1))

in section 1 . 1 , and saw  that the expression
in is_from (Q )



- 15 -
stood for the infinite list of integers.

Fundam ental to our work is the notion of an evaluator preserving an expression. 
D efin ition  1.3.2

An evaluator £ p r e s e r v e s  an expression e  if £(e) € E x p .  We w ill also say th a t  an 
element in the  standard  sem antics is preserved by £ if a ll possible expressions which 
have it as th e ir standard  semantics are preserved by £.

□

By insisting th a t £(e) is an elem ent of E x p in the above definition, we are ensuring 
th a t it is neither infinite nor contains any subexpressions which are Cla , th a t is, it is not a 
member of E x p ^  — E x p . Since these tw o cases represent the only  situations w here we 
have infinite (non-term inating) com putations, then an evaluator preserving an expression 
effectively means th a t the com putation of the expression using th a t evaluator w ill be 
finite.

Let us call the evaluator which does no evaluation £0. Lazy evaluation chooses Ihe 
left-m ost outer-m ost redex and evaluates an expression as far as head norm al form. We 
w ill call th is evaluator It may be possible to detect that an expression which denotes 
a list can be evaluated further than head normal form. The evaluator which evaluates an 
expression to head normal form and then, recursively, evaluates the second argum ent to 
c o n s , un til n i l is reached (if ever) w ill be called £2- Such a c o n s is often called a r ig h t -  

s i r i c i  c o n s , and the process is termed evaluating the s p i n e  of the list. The evaluator which 
evaluates the spine of the list and each element of the list to head norm al form will be 
called £3. These last tw o evaluators were chosen because they treat all of the elements of 
a list in a uniform  way.

The e-valuators £ 0  to £ 3  have the following properties (w here finite lists are defined 
form ally  in section 1.5.2) :
Fact 1.3.3:

( i )  £ 0 preserves all values;
( i i )  preserves all non-*bottom values;
( H i) preserves all finite lists; and
( i v ) £ 3  preserves all finite lists which do not contain bottom  elements.

□



- lb -

From the discussion of the last tw o  evaluators, we can see th a t they were chosen 
because they trea t all of the elem ents of a list in the same way.

1 1  was argued in section 1 . 2  that it is wasting com putational resources to evaluate 
expressions whose values are not needed. A lazy evaluator only evaluates expressions 
whose values are needed. Furtherm ore, it initiates a non-term inating com putation if and 
only if the sem antics of the top-level expression is _|_. This prom pts us to make the 
follow ing definition.
Definition 1.3.4:

An evaluation strategy is s a f e  if it never initiates an infinite com putation unless the 
sem antics of the original expression is X- We w ill also say th a t an evaluator fo r an 
expression is safe if the evaluation of the expression using th a t evaluator m aintains a 
safe evaluation strategy.

□

We can in tu itively  see th a t safety  implies th a t only expressions whose values are 
needed are evaluated. Since the evaluation of any expression allow s the possibility of 
in itiating an infinite com putation (because the evaluators £j to all send expressions 
w ith  sem antics 1  t o a  non-term inating  com putation), then doing some evaluation of an 
expression which w ould not be evaluated by a lazy evaluator may cause a non
term inating  com putation when the sem antics of the top-level expression w as not X . and 
so it  is not a safe evaluation strategy.

W e w ill insist th a t all evaluation strategies are safe. This then is our sem antic 
criterion. A ny evaluation strategy w hich satisfies it is allowed.

How much potential for parallel evaluation there is w hen we insist on safe 
evaluation strategies is a question w hich m ust be answered by experim entation. W hether 
or not there is a weaker condition than  safety which allow s more parallel evaluation but 
m aintains the property th a t only expressions whose values are needed are evaluated 
rem ains an open question.

To m aintain the safety  of the evaluation strategy, we need to ensure th a t the 
evaluator chosen fo r an application

/  e i • ‘ ’ en



does not in itia te  a non-term inating com putation unless the sem antics of the original 
expression w as bottom . Suppose we have such an evaluator, £, then we m ust choose 
evaluators fo r each expression c , to e n which are not allowed to initiate non-term inating  
com putations unless the evaluation of / c j  • • • en using £ does. Sometimes w e w ill have 
to choose an evaluator which does no evaluation.

In term s of preservation of v a lu e s  . an  evaluator £ preserves a set of elem ents. In 
the above exam ple, we have to ensure that whenever the function /  can return  a value in 
the set of elem ents which is preserved by £, then we do not initiate a non-term inating 
com putation in evaluating any of the expressions e , to e n . Thus we need to find ou t the 
definedness of a function w ith  respect to the definedness of its argum ents, and make sure 
w e preserve the  values of the argum ents fo r which the value of the function application is 
a value preserved by £. Some exam ples may help make th is clearer.

For the function /  defined by 
f i x  .v) = x + y

we know  th a t the sem antics of an application of /  is bottom if and only if the  semantics 
of either of the  argum ents is bottom . Thus a safe evaluation strategy is one which does 
not in itia te  a non-term inating com putation unless the sem antics of either of the 
argum ents to /  is J_. A safe evaluation strategy then is one which preserves the non
bottom  integers fo r both of 1 he argum ents of / ,  th a t is, evaluate both of the argum ents 
to  /  in parallel.

If we are required to preserve all non-bottom  elements in an application of 
g ( x .y )  =  i f  x =  0  then 0 else g ( x — 1 ,y)

we can see th a t it is not safe to do any evaluation of the second argum ent to g because 
the  application can be defined no m atter how defined the second argum ent is, for the 
function  never needs to evaluate it. The first argum ent however can be evaluated because 
the  function is undefined whenever the first argum ent is. Thus a safe evaluation strategy 
a llow s the evaluation of the first argum ent of an application of g and not the  second.

The function 
length  [] =  0
length x .xs  =  1 +  length xs

is defined w henever the argum ent list is finite (no m atter how defined the elem ents of the 
list are). Thus, if we are required to preserve all non-bottom  elem ents in an application 
of length  , we m ust make sure th a t the evaluator chosen preserves all finite lists. Hence a

- 17 -



- 18 -

Suppose th a t it is safe to use the evaluator g 3 in an application of the function 
append  [] L  =  L
append x:xs L  =  cons(x ,append(xs ,L )) .  (tJ

Then, since | 3  preserves all finite lists w ithou t bottom elements in them , we m ust make 
sure that whenever append  can return a finite lisl w ith no bottom elem ents in it we do 
not in itiate a non-term inating com putation. This can only occur if both of the argum ent 
lists are finite and contain no bottom elements. It is thus safe to evaluate both of the 
argum ents to the application of append  using g 3 in th is case.

In the examples we have been arguing in tu itively  about the definedness of functions. 
The w ork of th is thesis is to develop a fram ew ork for abstract in terpretation  which we 
apply  to finding ou t the definedness of functions. These results are then used to show 
how w e can change the evaluation strategy as outlined above to allow  fo r parallel 
evaluation w hile retaining the safety of the evaluation strategy.

1.4. An Introduction to Abstract Interpretation.
We are all fam iliar in everyday life w ith the idea tha t often we do not require the 

exact answ er to a question - a distance of order of magnitude of ten kilom etres can be 
cycled, whereas a distance of order of m agnitude one hundred kilom etres m ay require 
some autom ated form of transport. To answ er the question "Do 1 ride m y bicycle or do I 
go by train?", one needs only to know an approxim ation (order of m agnitude) of the 
distance.

In a sim ilar manner, we are taught a t school th a t to tell w hether a num ber is odd or 
even, all we need to do is see if the least significant digit is odd or even - a task  w hich 
requires significantly less com putational effort than dividing the w hole num ber by tw o 
(unless we are dealing w ith  a single digit number?).

W hat is the key concept lying behind the answering of these and sim ilar questions? 
The idea is th a t there is some property in which we are interested, and about which we 
can find inform ation w ithou t having the exact answ er or doing the w hole calculation.

As a more complex example of abstract interpretation which show s m ost of the 
essential features we w ill use later on, we introduce the "rule of signs", which is fam iliar 
from school m athem atics. Our presentation is modelled on [Hankin 1986]. Let us 
consider the follow ing abstract syntax  of a language of arithm etic expressions:

E x p ::=  cn

safe evaluation strategy may evaluate the argument to le n g th  using £2-

([ftNote that a p p e n d  is a curried function even though here, and throughout the thesis, we will 
sometimes write applications as though a function is given a tuple of arguments.



-1 9  -

I E x p  + E x p  

| E x p  X E x p

There is one constant, c n for each integer n . A normal way to in terpret such a 
language is to firstly  in terpret the set of constants {c„ } as the integers, which we w ill 
denote by Z s t , so th a t the constant c n is interpreted to be the integer n .  The sym bols + 
and x are then in terpreted as integer addition and m ultiplication respectively. These 
induce a standard  in terpretation function which we w ill denote by E st :

E st : E x p  —* Z st

E «  [ [ c j ]  =  n

E sl \ [E xp , + E x P l.|] = E st [[E x P ] ] ] ? r  £ st [[E x p 2]]

E st [ {E x p \  x  E x p ^ ) )  = E sl [ \E x p \ ] ]  X E sl [[E x p -A ]

where we have put a bar over the + and the x  to help us rem em ber th a t these are the 
real addition 'and m ultiplication functions.

If the property of interest is "Is the value of the expression positive or negative or 
zero?", then we could use the standard  in terpretation  of our language to determ ine the 
answ er by doing the calculation and then seeing w hether it w as indeed positive or 
negative or zero. For example, fo r the expression

c 29 x c -  33 x  c 64
we could calculate the answ er to be

E «  [ [ c 29] ) x E st [fc - 3 3 ]] x  E st [[c64]]

w hich is
29 X -3 3  X 64 = -61248

and then see th a t the answ er is negative. However, we all know a sim ple w ay of doing 
this, for we know th a t, fo r example, m ultip ly ing a positive num ber by a negative num ber 
a lw ays gives a negative num ber. The way we norm ally  answ er the question about the 
sign of the the answ er is to do the "calculation"

( + ) x ( - ) x  (+) = (-)
w here (+) represents the property  of being positive, and sim ilarly  ( -)  the property  of



being negative, and then say th a t the answ er to the real calculation w ould  have been 
negative.

W hat have we done? We have said th a t the im portant thing abou t the constant cn 
w as not it magnitude, bu t its  sign, and provided an abstract in terpretation , which we w ill 
denote by E ab. th a t says

E ab « c n ]] =  sig n (E st [[cn ]])

- 20 -

where

s ig n in )
( + ) if n >  0 
(0 ) if rc =  0 
( - )  if n < 0

We also have the rule of signs, where we w ill w rite  the in terpreta tions of + and x 
under the rule of signs as +_ and x_ respectively :

( + ) x_ ( + )  = ( + ) (0 ) x_ ( + )  = (0 )
( + ) ( - )  = ( - ) ( + ) (0 ) = (0 )
( - ) X. ( + )  = ( - ) (0 ) x_ ( - )  = (0 )
( - ) x^ ( - )  = ( + ) ( - ) x_ (0 ) = (0 )
(0 ) (0 ) = (0 )

The rule of signs gives x_as an abstract in terpretation of x .
For the abstract in terpretation, +_, of + , some of the rules are obvious, fo r example,

( + ) + _ (  + ) = ( + ) (0 )+_(  + ) = ( + )
( - ) J l ( - )  = ( - )  ( 0 ) + _ ( - )  = ( - )
( + ) + . « > ) = ( + )  (0) +_ (0) = (0)
( - ) + _  (0) = ( - )

W hen we have one of the expressions :
( + ) +  ( — ) or ( — ) + ( + )

then we can no longer say w h at the result is, because the sign of the result depends on the 
m agnitude of the tw o values, and we have abstracted aw ay th a t inform ation. We thus 
introduce the value T  (pronounced "top") to represent the idea th a t we do not know w hat 
the sign of the calculation is. A nother w ay of representing th is  w ould  be to  use the set 
{( — ) .( 0 ).( +)}, bu t we prefer th is w ay because then we do not have to introduce sets into 
the abstract interpretation. The rules for T  are :



- 21 -
( - )  x .T  = T  ( - )  j l T  = T
(o) x_T = (o) (o) ±_T  = T
( + ) >l T  = T  ( + ) +_T = T

and the o ther six equations obtained by changing the order of the argum ents to the 
operators and retaining the same answers.

For completeness, we will introduce the value _L (pronounced "bottom ") to represent 
the undefined integer, even though in our language we will not be able to w rite  an 
expression which has this as its standard  semantics. We have thus extended our domain 
Zw to ZjT where

Z f  = Z sl U {U
and where we give the definedness ordering, < , on the domain 

z j ^ z  2  if and only if z  j = or z j = z 2 -

z f  is an exam ple of a f l a t  domain because all of the elements from  Z sl are on an equal 
level of definedness. We can draw  this in a diagram as :

If 1  appears as one of the argum ents to ~ ¥  or x , then we m ust say w hat the answ er is. 
W e choose s t r i c t  interpretations of these functions, so th a t the answ er to an expression 
which has _|_ as either of the argum ents m ust be J_.

To model the bottom  element in the domain Zj^, we introduce _|_ into the elem ents in 
o u r abstract dom ain. For both _+_ and x_, _L in either of the argum ent positions gives J_. 

We now have an abstract domain, which we will call Z“*
zab = I I  . ( - ) . o . (  +  ) . T l

w here we define the ordering on the domain so th a t Z Bb is a complete lattice :



-00 -

( - )) (0) (( + )

1

In the same way th a t we defined a standard  interpretation lo r  our language, we can 
provide an abstract interpretation, the sem antic function being called E ab :

E ab : E x p -  Z ab

E a b [[cn ]] =  s ig n iE *  [ [ c j ] )

E a b [[E x P l +  E x p  j] ] = E a b [ [ E x p ^ ] ] ± _ E a b { [ E x p 2}]

E ab [[E x p j X E x p 2]] =  E ab { [ E x p , ]] x_ E ab [[E x p 2]]

Notice th a t the form of the abstract interpretation is exactly the same as the form of 
the standard  interpretation; all th a t has changed is the interpretation of the constants cn , 
+ and x .

We now have tw o interpretations :

How can we say th a t if we get the answ er ( + )  in the abstract in terpretation, th a t the 
answ er in the standard  interpretation was really positive? T hat is, we m ust find a notion 
of correctness and prove th a t the abstract in terpretation is correct. We begin by noting 
th a t the sym bol ( + ) "represents" any positive integer. To capture this notion, we define a 
c .o n c r e t i s a t i o n  map :

Cone : Z ab- P ( Z p

where P(X) is the powerset of X .  It re turns an elem ent in the powerset because each 
elem ent in Z ab represents (possibly) m any elem ents of Z p

Rather than define this map directly , we w ill define it in a m anner which is sim ilar

Exp



to the w ay we will define such maps in Chapter 2. We can define an abstraction map : 
a b s : Z ^ - Z a6

which relates the standard  interpretation and the abstract interpretation of the  constants. 
In th is case, the abstraction map is ju st the s i g n  map defined earlier, augm ented w ith  the 
rule

- 23 -

) = 1
to cope w ith the fact tha t we now are dealing w ith Z |' rather than just Z,s l.

W e can now define a map
A b s : P ( Z j ' ) - Z a6

w hich w ill allow  us to find the abstract interpretation of sets of elements. W hen we have 
a set of elements, we have the possibility of having elements of differing sign in the same 
set. Suppose we had the set { — 3.4} which we w anted to abstract. Then we could apply 
the  abstraction map abs to each element in the set to obtain the set {( — ).( + )}. We added 
th e  point T  to represent the fact th a t we were not sure w hat the sign of a result of a 
com putation was. Here we can give it another reading, where it says th a t it represents 
sets of elem ents which have more than  one sign in them . Because of the ordering we 
introduced on our domain, we can obtain this result by taking the least upper bound of 
th e  sets of elements we get by abstracting each elem ent in the set. (N ote th a t 
U { ( - ) . (  + )} is T •) Thus we define A b s by

A b s ( S ) =  LHa&rt") Ues}.

Finally we are able to define the concretisation map. For z € Z ab,

C o n c (z )  =  {J { r |

The concretisation map collects together all of the elem ents which abstract to  som ething 
a t m ost as defined as z .  If we calculate w hat this means for each of the elem ents of Z a6, 

then we find tha t :
Conc(J_ )={_]_}

C o n c ((— ) )  =  {n|*<0} (J H  I

Conc((0 )) = {0} U  U. 1

Conc(( +  )) = In | n > 0} {J {J_}



- 24 -

C o n c C [  ) =  Z j |

and so see th a t indeed concretisation captures our notion of an elem ent "representing" a set 
of values.

We can now sta te  w hat we mean by correctness. For any eval\A<*1u>n

2 , <J£ 2 2 => " 3
where r , .  ~ 2 € Z ab and <jj? is either +_ or x_, then we have th a t for all n ] 6  C o n c iz , ), 
n 6 C onciz  2).

n  j n p n -y  6  ConcC:^)

w here <7̂  is T  if o£ w as +_ and x  otherw ise. It can be show n th a t the  abstract 
in terpretation  we have defined satisfies th is property.

As an example of this, let us return to the previous example and ask w h a t the sign 
of the expression :

C 29 x  C _ 33 X c  64

is. O ur previous calculation showed th a t the real answ er w as —61248 and so the answ er 
is negative: Doing the calculation in the abstract domain we obtain  :

E ab [[c 29]] x E ab [[c _ 33]] x E ab [[c64]]

which is
( + ) x ( - )  x_( + ) = ( - )

From th is we conclude th a t the  answ er calculated in the standard  in terpretation  is 
negative. If we concretise ( — ), we obtain the set of negative integers (p lus J_ ), and so we 
are able to conclude (because of the correctness of our abstract in terpretation) that the 
resu lt really was negative.

There is another feature of abstract in terpretation that can be show n w ith  this 
example- We note that the abstract interpretation does not give exact answ ers. For 
example,

E a b [ [ c _ ,  0 +  c u )) =  ^ 6 [ [c _ 1 0 ] ] jL ^ a6 [[cn ]]

= ( - ) + _ (  + )

= T



whereas the sign of the real answ er
sig n (E st [[c _ j0 +  c j j ]]) =  ( +  )

is (+ ) ,  and so the abstract interpretation loses inform ation, but in a safe w ay; the 
abstract interpretation says th a t it does not know what the sign of the answ er is, but 
does not w rongly conclude th a t it is negative Cor some other wrong answ er).

Those fam iliar w ith universal algebra w ill notice th a t we alm ost have th a t sign  is a 
homom orphism . We have the following diagram :

op
Z j  x Z j -------------------------- ^ Z j '

sign X sign

Z ab x Z‘

sign

ab
v

4 Z “6
QR

where in the bottom  right-hand corner we have ^  rather than equality . O ur abstraction 
map, s i g n ,  is then a s e m i - h o m o m o r p h i s m .  This is the general case fo r abstraction maps 
when we are working in the w orld  of dom ains rather than ju st sets.

We can now sum m arise the key features of abstract in terpretation . Given a set of 
sym bols, we m ust give them an interpretation. Thus, if we have a language, we m ust 
give an interpretation of the language. Usually the sym bols are chosen w ith  one 
particu lar interpretation in mind. However, sometimes there are questions one wishes to 
ask which are hard to answ er using the standard  interpretation of the  language; in fact, 
the questions we w ill ask about the definedness of functions are not recursive. I t is 
sometimes possible to give an interpretation of the language w hich answ ers the  questions 
we w an t to ask, bu t requiring significantly less w ork to do so. Such an in terpretation  is 
called an abstract interpretation. The example we have given here is to ask w h a t the sign 
of the result of a calculation is. For an abstract in terpretation to be of any use, it m ust 
be correct, in th a t anything we conclude from it m ust really be true. F inally , answers 
given by abstract interpretations are not exact, bu t they are safe, th a t is, any conclusion 
we draw  from the abstract in terpretation w ill be weaker than  a conclusion we could 
obtain f rom the standard  interpretation.



- 26 -
1.5. The Language Used Throughout This Thesis.

For the developm ent of th is thesis, we need a functional language. The sim plest 
functional language th a t we know is the typed X-calculus. We use the typed  X-calculus 
for the developm ent of this thesis fo r both aesthetic and pragm atic reasons. F irstly , we 
believe tha t program s should be finitely typable. Secondly, the fact th a t o u r language is 
finitely lypable means th a t we are able to give computable abstrac t interpretations for 
our language. In th is section we introduce both the abstract syn tax  of the language, and 
the idea of in terpretations of the language which give different sem antics to the language. 
Having more than one interpretation for a language is fundam ental in the work of 
abstract in terpretation. The presentation of this section is after the  s ty le  of [Abramsky 
1985 b].

1.5.1. Syntax
Given a set of base types M,. k% • ■ • }, we define type expressions cr . r . • • • by 

ct : :=  A j  <x —* ct ( f )

In C hapter 5 we w ill extend the type system  of our language to include finite 
com binations of sum s, products and lifting. A t the moment, such constructed types are 
handled by making them Hbase types".

The language has a set of typed  constants, denoted by Ic^l. and we w ill choose for 
ou r typed  constants the follow ing :

- in te g e r s e.g. 0.5
- b o o lea n s i.e. tr u e , f a ls e

- A l i s t  -  lists of elem ents of type A , i.e. elem ents of the recursive type
A  =  1 +  A  X  A l is t

- arithm etic functions e.g. + , —, x
- boolean functions e.g. and , or
- a conditional for each lype cr denoted by iffe00/_ (T_ cr_ 0. (o r ju s t i f )

(t) Note that we have no type variables in the syntax of our type expressions, and so we are using a 
mono-typed X-calculus and not a polymorphically-typed X-calculus.



- 27 -

- list processing functions i.e. h d  , t l , cons and case

For each type c r , we w ill assum e an infinite supply of typed variables V a r a =  

f r a . • • • }. The 1 erm s in the language E x p  then consist of typed term s e:cr formed 
according to the follow ing rules :
( 1 ) x a  : cr variables
( 2 ) c  a  : constanis

(3) c : 7 X-abstractionsXxCT.e : <t - * t

(4) e j : <t —* t  e 2 ■ cr application
e l e 2 : r

(5) e : <r-* cr fixed pointsf i x ( e )  : cr

'tktd' fix part of "Hu SjrrK* dnd not (X Co/xi-fo nt.)
1.5.2. In te rp re ta t io ns .

So fa r we have only given the syntactic constructions of o u r language. We need to 
give interpretations for our language. An interpretation, I , is given by

/  = ({£>,( }.{c7 })

thal is, inlerprelalions for the base types and interpretations fo r each of the constants. 
For each base type A  , we require th a t D £  m ust be a bounded-complete, oj-algebraic cpo 
[Scott 1981].

This is extended to the interpretation of the type cr —r  by defining Z )y_T to be the 
dom ain of continuous maps £ > £ . - ♦ £ > 7  [Scott 1981]. Each c 7  is given interpretation in 
D j j . . In particular, for each type cr, the interpretation of Cla  is j _ D i .

The interpretation of base types and constants induces a sem antic function
E 1 : E x p  -*  E n v 1 -* [J

w here E n v 1 = } and £m » 7  = Var a -►  Z? £ .

E 1 [[jc^ D p 7  = p ; (x CT)
E 1 [[Cy]] P1 = cjj.

E '  [[Xx"-..!]]?7 = k y D ‘° £ '  M ] p ' [ y l x n



- 28 -
E 1 [ [ e ,c 2 ] ]p / = (E 7 [[e j]] p7 ) ( E 1 [[e 2]] p 7 )

E 1 [[yix e]] p 7 = f i .x (E J [[e]] p7 )
fKa|- o h s f tu c ju n  a * C  f t *  S4rw aU

Throughout tlie rest of the thesis we w ill have a s t a n d a r d  in terpretation  ({£>/['} .{c£})
w here we have the usual flat dom ains for things like integers and booleans. The standard
interpretation for A llst is obtained by solving the isomorphism

A list =  1 + A  x Alist

over Ihc category of domains [Smyth and Plotkin 1082] to obtain
U  D g * . ] _ o s  U

Here * is the Kleene star, denoting a finite sequence (possibly em pty) of elem ents from  
the  set which is starred , and so D % * .n i l  are finite lists of elem ents of D %  (i.e. integers or 
booleans etc.), and D i c*._L n(( are lists which have a finite num ber of elem ents from D %tJAliu
and  then have an undefined tail. The set of infinite lists is denoted by D %  “

It is useful to have some term inology to refer to various types of lists.
Definition 1.5.2.1:

A list, L  , is
(Z) f i n i t e  if L  6 D %  * .n i l .

(ZZ) p a r t i a l  if L  € D a . D a *J_ n .UAlnt
( Hi )  i n f i n i t e  if L  6 w.

\

□

Note th a t although the bottom  list is norm ally called a partial list, we have 
separated it o u t because in Chapter 3 we w ill need to consider the set containing only the 
bottom  list and the set containing all o ther partial lists. Thus, fo r our purposes, a partial 
lis t has a t least one element of D% in it, th a t is, can be w ritten  as cons(e j ,e 2) for some e , 
and  c 2*

We w ill call the induced sem antic function E sl, and we w ill a lw ays use the 
environm ent p sl for the standard  interpretation.

For the standard  interpretation of constants, we w ill have the s tric t versions of all of 
the  arithm etic and boolean functions. The conditional has the follow ing in terpretation  :

(£ ”  [[ir6oo, ^ <, ^ <, _ „ ] ] p a ) i  „
D n

x y  = ±



- 29 -
]] p st) t l  x  y  =  x

(ES‘ [ l i f t e r ]] P St) f f  x  y  -  y

The standard  semantics of the c a s e  f unction is :
E st [ [ca se  s / L ] ] p il  =  E st [ [ i f  n u l l ( L )  th e n  s  e ls e  f U i d ( L ) .£/(/,))]] p st

It is m eant to be a translation of the more user-friendly pattern  m atching s ty le  of w riting  
programs, being a case on the structu re  of the list. Thus 

su m lis i [] = 0
su m list  x . x s = x  +  su m list  x s  

is t ranslated into our language as :

For a b s t r a c t  interpretations we w ill allow  any finite, com plete lattices, D £ b fo r each 
base type A  , and these properties of finitencss and completeness are preserved by the 
interpretation of the type structure. In the examples of the  use of the fram ew ork  in this 
thesis, we w ill use in particular tw o abstract domains, nam ely the tw o point dom ain and 
the four point domain.

We w ill induce the in terpretations of the constants as abstractions of th e ir stan d ard  
interpretation.

The induced sem antic function w ill be called E ab and we w ill a lw ays denote the 
environm ent used in the abstract in terpretation  by p ab.

Note th a t in our abstract in terpretation we have only  param eterised o u t the  
interpretation of the base types and the constants. This is because we only need to change 
the interpretations of these things to answ er the questions about evaluation strategies th a t 
we wish to ask. A fram ew ork for the abstract in terpretation of the pure X-calculus is 
provided in [M ycroft and Jones 1985], where the meaning of X -abstraction and 
application are also part of the interpretation.

1.6. Domains, Powerdomains, Functions and Algebraic Relationships (t).
Because we w ill be developing a fram ew ork for abstract in terpretation  w hich is 

sem antically w ell-founded, we w ill of necessity have to delve into the  w orld  of dom ain
(t) This section is lifted almost verbatim from some material in [Burn, Hankin and Abramsky 
1985a), and we are indebted to Samson Abramsky for his original presentation of it.

(J^This notation means that the name s u m lis t  stands for the expression on the right hand side of the 
equality symbol. This shorthand way of referring to expressions in the language will be used 
throughout the rest of this thesis.

su m list =  f ix i X /



theory in which the sem antics of programming languages exists. It is possible to 
understand  the technical details of th is thesis using only basic concepts from domain 
theory [Scott 1981, 1982], category theory [Arbib and Manes 1975] and powerdom ains 
[Plotkin 1976], [Sm yth 1978]. The main results th a t we use can be sum m arised as a set 
of algebraic rules, which wc w ill now develop. The proofs of the  basic facts cited below 
are either directly in the literature, or obtainable by minor modifications therefrom ; see 
[Plotkin 1976], [Hennessy and Plotkin 1979].

We shall be working over the category of dom ains described in [Scott 1981, 1982]. 
The objects of th is category are the bounded-complete <o-algebraic epo’s, and the 
m orphism s are the continuous functions between dom ains. The composition of 
m orphism s j \ D - * E ,  g:E ~* F  is w ritten  th u s :

F .

The identity  morphism on D  is w ritten  i d D . Given dom ains D  and E ,  the dom ain D - > E  
is form ed by taking all continuous functions from D  to E , w ith the pointwise ordering :

/  ^  g  iff for all x £  D , f ( x )  ^  g ( x )

Given a domain D , then P D , the H o a r e  ( l o w e r  or "p a r t i a T  c o r r e c t n e s s )  p o w e r  d o m a in  
is formed by taking as elem ents all non-em pty Scott-closed(f) subsets of D ,  ordered by 
subset inclusion. A subset X £  d  is S c o t t - c l o s e d  if

(£) If Y  c  x  and Y  is directed, then U  Y  £ X .
(it) If y ^  x  £ X  then y € X .

The least Scott-closed set containing X  is w ritten  X ° .

A nother useful concept is th a t of " le f t" -c lo s u r e ', a set X Q  £> is left-closed if it 
satisfies (££) above. The left closure of a set X is w ritten  LC(X) = {y |there exists x  
£ X ,  y < x ) .

Note th a t for elem ents of the Hoare power domain, the subset inclusion ordering is 
equivalent to the well known E g l i - M i l n e r  ordering :

X Q  Y  iff for all x £  X . there exists y £  Y , x ^ y  

and for all y £  Y . there exists X. x ^ y

(t) This terminology is due to the fact that these are the closed sets with respect to the Scott topol
ogy (c.f. for example [Gierz et. al. 1980]).



- M -
We shall also apply P to morphisms. II J : D - * E ,  then P f : P D - * P E  is defined thus: 

(P /)(X ) = {/(x) 1 x €  X } °

The main properties of P are :

(P I)  If D  is a domain. P D  is a domain.
(P2) If /:£)-* E . P f i P D ^ P E  is a continuous fu n d  ion.
(P3) P ( / .g )  = (P /)o (P g )
( P4 ) P i d D = i d  p j}.

This says tha t P is a f u n c t o r  from the category of dom ains to itself. A fu rth e r 
property  of P is th a t it is l o c a l l y  m o n o t o n i c  and c o n t i n u o u s .  This means th a t if [ f } is a 
chain of functions in A - >  B , then fo r all i , P /, < P f i + l , and P ( U / i ) = LJP/,• •

W henever we w rite  P from now on we will mean the Hoare pow er domain functor.
W hy are we using the Hoare powerdomain construction? The Hoare pow er domain 

n a tu ra lly  captures the idea of sets of elements w ith a certain level of definedness which is 
w hat is needed for our applications. It is also pleasant to w ork w ith  from a technical 
point of view.

W e shall need to use some additional constructions associated w ith  the powerdomain 
functor. F irstly , for each domain D  we have a map

: D - >  P D

defined by :
\ d \ D = LC({rf».

This satisfies the follow ing properties :

(P5) l  \D is continuous.
(P 6 ) F o r / :£ -* £ , P / .f l .f o  =
This says th a t J .5 is a n a t u r a l  t r a n s f o r m a t i o n  from I, the identity  functo r on the category 
of dom ains, to P .

Secondly, for each domain D  we define 
: PPD-*PD

by



u  £>(0) = {* I for some X€ 0 . x6 X} = |J 0. (t)

This satisfies :
CP7) y  D is continuous.
(P 8 ) f o r U fc- . PP /  =
This says that y  is a natural transform ation from P 2  to P .

Now (P . {.J. y  ) lorm s a m o n a d  or t r i p l e .  We shall not use this fact, but we will 
use the following, additional observation. Suppose D  is a domain which is a complete 
lattice. Then the least upper bound operation, viewed as a function

U  : P D - * D

satisfies :

(P9) y  is continuous
( p i o ) U o j . i y  = i d D
( P i n  y c P ( y )  = y . y ^ .
This says th a t y  :P £>-»£> is an a l g e b r a  of the monad (P . J J .  y  ). W e w ill use (P9) and 
(PIO) in the sequel.

Henceforth, we shall om it the subscripts from  instances of fl.8 * y  w here they arc 
clear from  the context. The facts we shall be assuming about the constructions 
introduced above are summarised in ( P I ) -  (PI 1). By using "function-level reasoning", we 
are able to give simple, algebraic proofs of m any results.

1.7. Overview of Thesis.
In C hapter 2 we develop a fram ew ork for safe abstract in terpretations. The aim of 

abstract interpretation is to provide suitable com putable abstract in terpreta tions which 
describe properties of interest and from which we can make assertions abou t the standard  
interpretation.

It w ill be developed in such a w ay th a t the user of the fram ew ork has only to 
provide three things. The first tw o are

(t) The last equality says that y  is just the same as the ordinary set-theoretic union in the case 
of the Iloarc powerdomain. This is not true in general for other powerdomain constructions.



-  33 -

(£) a finite, complete lattice as an abstracl domain for each base type; and
(££) a strict, continuous abstraction map for each base type  from  the standard
interpretation of the type to the abstract interpretation of th a t type.

These should make the distinctions in the standard  interpretation of the base type th a t 
are desired. Abstraction maps for the higher types are then induced in a natural w ay. 
Thirdly.

(£££) each of 1 he constants must be provided w ith an abstrac t interpretation which
satisfies a safety relationship w ith  respect to the standard  sem antics of the constant.
The fram ew ork is proved correct, and some theorems are given which can be used as 

practical tests in the use of the theory.
The fram ew ork of C hapter 2 is applied in C hapter 3 to give an abstract 

interpretation fo r the definedness of functions. This is used to show  w hen the evaluation 
strategy can be safely changed to allow  some evaluation of argum ents to functions in 
parallel w ith , or before, applying the function.

A bstract domains fo r each base type are determ ined using tw o different intuitions, 
both of which end up giving the same abstract domains. The first in tu ition  is to look at 
the definedness level of elem ents in the standard  interpretation, w hile the second is to 
look at how the sensible evaluators behave on expressions standing  fo r elem ents in the 
standard  interpretation. The abstract dom ains chosen reflect th e  divisions made by the 
differing am ounts of evaluation. We define best approxim ations of the constants in our 
language by deriving them as abstractions of the standard  in terpretation  of the constants. 
Having defined the abstract interpretations of the constants, we give some examples of 
determ ining the abstract interpretation of user-defined functions.

The correctness of the abstract in terpretation follow s d irectly  from  C hapter 2. It 
tu rn s  ou t th a t we need to be able to determ ine the evaluation inform ation which is tru e  
in a particular context (context-sensitive) as w ell as th a t w hich is tru e  in all contexts 
(context-free). The tw o necessary theorems again follow  d irectly  from  C hapter 2.

Finally, we show how both of these sorts of inform ation can be used to safely 
change the evaluation strategy and how th is inform ation can be encoded on the graphs/(of 
functions.

In applying the abstract interpretation developed in C hap ter 3, we . Wv\\ 
when a function application is undefined, and from th a t deducing how much evaluation is 
safe for each of the argum ents. If the argum ents are function applications, then  instead of 
just assuming th a t it is safe to evaluate the applications to head norm al form , which is 
how the theory is used in C hapter 3, we may know th a t it is safe to do more evaluation.



It w ould be better if’ we could carry this inform ation inw ards and so we may be able to 
more evaluation of argum ents to this function than wc w ould have otherw ise have been 
able to do. C hapter 4 begins by giving a sim ple example of where th is is the case.

Using the abstract interpretation developed in Chapter 3. we are able to give tw o 
more theorems in C hapter 4 which answ er the question : Given a safe evaluator for a 
function application, whal are the safe evaluators for each of the argum ents in the 
function application? The theorems allow  us to develop e v a l u a t i o n  t r a n s f o r m e r s ,  one for 
each argum ent, which transform  a safe evaluator for a function application to a safe 
evaluator for thal argum ent. They can be determined d irectly  from the abstract 
interpretation.

The theoretical fram ew ork developed and used up to the end of C hapter 4 has the 
function space as the only type constructor. Complex data  types such as infinite lists 
(infinite sum s of products) were handled by putting  them in a black box and treating 
them  as a base type, giving them a stan d ard  and abstract in terpretation . In C hapter 5 we 
are slightly  more imaginative, adding types which are constructed from finite 
com binations of sum s, products and lifting. We define in a n a tu ra l way abstract 
in terpretations and abstraction maps fo r the structured  types from the corresponding 
abstract in terpretations and abstraction maps of their components. We show th a t the 
v ital safety relationship between the stan d ard  and abstract in terpretation  still holds, and 
th u s the correctness of the abstract in terpretation  follows as in C hap ter 2.

We draw  our w ork together in C hapter 6 , and point ou t some areas in which more 
w ork m ust be done, both theoretical in term s of extending resu lts to a polym orphically 
typed fram ew ork, and pragmatic in term s of implementing the theory  in compilers and 
com puter architectures.

- 34 -



Chapter 2
A Framework For the Safe Abstract Interpretation

of Functional Languages
We develop a fram ew ork for safe abstract in terpretations. The aim of abstract 

interpretation is to provide suitable com putable interpretations w hich describe properties 
of interest and from which we can make assertions about the stan d ard  in terpretation.

In the first sedion we explain w hat we mean be the  c o r r e c t n e s s  of an abstract 
interpretation. The main thrust of the rest of the chapter is to provide a fram ew ork for 
the abstract interpretation of functional languages which is correct. It w ill be developed 
in such a w ay th a t the user of the fram ew ork has only to provide th ree  things. The first 
tw o are a finite, complete lattice as an abstract domain fo r each base type, and a stric t, 
continuous abstraction map from the standard  interpretation of th a t  type  to  the abstract 
interpretation. These should make the distinctions in the s tan d ard  in terpretation  of the 
base type th a t are desired. A bstraction maps for the higher types are then  induced in a 
natural w ay. T hird ly , each of the constants m ust be provided w ith  an abstract 
interpretation which satisfies a safety  relationship.

As a more detailed survey of th is  chapter, in the first section we m otivate and give a 
definition of the  correctness of an abstract in terpretation as w ell as m otivating  the need 
for, and form of the definition of various functions th a t are needed in the subsequent 
development. We form ally  define these m aps and prove they are w ell-behaved in the 
second section. Some more useful form s of the definition of the  abstraction maps are 
given in the th ird  section. Properties such as strictness and bottom -reflexivity  are often 
useful to have, and it is shown th a t these properties are inherited  from  the abstraction 
maps on the base types. We defined abstraction maps and concretisation maps in such a 
w ay tha t they are adjoined functions; th is is proved to be tru e  in the fifth section, and in 
the following section we prove tw o propositions which are useful in proving a safety 
relation between the abstract in terpretation  and standard  in terpretation  w hich w ill allow  
us to prove the correctness of the abstract interpretation.

In the application of this theory in C hapter 3 where a definedness interpretation  is 
given, we w ill see th a t the definedness of a higher-order function depends on the 
definedness of any argum ent which is a function. If we were to  be to ta lly  pessimistic 
about the definedness level of functions, then we w ould have to give inform ation about 
the definedness of a function which w as tru e  in every application of th a t function, th a t is,

- 35 -



inform ation which is tru e  regardless of the context in which the function appears. 
However, if we take into account the contextual inform ation of an application of a 
function we are able to sometimes to find out more about the dehnedness of the function 
in this particu lar application. It tu rn s out tha t we cannot do w ithout either of the types 
of inform ation. The hnal iw o theorems in th is chapter give practical tests fo r finding out 
both of these sorts of inform ation.

The w ork can be seen as a generalisation of the theory of [Burn, H ankin and 
A bram sky 1985a] and [Hankin, Burn and Peyton Jones 1986] to situations w here we have 
more complex abstract domains than the tw o point domain for the  abstract 
in terpretations of base types.

2.1. Motivation for the Definition of Abstraction and Concretisation Maps.
In section 1.5 of Chapter 1 we introduced the idea of in terpretations. We were 

particu larly  interested in providing a com putable abstract interpretation w ith  w hich we 
could do calculations and make assertions about com putations in the  standard  
interpretation. 'iHT c \r d  Vhd M? oj- •

E ab [[/]] p
D ab

a b
->Z)Taa b

and wish to make assertions about a calculation using the standard  in terpretation  :

D S ta E st [[/]]p* --------------»£>s iT

Given th a t 
( E ° b [[/]] p06) s = T

w hat do we wish to conclude? A reasonable statem ent w ould be th a t fo r all s  
"represented by" s ,  the value t "represents" the calculation (E sl [[/]] p s t ) s .

If we call the process of going from s  to the set of things th a t s  "represents" 
c o n c r e t i s e  i o n ,  and assume that for each type cr th a t we have a map C o n c a  which does 
this, then we can sta te  the above condition form ally , and give it the s ta tu s  of a definition

Definition 2.1.1:



An abstract in terpretation is c o r r e c t  if ( E ab [[/]] p ab) s =  t implies tha t fo r all 5 € 

C o n e^(J ), ( E st [[/]] Pir) s € C o n c T(t ) .

□

We shall see in section 2 . 8  that the correctness of an abstract in terpretation  is 
implied by the following s a f e t y  d i a g r a m ,  which is essentially an adaptation to the w orld  
of the Moarc power domain of diagrams appearing elsewhere, lo r example. [Cousot and 
Cousot 1979], [Mycroft 1981] and [M ycroft and Nielson 1983] :

C o n e T

a b  
T

i .e .C o n c T o ( E a b [ [ f ] ] p ab) D P ( E sl [[/]] p st) o C o n c a

The use of □  in the above diagram captures the notion of safety , for it implies th a t 
the result obtained in a calculation in the abstract in terpretation represents a superset of 
the possible results in the standard  interpretation.

So far we have been assuming th a t we have a concretisation map ConcCT fo r each type 
a ;  we now tu rn  our attention to how we can define such concretisation maps. In itia lly  
we look at the question the opposite w ay around. For each type cr, there are possibly 
many things in which have equal levels of definedness. As an example, consider
Aa- "" j c + 1  and \.r  ,m.* + 2  which are in D t%t^ , inl and both of which are defined 
everywhere except at _j_ n st . It w ould be useful to be able to define a maptm

A b S(r : P D % - * D £ b ( f )

which mapped sets of things of equal definedness to the same elem ent in the abstrac t 
domain.

- 37 -

PD;

C o n e ,

D a b

P  ( E s  [ [ f ] ] p s t )

E a b  [[/]] p a b

■>p
m

->0

(t) We note that A bs CT is a map which takes an element of the Iioare power domain and so a more 
correct intuition is that represents the most defined clementsin a (left-closed) set S .



- 38 -

A natural way of defining maps is to define them inductively over the type  structure. 
Suppose therefore that A b s a , A b s  T and C o n e a  and C o n c T have been defined and  th a t we 
wish to define

A b s  <T̂ T : P ( D % ^  ^b^  D  f )

Cone  a _  T : ( D% b^  D ? ) - * P ( D % - + D sj )

Given a set S' € P(£>£— D 7 ), remember that A b s a  says th a t the m axim um  level of 
definedness of the elements of S  is a particular value in the abstract dom ain. Thus we 
need to define a map

abs  • D s! - * D abWt/J <X—* 7  • ^  cr —  T iy  (J —>t

so th a t we can test the level of definedness of each element of S  and then choose the 
maximum one of these for the value of A£>Ja _ T(S).

Given an /  6  D %  — D s7 :
f

D % -------------------------------------

how do we define
abs  cr_ T( / )

D ° b -----------------------------------> D f ?

We know th a t a b s ^ ^ ^ f )  w ill be applied to I  € D * b . and th a t s  "represents" all 
values in C o n c ^ i D .  Furtherm ore, concretisation returns a set of values, th a t is, an 
elem ent of P D SJ . . So we have the follow ing situation  :

P D % D 7/TV

ConCfj

D  °b ----------------------------------------«b
a b s ^ ^ r i f )

We wish to say th a t /  € D %- + D SJ  is "at most as defined as" som ething, by saying 
th a t ( a b s a _ T( f ) )  s = t where t represents the most defined valuesthat /  can take for 
values represented by J .  This implies that we m ust apply j  to all of the elem ents s  in 
C o n e CD and we can do this by applying P to /  to obtain the diagram  :



P D %

-  39 - 

P /
* P  D%

Cone a

D a b
a Qbs a  _  T(/)

$ D ? h

All that we need to find now is a map from P D% to D ° b , which maps a set of 
values down to the elem ent in the abstract domain th a t represents th a t set, and we 
already have such a map in Abs  T. Thus we can complete the diagram  for the definition of 
abs cr_ T( / )  :

P D
f a

Sta
P /

Cone fj A bs T

D a b
cr abs^ ^^f)

*
a bT

and w rite  it out as a form ula :
a6jrcr_ T( / )  =  A b s  T o P  /  o C onea

We have so fa r said th a t A b s  ^  picks ou t a value which represents the  most defined 
elementsin a set of things, and now we have a map, a b s a  which w orks o u t the definedness 
level of a single element. Thus we can find out the definedness of a set of things by 
applying a b s a  to each elem ent in the set. Furtherm ore, since we have insisted our 
abstract dom ains are finite, com plete lattices, we can take the least upper bound of the set 
of results from applying a b s ^  to a set of values in the standard  in terpretation  to model 
the idea of choosing the maxim um  value. Thus a reasonable definition of A b s  ^  is

A b s a  =  y  » P a b s a

The least upper bound in the  definition is capturing tw o in tu itions. F irstly , an upper 
bound is necessitated by the fact thai we are developing a safety  analysis, and secondly, 
having the least upper bound means th a t we have the best safe representation of the



- 40 -
value.

We w ill also define C o n c a  so th a t A b s a  and C o n c a  are adjoined functions for each 
type <r. Adjointness is a very im portan t m athem atical property [Gierz et. al. 1980], and 
can be interpreted in this context to mean tha t the abstract dom ain models the  standard  
domain as closely as possible.

Furtherm ore, if we can provide an abstraction map which satisfies th a t fo r all e:cr
that

and the maps A b s a  and C o n c a  are adjoined functions, then we can prove the correctness 
of abstract interpretation. (See the progression of the argum ent from Theorem 2.7.1 to 
Theorem 2.8.2.)

It is shown in [Abram sky 1985b] th a t the definition of a b s a  we have m otivated 
above is the "best" possible abstraction map in th a t it  loses least inform ation w hile still 
satisfying (§).

One final thing that is w orth  noting is th a t we have a dual reading of the elem ents of 
the abstract domain. F irstly they can be seen as the abstraction of one particu lar elem ent 
of the standard  interpretation (using a b s a. )  and secondly as saying the elem ents of a set of 
things from the standard  interpretation are at m ost as defined as a certain value. 
Concretisation captures the second reading by returning the set of all values which 
abstract to something less than (o r equal to) the element which we are concretising.

2 .2 . F orm al D efin itio n  o f  A b stra c tio n  and C o n cretisa tio n  M aps.
Having m otivated the need fo r the maps a b s a , A b s a  and C o n e a  fo r each type  cr, and 

the form of their definition in the previous section, we now proceed w ith  th e  form al 
definition. At the base types we presum e th a t we are given abstrac t dom ains D A b , fo r 
each base type A , which are finite, com plete lattices, and stric t, continuous abstraction 
maps

where these make the distinctions on the base types th a t the user wishes to make. The 
abstract domains need to be complete lattices because we w ill need to take least upper 
bounds, and they need to be finite so th a t the  testing of equality  of functions w hen taking 
least fixed points is an effective procedure. S trictness of the abstraction m aps is required 
so th a t concretisation is well-defined and fo r the proof of Proposition 2.b.2.

E a b [ [ e ) ) p ab >  a b s ^ E *  [[e]] p sl) (§)

absA



- 41 -
We can then define 

D efin ition  2.2.1:
AbsA : P Da ~* D f

AbsA =  y  oP absA

□

D efinition  2.2.2:
ConcA : P D%

C oneA (a)  =  y  {7*1 /1^ ( m « l  ( t )

□

From the previous section we saw  th a t the w ay to define the abstraction map for 
higher types was :
D efin ition  2.2.3:

absa ^ T : D « ^ T~ D « L T 
a b s a _ T( f ) =  A bs  T o P /  » C one CT

□

and we also define the maps A b s cr_^T and C o n c (y^ tT in an analogous way to the definitions 
on the base types :
D efin ition  2.2.4:

Absa ^ T - . V D « - T~ D * . T
A b s a ^ r =  U  o P a b s a ^ T

□

D efinition  2.2.5:
Co/ic<T̂ r : Z ) |fc_ T- P i ) J _ T

(t) Note how we have delined ConcA so thal it will be an upper adjoint to AbsA [Gierz et. al. 
1980].



- 42 -

□

We must of course show th a t these m aps are well-defined and continuous, but first a 
definition and a subsidiary Lemma.
D efin ition  2.2.6:

A function / 6 D - *  E  is s t r i c t  if' /X_L ^  ) = ] _ E .

□

C o n c ^ ^ ^ f)  =  b H 7 - M 6 5 f f _ T( m / }

Lem m a 2.2.7:
If /  € D 7a — D \  is s tric t and D \  is a com plete lattice, then y  « P / is stric t.

P r o o f :

( U  ° P /)  l_L n i I = LzJ {/Ar|Ar€{_L_/ }}° definition of P on morphismsU O L* o
= y i / ± D/ >°u  o

-  U l l ^ ;  >° since /  is strict 

= ± Di ^
□

Lem m a 2.2.8:
If for each base type A .  we are given a strict, continuous abstraction map 
absA : D % - * D A b, then for all types a
(i ) abs 0 is continuous.
(ii) AbSfj. is continuous.
( i i i )  abs a  and Abs a  are strict.
(iv) C o n e  , j is well-defined and continuous.

P r o o f :
We prove th is by induction on the type structure .
(i) This is tru e  of the base types by ou r condition of the continuity  of the abstraction 

. maps on base types.



-  43 -

(ii) On base types we have th a t th is is true since y  is continuous, P  f  i s  continuous 
if /  is (P 2 ), and the composition of continuous functions is continuous.
(iii) absA is stric t by the condition of the Jemma and th u s A b sA is s tric t by Lemma
2.2.7.
(iv) We have to prove th a t C<>ncA is well-defined and monotonic, for its source is a 
finite dom ain and hence is continuous if it is monotonic.
To prove well definedncss, we m ust show that \T I A b sA ( T ) ^ a )  is a non-em pty 
Scott-closed subset of P P D ^ . Since we have that A b sA is strict (part (iii) of 
induction), we have th a t the  set \T\AbsA (D ^ a l is non-em pty. Denoting 
{r| A b sA by 0 , to show th a t 0  is Scott-closed we need to show th a t (a) © is
left-closed and that (b ) 0  is closed under least upper bounds of directed sets. The 
first is tru e  since if T ^  X  6  0 , then A bsA ( Y )  < A bsA ( X )  ^  a and so f  € 0 . The
second is tru e  for if A £  0  is a directed set, then A b sA (1_| A) = ( J \AbsA ( X )  | X €  A}

and since A b sA (X) < a for all X  € A, \_J{AbsA ( X )  \ X £  A} < a .

To show m onotonicity of C o n cA , let 5 , .  s 2e D A b , s j  ^ s  2 . Then
C o n c A ( s  ,) = y  {T| A b s A (T )^  s  j  > and C o n c A ( s  2) = y  \ T \ A b s A ( T ) ^  j 2}.

C learly, {T \ A b s A ( T ) ^  jj}  Q  \ T  \ A b s A ( T )  ^  j 2} since ^  s 2 and so C o n c A ( s  j) ^  
C o n c A (j 2). Thus C o n c A is monotonic and hence continuous.
Assuming (i) to (iv) are tru e  fo r types cr and t we prove them  for type
(i) a b s ^ i f )  = A b s T«P /« C o n e a  and is thus continuous because by the induction 
hypothesis it is the composition of continuous functions.
(ii) Follows as fo r the base case.
(iii) abs <r_,T(J_ n  it )T  = (A b s  T o P (J_ st )» C o n e a ) (s )U a — T u  o—t

= U (P (a b s T o_L n ) o C o n c cr) ( s )

= y ( P ( a i5 ToJ_ M )) \s | s Z C o n c  qXT)})

= y  \abs T(J_ n  s, ( s ) )  | jeCmCo-d)}0 

= U \ a b s T( ± D « ) ) *

= U \ ± D * 1° by induction hypothesis (iii)

-  S-Dy (P10)



- 44 -
The result holds for A b s a _ T  by Lemma 2.2.7. 
(iv) Hollows as l or the base case.

□

In the proof of Lemma 2.2.8 we have made use of all of the properties of the 
abstraction maps and abstract dom ains for base types which we have insisted upon. 
F irstly, continuity is needed for the abstraction maps on the base types so tha t all of the 
maps we use are continuous, which is needed for proving the safety of the fram ework. 
The strictness of the abstraction m aps on base types, which is preserved by the 
abstraction maps on higher types, is needed to prove the well-definedness of the 
concretisation maps. To guarantee th e  existence of least upper bounds fo r the definition of 
the abstraction maps, we need the  property  th a t the  abstract dom ains are complete 
lattices. F inally, finileness of the abstrac t dom ains is needed not only  so th a t we will 
develop an effective analysis, but because we were able to use the fact th a t we needed 
only to prove that the concretisation maps were m onotonic for them  to be continuous. 
Abram sky [Abram sky 1985b] has show n th a t if the abstract dom ains are any  complete 
lattices (including infinite ones), then the  concretisation maps which are induced from the 
abstraction maps are not in general continuous. If the abstraction maps also map finite 
elements [Scott 1981] to finite elem ents, then the concretisation maps w ill be continuous 
[Abramsky 1985b]. Since our abstrac t dom ains are finite, th is condition triv ia lly  holds.

It is useful to have a relationship between P a b s ^  and A b s (T. This is sta ted  in the 
following Lemma.
Lem m a 2.2.9:

P  abs 0 - 4  { .  U o Abs ̂

P r o o f :
P  abs a  {  .{*{ c UcP'Obsd t-ffoVd

=  \ .^ o A b s a  D e f in it io n  o f  A b sa

□



- 45 -
2.3 . T w o  U sefu l Form s o f  th e  D e fin it io n  o f  th e  A b stra ctio n  M ap.

We present tw o alternative  form s for the abstraction map a b s a ^ T w hen r  is a 
function space.
P rop osition  2-3.1:

Suppose f  6  ■ • ■ — D § ‘n ~* D sTl . Then
__ D f   D ?  n _

a b s a  -- -----------tT _ T ( f )  = k x ] ■ ■ ■ Kxn " . y  \abs T(/ a: j xn ) |  a n d a ^ ^

P ro o f :
Suppose /  € • • • - * D $ n - * D sf . Then from [A bram sky 1985b, Lemma 6.24] we
have th a t

__P £  D ?  n _abs^ _ T(/)  = \ x j  ■ • ■ Xxn " .U  {absT( f x ] • • •  xn ) | and abs a (xt ) ̂  x( }1 " i=l  '
_X> f  __P f  n _

= \ jx1 • • ■ \ x n n .\ ^ {a b s  T{ f  x  j • • • x n ) | and abs a  ( x t ) ^ x t }i= l '
since y x °  = LI-X- fo r finite, com plete lattices [A bram sky 1985 b].

□

The second form of the abstraction map, which we w ill give in Proposition 2.3.3, is 
a direcl consequence of the above Proposition and the follow ing Lemma.
IvCmma 2.3.2:

ab sa (s)  ^  J  => s € Con ca (s)

P r o o f :
Suppose afoo-U) ^  s .  Then 

C o n c u r )  =  y

=  U l r l  y  [abs a ( t )  1 1 € 7,}0 ^J}

d e f in it io n  o f  Abs ^  a n d  d e f in it io n  o f  P  o n  m o r p h is m s  

and certainly y  {abs a ( t )  |* €  fl*51° <  s since <  J , and th u s 5 € C onca (J).

□

\



S uppose/ 6 D ^ x~* • • • - * D a n - * D 5T . Then
__P “/■ p at- n

absa  ------ ((T _ T( / )  = \ x  j 1 • • • \.v^“ " . y  \absT( f x  , • • •  ) I and x t 6 Cone CT ( x t )}°1 ” t= O '

Proposition 2.3.3:

Proof :
This follow s directly from Proposition 2.3.2 and Lemma 2.3.3.

□

2.4. P roperties o f  A b stra c tio n  and C o n cre tisa tio n  M aps o f  H igh er  T yp es.
Many useful properties of abstraction maps of the  base types are carried over to the 

abstraction maps fo r the higher types. A lthough these properties were used in the 
development of [Burn, Hankin and A bram sky 1985a], we note th a t il is in [A bram sky 
1985b] th a t the first record is made of separating ou t the properties of abstraction  maps 
on base types which are preserved on the  higher types. W e record here th ree  such 
properties which are useful in the ensuing developm ent.
Fact 2.4.1:

If absA is stricl for all base types A , then a b s a  and A b s ^  are stric t fo r a ll types cr 
(Lemma 2.2.8 (Hi)).

□

D efin ition  2.4.2:
A function /  € D - * E  is ^ - r e f l e c t i n g  if f ( d )  = _L£ => d  -  ] _ D .

□

Lem m a 2 .4 3 :
If /  € D ^ - * D \  is _L-reflecting and D \  is a complete lattice, then y  . P /  is J_- 
r e f l e e t i n g .

P r o o f :
Suppose y { / j |j -6 5 } °  = ( U  oP /) 5  = J_D; .  Then we m ust have for each s 6  S  th a t 
f s  = J_n ' (P10), and since /  is _|_-reflecting, th is  means th a t 5 = J_ n l  and so S -D T L) o
u „ 4 i-



- 47 -
□

Lem m a 2.4.4:
If for each base type A absA is J_-reflecting, then abs a  and Abs a  are _L-reflecting for 
each type cr.

P r o o f :
We prove this by induction over the type structure, where the base case is tru e  for 
absA by hypothesis and for AbsA by Lemma 2.4.3. Assum ing tha t the result holds 
i or abs , abs T. Abs  a and Abs 7,

a b s  _  T(/) — _L rt jol/ 0 — T
—̂ abs q. ) T £j jt> — 1 ab

= >  y  [abs s)  | s tC o n C p C T  D )}° = Proposition 2.3.3

= >  abs T( /  s) =  for all s € D %

Since by the induction hypothesis, abs T is _L-reflecting, we have th a t for all s € D %  

f s = d 

~*>f — ± D«l J O “* T

A b s a  is _L-reflecting by Lemma 2.4.3.

□

W hile ontoness is not required for the technical developm ent of th is thesis, if wcr elementshave onto abstraction functions on the base types, then there is n o u s c ^ / f in  the abstract 
domains. The fact th a t th is can often be show n to be true  fo r higher types means th a t 
there is no junk in the abstract dom ains fo r higher types.
Lem m a 2.4.5:

If /  € is onto and D JT is a complete lattice, then U  . P /  is onto.
P r o o f :



- 48 -

From [Burn, Hankin and A bram sky 1985a. Lemma l] we have th a t fo r such an / ,  
P /  is onto. This implies th a t for all t G D !T that there is an S  G P D Ja  such that 
P /(S) = flr|}. Taking the least upper bound of both sides, we find th a t y(P/(S)) = i 
by (P10), and so we have exhibited an S  for every / € D \  and so U  «P/  is onto.

□

Ixim m a 2.4.6:
If a b s A is onto for each base type, and for each base type A  we can define a 
continuous function a b s A 1 : D A b -> D A which is a right inverse of a b s A , that is, 
a b s A o a b s ^ ~ 1 = i d DJh, then for all types <x
(£) there is a continuous function a b s  ~ 1 : D £ b -+ D % which is a right inverse of a b s a . 

(it) a b s ^  and A b s  ^  arc onto.
U i i )  A b s  a  o C o n e  a

P ro o f :
We prove this by induction over the type structure.
(£) This is tru e  on base types by hypothesis.
(it) This is true  for the base case for a b s A by hypothesis and fo r A b s A by Lemma 
2.4.5.

( m )  Abs A ( C o n c A  ( a ) )  =  AbsA ( y  {7’ | AbsA (T)^za})

=  y  (P  absA ( y  { r  | AbsA (7 ’) ^  a } ) )

= U ( U ( P  P ^ d r l / i ^ C D ^ f l ) ) ) )  (P8 )
= y  ( y  ({Pai>J4 (7) (r)^c}°)) definition of P on morphisms

= y ( U  ( P ^ ( D M ^ ( 7 ' ) ^ 1 ) '
by a simple adaptation of a result in [Plotkin 1976] p. 477

Let 5 = U {PabsA ( T ) \ A b s A Since absA is onto (induction (it)), there exists a
€ D a  such th a t absA (a) = a ,  and so a  6 P ( fl a D) and is in 5 since y  PabsA (Ijofi)
^  a .  Furtherm ore, d  is the least upper bound of all the elements in S , and hence the 
result.



- 49 -
Assume th a t the three results hold for types a  and r .

—T ) —(t) Define a b s ~ X r = \ j  0'"T . abs~*  o f  oabsa . This is certainly continuous because it 
is the composition of continuous functions. Let / 6 D £ b_ 7 . Then,

abs a _^7(abs ~J,7( f ) ) = abs a __ 7(abs ~ 1 o / c abs a )

= Abs 7cP (abs ~ 1 o / « abs CT) o Cone CT

= oP(abs 7 oabs o f  oabs a ) oConc a (P3)

= t=j ° P (/ c a b s  a  ) o C o n e  (T by induction (z)

= U  o V ] o V a b s 0  o C o n c 0  (P3)

= / ® y  » P abs  ,, p Cone 0  since / is c o ni i nu o u s

f  o Abs  0 c Cone CT

= / by induction ( i i i )

and so, by the  principle of extensionality, absu _ 7 »a b s ~ l r = i d natD C~*7
( i i )  For any /  in D£°_^T , choose /  6  Z )£_T such th a t /  = a b s ~ J , T( J ) .  Then 
abs CT_ 7(/) = /  by induction (i). and so a b s G_ 7 is onto. A b s c ^ 7 is then onto by 
Lemma 2.4.5.
(Hi) This follow s as for the base case by putting the appropriate type subscripts on 
the abstraction and concretisation maps.

□

The following Lemma is often useful in the applications fo r which we w ill use this 
fram ework.
L em m a 2.4.7:

If ab s 4  is s tr ic t and  bottom -reflexive for each base type A  , then for all types a ,

CoTtC q . jy ah) I I

P ro o f :
Cone a (_X D ah) =  y  iF | Abs ^ ( T ) ^  X-D gb 1



- sn -
= \ d \ T \ A b s a ( T ) = lJ o

=  U M l n u l l  since from Lemma 2.4.4 A b s a  is botiom-reflexive** O

□

2.5. A djo in tness of A b s a a n d  Conca .
The maps Abs a  and Cone ^  are adjoined functions. This ensures that the abstract 

domain closely models the sets of elements of equal definedness in the standard  
interpretation.
P ro p o sitio n  2.5.1:

Abs fj. and Conca  are a pair of adjoined functions, i.c.
(£) Conea  o Abs a  ^  id p D „ .
(i i)  Abs p o Cone 0 ^
Furtherm ore, if A b s a  is onto for all cr, then 
(Hi) Abs a  o Cone a  =  i d n jA.*■ ' O

P r o o f :
(£) Let S € P D % .

Conea ( A b s a (S))  =  (J {7’ | /\Z>50.(7’)^y46.ycr(S)}

and A b s a (S)  ^  ,46* ^CS), so S  € {T| A b s a ( T ) ^ j t&Sg-CS)}. Hence the result fo llow s since 
^  is ju st □  in the Hoare powerdomain.
(££) This follow s as in the  proof of Lemma 2.4.6 (£££) un til th e  second last line where 
we replace = by ^  because we do not insist on ontoness in the conditions of this 
proposition.
(£££) This is Lemma 2.4.6 (£££).

□



- .51 -
2.6. S cm i-hom om orph ic  P ro p e rty  o f a b s ^  and  f i x .

For each type cr we have th a t a b s a  is a sem i-hom om orphism  of function application, 
th a t is, if /  6  Z )£ _ T then

abs a _ T( f )  ° a bs  a  ^  abs 7 » f

or. in term s of elements, if * 6  D %  then 

abs (abs  a { s ) )  ^  abs  T( / ( . r ) )

Wc will need this to prove Theorem 2.7.1. It can be seen to be in tu itive ly  true  by looking 
at the definition of abs  a. _ T( f ) ( a b s  ^ ( s ) )  :

abs  tr_ T( / )  ( abs  a ( s ) )  =  y  [ a b s 7 ( f  j ‘) | <z6j<r( .r ' ) ^ a 6 .r 0.( .r )}0 P r o p o s it io n  2 .3 .1

We see th a t aZ>jcr_ r (/) (afog-U)) applies /  to all the values in D %  which abstract to 
something less than or equal to w hat s  abstracts to, some of which may give a more 
defined answer, and hence may be abstracted  to a greater value than  /(s) w ould. As an 
example, we w ill be able to show la ter in Chapter 3, w ith  the  definedness in terpretation , 
th a t

r\ ab
abs in[_ int( E st [ [ \ x mri / x  = 5 th en  _|_ else  l] ]  p st) = Xx ,m jc 

and tha t

absin t ^  = 1
and so the left-hand  side of the above inequality  is 1 , w hile the  righ t-hand  side is 

abs int( E st [ [ ( k x mt.if  x -  5  th en  J_ else  l )  (5)]] p st) = n  st ) = 0mf

We now sta te  and prove th a t a b s a  is a sem i-hom om orphism  of function application. 
P roposition  2.6.1:

For all types c r , a b s a  is a sem i-hom om orphism  of function application, i.e. if /  € 

£>^_t then a6 j cr_ T(/) «> abs a  ^  abs T <»/ (or in term s of elem ents, if 5  6  D %  then 
a&.v0._ T(/)(o £ jcr(.y)) ^  abs T(/(.y))).

P r o o f :
abs oabs a = A bs r oP/« C o n e a  o abs a

cr — r= y  o P abs T o P /  o C o n e 0 o abs a definition of A b s



- .52 -
= y  o P abs T o P /  o Cone a  o [-) « J  o abs a  (P 10)

= y  oP abs f « P /o  Cone q- « U  « P abs ^ <> {| J  ( P6)

= y  o P a b s T o P /  o Conc(r o Abs  ^ o {. definition o f Abs a

^  y  o P a i.v T o P / o | . |  Proposition 2.5.1 (i)

=  y . p ( af o T. / ) . M  (P3)

= y  abs 7 o /  ( P6)

= abs T o f  (P 10)

□

As a consequence of the sem i-hom om orphic property of abstraction, and the fact th a t 
the abstraction maps are continuous, we have th a t f i x  is a sem i-hom om orphism  of 
abstraction, which is also needed in the proof of Theorem 2.7.1.
P ro p o sitio n  2.6.2:

f i x  is a semi-homoinorphisin of abstraction, i.e. 
fix o abs g. _  g. ^  abs a » fix

P r o o f :
Let /  6  , and let h t be the approxim ations to f ix ia b sg._g.(/)) and / t be the
approxim ations to f i x ( f ) .  Then h () = _Ln>lA = g-(_L n i t ) (since we have insisted
th a t the abstraction maps on base types are strict, and by Lemma 2.2.8 (H i) the 
abstraction maps for a ll types are s tric t) = a b s CT( / 0). Assume th a t h k ^  a b s a ( f k ) 
for all k ^ i . Then

hi+ l  =  (abs g ._ g .( /) ) ( / l ,  )

^  (abs a. _ a.(f))(absg-i f i  )) induction hypothesis and m onotonicity o f a b s g-_g- 

^  a b s cr( f ( f i )) Proposition 2.6.1

=  abs g- ( / ,  + ))



/ix ia b s  q- ^ o-C/)) = |_| {/if}

^  LI {a b S fjifi )}) by above induction

= abs a ( |_J I/; I) since abs a is continuous and 1 /j} is directed

= abs a  C J ix () ) )

□

- .53 -
So ht ^  absa.(f i )  for all i. Taking the least upper bounds of both sides we obtain

2.7. A R esult R elating  th e  A b strac t an d  S tan d a rd  In te rp re ta tio n s .
The follow ing result is crucial fo r proving the correctness of the fram ew ork for 

abstract in te rp re ta tio n ^ -j. ^  vc,lH TWoforn
T h eorem  2.7.1:

Suppose that, we have th a t E ab [ [ c a ]] p ab ^  a b s a ( E st [[c^]] ps0  for all constants c a . 
Then fo r all p st € E n v s t , p ab 6  E n v ab such th a t for all x T, p ab( x T) ^  abs r ( p s l( x T) ) ,  we 
have fo r a ll e  : cr  :

E a b [ [ e ] ] p ab>  abS (r ( E sl [[e]] p")

P r o o f :
Wc prove this by struc tu ra l induction over the term s in ou r language (see section 
1.5.1).
( 1 )  E a b [ [ x a ) ] p ab = p ab( x a )

^  a b s a { p st{ x a ) )  condition of Theorem

= a b s f j ( E sl [ [ x ° ] ] p s t )

(2) E ab [[eg.]] p ab ^  abs a -iE ^  [[c^ ]] p sC) by condition of Theorem

(3) Let 7  e  D £ b . Then

(Eab [ [ \x <r.e]] p°b) s = ( \ y DS‘ E ab [HI pab[ylxa ]) s

= £ “f,[W ]p‘">[F/ACT]
and



- .54 -
{a b s a ^ T{ E st [[\Ara .e]] p st))  s = ( \ s D ° . y  \absT( ( E st [[Xxa .e]] p 5t) .y) | H0) s

=  y  { a 6 i - T ( ( \ > ’ £ > °  -Est C [ e ] ]  p st[ y /x a ]) r )  |  a 6 j f f W ^ s)°

' =  y  \absT( E s’ [[e]] p ^ j / x 0-]) I abs a (s)^.  J}°

Now p ^ s / x * * ]  and psi[.y/xa ] s t ill satisfy the conditions on the environment since 

a b s^(.r) < I ,  and so by the induction hypothesis, every element in the set 

{a b s r ( E st [[e]] pv*[.y/.va ]) I o6 .v ^(.y)^ 5} approximates E ab [[e]] p ab[ s / x a ] and hence the 

required result holds (by the definition o f the lea st upper bound).

(4 ) E a b [ [ c , e 2] ) p ab =  E a b [ [ e , } ] p a b E a b [ [ e 2] ] p ab

'Z-abs 0 _+r { E sl \[c p st) { a b s ^ { E 51 [[e2] ]p s/)) induction hypothesis

^ a b s  T( E sl [[e j]] p u  E sl [[e2]] Proposition 2.6.1

= abs T( E st [[e , c ,]] p ")

(5) E ab [{fix e]) p ab = f i x ( E ab [[e]] p ab)

^ f i x ia b s  0._^0. ( E st [[e]] p sl) )  induction hypothesis

"%-abs<j{fix(Est [[c]] p st) )  Proposition 2.6.2

= a b s a - iE *  [ [ f i x c ] ] p st)

□

2.8. C orrectn ess o f  A b stra c t In terp re ta tio n
Here we prove the correctness of abstract interpretation. We prove it as a corollary 

of the fact th a t the following safety diagram (introduced in section 2 . 1 ) holds :



-55 -

P U ’if [[/]] PiV)
■ >P D«

m

C one <J C one j

D  aba l iab [[/]] P°h
T h eo rem  2.8.1:

The above diagram holds, i.e. for environm ents satisfying the conditions of Theorem
2.7.1, if /  : <t ->t then

Conc7 o (E a b [ [f ] ]pab) 2  P ( E st [ [ f f l p ^ o C o n C v  

P roo f:
Cone T o (E ab [[/]] p ab) 2  Cone 7 o abs CT_ T(Z:st [[/]] p 5t)

T h eo rem  2.8.2: (Correctness Theorem fo r A bstract Interpretation)
The abstract interpretation we have developed is correct. T hat is, given /  : cr-»r, 
environm ents satisfying the conditions of Theorem 2.7.1, and in terpretations of 
constants satisfying the conditions of Theorem 2.7.1, we have th a t if J  € D * b and 
( E ab [[f ] ]  p ab) i s )  = t then for all s € C o n c a ( s ) ,  { E * 1 [[/]] psr) (j ) € C u n c 7 ( t ) .

P roo f:
This is a direct corollary of Theorem 2.8.1.

C o n c T( t ) = C one T( ( E ab [[/"]] p ab) (s )) by hypothesis

Theorem 2.7.1 and monotonicity of C o n c 7

□ C o n e 7 o A b s  7 » V ( E st [[/]] p st) »C o n c a  definition of a b s (T_ T

2 P  ( E st [(/]] p st) o C o n e a  Proposition 2.5.1 ( i )

□

2  P ( E sl [[/]] pir) ( C o n c u r ) )  Theorem 2.S.1

= {(E st [[/]] p s!) (5 ) | 5 6  C o n e p i s ) ) 0 definition of P on morph isms



- 56 -
and hence the result.

□

2.9. C on tex t-f ree and  C o n tex t-sen s itiv e  Issues
In the w orld of first-order functions and strictness analysis, the inform ation about 

argum ents to functions is true  in all applications of a function. When we move from the 
domain of first-order functions to higher-order functions, or to using more complex 
analyses than strictness analysis, we no longer have that the information about a function 
is constant in all applications of that function. In the case of a higher-order function for 
instance, the inform ation can vary according to the inform ation about a functional 
param eter. Consider the function

g = \ f A~'A , \ x A .fix)
which has abstract in terpretation

n jA- \ f ° A n J,‘ .kxD'
Clearly any inform ation in an application of g  is going to depend on the inform ation 
given by its first argum ent in an application.

In our application of the theory in the next chapter, we w ill label argum ents of a 
function to indicate how much evaluation it is safe to do of the argum ents. From the 
above example, it m ay be desirable to try  and carry around inform ation which said, for 
example, th a t if a function was given as a param eter a function which was s tric t in its 
argum ent, then the o ther function w as stric t in another of its param eters. This w ould 
mean th a t definedness inform ation w ould  have to be available a t run-tim e, and th a t some 
of the in terpretation of the abstract in terpretation w ould also have to occur at run-tim e, 
and we w ould  ra ther try  and avoid the problem s th is causes.

An a ttem pt to solve this problem w as made in [Burn, Hankin and Abram sky 1985a], 
where it was suggested th a t apply nodes be labelled w ith  inform ation ra ther than the 
argum ents to functions, and so the abstract in terpretation could take into account the 
contextual inform ation of the function application. Thus, in an application

g h c
of the above function g , we could take into account the inform ation about h in 
determ ining inform ation about the second param eter to g in this application. It is show n 
in [Hankin, Burn and Peyton Jones, 1986] th a t in the case of strictness analysis this gives



more inform ation than if we had have just labelled the argum ents to functions w ith 
strictness inform ation. Wc term such inform ation c o n t e x t - s e n s i t i v e .

However, the evaluation of functional programs dynam ically  creates function 
applications which were not present in the program text, and so could not be analysed 
statically  using abstract interpretation. For example, the expression

( i f  condi t ion then  /  t else  f ->) e

-  57 -

w ill create the application /  , c  or / 2  e depending on the tru th  of the co nd i t io n  . As a firsi 
approxim ation to the solution of the problem of finding oul inform ation about such 
applications, we can determ ine the strictness inform ation about the argum ents to a 
function which is true in any application, and so is c o n t e x t - f r e e  inform ation. Clearly 
context-sensitive inform ation w ill be stronger than context-free inform ation for 
applications th a t appear explicitly in the program.

We will discuss these issues more fu lly  in the context of a particular abstract 
interpretation in section 3.4. It w ill be shown th a t each type  of inform ation gives 
something which the o ther lacks, and so each is indispensable. The follow ing tw o 
theorems which allow  us to test respectively for context-free and context-sensitive 
inform ation.
T h eo rem  2.9.1: (C ontext-Free Inform ation Theorem )

If / ' :  <r , - » • • •  c r r  and

[Ml p"1’) T  r>,» -  T d ,»Z-/ o i *-/ n f >7T T t

then for all Cj : cry , j ^ i , for all s t 6  Cone  a  ( s t ), we have
¥

E «  [ [ / ]]  p st E st [[e , ]] p sl • • • E "  E «  [[e(+ 1 ] ] p 3 E st [[en ] ] p s: € C o n c T( t )

Proof:

r = (£•“*[[/]]p°&) t d„* ••• t d„ ••• t d*u 0 , ^  O . u  o A . u  nI f -  I M l  n

>  E [[ /] ]  p ab E ab [ [« , ] ]  p ab • • • E ab [[c,_ , ] ]  p ab E ab [(ei + , ] ]  p ab ■ ■ ■  E ab [[e„ ]] p ab

since T  D ^  E 0** [[ey ]] p ab for all j ^  i.

=  ( \ x Dn‘ £ ab [ [ / ] ]  p ab E ab [[e , ] ]  p ah • ■ • E ab [[ej_ j] ]  p ab x E ab [[ei + l ]) p ab



- .“>8 -

n jl'— J°kwhere x is a new variable

= J - ° b [ [ f ) ) p ° b{ x l x ° ‘ ] E ° b [U iX \ p °b{ x l x ° ‘ ] ■ ■ ■ E ^ V i C ^ ^ p ^ x / x ” '}

E ° b [U ff ]] P ^ x / x  a ‘ ] E ° b [[cj+ ,]] p“* [x «  [[c„ ]] p ^ l x / x ” ' ]) s ~

=  (K x  ‘ E ab [[/ c j • ■ ■ e,_ | x a ' eI+) - c n ]] p “° [ x / x  <T‘ ]) i,

= { E ab [ [X x ^ ' /e ,  ef_ , x a ' cj+ , • • •  e „ ] ] p ab) s i 

=> for all Sj € C o n c ^  i s j ),

( E st [ [ \ x cr' . / e 1 • • • e(_j  x a ‘ e i + ]  ■ ■ ■ e n ]] p st) ( s t ) 6 C o n c r (t )

by a slight adaptation of Theorem 2.8.2. possible since C o n e ^  is continuous

D i l  —
i.e. (Ax £ sC [ [ /  e j  ■ ■ • j x a ' el+1 • • • cn ]] p st) ( s t ) 6 C o n c T( l )

D u  _
i.e . (Ax £ st [[/]] p st d  j • ■ • d t_  , x ° ”' dI+1 • • • ) ( j t- ) € C o n c T(t )

i.e . E st [[/]] p*r d  j ■ • • d t_  , s t d i+  , ■ ■ • d n € ConcT(r)

□

T h eo rem  2.9.2: (C ontext-Sensitive Inform ation Theorem)
Given /  : cr j-* • • • -*<rn -* r and an application /  e , • • • e n : t , if

E ab [[/]] p ab E ab [ [ c }] ]  p*^ - [fc,_, ]] p“* £ “* [[c,+ , ]] • ••  E ° b [ [ c „ ] ) p ab =  7

then for a ll s t € C o n c ^ i s ^ )

E sl [ [ / ] ]p * '£ *  [ [ e , ]] p st • • • £ "  [[c,._ ,]] p "  ^  E a  [[cf+1]]p * ' • ■ ■ E sl [[en ]] p sl € C a n c e l )

P r o o f :



-59 -
The proof of this theorem follow s exactly as in the proof of Theorem 2.9.1, except 
that the first tw o lines are replaced by the following line :

*"= E a b [ ] f h p abE ab\ [c y] \ p ab ■ •Eab [[et_ ] ] ] p abI ~ E a b [[el + ] ] ] p ab • • •  E ab [[en ]]

i.e. we have equality instead of the inequality on the second line of the o ther proof.
□

2.10. T he U ndual D u ality .
Those fam iliar w ith category theory may have noticed som ething most tantalising 

while reading through this chapter. In section 2.1 we made a fundam ental decision about 
w hat we meant by the correctness of an abstract in terpretation, and said th a t  it was 
correct if the resu lt in the abstract interpretation represented all of the possible resu lts in 
the standard  interpretation. This m eant th a t a result in the abstract in terpretation  may 
represent considerably more values than were really possible in the standard  
interpretation. A related decision was the choosing of the Hoare powerdom ain and the 
least upper bound operator in defining the abstraction maps fo r higher types.

The point is th a t most of these things have a dual; the dual to making sure th a t the 
result represents all possible values is to ensure th a t it represents a subset of the values; 
the dual to the least upper bound is the greatest lower bound; in some w ays the Sm yth 
powerdomain [Sm yth 1978] is a dual to the Hoare powerdomain.

Working in a monoione fram ew ork, A bram sky [A bram sky 1985b] was able to 
develop a term ination analysis which was a dual of the strictness analysis he presents. 
Because all of the abstract dom ains are finite, the in terpretation is com putable even

art, noVthough 'the ^ tr^ t.^ /C ^ T io u o u s llo w e v e r, it was not possible to raise the term ination 
analysis to a continuous w orld, and the sets resulting from the obvious induced 
concretisation map are not in general elem ents of the Sm yth powerdom ain.

We can get some intuition about w hy this is true by considering the follow ing 
example. For each base type A  , we define DA b to be the tw o point domain 2 = {0.1} w ith 
0 ^ 1 , and define

ab ,A : D g ~ D j *

by

absA (a)
( ) i l a = ± D ,,

1 otherwise



- 60 -
The concretisation map we have given for safety in terpretations (Definition 2.2.2) gives 
the follow ing interpretations to the values in the tw o point dom ain :

ConcA (0) = {J_ D J 

ConcA (1 )  =  DA

which says in tu itively  that 0 represents the idea of definite undefinedness and 1 represents 
the possibility tha t something may be defined.

A nother w ay to interpret this domain is to let 1 represent the idea of definite 
definedness and () represent the possibility that something may be undefined, defining :

Cone'A (0 )  =  Da

Cone'A ( l  ) =

But here is the  problem - the set which we have given for the concrctisation of 1 is not a 
member of the  Sm yth powerdomain! To handle analyses such as these, a special 
powerdomain has been developed [M ycroft and Nielson 1983], [Nielson 1984], but has 
only been applied to a first-order fram ew ork.

2.11 . R e la tio n sh ip  to  O ther W ork .
Alan M ycroft [Mycroft 1981] w as the first to apply abstract in terpretation to 

functional languages, where he developed a fram ew ork for abstrac t in terpretation of first 
order functional languages over base types w ith  flat dom ains as s tandard  in terpretations 
of the types.

There are five other higher-order fram ew orks th a t we are aw are of. We mention 
firstly the theory  presented in [Burn, Hankin and A bram sky 1985a] and [Hankin, Burn 
and Peyton Jones 1986] to which th is w ork  is the closest, being basically a generalisation 
of the w ork to  allow  abstract dom ains which are more complex than the tw o point 
domain.

Two o ther fram ew orks [M aurer 1985] and [M ycroft and Jones 1985] define abstract 
domains w hich model the standard  in terpretation  of the type

D =  A  +  D - D .

although we note that [M aurer 1985] also has products and lifting  in the above equation. 
This is in direct contrast lo our philosophy of using the type s tru c tu re  of the language in 
a strong w ay to allow  us to have a com putable and as accurate an abstract in terpretation



as possible. It is notable tha t the fram ew ork of [M aurer 1985] is only designed to cope 
w ith  strictness analysis.

A fu rth e r poinl w orth  noting is th a t in our fram ew ork, we have param eterised only 
the in terpretation of the types and the constants, for th is is w hat we need for our 
applications. However, in [M ycroft and Jones 1985] the meanings of \-ab strac tio n  and 
application are also parameierised. so making a more general fram ew ork. The work is 
based on logical relations [Plotkin 1980] rather than domain Theory.

In [Hudak and Young 1985] the abstracl in terpretation really is a non-standard 
sem antics, returning for each function a set of variables in which ii is stric t. The first- 
ordcr case is equivalent to the first-order case of our work in that it explicitly calculates 
the set of variables in which a function is stric t rather than calculating its characteristic 
function. To extend the w ork to higher-order functions, they introduce s t r i c t n e s s  l a d d e r s , 
where the zth element in the strictness ladder seems to give strictness inform ation about 
the first i argum ents given th a t the function has been applied to / argum ents. Their main 
problem is that they are dealing in a pseudo-untyped fram ew ork. Since it is impossible to 
get finite answ ers for fim etions w ith  non-finite type, the fram ew ork could probably be 
rew orked to take into account the type inform ation and th u s  do aw ay w ith  strictness 
ladders.

The final higher-order fram ew ork is due to A bram sky [A bram sky 1985 b] and is 
based on logical relations ra ther than  domain theoretic ideas. Two dual analyses, s a f e t y  
and l i v e n e s s ,  are developed in a m onotone fram ew ork. In particular, they are applied to 
developing respectively a strictness and a term ination analysis. Furtherm ore, conditions 
are proved which show when the analysis can be raised to the w orld  of continuous 
functions.

We mention finally the w ork of Nielson [Nielson 1984, 1986a, 1986b]. Giving an 
interpretation  of a language can be viewed as a iw o step process, firstly transla ting  the 
language into some standard  "meta-language" (fo r example, the \-ca lcu lu s  w ith 
constants), and then giving an interpretation of the meta-language. In [Nielson 1984], 
which is overviewed in [Nielson 1986a], a meta-language is presented which is powerful 
enough to give the denotational definition of most programming languages. It cannot 
how ever express the denotation of languages w ith  storable procedures.

The outstanding feature of the meta-language is that it has a tw o-level type system , 
w ith  the  intuition th a t the top-level types represent the type of com pile-tim e objects and 
run-tim e objects have bottom -level types. In using the fram ew ork, it is the interpretation 
of the bottom -level types that is changed, w hile the in terpretation of the top-level types 
is fixed in all interpretations.



- 62 -
To apply the fram ew ork to our problem of testing the definedness of functions 

expressed in the X-calculus w ith  constants, we note th a t we wish to change the 
interpretation of all of the base types in the language, and so these w ould be made into 
bottom -level types. Their interpretation w ould then be allow ed to change.

Due to a technical restriction on the constants allowed in the fram ew ork of [Nielsen 
1984, 1986a], namely thal they be c o n t r u v a r i a n t l y  p u r e . it was not pow erful enough to do 
the definedness interpretation which we present in the nexi chapler. Basically a type is 
contravarian tly  pure if there was a bottom -level type as the first argum ent to the 
function space constructor. Thus, all our higher-order constants like the conditional could 
not be treated in the fram ew ork. This situation has been remedied in [Nielson 1986b] 
where the restriction of contravarian t purity  has been weakened, and the resulting theory 
is applied to proving the strictness result of [Burn, Hankin and A bram sky 1985a], as well 
as the results in [M ycroft and Jones 1985]. When reduced to solving the problem of 
strictness analysis, the fram ew ork looks very much like thal presented in [Abram sky 
1985b].

2.12. C onclusion
A bstract interpretation is used to provide a com putable m ethod of discovering 

inform ation of interest about a program w ithou t actually  having to run the program. In 
th is chapter we have introduced a fram ew ork for safe abstract in terpretations of the 
typed lam bda-calculus w ith a set of base types and a set of typed  constants.

Correctness of abstract interpretation is an im portan t notion, and we began the 
chapter by arguing w hat we meant by correctness. In tu itively , we said th a t an abstract 
interpretation was correct if the answ er to a calculation in the abstract in terpretation 
represented all of the possible answ ers th a t could have occurred in the standard  
interpretation. From th is we moved onto m otivating the various abstraction and 
concretisation maps, and their form s, th a t arise naturally .

A correct fram ew ork was developed which required three things from  the "user" of 
the  fram ew ork. F irstly  an abstract domain for each of the base types must be provided 
which is a finite, complete lattice. The lattice m ust be com plete because we need to be 
able to take least upper bounds; it m ust be finite because we need to take fixed points, 
which requires the testing of functions a t all possible argum ent values, and finiteness 
implies effectiveness. The abstract dom ains for higher types are then given because we 
have said tha t D g b_ T is ju st the set of continuous functions D £ b-> D ? b .

Secondly, a strict, continuous abstraction map musl be provided, which maps the



standard interpretation o f the base types to the abstract interpretation o f the base types. 

The abstract domain and the abstraction map should be chosen so they make the 

distinctions on the base types in which the user is interested. In Chapter 3 we w il l  see 

that the property we are interested in is how much evaluation is safe fo r arguments of 

functions, and so we choose an abstract domain which models the way that the various 

evaluators divide up the elements o f the standard domains. Given such abstraction maps, 

ihe framework defines an abstraction map abs CT fo r each lype cr, which is the best possible 

abstraction map in the sense that it  loses as l it t le  inform ation as possible w h ile  being sale.

F inally, abstract interpretations o f the typed constants must be provided which 

satisfy :

E ab [ [ c a ]} p ab ^  a b s a ( E sl [ [ c j ]  p " )

In Chapter 3 we w il l derive abstract interpretations o f our constants as abstractions of 

the standard interpretation of the constants, and so the above condition w ill 

automatically hold.

The framework we have provided is proved correct. I t  is necessary tha t we are able 

to determine context-free inform ation and context-sensitive inform ation about a function, 

where the former is inform ation true in the context o f any application w hile  the la tter is 

true about a particular function application. Our tw o  final theorems give practical tests 

fo r both o f these types o f in form ation.

- b3 -



Chapter 3
A Definedness Interpretation 

and its Application to 
Changing Evaluation Strategies

The framework of Chapter 2 is applied in developing and proving correct an abstract 

interpretation which gives the dehnedness levels o f functions. This is used to show how 

we can safely change the evaluation strategy fo r a functional program.

Abstract domains w il l be developed fo r the base types by considering the definedness 

level of elements o f the standard interpretation of the base types and the way that 

different evaluators divide up the domain in that they preserve some elements o f the 

domain and not others.

We determine abstract interpretations fo r the constants o f our language by deriving 

them as the abstraction o f the standard interpretation of the constants. This gives us the 

best possible approximation to constants w h ile  s t il l staying w ith in  the lim its  set by the 

theory o f Chapter 2.

The correctness of the abstract interpretation fo llow s as a corollary o f the correctness 

of the framework of Chapter 2. We discuss w ith  the specific example o f this 

interpretation how context-free and context-sensitive issues arise, and give two 

mechanical tests to find this inform ation using the abstract interpretation tha t has been 

developed. Again these are just corollaries o f the corresponding theorems in Chapter 2.

Using the abstract interpretation, we are able to show when i t  is safe to change 

evaluation strategies by doing some evaluation o f the arguments to a function, either in 

parallel w ith  the function application in a parallel system or before the function 

application in a sequential system.

The abstract domains we use in this chapter - the tw o point domain and the four 

poinl domain - are due respectively to M ycro ft [M ycro ft 1981] and W adler [W adler 

1985]. The abstract interpretations fo r list constants are also due to Wadler, however 

this chapter contains the first proofs o f the ir correctness. Simplification rules fo r 

expressions involving the abstract interpretations o f these constants are also new to this 

work. Abstract interpretations fo r the other constants have appeared elsewhere, fo r 

example [M ycro ft 1981] and [Burn, Hankin and Abramsky 1985a], w ith  proofs o f their 

correctness appearing in the latter.

- 64 -



Choosing an abstract domain and abstraction functions which capture the properties 

o f interest seems to be one of the hardest things in abstract interpretation. We have two 

in tu itions about the way abstract domains can be defined fo r the base types in our 

application. F irs tly , since we are looking fo r inform ation about the definedness of 

functions, we consider what abstract domains we might develop by looking at the 

definedness structure of the domains which are the standard interpretation o f the base 

types. However, since we really want to use the abstract interpretation to change 

evaluation mechanisms by a llow ing some arguments to functions to be evaluated, and our 

argument in section 1.3 said that this requires seeing which elements of the standard 

interpretation a function preserve^, we look al which elements the various evaluators 

preserve. I t  turns out that both in tu itions lead to the same abstract domains, namely the 

tw o  point domain of [M ycro fl 1981] fo r fiat base domains and the fou r point domain of 

[W adler 1985] fo r  lis t data types.

3.1. Abstraction of Base Domains and Properties of Abstraction Maps.

3.1.1. Defining Abstract Domains and Abstraction Maps From the Definedness 
Structure of the Standard Interpretation.

Let us firs t consider the case o f a flat domain such as the standard interpretation of 

integers and booleans. Here there are tw o levels o f definedness -  either something is 

undefined (i.e. bottom), or it  is to ta lly  defined. Thus, to capture the definedness 

information fo r such domains, we can define a simple abstract domain and abstraction 

map. Denoting the type by A  , we have that D A is a flat domain, and we can define Djjf* 

= 2 , where 2 = {0 . 1 }, w ith  1 . Then we define

a b sA

a b sA (a )

0 if
1 otherwise

We have chosen A l i s t s , that is, lists o f elements o f type A  as our prototypical 

example of a domain which is an in fin ite  sum o f products. In it ia lly , we w il l  s im p lify  the 

discussion by restricting ourselves to the case where the standard interpretation of A  is a 

flat domain so that, fo r example, we are considering lis t o f integers or lists o f booleans. 

The type of A lLst is given by the recursive type equation

A lis i =  1 +  A  x A lis t

(where 1 is the one-point domain, + is separated sum and x  is cartesian product)



- (>() -
and the standard interpretation, as we mentioned in section 1.5.2, is obtained by solving 

this over the category o f domains [Sm yth and P lotkin 1982] to give

D%h„ = U D $ > . ± d .  U O?"-

How might we go about defining an abstract domain which captures the definedness 

of elements of D%ltsr?  A t first sight we may th in k  o f using the fact, since we are fo r the 

moment assuming that the elements o f the lis t are from a Hal domain, that fo r each 

element of the lis t, we have two levels o f definedness -  either the element is bottom or it. 

is not - and so we could represent the strictness inform ation lo r  a lis t as a lis t o f 0 ’s and 

l ’s. The theoretical development o f Chapter 2 required that we have a finite, complete 

lattice as the abstract domain fo r any base type, so clearly we cannot have an abstract 

domain which contains a lis t o f 0 ’s and l ’s fo r every lis t in the standard domain and 

anyway, such an abstract domain w ou ld  be useless because we could never do a ll o f the 

calculations required! A way to obtain finiteness o f the domain would be to choose some 

n  and have only lists o f length at most n  in the abstract domain. However, this is only 

ever going to give us inform ation about the behaviours o f a function on the firs t n  

elements o f a lis t. Furthermore, the abstract domain would have 2 n elements in it, and so 

i t  would be com putationally very expensive to find out any inform ation about functions 

using it.

The main problem w ith  the above abstract domain is tha t i t  treats the elements o f a 

lis t in a way which is not typ ica l o f the way we use lists in programs; the firs t n  

elements o f the lis t are treated d iffe ren tly  from the rest o f the elements o f the list, 

whereas lists are used most na tu ra lly  in the case tha t we wish to treat a ll o f the elements 

in a uniform  way.

I f  we ignore in fin ite  lists fo r a moment, then we notice that we can d iv ide up the 

standard domain fo r lists into four natural subsets :

( i) the set containing only _L n „ he. {JL n „ };U.\U\t UMnl
(it) the set containing a ll o f the partia l lists plus J_ n sl i.e. ;1JAlnt U MistaV \2<utr cr^
( ii i)  the set containing finite lists w ith jfbottom  element , the partial lists and _Ln >'

*JMi\l

i.e .0£M oa U 0ji'*.lD,,.0?*.m7:and

(tv) the set containing a ll lists i.e. D %hst.

In going from one subset to the next, we are adding elements which are more defined in 

some way: in going from  (i) to (ii), we have added lists which have at least one element in 

them, but s t i l l  have an undefined ta il a fte r a fin ite  number o f elments from  D % , and the



extra elements added in (H i) represent becoming more defined by replacing the undefined 

ta il by n il , and the final addition in (£v) adds a ll o f the finite lists which have no bottom 

elements.

We can define an abstract domain and abstraction map which captures these various 

levels o f definedness. Let us use the four d istinct elements ] _ L , I , F  and T  l. • ordered by 

_Lz. ^ / ^ / r ^ T z,.as  our abstract domain D^ lsl. and define

<**.*,* A?

- 67 -

<&SAUS (L ~>

1 ,.  if Z.= ±  ,lJAlist
I  ii L Z D % . D % * . ± UAlnl
F  if L * D S . 1 d uJ > $ * j u I 

J L if  L Z ( D « - \ L D J ) * . n i l

( t )

Moving from one level in the abstract interpretation to the next corresponds to being an 

element in the standard interpretation of Alist which is in one o f the sets (i ) to (iv) above 

but not in any proper subset o f that set.

We can add infin ite lists in to  the above discussion by noting tha t we need to have a 

continuous abstraction map fo r each base type. Since a ll o f the approximations to an 

in fin ite  lis t (i.e. partial lists) are abstracted to I , we must have that the abstraction of 

any in fin ite  lis t is also I  by the definition o f continu ity. Thus we finish the definition of 

the abstraction map fo r Alist :

a b s A lis t  '■ D A lis t  “ * D A lis t

a b s  A lis t

± L if £ = ± d «UAUitI \t LSDgJ>S*.±D„" U Dgu
F  \ t L t D g . ± D u J ) g * j n i l  

J L if  L e ( D g - . n i l

I t  is w orth  noting that w ith  this domain we can see the dual reading o f the elements 

in the abstract domain which was introduced in section 2.1. From the point o f view of

( t )  The elements , I . F  and T  £ correspond respectively to E O T , I N F , E O T — M E M  and 
T O T — M E M  of [Wadler 1985]. They just form the four point domain {0 .1  .2 .3 } ,  but w e have 
given them different names so that the first tw o elements are not confused with the elements of the 
two point domain. T  Sfa’OtL (yuk f  ^  •'K'/vVc, *' CuirtK cd X
XWtyvî V).



- b8 -
the map absAl is t . an element in the abstract domain represents a single list. However, i f  

one was to take the view o f the map ConcAl ls t , then the elements _LZ to T L represent 

respectively the sets (i) to (£v) above.

Before discussing the development of abstracl domains using in tu itions from the 

various sensible levels o f evaluation, we note that the definedness interpretation of the 

type ct- * t is induced as in section 1.5.2 by

/ )  ab _  r \ ab _ ,  /> ab^ 0  — 7 lJ (T lJ 7

3.1.2. Defining Abstract Domains and Abstraction Maps From the Sensible Levels 
of Evaluation.

In section 1.3 we discussed in tu itive ly  that we needed to find out when a function 

was defined so that any evaluation strategy made sure i t  preserved the arguments to a 

function where the function was defined. To see whether i t  is safe to use a particular 

evaluator fo r an argument to a function, we must check tha t the function really is 

undefined fo r the elements which the evaluator does not preserve, and so the evaluator 

preserves a ll o f the elements i t  is supposed to preserve.

Each o f the evaluators divides up the standard interpretation o f a type into two 

subsets, those elements which i t  does preserve and those which it  docs not. Definition 

1.3.3 defines the evaluators we consider according 1o the elements they preserve. Since £ 0 

represents doing no evaluation of an expression, and we wish 1o see i f  we can change the 

evaluation strategy to do some evaluation o f expressions which are arguments to 

functions, then we need only consider evaluators which do some evaluation.

For a flat domain we have that £, is the only sensible evaluator which does any 

evaluation. This evaluator divides up the domain as shown in Table 3.1.1.

Table 3.1.1Division of Domain by £j

1 Eval uat or
I

II El ement s P re se rv e d
II

1 El ement s Not  P r e se rv e d  !
1 1

ii Da1—{ 1 ,1
l

|l
j -L D f  j

The evaluator initiates a non-terminating computation only fo r the bottom element, 

and so we need to be able to distinguish in our abstracl domain the difference between the 

bottom element and a ll other elements. Thus we need a tw o  point domain fo r our 

abstract interpretation.



- 69 -

For the type A l i s t , there are three sensible evaluators which do some evaluation. 

These divide up the standard interpretation as shown in Table 3.1.2.

Table 3.1.2Division of Domain by , £2 and £3

1 -- - ■ —
| E v a lu a tor
i

j! E le m e n ts  P r e s e r v e d
\ 1

i E le m e n ts  N o t P r e s e r v e d !
1 !

; V m u i  -  <1 n 1
i:

1 ! 1 ^  A-imi ! ! 1■ 1
; £2 D e r a i l n sl * I I | /)«<•> i

: ° A U  I

£3 S! U ^ - \ \ . D J ) * . n i l
ii A

We thus need to be able to distinguish between the sets }, A ?  *-_Lnst UUAlrst UAhit
Z )j'w. D A (J D A w U D A * J_ n  * .nil and DAlb![. We saw in the previous

section that we could do th is w ith  the fou r point domain and defining the abstraction 

map absAllsl appropriately.

We have seen that fo r functions there is on ly  one sensible evaluator which does any 

evaluation, namely Thus as was the case fo r flat domains, when we are asking how 

much evaluation can be done o f an expression representing a function which is an 

argument to another function, we need only to be able to test fo r undefinedness using the 

bottom element o f the abstract interpretation of the appropriate function space. A ll the 

exlra information in the abstract domains fo r function spaces is to a llow  us to find out 

the definedness of various functions.

3.1.3. Definition of the Abstract Domains and Abstraction Functions for Base 
Types.

In the previous tw o  sections we have attacked the problem o f finding abstract 

domains and abstraction functions fo r the base types from tw o natural in tu itions and 

found that they pointed to the same abstract domains and abstraction maps fo r the 

various interpretations o f base types. We thus fo rm a lly  make these definitions in this 

section.

I f  A is a base type whose standard interpretation is a flat domain, then we define

D f :
D e fin ition  3.1.3.1:



- 70 -
D A b = 2. where 2 = {0.1} w ith  0 and 1 distinct elements and 0 < 1 .

□

We define the abstraction map : 

D e fin ition  3.1.3.2:

abiA :D % -D  f

abs A ( a)
0  if o -  J . D st

1 otherwise

□

For the type A l i s t , we define the abstract domain, where we l i f t  the restriction that 

D A has to be a flat domain, but we w i l l  s t i l l  use the two point domain fo r the abstract 

interpretation of elements o f the l i s t :

D e fin ition  3.1.3.3:

^Aiist ~  I Iz . .7./r .T l  h where ] _ L , / , F  and T l  are a ll d istinct and are ordered by 

± L  * I * F * 1 L .

□

We define the abstraction map : 

D e fin ition  3.1.3.4:

abs A lis t r \S t  u A lis t n abu A h s t

a h s A lis t  ^

J i f  L e D g j > g * . ± DJSiu u  z t f "

F  ii  L Z D f . ] _ D r D % * . n i l  

J L i f  L e ( D X - l l D J ) * . n i l

□

Note that our abstract domains fo r the base types are finite, complete lattices and 

that the abstraction maps fo r the base types are s tric t and continuous as required by the 

theory o f Chapter 2.



- 71 -
3.1.4. Some Useful Facts.

The fo llow ing facts and lemma are useful in the ensuing development.

Fact 3.1.4.1:

For all types cr, a b s a  is continuous (Lemma 2.2.8 (£)).

□

Fact 3.1.4.2:

For a ll types cr, abs (r is strict (Lcmrna 2.2.8 (Hi)).

□

Fact 3.1.4.3:

For a ll types cr, a b s a  is bottom-reflexive (Lemma 2.4.4).

□

Lemma 3.1.4.4:

For a ll types cr, a b s a  is onto.

Proof:

From Lemma 2.4.6 we have to provide a continuous function a b sA 1 : D A b~* D A 

which is a right inverse o f a b sA fo r each base type A  , and then the result fo llows. 

For D A b = 2 we can make the fo llo w in g  definition :

absA~ ](0) = l Du
absA 1 (1) =  a € D % . a ^  J_D  *

p or d a L  . a suitable a b sA l^  : D ^ t -  D % list is :

a b s A lis t  ( - L   ̂ “  1

a b s A l ih  ( f t  ~  ± D « ± D i l t

absAlih (F) = ± D « -n i l

a b s A li l t  ( T  L ) =  a n i l  a £ D % .  a ? ± ±  D >t

Clearly a b sA 1 and a b sAlj} : are continuous and have the required inverse properly.



- 72 -
□

Fact 3.1.4.5:

For a ll cr, C o n e nJ/, ) = {_]_ n  « } (Lemma 2.4.7).U  o L* o

□

3.2. Abstract In te rp re ta tio n  o f Constants

To be able to prove the main results o f this Chapler, we need to have abstract 

interpretations of constants which satisfy

E ab [[c^]] p ab ^  a b s a ( E st [[c^ ]] px/).

fo r a ll constants c CT. In this section we derive abstract interpretations o f the constants in 

our language as abstractions o f the ir standard interpretation (c.f. [Bum, Hankin and 

Abramsky 1985a, Abramsky 1985b], [Nielson 198(>b]). This means tha t the above 

condition w il l  be automatically satisfied.

As the derivations are rather tedious, we w i l l  give the abstract interpretations of the 

constants below. However, both because we feel that the proofs provide valuable 

examples of the use o f this method to determine optim al abstract interpretations of 

constants, and because we musl assure ourselves o f their correctness, we have included 

them in the fo llow ing  subsections. The proof o f the abstract interpretation labelled n  

below is given in section 3.2.n.

To give the abstract interpretation of the conditional, i t  is useful to define the 

fo llow ing function :

D e fin ition  3.2.1: 

if

ifo-CO.j) = l r , jA

ifjj. 0  ,j )=  s □

It is clear that if^  is continuous. A reduction rule fo r this function is given in Lemma

3.2.2.2.

We also note that Lemma 3.2.1.2 is more general than just proving the correctness of 

the abstract interpretation of strict, b inary arithm etic and logical operators.



- 73 -

D e fin ition  3.2.2:

The abstract interpretations o f the constants in our language are defined below. 

Throughout the resl o f the thesis we w il l  denote the abstract interpretation o f a 

function (including a functional constant) by w riting  its name w ith  a bar over it.

( 1 ) E ab [[/]] p ab = \ x  j2.Xx I -x , and x  2.

i f  / is a strict, binary arithm etic or logical operator.

(2)  i f”'’ [ [ i f , ™ , p " 6 = L i b ' l l )
where LJ fo r function spaces is calculated pointwise. i.e. ( |J { / .g } ) x  =
LI {/(x).g(x)}.

(3) (E ab [[,h d ]] p ab) L  =  h d  L  -
0 X L = ± L
1 otherwise

(4) ( E ab [[rZ]] p06) L  -  tl L  =
± L
I  if  L = I  

T  l  otherwise

(5) (E ab [[conr]] p ab) a L  = cons a L

7 i f Z , =  J_z, o r  L  =  I  

F  if  L  = F  or ( a =  0  and L = ~ \  L ) 

T  l  if  a =  1 and L = ~ [  L

(6 ) ( E ab [[caje]] pab) s f  L  =  c a se  s f  L

if L=  1 L
/  1 1 if L=  I
( / l  F ) L K /O T l ) i f  L = F

j U C / i  Tz .)  i f r = T  L
□

There are some simplification rules fo r expressions invo lv ing  applications o f the 

abstract interpretations o f h d ,  tl and c o n s .  To give them, we w i l l  f irs t state the standard 

definitions of tw o  terms.

D e fin ition  3.2.3:



- 74 -
A function J  6 , where each is a complete lattice, is

m u l t ip l i c a t iv e  in its zth argument i f

/ ,  (st r v * ) s i+ , • • • = ( / j , • • • st • • ■ ) n ( / i i  • • • j'f • • • sn )
□

D e fin ition  3.2.4:

A function /  € • • • -*Z > ^  t , where each Z)£ is a complete lattice, is a d d i t i v e

in its /th argument if

1 s  l ’ ’ ’ * ,• -  i (Jf U ^ ' i  )  s i + , • • • s n =  ( /  s  j • • • j * • • • ) U  ( /  s  i • • • s \  • • • 5n )

□

Proposition 3.2.5:

Both lid. and tl are m u ltip lica tive  and additive.

P ro o f :

Our lattice is a chain, and so the greatest lower bound or least upper bound o f

any pair is one o f the pair, and hence the result fo llow s from  monotonicity of h d  

and t l .

□

We have the fo llow ing  proposition fo r simplification o f expressions invo lv ing c o n s .  

Proposition 3.2.6:

c o n s is m u ltip lica tive  in its  argument considered as a pair (and hence in each 

argument separately) and is additive in each argument separately, but not in its 

arguments considered as a pair.

P ro o f :

The proposition fo llow s by tedious calculation, except fo r the last part which we 

show by exhibiting a counter-example.

const 1 . ± L ) U  c w ij ( O . T / ) = I U F

=  F

whereas

cons{ <  1 >  1_J < 0 , T £ > )  =  cons(  1 , T  /, )



- 7.5 -
= T ,

and the tw o are dearly  unequal.

□

Those w illin g  to take the abstract interpretations of the constants on trust may skip 

sections 3.2.1 to 3.2.6.

W hile reading Ihe proofs of the correctness of the abstracl interpretations of 

functions, recall that abstraction is modelling the idea that a function "is a1 most as 

defined as" something, and so we must pick the maximum value thal is possible. This is 

w hy we have the least upper bound in the definition o f the abstraction maps. So in 

proofs o f the correctness of abstract interpretations, we w il l often just t ry  and find out 

what the most defined case is. For example, in Lemma 3.2.4.2 about the abstract 

interpretation of tl , we find that i f  tl is given a fin ite  lis t w ith  bottom elements in it, i t  

may return either a fin ite  lis t w ith  bottom elements in it  or a fin ite lis t w ith  no bottom 

elements in i t  ( i f  the only bottom element was the firs t element o f the lis t). Since i t  is 

possible fo r tl to return a fin ite  lis t w ith  no bottom elements in it, then the abstract 

interpretation must acknowledge this fact, and w i l l  thus choose T i  as the abstract 

interpretation of the result in this case. S im ilar considerations apply to a ll o f the abstract 

interpretations of the other constants.

3.2.1. A bstract In te rp re ta tio n  o f S tr ic t Functions.

Let A  be a base type w ith  abstract interpretation the tw o point domain. I f  we 

denote A  by A  1 and A - * A n by A n+ *, then i f  /  : A  n+ 1 is such that lo r  a ll i

( £ sl M  p 5t) a, •• + i an = 1 D;'

i.e. /  is strict in each o f its parameters, and

E sl ([/a , ■ ■ • an ] ] p st = ] _ D « => E st [[a, ]] p st =

fo r some i ,  i.e. a generalisation of J_-reflexivity, then define the abstract interpretation of 

/  by :

\ x  p • • ■ K x ^ . x  , and and x n .

D efin ition  3.2.1 . 1 : 

E ab [[/]] p ah =

□



- 76 -

Thus functions like ’ + ’ and ’X ’ have abstract interpretation X x 2.Xy 2.x an d  y .

Lemma 3.2.1.2:
Given such an / ,

£ * * [ [ / ] ]  =  abs A „ ^ { E st [ [ f ] ) p s t )

P ro o f:

We prove this by induction w ith  the base case being n  =  2. In this proof we w il l 

denote the standard interpretation of /  by f st .

(absA_+A (f st))  0  =  y  {absA (f st x ) | x €  Co nc A (0 )} °  Proposition 2.3 .3

=  y i ^ ( / " l D « ) l°  Fact 3 .1 .4.5

=  U { 0 } °  since f sl and o bs A are strict

=  0  (P 1 0 )

(absA_ A (f st) )  1 =  \absA (f st x ) | x € C o n c A (1 )} °  Proposition 2.3 .3

=  y  \absA ( f st a )  | D A \°

= y { 0 . l } °  since f 5t is strict and not J_ n «UA~A
= 1

Therefore, by extensionality, absA_ A (f s t) = X x 2_x . In the inductive step, we assume 

the result fo r  a ll n  ^  k .

(absA k + i ( / s£) )  0  =  y  [ a b s ^ k( . fst x )  \ x €  ConcA (0 )} °  Proposition 2.3 .3

=  y { a ^ * ( / s / l D / )}° Fact 3 .1 .4.5

D il D u= U i a b s A A k x ^  • - X x ^ . l ^ J ) 0 since f st is strict

=  X x 2 • • •  \ x k2_  j.O since ° b s Ak is stric t

(absA k +x ( f sl) )  1 =  y  {absA k ( f st x )  | x € C o n c A ( l ) } °

=  U \ a b s A k ( f st a ) \ a e D % ) 0

Proposition 2 .3 .3



=  y  {absA k i f *  a )  | « *  J. D „ .« €  D $ V  s in c e /sM s m onoionic  

=  y  { \ x  ]2 • • • k x 2_  j jc j an d  • • • x k _  j}°

by inductive hypothesis fo r (f st a )  satisfies the condition o f the Lem m a  

=  \ x  j2 • • • k x k2_  j jc j a n d  • • • a n d  x k _  j (P10)

Hence, a bs A k< ,( f s t ) =  k x  2 • k x k2.x j a n d  • ■ • a n d  x k .

- 77 -

□

3.2.2. Abstract Interpretation of the Conditional.
For defining the abstract interpretation of the conditional, it is useful to define the 

following function :
Definition 3.2.2.1:

i f j : 2 -
if(j-(0,.y) u#

ifg-Cl . s ) =  s  □

It is clear that if  ̂ is continuous. The rules defining ifa imply the following 
reduction rule :
Lemma 3.2.2.2:

If *7 € 0J& (= 2), 7  € D r and 7  € D ? . then
, e 2 ) )  e  , =  i !T( e l . e 2 e 3 )

P roof:
We have two cases :
( i )  c  j =  0  :

( ifo-_ T(0 .e2)) e3 =

= J - D ob

— ifT ( 0  .e 2 e 3)



- 78 -

-e 2^  e 3 = e 2 e 3
=  i fT( 1 , e 2 e p

( i i ) e j =  1 :

□

Wc can now define the abstract interpretation o f the conditional.

D e fin ition  3.2.2.3:

o--o— o-)]P“6 = X * U >'0 V \ r Dv n ^ ( x .U b ’.-’ >)
where LI fo r function spaces is calculated pointwise. i.e. ( L H /.g l) x  = |J ! / ( * ) .  g(*))-

□

The abstract interpretation o f if600/_ 0. ^ 0._ 0. is clearly continuous. In the case tha t cr 

= A  , wc have tha t

£ a b  t b f b o o l - A - A - * A  M P°b ~  'Kx2 X y 2 X z Z . \ i  A ( x . U  [ y . z ] )

= k x 2X y 2X z 2 Jc and (y or z)

and so this abstract interpretation o f the conditional can be seen as a generalisation of the 

interpretation given in [M ycro ft 1981].

Lemma 3.2.2.4:

E ‘b m bool^ a - . a ) } p ° b =  [[ if6oo, - <r_ <r_ <r] ] p “ )

P ro o f:

In this proof we w i l l  denote the standard semantics o f if&ooi—o—»cr—<r by if5*.

a ŝbool-*<T—»cr-*(T^ ^

= \ x 2X y D ° X I D ° \ a b s , y  ,z)) | absA ( x ) ^ x . a b s rT( y ) ^ y . a b s q-Cz^ z) 0 

Proposition 2.3.1

= \ y D ° X z D ° .U  { ^ o - ( i fS/(-L/j « .y.z)) | a fo^C yX y .afog-CzXz}0

since absA is J_-reflexive



- 79 -
r> jA r\ <jA

=  \ y D ° X z  ° . U l f l f a c r U

n a* n a*= \ y  ° ,\2 ° . y i i D - i-^  a
r\ at r\ at

= x.r° x iD° , l .^ ft

nsl))° by the standard semantics of the conditionalu a

since abs  a  is strict 

(P10)

k y D ° X z D ° . U l a b S r i i F ' U . y . z M x e D & j  . a b s a. ( y ) ^ y  . a b s a ( z ) ^ z ) °  

\ y ° "  . k = D ° . \ J { a b s a ( ± Di t  ) .abs  a - iy)  .abs  a ( z )  \ abs  (r ( y ) ^ y . a i r

by the standard semantics of the conditional

r» JA r> ad
\ y °  X z D ° . y { y . f ) ° (§)

by monotonicity of abs  a and since abs  a is onto (Lemma 3.1.4.4)

/5 jA /)
=  \ y  0 X z  ' Uly.51

since y  X°= LJX for finite, complete lattices [Abramsky 1985b]

and so we have the result by cxtensionality.

□

Note that we have equality in the step marked by (§), where we w ou ld  have to 

replace this by < i f  the abstraction map fo r the type a  was not onto.

3.2.3. Abstract Interpretation of h d .  
Definition 3.2.3.1:

h d  =  £ a 6 [[h d ]]p c 6 : D ^ - 2

h d ( L )  =  ( E ab [[hd]] p ab) U )  =
0 if ^ = ± l
1 otherwise

□



- 80 -

We note that h d  is continuous.

Lemma 3.23.2:

F.a b [[hd} )pab = absAlis[^ A ( E st [[/*/]] p v')

Proof :

In this proof we w ill denote the standard semantics o f hd  by h d st.

(a  bsAllsl_ A Uidst)) 1. = y  {aZ>.vA (hdst(L)) \ L (/,)}“ Proposition 2.3.3

( i )  I f  L  -  _L j , then the only L  in C o n cAhsl (_|_L ) is J_. vf (Fad 3.1.4.5) and so we 

obtain ] _ D J/( 1'or the above as both h d si and a b sA are strict.

( i i )  I f  L  is any other element o f D A bis [ . then the concretisation of L  contains lists, L ,  

w ith  defined heads, and a b sA ( h d st( D )  fo r these w il l  be 1 and hence the result.

□

I f  we were to use the tw o  point domain fo r the abstract interpretation o f the type 

A l i s t , then it  can easily be shown that obsAtist^ A ( h d st) = \ x z „x .

3.2.4. A bstrac t In te rp re ta tio n  o f tl. 

D e fin itio n  3.2.4.1:

a  = Hab [[((]] p‘b : D abA lis t

U(L)  = ( E ab [[tl]] p ah) ( L )  =
± l  if/; = J-A
/  i f / ,=  /
T  otherwise

□

We note that tl is continuous.

Lemma 3.2.4.2:

E ° b [ [ d } ] p ah = absM ia- / u t x ' - E s' [M ]  Ps')

P ro o f :



- 81 -

In this proof we w i l l  denote the standard semantics o f d  by i l st.

(a b sA list_>Alist (t l sl)) L  =  . y  {absAlist ( l l st( L )) | L € C o n c A lis, ( L ) ) ° Proposition 2.3.3

(i)  I f  L  is J_L , then as C o n c Alisl is s tric t (Fact 3.1.4.5), and t l sl and a b sAlist are strict, 

we have the result.

( i i )  I f  L  is / ,  then L  is in the concretisation of L i f  and on ly i f  L  is the bottom list 

or partial or infin ite. Taking the ta il of such a list returns one of the bottom list, a 

partial lis t or an in fin ite  lis t, and the least upper bound o f the abstraction of these 

things is / .

(H i) I f  L  is F  or T  l  . then the concretisation o f L  contains, besides other things, a ll 

the finite lists. Taking the ta il o f a lis t which has only an undefined head returns a 

lis t w ith  no bottom elements, and so we can get T  i  fo r  both F  (fin ite  lists w ith  

bottom elements) and T  • We obtain the result since we take the least upper 

bound.

□

I f  we were to use the tw o  point domain fo r the abstract interpretation of the type 

A l i s t , then i t  can easily be shown tha t a b sA list_ A lis t ( t l sc) = X x 2 j c  .

3.2.5. Abstract Interpretation o f c o n s .
Definition 3.2.5.1:

c o n s =  E ab [[con j]] p ab : 2~> D A^ t -*

The value of c o n s i a . L ) fo r  each a 6 D A b and L  6 are given in Table 3.2.5.1.

Table 3.2.5.1Abstract Interpretation of c o n s

L  \a 0 m
i

\
-

t" I /

/
1

I i  !1
f  i

I
F F  I_____ 1

T i
F

1-



- 82 -
□

We note tha t c o n s is continuous.

Lemma 3.2.5.2:

E ab [[cons]} p ab = a b sA _ Alisr^ A lis t ( E sl [[con5]]ps0  

Proof :
We denote the standard semantics o f c o n s by c o n s sl in the fo llow ing  proof.

a b s A - * A l i s t ~ A l i s l  ( “ ’n s * 1) a L  —

y  {a b sAlis[ (c o n s sl a  L ) | a € C o n c A ( a )  . L € C o n c A lisi (L ) } °  Proposition 2.3 .3

We give tw o  examples o f the calculation fo r tw o pairs o f arguments from  the table. 

The others fo llow  in a s im ila r manner.

(i) ( a b s ^ A i i s t ^ A l i s t (cons St^  0  1 L = U  \absAlist ( c o n s *1 ( 1  D „ . 1  D *t^ »>°

Fact 3 .1.4.5

= U{/}°

= /  (P10)

(Li) (a b sA _ Alixt^ A lis l( c n n s s l) ) 1 F

= y  [absAlist (c o n s  st a L )  \ a 6 D A . L  6 C o n c Alist ( F )}0

The most defined result o f the above form ula is going to be when we have a total 

element fo r the firs t argument to the c o n s * 1 and an element from  D A *._]_D it.D A * j i i l

fo r the second element, in which case c o n s st a L  is a fin ite lis t w ith  bottom elements 

and so the form ula collapses to F , as in the table.

The other six cases fo llo w  in a s im ila r manner.

□

I f  we wish to use the tw o point domain fo r the abstract interpretation o f the type 

A l i s t , then i t  can easily be shown tha t a b sA ^ A list^ A lis t( c o n s * c) =  X x “ . i.



- 83 -
3.2.6. A bstract In te rp re ta tio n  o f the Case Statem ent. 

D e fin ition  3.2.6.1:

EEIe =  E ab [[case]] p ab : D ° b^  ( 2 -  D  abA lis t

case s  f  L  =  CE ab [[case]] p ab) s  f  L  =

_» n  n  ab st u  a  J u Alist -* D ab a

l D *t. i f  L  = 1

n  i i f  L  = I
i f  i f ) U ( / o T L ) if r = F
s  □ ( /  1 T  L ) if  L  = T

□

We note that c a s e is continuous.

Lemma 3.2.6.2:

E ab [[case]] p ab ^  a b s a ^ (A ^ A lisi^ (T)_ A list^ a ( E st [[care]] p st)

P ro o f :

We denote the standard interpretation o f the case statement by c a s e st in the 

fo llow ing  proof.

(obs Alist—>cr)— Alist— <j(case )) s f  L

=  [ ^ { a b s ^ c a s e *  s  f  L )  | a b s (r( s ) ^ s . a b s A _ A lis l^>(T( f ) ^ f . a b s Alis[ ( L ) ^ L \ °  (§)

Proposition 2.3.1

We w il l  give tw o  examples fo r L .

( 0  I f  L  =  _ L , , t h e n L  =  _Lnrt in (§) by Fact 3.1.4.5, and c a s e sl s f ± nst =u AUil C'Alnl u  a
The result then fo llow s from  the strictness o f a b s cr.

( i i ) I f  L  =  1 , then we have tha t L  € D a * . ± d « (J D % u and so c a s e st s  f  L  =

f U x d ( L )  . t l ( L ) ) . We have tha t a = h d ( L ) can be any element in D A , and tha t L ‘ = 

t l i L )  is in the same set as L . Hence (§ ) becomes

\ J { a b s a ( f  a L ’) \ a b s A_ Ali5t^ (T{ f ) ^ Y . a b s A ( a ) ^ \ . a b s Alis[( L ' ) ^ l ) °

There is no other way to s im p lify  th is other than by expanding out a b s ^ i f  a  L ') and 

replacing = by < by the semi-homomorphic property o f abstraction (Proposition 

2 .6 . 1 ) to obtain



- 84 -

Ld \ a b s a ( f  a  L ' ) \ a b s A ^ A l i s l - . (7 ( f ) ^ f . a b s A (a 1 . a b s Alis[ (L ')^ /} °

^  y {(absA _ a h s i— o-( / ) )  (absA ( a ) )  (absA lis l ( L ‘))

I a b s A - * A l i s t ~ a ( O i* f - a b s A (a)< 1 . a b s Allst U ‘) ^ I ) °

= y  {/ 1 I\°
= J  1 /  (P10)

The other tw o cases fo llo w  in a s im ilar manner. We note that the inequality is 

produced in both o f the other tw o cases fo r the same reason as the above. F ina lly, s  
only appears in the case that L  is T L as n i l  is a total lis t and so only appears in the 

concretisation o f T  ̂  •

□

This is the only constant we consider fo r which we w i l l  not be able to obtain 

equality between the abstract interpretation and the abstraction o f the standard 

interpretation (except fo r the conditional i f  the abstraction maps of the base domains are 

not onto). This is because c a s e  is not only an higher-order function, but the functional 

argument is applied to (parts o f)  one of the other arguments, and so our requirement 

about safety means we end up w ith  the inequality.

I f  we were to use the tw o  point domain lo r  the abstract interpretation o f A l i s t , then 

it  can easily be shown tha t

( a b s <j — (A—Alisl—0')—t Alist—ta ( E  [[c<25e]] p )) ^  g

where

if jL= 0

I \ J  ( /  l  l )  otherwise

3.3. Some Examples of the Abstract Interpretation of Functions.
Having determined the abstract interpretation o f constants, we are now able to give 

some examples o f the abstract interpretation o f user-defined functions. How we interpret 

these abstract interpretations is the topic o f the next tw o  sections.

We first give a couple o f examples of non-recursive functions.



g  = X/ in /- in /\ x int\ y int. +  X ( /  y )  

h  =  g (k z ‘n/.z) 5

- 85 -

where we have w ritten  the ’ + ’ in prefix form  to make explic it where the function 

applications are. We nole that from Definition 3.2.1.1 that

E ab [ [ + ] ]  p ab =  \ u ‘ A v 2.u and  v

g =  E ° b [ [ g ) ) p ab

=  E a b [ [ k f ml~*inl. k x int A y in/.+ x ( f y ) ] ] p ah 

=  \ f 2~ 2E a b [ [ \ x inl. \ y mt. +  x ( f y ) ) ] p ab[ f / f ]

=  \ p ^ 2. \ x 2£ a b [ [ \ y int. +  x  (/> ’)]] p ab[ f / f . x / x ]

=  k p ~ >2. k x 2. k y 2J S ab [[+  x ( f y ) ] ] p ab[ f / f . x / x . y / y ]

= k p ~ * 2 . k x 2 . k y 2. ( E ab [[+  x]]  p ab' ) ( E ab [[/ y]] p ab') 

where p ab = p ab[ f / f . x / x  .y /y ]

= k p ~ z . k x 2 . k y l U E ab [[+  ]] p ^ ' X E ^  [[*]] p ^ m E *  [[/]] p ab ) ( E ab [[y]] pfl6'))

= k p ~ 2. k Z 2 . k y 2. { ( k u 2. k v 2 .u an d  v) (p ab\ x ))) « p abX f ) )  ( p ab' ( y ) ) )

= k p ~ ‘ 2. k x 2. k y 2. ( ( k u 2. k v 2 .u and  v) x) ( /  y)

=  k p ~ * 2. k x 2 .k y  2.x and  ( / y )

Sim ilarly,

E ab [[/»]] p ab = ((E ab [[*]] p ab) (E ab [ [ \ r  int.z]]pab))  ( E ab [[5]] p ab)

= ( ( k p ~ * 2. k x 2. k y 2 .x and  ( f  y )) ( k z 2.z ) )  1  

= k y 2.y

We give an example o f a recursive function. 

f a c  =  f i x ( k f tnt~ ,int.k n  tm.if( = n  0.1 .X n  ( /  ( — n  1)))) 

p c  = E ab [[fac]} p ab

= E ab [ [ f i x i k f tTU~ lIU\ n int.if( =  n  0.1.X n ( / ( -  n 1) ) ) ) ] ]  p ab



- 8f> -
=  f i x ( E a b [ [ \ f tnt^ int. X n tnt.i f ( =  n O . l . X  * ( / ( -  n  l ) ) ) ] ] p ^ )

The abstract interpretation o f \ f irU~,irU\ n lTU. i f (=  n O , l , x n ( / ( -  n  1 ))) fo llow s as in the 

previous example, and we end up w ith

E ab [[/<2c]] p ab =  f i x ( X f 2~ ' 2 . X n 2.n an d  (1 o r  f ( n ) ) )

To finish o if the abstract interpretation we must now calculate the least fixed point. The 

bottom of the domain 2 -* 2 is \ x 2 .0 , and so we have the fo llow ing sequence, \ fa cn }, of 

approximations to f a c  :

jacQ = \ x 2.0

f a c  j =  2.n an d  (1 o r  ( \ x 2.0 ) n )

=  \ n  2 .n an d  (1 o r  0 )

= \ n 2.n 

f a c  2 — Xn2.n 

and thus

E ab [[fac]] p ab =  X E 2Ji.

Although we could have sim plified the above expression straight away to X n 2 . n ,  

noting that 1 o re  = 1 and n  and 1 = n , we chose not to because to have a fixed pointing 

algorithm based on equivalence of expressions means we have to deal w ith  the problem of 

finding canonical forms, and we are a fte r a ll interested in functional equality.

It is useful to gather together the abstract interpretations o f some functions. Besides 

the constant functions and functions we have already discussed, we present the abstract 

interpretation of the fo llow ing  functions, where we a llow  ourselves the luxu ry  o f using 

the name a p p e n d  in the definition o f r e v e r s e .

sumlist  =  f t . x ( \ f All!!l~*int. \ L f llsl. case(0 . \ x A . \ L 2 llslJC +  f ( L 2) . E ] ) )

lengt h  =  f i x ( . X f Allsl~ int\ L Allst .case(Q . \ x A \ L Alisl.\ + f ( L 2) . E } ))

append  = fix (\  f  Altst~* Alist~*Alist \ L Alisl . L Alist .ca se(L  2 . X x A . \ L Alls( ,cons(x  . f ( L $  , L  2)) . L  j )) 

reverse  = f i x { X f Alist~*Alist , X L Alist. c a s e ( n i l . \ x A , \ L Allst a p p e n d ( f  L  2 . c o n s ( x .n i l ) )  , L  j))  

m ap  = fix ( \ f (-A ~*B)->Alist->Blisi ^ g A — B \ L Allst .case(nil , \ X A \ L Allst .consCg x . f  g  L 2 ) . L ] ))



(Notice how we have restricted the type of the first parameter to m a p ,  the function g , to 

being A - *  B  and not the more general ct- * t because we arc working w ith  a monotyped 

framework, and we have chosen the simplest type fo r this example.)

W ritten  in a more fam ilia r notation [Turner 1985], these definitions are : 

su m list [] = 0
su m list  x \ x s =  x  +  s u m lis t  x s  

le n g th [] =  0
le n g th  x : x s  = 1 +  le n g th  x s

a p p e n d [] L  — L
a p p e n d  x : x s  L  =  x ia p p e n d  x s  L

r e v e r se [] = []
r e v e r se  x : x s = a p p e n d ( r e v e r s e x j ) x .n i l  

m a p  f [ ]  =  []
m a p  f  x : x s =  (/ x ):m a p  f  x s

The abstract interpretations of these functions are given in the fo llow ing  five tables. 

In each case, the abstract interpretation o f a function is denoted by putting a bar over the 

name of the function. For example, su m list is the abstract interpretation of s u m li s t.

Table 3.3.1 gives J  x  where /  is any binary function satisfying the conditions of

Definition 3.2.1 . 1 , fo r  example, + , x  and or.

'Fable 33.1Abstract Interpretation of Binary Strict Functions

- 87 -

j X 2 \ x  J J j 0  11 1 1 

! 1

i o h 
i 0  1! 0 !1 ° !> i
1 1 ll 

1 1 11

0  !; i

Table 3.3.2 gives the abstract interpretation o f functions of type A l i s t - * A  where the 

abstract interpretation of the type A  is 2. Abstract interpretations of functions of type 

A l i s t - *  A l i s t are given in Table 3.3.3. Table 3.3.4 gives the values of a p p e n d  L 2. The 

values of m a p  J L  are given in Table 3.3.5.



- 88 -
Table 3.3.2.Abstract Interpretation of s w n l i s t ,  L en g th , and h d

L  II s u m list (L )
_ _ _ li_ _ _ _ _ _ _ _

l e n g t h ( L )  1
1

h d { L )

I , 1.
II!! ~  ' 0  ii

0
/ tl
1 II 

1!
0 °  i

i

1

F  ii
i:

0 i j 1

illi
1 i i

_ _ _ _ _ _ _ _ L
1

Table 3 3 . 3 .Abstract Interpretation of r e v e r s e  and t l

L  II r e v e r s e ( L )  1 t l ( L )
II I

1 l -1-z. j -i-z.
_____________ !_____________

I -L L I

F  } F T l

T  i T l T l

Table 3.3.4.Abstract Interpretation of a p p e n d

l 2 \l . II 1 ,
; \ |i

I F J L

i i
i

I I J

i i I I 1

F i i I F F

i—

1  L 1 F T l

3.4. Correctness of the Defincdness Interpretation and Context-free and Context- 
sensitive Issues.

We are now in the position where we are able to prove the correctness o f our 

dehnedness interpretation and provide theorems fo r determining context-free and 

context-sensitive definedness in form ation. Some examples w i l l  show w hy we need both 

types of information.



-89-
Table 3.3.5.Abstract Interpretation of' m a p

L J i \ x 2.0j1
V - l
\ x  .X ! \ x 2.1•

!
1 L i JL/- ± 1 .

1 / 1 '
j! F F T ,

T
____

L T  LIi T '
T .

The context-free and context-sensitive theorems are applied in the next section to 

prove tw o theorems which a llow  us to safely change the evaluation strategy by doing 

some evaluation o f some o f the arguments to a function.

Theorem  3.4.1: (Correctness Theorem fo r the Definedness Interpretation)

Suppose /  : a - > t and p ab ^  a b s o p st, and ( E ab [[/]] p ah) s = t ,  then fo r a ll * G 

C o n e y s ) ,  ( E sc [[/]] p st) s 6 C o n c T(t ) .  .

P ro o f :

We have provided abstract interpretations and abstraction maps fo r the base types as 

required fo r the theory o f Chapter 2. Furthermore, we have given fo r each constant 

c (j. an abstracl interpretation which satisfies :

5= a b s „ ( ,E «  llcjlp” )

as required by Theorem 2.7.1. Hence this theorem fo llow s as does Theorem 2.8.2.

□

Before we give the context-free and context-sensitive theorems, we w il l  show how in 

this interpretation each type of inform ation gives something which the other lacks. For 

first-order functions over flat domains, the context-free definedness inform ation is 

sufficient to ensure maximum parallel evaluation. Considering a function like

/ =  \ x mt. \ irU. i f  x  =  0 th e n  y  e ls e  f i x — 1 , y )

we see that /  w i l l  be s tric t in both o f its parameters in a ll contexts.

However, i f  we have more complex domains fo r the abstract interpretation o f the 

base types than the tw o point domain, or i f  we have higher-order functions, then this is 

no longer the case. For example, i f  we have a higher-order function, say



wc sec that the strictness o f g  in y depends on the strictness of the parameter / .  Thus in 

the context o f an application o f g to a s tric t function, say

g ( \ z inl. z ) e

the application g (k z inl. z ) is slricl in its parameter, w h ile  in an application o f g to a non- 
strict function, say

g ( \ z ml . 5 ) e

we can see that the application g (K z inr.5) e  does not need the value of e .

Thus we see tha t the maximum potential fo r parallel evaluation is only captured i f  

we take into account the contextual inform ation in applications.

Seeing as such c o n t e x t - s e n s i t i v e  in form ation is always stronger than context-free 

information, the question arises as to whether we can dispense w ith  context-free 

information. U n fortuna le ly  the answer is no, and the reason is that the evaluation o f the 

program can dynam ically create application nodes which do not appear in the original 

program. This is a simple consequence o f the fact that functions arc.curried, and so a 

partia lly  applied function can .te./C applied to more arguments. An example o f this 

occurs w ith  the higher-order conditional

( i f  condi t ion t he n f  j else  j  2 ) e

where / ,  is a s tric t function and f 2 is a non-strict function. In this case we w i l l  not be 

able to label the apply node w ith  e as an argument because it  is not known u n til run

time whether the c o n d i t i o n  w il l  be true or not. Thus we would like functions to carry 

around inform ation regarding how much evaluation can be done on arguments so tha t it  

may be possible to in itia te  the evaluation o f the argument expression in dynam ica lly 

created applications. C learly this inform ation must be true in any context, and so we 

must use the c o n t e x t - f r e e  inform ation.

Having motivated the need fo r both types of inform ation, we give tw o  theorems 

which can be applied 1o determine f irs t ly  context-free information and secondly context- 

sensitive information. These are just the context-free and context-sensitive in form ation 

theorems (Theorems 2.9.1 and 2.9.2). They fo llo w  d irectly from the correctness o f this 

abstract interpretation (Theorem 3.4.1), jus t as Theorems 2.9.1 and 2.9.2 fo llo w  d irectly  

from  the correctness o f the fram ework fo r abstract interpretation (Theorem 2.8.2). Thus 

they w il l  be stated w ith o u t proof.

- 90 -
g = \ f inl~*mt A  x inl A y int x  +  / ( y )



- 91 -

Theorem  3.4.2: (Context-Free Dcfinedness Theorem) 

I f  / :  cr,-* • • • crn -* r  and

(Eab [[f]} P^) J D,b T  7A

then fo r a ll e; : <t ; , j ^  i . fo r a ll

si T  Duti i
s  j G C o n e a

T n -n

(.>•,). we have

*

[[/)] Pw /:-'7 [[« ,]] P*' • • • /•* [[f£_ ,]] ps‘ .5, [[e,.+ I ] ]p "  • • • A’"  [ [ e j ] p «  6 CcwcT(/)

□

We note that the concept o f the inform ation being true in any context is captured by 

putting  T n „A fo r the y'th argument, j ^ i  where we are testing the fth  argument. This is

because a ll the elements o f the standard domain abstract to something which is less than 

or equal to the top of the abstract domain.

Theorem  3.4.3: (Context-Sensitive Defincdness Theorem)

Given /  • • • -*<rn -* t and an application f  e , •• • e n : r ,  i f

B ab [[/]] Pab E ab l[e ] ]] Pab ■■■E°b [lei_ l])p°b s-E°b aei+,})p°b ■■■ E ab [[e„ ]] p“6 =  T

then fo r a ll s t € C o n c a  ( s i )

E st [ { f \ \ p sl E st [ [ e j ]  p "  • • ■ E sl [[e£_  , ] ]  p "  s t E sl [[cj+1] ] p i7 • • • E sl [[cn ]] p sl G C o n c r ( t )

□

3.5. Using the De&nedness In fo rm a tio n  to  S afe ly Change the E va lua tion  S tra tegy.

The context-free and context-sensitive definedness inform ation can be used to change 

the evaluation strategy fo r a functional program. Our in tu ition  is tha t i f  a function 

application is undefined fo r a certain definedness level of one o f its  arguments, no m atter 

how defined the other arguments are, then the function must have to evaluate tha t 

argument a certain amount at some time in the evaluation o f that function application. 

We capture this fo rm a lly  in the fo llow ing  tw o theorems, which a llow  us to change the 

evaluation strategy to do some evaluation of the arguments to a function in parallel w ith  

the function application (or before i t  on a sequential machine) when i t  is safe to do so.

Theorem  3.5.1: (Safe Context-Free Change of Evaluation Strategy)



- 92 -
Suppose that /  : cr x~* • • • — crn -»r ,  that it is safe lo do some evaluation of an 

application o f / ,  and that

( E ab [[f]] p ab) 1 D , T 9 D ; T Dj/. -Lj

Then in any application of / ,  it  is safe to use an evaluation strategy which evaluates 

ihe /th argument o f /  so as to preserve a ll o f Ihe values in D £ l — C o n c ^  i s ^).

Proof :

Given any function application f  e x ■ • • e n there are two cases :

(i) Suppose E sl [ [c j]  P st € C o n c p  ( j f ). Then the evaluation of e, may in itia te  a non

term inating computation because we have only guaranteed to preserve elements in 

the complement o f this set. However, in this case, Theorem 3.4.2 ensures us that

E st [ [ f  e j • • e n ]] p st 6 C o n c 7 ( ±  D ^ ).

Fact 3.4.5 says that in this interpretation, C o n c T( X D ) is just LL^srl and so the 

above collapses to

E st [[/ e , • • • en ]] p sl =  ± D « .

The evaluation o f the application f  e x • • • e n w il l not terminate (as no amount of 

evaluation w i l l  preserve except doing no evaluation!), but it  was safe to

evaluate the function application, and so this means that the semantics o f the 

original expression was bottom (by the fact that i t  was safe to evaluate the function 

application), and so i t  was safe to in itia te  a non-terminating computation in the 

evaluation o f et.

(U ) I f  E st [[e, ]] p st l  C o n e a  (s~ ) then, since we have chosen an evaluator which

preserves these elements, we have tha t no non-terminating computation w i l l  be 

in itiated in evaluating the fth  argument, and so doing this is safe.

□

I f  there is no such s t , then we can do no evaluation of the *th argument, tha t is, the 

only safe evaluator is £0.

Theorem 3.5.2:(Safe Context-Sensitive Change of Evaluation Theorem)



Suppose tha t /  : cr,-* • ■ ■ -»<rn -*T, that it is safe to do some evaluation of the 

function application /  e, • • • e n and that

[[/]] [[c, ]] • • • E ab [[e(_ | ]] p ab s ~  E ob [[ej+ j]] p ab ••• E ° b [[«„ ]] p ° b = X D f

Then it  is safe to use an evaluation strategy which evaluates e t so as to preserve a ll 

values in D "  — C o n e ^  i s t ).

P roof :

The proof o f this theorem fo llo w s  exactly as the proof o f Theorem 3.5.1 except thal 

we appeal to Theorem 3.4.3 rather than Theorem 3.4.2.

- 93 -

□

I f  there is no such s t , then i t  is not safe to do any evaluation of the zth argument, 

tha t is, the only safe evaluator is £0.

The previous tw o  theorems allowed us to choose an evaluation strategy which 

evaluated the z'th argument to a function application as long as a ll elements in D % . —

Concg. ( j j )  were preserved. I f  we are to find out the maximum possible amount o f 

evaluation, then we w il l  find the maximum s t fo r which the theorem holds.

One way we can encode the in form ation  about changing the evaluation strategies is 

to label the arguments to a function and the apply nodes in any function application 

w ith  the amount o f evaluation i t  is safe to do i f  ever an application needs to be evaluated 

(c.f. [Burn, Hankin and Abram sky 1985a], [Hankin, Burn and Peyton Jones 1986]). We 

w il l now illus tra te  w ith  a couple o f examples how to determine and use the inform ation 

available from  the previous fou r theorems.

As our firs t example o f the application of these theorems, we w i l l  w o rk  out the 

context-free and context-sensitive in form ation fo r the function

g = X f tnl~'int.kxint.\yint .x + /(y)

which has graph [W adsworth 1971] (om itting  type in form ation) :



- 9 4 -

X/
Ax

\ y

@

+
@

/ \
and has abstract interpretation

g = \ f 2~ '2 . \ x 2.\ y  2Jc and f ( y )

as we saw in section 3.3. We test for context-free strictness of g in each parameter using 
Theorem 3.4.2.

g ( X x 2.0) 1 1 = 1  a n d ( X x 2.0) 1 

= 0
g (Ax 2.1) 0 1 =  0 and (Ax 2.1) 1 

=  0

g ( Xx2.l) 1 0 = 1  and (Xx2.l) 0 

= 1

So we see that g is context-freely strict in its first and second parameters, but not in 
its third.

For the context-sensitive strictness information we have three apply nodes in the
body of /  :

+  @  x (/>-)
(+ x) @  (/y)
f@ y

where we have denoted the apply node of interest using the "@H symbol as in the 
graphical representation of g . We note that in these expressions we have free variables, 
and this will be the general case. The semantic function for variables is :

E ab [[x°-]] p ab =  pa6(xCT)

and we have to guarantee that



p ab [U 0*]] £  a b s a t p « [ [ x ° ] ] )

for the conditions of the  theorem s w hich ensure correctness to hold. Since we are not sure 
w hat values w ill be taken by the free variables in the standard  semantics, fo r they may 
take on any value, then we m ust set the  abstraci interpretation of all free variables to be 
the top of the relevant dom ain to ensure tha t the above condition is true.

From Definition 3 .2 .1 . 1  we have that 
E ab [[ + ]] p ab = A u 2.\ v ~.u and v

We use Theorem 3.4.3 to test the apply nodes. F irstly  we test the apply node 
between the + and x . In the expression we tesl both /  and y are free, and so we must 
set their abstract in terpretation  to \ x 2.l and 1  respectively.

( E ab [[+ ]]p °6 ) 0 ( E ab [[(/ y ) ] ] p cfe) =  ( \ u 2. \ v 2 .u and v)0((Ax2.l) 1)

=  (At/ 2. \ v  2 u  and v) 0 1

=  0

We next test the  top application node in the graph of the function. In th is case x is free 
and so we m ust set its abstract in terpretation  to 1 .

E ab [[ +  ]] p ab x  0 =  ( \ u 2\ v 2 .u and v) 1 0

= 0
For the final app ly  node, we have th a t /  is free, and so we m ust set its abstract 
in terpretation to \ x 2.l to obtain

( E ab [[ /]]  p ab) 0 = ( \ x 2 . l ) 0

= 1

Using the theorem s on changing the evaluation strategy, we can label the function 
graph as follow s :

- 95 -



-  %  -

X/ f
£

+
This says tha t in any application of the function it is safe to evaluate using the first 
and second argum ents to g , bu t it is not safe to do any evaluation of the th ird  argum ent. 
The annotations in the function body say th a t it is safe to evaluate the  expression ( /  y) 
and the expression x  using w hen evaluating the function body, but it is not safe to 
evaluate the expression y .

In a sim ilar manner, using the abstract interpretations of s w n l i s t  and a p p e n d  given in 
section 3.3, the context-sensitive definedness theorem (Theorem 3.4.3), and the  context- 
sensitive change of evaluation strategy theorem (Theorem 3.5.2), we are able to label the 
application

s u m lis t(a p p e n d ( e j ,e 2)) 

as in the diagram :

This says th a t when we have to evaluate the application, then its is safe to initiate a 
com putation of a p p e n d { e x . e 2 ) using £3, and evaluation of e , using but it is not safe to 
do any evaluation of e 2.

3 .6 . M ore A b stra ct D om ain s fo r  Base T yp es.
By taking A l i s i  as the exam ple of a type which has as its in terpretation an infinite 

sum  of products, and choosing the fo u r evaluators for lists and the  abstract dom ain to 
model the w ay the evaluators behave, we have left some questions unansw ered. 
Specifically, w h at is to be done about o ther types which have as a s tandard  interpretation  
a domain which is an infinite sum  of products, and, can we find out extra inform ation



- 97 -
about nested stru c tu res  which will allow  us to do more evaluation?

A nother exam ple of a da ta  type w ith  a domain which is an infinite sum  of products 
as its standard  in terpretation  is A tree :

A irec =  1 +  A  X A lrec  X A tree

which are t.rees of elem ents of A . 11 may have as constructors for the type : 
nil_Lrcc : —* A lrec

and
node : A —* A tree-*  A tree-*  A tree

In section 3.1.2 we saw  th a t one w ay of developing abstract dom ains w as to look a t 
the sensible evaluators fo r elem ents of a type. Just as there are four sensible evaluators 
fo r A l i s t , for A tree  there  are also four sensible evaluators :

(£) no evaluation;
( ii)  evaluate to head norm al form , th a t is, as fa r as a n il_ tree  or a n o d e ;
( i i i )  evaluate the s h a p e  of the tree i.e. recursively unfold the second and th ird
argum ents to node u n til a n il_ tree  is reached in each one; and
(£v) evaluate the shape of the tree, and evaluate each of the elem ents from D %  in the
nodes to head norm al form .

These evaluators are sensible because they trea t each node of a tree in the same w ay.
Again we can see how  these evaluators divide up the standard  interpretation  of A tree  

-  the evaluator in ( i)  preserves all elem ents of the standard  in terpretation; the evaluator 
in ( i i)  preserves all non-bottom  elem ents of the  domain; the evaluator in ( i ii)  preserves all 
trees where each branch of the tree ends in a n il_ tree  after a finite num ber of nodes; and 
the evaluator in ( iv )  preserves only those elem ents which are preserved by ( i ii)  which also 
have no elem ents in the nodes. The w ay the evaluators have divided the standard
interpretation  is exactly  analogous to the w ay the evaluators for lists broke up the 
dom ain, and so the  fo u r point domain is also a suitable abstract domain for the type 
A l i s t . To use th is  dom ain fo r the abstract interpretation of program s which have 
functions over A tr e e ,  we need to define the constants tha t are used and their standard  
in terpretation. W e can then develop abstract interpretations of the constants by 
calculating the abstraction  of their standard  interpretation as we did fo r the constants in 
section 3.2. Correctness of the definedness interpretation for program s using this type 
w ould  then follow  im m ediately, and we could use Theorems 3.5.1 and 3.5.2 to label a



- 98 -

program to indicate safe changes of evaluation strategy.
A lthough o u r discussion so fa r has been of the type A tr e e , we hope this has 

m otivated the claim  th a t fo r any sim ilar type  which has as its standard  in terpretation a 
domain which is an infinite sum of products, there are only four sensible evaluators, 
where (i i ) to (tv) above are modified to recursively unfold each of the recursive parts of 
1 he lype definition. T hus the four point domain is a sensible abstract domain for such 
types. To finish the  abstract in terpretation one has to provide the inform ation about the 
constants as has been done for A list and m entioned above for A ir e e .

Let us now  exam ine more closely the four poinl domain we have used lo r the 
abstract in terpretation  of lists. The first Iwo points in the abstract dom ain, ] _ L and /  
give us inform ation about the definedness of the top-level s truc tu re  of a list, only , nam ely 
w hether it is to ta lly  undefined or w hether it is partial or infinite; the o ther tw o points 
also give us in form ation about the definedness of elements of the  list, nam ely w hether 
there are any bottom  elem ents in the list or not. These last tw o points allow ed us to find 
th a t som etim es we could use the evaluator £ 3  which evaluated the elements of the list to 
head norm al form .

If the elem ents of the list, were them selves lists (or some o ther data type which was 
an infinite sum  of products), then there are some extra evaluators th a t we could use :

(v) evaluate the  spine of the list and  evaluate each element the  list using £2* and
Cv£) evaluate the spine of the list and  evaluate each element of the list using £3.
O ur in tu ition  by now should tell us th a t in order to be able to capture how these 

evaluators tre a t lists we need to add some points to the abstract dom ain to test the 
definedness of functions on elem ents which these evaluators do not preserve. For 
example, if the ty p e  A  was B lis t , where

Blist =  1 +  B  x B lis t ,

then we m ay w ish to additionally  find o u t how defined functions were w hen applied to 
an elem ent of ty p e  A list w hich was finite but for which the m inim ally  defined elem ent 
(i.e. a Blist ) w as partia l or infinite, or if th e  m inim ally defined elem ent was finite bu t had 
bottom  elem ents (i.e. from D g * ) .  In an analogous m anner to the w ay we replaced the tw o 
point domain by the  fou r point dom ain fo r lists so th a t we could ta lk  of the definedness 
of elem ents of a list, we can replace the top tw o points of our four point dom ain fo r lists 
w ith  another fo u r point dom ain which gives inform ation about the definedness of the 
elem ents of an A lis t  w hich are them selves lists. We could thus define the abstract domain 
d ausi = U.l J.FB.F/.FF.Tl \, where ± L ^ 1 < FB  < F I  < F F  < T L , and the



- 99 -
abslraction map :

a b s A lis t  : D A lis t  d a L

in the obvious w ay.
Clearly the process could be continued according to the depth of nesting o f^ tru c tu re s  

in the program. We however note th a t extra points in the abstract domain mean th a t the 
process of finding fixed points in calculating the abstracl interpretation will take longer. 
Furthermore, the more evaluators we have, the more complex the hardw are which 
supports the evaluation of the functional language has to be. The choice to how much 
inform ation is sought is thus a pragm atic one; the theory presented in this chapter is 
sufficiently general to support any of the abstract domains we may choose.

We note th a t the abstract dom ains mentioned above fo r nested structures are also 
due to [W adler 1985]. Their m otivation using sensible am ounts of evaluation is new to 
this work.

3.7. R e la tio n sh ip  to  O th er W ork .
Much of the w ork done in th is area has been to do w ith  strictness analysis, or the 

detection of when a function is s tr ic t in an argum ent. The first w ork was presented in 
[M ycroft 1981], w here his fram ew ork w as applied to strictness analysis of first-order 
functions. In [Bum, Hankin and A bram sky 1985a] and [Hankin, Burn and Peyton Jones 
1986] theory w as developed to allow  fo r strictness analysis of higher-order functions. 
Sim ilarly, the fram ew ork of [M aurer 1985] was developed for strictness analysis, and the 
fram ew ork of [A bram sky 1985a] w as applied to strictness analysis.

A big breakthrough was made by W adler [W adler 1985] in using the four point 
domain, also used in th is chapter, as the abstract domain fo r lists. He was able to give 
abstract in terpretations for the constants, and interpreted the results of the abstract 
interpretation, bu t no form al justification fo r his assertions was given. We have provided 
the justification in this chapter.

Finally, the w ork in [Hankin, Burn and Peyton Jones 1986] provided a w ay of 
encoding the strictness inform ation (w hich argum ents could be safely evaluated to head 
normal form  given th a t we had to evaluate an application to head norm al form ) using the 
P com binatorttiAn extension of th is needs to be made to cover the extra evaluators, which 
is probably just having three "flavours" of the P combinator.

WThe P combinator has the same reduction rule as I but sets off a parallel process to evaluate its 
second argument.



- inn -
3 .8 . C on clu sion .

W e have applied the  abstrac t in terpretation fram ew ork of C hapter 2 to see how 
much evaluation of argum ents in a function application is safe given th a t we have to 
evaluate the function application.

A bstract dom ains and  abstraction maps were defined which captured the distinctions 
belween the elem ents of the s tan d ard  domain made by the sensible evaluation strategies. 
The abstract dom ains th a t we discussed, the iw o poinl domain and the four poinl 
domain, are due to [M ycroft 1981] and IW adler 1985] respectively.

The abstract in terpretations of constants were derived by taking the abstraction of 
their standard  in terpretation . For all of the constants excepl c a s e , we were able to define 
abstract in terpretations of the constants which were equal to the abstraction of the 
standard  interpretation. Because c a s e  is an higher-order function in which the  functional 
argum ent is applied to one of the o ther argum ents (actually  the  head and the tail of one 
of the o ther argum ents), we find th a t our requirement of safety  means th a t the equality 
does not hold. However, since we only  needed that

E ab [ [ c a ]] p ab ^  a b s a ( E st [[co-JJp*'). 

this is no problem .
We proved the correctness of th is interpretation as a simple corollary of the 

Correctness Theorem fo r A bstract Interpretation from C hapter 2. The theorem s 
concerning context-sensitive and context-free definedness inform ation follow  in a sim ilar 
manner.

The definedness inform ation w as then used to show w hen it w as safe to change 
evaluation strategies from  a le ft-m o st outer-m ost strategy to one w here some of the inner 
redices were also reduced.

Finally  we note th a t  the pragm atics given in th is chapter asked how much evaluation 
was safe of argum ents to a function  given th a t we had to "evaluate" a function 
application. Given a function application

f e i ‘ ‘ • en •
putting  _|_ on the righ t-hand  side of the test effectively m eant we were finding out how 
much evaluation of ct w as safe given th a t we knew only th a t it was safe to evaluate the 
application to head norm al form . If c t w as a function application, and it w as possible to 
evaluate e, using £ 2  o r £ 3 - then we would like to utilise this inform ation, because i1  

may allow  more evaluation of its  argum ents to be done. This is the subject of the next



- ini -
chapter; in fact it leads to a much more natural understanding of w hat is going on.



Chapter 4
Evaluation Transformers

In the  last chapter we developed a definedness interpretation and used it to see when 
we could change the evaluation strategy by evaluating some of the argum ents to a 
function in parallel w ith  evaluating the function application. The tw o theorem s for 
changing the evaluation strategy were developed assuming that we had to  do some 
evaluation of the function application, but ignored the am ount of evaluation of the 
application of the function th a t was safe. A sim ple example in the next section shows 
in tu itive ly  th a t if we take into account the am ount of evaluation it is safe to do of a 
function application, then we can sometimes allow  stronger evaluators to be applied to 
the  argum ents of a function. Moreover, because a function application can appear in 
several differing contexts, it is no longer sufficient to ju st label functions w ith  inform ation 
about how much evaluation it is safe to do of the  argum ents because a t various tim es 
different am ounts of evaluation may be safe for an application of a function. W e thus 
introduce e v a l u a t i o n  t r a n s f o r m e r s  fo r each argum ent of a function and application node of 
a program which, given a safe evaluator for an application, w ill transform  it into safe 
evaluators fo r the argum ents in the function application.

Evaluation transform ers can be determ ined statically  from  the program  tex t using 
the  definedness abstract in terpretation of Chapter 3. Tw o theorem s which are 
generalisations of the Change of Evaluation Strategy theorems of C hapter 3 give us a 
m ethod fo r determ ining evaluation transform ers.

4 .1 . M o tiv a tio n  fo r  E v a lu a tio n  T ra n sfo rm ers.
In the section 3.5 we saw th a t th a t it was possible to label the applications in the 

expression :
sum list(append(e  j .e  f))  

as in the diagram :

- 102 -



- 103 -

This says tha t when evaluating the expression, we can initia te  the com putation of 
a p p e n d i e  j ,e 2) using £3, the evaluation of e 1 by £, and that we could do no evaluation of 
e 2- However, we know that the reason w hy we could evaluate a p p e n d i e , , e 2 ) using | 3  was 
that s u m l i s t  needed to have a finite list w ith  no bottom elements in it or else an expression 
s u m l i s t ( c )  w ould be undefined. So really we need t hat a p p e n d i c } . e  2 ) should  have as 
sem antics a finite lis 1 w ith no bottom elem ents in it or else the above expression w ill be 
undefined. The only way a p p e n d  can return  such a list is if both of its argum ents are lists 
which are finile and have no bottom elem ents in them. Thus, in th is case it is safe to 
label the applications in the expression a p p e n d ( c , ,c2) w ith £ 3  because th is preserves all of 
the elem ents for which a p p e n d ( e x .e2) is a finite list w ith bottom  elements, and these are 
all of the elem ents th a t need to be preserved for an application of su m lis i. W e could then 
label the application nodes of the expression as in

Taking into account the am ount of evaluation it is safe to do of a function application, we 
are able to use a stronger evaluator in the evaluation of e, and e 2  than  w e were able to 
conclude in the last chapter where we did not specify the am ount of evaluation th a t it 
was safe to do of a function application.

A function application may occur in several different contexts in a program , which 
may not be sta tica lly  detectable. For example, we may have the definition :

c — a p p e n d i e  ] . e ->)

where c 1 and e 2 are some expressions, and then find that the expressions s u m l i s t i e )  and 
h d ( e )  appear somewhere else in the program . From the above discussion we can see th a t 
in the first case both e , and e 2 can be evaluated safely using £3, w hile in the  la tte r  case it 
is only safe to evaluate e to head norm al form and so the original annotations on the 
applications are the m axim ally safe annotations. It is thus no longer good enough to use 
labels which give a fixed am ount of evaluation, but we have to in troduce evaluation 
transform ers.
Definition 4.1.1: »•



- 104 -
Given a safe evaluator for a function application, an e v a l u a t i o n  t r a n s f o r m e r  for the 
/th  argum ent in the function application specifies a safe evaluator for the zth 
argum ent.

□

Noie that we are now interpreting the abstract in terpretation in a "backwards" 
manner. We are asking, given that an am ount of evaluation is safe for a function 
application, w hat am ount of evaluation is safe for each of the argum ents in the 
application. The question being asked in the last chapter then w as how much evaluation 
of argum ents to a function in an application is safe given th a t some unspecified£amount of 
evaluation had to be done.

We can obtain evaluation transform ers from the abstract in terpretation  developed in 
the last chapter.

4.2. D e te rm in in g  E v a lu a tio n  T ra n s fo rm e rs .
As in C hapter 3, where we had tw o theorems for the safe changing of evaluation 

strategy, we give here tw o theorem s to determ ine respectively the  context-free and 
context-sensitive evaluation transform ers. A fter giving each theorem we w ill give an 
exam ple of its use in determ ining an evaluation transform er. lu-fetunr*.ZS.'I teipecWUj •
4.2.1. C o n te x t-fre e  E v a lu a tio n  T ra n s fo rm e rs .

We have the follow ing theorem to determ ine context-free evaluation transform ers : 
T h eo rem  4.2 . 1 . 1 : (C ontext-Free Evaluation Transform er Theorem )

Suppose th a t /  : o -j- » • • • - *  crn -♦  r  and th a t £ is a safe evaluator for an application 
of / .  Furtherm ore, suppose th a t £ does not preserve any of the  elem ents in C o n c T( t ) .
If

E 0*3 [ [ f ] ] p ab T d . T D: T

then in any application of /  w here £ is a safe am ount of evaluation for the 
application, any evaluation strategy which evaluates the zth argum ent to /  so as to 
preserve all of the values in D  "  — C o n c a  ( s i ) is a safe evaluation strategy.

P r o o f :



- 105 -
Given any application /  e , • • • en there are 1 wo cases.
( i )  Suppose E sl [[ej] p sl € C onea (5, ). Then the evaluation of e{ may initiate  a non
term inating com putation. However, in this case, we are assured by Theorem 3.4.2 
tha t

E st [ [ /c , • • t*n ]] p s! 6  C o n c TU ) .

Since £ is was a sale amounl of evaluation for the application, we have 1hal the 
original expression must have had bottom as its sem antics because £ does nol 
preserve any elements in C oncT(t) .  Thus it is safe to initiate a non-term inating  
com putation when evaluating the z'th argum ent.
( i i )  If E sl [ [ e j]p s; t  C onc(T ( s i ) then, since we have chosen an evaluator which 
preserves non-j, values, no divergent com putation w ill be initiated  in evaluating e, 
and so the evaluation strategy is safe.

□

If there is no such 5 , then it is not safe to do any evaluation of the z'th argum ent. By 
choosing the m ost defined j , for which it is true, then we w ill be able to find out the 
maximum permissible am ount of evaluation.

Wc w ill now give a detailed exam ple of how to use th is theorem , and then give the 
context-free evaluation transform ers fo r the functions fo r which we gave abstrac t 
in terpretations in C hapter 3.

As the exam ple, we w ill use the a p p e n d  function, where the  values of a p p e n d  L  j L 2 
are given in Table 3.3.4, reproduced below as Table 4 .2 .1 .1.

T ab le  4.2.1.1
A b strac t In te rp re ta tio n  o f a p p e n d

__
1

- U 1 1 F j Tz.
1

1 l l  

1 ! ± L 1 j 1 | 1

1 ii
t j l

< I j 1
1

i '
1

F  j 1— t" 1 I F ! F

--1 1 a I | F  
________

—1



- I Oh -
We note that in this case T ^ j/. is T  i  • The elem ents of type A l i s t  w hich each 

evaluator preserves are listed in Table 3.1.2.2.
Suppose tha t we have th a t t \  is a safe evaluator, where _|_nN, is the only elem ent‘'Ain l

which is not preserved by £ ,. For the first argument we m ust therefore find the 
maximum L  such tha1

a p p e n d  L  T  / ^ _L z.
From 'Table 4 .2 . 1 . 1  we find th a t the maximum element is ] _ L , and thus we m ust choose 
an evaluator which preserves all elem ents in D Alist — C o n c ^ ^ l A .  j  ). The m axim um  
evaluator which satisfies th is restriction is £ ]t tha t is, evaluating a list to head norm al 
form .

For the second argum ent we m ust find the maximum L  such that 
append J L L ^  A. l

We see th a t there is no such L , and so we conclude th a t it is not safe to do any evaluation 
of the second argum ent to append in this case.

If we denote the evaluation transfo rm er for the £th argum ent to a function /  by F t , 
so fa r we have that:

A P P E N D  = t \

A P P E N D  ,(£ ,)  = t 0

Sim ilarly, t i  docs not preserve any elem ents in C o n c A t i s t U ) .  The m axim um  L  such
th a t

a p p e n d  L ~ [  L ^  1

is 1 and so the evaluation of the first argum ent to append m ust preserve all values in 
D Alist ~  C ° n c A lis t (■ !)• The evaluator w hich allow s maximum evaluation is 1 2-

Likewise, the maximum L  such th a t 
append T  i  L  ^  /  

is I . Thus we have

A P P E N D  M i )  = h  

A P P E N D  M i )  = £ 2



- 107 -

The final case for which we have to do any work is for £ 3  which does not preserve 
any elements in C o n c A lis [ ( F ) . The m axim um  L  such that

a p p e n d L  T/. ^  F

is F  and so the evaluation of the first argum ent to a p p e n d m ust preserve all elem ents in 
D AUsl — C o n c A h s t( F ) . The mechanism which allow s maximum evaluation is 
Sim ilarly, the m axim um  L  such that

a p p e n d T  j  L  ^  F

is F . Thus we have
A P P E N D  ,(£3) =  £3

A P P E N D  2(£3) =  £3

Because the  evaluator £ 0 has to preserve all elements of D A lis t , we can do no 
evaluation of either argum ent of a p p e n d in this case.

These results are gathered together in Table 4.2.1.5.
In a sim ilar m anner, we can determ ine the evaluation transform ers for the  functions 

whose abstract in terpretations we gave in Chapter 3. The follow ing five tab les give the 
context-free evaluation transform ers for these functions, where Table 4.2.1.;?+/ gives the 
evaluation transfo rm ers for the functions whose abstract in terpretation appears in Table
3.3./?. Recall th a t we denote the evaluation transform er for the z'th argum ent to a 
function /  by F , .

Table 4.2.1.2 gives the evaluation transform ers for functions /  sa tisfy ing  the 
conditions of Definition 3 .2 . 1 . 1 , fo r exam ple + , x and or .

Table 4.2.1.2Context-free Evaluation Transformers for Binary Strict Functions

E  !
i

F,(£) F Z( E )

£0 !
1 e-

£0

!
1

f, £1

Evaluation transform ers fo r functions of type A l i s t - * A  where th e  abstract 
in terpretation of the type A  is 2  are given in Table 4.2.1.3.



- 108 -

T a b ic  4 .2 .13
C o n te x t-fr e e  E v a lu a tio n  T ra n sf orm ers fo r  sumlisty length and hd

: E SU MUST.IE) LENGTH,(E) !
i

HD,(E)

£<> j ^ |

i

;'! !1

Table 4 .2 .1 .4  gives the evaluation transform ers for functions o f type A L ist —  A l l s /..

T a b le  4.2.1.4
C o n tex t-free  E v a lu a tio n  T ra n sfo rm ers fo r  reverse and tl

E R E X 'E R S E ^ iE ) T L X{E )

; So j Soi So |j
i £ ' «> i

l *
$2 i

1

!
t i  | 

_______________ i
The evaluation  transformers for a p p e n d that w e obtained earlier in th is section  are 

given in Table 4 .2 .1 .5 .
T a b le  4.2 .1 .5 .

C o n tex t-free  E v a lu a tio n  T ra n sfo rm ers i'or append

F inally , the evaluation transform ers for m ap are given in Table 4 .2 .1 .6 .



- 109 -

Table 4.2.1.6

Context-Tree E va lua tion  T rans f orm ers f o r m a p

i E
i

ii M A P . i E )
II

M A P - , ( E ) t
!

£« ii i
!

; i i  £0
f ' i

: ^2
i

ii !

h ii 12 !

4.2.2. C on text-sens itive  E va lua tion  T ransfo rm ers .

T h eo rem  4 .2 .2 .1: (C on text-S en sitive Evaluation Transform er Theorem)
Suppose that /  : or,-* • • • -♦  a n -*r and that £ is a safe evaluator for an application  
/  e , • • • en . Furthermore, suppose that £ does not preserve any o f the elem ents in 
C o n e  T( i ). If

E ab [[/]] p°b E ab [[<!,]] p°b ■ ■  ■ £»* [[ef_ ,]] p°b s ~ E - b [[ci+ ,]] p"6 • • • E ‘ b [[e„ ]] p^  <  T

then it is safe  to use an evaluation strategy which evaluates e{ so as to preserve all 
values in — C o n c a ( s i ).
P ro o f :

The proof fo llo w s  exactly  as in the proof o f Theorem 4.2.1.1 except that w e appeal 
to Theorem 3 .4 .3  instead o f  Theorem 3 .4 .2 .

□

If there is no such st then it is not safe  to do any evaluation of the expression et .
The reason w h y  w e have con text-sen sitive  theorems is that they g ive us more 

inform ation than context-free ones in the case that w e use more com plex dom ains than 
the tw o  point dom ain for the base typ es or, if  w e use higher-order functions where a 
functional argum ent is applied to an expression in the body o f the function . A s an 
exam ple o f the use o f this theorem, w e w ill use an application o f the function m a p  : 

map f  [] = []
map f  x:xs = ( /  x  ) : (map )  x s )

The abstract interpretation, m a p , o f  map is given in Table 4 .2 .2 .1, which is just a copy o f  
Table 3.3.5 .



- 1 1 0 -

T ab le  4.2.2.1Abstract Interpretation o f m a p

! E I II Xx^.O!ii i
\ x ~  .X 1

!
; 1 L ii ^1 t 1 ^  iI :
1 1 l! '

!!
/ '  \

:
j 1 ii E 

1!
FI i i 1 A i

I T L |l T L T a T / 1

W e w ill determ ine the context-sensitive evaluation transfo rm er for the second 
argum ent to m a p in the application

m a p  p lu s 1 e

where p lu s 1  is the strict function 
p lu s 1 n =  n +  1

and so
E ab [[plusl]] p ab = \ x ~jc.

If the evaluator for the application is £0, then it is not safe to do any evaluation of 
the second argum ent, and so the evaluation transform er is £ 0  at £o-

The evaluator £j does not preserve any elem ents in C o n c Alis[ (_L L ), and so from the 
theorem we m ust find an L  such th a t

E ab [[map]] p E ab [[plus!]] p ab L  ^  ± L  

tha t is,
map (Xx  ~jc) L  ^

From Table 4.2.2 . 1  we find th a t the  maximum such L  is ] _ L and so we m ust choose an 
evaluator which preserves all elem ents in D Alist — C o n c A l i s l ( X  L ). The strongest evaluator 
given in Table 3.1.2.2 satisfying th is property  is

No elements in C o n c A l i s lU )  arc preserved by £ 2  and so we m ust find the m axim um  L  
such th a t

map  ( \x  ~.x) L  ^  /



to find the value of the evaluation transform er at The m ost defined L  fo r which this 
is the case is 1 and so any evaluator musl preserve all elem ents in D Alist — C o n c Alisl U ) .  
From Table 3.1.2.2 the strongest evaluator w ith  this property  is £2.

Finally. £ 3  preserves no elements in C o n c A h s [ ( F )  and so we m ust find the most 
defined L  such th a t

m a p  ( \ .r  “..x) L  ^  F .

Here F  is the maximum elem ent, and so as is the strongest evaluator which preserves 
all elem ents in D Alisl — C o n c Alls/ ( F ) ,  we may use it.

T hus the evaluation transfo rm er for the second argum ent to m a p in th is application 
is :

T ab le  4 .2 .2 .2
A  C o n te x t-s e n s it iv e  E v a lu a tio n  T r a n sfo r m e r  fo r  map

E  i! M A P y i E )
ii

f o

i t f l

h £2

£3

If one compares this w ith  the context-free evaluation transfo rm er fo r the second 
argum ent of m a p given in Table 4.2.1.6, then we can see th a t a stronger evaluator is 
allow ed ( £ 3  instead of £2) w hen g 3 is a safe evaluator for the application. This is because 
the  test for the context-free evaluation transform er had to use Xx2.l in the test of the 
second argum ent, and a function which is defined everyw here and a s tric t function only 
differ in the w ay they behave in term s of the definedness of the result on finite lists w ith  
bottom  elements in them .

4 .2 .3 . U sin g  E v a lu a tio n  T r a n sfo r m e r s .
Evaluation transform ers are used to label argum ents to functions and application 

nodes in the same w ay th a t we labelled them  w ith  evaluators in C hapter 3. It is 
im portan t to note th a t labelling w ith  evaluation transform ers c e p f a w s  labelling w ith  
evaluators, th a t is, we label w ith  evaluation transform ers and not evaluators. In section
3.5 we labelled the function



-112-
g =  k f A ~ 'A . k x A . k y A x: + ( / y).

If, for the purposes of this example, we denote by F  j the evaluation transfo rm er which 
sends £, to £, and £ 0  to £0» and by ^ 2  fbc evaluation transform er which sends both £, 
and £() to £(), then we can label the graph of g as in the diagram :

This says that if ever the evaluator is used to evaluate an application of g ,  then the 
first and second param eters to j  can be evaluated using since £ 1(^ 1) = £ lt w hile the 
th ird  param eter may not be evaluated fo r F 2( £ \ )  = £0- The body of the  function is then 
being evaluated by | lt which means tha t the subexpressions x  and ( / y )  can be evaluated 
using £j.

In th is example we are able to see one of the pragmatic problem s w hich still has to 
be tackled w ith  parallel machines. The evaluation strategy described above w ill try  and 
initiate the evaluation of the expression which is substitu ted  fo r the variable x  twice, 
which a t best is a communication overhead on the machine. It w ould be valuable to see if 
we could detect cases like the above w here the evaluation of the expression which is the 
second param eter to g  has alw ays been initiated and so we can change the label E } to  E 2 
on the application node which has a- as its operand to prevent the evaluation strategy 
try ing to initia te  its com putation again.

As another example of using evaluation transform ers, suppose we have labelled the 
application a p p e n d i c , ,e 2) as shown in the diagram :

F
k x  F

@ A P P E N D 2

so th a t in th is application the context-sensitive evaluation transform ers are the same as 
the context-free* evaluation transform ers, given in Table 4.2.1.5. If, fo r example, the 
application w as to lx* evaluated using £ 2. then e , could be evaluated using A P P E N D  ](£2)



= £2, and e 2 could be evaluated using A P P E N D  2( g 2 ) -  £ z -  A t another tim e, £ j m ay be a 
safe evaluator for the application and so £, = A P P E N D  ,(£ ,)  is a safe evaluato r fo r e ,,  
while £ 0  = A P P E N D ->(£]) is a safe evaluator for e 2 .

4.3. Values Used i o r  D e te rm in in g  E v a lu a tio n  T ra n s fo rm e rs .
If {  : or,-* • • • — <xn -» r, then we have to delerm ine an evaluation transfo rm er for 

each of / ' s n  argum ents. These evaluation transform ers m ust give an evaluato r fo r each 
of the evaluators fo r the type r .

The evaluation transform ers alw ays give £ 0  a t £ 0  because if it is not safe to do any 
evaluation of a function application, then it is not safe to do any evaluation of
any of the argum ents to the function (t).

If £ is any o ther evaluator for the type r ,  then Theorem 4.2.2.1 says th a t  we m ust 
choose a t such th a t £ does not preserve any elem ents in ConcT(r). We choose the m ost 
defined such t because 1 ha 1 w ill allow  us to detect the m axim um  am ount of evaluation 
that is safe. For example, for types which have the evaluator £j as the on ly  evaluator 
which does any evaluation, we can see from Table 3 . 1 .2 . 1  th a t the appropriate t  is J_na*,
w hile for lists, from Table 3.1.2.2 we see th a t the  values for t  are _[_L , 1 and F  fo r £ ,, £ 2  

and £ 2  respectively.
For any particular evaluator, where we have fixed a t , we then have to  find ou t 

which evaluator is safe for the i i h  argum ent. Both Theorems 4.2.1.1 and Theorem 4.2.2.2 
say tha t we m ust find an s t which satisfies the test and then choose some evaluator 
preserves all of the elements of D%list — C o n e ^ .(*,). Thus fo r the type A l i s t  there are 
three values th a t can be tried, nam ely J_L , 1 and F , w hile for types where £,  is the  only 
evaluator besides £0, then we have only to try  _]_£>.,*• (See Tables 3.1.2.2 and 3.1.2.1
respectively.) This is w hy in strictness analysis ([M ycroft 1981], [Burn, H ankin and 
A bram sky 1985a]), the description of using strictness analysis speaks of pu tting  the 
bottom of the appropriate type for the argum ent being tested and seeing if bottom  is 
returned by the abstract interpretation, for th is is the only case to test w hen we have a 
tw o point domain as the abstract in terpretation  fo r all base types. We w ill of course 
choose the m axim um  s t for which the appropriate test is true  because th is  w ill allow
(t) If the argumenl is totally defined, then this is not true; it would be safe to evaluate the argu
ment. However, the fact that it is not safe to do any evaluation of the function application indi
cates that the value of the function application may not be needed and so the value of the argument 
may not be needed. Thus any computation of the argument may be wasted. Furthermore, we have 
not developed an abstract interpretation which allows us to infer definite termination. Seglli\A^crcf+ (Hd IVicisca i°i b J lcvgfl>3 .

- 113 -



- I 14 -

maximum possible evaluation of an argum ent.
Because all of the functions involved are monotonic, the quickest w ay to do the tests 

is to s ta r t  off w ith  the minimum value from the set of values we have to test for T  and 
s ta r t testing the for the m axim um  s t fo r which the condition holds w ith  the minim um  
value from the scl of values for the type c r , .  W hen we have found the m inim um  value, 
we can begin testing for the next m inim al i , beginning w ith the value fo r which we 
had for the last one.

4.4. E v a lu a tio n  T ra n s fo rm e rs , "Need" Labels an d  th e  P C o m b in a to r.
The methodology of strictness analysis as given in [M ycroft 1081] and [Burn, Ilankin 

and A bram sky 1985a] tested the strictness of a function by pu tting  in the bottom  of the 
appropriate type and seeing if the resu lt in the abstract in terpretation  w as bottom ; if it 
was, then tha t argum ent to the function could be evaluated when the  function  application 
was evaluated.

We can now see th a t this is equivalent to asking how much evaluation can be done to 
argum ents of a function given th a t a function application could be evaluated, and given 
tha t there was only one evaluator, w hich did any non-triv ial am oun t of evaluation. 
Thus the "need" labels of [Burn, H ankin and  A bram sky 1985a], and th e ir encapsulation 
using the P com binator of [Hankin, Burn and Peyton Jones 1986] are ju s t evaluation 
transform ers which send £, to and, of course, £ 0  to £0. The unlabelled applications 
then are the evaluation transform ers which send both £, and £ 0  to £0.

4.5. R e la tio n sh ip  to  O th e r W ork.
The idea th a t we should be looking at how much evaluation it is safe to do of the 

argum ents to a function given th a t it is safe to evaluate a function application is also 
tackled by Hughes in [Hughes 1985]. In his paper he introduces several th ings th a t are 
sim ilar to those which we have introduced. As a guide to the change in term inology, we 
note th a t w hat Hughes calls "contexts" roughly correspond to w hat we call evaluators, 
and w hat he term s "strictness functions" we have called context-free evaluation 
transform ers.

There arc several things to note about the w ork he presents. F irstly , one m ight 
expect th a t he can derive more exact inform ation; it looks like his m ethod shou ld  be able 
to determ ine evaluation strategies which for instance evaluated every second elem ent of a 
list argum ent in parallel w ith  the function application. We have restric ted  ourselves to 
evaluators which trea t every elem ent of the  list in a uniform  manner.



- 115-
Somelimes recursive "conlexis" are defined, lo r example 

s p in e =  n i l  O R  c o n s  A B S E N T  s p in e

which says roughly lo evaluale Ihe argum enl down to a n il or a c o n s and then evaluate 
Ihe tail of the list in the same manner, doing no evaluation of the head of the list (i.c. 
ou r evaluator £ ,). If A P P E N D , denotes the evaluation transform er associated w ith the 
first argum enl of a p p e n d . then he is able to deduce tha t

A P P E N D  j s p in e  — sp in e .

This can be translated  into our term inology to say that if it is safe to use g 2 f ° r Hie 
evaluation of an application of a p p e n d , then it is safe to evaluate the first argum ent to 
a p p e n d using £2*

Surprisingly, in some cases the results he obtains lose more inform ation than our 
m ethod does. The exam ple which show s this is due to [Hughes 1985]. For r e v e r se in the 
context c o n s  c  A B S E N T , which says th a t we evaluate the head of the list using the context 
c and do no evaluation of the tail, and so is stronger than o u r evaluator (i.e. evaluate 
the list to head norm al form ), the follow ing context is obtained :

R E V E R S E  j ( c o n s  c  A B S E N T ) =  g w h e r e  g =  A B S E N T  O R  n i l  O R  c o n s  h  g

h =  c  O R  A B S E N T  O R  n i l  O R  c o n s  h  g

Ignoring the finer details, the fact 1ha1 we have A B S E N T  ”O R n,d  in a t the top level means 
tha t it is not safe to do any evaluation of the argum ent to reverse when in th is context. 
However, w ith  our analysis, we are able to show th a t w ith the w eaker safe evaluator 
for an application of reverse, it is s till safe to evaluate the spine of the  list which is the 
argum ent to reverse.

A second thing we note is tha t [Hughes 1985] is a fram ew ork fo r first order 
functions only , whereas we have presented a fram ew ork which handles higher-order 
functions. As w ell, we note th a t the distinction between context-sensitive and context- 
free issues is not made.

F inally, our w ork rests on firm sem antic foundations, whereas that of [Hughes 1985] 
has not had such foundations fu lly  worked out. If the ideas of [Hughes 1985] were 
form alised then a proper comparison of the tw o pieces of work could be made.



- 11 b -
4.6. C onclusion.

A very natural question to ask of a function application is how much evaluation is 
safe for each of the argum ents to the function given th a t a particu lar am ount of 
evaluation is safe for the function application. If this is more than no evaluation, then 
we may change the evaluation strategy 1 o do some evaluation of the argum ents to the 
function in parallel w ith (or before) the evaluation of the  function application. In 
general, a function applicaiion may used be in many different contexts which have 
different safe evaluators for that function application. Thus we need the concept of an 
evaluation transform er lo r each argum ent of a function, which transfo rm s an evaluator 
which is safe for the application into one which is safe for the evaluation of the  argum ent.

As w ith  previous chapters, we have given theorem s w hich allow  us to determ ine 
both context-free and context-sensitive evaluation transform ers. The evaluation 
transform ers are determ ined using the  definedness in terpretation  of C hapter 3.

The P com binator of [Hankin. Burn and Peyton Jones 1986] can be seen as being an 
evaluation transform er when we only use the tw o point dom ain for th e  abstract 
interpretation of ail base types and thus are only distinguishing between the evaluation 
strategy which does no evaluation of an argum ent to a function and the evaluation 
strategy which evaluates an argum ent to head norm al form using a left-m ost outer-m ost 
strategy in parallel w ith , or before he evaluation of the function application.



Chapter 5
Abstract Interpretation and New Type Constructors
So fa r we have been developing a fram ew ork where we have assum ed we were given 

standard  and abstract in terpretations of the base types, and then we added the function 
space as the only type constructor. We were able 1 0  deal w ith complex data types such as 
infinite lists (infinite sum s of products) by putting them in a black box and treating them 
as a base type by giving them  a standard  and abstract in terpretation. In this chapter, we 
are slightly  more imaginative, allow ing types to be constructed from  finite com binations 
of base types using sum s, products and lifting. A bstract in terpretations and abstractions 
of the standard  in terpreta tion  of the struc tu red  types are defined in a natu ral w ay using 
the interpretations and abstractions of their components. W e show  th a t the v ital 
relationship between the standard  and abstract interpretation, nam ely th a t fo r all e : a  we 
have

[W] p ° i  » a b s a ( E «  [[e]]p")
still holds, and th u s  the correctness of the abstract in terpretation follow s as in Chapter 2. 

We m ust begin by giving the syntax  fo r our new constructs and their in terpretations.

5.1 . S y n ta x  o f  T y p e  C on stru cts.
Here we introduce the syntax  for the rest of our language which w ill include 

constructs to express elem ents of new structu red  data types form ed from finite 
combinations of products, sum s and lifting.

We note th a t products come in tw o flavours, the cartesian product, which we w ill 
denote as x , and the  sm ash product, which we w ill denote by ® . Sums also come in tw o 
flavours, the separated sum , denoted by + , and the coalesced sum , denoted by ©. 
However, as we have th a t

o ' ,  + D ' S  (£>£.^©(£1^

for the  interpretations I  th a t we w ill consider, we w ill from now on only  concern 
ourselves w ith  the  coalesced sum .

The follow ing syntactic  form ation rules extend the rules (1 ) to (5 ) given in section
1.5.1 for our language E x p  :

- 117 -



- 1 1 8 -

(6) j : or  / : T  
<s.t> : c rx r cartesian product

(7) s : or i n  
: cr®r smash product

(8) s : cr
i(s) : <x©r ; . — ——  coalesced sum

j(t) : cr©r

(9) s : c7
<0 ,s> : <x lifting

5 .2 . In terp reta tio n  o f  N ew  C onstructs.
In terpretations for the type constructors and for the above syntactic  constructs 

m us 1  be given.
We begin by giving the interpretation, / ,  of the type constructs. W e in terpret the 

product and lifting constructors in the usual w ay :

= & {y X D {

( D a S r y  = D la  ® Z>'

<-Da i V =

where x , ® and J_ on the right-hand side are the usual domain operations [Scott 1981, 
1982].

We note th a t D x D \  and D !a  ® D*. are finite, complete lattices if and only if D 7Q 
and D \  are, and th a t ( )_̂  is a finite, complete lattice if and only  if D 1#  is. T hus these 
constructions preserve the requirem ents fo r our abstract dom ains th a t they be finite, 
com plete lattices.

The coalesced sum is sligh tly  problem atical. For the standard  in terpretation , we can
have

w here the © on the right-hand side is the usual domain theoretic ©. This in terpretation 
of © however does not have the property th a t Z)£©Z)£ is a complete lattice w hen D  
and D Jr  are complete lattices. Therefore, we m ust instead use a com plete lattice theoretic 
© in the abstract interpretation, which only differs from the dom ain theoretic 
in terpretation in term s of w h at it does w ith  the top elements of D  Ja  and  D 7T . W ith  the 
lattice theoretic © we have a choice between coalescing the tops of the  tw o com plete



lattices, or adding a separated top to the lattice on top of the result of using the domain 
theoretic ©, as depicted in the following diagram :

T  T

- 1 19 -

1  1
c o a l e s c e d  s e p a r a t e d

t o p  t o p

If we choose a separated lop, then the abstraction maps we w ill define can never be 
onto for types including a sum . W hile this is no problem fo r the theory  we have 
developed, it runs against the philosophy of only having elem ents in the  abstract domain 
which represent some object in the standard  domain. For th is reason we choose the © in 
the  abstract dom ain which coalesces the tops of the tw o com ponent complete lattices.

We note th a t the isomorphism 
D 1 =  n 1
U  0 + 7  —  U 0  ± & 7 ±

still holds provided we are consistent in w hat we do w ith the tops on both sides of the 
isomorphism.

Having given interpretations to our type constructors, we can now add the follow ing 
sem antic equations to those in section 1.5.2 :

E 1 [[<j.r> ]] p 1 =  < E >  [[j]] p 1 . E 1 [[r]]p7 >

E 1 [ [ ^ . r * ] ] p 7  = t E 1 [ [ s ] ] p r . E J [[r]]p7 *
E 1 [[i(j)]] p 7  = i ( E } [[j]]p7)
E 1 [ [ j U ) ] ] p J =  j ( E 7  [[/]] p 7  )
E 1 [ [< 0 .5 > ]]p 7  = < 0  . E 1 [M ]p7 >

where we have used the same sym bols on the  right-hand side to denote operations on the 
appropriate dom ains as we used fo r the syntactic  constructs; which we are using w ill be 
obvious from the context.



- 120 -
5.3. A b strac tio n  M aps For T hese C o n stru c tio n s.

All the constructs we have been discussing in this chapter are functors on the 
category of domains, which means th a t as well as acting on objects (dom ains), they work 
on inorphism s between dom ains (continuous maps). In particular, we have th a 1 they 
work on our continuous abstraction maps. It thus trivial to define the abstraction maps 
for these constructed domains :
D efin ition  5.3.1:

L . r\ S! _, n  ab
<TX7 ■ U  (TY.T u  (XX T

a b s <TXT =  absa  x  a b s T

□

D efin itio n  5.3.2:

abs  c r8 r  *

^ < 7 0 t = absa- ®
□

D efin itio n  5 .3 3 :

abs <r © r • D crSr- * ® a Or
a b s (TS> T =  a b s <T ©  ° b s T

□

D efin itio n  5 3 .4 :

abs(7i  = (abs a

^  ^^ S —̂ 1 'tVieorv 4 A- ■ □

The definitions of A b s a  and C o n c Q for each type a  are as in Definitions 2.2.4 and
2.2.5, th a t is :
D efin itio n  5 3 3 :

Absa -.-PD % ~D ?



A b s  a =  U  »P a b s Q

- 121 -

□

D efin itio n  5.3.6:
Cam:a - .D * ~ V D «
C a n ce l)  =

□

In C hapter 2 we required th a t the abstraction maps be s tr ic t and continuous. The 
following lemma about the continuity  and strictness of the abstraction and concretisation 
maps is just Lemma 2.2.8 generalised to include all of the  new type constructs.
L em m a 5.3.7:

If for each base type A  , we are given a stric t, continuous abstraction map a b sA : 
D a  —  D a , then for all types cr,
(£) a b s a  is continuous.
( i i )  A b s Q is continuous.
(£££) a b s a  and A b s  a  are strict.
(£v) C o n e  a  is well-defined and continuous.

P r o o f :
We have to add the following into the  inductive steps of the proof of Lemma 2.2.8 :
( i )  a b s <ryiT, a b s ^ ^ j ,  a b s a-e T  and a b s ^  are continuous because they  are each 
constructed by a (different) functo r acting on continuous maps.
( i i )  As in the proof of Lemma 2.2.8 ( i i ) .

(H i)  a b s a X T , a b s a S T , a b s <Ter and a b s a  are s tric t because the  appropriate functors 
preserve strictness.
(tv) As in the proof of Lemma 2.2.8 (iv).

□



-  122 -

5.4. A R e la tio n sh ip  Between a b s (T_ T_ fJL and
There is a w ell known relationship between and £>£XT_  , nam ely that

The isomorphism from left to right is often called u n c u r r y ,  and its  inverse c u r r y .
There is also a relationship between a b s a ^ T_ fJ and a b s a X T ^ M which is sta ted  in the 

following Proposition :
P rop osition  5.4.1:

a b s CT _  T_  M =  c u r r y  o a b s a  x T_  o u n c u r r y  

P r o o f :
Let /  € . Then, by Proposition 2.3.1 we have th a t

(c u r r y o a b s a x T_  M o u n c u r r y ) (/)

=  c u r r y ( \  < x  j , x 2 > D ° * T . { ^ { a b s  ̂ ( u n c u r r y ( f ) < X j  , x 2 >  ) I a b s (TX7( < x  , . x 2 > ) ^ _  < x ~ [ . x 2 >  }°) 

= c u r r y iX  < x  j . x  2 >  D °*T .Ulata^C/ Xj x 2) I ai>̂ 0.XT( < x  j , x 2 >  < x  j ,x2>  }°) 

by the definition of u n c u r r y

= c u r ry ( \  < x ] . x 2> DaxT . y  {ata^C/ x , x 2)| < a b s  ^ ( x  ,abs r ( x  2)>  < <x , , x  2 >  }°) 

by the definition of a b s {rXT

cr x t — f i

by the definition of ^  on products

Ay 2—D f

by definition of c u r r y

(f ) by Proposition 2.3.1



- 123 -
□

5.5. P ro p ertie s  o f  A b s tra c tio n  M aps.
As in section 2.4, some properties of abstraction maps on low er types are carried over 

to the abstraction maps on constructed types. We give tw o examples here. Also, 
concretisation is stric t.
L em m a 5.5.1:

If for each base type A  a b sA is J_-reflecting, then a b s a  and A b s  a  arc _L-reflecting for 
each type a .

P r o o f :
We m ust add an inductive step  fo r each of the new type constructs into the proof of 
Lemma 2.4.4. Since a b sA is s tr ic t fo r each base type A  , we have from Lemma 5.3.7 
(£) th a t a b s a  is s tr ic t for all types cr. We w ill thus prove for each type cr th a t if 

then a b s A s ) ^  J_ . Jh which, together w ith  strictness, implies J_-reflexivity.

( i )  <5.£> - >  n o l { s - \ _ D ^t and

= >  n o t ( a b s , j ( s ) =  ] _ D th and a b s T(t )  =  _|_Dj,a )

since a b s a  . a b s T are JL -reflexive by the inductive hypothesis 

= >  ; w t ( < a b s a ( s )  ,a b s r ( l ) >  =  >  )

=> n o t i a b s (TXT( < s . t > )  = )
U  O X T

( i i )  < s . t > ^_ L  => n o t ( s =  J_ n 5f or f = l n t t )u  o&r  cr u  r

=> notCabs 0. ( s ) =  _ i D at or a b s T( t ) =  l D *t )

since abs a  .abs T are J_-reflexive by the inductive hypothesis

=> nnt( ^ . a b s A s )  . a b s ^ t ) ^  = JLn ai )

=> notiabs < s  , t >  ) = l nJ» )u  o u r



- 124 -

(Hi) If u € D ^ r , u  ^  _ L n « , then cither u = i (s)  where j  6 and j  ^  _ Ln „ or 
u = y(r) where t  € and t 1 . D « ‘ Supposing the form er, then

Qbs <j®r ( i ( s ) )  =  i (absa (s))

^  £(_L j/> )

s in c e  is  _|_ - r e f le x iv e  b y  ih e  in d u c t iv e  h y p o th e s is  

and s o  is  not equal to _L n  • Sim ilarly for the la tte r case.u oii

( iv) u 6  , u t*  _Lr , x r  implies u =  < 0 . s >  where s  € D % . Thus
J *•* O j

o f o ^ C t / )  =  abs cr^ ( < 0 , 5 > )

=  < Q , a b s (r( s ) >

*  -*-o-

A b s 0. is _L-reflexive by Lemma 2.4.3.

□

The follow ing Lemma is a generalisation of Lemma 2.4.6 to include the type 
constructors we have added in this chapter.
Lemma 5.5.2:

If absA is onto for each base type, and for each base type A  we can define a 
continuous function ab s A ' : D £ b- * D %  which is a right inverse of a b sA , th a t is, 
a b sA e a b sA 1 = i d DJif then fo r all types cr
( i )  If cr is a function type, then there is a continuous function a b s ~ l : D ^ - * D %  

which is a right inverse of ab s  a .

(i i ) a b s Q. and A b s  a  are onto.
( i i i )  A b s ^  o C o n e a  =  i d .  JbO

Proof:



-125-
The proofs of parts (£) and (tii) follow  exactly as in the proof of Lemma 2.4.6. We 
need to add the steps (a) to (d ) below to the inductive step of part («) to show the 
ontoness of the abstraction m aps fo r each of the constructs we have added in this 
chapter.
(a) Suppose < s . t >  € /)£ 6XT. Then since a b s  a  and a b s T are onto by the inductive 
hypothesis, there exists r € D %  and t  € D ST* such th a t a b s  a ( s )  = I  and a b s  T( t )  = i .  
So. by the definition of a b s crX T , we have th a t a b s a X T { < s . i > ) = < s . t > , and hence 
a b s  a x T  is on 1 o.
(b ) a b s  a  and a b s T are monotonic and onto, and so this means th a t both of them are 
strict. Since the of tw o s tric t functions is stric t, we have th a t

a b s  a ® a b s  T( ±  D a ) =  .U C&7 U <107

If 6  D ° bS T , and . then since a b s a  and a b s T are onto by the
inductive hypothesis, there exists s  6  and t 6 D s* such th a t a b s ^ { s )  — s  and 
a b s T( t )  =  i .  So, by the definition of a b s a & T , we have th a t  a b s cr0 r ( ^ j . r ^ )  =
Hence a b s a 2 lT  is onto because w e have provided for every elem ent in D ^ ® D ° b an 
element in which abstrac ts to it.
(c) a b s a  and a b s  T are monotonic and onto, and so th is m eans th a t both of them  are 
stric t. Since the © of tw o s tric t functions is stric t, we have th a t

a b s a ® a b s T( ± n « ) =  ± n at ■u  o * r  u o « r

If u G D ° % t , u JL „„ , we have th a t either u =  i ( s ) ,  I  6  D ° b and J  ^  _L n , or
u = j { t ) ,  t € D * b and t  ^  Since a b s a  is onto, there  exists an j  € D %  such
th a t a b s ^ ( s )  = s .  Then a6 j cr0 T(£(j)) = iCa^o-Cj)) = i ( s ) .  The case w here u  = j ( t )  is 
treated in a sim ilar manner. T hus a b s a.9 T  is onto because we have exhibited for 
every elem ent of D  ° % T an elem ent in D£<& t which abstrac ts to it.
(4) Suppose th a t < 0 . s >  € D  °b̂  . Then, since a b s a  is onto, there exists an j € D%  

such that a b s a ( s )  =  s .  T h u s  a b s a ^ ( < 0 . s > )  = < 0 .oZ>j o.(j )>  = < 0 ,J>  as required. 
Also. a^v0 -,(_Ln « ) = _LnJ* by the definition of the lifting  of a function. HenceJ ^*’1
a b s a  ̂ is onto.



- 126 -

The ontoness of A b s  a  fo llows from Lemina 2.4.5.

□

Fact 5.5.3:

For all types cr. C u n c „ ( !  n J „ ) = {_Ln ( Lemma 2.4.7).

□

5.6. Correctness Results.

We are now able to show  th a t the relationship th a t was show n to  hold in section 2.7 
between the standard  and abstrac t in terpretation holds in this case as w ell.
'ITieorem 5.6.1:

Suppose th a t we have thal E ab [[c  „ ] ]  p ab ^  a b s a ( E st [[c^U p") fo r all constants c CT. 
Then for all p st 6 E n v s l, p ab € E n v ab such th a t fo r all x T, p ab( x T) ^  a b s T( p st( x T ) ) ,  we 
have fo r a ll e  : cr :

E a b [ [ e ) ] p a b >  a b s  a ( E st [[e ]] p«)

P ro o f :

We insert the follow ing steps fo r th e  constructs introduced in th is chapter into the 
stru c tu ra l induction proof of Theorem 2.7.1, w here the num bers are those given to 
the syntactic constructs in section 5.1.

(6) E ab [[< s .r>  ]] p ab = < E a b [ [ s ] ] p a b . E a b [ [ t ] ] p a b >

^  < a b s a ( i : s* [LrJ] p s t ) . a b s  r ( E st [[f]] p s t) >  in d u c t io n  h y p o th e s is

= a ^ 0.XT( < £ s/ [[*]] p xt , E st [[r]]p"> )

= a b s crXT( E st [ [ < j .r > ] ]p s0

(7) E ab [[£*.**]] p ab = * E ab [[*]] p ^ . E 0*  [[*]] p
^  a ( E st [[5]] p s t) , a b s T( E st [ [ f ] ] p sO ^  in d u c t io n  h y p o th e s is

= I W l p " . ^  f e l lp " * )
= a b s a S T ( E st [ [{ j.r} ]]  p ")

(8) E ab [[£(*)]] p ab = i ( E ab [[5 ]] p ab)



- 127 -

^  i ia b s ^ iE ^  [ U ] ] p sO ) induction hypothesis

=  a ^ o -© T( i ( £ ir [ H i p " ) )

=  <tbsa Q T( E sl [ [ i ( j ) ] ] p i / )

and s im ila rly  fo r j i t ) .

(9) E ab [[ < 0. i > ]] pab =  <() ,Eab [[.r]] pab>

^  < 0  . absa ( E st [[.?]] p st)>

=  a b s a ^ i < 0 ,E st [ [ j ] ] p sr> )  

= a b s ^ ^ E *  [ [ < 0 . s > ] ] p s t )

□

The correclness of the abstract interpretation and the theorems regarding context-free 

and context-sensitive inform ation fo llo w  exactly as in Chapter 2. We state Theorems

5.6.2 to 5.6.4 w ithou t proof because the proofs arc the same as the proofs o f Theorems 

2.8.2, 2.9.1 and 2.9.2 respectively.

Theorem  5.6.2: (Correctness Theorem fo r Abstract Interpretation)

The abstract interpretation we have developed is correct. That is, given f : cr-*r and 

interpretations o f constants satisfying the conditions of Theorem 5.6.1, we have that 

i f  7 € D ° b and iEab [[/]] pab) is) = t then fo r a ll * € Coneys), iEsl [[/]] p st) is) € 

Cone rit).

□

Theorem  5.6.3: (Context-Free Inform ation Theorem) 

I f  / : <jj -* • - • crn -* t and

[[/]]P»6) T ••• T0„

then for a ll e} : crj , , for all

T  /■» J/■St I D f
1 /+l n

st € Cone isi ), we have

t

E sl [{f]]pslE st [[e,]]p" • • E st [[e.-_,]] p "  *  E st [[ei + l ] ] p st • • • E «  [[en ]] p st € C a n e r U )

□



-  1 2 8  -

Theorem  5.6.4: (Context-Sensitive Inform ation Theorem)

Given /  : <r ] cr n ~* t and an application /  e , • • • e„ : r , i f

E ab [ [ / ] ]  Pab E ab [ [ e , ]] p ah ■ ■ ■ [[e ,_  ,] ]  Pab s~  i ' 06 l[c ,+ ,]]  p ab ■ ■ ■  E ab l[e n ]] p ab — t

then for all .v, € C o n c a  (j )̂

x *  { [ f ) ) p s , f - sc H c ,]]p "  [[c,_ ,]] p "  F «  [[<?t-+ ,]] p xt ••• E st [[en ] ] p st 6 G m c  r (D

□

5.7 . A b stract D om ain s, A b stra ctio n  M aps and E va lu ators.
In section 3.1 we chose abstract domains which modelled the way that the 

evaluators broke up the standard interpretation of a type. We were then able to give a 

definedness interpretation and use th is to find out when we could change evaluation 

strategics to do some evaluation o f arguments to functions. W hile the abstract 

interpretations of domains constructed using the smash product, coalesced sum and lift in g  

seem to preserve this property, domains constructed using the cartesian product do not.

The problem w ith  the cartesian product is that there is no concept o f head normal 

form , fo r the bottom element o f the domain is jus t a pair o f bottom elements. Thus the 

bottom element o f the abstract domain, which has been used to show when we can 

evaluate expressions to head normal form , is redundant. I f  we were to change the 

interpretation of the cartesian product so tha t wc stopped evaluation when we discovered 

we had a pair o f elements, then wc w ou ld  be modelling a lifte d  cartesian product, where 

an extra bottom element has been added to the bottom o f the domain.

A sim ilar distinction is made by evaluating functions on ly as fa r as weak head 

normal form  instead o f as fa r as head normal form . According to the usual semantics o f 

the function space [Scott 1981, 1982], the function which returns the value J_ fo r a ll 

arguments is the bottom of the function space. However, evaluation o f such an expression 

would stop at k x .e  , where e  has _L as its semantics i f  only evaluating expressions to weak 

head normal form . This appears to add an extra bottom in the formation of the function 

space. Further investigation is necessary to find out the relationship between head normal 

form  and weak head normal form .



- 129 -
5.8. R e la tio n sh ip  to  O th er  W ork .

We have taken a very simple approach to the abstract interpretation o f  the extra 

type constructs tha t we have added to our language in this chapter where, fo r instance, 

products s t ill stay products, albeit in a more restricted category. This is considerably less 

general than the w ork o f [Nielson 1984], where the interpretation of these type 
conslructors is not so consl rained.

5.9. C on clu sion .
The w ork  contained in this thesis has up to this chapter been assuming that the 

function space creator was the only data type constructor available in our language; a ll 

other more complex types were relegated to being "base" types. In this chapter we have 

extended the allowable types to include fin ite  combinations o f base types using sums, 

products and lift in g . Because sums, products and lift in g  are functors, we can define in a 

natural way abstract domains and abstraction maps fo r types invo lv ing these 

constructors.

The correctness of the abstract interpretation and the context-free and context- 

sensitive inform ation theorems fo llow  exactly as in Chapter 2.

The methods used in this chapter cannot be extended in the natural way to 

recursively defined types because they result in infin ite abstract domains, c.f. [Nielson 

1984]. Therefore, recursive types must be given special abstract interpretations as has 

been done w ith  A list in this thesis.



Chapter 6
Further Work and Applications

Wo began this thesis by that the obvious way of obtaining parallelism in the

evaluation of functional programs was not sensible because it created too many tasks, 

many of which wore 1 0  evaluate expressions whose values were not needed. Our work 

has been to develop and apply a fram ework fo r abstract interpretation, which can be 

implemented in a compiler to annotate programs to show where it  is safe to initiate 

parallel evaluation. The abstract interpretation can also be used to change the evaluation 

strategy fo r a sequential machine, moving from a lazily evaluated program to one which 

has a m ixture of call-by-value and lazy evaluation.

In th is chapter we summarise some of the theoretical issues which have s till to be 

resolved, the most outstanding of which is a satisfactory treatment o f polymorphic 

functions.

Already this work is being applied in projects on parallel architectures fo r running 

functional languages. Some of this w ork is briefly discussed in the final section.

6.1. F u rth er  W ork.

6 .1 .1 . P o ly m o rp h ism .
In this thesis we have been using a mono-typed language, whereas we know that the 

function which calculates the length o f a lis t : 

l e n g t h [] = 0
l e n g t h  x : x s  — 1 +  le n g t h  x s

does not need to know what the type o f the elements of the lis t is, but behaves in the 

same way on a ll types w ith  the same top-level structure, that is, lists. One can then 

assign the p o ly m o rp h ic  ty p e  [M ilner 1978] 

a  - l i s t —* i n i

to the function l e n g t h , which says tha t le n g t h  is a function which w il l  take a lis t of 

elements o f any type a  and return an integer. Anyone who has had to w rite  programs in 

a strongly, monomorphically typed language w il l  recognise what an advantage it  is to be 

allowed to w rite  polym orphically typed functions.

Since the framework we developed depended on functions having mono-types, we 

must find some way o f handling po lym orphica lly typed programs.

- ISO -



- m  -
Our first solution is to notice tha t a polym orphically typed program can be uniquely 

expanded to a mono-typed program [ttalyntfaferti 1983]. However, w h ile  th is gives the 

advantages of polymorphism to the programmer, it  gives none of the advantages to the 

compiler when doing the abstract interpretation -  i t  must give an abstract interpretation 

fo r every type* instantiation of a function.

li would be good if  we could find a single expression fo r the abstract interpretation 

of a function which could be used lo r  any type instantiation. However, as was shown in 

iBurn 1985], this is not in general possible fo r recursive functions, fo r the number of 

iterations of the fixed pointing algorithm  goes up w ith  the complexity o f the type of the 

expression being fix pointed. A possible solution w ou ld  be to try  and find some sort of 

"most general type occurrence" o f a function in a program and w ork out an expression fo r 

the abstract interpretation of this.

In [Abramsky 1985a] a fram ework fo r proving properties o f functions which are 

p o ly m o rp h ic a lly  in v a r ia n t  is given. Basically, a property is polym orphically invariant i f  

its tru th  at one particular instantiation of a type implies its tru th  at a ll possible 

instantiations of the type. He shows that strictness is such a property, which means we 

can test the strictness o f a polymorphic function in its arguments at the simplest 

instantiation o f the type and know the results hold fo r a ll higher types.

6 .1 .2 . A  Ju n ction  B etw een  O p eration a l and D e n o ta tio n a l S em a n tics .
Throughout this thesis we have been using the idea of neededness in an in tu itive  

manner. However, the idea of neededness has been formalised in some systems, fo r 

example [Huet and Levy 1979] and [Barendregt and Sleep 1986]. One could formalise the 

idea of neededness fo r the system we have been using, and see how the expressions which 

turn out to be needed correspond w ith  those we have said are safely evaluable.

We believe that, i f  the semantics o f an expression is not bottom, then our method fo r 

changing evaluation strategies w il l  on ly a llow  at most as much evaluation o f an 

expression as would have eventually been done by a lazy evaluator. However, this is 

only a conjecture and should be received as such. To prove its correctness or otherwise, an 

operational model must be constructed fo r the way annotated programs are evaluated and 

compared w ith  an operational model fo r lazy evaluation. I f  the conjecture is true, then 

the final expressions that are obtained in evaluating an expression using the altered 

evaluation strategy and using the lazy strategy should be exactly the same; i f  they are not 

then one could try  and find out in w hat way they differed and try  to form ula te  some 

syntactic/operational notion o f equivalence (because they w il l  be semantically equivalent 

by our insistence on correct evaluation strategies).



- 132 -
6 .1 .3 . P ragm atic  Issues.

I t  was shown in section 3.6 tha t the fram ework we have developed w il l support 

finding out more in form ation about nested structures than is available using the four 

point domain. Furthermore, in Chapter 5, we have added interpretations fo r base types 

constructed from fin ite  combinations of sums, products and liftings. Adding extra 

evaluators means that they musl be supported in the hardware o f the machine. This 

means that more space w il l  have to be allocated fo r evaluation transformers (because 

there are more o f them), more complex labels must be placed on data objects (to  show 

how much evaluation has been done), and many other s im ila r issues. As well, the 

compiler must be adjusted to have a ll o f these elements taken into account when working 

out the abstract interpretation. We note tha t having more points in the abstract domains 

means that taking fixed points takes much longer.

The evaluators £ 2 and £ 3  tha t we have used calculate the whole spine of a list. I f  the 

lis t is very long, then th is may not be a space or processor efficient thing to do. Ideally, 

one would like to use some sorl o f bounded evaluator which only evaluated a list n  

elements ahead o f the process which was consuming the lis t. U nfortunate ly, we cannot 

guarantee tha t we w i l l  on ly  ever have to keep at most n  elements o f the lis t at a time 

because the lis t may be being used by more than one function, and we can quite easily 

w rite  tw o functions which consume a lis t where the second function is k  elements behind 

the firs t function in consuming the lis t fo r any k .

6.2. A pp lica tions.

As w e ll as finding application in the w ork in ESPRIT Project 415 (Parallel 

Architectures and Languages fo r AIP -  A VLSI-Directed Approach), the w ork of this 

thesis is being incorporated in to several other research projects to do w ith  parallel 

architectures fo r evaluating functional programs.

A simple form  o f strictness detection is being done fo r programs which are then 

compiled and run on the G-machine [Johnsson 1983], where arguments to s tric t operators 

and variables appearing in the condition o f the conditional are detected as being evaluable. 

The exciting thing is tha t fo r  this sequential machine, taking note o f this strictness 

inform ation is responsible fo r an improvement o f an order o f magnitude in the speed of 

running some programs [Johnsson 1986]. Only experiments can show how much 

improvement can be made w ith  a fu l l definedness analysis.

The GRIP (Graph Reduction in Parallel) Project [Peyton Jones, Clack and Salkild 

1985] is a project to build  a multi-processor machine to do graph reduction. Strictness



- m  -
analysis [Burn, Hankin and Abram sky 1985a], [Hankin, Burn and Peyton Jones 1985] and 

the w ork o f this thesis has influenced the way that the machine has been designed to run 

programs.

In general, the finding of fixed points is n -e x p o n c n tt a lly  co m p le te  [Damm 1986], 

[Meyer 1985]. but it is quite hard to construct functions fo r which the algorithm takes a 

significant number of steps. A SERC-funded project run by Chris Hankin at Imperial 

College is. amongst other things, implementing the abstract interpretation o f this thesis. 

This w il l give us a belter idea of the practicality o f using this w ork in a production 

compiler. Furthermore, through a chain o f other projects, code to run functional 

programs w ith  lazy semantics in parallel on Alice [Darlington and Reeve 1981] w il l be 

produced. It w il l be the firs l parallel implementation of a lazy functional language on 

Alice.

The COBWEB machine [Shute 1983], [Hankin, Osmon and Shute 1985], [Karia 1986] 

is a parallel reduction machine designed specifically to be implemented on a wafer. Our 

work w il l  influence the way programs are evaluated and the design of processing 

elements.



Ref erences
[Abramsky 1985a]

Abram sky, S., Strictness Analysis and Polymorphic Invariance, W o rk s h o p  on  

I h o g r a m s  a s  D a ta  O b je c ts , D IKU, Denmark. 17-19 October, 1985, Ganzinger, H., and 

Jones, N.D., (eds.) Springer-Verlag LNCS 217, pp. 1-23.

[Abramsky 1985b]

Abram sky, S., A b s t r a c t  I n t e r p r e t a t i o n ,  L o g ic a l  R e la tio n s  a n d  K a n  E x t e n s i o n s , D raft 

Manuscript, Imperial College, University o f London. October, 1985.

[A rb ib  and Manes 1975]

Arbib, M.A., and Manes, E.G., A r r o w s , S t r u c t u r e s  a n d  F u n c t o r s  :  T h e  C a te g o r ic a l  

I m p e r a t iv e , Academic Press, New York and London, 1975.

[Barendregt 1984]

Barcndregt, H.P.. T h e  Ix im b d a  C a lc u lu s  - I t s  S y n t a x  a n d  S e m a n t ic s , Studies in Logic 

and the Foundations o f Mathematics, vol. 103, North-Holland, The Netherlands,

1984.

[Barendregt and Sleep 1986]

Barendregt, H.P., and Sleep, M.R., P riv a te  C o m m u n ic a t io n , May, 1986.

[Burn 1985]

Burn, G.L., W h y  t h e  P ro b lem  o f  P o ly m o rp h is m  a n d  S t r i c t n e s s  A n a ly s is  H a s  N o t B e r n  

S o lv e d , Note d istributed on the FP mailboard, 20th November, 1985.

[Burn, Hankin and Abramsky 1985a]

Burn. G.L., Hankin, C.L., and Abram sky, S., Strictness Analysis fo r Higher-Order 

Functions, To appear in S c ie n c e , o f  C o m p u t e r  P r o g r a m m in g  A lso : I m p e r ia l  C o lle g e  o f  

S c i e n c e  a n d  T e c h n o lo g y , D e p a r t m e n t  o f  C o m p u t in g , R e s e a r c h  R ep o rt  D o C  8 5 / 6 ,  A p r i l

1 9 8 5 ,

[Burn, Hankin and Abramsky 1985b]

Burn, G.L., Hankin, C.L., and Abram sky, S., The Theory of Strictness Analysis fo r 

Higher-Order Functions, W o r k s h o p  on  P r o g r a m s  a s  D a ta  O b je c ts , Copenhagen, 

Denmark, October 17-19, 1985, Ganzinger, H., and Jones, N.D., (eds.) Springer- 

Verlag LNCS 217, pp. 42-62.

[Church 1941]

- 134 -



- 135 -
Church, A., T h e  C a lc u li  o f  L a m b d a  C o n v e rs io n , Princeton University Press. Princeton, 

1941.

[Cousot and Cousot 1979]

Cousot, P., and Cousot, R., Systematic Design of Program Analysis Frameworks, 

C o n f e r e n c e  R e c o r d  o f  t h e  6 t h  A C M  S y m p o siu m  on  P r in c i p le s  o f  P r o g r a m m in g  

L a n g u a g e s , pp. 269-282, 1979.

[Darlington and Reeve 1981]

Darlington, D., and Reeve, M., ALICE - A Multiprocessor Reduction Machine fo r the 

Parallel Evaluation of Applicative Languages, h o c .  A C M  C o n f .  on  F u n c t io n a l  

P r o g r a m m in g  L a n g u a g e s  a n d  C o m p u t e r  A r c h i t e c t u r e , New Hampshire, USA, October, 

1981, pp. 65-75.

[Damm 1986]

Damm, W., P e rs o n a l C o m m u n ic a t io n , Semantics Working Group Meeting. ESPRIT 

Project 415, A p ril 1986.

[Darlington and Reeve 1981]

Darlington, D., and Reeve, M., ALICE -  A Multiprocessor Reduction Machine fo r the 

Parallel Evaluation o f Applicative Languages, h o c .  A C M  C o n f .  on  F u n c t io n a l  

P r o g r a m m in g  I j a n g u a g e s  a n d  C o m p u t e r  A r c h i t e c t u r e , New Hampshire, USA, October, 

1981, pp. 65-75.

[Downey and Sethi 1976]

Downey, P.J., and Sethi, R., Correct Computation Rules fo r Recursive Languages, 

S I A M  J o u r n a l  on  C o m p u tin g  5 , 3 (September), 1976, 378-401.

[Friedman and Wise 1976]

Friedman, D.P., and Wise, D.S., CONS Should Not Evaluate Its Arguments, 

A u to m a ta , L a n g u a g e s  a n d  P r o g r a m m in g , Michaelson, S., and M ilner, R., (eds.), 

Edinburgh University Press, Edinburgh, 1976.

[Gierz et. al. 1980]

Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M . and Scott, D.S., A  

C o m p e n d iu m  o f  C o n tin u o u s  lx i t t ic c s , Springer-Verlag, 1980.

[Guessarian 1981]



- 136-
Guessarian, I., A l g e b r a i c  S e m a n t ic s , Springer Verlag LNCS 99, 1981.

[Hankin 1986]

Han kin, C.L., P e rs o n a l C o m m u n ic a t  ion  

[Hankin, Burn and Peyton Jones. 1986]

Hankin, C.L., Burn, G.L.. and Peyton Jones. S.L., A Safe Approach to Parallel 

Cornbinator Reduction (Hxtended Abstract). P t w e c d i n g s  IlS O P  8 6  (F u ro jrea n  

S y m p o s iu m  o n  P r o g r a m m in g ) , Saarbrucken. Federal Republic o f Germany, March 

1986, Robinet, B„ and W ilhelm , R. (eds.). Springer-Verlag LNCS 213, pp. 99-110.

[Hankin, Osmon and Shute 1985]

Hankin, C.L., Osmon, P.E., and Shutc, M.J., COBWEB: A Combinator Reduction 

Architecture, in : I h 'o c m d in g s  o f  1 F 1 P  In t e r n a t io n a l  C o n f e r e n c e  on  F u n c t io n a l  

P r o g r a m m in g  L a n g u a g e s  a n d  C o m p u t e r  A r c h i t e c t u r e , Nancy, France, 16-19 

September, 1985, Jouannaud, J.-P. (ed.), Springer-Verlag LNCS 201, pp. 99-112.

[Henderson and M orris 1976]

Henderson, P., and Morris, J.H., A Lazy Evaluator, 3 r d  A C M  C o n f e r e n c e  on  t h e  

P r in c i p le s  o f  P r o g r a m m in g  L a n g u a g e s , A tlanta, Georgia, USA, 1976, pp.95-103.

[Hennessy and P lo tk in  1979]

Hennessy, M., and Plotkin, G.D., F u ll Abstraction fo ra  Simple Parallel Programming 

Language, Proceedings MFCS ’79, Becvar, J. (ed.). S p r i n g e r  V e r la g  L N C S  7 4 ,  1979. 

[HtAr^yTcro 1983]

HdrrAvorn, S., P o ly m o rp h ic  T y p e  S y s t e m s  a n d  C o n c u r r e n t  C o m p u ta tio n  in  F u n c t io n a l  

L a n g a u g c s , PhD Thesis, Department o f Computer Sciences, Chalmers University of 

Technology, Goteborg, Sweden, 1983.

[Hudak and Young 1985]

Hudak, P., and Young, J., A  S e t - T h e o r e t ic  C h a r a c t e r is a t io n  o f  F u n c t io n  S t r i c t n e s s  in  

t h e  L a m b d a  C a lc u lu s , Research Report YALEU/DCS/RR-391, Department of 

Computer Science, Yale University, 1985, Also presented at the W o rk s h o p  on  

A b s t r a c t  I n t e r p r e t a t io n , U niversity o f Kent at Canterbury, August, 1985.

[Huet and Levy 1979]

Huet, G., Levy', J.-J., C a ll b y  N e e d  C o m p u ta tio n s  in  N o n - A m b ig u o u s  L i n e a r  T e rm  

R e w r it in g  S y s t e m s , Rapport de Recherche No. 359, IR IA, Le Chesnay, France. 1979.

[Hughes 1984]



- 137 -
Hughes, W h y  F u n c t i o n a l  P r o g r a m m in g  M a t t e r s , Programming Methodology

Group Memo PMG-40, Chalmers University o f Tehnology, Goteburg, Sweden, 1984.

[Hughes 1985]

Hughes, R.J.M., Strictness Detection in  Non-Flat Domains W o rk s h o p  o n  P r o g r a m s  a s  

D a ta  O b je c t s , DIKU, Denmark, 17-19 October, 1985, Ganzinger, H., and Jones, N.D., 

(eds.) Springer-Verlag LNCS 217, pp. 112-135.

[Johnsson 1983]

Johnsson, T., The G Machine : An Abstract Machine fo r Graph Reduction, D ecla ra tiv e . 

/P ro g ra m m in g  W o rk s h o p , U n ivers ity  College London, 11-13 A p ril, 1983.

[Johnsson 1986]

Johnsson, T., E ffic ien t  C o m p ila t io n  o f  L a z y  E v a lu a t io n . Presentation given to the 

General Meeting o f ESPRIT Project 415, A p r il 1986.

[Karia 1986]

Karia, R.J., A n  I n v e s t ig a t io n  o f  C o m b in ta t o r  R e d u c t io n  on  M u lt ip ro c e s s o r  

A r c h i t e c t u r e s , PhD Thesis (In  Preparation), University o f London, 1986.

[Klop 1985]
Klop, J.W., T e rm  R e w r it in g  S y s t e m s , Notes prepared fo r the seminar on reduction 

machines, Ustica, September, 1985. (K lop  works at CW I, Amsterdam.)

[Maurer 1985]

Maurer, D., Strictness Computation Using Special \-Expressions, W o rk s h o p  on  

P r o g r a m s  a s  D a ta  O b je c ts , D IKU, Denmark, 17-19 October, 1985, Ganzinger, H., and 

Jones, N.D., (eds.) Springer-Verlag LNCS 217, pp. 136-155.

[Meyer 1985]

Meyer, A.R., C o m p le x it y  o f  P r o g r a m  F lo w - A n a ly s is  f o r  S t r i c t n e s s  :  A p p lic a t io n  o f  a  

F u n d a m e n t a l  T h e o re m  o f  D e n o t a t io n a l S e m a n t ic s , D ra ft Manuscript, M IT  Lab fo r 

Computer Science, 545 Technology Square, Cambridge, M A 02139, USA, September, 

1985.

[M ilne and Strachey 1976]

Milne, R.E., and Strachey, C., A  T h e o r y  o f  P r o g r a m m in g  L a n g u a g e  S e m a n t ic s ,  

Chapman and Hall (U K ), John W iley (USA), 1976.

[Milner 1978]



- 138 -
M ilner, R., A Theory o f Type Polymorphism in Programming, J o u r n a l  o f  C o m p u te r  

a n d  S y s t e m  S c i e n c e s  1 7 , 348-375, 1978.

[M ycro ft 1981]

M ycro ft, A., A b s t r a c t  I n t e r p r e t a t io n  a n d  O p t im is in g  T r a n s fo r m a t io n s  f o r  A p p lic a t iv e  

P r o g r a m s , PhD. Thesis, U niversity o f Edinburgh, 1981.

[M ycro ft and Jones 1985]

M ycro ft, A., and Jones, N.D., A new framework fo r abstract interpretation, 

W o rk s h o p  on  P r o g r a m s  a s  D a ta  O b je c ts , Copenhagen, Denmark, October 17-19, 1985, 

Ganzinger, H., and Jones, N.D., (eds.) Springer-Verlag LNCS 217, pp. 156-171. 

[M ycro ft and Nielson 1983]

M ycro ft, A., and Nielson, E , Strong Abstract Interpretation Using Power Domains 

(Extended Abstract) P ro c . 1 0 th  I n t e r n a t io n a l  C o llo q u iu m  on A u to m a ta , L a n g u a g e s  a n d  

P r o g r a m m in g  :  S p r i n g e r  V e r la g  L N C S  1 5 4 , Diaz, J. (ed.), Barcelona, Spain, 18th-22nd 
July, 1983, 536-547.

[Naur 1963]

Naur, P. (ed.), Revised report on the algorithm ic language Algol 60, C o m m . A C M  6  1 

(Jan. 1963), 1-17.

[Nielson 1984]

Nielson, R, A b s t r a c t  I n t e r p r e t a t io n  U s in g  D o m a in  T h e o ry , PhD Thesis. University of 

Edinburgh, 1984.

[Nielson 1986a]

Nielson, R, Abstract Interpretation o f Denotational Definitions, P r o c e e d in g s  S T A C S  

1 9 8 6 , Springer Verlag LNCS vol. 210.

[Nielson 1986b]

Nielson, R, S t r ic t n e s s  A n a l y s i s  a n d  A b s t r a c t  In t e r p r e t a t io n  o f  D en o ta tio n a l  

D e fin it io n s , D raft Manuscript, Ins titu te  o f Electronic Systems, Aalborg University 

Centre, Aaborg, Denmark, June 1986.

[Peyton Jones 1984]

Peyton Jones, S.L., Comment made at the L is p k it  O p en  F o r u m , University o f Stirling, 

November 1983.

[Peyton Jones 1986]



- 139 -
Peyton Jones, S.L., I m p le m e n t i n g  F u n c t io n a l  L a n g u a g e s  U s in g  G r a p h  R e d u c t io n , To be 

published in the Prentice-Hall International Series in Computer Science, 1986.

[Peyton Jones, Clack and Salkild 1985]

Peyton Jones, S.L., Clack. C. and Salkild, J., G R I P  - A  P a ra lle l  G r a p h  R e d u c tio n  

M a c h i n e , Dept or Computer Science, University College, London, November 1985.

[P lotk in  1976]

P lotkin, G.D.. A Powerdoinain Construction, S I A M  J .  C o m p u t. 5  3 (Sept 1976) 452- 
487.

[P lotk in  1977]

P lo tk in, G.D., LC I; Considered as a Programming Language, T h e o re t ic a l  C o m p u te r  

S c i e n c e  5 ,  (1977), p. 223-255.

[P lotk in  1978]

P lotkin, G.D., L e c t u r e  N o t e s  o n  t h e  T h e o ry  o f  C o m p u ta tio n .

[P lotk in  1980]

P lotkin, G.D., Lambda definability  in the fu l l  type hierarchy, in : Seldin, J.P., 

Ilind ley , J.R., T o H .D . C u r r y :  E s s a y s  on  c o m b in a to ry  lo g ic , la m b d a -c a lc u lu s  a n d  

f o r m a l is m , Academic Press, 1980.

[Scott 1981]

Scott, D., L e c t u r e s  on  a  M a t h e m a t ic a l  T h e o ry  o f  C o m p u la t io n , Tech. Monograph PRG- 

19, O xford Univ. Computing Lab., Programming Research Group, 1981.

[Scott 1982]

Scott, D., Domains fo r Denotational Semantics, A u to m a ta , l a n g u a g e s  a n d  

P r o g r a m m in g , Proceedings o f the 10th International Colloquium, Nielsen M, and 

Schmidt, E.M., (eds.), Springer-Verlag Lecture Notes in Computer Science, vol. 140, 

1982,577-613.

[Shute 1983]

Shute, M.J., The. R o le  o f  S im u la tio n  in  th e  S t u d y  o f  M u lt ip r o c e s s o r , C o n tro l  F lo w  a n d  

D a ta  F lo w  S y s te m s , PhD Thesis (2 volumes), University o f London, 1983.

[Smyth 1978]

Smyth, M.B., Power Domains, J o u r n a l  o f  C o m p u te r  a n d  S y s te m  S c i e n c e s  1 6 , 1978, 

23-36.

[Smyth and P lotkin 1982]



- 140 -
Smyth, M.B., and P lo tk in, G.D., The category-theoretic solution o f recursive domain 

equations, S I A M  J .  C o in p u t . 1 1 4  (1982), pp.761-783.

[Stoy 1977]

Stoy, J.E, D e n o ta tio n a l S e m a n t ic s :  T h e  S c o t t - S t r a c h e y  A p p r o a c h  to  P r o g r a m m in g  

L a n g u a g e  T h e o r y , M IT  Press, Cambridge Massachusetts, 1977.

[Turner 1985]

Turner, D.A., M iranda(t): A non-strict functional language w ith  polymorphic types, 

F u n c t i o n a l  I h o g r a m m in g  L a n g u a g e s  a n d  C o m p u te r  A r c h i t e c t u r e , September 1985, 

Nancy, Jouannaud, J-P., (e d j,  Springer-Verlag LNCS 201, pp. 1-16.

[Vuillem in 1974]

V uillem in, J., Correct and Optim al Implementations of Recursion in a S im p le  

programming Language, J o u r n a l  o f  C o m p u t e r  a n d  S y s te m  S c i e n c e s  9, 1974, 3 2 - 1 5 4 .

[Wadsworth 1971]

Wadsworth, C.P., S e m a n t ic s  a n d  P r a g m a t ic s  o f  t h e  L a m b d a  C a lc u lu s  ( C h a p t e r  O , PhD 

Thesis, University o f Oxford, 1971.

( t )  Miranda is a trade mark of Research Software Ltd.


