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Abstract

Unrestricted parallel evaluation of functional programs overloads the resources of a
machine by evaluating expressions whose values are not needed for producing the result
of a program. We present a semantic criterion which restricts the expressions which are
evaluated to those which would eventually have been evaluated using a lazy evaluator.

Usually a programming language is designed with one particular meaning, or
interpretation, for each of the constructs. By giving a different, or abstract, interpretation
which captures some property of interest, we are able 10 answer questions about programs
without running them. Such interpretations are often used by a compiler to optimise the

execution of programs.

We develop a framework for the abstract interpretation of functional languages. For
the first time we present a framework which supports all the features of functional
languages excepting general recursive type definitions. It is applied 1o give an
interpretation which specifies the definedness of a function in terms of the definedness of

its arguments.

Given that the semantic criterion allows a certain amount of evaluation of a function
application, we are able to use the definedness interpretation to determine how much
cvaluation of the arguments is permitted. Previous uses of similar interpretations have
ignored much of the information that is available. By asking how much information we
have 1o give about arguments in order to produce a cerla.in amount of information about a
function application, we are able to take into account the dynamic contlext of an
expression. This simple change in the way we use the abstract interpretation means we
can determine many more sources of parallel evaluation. Evaluation of the arguments can
then proceed in parallel with the evaluation of the application. The complete analysis
may be implemented as one of the passes in a compiler, so that programs can be
automatically annotated with the parallelism information.
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Chapter 1

Introduction

I.1. Functional Languages, Evaluation Strategies and Semantics.

Functional languages of the type we will be considering in this thesis are
syntactically sugared versions of the typed A-calculus with constants. We will formally
introduce the language in section 1.5. The A-calculus can be viewed from two different
angles. It can be regarded as a term-rewriting system [Church 1941], [Curry and Feys
1958], [Plotkin 1977], [Barendregt 1984), [Klop 1985] or as a notation for mathematical
objects and operations over them [Scott 1981, 1982], [Milne and Strachey 1976}, [Stoy
1977). The former view is used in implementations of functional languages whilst the
latter most often finds usc in giving semantics to programming languages. This thesis
explores the junction between the two views, giving a semantic condition which allows
the evaluation strategy to be changed while retaining the correct semantics. By
developing and applying a framework for abstract interpretation we are able to give a
method for statically checking the semantic condition during compilation. In this and the
following two sections, we will discuss the two views of the A-calculus and their

relationship.

If we were to regard the typed A-calculus with constants as a term rewriting system,
then we have 1o give rewrite rules for the A-calculus and the constants. For the A-
calculus, the rewrite rules are usually called «o-, 8-, and n-conversion, while for the

constants we have the normal reduction rules. For example, the rule for an expression
+eye,y

would (recursively) rewrite e, and e, 1o integers and then rewrite the whole expression
to their sum.

Care must be taken with the constructors of data objects which stand for potentially
infinite pieces of data, for example lists. Consider the function

ints_from(n) = cons(n .ints_from(n+1)).

If we chose a rewrite rule for cons which (recursively) rewrote both arguments to cons,

then an application

inI.s __from(0)
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would be successively rewritten as shown below :
ints_from(0) = cons(0,ints_from(0+ 1))
— cons(0,cons(1.ints_from(1+ 1)))

- — cons(0,cons(1.cons(2.ints_from(2+1))))

This is just producing the infinite list of integers. and the computation will never
terminate. While it may be acceptable to do this to the top-level expression, in an

application
hd(ints__from(0))

one would like the value 0 1o be returned. Thus a rewrite rule which caused an infinite
computation to first calculate the entire list ints_from(0) before being able to take the head
of il is unacceptable. The only way to cnsure such a situation does not occur is to have
no rewrite rule for cons, so that we do not initiate potentially infinite computations by
evaluating one of the arguments to cons. This was the key observation of the papers
[Henderson and Morris 1976] and [Friedman and Wise 1976], and allows the programmer
to use infinite lists which are a very powerful programming paradigm [Hughes 1984].

We are thus able 10 say that an evaluator will evaluate an expression as far as head
normal form (¥), defined by

(+) Functional language cvaluators often evaluate functions only as far as weak head normal form,
which differs from hcad normal form only in the way that it treats functions {Pevton Jones 1986].
An expression which stands for a function is in weak head normal form when there is a A at the
top-level. By only evaluating expressions 1o weak head normal form we remove the problem of
having to rename variables within expressions, making implementation a lot easier [Peyton Jones
1986]). Consider the expression

Ax((AyAxy)x)

which is weak head normal form but not head normal form. To reduce this to head normal form
requires a renaming of one of the bound variables 10 obtain Ax.Az.x . This is discussed further in
section 5.7. ’

As well. the usual way the implementation of a functional language works is to use an evaluator which
evaluates things 10 weak head normal form and then uses a strict print. That is, il the answer is a list ob-
ject, it will force the evaluation of the head of the list, print it, and then repeat the process on the tail of the
list until it reaches the end of the list (if it exists!). Unfortunately, this no longer ensures that the “expres-
sion left at the end of the computation” has the same semantics as the original expression for the quite simple
reason that this evaluation strategy now falls into any black holes, and so is not safe. Consider what hap-
pens when the answer is an expression which represents cons(1 .cons(_]_ .cons(5,nil))). The
evaluator/print routine will force the evaluation of the first element of the list and print out

cons(1,cons(

but unfortunately that is as far as it will get, for the evaluation of the next element of the list initiates a
non-terminating  computation. As this gives more information than just printing out
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Dechnition 1.1.1

A M-expression is in head normal form if and only if it is of the form
Ax Pl Ax (v My o M)

where
(Dn,m 20,

Y . . o )
(ii) v is a variable (i.e. x; * for some i ) or a constant, and

(iif) (v M| --- M,) is not a redex.
a

So far we have only been discussing the evaluation of an expression, but not saying
how we choose which expression to evaluate. For example, in the expression

+ (x34)(x 56)

there are two reducible expression - (x 3 4) and (x 5 6). A rule for choosing which set of
expressions to reduce next is called an evaluation strategy (or evaluation mechanism or
compuration rule).

Given several evaluation strategies, it is natural to ask whether they compute the
same answer. In the case of the A-calculus, it is provable that all evaluation strategies
give the same answer if they terminate [Barendregt 1984]. From a semantic viewpoint, we
would like to ensure that the evaluation mechanisms give lazy Semantics to a
program. Thus we would like to ensure that a computation terminated if the semantics
of the original expression was not bottom (undefined), and that the expression left had
the correct semantics. A compuiation then would not terminate only if the semantics of
the original expression was bottom.

It can be shown that there are several evaluation strategies for the typed A-calculus
with constants which preserve the semantics of the original expression and terminate
when the semantics of the expression is non-bottom [Plotkin 1977], [Klop 1985]. Below
we will discuss two such strategics, and in the next section, discuss their potential for
parallelism.

The full substitution rule selects every redex for reduction at each computation step.
For example [Downey and Sethi 1976), if we assume that g and » are constants which are
irreducible, and that f is a user-defined function defined by (i.e. has the rewrite rule) :

cons(suspended__expression .suspended_expression). then this is probably acceptable at the top level.
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f(x) = glfhfx.hx)

then the computation using the full substitution rule would start as follows :
f(x) = g(fhfx.hx)

— g(g(fhfhg(fhfx hx).hhg(fhfx .hx)) . hx)

—

Another evaluation mechanism which is correct with respect to the mathematical
semantics is known variously as the call-by-name or lft-most ourer-most or normal order
strategy. The different names have arisen because it has appeared in several different
contexts; call-by-name because of its use in programming languages as a parameter
passing mechanism, where the values of arguments are passed as unevaluated expressions
and evaluated only when needed [Naur 1963]; left-most outer-most because it reduces the
left-most outer-most redex:; and normal order from the A-calculus background because it
is the strategy which is guaranteed to find a normal form if it exists [Barendregt 1984].

We can illustrate call-by-name by using the same example that was used for
illustrating the full substitution rule :

flx) = g(fhfx.hx)

— glg(fhfhfx .hhfx).hx)

Call-by-name can be made computationally more efficient by noting that if an
expression is substituted into another expression in several places, then it may end up
being evaluated several times. By arranging that once the expression is reduced all other
copies of the expression share the reduced form, computational effort is saved. This is
often termed call-by-need. When call-by-need is combined with the rule that expressions
are only reducéd to head normal form, we have an evaluation strategy which is usually
called lazy evaluation. 1t is named this because the evaluator is lazy, not doing any
reduction of an expression until it is forced 1o do so to produce a result.
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1.2. Evaluation Strategies and Potential for Parallelism.

Initiating a non-lterminating computation in a sequential machine is fatal, because it
means that the whole computation is undefined. In a parallel machine, because there is
more than one processor, computation may be able 10 proceed even if there are some
infinite computations taking place. However, we will argue that it is still not sensible 1o
evaluate every possible redex in an expression in parallel because this could swamp the
resources of a parallel machine. In the third section we will use this intuition to develop

a semantic criterion for allowing parallel evaluation.

In the previous section we introduced two evaluation strategies which gave the
correct semantics of programs, At first sight, the full substitution rule seems to be the
best candidate for implementation on a parallel machine, for we can perform all of the

reductions at each step in parallel.

Unfortunately, this computation rule has many disadvantages which render it

impractical. Consider the conditional expression :
if condition then e else e ,.

The full substitution rule will cause some evaluation to be done on all three of the
expressions condition , ey and e,. However, we note that only one of e, and e, will ever
be needed in the sense that the value of one of them must be determined (according to the
truth of the condition) to obtain the value of the expression, and so any evaluation of the
expression which is not needed is "wasted"(¥). While this may not seem a big
disadvantage because we have saved some time on the evaluation of the expression which
is nceded, we must be careful not to overload the finite resources of our machine. Thus,
"wasted" means more than just wasting time computing something which is nol needed,
but also means withholding resources from the evaluation of an expression which we

know will need to be evaluated, for example, the condition in the above.

A possible way to bypass the problem of wasting resources evaluating expressions
which are not needed is 1o prioritise tasks so that a higher priority is given to expressions
whose values we know are needed than for expressions which are more “"speculative”.
Thus, again using the example of the conditional, the evaluation of the condition would
have higher priority than the evaluation of cither e¢; or e,. If we do this, then we
moﬁen use the conditional for exactly this reason - to stop the evaluator from
evaluating an expression unless it needs it. Consider the function :

factorial(n) = if n= 0 then 1 else n*factorial(n— 1)

where one does not wish to evaluate factorial(n— 1) when n= 0,
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introduce further problems, for the priority of tasks may change over time. For example,
if the condition was to evaluate to true in the above example, then e, would become a

"vital" task. because we now need its value.

Perhaps more serious than the problem of having to introduce and manage a priority
system is what must be done about the computations of expressions whose values we
discover are not needed. If we are to make maximum usc of the finite resources of our
machine, then we would like to stop the cevaluation of unnceded expressions. The
problem here is that the evaluation of the unwanted expression has generally initiated the
cvaluation of subexpressions, which also must be stopped, and so on. While this may be
possible, we can imagine the situation where the spawning of subtasks proceeds faster
than messages can be sent to stop tasks.

One final nail that we will drive into the coffin of the full substitution rule is that it
requires more computation steps than other methods [Vuillemin 1974].

If we look carefully at the above discussion, we can see that the source of the
problem is that the full substitution rule evaluates expressions whose values are never
needed.

Call-by-name is an evaluation mechanism which ensures that we only evaluate
expressions when they are nceded. However, it has the unfortunate side-effect that only
one reduction step is done at a time, and so is a sequential evaluation strategy with no
potential for parallelism - hardly useful for a parallel machine! (1) The rest of this thesis
allows us to get around this problem - ensuring that we do no more evaluation than is
needed, but at the same time allowing parallel evaluation.

1.3. A Safe Evaluation Strategy Which Allows Parallel Evaluation.

Because a sequential evaluator only evaluates one expression at a time, and call-by-
name only evaluates expressions whose values are needed, then call-by-name is a sensible
evaluation strategy for a sequential machine. However, call-by-name is overly pessimistic
about needed expressions when it comes 1o a parallel architecture. It is intuitively

obvious that the values of both e, and e, arc needed in the expression

(1) An astute recader may notice that when the top-levcl redex is somcthing like + e ey that
call-by-name would evaluate firstly €, and then e 5, whereas it is perfectly safe to evaluate both €
and e, in parallel becausc the function needs both of the values to be able to return a value. Un-
fortunately the parallelism generated by such strict operators is not sufficiecnt to warrant the build-
ing of a parallel machine [l’eyton Jones 1984]. However, the method of abstract interpretation can
be seen to gencralise this idea to finding out similar information about user-defined functions.
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+e|ez

and so can be evaluated in parallel.
In this section we will give our semantic criterion for changing the evaluation
strategy from call-by-name o strategics which involve the parallel evaluation of some of

fhg arguments 1o functions. Firstly however, we must define some terms.
Suppose we have a language Exp. We form the language Exp. by taking the

completion of the language obtained by adding a constant Q, for each type o to Exp.
The constants Q  represent computations which for all finite numbers of steps, and hence
in the limit, return no information (or value). For any type o, Q, is a formal bottom
element, and in any interpretation of the type o will have the bottom element as its
interpretation. Completion allows infinite expressions. The semantics of Exp is extended
10 Exp,, in the usual way [Guessarian 1981] so that we can give the semantics of an

expression in Exp,,. Then we can make the following definition :
Dechnition 1.3.1: .

A function
¢ Exp— Exp,,.

is an evaluator if it preserves the semantics of e. That is, if e € Exp, then the

semanlics of e and £(e) are identical.

0

It is worth noting why we have included all the things we have in the definition of
Exp.,. In section 1.1 we introduced the idea of not evaluating the expressions which were
arguments to cons. Thus it is not necessarily true that an evaluator will terminate with
an expression containing no redices. The element Q, is needed to represent computations
which are trying to evaluate an expression which has semantics | , that is, a computation
which is infinite but returns no information. It can appear embedded in a data structure.
Finally we need to extend the language to include infinite expressions (if the language
does not already include them) because we can evaluate expressions which represent

infinite objects. As an example of this we gave the definition of the function
ints_from(n) = cons(n.ints_from(n+ 1))
in section 1.1, and saw that the expression

ints_from(Q)
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stood for the infinite list of integers.
Fundamental to our work is the notion of an cvaluator preserving an expression.
Definition 1.3.2
An evaluator § preserves an expression e if £(e) € Exp. We will also say that an
element in the standard semantics is preserved by € if all possible expressions which

have it as their standard semantics are preserved by §.

O

By insisting that £(e) is an element of Exp in the above definition, we are ensuring
that it is neither infinite nor contains any subexpressions which are Q, that is, it is not a
member of Exp,, — Exp. Since these two cases represent the only situations where we
have infinite (non-terminating) computations, then an evaluator preserving an expression
effectively means that the computation of the expression using that evaluator will be

Gnite.
ILet us call the evaluator which does no evaluation §,. l.azy cvaluation chooses the

left-most outer-most redex and evaluates an expression as far as head normal form., We
will call this evaluator £,. It may be possible to detect that an expression which denotes
a list can be evaluated further than head normal form. The evaluator which ¢valuates an
expression 10 head normal form and then, recursively, c¢valuates the second argument 10
cons, until nil is reached (if ever) will be called £,. Such a cons is often called a right-
strict cons, and the process is termed evaluating the spine of the list. The evaluator which
evaluates the spine of the list and each element of the list 1o head normal form will be
called £3. These last two evaluators were chosen because they ireat all of the elements of
@ list in a uniform way.

The evaluators ¢, 1o ¢, have the following properties (where finite lists are defined
formally in section 1.5.2) :
Fact 1.3.3:

(i) £, preserves all values;

(ii) &, preserves all non-bottom values;

(iii) ¢, preserves all finite lists; and

(iv) £ preserves all finite lists which do not contain bottom elements.
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From the discussion of the last two evaluators, we can see that they were chosen
because they treat all of the clements of a list in the same way.

It was argued in section 1.2 that it is wasting computational resources lo evaluate
expressions whose values are not needed. A lazy evaluator only evaluates expressions
whose values are needed. TFurthermore, it initiates a non-terminating computation if and
only if the semantics of the top-level expression is |. This prompts us to make the
following definition.

Definition 1.3.4:

An evaluation strategy is safe if il never initiates an infinite computation unless the
semantics of the original expression is | . We will also say that an evaluator for an
expression is safe iff the evaluation of the expression using that evaluator maintains a
safe evaluation strategy.

a

We can intuitively sec that safety implies that only expressions whose values are
needed are evaluated. Since the evaluation of any expression allows the possibility of
initiating an infinite computation (because the evaluators £, to £; all send expressions
with semantics | 1o a non-lerminating computation), then doing some evaluation of an
expression which would not be evaluated by a lazy evaluator may cause a non-
terminating computation when the semantics of the top-level expression was not |, and
so it is not a safe cvaluation strategy.

We will insist that all evaluation strategies are safe. This then is our semantic
criterion. Any evaluation strategy which satisfies it is allowed.

How much potential for parallel evaluation there is when we insist on safe
evaluation strategics is a question which must be answered by experimentation. Whether
or not there is a weaker condition than safety which allows more parallel evaluation but
maintains the property that only expressions whose values are needed are evaluated

remains an open question.

To maintain the safety of the evaluation strategy, we need to ensure that the

evaluator chosen for an application

[el -
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does not initiate a non-terminating computation unless the semantics of the original
expression was bottom. Suppose we have such an evaluator, ¢, then we must choose
evaluators for each expression e; 10 e, which are not allowed 1o initiate non-terminating

computations unless the evaluation of fe; --- e, using £ does. Sometimes we will have

n
10 choose an evaluator which does no evaluation.

In terms of preservation of values . an evaluator £ preserves a set of elements. In
the above example. we have 1o ensure that whenever the function f can return a value in
the set of clements which is preserved by &, then we do not initiate a non-terminating
computation in evalualing any of the expressions ey 10 e,. Thus we need to find out the
definedness of a function with respect to the definedness of its arguments, and make sure
we preserve the values of the arguments for which the value of the function application is
a value preserved by ¢. Some examples may help make this clearer.

For the function f defined by
fx.y)=x+y

we know that the semantics of an application of f is bottom if and only if the semantics
of either of the arguments is bottom. Thus a safe evaluation strategy is one which does
not initiate a non-terminating computation unless the semantics of either of the
arguments to f is 1. A safe evaluation strategy then is one which preserves the non-
bottom integers for both of the arguments of f, that is, evaluate both of the arguments
to f in parallel.

If we are required to preserve all non-bottom elements in an application of
glx.y) = if x=0 then 0 else g(x—1.y)

we can see that it is not safe to do any evaluation of the second argument to g because
the application can be defined no matter how defined the second argument is, for the
function never needs to evaluate it. The first argument however can be evaluated because
the function is undefined whenever the first argument is. Thus a safe evaluation strategy
allows the evaluation of the first argument of an application of ¢ and not the second.

The function
length[] = 0
length x:xs = 1 + length xs
is defined whenever the argument list is finite (no matter how defined the elements of the
list are). Thus, if we are required to preserve all non-bottom elements in an application

of length , we must make sure that the evaluator chosen preserves all finite lists. Hence a
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safe evaluation strategy may evaluate the argument to length using £,.

Suppose that it is safe to use the cvaluator £; in an application of the function
append [JL = L
append x:xs L = cons(x.append(xs,L)). (“')
Then, since £; preserves all finite lists without bottom clements in them, we must make
surce 1that whencver append can return a finite list with no bottom clements in it we do
not initiate a non-terminating computation. This can only occur if both of the argument
lists are finite and contain no bottom clements. It is thus safe to cvaluate both of the

arguments to the application of append using £; in this case.

In the examples we have been arguing intuitively about the definedness of functions.
The work of this thesis is to develop a framework for abstract interpretation which we
apply to finding out the definedness of functions. These results are then used to show
how we can change the evaluation strategy as outlined above to allow for parallel
evaluation while retaining the safety of the evaluation strategy.

1.4. An Introduction to Abstract Interpretation.

We are all familiar in everyday life with the idea that often we do not require the
exacl answer to a question - a distance of order of magnitude of ten kilometres can be
cycled, whereas a distance of order of magnitude one hundred kilometres may require
some automated form of transport. To answer the question "Do 1 ride my bicycle or do I
go by train?", one neceds only 1o know an approximation (order of magnitude) of the

distance.

In a similar manner, we are taught at school that to tell whether a number is odd or
even, all we need to do is see if the least significant digit is odd or even - a task which
requires significantly less computational effort than dividing the whole number by two

(unless we are dealing with a single digit number!).

What is the key concept lying behind the answering of these and similar questions?
The idea is that there is some property in which we are interested, and about which we

can find information without having the exact answer or doing the whole calculation.

As a more complex example of abstract interpretation which shows most of the
essential features we will use later on, we introduce the "rule of signs”, which is familiar
from school mathematics. Our presentation is modelled on [Hankin 1986]. Let us
consider the following abstract syntax of a languagc of arithmetic expressions:

(INote that append is a curried function even though here, and throughout the thesis, we will
sometimes write applications as though a function is given a tuple of arguments.
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| Exp + Exp

| Exp X Exp

There is one constant, ¢, for each integer n. A normal way 1o interpret such a
language is to firstly interpret the set of constants {c,} as the integers, which we will
denote by Z¥, so that the constant ¢, is interpreted to be the integer n. The symbols +
and x are then interpreted as integer addition and multiplication respectively. These

induce a standard interpretation function which we will denote by E¥ :
ES : Exp— Z*
E¥ (e, )= n
E¥ [[Expy + Exp,]l = E™ [[Exp,]| ¥ E* [[Exp,]]
ES' [[Expy x Exp,)] = E* [[Exp 1 X E¥ [[Exp,]]

where we have put a bar over the + and the X to help us remember that these are the

real addition’and multiplication functions.

If the property of interest is "Is the value of the expression positive or negative or
zero?", then we could use the standard interpretation of our language to determine the
answer by doing the calculation and then secing whether it was indeed positive or

negative or zero. For example, for the expression
C29 X €33 X Cpq
we could calculate the answer to be
E¥ (el X E* [le 53] X E¥ [[cg4]]
which is
29X —33X 64 = —61248

and then see that the answer is negative. However, we all know a simple way of doing
this, for we know that, for example, multiplying a positive number by a negative number
always gives a negative number. The way we normally answer the question about the

sign of the the answer is to do the "calculation”
(+)x (=) x(+) = (=)

where (+) represents the property of being positive, and similarly (-) the property of
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being negative, and then say that the answer to the rcal calculation would have been
negative.

What have we done? We have said that the important thing about the constant ¢,
was not it magnitude, but its sign, and provided an abstract interpretation, which we will
denote by £, that says

E®[[c, )] = sign(E* [[c, 1D
where
(+)ifn>0

sign(n) = {(0) ifn=0
(=)ifn<O

We also have the rule of signs. wherc we will write the interpretations of + and x
under the rule of signs as + and X respectively :

(#)x (+) = (+) 0) x (+) = (O
(+)x (=)= (=) (+)x (0) = (0)
(=)x(+) = (=) (0) x (=) = (0)
(=)x (=)= (+) (=) x (0) = (0)

(0) x (0) = (0)

The rule of signs gives X_as an abstract interpretation of X.

For the abstract interpretation, +, of +, some of the rules are obvious, for example,

(+)+ (+) = (+) 0+ (+) = (+)
(=)+ (=)= (=) )+ (=)= (=)
(+) + (0) = (+) 0) + (0) = (0)
(=) + (0) = (=)

When we have one of the expressions :
(+)+ (=)or (=) + (+)

then we can no longer say what the result is, because the sign of the result depends on the
magnitude of the two values, and we have abstracted away that information. We thus
introduce the value T (pronounced "top") to represent the idea that we do not know what
the sign of the calculation is. Another way of representing this would be to use the set
{(=).(0).(+)}, but we prefer this way because then we do not have 1o introduce sets into
the abstract interpretation. The rules for T are:
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<

(=)xT =T (=)+£T =T
(0) xT =(0) 0 +T=T
(+)xT =T ()T =T
and the other six equations obtained by changing the order of the arguments to the
operators and relaining the same answers.
For completeness, we will introduce the value | (pronounced "bottom") to represent
the undefined integer. even though in our language we will not be able to write an
expression which has this as its standard semantics. We have thus extended our domain

Z* 10 ZY'. where
zj = 2z U 1)

and where we give the definedness ordering, <, on the domain
z)Sz,ifandonlyifz;=| orz;=2z,.

Zi' is an example of a flar domain because all of the elements from Z¥ are on an equal
level of definedness. We can draw this in a diagram as :

-2 -1 1 2

If | appears as one of the arguments to F or X, then we must say what the answer is.
We choose strict interpretations of these functions, so that the answer to an expression

which has | as either of the arguments must be | .
To model the bottom element in the domain Zi’, we introduce | into the elements in

our abstract domain. For both + and X, | in either of the argument positions gives | .

We now have an abstract domain, which we will call Z®

2% = {] .(=).0.(+).T}

where we define the ordering on the domain so that Z% is a complete lattice :
8



In the same way that we defined a standard interpretation for our language, we can

provide an abstract interpretation, the semantic function being called £ :
E®: Exp—2Z®
E®([c, 1] = sign(E [lc, 1D
E®[[Exp, + Expy)) = E% [[Exp )] + E [[Exp,)]

E® [[Exp, X Exp,]l = E® [[Exp,]] x E® [[Exp,]]

Notice that the form of the abstract-interpretation is exactly the same as the form of
the standard interpretation; all that has changed is the interpretation of the constants ¢,

+ and x.

We now have two interpretations :

Exp
standard abstract
interpretation interpretation
A i{ Zab

How can we say that if we get the answer (+) in the abstract intlerpretation, that the
answer in the standard interpretation was really positive? That is, we must find a notion
of correctness and prove that the abstract interpretation is correct. We begin by noting
that the symbol (+) "represents™ any positive integer. To capture this notion, we define a

concretisation map :
Conc : Z®*—P(Z{)

where P(X) is the powerset of X. It returns an element in the powerset because each

element in Z% represents (possibly) many elements of Zj_‘.

Rather than define this map directly, we will define it in a manner which is similar
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1o the way we will define such maps in Chapter 2. We can define an abstraction map :
abs : Zj_’—° z®

which relates the standard interpretation and the abstract interpretation of the constants.
In this case, the abstraction map is just the sign map defined earlier, augmented with the
rule

sign(] )= |
1o cope with the fact that we now arc dealing with Z{' rather than just Z*.

We can now define a map
Abs :P(Z{)— 2%

which will allow us to find the abstract interpretation of sets of elements. When we have
a set of elements, we have the possibility of having elements of differing sign in the same
set. Suppose.wc had the set {—3.4} which we wanted to abstract. Then we could apply
the abstraction map abs to each element in the set to obtain the set {(—).(+)}. We added
the point T to represent the fact that we were not sure what the sign of a result of a
computation was. Here we can give il another reading, where it says that it represents
sets of elements which have more than one sign in them. Because of the ordering we
introduced on our domain, we can obtain this result by taking the least upper bound of
the sets of elements we get by abstracting each element in the set. (Note that
LH(=).(+)} is T.) Thus we define Abs by

Abs(S) = [Ulabs(n) | neS).
Finally we are able to define the concretisation map. For z€Z%,
Conc(z) = J T Abs(T)< 2}

The concretisation map collects together all of the elements which abstract to something
al most as defined as z. If we calculate what this means for each of the elements of Z%,

then we find that :
Conc(1) = {1}
Conc((+)) = {nin<o} J {L}
Conc((0)) = {0} U (L}

Conc((+)) = {nln>0} |J {1}



Conc(T) = Zi'
and so see that indeed concretisation captures our notion of an element "representing” a set
of valucs.

We can now state what we mcan by correctness. For any ewvalixation
zyopzy P :;
where 2y, 2, €2% and op is cither + or x, then we have that for all n € Cone(z ),
n 5 € Cone(z 5).
n,opn4 € Conc(zs)
where op is F if op was + and X otherwise. It can be shown that the abstract
interpretation we have defined satisfies this property.
As an example of this, let us return to the previous example and ask what the sign
of the expression :

€29 X €_33 X Cgq

is. Our previous calculation showed that the real answer was — 61248 and so the answer

is negative: Doing the calculation in the abstract domain we obtain :
E® (le zq]] X E (lc_ 33]] X E®® [[C(,4]]
which is

(+)x (=) x(+)= (=)

From this we conclude that the answer calculated in the standard interpretation is
negative. If we concretise (— ), we obtain the set of negative integers (plus | ), and so we
are able to conclude (because of the correctness of our abstract interpretation) that the
result really was negative.

There is another feature of abstract interpretation that can be shown with this
example. We note that the abstract interpretation does not give exact answers. For

example,

Eab[[c_]o + C]]]] Eab [[C_]o]]i‘_Eab [[C”]]

(=) +(+)

T



whereas the sign of the real answer
sign(ES {[c _yo + cylD = (+)

is (+), and so the abstract interpretation loses information, but in a safe way; the
abstract interpretation says that it does not know what the sign of the answer is, but
does not wrongly conclude that it is negative (or some other wrong answer).

Those familiar with universal algebra will notice that we almost have that sign is a

homomorphism. We have the following diagram :

op
Zy x Z} yZi
signX sign sign
Zab :<' Zab } AZ\ab
op

where in the bottom right-hand corner we have < rather than equality. Qur abstraction
map, sign, is then a semi-homomorphism. This is the general case for abstraction maps

when we are working in the world of domains rather than just sets.

We can now summarise the key features of abstract interpretation. Given a set of
symbols, we must give them an interpretation. Thus, if we have a language, we must
give an interpretation of the language. Usually the symbols are chosen with one
particular interpretation in mind. However, sometimes there are questions one wishes 10
ask which are hard to answer using the standard interpretation of the language; in fact,
the questions we will ask about the definedness of functions are not recursive. It is
sometimes possible 1o give an interpretation of the language which answers the questions
we want to ask, but requiring significantly less work to do so. Such an interpretation is
called an abstract interpretation. The example we have given here is to ask what the sign
of the result of a calculation is. For an abstract interpretation to be of any use, it must
be correct, in that anything we conclude from it must really be true. Finally, answers
given by abstract interpretations are not exact, but they are safe, that is, any conclusion
we draw from the abstract interpretation will be weaker than a conclusion we could

obtain from the standard interpretation.
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1.5. The Language Used Throughout This Thesis.

For the development of this thesis, we need a functional language. The simplest
functional language that we know is the typed A-calculus. We use the typed A-calculus
for the development of this thesis for both aesthetic and pragmatic reasons. Firstly, we
helieve that programs should be finitely typable. Secondly, the fact that our language is
finitely typable means that we are able to give computable abstract interpretations for
our language. In this section we introduce both the abstract syntax of the language, and
the idea of interpretations of the language which give diferent semantics to the language.
Having more than onc interpretation for a language is Mundamental in the work of
abstract interpretation. The presentation of this section is after the style of [Abramsky
1985b].

1.5.1. Syntax
Given a set of base types {4, A - - -}, we define type expressions o .7, - - - by

ou= Alo—ao ()

In Chapter 5 we will extend the type system of our language 1o include finite
combinations of sums, products and lifting. At the moment, such constructed types are

handled by making them "base types”.

The language has a set of typed constants, denoted by {c,}. and we will choose for

our typed constants the following :
- integers e.g. 0,5
- booleans i.e. true, false

- Alist - lists of elements of type A, i.e. elements of the recursive type
A= 1+ AX Alist

- arithmetic functions e.g. +, —, X
- boolean functions e.g. and, or

- a conditional for each type o denoted by ifppymg—g—g (OF justif)

(1) Note that we have no type variables in the syntax of our type expressions, and so we are using a
mono-typed A-calculus and not a polymorphicaliy-typed A -calculus.
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- list processing functions i.e. hd , ¢, cons and case

For each type o, we will assume an infinite supply of typed variables Var, =
{x9.---}. The terms in the language Exp then consist of typed terms e:o formed

according to the following rules :

(N x%:0 variables
(2 ey:0 constants
3) €7 A\ -abstractions

Ax%ec:0—-17

€,:0=7 ey:0 o
(4) application

( )810'—‘0'

3 fix(e) : o
[N=tz2 Ahat fix part of Hhe yntax  and nat tonctant .)

1.5.2. Interpretations.

fixed points

So far we have only given the syntactic constructions of our language. We nced to

give interpretations for our language. An interpretation, 7, is given by
I= (DL} Ael)

that is, interpretations for the base types and interpretations for cach of the constants.
For each base type A, we require that D must be a bounded-complete, w-algebraic cpo
[Scott 1981].

This is extended to the interpretation of the type o — 7 by defining D _,, to be the
domain of continuous maps DZ— DI [Scott 1981]. Each ¢l is given interpretation in

DI . In particular, for cach type o, the interpretation of Q, is Ly

The interpretation of base types and constants induces a semantic function
E! :Exp— Env! - U DL
where Env! = {Env!}and Env! = Var —-DL.
EN[xp! = p/(x)
EM [l Np! = cf

ET[Ax%ellp! = )\yD!‘ E" [lel p! [y/x°)



-98 -
E! [[e| C’z]]PI = (E! [[c]]]Pl)(E] [[GZHPI)

ET [[fix el p? = fix(E! [le]] p7)
(Noke that F"( applicatiod andk obstrachon ace (nteqprafect The same Wiy ' GU i breprehtioiG.)

Throughout t 1c rest of the thesis we will have a standard interpretation ({D5) . {c 1)
where we have the usual flat domains for things like integers and booleans. The standard

interpretation for Alist is oblained by solving the isomorphism
Alist= 1 + A X Alist
over the category of domains [Smyth and Plotkin 1982] to obtain

-— st 4 Y3
DA[!XI DA *n’l'l U D-‘ *-LDA‘;I:I U D‘Z w.

Here * is the Kleene star, denoting a finite sequence (possibly empty) of elements from
the set which is starred, and so D *.nil are finite lists of elements of D} (i.e. integers or

hooleans etc.), and Dj *. are lists which have a finite number of elements from DJ

Dt
and then have an undefined tail. The set of infinite lists is denoted by D3 ¢

It is useful to have some terminology to refer to various types of lists.
Definition 1.5.2.1:

Alist, L,is

(i) finite if L € D *.nil.

(ii) partial if L € D} ”*J-D*t .

(i) infinite if L € D3 “.

O

Note that although the bottom list is normally called a partial list, we have
separated it out because in Chapter 3 we will need to consider the set containing only the
bottom list and the set containing all other partial lists. Thus, for our purposes, a partial
list has at least one element of DY in it, that is, can be written as cons(e;.e,) for some e,

and e,.

We will call the induced semantic function E¥, and we will always use the

environment p* for the standard interpretation.

For the standard interpretation of constants, we will have the strict versions of all of

the arithmetic and boolean functions. The conditional has the following interpretation :

(Es‘ [[ifboo[—vo'-oo'—'o*]] PSI) _Lth’to' X y = ‘LD#
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]
b

(E¥ [ifpooymg—g—oll P™) & xy

(E* [ifpooimo—g—ol1P™) f x ¥

1]
~

The standard semantics of the case function is :
ESt [lcase s f L)) p** = E* [[if null(L) then s else f(hd(L) .cl(L)]] p*

It is meant 1o be a translation of the more uscer-friecndly pattern matching style of writing
programs, being a casc on the structure of the list. Thus

sumlist [ = 0

sumlist x:xs = x + sumlist xs

is translated into our language as :

sumlist = fix(AfAHSIT ) LS case(0 A x A ALYS x4+ (L 2)).Ly) ‘TT)

For abstract interpretations we will allow any finite, complete lattices, D for each
base type A, and these properties of finitencss and completeness are preserved by the
interpretation of the type structure. In the examples of the use of the framework in this
thesis, we will use in particular two abstract domains, namely the two point domain and

the four point domain.

We will induce the interpretations of the constants as abstractions of their standard
interpretation.

The induced semantic function will be called £% and we will always denote the
environment used in the abstract interpretation by p%.

Note that in our abstract interprctation we have only parameterised out the
interpretation of the base types and the constants. This is because we only need to change
the interpretations of these things to answer the questions about evaluation strategies that
we wish to ask. A framework for the abstract interpretation of the pure A-calculus is
provided in [Mycroft and Jones 1985], where thc meaning of \-abstraction and
application are also part of the interpretation.

1.6. Domains, Powerdomains, Functions and Algebraic Relationships (¥).

Because we will be developing a framework for abstract interpretation which is

semantically well-founded, we will of necessity have 1o delve into the world of domain

(1) This section is lifted almost verbatim from some material in [Burn, Hankin and Abramsky
1985a), and we are indebted 10 Samson Abramsky for his original presentatijon of it.

@YThis notation means that the name sumlist stands for the expression on the right hand side of the
equality symbol. This shorthand way of referring to expressions in the language will be used
throughout the rest of this thesis.
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theory in which the semantics of programming languages exists. It is possible to
understand the technical details of this thesis using only basic concepls from domain
theory [Scott 1981, 1982], category theory [Arbib and Manes 1975] and powerdomains
[Plotkin 1976], [Smyth 1978]. The main results thalt we use can be summarised as a set
of algebraic rules, which we will now develop. The proofs of the basic facts cited below
are cither directly in the literature, or obtainable by minor modifications therefrom; sec
[Plotkin 1976], [Hennessy and Plotkin 1979).

We shall he working over the category of domains described in [Scott 1981, 1982].
The objects of this category are the bounded-complete w-algebraic cpo's, and the
morphisms are the continuous functions between domains. The composition of
morphisms f:D—E, g:E— F is written thus :

go/:D_‘F.

The identity morphism on D is written id;,. Given domains D and E. the domain D—E

is formed by taking all continuous functions from D to £, with the pointwise ordering :

/€ giff forall x€D, f(x) € g(x)

Given a domain D, then P D, the Hoare (lower or "partial” correctness) power domain
is formed by taking as elements all non-empty Scoti-closed(f) subsets of D, ordered by
subset inclusion. A subset X C D is Scott-closed if

(@YY € X and Y isdirected, then [ JY € X.
(i)Ify €£x € X theny € X.
The least Scott-closed set containing X is written X°.

Another useful concept is that of "eft"-closure; a set X < D is left-closed if it
salisfies (ii) above. The left closure of a set X is written LC(X) = {y|there exists x
€ X.y<x}.

Note that for elements of the Hoare power domain, the subset inclusion ordering is

cquivalent to the well known Egli-Milner ordering :
X C Y iff for all x€ X, there exists y€Y, xXy

and for all y€Y, there exists x€ X, x<y

() This terminology is due to the fact that these are the closed sets with respect to the Scott topol-
ogy (c.f. for example [Gierz et. al. 1980)).
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We shall also apply P to morphisms. If f:D—E, then Pf:P D—PE is defined thus:

(P (X) = {fx)|xe X}

The main properties of P are:

(P1)If D is a domain, P D is a domain.

(P2)If f:h—E.PfPD—PE is a continuous function.
(P3)P(fog) = (P)-(Pg)

(PAYPid;y = idpy.

This says that P is a functor from the category of domains 1o itself. A further
property of P is that it is locally monotonic and continuous. This means that if {f;} is a
chain of functions in A— B, then forall i, Pf; < Pf,,;.and P(LIf;) = LIPS,;.

Whenever we write P from now on we will mean the Hoare power domain functor.

Why are we using the Hoare powerdomain construction? The Hoare power domain
naturally captures the idea of sets of elements with a certain level of definedness which is
what is needed for our applications. It is also pleasant to work with from a technical

point of view.

We shall need to use some additional constructions associated with the powerdomain

functor. Firstly, for each domain D we have 2 map
{.l, :D—-PD

defined by :
{dl, = LCUd)).

This satisfies the following properties :

(P5) {.1p is continuous.

(P6) For f:D—E, Pfof.bp = {.bz «f.

This says that {.} is a natural transformation from 1, the identity functor on the category

of domains, to P.

Secondly. for cach domain D we define
Yp :PPD-PD

by
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Hp(@) = {x|for some X€B. xe X} = | O. (+)

This satisfies :

(P7) Y p is continuous.

(P8) for f:D—E, Hy PP/ = Pf .

This says that H is a natural transformation from P2 to P.

Now (P. {.}. Y) lorms a monud or triple. We shall not use this lact, but we will
use the following, additional observation. Supposc D is a domain which is a complete

lattice. Then the least upper bound operation, viewed as a function
LJ:PD-D

satisfies :

(P9) Y is continuous
(P10) Hol.bp = idp
(PIN HP() = H-Up-
This says that J:PD—D is an'algahra of the monad (P. {.}, ). We will use (P9) and
(P10) in the sequel.

Henceforth, we shall omit the subscripts from instances of {.}, H where they are
clear from the context. The facts we shall be assuming about the constructions
introduced above are summarised in (P1) - (P11). By using "function-level reasoning”, we

are able 1o give simple, algebraic proofs of many results.

1.7. Overview of Thesis.

In Chapter 2 we develop a framework for safe abstract interpretations. The aim of
abstract interpretation is to provide suitable computable abstract interpretations which
describe properties of interest and from which we can make assertions about the standard
interpretation.

It will be developed in such a way that the user of the framework has only to

provile three things. The first two are

(%) The last equality says that H is just the same as the ordinary set-theoretic union in the case
of the Hoarc powerdomain. This is not true in general for other powerdomain constructions.
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(i) a finite, complete lattice as an abstract domain for each base type; and

(ii) a strict, continuous abstraction map for each base type from the standard
interpretation of the type to the abstract interpretation of that type.

These should make the distinctlions in the standard interpretation of the base type that
are desired. Abstraction maps for the higher types are then induced in a natural way.
Thirdly.

(i&) cach of the constants must be provided with an abstract interpretation which

salisfics a safety relationship with respect to the standard semantics of the constant.

The framework is proved correct, and some theorems are given which can be used as
practical tests in the use of the theory.

The framework of Chapter 2 is applied in Chapter 3 to give an abstract
interpretation for the definedness of functions. This is used to show when the evaluation
strategy can be safely changed to allow some evaluation of arguments to functions in

parallel with, or before, applying the function.

Abstract domains [or each base type are determined using two different intuitions,
both of which end up giving the same abstract domains. The first intuition is to look at
the definedness level of elements in the standard interpretation, while the second is to
look at how the sensible evaluators behave on expressions standing for elements in the
standard interpretation. ‘The abstract domains chosen reflect the divisions made by the
diffcring amounts of evaluation. We define best approximations of the constants in our
language by deriving them as abstractions of the standard interpretation of the constants.
Having defined the abstract interpretations of the constants, we give some examples of
determining the abstract interpretation of user-defined functions.

The correctness of the abstract interpretation follows directly from Chapter 2. It
turns out that we need to be able to determine the evaluation information which is true
in a particular context (context-sensitive) as well as that which is true in all contexts

(context-free). The two necessary theorems again follow directly from Chapter 2.

Finally, we show how both of these sorts of information can be used to safely
change the evaluation strategy and how this information can be encoded on the graphs(of

functions.

In applying the abstract interpretation developed in Chapter 3, we Wi\ gez
when a function application is undefined, and from that deducing how much evaluation is
safe for each of the arguments. If the arguments are function applications, then instead of
just assuming that it is safe 1o evaluate the applications to head normal form, which is
how the theory is used in Chapter 3, we may know that it is safe 10 do more evaluation.

adSwiih
197 ]
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It would be better if we could carry this information inwards and so we may be able to
more evaluation of arguments to this function than we would have otherwise have been
able to do. Chapter 4 begins by giving a simple example of where this is the case.

Using the abstract intcrpretation developed in Chapter 3, we are able to give two
more theorems in Chapter 4 which answer the question : Given a safe evaluator for a
function application, what are the safe evaluatlors for each of the arguments in the
function application? The theorems allow us to develop evaluation transformers, onc for
cach argument, which transform a safe evaluator for a {function application to a safe
evaluator for that argument. They can be determined directly fromn the abstract

interpretation.

The theoretical framework developed and used up to the end of Chapter 4 has the
function space as the only type constructor. Complex data types such as infinite lists
(infinite sums of products) were handled by putting them in a black box and treating
them as a base type, giving them a standard and abstract interpretation. In Chapter 5 we
are slightly more imaginative, adding types which are constructed from finite
combinations of sums, products and lifting. We define in a natural way abstract
interpretations and abstraction maps for the structured types from the corresponding
abstract interpretations and abstraction maps of their components. We show that the
vital safety relationship between the standard and abstract interpretation still holds, and

thus the correctness of the abstract interpretation follows as in Chapter 2.

We draw our work together in Chapter 6, and point out some areas in which more
work must be done, both theoretical in terms of extending results to a polymorphically
typed framework, and pragmatic in terms of implementing the theory in compilers and

compulter architectures.



Chapter 2
A Framework For the Safe Abstract Interpretation

of Functional Languages

We develop a framework for safe abstract interpretations. The aim of abstract
interpretation is lo provide suitable computable interpretations which describe properties
of interest and from which we can make assertions about the standard interpretation.

In the first section we explain what we mean be the correctness of an abstract
interpretation. The main thrust of the rest of the chapter is to provide a framework for
the abstract interpretation of functional languages which is correct. 1t will be developed
in such a way that the user of the framework has only to provide three things. The first
two are a finite, complete lattice as an abstract domain for each base type, and a strict,
continuous abstraction map from the standard interpretation of that type to the abstract
interpretation. These should make the distinctions in the standard interpretation of the
base type that are desired. Abstiraction maps for the higher types are then induced in a
natural way. Thirdly, each of the constants must be provided with an abstract
interpretation which satisfies a safety relationship.

As a more detailed survey of this chapter, in the first section we motivate and give a
definition of the correctness of an abstract interpretation as well as motivating the need
for, and form of the definition of various functions that are needed in the subsequent
development. We formally define these maps and prove they are well-behaved in the
second section. Some more useful forms of the definition of the abstraction maps are
given in the third section. Properties such as strictness and bottom-reflexivity are often
useful to have, and it is shown that these properties are inherited from the abstraction
maps on the base types. We defined abstraction maps and concretisation maps in such a
way that they are adjoined functions; this is proved to be true in the fifth section, and in
the following section we prove two propositions which are useful in proving a safety
relation between the abstract interpretation and standard interpretation which will allow

us to prove the correctness of the abstract interpretation.

In the application of this theory in Chapter 3 where a definedness interpretation is
given, we will sce that the definedness of a higher-order function depends on the
definedness of any argument which is a function. If we were to be totally pessimistic
about the dcfinedness level of functions, then we would have to give information about
the definedness of a function which was true in every application of that function, that is,

- 35 -
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information which is true regardless of the context in which the function appears.
However, if we take into account the contextual information of an application of a
function we are able 10 sometimes to find out more about the definedness of the function
in this particular application. It turns out that we cannot do without either of the types
of information. The final two theorcms in this chapter give practical tests for finding out
both of these sorts of information.

The work can be seen as a generalisation of the theory of [Burn, Hankin and
Abramsky 1985a] and [Hankin, Burn and Peyton Jones 1986] 1o situations where we have
more complex abstract domains than the two point domain for the abstract

interpretations of base types.

2.1. Motivation for the Definition of Abstraction and Concretisation Maps.
In section 1.5 of Chapter 1 we introduced the idea of interpretations. We were
particularly interested in providing a computable abstract interpretation with which we

could do calculations and make assertions about computations in the standard

interpretation.  Suyppse thot + 5T ord Yhat e hawe fh ochad  inerpretectiod of £

pp E2IN

and wish to make assertions about a calculation using the standard interpretation :

D E* [[f]lp* D

Given that
(E@((Mp®)5=1

what do we wish to conclude? A reasonable statement would be that for all s

"represented by” 7, the value ¢ "represents” the calculation (E% [[f]] p*) 5.

- "

If we call the process of going from 5 to the set of things thalt § "represents
concretisation, and assume that for cach type o that we have a map Conc, which does

this, then we can state the above condition formally, and give it the status of a definition

Definition 2.1.1:
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An abstract interpretation is correct if (E®[[f]}p®) 5 = ¢ implies that for all s €
Conc (), (E¥ [[f]] p*') s € Conc (0.

5]

We shall sce in section 2.8 that the correctness of an abstract interpretation is
implied by the following safery diagram. which is essentially an adaptation to the world
of the Hoare power domain of diagrams appearing clsewhere, for example, [Cousot and
Cousot 1979}, [Mycroft 1981) and [Mycroft and Nielson 1983] :

P(EY ([Nl p*")

PDY *PDY
’T n

Conc 4 Conc,
e > D

E®[[f]) p

i.e. Conc , o (E? [[f1] p®)2 P (E* [[f1] p*) «Concg

The use of 2 in the above diagram captures the notion of safety, for it implies that
the result obtained in a calculation in the abstract interpretation represents a superset of
the possible results in the standard interpretation.

So far we have been assuming that we have a concretisation map Conc ; for each type
o; we now tlurn our attention 10 how we can define such concretisation maps. Initially
we look at the question the opposite way around. For each type o, there are possibly

many things in DY which have equal levels of definedness. As an example, consider

st £Y4
Ax2o x4+1 and AxP™ x+2 which are in D and both of which are defined

int=int

everywhere except at | ;... It.would be useful 10 be able to define a map

Absg, :PDS—-DS (+)

which mapped sets of things of equal definedness to the same element in the abstract

domain.

(3} We note that Abs 5 is a map which takes an element of the Hoare power domain and so a more
correct intuition is that Abs ;(S) represents the most defined clementin a (left-closed) set S .



- 38 -
A natural way of dcfining maps is to define them inductively over the type structure.
Suppose therefore that Abs,, Abs, and Conc, and Conc, have been defined and that we

wish to define
Abs ., : P(DS— D)~ (D 2~ D D)
Conc gy : (D= DBY—P(DI— D)
Given a set § € P(DF— D). remember that Abs g says that the maximum level of

definedness of the elements of § is a particular value in the abstract domain. Thus we
need to define a map

. st ab
absy ., :Dg_.,— D3,

so that we can test the level of definedness of each element of S and then choose the
maximum one of these {or the value of Abs ;_,.(S).

Givenan f € D¥—D% :

D¥ yD¥

how do we define

abs . (f)
D& YD 2?7

We know that abs_,(f) will be applied to ¥ € D2, and that § "represents” all
values in Conc y(5). Furthermore, concretisation returns a set of values, that is, an

element of PDY . So we have the following situation :

PDY D¥
N
Conc 4
D:_b )D:’b
abs ¢ .(f)

We wish 1o say that f € D¥—D¥ is "al most as defined as" something, by saying
that (abs,_.(f)) ¥ = ¢ where ¢ represents the most defined valuesthat / can take for
values represented by 5. This implies that we must apply f to all of the elements s in
Cone (5) and we can do this by applying P to f 1o obtain the diagram :



-39 -

P/ .
PDY —y P DY
AN\
Conc 4
Dg D2
abs o _, .(f)

All that we nced to find now is a map from PD¥ to D2, which maps a set of
values down to the element in the abstract domain that represents that set, and we
already have such a map in Abs .. Thus we can complcte the diagram for the definition of
abs 5. .(f) :

Pf
P’I\)fy’ —PD¥
Cone 4 Abs ,
v
D& —D 2
abs g +(f)

and write it out as a formula :

abs g ..(f) = Abs, <P foConcy

We have so far said that Abs, picks out a value which represents the most defined
elementsin a set of things, and now we have a map, abs ; which works out the definedness
level of a single element. Thus we can find out the definedness of a sct of things by
applying abs, 1o cach element in the set. Furthermore, since we have insisted our
abstract domains are finite, complete lattices, we can take the least upper bound of the set
of results from applying abs ; to a set of values in the standard interpretation to model

the idea of choosing the maximum value. Thus a reasonable definition of Abs 5 is
Absy; = HePabsg,

The least upper bound in the definition is capturing two intuitions. Firstly, an upper
bound is necessitated by the fact that we are developing a safety analysis, and secondly,
having the least upper bound means that we have the best safe representation of the
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value.

We will also define Conc, so that Abs, and Conc, are adjoined functions for each
type o. Adjointness is a very important mathematical property [Gierz et. al. 1980], and
can be interpreted in this context to mean that the abstract domain models the standard
domain as closely as possible.

Furthermore. if we can provide an abstraction map which satisfies that for all e
that

E [[e]] p2 2 abs (£ [[e]] p) (§)

and the maps 4bs, and Concg are adjoined funclions, then we can prove the correctness
of abstract interpretation. (See the progression of the argument {rom Theorem 2.7.1 to
Theorem 2.8.2.)

It is shown in [Abramsky 1985b] that the definition of abs, we have motivated
above is the "best" possible abstraction map in that it loses least information while still
satisfying (§).

One final thing that is worth noting is that we hadve a dual reading of the elements of
the abstract domain. Firstly they can be seen as the abstraction of one particular element
of the standard interpretation (using abs ;) and secondly as saying the elements of a set of
things from the standard interpretation are at most as defined as a certain value.
Concretisation captures the second reading by returning the set of all values which

abstract to something less than (or equal to) the element which we are concretising.

2.2. Formal Definition of Abstraction and Concretisation Maps.

Having motivated the need for the maps abs;, Abs, and Conc, for each type o, and
the form of their definition in the previous section, we now proceed with the formal
definition. At the base types we presume that we are given abstract domains D,{'b. for
each base type A, which are finite, complete lattices, and stricl, continuous abstraction

maps
. pSt, nab
abs A - DA D.‘\

where these make the distinctions on the base types that the user wishes to make. The
abstract domains nced to be complete lattices because we will need to take least upper
bounds, and they need 10 be finite so that the testing of equality of functions when taking
least fixed points is an effective procedure. Strictness of the abstraction maps is required
so that concretisation is well-defined and for the proof of Proposition 2.6.2.
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We can then define

Definition 2.2.1:
Abs, :PDJ-DS®

Absy, = U oPabsy

O
Dcfinition 2.2.2:
Conc, : Df2—PD}
Concy (@) = QGIT|Absy(T)<a) Sp)
O

From the previous section we saw that the way to define the abstraction map for

higher types was :

Definition 2.2.3:
abs g, Dg_.,ﬂng_.,-
abs 5 _,,(f) = Abs, <P [oConc,
a

and we also define the maps Abs ;_,, and Conc _,, in an analogous way 1o the definitions

on the base types :
Definition 2.2.4:

Abs,_ . :PD¥_ —DZ&,

Absg_., = HoPabs,_,,

Definition 2.2.5:

Concgy: Dgé—--r_’PDg-'r

(%) Note how we have defined ConcA so that it will be an upper adjoint to AbsA [Gierz et. al.
1980}



42 -

Conc o (f) = YIT14bs ;. (1))}
O

We must of course show that these maps are well-defined and continuous, but first a
definition and a subsidiary l.emma.

Definition 2.2.6:

A function f € D—E isstrictif (1 ) = 1.

[
Lemma 2.2.7:
If f € D.—D! isstrictand DI is a complete lattice, then [ <P/ is strict.
Proof :
(H.P)) LLD{. | = lzl{fxle{_l_D{‘ e definition of P on morphisms
= Hirlp b
= Hu—D{ }*  since f is strict
=1, (P10)
O

Lemma 2.2.8:
If for each base lype A. we are given a strict, continuous abstraction map
abs, : D§'— D£°, then for all types o
(i) abs , is continuous.
(ii) Abs 4 is continuous.
(ii¢) abs ; and Abs ; are strict.

(iv) Cone 4 is well-defined and continuous.
Proof :
We prove this by induction on the type structure.

(i) This is true of the base types by our condition of the continuity of the abstraction
.maps on base types.
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(i) On base types we have that this is true since | is continuous, Pf is continuous
if f is (P2), and the composition of continuous functions is continuous.
(iii) abs, is strict by the condition of the lemma and thus Abs, is strict by Lemma
2.2.7.
(iv) We have to prove that Conc, is well-defined and monotonic, for its source is a
finite domain and hence is continuous if it is monotonic.
To prove well definedness, we must show that {T|Abs, (T)<al is a non-emnpty
Scott-closed subset of PPDJ. Since we have that Abs, is strict (part (iii) of
induction), we have that the set {T|Abs,(7)<al is non-empty. Denoting
{T1Abs, (T)<al by O, 10 show that @ is Scott-closed we need to show that (a) @ is
left-closed and that (b) © is closed under least upper bounds of directed sets. The
first is true since if ¥ < X € ©, then Abs,(Y) < Abs,(X) < a andsoY € ©. The
second is true for if A € O is a directed set, then Abs, (L JA) = | J{Abs,(X)|X€ A}
and since Abs, (X) € a forall X € A, [ [{Abs,(X)| XeA} € a.

T'o show monotonicity of Conc, , let s;.s5,€ D2, s;<s,. Then _
Concy(sy) = YIT1Abs, (T)Ss,} and Concy (s,) = YI{T|Abs, (T)<5s,).

Clearly, {T|Abs, (T) € sy} C {T|Abs,(T) £ s5,} since s; € s, and so Conc, (s,) <

Conc, (s ,). Thus Conc, is monotonic and hence continuous.

Assuming (i) 1o (iv) are true for types o and 7 we prove them for type o — 1.

(i) abs(f) = Abs,-Pf.Conc, and is thus continuous because by the induction

hypothesis it is the composition of continuous functions.

(ii) Follows as for the base case.

(iii) abso._,,(,]_Dé,_, )5 = (Abs, - P(] ) Conc 4 ) (5)

st
D

L (P (abs , o_LD;’!_.' )« Conc ) (5)

(P (abs, o_LD;,_‘ ) {s|s€Conc (D

I:] labs,(J_D‘,',_" (5)) | s€ Conc 5(5)}°

H IabS.r(_L D,“ )}°

Hilyal by induction hypothesis (iii)

= 'LD;'" (pl())
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The result holds for Abs ;_., by Lemma 2.2.7.

(iv) Follows as for the base case.

]

In the proof of Lemma 2.2.8 we have made usc of all of the properties of the
abstraction maps and abstract domains for base types which we have insisted upon.
Iirstly. continuity is nceded for the abstraction maps on the base types so that all of the
maps we use are continuous, which is needed for proving the safety of the framework.
The strictness of the abstraction maps on base types, which is preserved by the
abstraction maps on higher types, is needed to prove the well-definedness of the
concretisation maps. To guarantee the existence of lcast upper bounds for the definition of
the abstraction maps, we need the property that the abstract domains are complete
lattices. Finally, finiteness of the abstract domains is needed not only so that we will
develop an effective analysis, but because we were able to use the fact that we needed
only 10 prove that the concretisation maps were monotonic for them 1o be continuous.
Abramsky [Abramsky 1985b] has shown that if the abstract domains are any complete
lattices (including infinite ones), then the concretisation maps which are induced from the
abstraction maps are not in general continuous. If the abstraction maps also map finite
elements [Scott 1981] to finite elements, then the concretisation maps will be continuous
[Abramsky 1985b]. Since our abstract domains are finite, this condition trivially holds.

It is useful to have a rclationship between Pabs; and Abs,. This is stated in the

following Lemma.

Lemma 2.2.9:

Pabs & §.0.Abs,

Proof :
Pabsy & {+fe klePubsg  since (6o 2id

= {.}oAbs, Definition of Abs
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2.3. Two Useful Forms of the Definition of the Abstraction Map.

We present two alternative forms for the abstraction map abs,_,, When 7 is a
function space.
Proposition 2.3.1:
Suppose f € Dgf— --- =D5 —DY. Then
D Dy

n J—
absg —.img, (= Axy T oAxy " Hlabs(fxy - - x,)| and abs g (x;)Sx;)°

n i=1

Proof :

Suppose f € D& = --- =D —=D¥. Then from [Abramsky 1985b, Lemma 6.24] we

have that
gb ng n P
absg i, ()= Axy T ARy T Uabs (fxy o x,)] ancllab:o.l(x,-)Sxi}
=
D Dg n —
= \x; 'A%, ".Blabs(fxy o x| an(liabso. (x)<x; I°
. i= !

since IJX° = || X for finite, complete lattices [Abramsky 1985b].

]

The second form of the abstraction map, which we will give in Proposition 2.3.3, is
a direct consequence of the above Proposition and the following LLemma.

[Lemma 2.3.2:

abs ;(s) § §=> 5 € Conc ;(5)

Proof :

Suppose abs ,(s) € 5. Then

Conc o (3) = W (T|Abs (TS5

YT Hiabs ,(¢) e T)°<5)

definition of Abs ; and definition of P on morphisms

and certainly labs ;(¢e) |te{s}l® < § since abs ;(s) € 5, and thus s € Conc (3.
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Proposition 2.3.3:

Suppose f € D= - =D —D¥. Then

ah Dat

—Da o n —_
@S g iimg, ~e () = Axy T agy Tl labs(fxy o xg)] ;a_;lgxiEConcol(xi)}"

Proof :

This follows directly from Proposition 2.3.2 and l.emma 2.3.3.

2.4. Properties of Abstraction and Concretisation Maps of Higher Types.

Many useful properties of abstraction maps of the base types are carried over to the
abstraction maps for the higher types. Although these properties were used in the
development of {Burn, Hankin and Abramsky 1985a], we note that it is in [Abramsky
1985b] that the first record is made of separating out the properties of abstraction maps
on base types which are preserved on the higher types. We record here three such
properties which are useful in the ensuing development.

Fact 2.4.1:

If abs, is strict for all base types A, then abs; and Abs, are strict for all types o
(Lemma 2.2.8 (iii) ).

Definition 2.4.2:
A function f € D—E is | -reflecting if f(d) = 1 g =>d = |,.

Lemma 2.4.3:
If f € DL-D! is | -reflecting and D! is a complete lattice, then I -Pf is |-
reflecting.

Proof :
Suppose Hif slsesl* = (H-PNS = -LD{ . Then we must have for each s € S that

fs = _J_D, (PI0Y, and since f is | -reflecting, this means that s= | andso S =

(L

D}
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Lemma 2.4.4:
If for each base type A abs, is | -reflecting. then abs, and Abs, are | -reflecting for
cach 1ype o.

Proof :
We prove this by induction over the type structure. where the base case is true for
abs 4 by hypothesis and for Abs, by Lemma 2.4.3. Assuming that the result holds

for abs ., abs ;. Abs ; and Abs _,
abs ;. Af) = —LD;,"’_.,
=>abs s .(f) TD‘:I’ = _LD;w
=> {abs (f s} ]|s€ ConcU(TDg,, )= —I-D;”’ Proposition 2.3.3
=> abs (f 5) = —LD:" forall se D¥
Since by the induction hypothesis. abs , is | -reflecting, we have that for all se D
f5= Ly

=>/ = ‘LD“

o-=r

Abs 5 is | -reflecting by Lemma 2.4.3.

]

While ontoness is not required for the technical development of this thesi+s. if we
Lements
have onto abstraction functions on the base types, then there is nouselexd in the abstract
domains. The fact that this can often be shown to be true for higher types means that
there is no junk in the abstract domains for higher types.
Lemma 2.4.5:

If f € DI—- D! isonto and D! is a complete lattice, then L -Pf is onto.

Proof :
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From [Burn, Hankin and Abramsky 19835a. Lemma 1] we have that for such an f,
P/ is onto. This implics that for all £ € D! that there is an S € PDZ such that
P/(S) = {zl. Taking the least upper bound of both sides, we find that (P f(S)) = ¢
by (P10). and so we have exhibited an § for every 7 € D! and so I <P f is onto.

LLemma 2.4.6:
If abs, is onto for each base type, and for each base type A we can define a
continuous function abs,~ ! : D= D§ which is a right inverse of abs,, that is,

abs, eabs,” ! = id, ,. then for all types o

2
(é) there is a continuous function abs s ' : D &= D$ which is a right inverse of abs .
(it) abs ;, and Abs ; arc onto.
(iii) Abs g «Concy = id)) .
Proof :

We prove this by induction over the type structure.

(¢) This is true on base types by hypothesis.

(&) This is true for the base case for abs, by hypothesis and for Abs, by Lemma

24.5.

(iii) Abs 4 (Conc, (@) = Abs, (HIT1 Abs, (1)< al)

L (Pabs, (Y {T]Abs, (T)<al))

(Y (P Pabs, ({T'| Abs, (T)<a}))) (r8)

I

(G ({Pabs, (T) | Abs 4 (T) < al®)) definition of P on morphisms

LI(U (Pabs, ()| Abs, (1)€a))°

by a simple adaptation of a result in [Plotkin 1976] p. 477

Let S = U (Pabsy (T) [ Abs, (T)<al. Since abs, is onto (induction (ii)), there exists a
€ DS such that abs,(a) = @, and so a € Pabsy(fal) and is in S since P abs, ({al)
< &. Furthermore, @ is the least upper bound of all the elainents in S, and hence the

result,
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Assume that the three results hold for types o and 7.

. - =D, -1 7 e s . . .
(i) Define abs 2, = Af """ .abs [ Vefeabs,. This is certainly continuous because it
is the composition of continuous functions. let f € D&, . Then,

]

abs ;. _, (abs [ ! G))

o7

ﬂbSU__..‘,(abS,r—l ofoabfo-)

Abs o Plabs 7o foabs ) eConcy

= idoP(abs, cabs, Vofoabs ;) eConcy (P3)
= {d oP(feabs,)eConc, by induction (i)
= Ll oPfoPaby o Cone (P3)
= fold cPabs o «Conc since f is continuous
o Abs o < Conc g
=7 by induction (iii)
and so, by the principle of extensionality, abs, ., oabsg ), = idpa
(i) For any f in D&, choosc f € D¥_, such that f = abs;t, (). Then
abs ;..(f) = [ by induction (i). and so abs, _., is onto. Abs,_, is then onto by

lLemma 2.4.5.

(i) This follows as for the base case by putting the appropriate 1y pe subscripts on

the abstraction and concretisation maps.

The following Lemma is often useful in the applications for which we will use this

framework.
Lemma 2.4.7:

If abs, is strict and bottom-reflexive for each base type A, then for all types o,
Concc(_LD‘.,.:.) = U—D;‘ b
Proof :

Conc oL pw) = 4 {T1Abs o(TIS L |y
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YT Abs o(1)= L )

d “—LD u it since from l.emma 2.4.4 Abs ; is botlom-reflexive

(Lyy!

2.5. Adjointness of Abs, and Conc .

The maps Abs,; and Conc, arc adjoincd functions. This cnsures that the abstract
domain closely models the sets of elements of equal definedness in the standard
interpretation.

Proposition 2.5.1:

Abs ;. and Conc; arc a pair of adjoined functions. i.c.
(i) Conc gy o Abs 5 2 idp -
(ii) Abs 5 «Concy < iy
Furthermore, if Abs is onto for all o, then

(iit) Abs 5 «Conc; = idp -
Proof :

(i) LetS € PDY.
Conc ;(Abs 5 (S)) = YT | Abs o (T)S Abs ()}

and Abs ;(S) € Abs ,(S), s0 S € {T| Abs - (T)< Abs ,(S)}. Hence the result follows since
2 is just 2 in the Hoare powerdomain.
(ii) This follows as in the proof of Lemma 2.4.6 (iii) until the second last line where

we replace = by < because we do not insist on ontoness in the conditions of this

proposition.

(iii) This is Lemma 2.4.6 (iif).
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2.6. Scmi-homomorphic Property of abs, and fix.
For each type o we have that abs ; is a semi-homomorphism of function application,
thatis, if f € D¥_, . then
abs g ,(f)oabs; 2 abs, o
or, in terms of clements, if s € D¥ then

abs 5 ,(f) (abs ;(5)) 2 abs (f(5))

We will need this 10 prove Theorem 2.7.1. 1t can be scen to be intuitively true by looking
at the definition of abs ;. .(f)(abs ;(s)) :

abs o, () (abs ;(5)) = Ulabs (f s') | abs ;(s')Sabs ;(s)}° Proposition 2.3.1

We see that abs,_ .(f) (abs,(s)) applies f to all the values in D which abstract to
something less than or equal to what s abstracts to, some of which may give a more
defined answer, and hence may be abstracted 1o a greater value than f(s) would. As an
example, we will be able to show later in Chapter 3, with the definedness interpretation,
that

N ahb
abs iy inES [[N\x™.if x=5 then | else 1]] p%) = AxDim

and that
abs im(5) =1
and so the left-hand side of the above inequality is 1, while the right-hand side is

abs ;o (ES" [[(Ax ™.if x=5then | else 1) (5)]} p*) = abs i"’(-l-D“,) =0

We now state and prove that abs ;. is a semi-homomorphism of function application.
Proposition 2.6.1:

For all types o, abs4 is a semi-homomorphism of function application. i.e. if f €
D¥_., then abs, ., (f) o abs; 2 abs,of (or in terms of elements, if s € D then
abs o _, (f)abs ;(5)) 2 abs (f(5))).

Proof :

abs ;_, ,(f) eabs 4

AbsToP}’oConcooabso.

1]

L oPabs, o P foConcy oabs 4 definition of Abs 4 _.,
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= l:]oPabs,.oP/oC(mcUoHol.ﬁoabsc (P]())
= | ePabs,sPfoConcyoldcPabsyof.} (P6)
= JoPabs,oPfoConc, o Abs,of.} definition of Abs 4

A\

L ePabs,«Pfo{.} Proposition 2.5.1 (i)

HePlabs,of)al.) (P3)

Hoﬂ.ﬂoabs.,o/ (P6)

abs,..f (P10)

0O

As a consequence of the semi-homomorphic property of abstraction, and the fact that
the abstraction maps are continuous, we have that fix is a semi-homomorphism of
abstraction, which is also needed in the proof of Theorem 2.7.1.

Proposition 2.6.2:

fix is a semi-homomorphism of abstraction. i.e.

fixoabs ;.5 2 absg o fix

Proof :
Let f € D3, and lct A, be the approximations 10 fix(abs 5. 4(f)) and f; be the
approximations to fix(f). Then /i, = -LDgﬁ = “b’v(-l-b(;‘) (since we have insisted
that the abstraction maps on base types are strict, and by Lemma 2.2.8 (iii) the
abstraction maps for all types are strict) = abs(f,). Assume that h, 2 abs(f;)

for all k<i. Then

hivy = (abs g o ())R;)
2 (abs 5. o(f)Nabs (f;))  induction hypothesis and monotonicity of abs s _ 4
2 abs ;(f(f,)) Proposition 2.6.1

abs o (f;41)
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S0 h; 2 abs (f;) forall i. Taking the least upper bounds of both sides we obtain

fix(abs o (f)) = Lir,;}
2 [Habs ,(f; ) by above induction
= abs (LS D since abs ; is continuous and {f; } is directed
= abs (fx(f))

2.7. A Result Relating the Abstract and Standard Interpretations.

The following result is crucial for proving the correctness of the framework for
abstract interpretation{c-§. 3‘\*‘ earmpkt [ietson 198k Theorm 32 V)-

Theorem 2.7.1:

Suppose that we have that E%® [[c ;1] p?® 2> abs (E¥ [[c4]] p*) for all constants cg.
Then for all p¥ € Env, p?® € Env® such that for all x7, p®(x7) 2= abs AP (xT)), we

have foralle : o :

E® [[e]] p22 abs ,(E¥ [[e]] p*9)

Proof :

We prove this by structural induction over the terms in our language (sce section
1.5.1).

(1) Eab [[x"]] pab - p“b(xq)
2 abs ;(p(x 7)) condition of Theorem

= abs (E¥ [[x7]] p*)

(2) E® (9)] p > abs S (E5 {[c ;1] p*)) by condition of Theorem

(3) Let5 € D&. Then
(E% [Ax%e]) p®) 5= 57 £ [[e]] pl5/x°]) 7

= E%[[e]] p%¥5/x°]

and
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(abs g (ES* [[AxT el p*)) 5 = asP¥ Hlabs (£ [[Ax ]l p*) 5) | abs 5 (s)<51°) 5
o

Wiabs ((Ay 2% E% [[e]] p*(y/x®]) 5) | abs 5 ()< 51°

iHabs (EY [le]] p*[s/x T]) | abs o (s)S51°

I

Now p®[57/x®] and p™{s/x“] still satisfy the conditions on the environment since
abs .(s) < 5, and so by the induction hypothesis, every clement in the sct
{abs (E* [[e]l p*[s/x®)) |abs . (5)<3) approximates E% [[e]] p%[5/x°) and hence the
required result holds (by the definition of the least upper bound).

(4) E® ey e,]1 p® = E%[[e,]] p® E® [[e,]] p?
Zabs o (E¥ [[e 1] p*)abs - (E* [[e,]] p*)) induction hypothesis
Zabs (£ [le 1) p™ ES [[e,]] p¥) Proposition 2.6.1
= abs (E¥ [[e e,]] p*)
(5) E® [[fix e]} p2 = fix( F" (fe]] p2©)
2 fix(abs 5, (ES [[e]] p*)) induction hypothesis
Zabs o (fix(ES [[e]] ) Proposition 2.6.2

= abs (£ [[fix ]] p5)

2.8. Correctness of Abstract Interpretation

Here we prove the correctness of abstract interpretation. We prove it as a corollary
of the fact that the following safety diagram (introduced in section 2.1) holds :
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P(E [/ p™)

PDY > PDY
A n
Conc Conc
na YD 2
EL[[f1] p*®

Thecorem 2.8.1:

The above diagram holds. i.e. for environments satisfying the conditions of Theorem
2.7.1,if f :0c—7 then

Conc ., «(E® [[f1] p?) 2 P (£ [[f]] p*) « Conc 4

Proof :
Conc , « (E®® {[f]] p?) 2 Cone, « abs ;_ (£ [[f]] p5)
Theorem 2.7.1 and monotonicity of Conc,
2 Conc, o Abs, «P(E* [[fl] p*)sConc, definition of abs,_.,

2P(EY [[f] p**)eConcy  Proposition 2.5.1 (i)

Theorem 2.8.2: (Correctness Theorem for Abstract Interpretation)

The abstract interpretation we have developed is correct. That is, given f : o—7,
environments satis{ying the conditions of Theorem 2.7.1, and interpretations of
constants satisfying the conditions of Theorem 2.7.1, we have that if 5§ € D& and

(E® [[f11 p%) (5) = ¢ then forall s € Concg(5), (ES [[f]] p*) (s) € Conc ().
Proof :

This is a direct corollary of Theorem 2.8.1.
Conc (1) = Conc,((E®[{f]] p®) (5)) by hypothesis

2 P(E* [/ p*) (Conc ;(5))  Theorem 2.8.1

]

{E [[f1] ) (s) | s€ Conc ;(5)1°  definition of P on morphisms
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and hence the result.

2.9. Context-free and Context-scnsitive Issucs

In the world of first-order functions and strictness analysis, the information about
arguments 10 functions is truc in all applications of a function. When w¢ move from the
domain of first-order functions to higher-order functions, or 1o using more complex
analyses than strictness analysis. we no longer have that the inforiation about a function
is constant in all applications of that function. In the case of a higher-order function for
instance. the information can vary according to the information about a functional

parameter. Consider the function
g = AMATA x4 f(x)

which has abstract interpretation

ab_, ab ab
AfPAT DA ) P ().

Clearly any information in an application of g is going to depend on the information

given by its first argument in an application.

In our application of the theory in the next chapter, we will label arguments of a
function to indicate how much evaluation it is safe to do of the arguments. From the
above example, it may be desirable 10 try and carry around information which said, for
example, that if a function was given as a parameter a function which was strict in its
argument, then the other function was strict in another of its parameters. This would
mean that definedness information would have 1o be available at run-time, and that some
of the interpretation of the abstract interpretation would also have to occur at run-time,

and we would rather try and avoid the problems this causes.

An attempt 1o solve this problem was made in [Burn, Hankin and Abramsky 1985al,
where it was suggested that apply nodes be labelled with information rather than the
arguments to functions, and so the abstract interpretation could take into account the

contextual information of the function application. Thus, in an application
ghe

of the above function g, we could take into account the information about A in
determining information about the second parameter to g in this application. It is shown
in [Hankin, Burn and Peyton Jones, 1986] that in the case of strictness analysis this gives
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more information than if we had have just labelled the arguments 1o functions with

strictness information. We term such information context-sensitive.

However, the evaluation of functional programs dynamically creates function
applications which were not present in the program text, and so could not be analysed

statically using abstract interpretation. For example, the expression
(if condition then | else f4) ¢

will create the application /4 e or [, e depending on the truth of the condition . As a first
approximation 1o the solution of the problem of finding out information about such
applications. we can determine the strictness information about the arguments to a
function which is true in any application, and so is contexr-free information. Clearly
context-sensitive information will be stronger than context-free information for
applications that appear explicitly in the program.

We will discuss these issues more fully in the context of a particular abstract
interpretation in section 3.4. It will be shown that each type of information gchs
something which the other lacks, and so each is indispensable. The following two
theorems which allow us to test respectively for contexi-free and context-sensitlive

information.
Theorem 2.9.1: {Context-Free Information Theorem)

Iff:0,— - -0,—~7and

) TD(.,:I: = l_

1 n

(Eab[[f]]pab) TDuh T TDJI- SI—T[)JL
a o,y a,

then forall ¢; : o, j#i, forall s; € Conco.l(s_i-). we have

»

¥ [(Mp™ £ e Np™ - EY Ueim \Np* s, E lle,y J1p* -+ E¥ [le,]]p* € Conc (1)

Proof :

14

(Eab[[[]]pab) T a T T ab S_I—T ab
pg Dy D3

141

* TD":b
n

1

A\

Ee ([ Pab Kb [[e]]] Pab - E%® [[c,-_ 11] pab -;Eab [[e[+]]] Pab .- E% [[‘v’n 1l Pab

since T 2 E% [[e;1] p® for all j=i.
o
]

ozt pab UM p® E®[[e ) p% - - E%®(le,_,]} p*® T E%® [[e;, 1) p®®
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- E®(le, 11p%) 5,

Da
where X ' is a new variable

ab

" g (1) potLe/x 1) ED [fe 1) po0l5/x %] - - £9 [le, 1) pobL7/x "]

E® [[x 1) poola/x TV E [y ) p®l&in 7] -+ £ [le, 1 o/ 7)) 5,

D ) —_
(Af ‘ Eab [[]c] vt ei-‘l xcl el+1 A cn]]paD[x_/J:o-’]) S;

(E®[\xT " fe; - eimyx7 ey - e l1p®) s,

=>for all 5; € Conc 5 (s;),
(Esl [[ch' 'fel Troeioy xO, ei+l coey ]] pﬂ) (Si) € Conc,,(t_)

by a slight adaptation of Theorem 2.8.2. possible since Conc is continuous

Dg -
ie.(Ax ES([fey - ey x% eipy - exll %) (s;) € Conc,(2)
i Dé‘: st st o, 7)
ie.(A\x T ES([[Mpd, - di_yx "dy - dy)(s;) € Conc ()
ie. ES [[Mp*d, -~ d;_ys;diyy - d, € Conc,(t)

Theorem 2.9.2: (Context-Sensitive Information Theorem)

Givenf :o0,— --- =0, —7 and an application fe, - e, : 7, if
E® ([N p%® E® [le,]p® - - - E® (e, 1) p% 5, E®le,y,]1p% - - E®[le,]1p® = ¢
then forall s, € Conco‘(sl_-)

ES ([[Mp~ E* [le;N1p™ - - E lle,my]1 p% 5, E¥ lle,4 1 p* -+ E [[e, )] p™ € Conc ()

Proof :



- 59 .
The proof of this theorem follows exactly as in the proof of Theorem 2.9.1. except

that the first two lines are replaced by the following linc :
r= E®[Mp® E®(le,1p® - E®[le,_ )1 0% 5, E® llesy N1 p® -+ - E®[le, 1] p®
i.c. we have equality instead of the inequality on the second line of the other proof.

a

2.10. The Undual Duality.

Those familiar with category theory may have noticed something most tantalising
while reading through this chapter. In section 2.1 we made a fundamental decision about
what we meant by the correctness of an abstract interpretation, and said that it was
correct if the result in the abstract interpretation represented all of the possible results in
the standard interpretation. This meant that a result in the abstract interpretation may
represent  considerably morc values than were recally possible in the standard
interpretation. A related decision was the choosing of the Hoare powerdomain and the

least upper bound operator in defining the abstraction maps for higher 1y pes.

The point is that most of these things have a dual; the dual to making sure that the
result represents all possible values is 10 ensure that it represents a subset of the values;
the dual 1o the least upper bound is the greatest lower bound; in some ways the Smyth
powerdomain [Smyth 1978] is a dual 1o the Hoare powerdomain.

Working in a monotone framework, Abramsky [Abramsky 1985b] was able 1o
develop a termination analysis which was a dual of the strictness analysis he presents.
Because all of the abstract domains are finite, the interpretation is computable even
though ﬂw'absm-u.-f.vﬂK%‘H‘ﬁ\&uo;xs}lowever, it was not possible to raise the termination
analysis 10 a continuous world, and the sets resulling from the obvious induced
concretisation map are not in general elements of the Smyth powerdomain.

We can get some intuition about why this is true by considering the following
example. For each base type A, we define D to be the two point domain 2 = {0.1} with
0<1, and define

abs, : DS~ Do

by

0 il'a=_[_D“
A

absp(a) = || iherwise
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The concretisation map we have given for safety interpretations (Definition 2.2.2) gives

the following interpretations to the values in the two point domain :

COIlCA (0) = {-LD,‘“}
Conca (1) = D}

which says intuitively that 0 represents the idea of definite undefinedness and 1 represents
the possibility that something may be defined.
Another way 1o interpret this domain is to let 1 represent the idea of definite

definedness and O represent the possibility that something may be undefined, defining :
Conc'4 (0) = D}

Conc'y (1) = D3 — U_D_;z}

But here is the problem - the set which we have given for the concretisation of 1 is not a
member of the Smyth powerdomain! To handle analyses such as these, a special
powerdomain has been developed [Mycroft and Nielson 1983], [Nielson 1984], but has
only been applied to a first-order framework.

2.11. Relationship to Other Work.

Alan Mycroft [Mycroft 1981] was the first to apply abstract interpretation to
functional languages, where he developed a framework for abstract interpretation of first
order functional languages over base types with flat domains as standard interpretations

of the types.

There are five other higher-order frameworks that we are aware of. We mention
firstly the theory presented in [Burn, Hankin and Abramsky 1985a] and [Hankin, Burn
and Peyton Jones 1986] 1o which this work is the closest, being basically a generalisation
of the work to allow abstract domains which are more complex than the two point

domain.

Two other frameworks [Maurer 1985) and [Mycroft and Jones 1985] define abstract
domains which model the standard interpretation of the type

D= A+ D—D,

although we note that [Maurer 1985] also has products and lifting in the above equation.
This is in direct contrast 10 our philosophy of using the type structure of the language in

a strong way to allow us to have a computable and as accurate an abstract interpretation
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as possible. It is notable that the framework of [Maurer 1985] is only designed to cope

with strictness analysis.

A further poin! worth noting is that in our {ramework, we have parameterised only
the interpretation of the types and the constants, for this is what we nced for our
applications. llowever, in [Mycroft and Jones 1985] the meanings of A-abstraction and
application are also parameterised, so making a more general framework. The work is

based on logical relations [Plotkin 1980] rather than domain theory.

In [Hudak and Young 1985] the abstract interpretation really is a non-standard
semantics, returning for each function a set of variables in which it is strict. The first-
order casc is equivalent to the first-order case of our work in that it explicitly calculates
the sct of variables in which a function is strict rather than calculating its characteristic
function. To extend the work to higher-order functions, they introduce strictness ladders,
where the ith element in the strictness ladder seems to give strictness information about
the first { arguments given that the function has been applied to i arguments. Their main
problem is that they are dealing in a pseudo-untyped framework. Since it is impossible to
get finite answers for functions with non-finite type, the framework could probably be
reworked to take into account the type information and thus do away with strictness
ladders.

The final higher-order framework is due to Abramsky [Abramsky 1985b] and is
based on logical relations rather than domain theoretic ideas. Two dual analyses, safety
and liveness, are developed in a monotone framework. In particular, they are applied to
developing respectively a strictness and a termination analysis. Furthermore, conditions
are proved which show when the analysis can be raised to the world of continuous

functions.

We mention finally the work of Nielson [Niclson 1984, 1986a, 1986bl. Giving an
interpretation of a language can be viewed as a two step process, firstly translating the
language into some standard "meta-language” (for example, the A-calculus with
constants), and then giving an interpretation of the meta-language. In [Nielson 1984],
which is overviewed in [Nielson 1986al, a meta-language is prescnted which is powerful
enough to give the denotational definition of most programming languages. It cannot

however express the denotation of languages with storable procedures.

The outstanding feature of the meta-language is that it has a two-level type system,
with the intuition that the top-level types represent the type of compile-time objects and
run-time objects have bottom-level types. In using the framework, it is the interpretation
of the bottom-level types that is changed, while the interprctation of the top-level types
is fixed in all interpretations.
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To apply the framecwork to our problem of testing the definedness of functions
expressed in the A-calculus with constants, we note that we wish to change the
interpretation of all of the base types in the language, and so these would be made into

bottom-level types. Their interpretation would then be allowed to change.

Due to a technical restriction on the constants allowed in the framework of [Nielsen
1984, 1986a). namely that they be contravariantly pure. it was not powerful enough 10 do
the definedness interpretation which we present in the next chapter. Basically a type is
contravariantly pure if there was a bottom-level type as the first argument to the
function space constructor. Thus. all our higher-order constants like the conditional could
not be treated in the framework. This situation has been remedied in [Nielson 1986b]
where the restriction of contravariant purity has been weakened, and the resultling theory
is applied to proving the strictness result of [Burn, Hankin and Abramsky 1985a], as well
as the results in [Mycroft and Jones 1985]. When reduced 1o solving the problem of
strictness analysis, the framework looks very much like that presented in [Abramsky
1985b].

2.12. Conclusion

Abstract interpretation is used to provide a computable method of discovering
information of interest about a program without actually having to run the program. In
this chapter we have introduced a framework for safe abstract interpretations of the

typed lambda-calculus with a set of base types and a set of typed constants.

Correctness of abstract interpretation is an important notion, and we began the
chapter by arguing what we meant by correctness. Intuitively, we said that an abstract
interpretation was correct if the answer 10 a calculation in the abstract interpretation
represented all of the possible answers that could have occurred in the standard
interpretation. [From this we moved onto motivating the various abstraction and

concretisation maps, and their forms, that arise naturally.

A correct framework was developed which required three things from the "user” of
the framework. Firstly an abstract domain for each of the base types must be provided
which is a finite, complete lattice. The lattice must be complete because we need 10 be
able 10 take lcast upper bounds; it must be finite because we need to take fixed points,
which requires the testing ol functions at all possible argument values, and finiteness
implies effectiveness. The abstract domains for higher types are then given because we

have said that D 2

&, is just the set of continuous functions D 22— D 2.

Secondly, a strict, continuous abstraction map must be provided, which maps the
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standard interpretation of the base types to the abstract interpretation of the base types.
The abstract domain and the abstraction map should be chosen so they make the
distinctions on the base types in which the user is interested. In Chapter 3 we will see
that the property we are interested in is how much evaluation is safe for arguments of
functions, and so we choose an abstract domain which models the way that the various
evaluators divide up the elements of the standard domains. Given such abstraction maps,
the framework defines an abstraction map abs ; for cach type a. which is the best possible
abstraction map in the sense that it loses as little information as possible while being safe.

Finally, abstract interpretations of the typed constants must be provided which

satisty :
E®[[c )1 p® 2 abs J(ES [[c 1] p)

In Chapter 3 we will derive abstract interpretations of our constants as abstractions of
the standard interpretation of the constants, and so the above condition will

automatically hold.

The framework we have provided is proved correct. It is necessary that we are able
to determine context-free information and context-sensitive information about a function.
where the former is information true in the context of any application while the latter is
true about a particular function application. Our two final theorems give practical tests

for both of these types of information.



Chapter 3
A Definedness Interpretation
and its Application to

Changing Evaluation Strategies

The framework of Chapter 2 is applied in developing and proving correct an abstract
interpretation which gives the definedness levels of functions. This is used to show how

we can safely change the evaluation strategy for a functional program.

Abstract domains will be developed for the base types by considering the definedness
level of elements of the standard interpretation of the base types and the way that
different cvaluators divide up the domain in that they preserve some elements of the

domain and not others.

We determine abstract interpretations for the constants of our language by deriving
them as the abstraction of the standard interpretation of the constants. This gives us the
best possible approximation to constants while still staying within the limits set by the
theory of Chapter 2.

The correctness of the abstract interpretation follows as a corollary of the correctness
of the framework of Chapter 2. We discuss with the specific example of this
interpretation how context-frece and context-sensitive issues arise, and give two
mechanical tests 1o find this information using the abstract interpretation that has been

developed. Again these are just corollaries of the corresponding theorems in Chapter 2.

Using the abstract interpretation, we are able to show when it is safe to change
evaluation strategies by doing some evaluation of the arguments to a function, either in
parallel with the function application in a parallel system or before the function

application in a sequential system.

The abstract domains we use in this chapter - the two point domain and the four
point domain - are due respectively to Mycroft [Mycroft 1981] and Wadler [Wadler
1985]. The abstract interpretations for list constants are also due to Wadler, however
this chapter contains the first proofs of their correctness. Simplification rules for
expressions involving the abstract interpretations of these constants are also new to this
work. Abstract interpretations for the other constants have appeared elsewhere, for
example [Mycroft 1981] and [Burn, Hankin and Abramsky 1985al, with proofs of their

correctness appearing in the latter.

- 64 -
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3.1. Abstraction of Base Domains and Properties of Abstraction Maps.

Choosing an ‘abstract domain and abstraction functions which capture the propertics
of interest seems 10 be one of the hardest things in abstract interpretation. We have two
intuitions about the way abstract domains can be defined for the base types in our
application. Firstly, since we are looking for information about the definedness of
functions. we consider what abstract domains we might develop by looking at the
definedness structure of the domains which are the standard interpretation of the base
types. llowever, since we really want to use the abstract interpretation to change
evaluation mechanisms by allbwing soine arguments to functions to be evaluated, and our
argument in section 1.3 said that this requires secing which elements of the standard
interpretation a function preserveg, we look at which elements the various evaluators
preserve. It turns out that both intuitions lead to the same abstract domains, namely the
two point domain of [Mycroft 1981] for flat base domains and the four point domain of
[Wadler 1985] for list data types.

3.1.1. Defining Abstract Domains and Abstraction Maps From the Definedness
Structure of the Standard Interpretation. -

Let us first consider the case of a flat domain such as the standard interpretation of
integers and booleans. Here there are two levels of definedness - either something is
undefined (i.e. bottom). or it is totally defined. Thus, to capture the definedness
information for such domains, we can define a simple abstract domain and abstraction
map. Denoting the type by A, we have that DY is a flat domain, and we can define DA“b
= 2, where 2 = {0.1}, with 051. Then we define

abs, : Df— Df°
0if a= iDAq
abs (a) = 1 otherwise
We have chosen Alists, that is, lists of clements of type A as our prototypical
example of a domain which is an infinite sum of products. Initially, we will simplify the
discussion by restricting ourscives to the case where the standard interpretation of A is a
flat domain so that, for cxample, we are considering list of integers or lists of booleans.

The type of Alist is given by the recursive type equation
Alist= 1 + A X Alist

(where 1 is the one-point domain, + is separated sum and x is cartesian product)
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and the standard interpretation, as we mentioned in section 1.5.2, is obtained by solving
this over the catcgory of domains [Smyth and Plotkin 1982] to give

st - st ; st !
Diye = Di*nit U DF*Lp. U DFe

How might we go about defining an abstract domain which captures the definedness
of elements of D3,,? At first sight we may think of using the fact, since we are for the
moment assuming that the elements of the list are from a flat domain, that for each
element of the list, we have two levels of definedness - either the element is bottom or it
is not - and so we could represent the strictness information for a list as a list of 0's and
1's. The theoretical development of Chapter 2 required that we have a finite, complete
lattice as the abstract domain for any base type, so clearly we cannot have an abstract
domain which contains a list of 0's and 1's for every list in the standard domain and
anyway, such an abstract domain would be useless because we could never do all of the
calculations required! A way lo obtain finiteness of the domain would be 10 choose some
n and have only lists of length at most n in the abstract domain. However, this is only
ever going to give us information about the behaviours of a functlion on the first n
elements of a list. Furthermore, the abstract domain would have 2" elements in it, and so
it would be computationally very expensive to find out any information about functions
using it.

The main problem with the above abstract domain is that it treats the elements of a
list in a way which is not typical of the way we use lists in programs; the first n
elements of the list are treated differently from the rest of the elements of the list,
whereas lists are used most naturally in the case that we wish to treat all of the elements

in a uniform way.

If we ignore infinite lists for a moment, then we notice that we can divide up the

standard domain for lists into four natural subsets :

(i) the set containing only _LD{,', i.e. {_LD;; K
Alnt Alist

(i¢) the set containing all of the partial lists plus _]_D‘,; e DY* | Dt
Alst nt

ab 2t Ong,
(iit) the setl containing finite lists with(boltom element: , the partial lists and |

D
H st st st K

i.e. DY * | Di. U oi*L pyPA *nil: and

(iv) the set containing all lists i.e. D} -

In going from one subset to the next, we are adding elements which are more defined in
some way: in going from (i) to (ii), we have added lists which have at least one element in
them, but still have an undecfined tail after a finite number of elments from DY, and the
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extra elements added in (iii) represent becoming more defined by replacing the undefined
tail by nil, and the final addition in (iv) adds all of the fnite lists which have no bottom
clements.

We can define an abstract domain and abstraction map which captures these various
levels of definedness. Let us use the four distinct elements | ;. I, F and T, . ordered by

1, €1 < F <T7T,.asourabstract domain D&, . and define
. t st b
abs g (D:m.\‘l —-Dy« )= D g

..LI, lrL:_LDu

Alest

1if LeDFDE*L s
(L) =
ab-fAllS[( ) F if Le D‘gl D:le[ * nil (T)

T, if Le(DY - {_LD;J)*.nil

Moving from one level in the abstract interpretation to the next corresponds to being an
clement in the standard interpretation of Alist which is in one of the sets (i) to (iv) above

but not in any proper subset of that set.

We can add infinite lists into the above discussion by noting that we need to have a
continuous abstraction map for each base type. Since all of the approximations to an
infinite list (i.e. partial lists) are abstracted to I, we must have that the abstraction of
any infinite list is also / by the delinition of continuity. Thus we finish the definition of

the abstraction map for Alist :
. ., b
abspri © Dist = D atis,

LpitL=1,,

Alist
1if LeDFDY*L . U DFC

b5 ggis (L) =
absaa (L) = o LeDF.L D *nil

T, if Le(DF - (L pphynil

It is worth noting that with this domain we can see the dual reading of the elements

in the abstract domain which was introduced in section 2.1. From the point of view of

(¥) The elements J-L JI.F and TL correspond respectively to BOT, INF, BOT— MEM and

TOP— MEM of [Wadler 1985]. They just form the four point domain {0.1.2,3}, but we have
given them different names so that the first two elements are not confused wijith the elements of the
two point domain, T Shands {:)l *Topake ond F {ol Tkt (Wt at \east e L

vk )
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the map abs,;,,, . an element in the abstract domain represents a single list. However, if
one was to take the view of the map Concy,,, . then the elements |, to T, represent
respectively the sets (i) to (iv) above.

Before discussing the development of abstract domains using intuitions fromm the
various sensible levels of evaluation, we note that the definedness interpretation of the

type o — 7 is induced as in section 1.5.2 by

Dab

&, =DP =D

3.1.2. Defining Abstract Domains and Abstraction Maps From the Sensible Levels

of Evaluation.

In section 1.3 we discussed intuitively that we needed to find out when a function
was defined so that any evaluation strategy made sure it preserved the arguments to a
function where the function was defined. To see whether it is safe 1o use a particular
evaluator for an argument to a function, we must check that the function really is
undefined for the elements which the evaluator does not preserve, and so the evaluator
preserves all of the elements it is supposed to preserve.

Each of the evaluators divides up the standard interpretation of a type into two
subsets, those elements which it does preserve and those which it does not. Definition
1.3.3 defines the evaluators we consider according to the elements they preserve. Since £,
represents doing no evaluation of an expression, and we wish 1o see if we can change the
evaluation strategy to do some evaluation of expressions which are arguments to

functions, then we need only consider evaluators which do some evaluation.

For a flat domain we have that £, is the only sensible evaluator which does any

evaluation. This evaluator divides up the domain as shown in Table 3.1.1.

Table 3.1.1
Division of Domain by ¢,

Evaluator ]} Elements Preserved | Elemerus Not Preserved

& | Di-l,. T,x
|

The evaluator initiates a non-terminating computation only for the bottom element,
and so we need to be able to distinguish in our abstract domain the difference between the
bottom clement and all other elements. Thus we need a two point domain for our

abstract interpretation.



-69 -
For the type Alist, there are three sensible evaluators which do some evaluation.
These divide up the standard interpretation as shown in Table 3.1.2.

Table 3.1.2
Division of Domain by £,, £, and £;

? Evaluator l: Elements Preserved | Elements Not Preserved

i i

r £ fum =L Da‘im ] 1 e !
3 D *nil DY | it TNE
€3 ;: (pg-{L DA"})*-""Z ; D> | Dy U o¥“ U DI+l DA‘"DX *nil

We thus need to be able to distinguish between the sets {_LD,} L, D,i’*.J_D,z U
Alrst Alist
DF¢. Df*Llp. U DF* U DF*Ll,.Di*nil and Dfj,. We saw in the previous

section that we could do this with the four point domain and defining the abstraction
map abs 4, appropriately.

' We have seen that for functions there is only one sensible evaluator which does any
evaluation, namely £,. Thus as was the case for flat domains, when we are asking how
much evaluation can be done of an expression representing a function which is an
argument to another function, we need only to be able to test for undefinedness using the
bottom element of the abstract interpretation of the appropriate function space. All the
extra information in the abstract domains for function spaces is to allow us to find out

the definedness of various functions.

3.1.3. Definition of the Abstract Domains and Abstraction Functions for Base
Types.

In the previous two sections we have attacked the problem of finding abstract
domains and abstraction functions for the base types from two natural intuitions and
found that they pointed 1o the same abstract domains and abstraction maps for the
various interpretations of base types. We thus formally make these definitions in this

section.

If A is a base type whose standard interpretation is a fiat domain. then we define
D ab
A

Definition 3.1.3.1:
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DR® = 2, where 2 = {0.1} with 0 and 1 distinct elements and 0 < 1.

O
We define the abstraction map :
Definition 3.1.3.2:
abs, : DY— I)A"b
Oifa= | Dy
abs 4 (a) = 1 otherwise
O

For the type Alist, we define the abstract domain, where we lift the restriction that
DZ has to be a flat domain, but we will still use the two point domain for the abstract
interpretation of elements of the list :

Definition 3.1.3.3:

Db, = {1, .1.F.T,), where | ;,/, F and T, are all distinct and are ordered by
1, €£71sF<T,.

O
We define the abstraction map :
Definition 3.1.3.4:
abs pgise © Diust = D
Loifl=lpy,
1ifLeDIDI* 1y, U DF®
Alst
Bsana (L) =15 iy e D,{?‘im,pg’*nil
T, if Le(DF— u,,;,})*.m'z
O

Note that our abstract domains for the base types are finite, complete lattices and
that the abstraction maps for the base types are strict and continuous as required by the
theory of Chapter 2.
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3.1.4. Some Useful Facts.

The following facts and lemma are useful in the ensuing development.
Fact 3.1.4.1:

TFor all types o, abs 4 is continuous (Lemma 2.2.8 (i)).

O
Fact 3.1.4.2:
FFor all types o, abs , is strict (Lemma 2.2.8 (iii)).
O
Fact 3.1.4.3:
For all types o, abs 5 is bottom-reflexive (Lemma 2.4.4).
a

Lemma 3.1.4.4:
I'or all types o, abs ; is onto.
Proof :
From Lemma 2.4.6 we have to provide a continuous function abs, ! : D#— D}

which is a right inverse of abs, for cach base type A, and then the result follows.

For D#* = 2 we can make the following definition :
abs,~1(0) = J—D,,"
absy, N(1) = a € D, a;é_l_DAst

For D@, asuitable abs ;) : DA, —~DF., is:
abs g (L) = L D,
abs g (D = | peLoy,
abs gl (F) = | Dﬁ,,.nil
absu;l (T 1) = anil  a€DF. a¢-LDA"

Clearly abs,~ ! and abs47;} are continuous and have the required inverse property.



Fact 3.1.4.5:
For all o, Conc o (1 ) = U‘Dé’ } (Lemma 2.4.7).

3.2. Abstract Interpretation of Constants

To be able 10 prove the main results of this Chapter, we need to have abstract

interpretations of constants which satisfy
Eab (] p% = abs S (E¥ lle g 11 p%).

for all constants c¢,. In this section we derive abstract interpretations of the constants in
our language as abstractions of their standard interpretation (c.f. [Burn, Hankin and
Abramsky 1985a., Abramsky 1985b], {Nielson 1986b]). This means that the above
condition will be automatically satisfied.

As the derivations are rather tedious, we will give the abstract interpretations of the
constants below. However, both because we feel that the proofs provide valuable
examples of the use of this method 1o determine optimal abstract interpretations of
constants, and because we must assure ourselves of their correctness, we have included
them in the following subsections. The proof of the abstract interpretation labelled n
below is given in section 3.2.n.

To give the abstract interpretation of the conditional, it is useful to define the

following function :

Definition 3.2.1:
ifg :2=D&-D&
ﬁ(o.:) = J—D;,’"
ifg(1.5)= s O

It is clear that if, is continuous. A reduction rule for this function is given in Lemma
3.2.2.2.

We also note that Lemma 3.2.1.2 is more general than just proving the correctness of
the abstract interpretation of strict, binary arithmetic and logical operators.
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Definition 3.2.2:

The abstract interpretations of the constants in our language are defined below.
Throughout the rest of the thesis we will denote the abstract interpretation of a

function (including a functional constant) by writing its name with a bar over it.
() E® ([Nl p® = AxfAxfx, and x,.

if / is a strict, binary arithmetic or logical operator.
(2) E® [[ifpppyrg o= 1 PP = Ax2ay D A% iy (x, Uty.zh

where || for function spaces is calculated pointwise. ie. (Jif.ghx =
LIHf(x).g(x)).

ab a - BA T =
() (EP [Urdll p®) L = hd L = 1 otherwise
1, ifL=1,
(@) ()] p®)L = dL = {1 ifL=1
TL otherwise

I'ifL=]1, or L=1
(5) (E® [[consl) p®®)a L = consal = { Fif L=F or (=0 and L= T

lpg ifL=1,
f11 if L=1
F1AUGFOT,)ifL=F
SUG1T,) ifL=T,

(6) (E® [[casell p)5fL = casesfL =

O

There are some simplification rules for expressions involving applications of the
abstract interpretations of Ad, il and cons. To give them, we will first state the standard

definitions of two terms.

Definition 3.2.3:
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A function f € DJ —---—D[ ., where each D) is a complete lattice, is

multiplicative in its ith argument if
fsy oo s M) sy o sp = Usy sy o sp)) T sy -0 8% 5p)
O

Definition 3.2.4:

A function / € D§ — -+ =D/

., Where each D{,i is a complete latlice, is additive

in its ith argument if

4

fsy s U ) sy sy = sy e s s U sy e 5T e sy)
0

Proposition 3.2.5:
Both id and ¢« are multiplicative and additive.
Proof :

Our lattice D&, is a chain, and so the greatest lower bound or least upper bound of
any pair is one of the pair, and hence the result follows from monotonicity of Ad
and .

We have the following proposition for simplification of expressions involving cons.
Proposition 3.2.6:
cons is multiplicative in its argument considered as a pair (and hence in each

argument separately) and is additive in each argument separately, but not in its

arguments considered as a pair.
Proof :
The proposition follows by tedious calculation, except for the last part which we

show by exhibiting a counter-example.

éons(1.1 ;) I eon0.T ) = I|JF

= F
whercas

Gns(<1.],> |J <0.T,>) = éams(1.T,)



and the two are clearly unequal.

O

Thosc willing to take the abstract interpretations of the constants on trust may skip
sections 3.2.1 10 3.2.0.

While rcading the proofs of the correctness of the abstract interpretations of
functions, recall that abstraction is modelling the idea that a function "is at most as
defined as" something, and so we must pick the maximum value that is possible. This is
why we have the least upper bound in the definition of the abstraction maps. So in
proofs of the correctness of abstract interpretations, we will often just try and find out
what the most defined case is. For example, in Lemma 3.2.4.2 about thc abstract
interpretation of ?/, we find that if #/ is given a finite list with bottom elements in it, it
may return either a finite list with bottom elements in it or a finite list with no bottom
elements in it (if the only bottom element was the first element of the list). Since it is
possible for 7/ to return a finite list with no bottom elements in it, then the abstract
interpretation must acknowledge this fact, and will thus choose T, as the abstract
interpretation of the result in this case. Similar considerations apply to all of the abstract

interpretations of the other constants.

3.2.1. Abstract Interpretation of Strict Functions.

et A be a base type with abstract interprctation the two point domain. If we

denotc A by A'and A~ A" by A"*! thenif f : A™*! is such that for all i
¥ MeNay -+ ayLprasy e = Lpy

i.e. f is strict in cach of its parameters, and
ES(lfay - allp*% = Lpy=> E* la ]l p% = lps

for some i, i.e. a gencralisation of ] -reflexivity, then define the abstract interpretation of
f by:

Definition 3.2.1.1:

FMp® = Ax? - Ax2x,and - - andx,.
1 n 1 n
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Thus functions like *+ ' and "X ' have abstract interpretation Ax2Ay2x and y.
Lemma 3.2.1.2:

Given such an f,
E®[[MMp® = abs,,..(E* [/ p*)

Proof :

We prove this by induction with the base case being n = 2. In this proof we will
denote the standard interpretation of f by f*.

(absq 4 (%)) 0 = Plabs, (f¥ x) [ x€ Conc 4 (0))° Proposition 2.3.3
= labs, (f"_I_DA,,)}“ Fact 3.1.4.5
= o} since f* and abs, are strict
=0 (P10)

(absgs s (fD) 1 = labsp (f ¥ x) | x€ Conc 4 (1)}° Proposition 2.3.3

abs, (f* a) la€ DS}°

Li{o.1}° since f* is strict and not lpe
A—A

Therefore, by extensionality, abs,_, , (f*) = Ax2.x. In the inductive step, we assume

the result foralln < k.

(abs ,ur(f*)) 0 = Y {absA,(fS’ x) | x€Concy (0)}° Proposition 2.3.3
= Hlabs, o (f* L pl° Fact 3.1.4.5
= H{absAk(Ax?‘s‘t - )\ka_‘s‘ll A Dd,z)P since f¥ is strict
= Ax?---AxE 0 since abs 4, is strict

(abs 4r(f¥N) 1 = Wlabs, . (f* x) | x€Concy (1}° Proposition 2.3.3

= Ulabs,,(f* a) |a€ DFI’
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= Hlabs, . (f* a) la:t_l_D:,.aE Die since f* is monotonic
= H{}\xl?' . ')\xkz_,.x, and . 'xk_]}"

by inductive hypothesis for (f ¥ a) satisfies the condition of the Lemma

= Axi---Axt x;and - and x,_, (P10)

Hence, abs ,441(f*) = Ax{ - Ax®xgyand - - and x,.

3.2.2. Abstract Interpretation of the Conditional.

For defining the abstract interpretation of the conditional, it is useful to define the

following function :

Definition 3.2.2.1:

ify:22D2-D2
E(O.-f) = ‘LD(‘,’"
E;(l,s)= s (]

It is clear that if, is continuous. The rules defining if, imply the following
reduction rule :
Lemma 3.2.2.2:

Ife, € DS (=2),e,€ D, ande; € D&, then
(fo_rley.e)) ey = ife).eyey)

Proof :
We have two cases :

(Je, =0:

(ify_,(0.e,) ey (—LD:,"'.., Yey

= .J_D;zb

if;(0.e5e3)
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(ii)e, = 1:
(fgmp(le))e3 = esey

- TG

(]
We can now define the abstract interpretation of the conditional.
Definition 3.2.2.3:
E® ([l gm g o 107 = Ax 22528 X228 (e Lty 2D
where | for function spaces is calculated pointwise. i.e. (L{f.g)) x = LJ{f(x).g(x)}.
a

The abstract interpretation of ify,;— y— o —¢ iS clearly continuous. In the case that o
= A, wc have that

E® [[ifpops as a a 1 P20 = AZ2AF 2N Z2I, (£, LU15.20)
= Ax2Ay2Az%xand (For )

and so this abstract interpretation of the conditional can be seen as a generalisation of the
interpretation given in [Mycroft 1981].

Lemma 3.2.2.4:
E® ([ifpooi~ o~ o~ ol pe = abspeoimg— o~ (E™ ifpooi= g g -1l P¥)

Proof :

In this proof we will denote the standard semantics of ifypp)— o= g =g bY if¥.

ab’bool—-(r—00'—~0'(ifﬂ)

ab ab
= A22AFP8 A2P labs o (ifH(x .y .2)) | abs , (x) S F.abs 5 (y) §.abs , () S 2}°
Proposition 2.3.1

(@bspopi— g — 0 — o (i) 0
ab ab
= ayPe azPs .E]{abso.(if"(lbﬂﬂ .y.2)) labs (y)Sy.abs ;(2)<z)°

since abs 4 is | -reflexive
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ab ab
= )\)TD" AzPe ~l:“¢lb~fo-(lp «° by the standard semantics of the conditional
a
_D ab _Dglr .
= Ay ° Az -HU_D‘.’» ° since abs 4 is strict
_D:b _Du
=SAFC AT L pw (P10)

(abSpogims g g g (D) 1

ah alr
AFPE NP labs o (f(x .y 2))1x€ D, abs o (y) <F.abs o (z) S F°

ab ak
)\jv'D" AzPe 'H{abfo(ipét ).abs o (y).abs ;(z) | abs s (y) S y.abs ()< Z}°

by the standard semantics of the conditional

ab

A72F 228 Lis.ae ($)

by monotonicity of abs ; and since abs ; is onto (Lemma 3.1.4.4)

Dy  _Dp2 -
AyTC Az Uy
since |4 X°= | | X for finite. complete lattices [Abramsky 1985b]

and so we have the result by extensionality.

a

Note that we have equalily in the step marked by (§), where we would have to
replace this by < if the abstraction map for the type o was not onto.

3.2.3. Abstract Interpretation of hd.
Definition 3.2.3.1:

hd = E®[(hd])p®: D2, —~2

oif L=1,

hd(L) = (E® [[nd]] p%) (L) = 1 otherwise
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We note that id is continuous.

Lemma 3.2.3.2:
E (1)) p% = abs gy p (ES [Rd]] p*)
Proof :
In this proof we will denote the standard seinantics of hd by hd ¥.

(abs gp,0i 4 (Hd ™)) L=y labs o (1d (1)) | 1.€ Conc 44, (I))° Proposition 2.3.3

@I L = 1, then the only L in Concpy, (L, ) is | (Fact 3.1.4.5) and so we

D
obtain | py+ Tor the above as both id * and abs, are strict.

(i) If L is any other element of D&, then the concretisation of L contains lists, L,

with defined heads. and abs, (hd *‘(L)) for these will be 1 and hence the result.

O

If we were to use the two point domain for ‘the abstract interpretation of the type
Alist , then it can easily be shown that abs g 4 (hdS) = Ax2x.

3.2.4. Abstract Interpretation of 74

Definition 3.2.4.1:
= EC Ul p®: DRy — Diby

1, ifL=1,
(L) = (E®[[e))p®®) (L) = {1 ifL=1
TI, otherwise

We note that ¢ is continuous.

Lemma 3.2.4.2:
E ()] p® = absppgy . pris (EX (1)) p™)

Proof :
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In this proof we will denote the standard semantics of ¢ by «*.

(@bs ppisim asise W) L = . labs gy (115(L)) | LE Conc gy, (L)} Proposition 2.3.3

) If L is |, . then as Concyy, is strict (Fact 3.1.4.5), and ¢/* and abs 4, are strict,
we have the result.

(i) If L is 1, then L is in the concretisation of Z if and only if L is the bottom list
or partial or infinite. Taking the tail of such a list returns one of the bottom list, a
partial list or an infinite list, and the least upper bound of the abstraction of these
things is /.

(iii) If L is F or T ,, then the concretisation of L contains, besides other things, all
the finite lists. Taking the tail of a list which has only an undefined head returns a
list with no bottom elements, and so we can get T, for both F (finite lists with
bottom elements) and T,. We obtain the result since we take the least upper

bound.

O

If we were to use the two point domain for the abstract interpretation of the type
Alist , then it can easily be shown that abs;— 4 ((0%) = Ax2x.

3.2.5. Abstract Interpretation of cons.
Definition 3.2.5.1:
&ns = E® [[cons]) p? : 2 D‘,{’&, - D,{Iﬁ“

The value of cons(a.L) foreacha € D and L € DS, are given in Table 3.2.5.1.

Table 3.2.5.1
Abstract Interpretation of cons

IZ\E 0 1
1, 111
I I 1
F F |
TL TL
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We note that cons is continuous.

Lemma 3.2.5.2:
E%® ([cons]] p® = abss_. aris— arist (ES lcons]] p™)
Proof :
We denote the standard semantics of cons by cons® in the following proof.
abs 5 ppisi— avise (cons ) & L =

L {abs 4y;5, (cons a L) | a€ Conc 4 (@) . L€ Conc gy, (L)}° Proposition 2.3.3

We give two examples of the calculation for two pairs of arguments from the table.
The others follow in a similar manner.

(i) (@bs ps ppsss— nris; (cons ) 0 1, = Blabs py, (cons (L Dq""LDi:'n DIN

Fact 3.1.4.5
= Y
=/ (P10)

(1) (abs g ajisr— arise Ccons*)) 1 F
= P{absyyy, (conss' a L) | a€ DS . L€ Conc gy, (F))°

The most defined result of the above formula is going to be when we have a total

element for the first argument 1o the cons™ and an element from Di*.| ..Di*nil
A

for the second element, in which case cons* a L is a finite list with bottom elements
and so the formula collapses to F, as in the table.

The other six cases follow in a similar manner.

a

If we wish to use the two point domain for the abstract interpretation of the type

ab
Alist , then it can easily be shown that abs4_. gyisi— asis; (cons ¥) = Ax 2 )\33!%. 1.
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3.2.6. Abstract Interpretation of the Case Statement.
Definition 3.2.6.1:

case = E® [[case]l p®: DG~ (2~ DG, ~D®) DL, DL
Lpw ifL=1,
f11 if L=1
F1AUGoT )ifL=F
FSUGF1T,) ifL=T,

éases[L = (E%[[case]l p??) 5L =

We note that case is continuous.

Lemma 3.2.6.2:
E® [[case]] p®* > abs g (A= atist— )= Atist—a (E™ [lcase]] p™)

Proof :

We denote the standard interpretation of the case statement by case in the
following proof.

(abs g (A~ Atisi— o )= Alisi— g (case ™)) T L
= Plabsg(case™ s f L) | abs o (5) $5.abs g pjisy— o () Sf.abs g5 (LY S LY (§)

Proposition 2.3.1

We will give two examples for L.
(JIfL = ],,thenl = -LDA‘;AL in (§) by Fact 3.1.4.5, and case* SI-LDA’M = 11);"

The result then follows from the strictness of abs .

(ii) If L = I, then we have that L € DF*1py U DF“ and so case™sfL
Alst

fChd(L).el(L)). We have that @ = hd(L) can be any element in DY, and that L'

tl(L) is in the same set as L. Hence (§) becomes
iabs o (f @ L') [ abs gy ppisr— o (1SS abs 4 (@) € 1,abs gy, (LS I

There is no other way to simplify this other than by expanding out abs ,(f a L') and
replacing = by <€ by the semi-homomorphic property of abstraction (Proposition
2.6.1) to obtain
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Hiabs o (f @ L) | abs gy ajisg— o (IS S .abs4 (@)S 1.abs 4, (L) STV

S Hilabs g aisi— o () (abs 4 (@) (abs 5y, (L))

Labs sy psisy— o (IS abs, (@)K 1.abs 4, (L) STV

i1

f11 (P10)

The other two cases follow in a similar manner. We note that the inequality is
produced in both of the other two cases for the same reason as the above. Finally, 5
only appears in the case that L is T, asnil is a total list and so only appears in the

concretisation of T .

O

This is the only constant we consider for which we will not be able 1o obtain
equality between the abstract interpretation and the abstraction of the standard
interpretation (except for the conditional if tﬁe abstraction maps of the base domains are
not onto). This is because case is not only an higher-order function, but the functional
argument is applied to (parts of) one of the other arguments, and so our requirement
about safety means we end up with the inequality.

If we were to use the two point domain for the abstract interpretation of Alist, then
it can easily be shown that

(abs 5 (A= Alist— o 1= Alisi— o (E™ [lcase]] p™)) < g

where

Loy if L=0
5LI(f 1 1) otherwise

gs fL=
3.3. Some Examples of the Abstract Interpretation of Functions.

Having determined the abstract interpretation of constants, we are now able 1o give
some examples of the abstract interpretation of user-defined functions. How we interpret
these abstract interpretations is the topic of the next two sections.

We first give a couple of examples of non-recursive functions.
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g = }\finl—'inl‘xxint‘)\yinl._*_ x ([y)

h

g(Aziz)5

where we have written the '+’ in prefix form to make explicit where the function

applications are. We¢ nolc that from Definition 3.2.1.1 that

E®([+1]p% = Au?Aviuand v

Il

g = L%l p**
= L[\ ) yint 4w (f Y]] p%
= APTRE [ ™Ay ™o+ x (f ] p%lT//)
= MPTIARZED® [Ny ™.+ x (f Y]] p2Uf7S . %/
= AMPT2A2AFRED [+ x (f ) p2UJ7[ ./ x.51y)
= A2T2ARIAFI(ED [+ x]] p®®WNE® [[f y]] p))
where p® = p®[f/f . %/x.5/y)
= AMPTIARZAFZUED [+ 1] p®NE® [[x]] pPNUE [[f]} 22 NE? [[y]] %))

= APT2AR2A05 2 (w2 Av 2u and v) (0%(x))) () (p%'(y)))

= AMPT2AF2AF (w2 Avivand v) X) (f )

A2 2ax2AyiZand (f )

Similarly,

E®[[n]] p% = ((E® [[g]] p?) (E [[Az ™ z1]p%®)) (E® [[5]] p2)

(A f22A720525and (7)) AWE22)) 1

= \y2y

We give an example of a recursive function.

fac = fix(\fRT R (= 1 0,1.X n (f (= 1 1))))

fac = E® [[fac]] p

E® [[fix(A f™ ™ A n 1 if(= 1 0.1.% n (f (= n 1))))]] p%
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= fix(ED[\f ) p 0 i6(= 0 0.1.X n (f (= n DN p%)

The abstract interpretation of Af ™™™ \p ™ if(= n0,1.x n (f (= n 1))) follows as in the

previous example, and we end up with
E®[[facll p® = px(A\f?"2A7 27 and (1 or f(7)))

To finish off the abstract interpretation we must now calculate the least fixed point. The
bottom of the domain 2—2 is Ax2.0, and so we have the following sequence, {fac, !, of

approximations 1o fac :

(8]

facy = Ax20
fac, = AR%7and (1 or (Ax2.0) 7)
= A% and (1 or 0)
= zTl7
fac, = 77
and thus

E®([facll p® = AR A.

Although we could have simplified the above cxpression straight away 1o Ar?7,
noting that 1ore = 1 and fand 1 = 7, we chose not 1o because 10 have a fixed pointing
algorithm based on equivalence of expressions means we have to deal with the problem of

finding canonical forms, and we are after all interested in functional equality.

It is useful to gather together the abstract interpretations of some functions. Besides
the constant functions and functions we have already discussed, we present the abstract
interpretation of the following functions, where we allow ourselves the luxury of using
the name append in the definition of reverse.

sumlist = fix(NfAIS=mt ) [ AU ca5e(0 Ax A ALY x+ f(L,).L)))
length = fix(\fAUst=int \ J Alst ca5e(0 Ax A ANLYSE1+f(L5). L))

append = fix(\ f AUt Alist— Alist .)\L’,‘“‘“.L ?li"’.case(L > AxA .)\L‘?lis’.cons(x SL3.L,y)).Ly))

reverse = fix(\fAlSt™Alst )\ [ Alist cqce(nil Ax® N L4 append(f L ,.cons(x .nil))., L »))

map = fix(Af(ATBImAlist=Blist ) o A= B ) [ 8list cqco(ni] \x 4 AL5S cons(g x.f g Ly).Ly))
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(Notice how we have restricted the type of the first parameter to map, the function g, to
being A— B and not the more genecral o~ 7 because we arc working with a maonotyped
framework, and we have chosen the simplest type for this example.)
Written in a more familiar notation [Turner 1985], these definitions are :
sumlist [] = 0O

sumlist x:xs = x + sumlist xs

length f1=0
length x:xs = 1 + length xs

append [1 L = L
append x:xs L = x:append xs L

reverse [] = []
reverse x:xs = append (reverse xs) x:nil

map f{} = []
map f x:xs = (f x):map f xs
The abstract interpretations of these functions are given in the following five tables.
In each case, the abstract interpretation of a function is denoted by puttihg a bar over the
name of the function. For example, sumiist is the abstract interpretation of sumiist .

Table 3.3.1 gives fx, x, where f is any binary function satisfying the conditions of

Definition 3.2.1.1, for example, +, X and or.

Table 3.3.1
Abstract Interpretation of Binary Strict Functions

X, \xy 0 1

|
!
i
F0 00

1 IIOi]

Table 3.3.2 gives the abstract interpretation of functions of type Alisst—A where the
abstract interpretation of the type A is 2. Abstract interpretations of functions of type
Alist— Alist are given in Table 3.3.3. Table 3.3.4 gives the values of append L, L,. The

values of map f L are given in Table 3.3.5.
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Table 3.3.2.

L sumlist(L) | length(L) hd(L)
iy} | 0 0 0
/ : 0 0 1
i 0 1 1
T, ; 1 1 } 1
i

Table 3.3.3.
Abstract Interpretation of reverse and 1l

L |l Feverse(L) ti(L)
1, 1, 1
I 1, I
F T,
Te Te TL

Table 3.3.4.
Abstract Interpretation of append

{EZT! 1z ! F T
j 1, ‘ 1, I 7 7
7 1, 1 1 1
F 1, 7 F
Lo 1. ! F TL

3.4. Correctness of the Definedness Interpretation and Context-free and Context-

sensitive Issues.

We are now in the position where we are able to prove the correctness of our
definedness interpretation and provide theorems for determining context-free and
context-sensitive definedness information. Some examples will show why we need both

types of information.
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Table 3.3.5.
Abstract Interpretation of map

Z\f : AT20 . AZZx | AF4
1, 1, ' 1, 1.
1 | 1 Iy
: F ;I Eoo | Trno
i T L

The context-free and contextl-sensitive theorems are applied in the next section to
prove two theorems which allow us to safely change the evaluation strategy by doing

some evaluation of some of the arguments to a function.

Theorem 3.4.1: (Correctness Theorem for the Definedness Interpretation)
Suppose f : o—7 and p® 2 abs.p¥, and (E®[[f]]p®®)§ = ¢, then for all s €
Conc o (5), (ES [[f]} p*) s € Conc ,(2). .

Proof :

We have provided abstract interpretations and abstraction maps for the base types as
required for the theory of Chapter 2. Furthermore, we have given for each constant

¢, an abstract interpretation which satisfies :
E®[lcg11p% 2 abs o(E* [lc 41} p*)
as required by Theorem 2.7.1. Hence this theorem follows as does Theorem 2.8.2.
O
Before we give the context-free and context-sensitive theorems, we will show how in
this interpretation each type of information gives something which the other lacks. For

first-order functions over flat domains, the context-free definedness information is

sufficient to ensure maximum parallel evaluation. Considering a function like
f= Ax®Nif x= 0 then y else f(x—1.y)

we see that f will be strict in both of its parameters in all contexts.
However, if we have more complex domains for the abstract interpretation of the
base types than the two point domain, or if we havc higher-order functions, then this is

no longer the case. For example, if we have a higher-order function, say
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g = Afinl—’mt')\xint_)\yml‘x + /(y)

we see that the strictness of g in y depends on the strictness of the parameter f. Thus in

the context of an application of g to a strict function, say
g(A\z™z)e

the application g (Az"™.2) is strict in its parameter. while in an application of g 1o a non-

strict function, say
g(Az"5)e

we can see that the application g (Az™.5) ¢ does not need the value of e.

Thus we see that the maximum potential for parallel evaluation is only captured if
we lake into acoount the contextual information in applications.

Seeing as such contexr-sensitive information is always stronger than context-free
information, the question arises as 1o whether we can dispense with context-free
information. Unfortunately the answer is no, and the reason is that the evaluation of the
program can dynamically create application nodes which do not appear in the original
rogram. This is a simple consequence of the fact that functions ar rried, and
prog p 1 [ as\ arjcumw(a hfr. 0 C gg(ned anc so a

partially applied function can Y2 K ( applied to more argumems An example of this

occurs with the higher-order conditional
(if condition then f | else f ;) e

where f; is a strict function and f, is a non-strict function. In this casec we will not be
able to label the apply node with ¢ as an argument because it is not known until run-
time whether the condition will be true or not. Thus we would like functions to carry
around information regarding how much evaluation can be done on arguments so that it
may be possible to initiate the cvaluation of the argument expression in dynamically
created applications. Clearly this information must be true in any context, and so we
must use the context-free information.

Having motivated the need for both types of information, we give two theorems
which can be applied 10 determine firstly context-free information and secondly context-
sensitive information. These are just the context-free and context-sensitive information
theorems (Theorems 2.9.1 and 2.9.2). They follow directly from the correctness of this
abstract interpretation (Theorem 3.4.1), just as Theorems 2.9.1 and 2.9.2 follow directly
from the correctness of the framework for abstract interpretation (Theorem 2.8.2). Thus
they will be stated without proof.
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Theorem 3.4.2: (Context-Free Definedness Theorem)

Iff:0,—»---0,—~7and

(b'ab [[/]]Pab) TD(.‘m U TD“.‘,'(' STTD‘-“" e TD:" = l_
1 .-

1 41 n

then forall e, 1o, j=i.forall s; € Conc(,I(AT). we have

E D ™ B T W - Bl 0o o, 5% lley 1™ -+ B lley 0™ € Cone (D)

O

We note that the concept of the information being true in any context is captured by
putting TD,,, for the jth argument, j=i{ where we are testing the ith argument. This is
°y

because all the elements of the standard domain abstract to something which is less than

or equal to the top of the abstract domain.
Theorem 3.4.3: (Context-Sensitive Definedness Theorem)

Give‘nf :0,—~ ---—0,—7and an application fe, - e, : 7, if

EC M p® EC e p® -+ - E® [lem 1 p® s, E® lleg Np® -+ E®[le,Np™ = ¢
then for all s, € Concg (s;)

E* ([N p* E* e 1p* -~ E* [le;— 11 p* 5; E* Uciyyllp* -+ E¥ [le, 1 p* € Conc,(2)

O

3.5. Using the Definedness Information to Safely Change the Evaluation Strategy.

The context-free and context-sensitive definedness information can be used to change
the evaluation strategy for a functional program. Our intuition is that if a function
application is undefined for a certain definedness level of one of its arguments, no matter
how defined the other arguments are, then the function must have to evaluate that
argument a certain amount at some time in the evaluation of that function application.
We capture this formally in the following two theorems, which allow us to change the
evaluation strategy to do some evaluation of the arguments to a function in parallel with

the function application (or before it on a sequential machine) when it is safe 10 do so.

Theorem 3.5.1: (Safe Context-Free Change of Evaluation Strategy)
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Suppose that f : o;— ---—o,—7, that it is safe to do some evaluation of an
application of f, and that

(Eab [[f]]Pab) TD:‘: TD;III~I STTng"

i+

'TD:I) = ‘LD,‘M

Then in any application of f, it is safe 10 use an evaluation strategy which evaluates

the ith argument of f so as to preserve all of the values in D§ — Cunco.l(s,-).
Proof :
Given any function application fe; --- e, there are two cases :

(i) Suppose £ [le;]] p** € Concy (5;). Then the evaluation of ¢; may initiate a non-

terminating computation becausec we have only guarantced to prescrve elements in
the complement of this set. However, in this case, Theorem 3.4.2 ensures us that

E¥ ey - eglp™ € Cone (L ).

Fact 3.4.5 says that in this interpretation, Conc,(l ) is just {1 .} and so the

above collapses to
E¥(lfe, - ellp™ = Ly

The evaluation of the application fe, --- e, will not terminate (as no amount of

evaluation will preserve | except doing no evaluation!), but it was safe to

Dt
evaluate the function application, and so this means that the semantics of the
original expression was bottom (by the fact that it was safe to evaluate the function
application), and so it was safe 1o initiate a non-terminating computation in the
evaluation of e;.

i) If E [[e;]]lp** € Concy (s;) then, since we have chosen an evaluator which

preserves these elements, we have that no non-terminating computation will be

initiated in evaluating the ith argument, and so doing this is safe.

]
If there is no such s,, then we can do no evaluation of the ith argument, that is, the
only safe evaluator is .

Theorem 3.5.2:(Safe Context-Sensitive Change of Evaluation Theorem)
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Suppose that f : o;,— -+ —o_ =7, that il is safe to do some evaluation of the

function application fe; --- e, and that
E® (M p® E® e, p® -+ - E®lle;o 1 p® s; E® lejy 19 -+ E® (e, Np™ = L,

Then it is safe 10 use an evaluation strategy which evaluates e; so as to preserve all
values in D& — Conc (5))-

Proof :
The proof of this theorem follows exactly as the proof of Theorem 3.5.1 except that
we appeal to Theorem 3.4.3 rather than Theorem 3.4.2.

0O

If there is no such s;, then it is not safe to do any evaluation of the ith argument,
that is. the only safe evaluator is £,.

The previous two theorems allowed us to choose an evaluation strategy which
evaluated the ith argument to a function application as long as all elements in D;‘i -
Conc(,,(sT ) were preserved. If we are to find out the maximum possible amount of
evaluation, then we will find the maximum s; for which the theorem holds.

One way we can encode the information about changing the evaluation strategies is
to label the arguments to a function and the apply nodes in any function application
with the amount of evaluation it is safe to do if ever an application needs to be evaluated
(c.f. [Burn, Hankin and Abramsky 1985al, [Hankin, Burn and Peyton Jones 1986]). We

will now ijllustrate with a couple of examples how to determine and use the information
available from the previous four theorems.

As our first example of the application of these theorems, we will work out the
context-free and context-sensitive information for the function

g = )\fi"‘—"m.)\xi"‘.)\yi"'.x + f(y)

which has graph [Wadsworth 1971] (omitting type information) :



and has abstract interpretation

72—

g= A

~

AZ2Ay2.% and [(3)

as we saw in section 3.3. We test for context-frec strictness of g in each parameter using
Theorem 3.4.2.

g(Ax20)11 = 1and Ax20) 1
=0

0and (Ax2.1) 1

g(Ax21)01
=0

g(Ax21)10= 1and Ax31)0

I

So we see that g is context-freely strict in its first and second parameters, but not in
its third.

For the contexti-sensitive strictness information we have three apply nodes in the
body of f :

+ @x(fy)
(+ x)@(fy)
f@y

where we have denoted the apply node of interest using the "@" symbol as in the
graphical representation of g. We note that in these expressions we have free variablcs,
and this will be the general case. The semantic function for variables is :

E®[[x1] p® = p¥(x )

and we have to guarantee that



- 95 -
p? [[x9]1] 2 abs (¥ [[x 1D

for the conditions of the theorems which ensure correctness to hold. Since we are not sure
what values will be taken by the free variablies in the standard semantics, for they may
take on any value, then we must set the abstract interpretation of all free variables to be

the top of the relevant domain to ensure that the above condition is true.

From Definition 3.2.1.1 we have that

EB[[+]1p%® = Au?Aviuand v

We use Theorem 3.4.3 1o test the apply nodes. Firstly we test the apply node
between the + and x. In the expression we test both f and y are free, and so we must

set their abstract interpretation to Ax2.1 and 1 respectively.

(E [[+11p%) 0 (E2 [[(f )]Ip?®) = (Au?Aviuand vIX(Ax2.1) 1)

(AuZAvivandv) 01
=0

We next test the top application node in the graph of the function. In this case x is frec

and so we must set its abstract interpretation to 1.

E®[[+]1p®x0 = (Au?Aviuandv)10
=0

For the final apply node, we have that f is free, and so we must set its abstract

interpretation to Ax2.1 to obtain

(EP ([N p®)0= (Ax21)0

Using the theorems on changing the evaluation strategy, we can label the function

graph as follows :



YT

)\I."gn

/@é;
@£, @ &
AN R

This says that in any application of the function it is safe to evaluate using £, the first
and second arguments to g, but it is not safe 10 do any evaluation of the third argument.
The annotations in the function body say that it is safe to evaluate the expression (f y)
and the expression x using £, when evaluating the function body, but it is not safe to
evaluate the expression y.

In a similar manner, using the abstract interpretations of sumlist and append given in
section 3.3, the context-sensitive definedness theorem (Theorem 3.4.3), and the context-
sensitive change of evaluation strategy theorem (Theorem 3.5.2), we are able to label the

application
sumlist(append(e  .e5))

as in the diagram :

@ £,
N
sumlist /@5\0
@7¢, €
append e,

This says that when we have to evaluate the application, then its is safe to initiate a
computation of append(e,.e,) using €3, and evaluation of e, using £,, but it is not safe to

do any cvaluation of e,.

3.6. More Abstract Domains for Base Types.

By taking Alist as the example of a type which has as its interpretation an infinite
sum of products, and choosing the four evaluators for lists and the abstract domain to
model the way the evaluators behave, we have left some questions unanswered.
Specifically, what is to be done about other types which have as a standard interpretation

a domain which is an infinite sum of products, and, can we find out extra information
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about nested structures which will allow us to do more evaluation?

Another example of a data type with a domain which is an infinite sum of products
as its standard interpretation is Atree :

Atree= 1 + A X Alreec X Atree

which are trees of elements of A. 1t may have as constructors for the type :
nil_tree : = Atrec

and

node : A— Atree— Atree— Alree

In section 3.1.2 we saw that one way of developing abstract domains was to look at
the sensibie evaluators for elements of a type. Just as there are four sensible evaluators

for Alist, for Atree there are also four sensible evaluators :
(¢) no evaluation;
(if) evaluate 10 head normal form, that is, as far as a nil_tree or a node;

(it} evaluate the shape of the tree i.e. recursively unfold the second and third

arguments 10 node until a nil_tree is reached in cach one; and

(iv) evaluate the shape of the tree, and evaluate each of the elements from DJ in the

nodes to head normal form.
These evaluators are sensible because they treat cach node of a tree in the same way.

Again we can see how these evaluators divide up the standard interpretation of Atree
- the evaluator in (i) preserves all elements of the standard interpretation; the evaluator
in (i) preserves all non-bottom elements of the domain; the evaluator in (iii) preserves all
trees where each branch of the tree ends in a nil_tree after a finite number of nodes; and
the evaluator in (iv) preserves only those elements which are preserved by (iii) which also
have no | Df elements in the nodes. The way the evaluators have divided the standard

interpretation is exactly analogous to the way the evaluators for lists broke up the
domain, and so the four point domain is also a suitable abstract domain for the type
Alist. To use this domain for the abstract interpretation of programs which have
functions over Atree, we need 10 define the constants that are used and their standard
interpretation. We can then develop abstract interpretations of the constants by
calculating the abstraction of their standard interpretation as we did for the constants in
section 3.2. Correctness of the definedness interpretation for programs using this type
would then follow immediately, and we could use Theorems 3.5.1 and 3.5.2 1o label a
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program to indicate safe changes of evaluation strategy.

Although our discussion so far has been of the type Atree, we hope this has
motivated the claim that for any similar type which has as its standard interpretation a
domain which is an infinite sum of products, there are only four sensible evaluators,
where (ii) to (iv) above are modified 10 recursively unfold each of the recursive parts of
the type definition. Thus the four point domain is a sensible abstract domain for such
types. To finish the abstract interpretation onc has to provide the information about the

constants as has been done for Alist and mentioned above for Atree.

l.et us now examine more closely the four point domain we have used for the
abstract interpretation of lists. The first two points in the abstract domain, | ; and /
give us information about the definedness of the top-level structure of a list only, namely
whether it is totally undefined or whether it is partial or infinite; the other two points
also give us information about the definedness of elements of the list, namely whether
there are any bottom eclements in the list or not. These last two points allowed us to find
that sometimes we could use the evaluator £; which evaluated the elements of the list to

head normal form.

If the elements of the list were themselves lists (or some other data type which was
an infinite sum of products), then there are some extra evaluators that we could use :

(v) evaluate the spine of the list and evaluate each element the list using £,: and
(vi) evaluate the spine of the list and evaluate each element of the list using £;.

Our intuition by now should tell us that in order to be able to capture how thesc
evaluators treat lists we need to add some points to the abstract domain to test the
definedness of functions on elements which these evaluators do not preserve. For

example, if the type A was Blist , where
Blist = 1 + B x Blist,

then we may wish to additionally find out how defined functions were when applied to
an element of type Alist which was finite but for which the minimally defined element
(i.e. a Blist ) was partial or infinite, or if the minimally defined element was finite but had
bottom elements (i.e. from Dg’). In an analogous manner to the way we replaced the two
point domain by the four point domain for lists so that we could talk of the definedness
of elements of a list, we can replace the top two points of our four point domain for lists
with another four point domain which gives information about the definedness of the
elements of an Alist which are themselves lists. We could thus define the abstract domain
D, = L, .I.FB.FI.FFT,), where |, €1 < FB < FI < FF £ T,, and the
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abstraction map :
.- st ab
absapise * Parise = Datise

in the obvious way. G‘JF"')

Clearly the process could be continued according to the depth of nesting of{structures
in the program. Wec however note that extra points in the abstract domain mean that the
process of finding fixed points in calculating the abstract interpretation will take longer.
Furthermore, the more cvaluators we have, the more complex the hardware which
supports the evaluation of the functional language has to be. The choice to how much
information is sought is thus a pragmatic one; the theory presented in this chapter is
sufficiently general to support any of the abstract domains we may choose.

We note thatl the abstiract domains mentioned above for nested structures are also
due to [Wadler 1985]. Their motivation using sensible amounts of evaluation is new to

this work.

3.7. Relationship to Other Work.

Much of the work done in this arca has been to do with strictness analysis, or the
detection of when a function is strict in an argument. The first work was presented in
[Mycroft 1981], where his framework was applied to strictness analysis of first-order
functions. In [Burn, Hankin and Abramsky 1985al and [Hankin, Burn and Peyton Jones
1986] thcory was developed to allow for strictness analysis of higher-order functions.
Similarly, the framework of [Maurer 1985] was developed for strictness analysis, and the

framework of [Abramsky 1985a] was applied to strictness analysis.

A big breakthrough was made by Wadler [Wadler 1985] in using the four point
domain, also used in this chapter, as the abstract domain for lists. He was able to give
abstract interpretations for the constants, and interpreted the results of the abstract
interpretation, but no formal justification for his assertions was given. We have provided

the justification in this chapter.

Finally, the work in [Hankin, Burn and Peyton Jones 1986] provided a way of
encoding the strictness information (which arguments could be safely evaluated to head
normal form given that we had 1o evaluate an application 1o head normal form) using the
P combinatormAn extension of this needs to be made to cover the exira evaluators, which

is probably just having three "flavours” of the P combinator.

mThe P combinator has the same reduction rule as I but sets off a parallel process to evaluate its
second argument.
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3.8. Conclusion.

We have applied the abstract interpretation framework of Chapter 2 to see how
much evaluation of arguments in a function application is safe given that we have to
evaluate the function application.

Abstract domains and abstraction maps were defined which captured the distinctions
between the elements of the standard domain made by the sensible evaluation strategics.
The abstract domains that we discussed, the 1two point domain and the four point

domain, are duc to [Mycroft 1981] and [Wadler 1985] respectively.

The abstract interpretations of constants were derived by taking the abstraction of
their standard interpretation. For all of the constanis except case, we were abie 10 define
abstract interpretations of the constants which were equal to the abstraction of the
standard interpretation. Because casc is an higher-order function in which the functional
argument is applied 1o one of the other arguments (actually the head and the tail of one
of the other arguments), we find that our requirement of safety means that the equality
does not hold. However, since we only nceded that

E®[[c )1 p% 2 abs J(E (e g1l o).

this is no problem. 7

We proved the correctness of this interpretation as a simple corollary of the
Correctness Theorem for Abstract Interpretation from Chapter 2. The theorems
concerning context-sensitive and context-free definedness information follow in a similar
manner.

The definedness information was then used to show when it was safe 10 change
evaluation strategies from a left-most outer-most strategy 1o one where some of the inner
redices were also reduced.

Finally we note that the pragmatics given in this chapter asked how much evaluation

was safe of arguments 1o a function given that we had to "evaluate” a function
application. Given a function application

fe, - e,.

putting | on the right-hand side of the test effectively meant we were finding out how
much evaluation of ¢; was safe given that we knew only that it was safe to evaluate the
application to head normal form. If ¢; was a function application, and it was possible to
evaluale ¢; using £, or €3, then we would like to utilise this information, because it

may allow more evaluation of its arguments to be done. This is the subject of the next
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chapter; in fact it leads to a much more natural understanding of what is going on.



Chapter 4

Evaluation Transformers

In the last chapter we developed a definedness interpretation and used it to see when
we could change the evaluation strategy by cvaluating some of the arguments 1o a
function in parallel with cvaluating the function application. The two theorems for
changing the cvaluation stratcgy were developed assuming that we had to do some
evaluation of the function application, but ignored the amount of evaluation of the
application of the function that was safe. A simple example in the next section shows
intuitively that if we take into account the amount of evaluation it is safe to do of a
function application, then we can sometimes allow stronger evaluators 1o be applied 1o
the arguments of a function. Moreover, because a function application can appear in
several differing contexts, it is no longer sufficient 1o just label functions with information
about how much evaluation it is safe to do of the arguments because at various times
different amounts of evaluation may be safe for an application of a function. We thus
introduce evaluation trunsformers for each argument of a function and application node of
a program  which, given a safe evaluator for an qpplication. will transform it into safe

evaluators for the arguments in the function application.

~ Evaluation transformers can be determined statically from the program text using
the definedness abstract interprctation of Chapter 3. Two thcorems which are
generalisations of the Change of Evaluation Strategy theorems of Chapter 3 give us a

method for determining evaluation transformers.

4.1. Motivation for Evaluation Transformers.

In the section 3.5 we saw that that il was possible to label the applications in the

expression :
sumnlist(append(e | .e,))

as in the diagram :

P

sumlist @t
/
/ @ g] e 2
append \e 1
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This says that when evaluating the expression, we can initiate the computation of
append(e | .e,) using £, the evaluation of e, by £, and that we could do no evaluation of
¢,. However, we know that the reason why we could evaluate append(e, .e,) using £; was
that sumiist needed to have a finite list with no bottom clements in it or else an expression
sumlist(e) would be undefined. So rcally we neced that append(c,.¢,) should have as
semantics a finite list with no bottom clements in it or else the above expression will be
undcfined. The only way append can return such a list is if both of its arguments are lists
which arc finite and have no bottom elements in them. Thus, in this case it is safe to
label the applications in the expression append(e, .c,) with §; because this preserves all of
the clements for which append(e,.e,) is a finite list with bottom elements, and these are
all of the elements that nced 10 be preserved for an application of sumlist. We could then
label the application nodes of the expression as in

@
7N
sumlist /@ I
@ ¢, \ez
append e,

Taking into account the amount of evaluation it is safe to do of a function application, we
are able 1o use a stronger evaluator in the evaluation of e, and e, than we were able 1o
conclude in the last chapter where we did not specify the amount of evaluation that it
was safe to do of a function application.

A function application may occur in several different contexts in a program, which

may not be statically detectable. For example, we may have the definition :
¢ = append(e,.c,)

where ¢, and e, are some expressions, and then find that the expressions sumlist(e) and
hd(e) appear somewhere else in the program. From the above discussion we can see that
in the first case both ¢, and e, can be evaluated safely using ;. while in the latter case it
is only safe lo evaluale e 1o head normal form and so the original annotations on the
applications are the maximally safe annotations. It is thus no longer good enough to use
labels which give a fixed amount of cvaluation, but we have to introduce evaluation

transformers.

Definition 4.1.1: v.
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Given a safe evaluator for a function application, an evaluation transformer for the
ith argument in the function application specifies a safe cvaluator for the ith

argument.

0

Note thal we are now interpreting the abstract interpretation in a "backwards"
manner. We are asking. given that an amount of evaluation is safe for a {unction
application. what amount of evaluation is safe for each of the arguments in the
application. The question being asked in the last chapter then was how much evaltlggon
of arguments 1o a function in an application is safe given that some unspeciﬁcd(éﬁgum of

evaluation had 1o be done.

We can obtain cvaluation transformers from the abstract interpretation developed in

the last chapter.

4.2. Determining Evaluation Transformers.

As in Chapter 3, where we had two theorems for the safe changing of evaluation
strategy, we give here two theorems to determine respectively the context-free and
context-sensitive evaluation transformers. After giving each theorem we will give an

. . - . Gt Suhkg
example of its use in determining an evaluation transformer. 1h-e ¢ Tuhtume

Theotme 25,0 O 3572 vepechwely.
4.2.1. Context-freec Evaluation Transformers.
We have the following theorem to determine context-free evaluation transformers :
Theorem 4.2.1.1: (Context-Free Evaluation Transformer Theorem)
Suppose that f : ;= --- =0, —7 and that £ is a safe evaluator for an application
of f. Furthermore, suppose that ¢ does not preserve any of the elements in Conc,(2).
If
Eab[[f]]pabTD.m Tt TD"‘“
Ul a

i To
'

r+1

Tpp ST

then in any application of f where £ is a safe amount of evaluation for the
application, any evaluation strategy which evaluates the ith argument 1o f so as to
preserve all of the values in D' — CO"CU,(ST) is a safe evaluation strategy.

Proof :
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Given any application f e, - e, there are two cases.
(i) Suppose E¥ [[e; 1] p™ € C(mco'(s,—-). Then the evaluation of ¢; may initiate a non-

terminating computation. However, in this case, we are assured by Theorem 3.4.2
that

ES[fe;, - e,)]p* € Conc,(1).

Since € is was a safe amount of evaluation for the application, we have that the
original expression must have had bottom as its semantics because ¢ does not
preserve any elements in Conc(t). Thus it is safe to initiate a non-terminating
computation when evaluating the ith argument.

(id) 1f E% {le,]] p* € Concgy (s;) then, since we have chosen an evaluator which

preserves non-s; values, no divergent computation will be initiated in evaluating e;

and so the evaluation strategy is safe.

O

If there is no such :Tthen it is not safe to do any evaluation of the ith argument. By

choosing the most defined s; for which it is true, then we will be able to find out the

maximum permissible amount of evaluation.

We will now give a detailed example of how 1o use this theorem, and then give the

context-free evaluation transtormers for the functions for which we gave abstract

interpretations in Chapter 3.

As the example, we will use the append function, where the values of append L, L,

are given in Table 3.3.4, reproduced below as Table 4.2.1.1.

Table 4.2.1.1
Abstract Interpretation of append

%L?_\L, 1 1. ! ; F x’ Ty ;
1’ 1, 1; iy 1 Y i ! ﬁi
' 1 :‘ 1, I T
T F i, 1. 7 F ; F
;r T. | 1. /I F E TL
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We note that in this case Tn“ is T,. The clements of type Alist which each

evaluator preserves are listed in Table 3.1.2.2.

Suppose that we have that £, is a safe evaluator, where ‘LDA‘}N is the only element
which is not preserved by £,. For the first argument we must therefore find the
maximum L such that

append LT, < 1,

From Table 4.2.1.1 we find that the maximum element is | ;, and thus we must choose
an cvaluator which preserves all clements in D5y, — Concay, (1, ). The maximum
evaluator which satisfies this restriction is €,, that is, evaluating a list to head normal
form. |

For the second argument we must find the maximum L such that
append T, L <1,

We see that there is no such L, and so we conclude that it is not safe to do any evaluation

of the second argument to append in this case.
If we denote the evaluation transformer for the i th argument to a function f by F;,

so far we have that:
APPEND (£,) = &,

APPEND(£,) = &g

Similarly, £, does not preserve any elements in Concyy, (1). The maximum L such
that

appendZTL <!

is I and so the evaluation of the first argument to append must preserve all values in

Aise — Concpyg (1). The evaluator which allows maximum evaluation is £,.

Likewise, the maximum L such that
append T, L <1
is 7. Thus we have
APPEND (¢,) = &,

APPEND ,(§,) = §,
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The final case for which we have to do any work is for £; which does not preserve

any elements in Concyy,y, (F). The maximum L such that
append LT, £ F

is 7 and so the evaluation of the first argument 10 append must preserve all elements in
DX — Concyy, (F). The mechanism which allows maximum evaluation is §&;.

Similarly. the maximum L such that
append T, L < F

is F. Thus we have
APPEND ((£3) = £,

APPEND:(&:;) = §3

Because the evaluator §, has to preserve all elements of Djj,,. we can do no

evaluation of either argument of append in this case.
These results are gathered together in Table 4.2.1.5.

In a similar manner, we can determine the evaluation transformers for the functions
whose abstract interpretations we gave in Chapter 3. The following five tables give the
context-free evaluation transformers for these functions, where Table 4.2.1.n+1 gives the
evaluation transformers for the functions whose abstract interpretation appears in Table
3.3.n. Recall that we denote the evaluation transformer for the ith argument to a
function f by F;.

Table 4.2.1.2 gives the cvaluation transformers for functlions f satisfying the
conditions of Definition 3.2.1.1, for example +, X and or.

Table 4.2.1.2
Context-free Evaluation Transformers for Binary Strict Functions

E | F(E) | F,E)

o it &g éo

Evaluation transformegs for f{unctions of type Alisst—A where the abstract
interpretation of the type A is 2 are given in Table 4.2.1.3.
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Table 4.2.1.3
Context-frce Evaluation Transformers {or sumlist, length and hd

TE | SUMLIST ((E) | LENGTH \(E) DB ]

: i | i

&y | € i €y | o !
- f '

€ i’ £; : £, €,

: 4! i

Table 4.2.1.4 gives the evaluation transformers for functions of type Alist— Alist .

Table 4.2.1.4
Context-free Evaluation Transformers for reverse and 1l

| E || REVERSE,(E) TLy(E)

’ & £ o
3 5 6
£, 3 £ i
€3 €3 3

The evaluation transformers for append that we obtained carlier in this section are
given in Table 4.2.1.5.

Table 4.2.1.5.
Context-free Evaluation Transformers for append

3 { APPEND (E) | APPEND 4(E)
§[§o f: £ g £o
B G &
% & &
€3 €3 : €3

Finally, the evaluation transformers for map are given in Table 4.2.1.6.
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Table 4.2.1.6
Context-frec Evaluation Transformers for map

! E

lif MAP(E) | MAPL(E) i
] : !
i

! |

. ] &
L & 1 &

i i |
v £ £o i £, '

4.2.2. Context-sensitive Evaluation Transformers.

Theorem 4.2.2.1: (Context-Sensitive Evaluation Transformer Theorem)
Suppose that f : o,— --- —=0o,—7 and that ¢ is a safe evaluator for an application
/e, - e,. Furthermore, supposc that £ does not preserve any of the elements in
Conc (1). If

E®[[Mp® E®(le,)]p%® - E®{le;_ 11 p% s, E® [[¢e;,]] p® - E®(le,N1pP < 7

then it is safe to use an evaluation strategy which evaluates e; so as 1o preserve all

values in D — Concg (s;).
Proof :

The proof follows exactly as in the proof of Theorem 4.2.1.1 except that we appeal
to Theorem 3.4.3 instead of Theorem 3.4.2.

If there is no such s; then it is not safe 10 do any evaluation of the expression e; .

The reason why we have context-sensitive theorems is that they give us more
information than context-free ones in the case that we use more complex domains than
the two point domain for the base types or, if we use higher-order functions where a
functional argument is applied 10 an expression in the body of the function. As an
example of the use of this theorem, we will use an application of the function map :

map f[] = {]

map f x:xs = (fx): (map f xs)
The abstract interpretation, map, of map is given in Table 4.2.2.1, which is just a copy of
Table 3.3.5.
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Table 4.2.2.1
Abstract Interpretation of map

!1?\/‘ guz.o E AT x | X2 {
Loy Lo Ly I
Y A
L N
N F D
I I i | :
T ” Ty 0T, i T

1 1

We will determine the context-sensitive evaluation transformer for the sccond
argument to map in the application

map plusl e

where plus1 is the strict function
plusin = n+1

and so

E% [[plus1]] p? = \x2x.

If the evaluator for the application is £,, then it is not safe to do any evaluation of

the second argument, and so the evaluation transformer is £, at £,

The evaluator £; does not preserve any elements in Concy, (1 ;). and so from the

theorem we must find an L such that
E%® [[map]] p®® E®® [[plus1)] p®®* L < | ,
that is,

map(Ax*x)L < ],

evaluator which preserves all elements in D%, — Concyy, (1L ;). The strongest evaluator

given in Table 3.1.2.2 satisfying this property is £;.

No elements in Conc 4, (1) are preserved by €, and so we must find the maximum L
such that

map (Ax2x)L € 1
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to find the value of the evaluation transformer at £,. The most defined L for which this
is the case is / and so any evaluator must preserve all elements in D}, — Concgyg, (D).

From Table 3.1.2.2 the strongest evaluator with this property is £,.

Finally. £; preserves no elements in Concy,, (F) and so we must find the most

defined I such that
map(Ax%x) L € F.

Here F is the maximun element. and so as £; is the strongest evaluator which preserves
all elements in D, — Concyy,, (F), we may use it.

Thus the evaluation transformer for the second argument to map in this application
is :

Table 4.2.2.2
A Context-sensitive Evaluation Transformer for map

E || MAPE)
o o

£ 3
| €2 43

€3 €3

If one compares this with the context-free evaluation transformer for the second
argument of map given in Table 4.2.1.6, then we can see thal a stronger evaluator is
allowed (£; instead of £,) when £; is a safe evaluator for the application. This is because
the test for the context-free evaluation transformer had to use Ax2.1 in the test of the
second argument, and a function which is defined everywhere and a strict function only
differ in the way they behave in terms of the definedness of the result on finite lists with

bottom elements in thein.

4.2.3. Using Evaluation Transformers.

Evaluation transformers are used to label arguments to functions and application
nodes in the same way that we labelled them with evaluators in Chapter 3. It is
important to note that labelling with evaluation transformers rgpiaces - labelling wiih
evaluators, that is, we label with evaluation transformers and not evaluators. In section
3.5 we labelled the function



g = AMATANA Ny Y x + (f ).

If, for the purposes of this example, we denote by £, the evaluation transformer which
sends €, 10 £, and £, 1o £, and by E, the cvaluation transformer which sends both ¢,

and £, 1o £, then we can label the graph of ¢ as in the diagram :

This says that if ever the evaluator £, is used 10 evaluate an application of g. then the
first and second parameters Lo / can be evaluated using £,, since E,(£,) = £,. while the
third parameter may not be evaluated for £,(¢,) = £, The body of the function is then
being evaluated by £,, which means that the subexpressions x and (f y) can be evaluated ‘
using £,.

In this example we are able to see one of the pragmatic problems which still has to
be tackled with parallel machines. The evaluation strategy described above will try and
initiate the evaluation of the expression which is substituted for the variable x twice,
which at best is a communication overhead on the machine. It would be valuable 1o see if
we could detect cases like the above where the evaluation of the expression which is the
second parameter 10 g has always been initiated and so we can change the label £, 10 E,
on the application node which has x as its operand to prevent the evaluation strategy
trying to initiate its computation again.

As another example of using evaluation transformers, suppose we have labelled the
application appénd(e, .e,) as shown in the diagram :

@_APPEND,

@ APPEND | e,
append ey

so that in this application the context-sensitive evaluation transformers are the same as
the context-free evaluation transforiners, given in Table 4.2.1.5. If, for example, the
application was 1o be evaluated using £,. then e could be evaluated using APPEND (§,)



-113 -
= £,.and e, could be evaluated using APPEND ,(§,) = £,. At another lime, £, may be a
safe evaluator for the application and so §;, = APPEND ,({,) is a safe evaluator for e,

while §, = APPEND () is a safe cvaluator for es.

4.3. Values Used for Determining Evaluation Transformers.

Iff:.:o,—- -+ —o,—7, then we have 1o determine an evaluation transformer for
cach of f’'s n arguments. ‘These evaluation transformers must give an evaluator for cach

ol the evaluators for the type 7.

The evaluation transformers always give £, al €, because if it is not safe 1o do any
cvaluation of a function application. then it is not safe to do any evaluation of
any of the arguments to the function(¥).

If ¢ is any other evaluator for the type 7, then Theorem 4.2.2.1 says that we must
choose a ¢ such that £ does not preserve any elements in Conc.,(t_). We choose the most
defined such ¢ because that will allow us to detect the maximum amount of evaluation
that is safe. For example, for types which have the evaluator ¢, as the only evaluator

which docs any evaluation, we can see from Table 3.1.2.1 that the appropriate ¢ is -LD"’"

while for lists, from Table 3.1.2.2 we see that the values for¢ are | ;, 7 and F for £, €,

and £, respectively.

For any particular evaluator, where we have fixed a ¢, we then have to find out
which evaluator is safe for the ith argument. Both Theorems 4.2.1.1 and Theorem 4.2.2.2
say that we must find an s; which satisfies the test and then choose some evaluator

preserves all of the elements of DS, — Conco.,_(ST ). Thus for the type Alist there are

three values that can be tried, namely { ; .,/ and F, while for types where £, is the only

cvaluator besides £,, then we have only to try | (See Tables 3.1.2.2 and 3.1.2.1

D
respectively.) This is why in strictness analysis ([Mycroft 1981], [Burn, Hankin and
Abramsky 1985a]), the description of using strictness analysis speaks of putting the
bottom of the appropriate type for the argument being tested and seeing if bottom is
returned by the abstract interpretation, for this is the only case to test when we have a
two point domain as the abstract interpretation for all base types. We will of course
choose the maximum s, for which the appropriate test is true because this will allow

(#) If the argument is totally defined, then this is not true; it would be safe to evaluate the argu-
ment. However, the fact that it is not safe to do any evaluation of the function application indi-
cates that the value of the function application may not be needed and so the value of the argument
may not be needed. Thus any computation of the argument may be wasted. Furthermore, we have
not developed an abstract interpretation which allows us 10 infer definite termination. \’bv\;euc{, See

LMyceoft ngl Nigison 19837 6ol CAbrey 18551
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maximurn possible evaluation of an argument.

Because all of the functions involved are monotonic. the quickest way to do the tests
is to start off with the minimum value from the set of values we have to test for ¢ and
start testing the for the maximum s; for which the condition holds with the minimum
value from the set of values for the type ;. When we have found the minimum value,
we can begin testing for the next minimal ¢, beginning with the value for s, which we

had for the last onc.

4.4. Evaluation Transformers, "Need” Labels and the P Combinator.

The methodology of strictness analysis as given in [Mycroft 1981] and [Burn, Hankin
and Abramsky 1985a) tested the strictness of a function by putting in the bottom of the
appropriate type and seeing if the result in the abstract interpretation was bottom; if it
was, then that argument 1o the function could be evaluated when the function application

was evaluated.

We can now sce that this is equivalent to asking how much cvaluation can be done to
arguments of a function given that a function application-could be evaluated, and given
that there was only one evaluator, £, which did any non-trivial amount of evaluation.
Thus the "need" labels of [Burn, Hankin and Abramsky 1985a), and their encapsulation
using the P combinator of [Hankin, Burn and Peyton Jones 1986] are just evaluation
transformers which send £, to §; and, of course, £, 10 £;. The unlabelled applications

then are the evaluation transformers which send both £, and £, 10 £,.

4.5. Relationship to Other Work.

The idea that we should be looking at how much evaluation it is safe to do of the
arguments to a function given that it is safe to evaluate a function application is also
tackled by Hughes in [Hughes 1985]. In his paper he introduces several things that arc
similar to those which we have introduced. As a guide to the change in terminology, we
note that what Hughes calls "contexts” roughly correspond to what we call evaluators,
and what he terms “strictness functions” we have called context-free evaluation

transforimers.

There arc several things to note about the work he presents. Firstly, one might
expect that he can derive more exact information; it looks like his method should be able
1o determine evaluation strategies which for instance evaluated every second element of a
list argument in paralle] with the function application. We have restricted ourselves to

evaluators which treat every element of the list in a uniform manner.
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Sometimes recursive "contexts" are defined, f'or example
spine = nil OR cons ABSENT spine

which says roughly to evaluate the argument down 1o a nil or a cons and then evaluate
the tail of the list in the same manner, doing no cvaluation of the head of the list (i.c.
our evaluator £,). Il APPEND, denotes the evaluation transformer associated with the

first arguinent of append . then he is able to deduce that
APPEND | spine = spine.

This can be translated into our terminology to say that if it is safe to use &, for the
cvaluation of an application of append, then it is sale to evaluate the first argument to
append using £,.

Surprisingly, in some cases the results he obtains lose more information than our
method does. The example which shows this is due to [Hughes 1985]. For reverse in the
context cons ¢ ABSENT , which says that we evaluate the head of the list using the context
¢ and do no evaluation of the tail, and so is stronger than our evaluator £, (i.e. evaluate
the list to head normal form), the following context is obtained :

REVERSE | (cons ¢ ABSENT) = g where g = ABSENT OR nil ORcons h g
h = ¢cORABSENT OR nil ORcons h g

Ignoring the finer details, the fact that we have ABSENT "OR™d in at the top level means
that it is not safe to do any evaluation of the argument 1o reverse when in this context.
However, with our analysis, we are able 10 show that with the weaker safe evaluator ¢,
for an application of reverse, it is still safe 1o evaluate the spine of the list which is the

argument to reverse.

A second thing we note is that [Hughes 1985] is a framework for first order
functions only, whereas we have presented a framework which handles higher-order
functions. As well, we note that the distinction between context-sensitive and context-

free issucs is not made.

Finally, our work rests on firm semantic foundations, whcreas that of [Hughes 19835]
has not had such foundations fully worked out. If the ideas of [Hughes 1985] were

formalised then a proper comparison of the two pieces of work could be made.
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4.6. Conclusion.

A very natural question 1o ask of a function application is how much evaluation is
safe for each of the arguments to the function given that a particular amount of
cvaluation is safee for the function application. If this is more than no ¢valuation, then
we may change the evaluation strategy 1o do some cvaluation of the arguments to the
function in parallel with (or before) the evaluation of the function application. In
gencral, a function application may used be in many different contexts which have
different safe evaluators for that function application. Thus we need the concept of an
evaluation transformer for cach argument of a function, which transforms an evaluator
which is safe for the application into one which is safe for the evaluation of the argument.

As with previous chapters, we have given theorems which allow us to determine
both context-free and context-sensitive evaluation transformers. The evaluation
transformers are determined using the definedness interpretation of Chapter 3.

The P combinator of [Hankin, Burn and Peyton Jones 1986] can be seen as being an
evaluation transformer when we only use the two point domain for the abstract
interpretation of all base types and thus are only distinguishing between the evaluation
strategy which does no evaluation of an argument to a function and the evaluation
strategy which evaluates an argument to hcad normal form using a left-most outer-most

strategy in parallel with, or before he evaluation of the function application.



Chapter 5

Abstract Interpretation and New Type Constructors

So far we have been developing a framework where we have assumed we were given
standard and abstraci interpretations of the base types, and then we added the function
space as the only type constructor. We were able 10 deal with complex data types such as
infinite lists (infinite sums of products) by putting them in a black box and treating them
as a base type by giving them a standard and abstract interpretation. In this chapter, we
are slightly more imaginative, allowing types 1o be constructed from finite combinations
of base types using sums, products and lifting. Abstract interpretations and abstractions
of the standard interpretation of the structured types are defined in a natural way using
the interpretations and abstractions of their components. We show that the vital
relationship between the standard and abstract interpretation, namely that for all e we
have

E®[[e]l p® 2 abs ,(E* [le]] p*)

still holds, and thus the correctness of the abstract interpretation follows as in Chapter 2.

We must begin by giving the syntax for our new constructs and their interpretations.

5.1. Syntax of Type Constructs.

Here we introduce the syntax for the rest of our language which will include
constructs to express elements of new structured data types formed from finite
combinations of products, sums and lifting.

We note that products come in two flavours, the cartesian product, which we will
denote as x, and the smash product, which we will denote by ®. Sums also come in two
flavours, the separated sum, denoted by +, and the coalesced sum, denoted by ©.

However, as we have that
Dl + D= (DL) @),

for the interpretations / that we will consider, we will from now on only concern

ourselves with the coalesced sum.

The following syntactic formation rules extend the rules (1) to (5) given in section
1.5.1 for our language Exp :

-117 -
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s.0 l.T

(6) 1S oxr cartesian product
(N % smash product
(8) i(:;:::®7 j(t)t::o‘{.@'r coalesced sum
9) ?B%ET;T lifting

5.2. Interpretation of New Constructs.

Interpretations for the type constructors and for the above syntactic constructs

must be given.

We begin by giving the interpretation, 7, of the type constructs. We interpret the
product and lifting constructors in the usual way :

(Do) = Dg x Dj

(Dge.) = DL ® DI
(DO.J)I = (D{,.)_]_

where X, @ and | on the right-hand side are the usual domain operations [Scott 1981,
1982].

We note that D2 x D! and D! ® D! are finite, complete lattices if and only if D/
and D] are, and that (D%), is a finite, complete lattice if and only if Df. is. Thus these
constructions preserve the requirements for our abstract domains that they be finite,
complete lattices.

The coalesced sum is slightly problematical. For the standard interpretation, we can

have
(Dgo, )" = DF® DS

where the ©® on the right-hand side is the usual domain theoretic ®. This interpretation
of ® however does not have the property that DL®D! is a complete lattice when D
and D! are complete lattices. Therefore, we must instead use a complete lattice theoretic
® in the abstract interpretation, which only differs from the domain theoretic
interpretation in terms of what it does with the top elements of D and D!. With the

lattice theoretic ® we have a choice between coalescing the tops of the two complete
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lattices, or adding a separated top to the lattice on top of the result of using the domain
theoretic ©, as depicted in the following diagram :

N
N

1
coalesced separated
top top

If we choose a separated top, then the abstraction maps we will define can never be
onto for types including a sum. While this is no problem for the theory we have
developed, it runs against the philosophy of only having elements in the abstract domain
which represent some object in the standard domain. For this rcason we choose the ® in
the abstract domain which coalesces the tops of the two component complete lattices.

We note that the isomorphism

o+T7T — cl@‘rl

still holds provided we are consistent in what we do with the tops on both sides of the

isomorphism.

Having given interpretations to our type constructors, we can now add the following

semantic equations to those in section 1.5.2 :
ENl[<su>Np! = <£! [shp! £ (]l o7 >

EN([4s.e¥Np’ = £ (51" .E el p”

ET i p? = «ET [IsNp")

ET [[i()]] p?

JEL [N p!)
El[[<0.5>11p! = <0.ET ([s])p! >

where we have used the same symbols on the right-hand side 10 denote operations on the
appropriate domains as we used for the syntactic constructs; which we are using will be

obvious from the context.
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5.3. Abstraction Maps For These Constructions.

All the constructs we have been discussing in this chapter are functors on the
category of domains, which means that as well as acting on objects (domains), they work
on morphisms between domains (continuous maps). In particular, we have that they
work on our continuous abstraction maps. It thus trivial to define the abstraction maps

for these constructed domains :

Definition 5.3.1:
abs gnz i D= D
axT - OXT OXT

abs = abs; X abs,

oXT

Definition 5.3.2:
abs o8T ¢ D(f'l@'r_‘ Dg'éa'r

abssgr = absy @ abs,

Definition 5.3.3:

. st ab
absger : Dogr—Dgor

abs ; o, = absy © abs,

Definition 5.3.4:
absy :DF —D
ab.s'o,l = (abs(,.)_]_

(whee o £2 ST Ao 400 Sa =T =

The definitions of Abs, and Conc, for each type o are as in Definitions 2.2.4 and
2.2.5, that is :
Definition 5.3.5:

Absy :PDS—~p2b



Absy = I oPabs,
(]
Decfinition 35.3.6:
Concg : DB®—PD¥
Conc ,(5) = YIT| Abs ((1)<75)
O

In Chapter 2 we required that the abstraction maps be strict and continuous. The
following lemma about the continuity and strictness of the abstraction and concretisation
maps is just Lemma 2.2.8 generalised to include all of the new type constructs.

Lemma 5.3.7:

If for each base type A, we are given a strict, continuous abstraction map abs, :

D= D, then for all types o,

(i) abs 5 is continuous.

(ii) Abs ; is continuous.

(iii) abs ; and Abs ; are stricl.

(iv) Conc is well-defined and continuous.

Proof :

We have 10 add the following into the inductive steps of the proof of Lemma 2.2.8 :

(i) absgyr. absggy, absgg, and absy  are continuous because they are each

constructed by a (different) functor acting on continuous maps.

(i) As in the proof of Lemma 2.2.8 (ii).

(iii) abs ;yyv abscgyrr abs 5, and abs".t are strict because the appropriate functors

preserve strictness.

(iv) As in the proof of Lemma 2.2.8 (iv).
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5.4. A Relationship Between abs .., , and abs;,_, .

There is a well known relationship between D{,_.,,_.# and D{,x,_.#, namely that
D] ~ DI

C—T—u = OXT—pu

The isomorphism from left 10 right is of ten called uncurry, and its inverse curry.

There is also a relationship between abs ..., and abs s ,—., Which is stated in the
following Proposition :

Proposition 5.4.1:
absg 7, = curryeabsgy ., cuncurry

Proof :
Letf € DJ_.,., - Then, by Proposition 2.3.1 we have that
(curryoabs ;o ® uncurry) (f)

ab
axr

= curry(A<x,.x,> D Hlabs , (uncurry(f) <x.x3>)|abs gy, (<x.x3>)€ <xy.x,>}°)
= curry(A <x—1.x_2>u‘gh“ abs ,(f x 1 x3) | abs gy (<x1.x,>)S <x7.x,>)°)
by the definition of uncurry
= curry(A <J:.x_2>Dgh"' HHabs ,(f x| x ;)| <abs ;(x).abs (x3)> € <x;.x5>)°)
by the definition of abs 5,
= curry(A <x7.%5> 8% Ulabs ,(f x, x ) | abs o (x )3, abs (x)ST3)%)
by the definition of € on products

_Dab _D;m
= Ay, ° -Ayz .

D

—_— ab —_ —_ _—
(A <xy.x,>7 .Hlabs ,(f xy x3)labs o (x )€ x ;. abs (x)Sx,)°) <y;.y,>]

by definition of curry

—Dab __D;m — o
= Ay;y ° Ay, " .Hlabs (f x| x,) labsg(x )<y, abs,(x3)<y,)

= absg_,-,(f) by Proposition 2.3.1



5.5. Propertics of Abstraction Maps.

As in section 2.4, some properties of abstraction maps on lower types are carried over

to the abstraction maps on constructed types.

concretisation is strict.

LLemma 5.5.1:

If for each basc type A abs, is | -reflectling, then abs; and Abs, are | -reflecting for

cach type o.

Proof :

We must add an inductive step for each of the new type constructs into the proof of
Lemma 2.4.4. Since abs, is strict for each base type A, we have from Lemma 5.3.7
(i) that abs, is strict for all types o. We will thus prove for cach type o that if

s¢_LD « then abs  (s)= | po Which, together with strictness, implies 1 -reflexivity.
a [J

@D<sa>=1 .
axr

(i) <sa>=]

o@r

We give two examples here.

=> not(s=_LD,, and t=_LD.,)
=> not(abs ;(s)= 1 . and abs ()= 1 ,.)

since abs ; .abs , are | -reflexive by the inductive hypothesis

=> not(<abs ;(s).abs (1)> = <] pun.l pa>)

=> not(abs gy (<s.t>) = | 0 )

aoxr

=> not(s= ‘LDS' or = _]_Dq)
=> not(abs ;(s)= -LD“’ or abs (t)= -LD"")

since abs  .abs , are | -reflexive by the inductive hypothesis

=> not( abs ;(s).abs ()} = | pa )

=> not(abs ;5. (<s.t>) = | )

ah
D sar
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(@)l u € Dgfg, u # 1. . thencitheru = i(s) wheres € Dy ands = | ) or
u = jt) wheret € DY and ¢ = _]_D:,. Supposing the former, then
abs g, (i(5)) = i(abs ;(5))
= i)
since abs  is | -reflexive by the inductive hypothesis
and so is not cqual to ll):'&, . Similarly for the latter case.
(v)u € D(‘}"_l u = lD&'! impliecsu = <0.5s> wheres € D¥. Thus
abso.l(u) = ab:ol(<0.s>)
= <0.abs s(s)>
= 'LD"“l
Abs 4 is | -reflexive by Lemma 2.4.3.
O

The following Lemma is a generalisation of Lemma 2.4.6 to include the type
constructors we have added in this chapter.
Lemma 5.5.2:
If abs, is onto for each base lype, and for cach base type A we can define a
continuous function abs,~! : D— D which is a right inverse of abs,, that is,

abs, oabs,~ ! = id, ,, then for all types o

aby
DA

(i) If o is a function type, then there is a continuous function abs !: D2 D

which is a'right inverse of abs ;.
(i) abs ; and Abs 4 are onto.
(&ii) Abs y «Conc, = idl);,’"

Proof :
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The proofs of parts (i) and (iii) follow exactly as in the proof of Lemma 2.4.6. We
nced to add the steps (a) to (d) below to the inductive step of part (if) to show the
ontoness of the abstraction maps for each of the constructs we have added in this
chapter.

(a) Suppose <5.0> € D3 .. Then since abs, and abs, are onto by the inductive
hypothesis, there exists s € DS and ¢ € DS such that abs;(s) = 5 and abs (1) = ¢.
So. by the definition of abs,, We have that abs,,,(<s.t>) = <§.0>, and hence

abs 5, , is onto.

() abs,; and abs, are monotonic and onto, and so this means that both of them arc

strict. Since the @ of two strict functions is strict, we have that

absc.®abs.,(lo‘¥w) = -LD;:’;,, .

If «5.t% € DZ,,, and {:s‘.f}#_l_oé,m. then since abs, and abs, are onto by the

inductive hypothesis, there exists s € D¥ and ¢ € D such that abs (s) = 5 and
abs (t) = . So, by the definition of abs;g,, We have that abs ;g (£s.t3) = {5.r3.
Hencc abs ;. is onto because we have provided for every element in DZ®D 2 an
element in DEZ® D3 which abstracts 1o it.

(c) abs, and abs, are monotonic and onto, and so this means that both of them are

strict. Since the ® of two strict functions is strict, we have that
absa@abs,(_LDS,M ) = ‘LDA’%, .

Ifz € D&%,, 7 = 1. . wehavethatecitherz = i(5), 7 € D& and 5 = | ;,,0r
0T o

Z = j(6),7 € D and ¢ = 1 pw- Sinceabs is onto, there exists an s € Dg such

that abs ;(s) = 5. Then abs ;¢,(i(s)) = i(abs 4(s)) = i(5). The case whereu = j(t) is
treated in a similar manner. Thus abs;q, is onto because we have exhibited for

every element of D2, . an element in D &, which abstracts to it.
(d) Suppose that <0.5> € D(‘;’j . Then, since abs, is onto, there exists an s € D¥
such that abs ;(s) = 5. Thus abs"i(<0's>) = <O0.abs,(s)> = <0.5> as required.

Also, abSO'J(—LD" ) = | ,. by the definition of the lifting of a function. Hence
“_l “_l

abs o is onto.
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The ontoness of Abs , follows from Lemma 2.4.5.

Fact 5.5.3:

For all types o, Conc o (1 ) = {L pu} (Lemma 2.4.7).

5.6. Correctness Results.

We are now able to show that the relationship that was shown to hold in section 2.7

between the standard and abstract interpretation holds in this case as well.

Theorem 5.6.1:

Suppose that we have that E® [[c,]]1p%® 2 abs (E* [[c,]] p*) for all constants cg.
Then for all p* € Env*', p?® € Env? such that for all x7, p®(x7) 2 abs . (p*(x 7)), we

have foralle : o :
E® [[e]] p®®> abs L (ES [[e]] p*)

Proof :

We insert the following steps for the constructs introduced in this chapter into the
structural induction proof of Theorem 2.7.1, where the numbers are those given to
the syntactlic constructs in section 5.1.

(6) E® [[<s.t> ) p® = <E®([s]} p®.E® [[c]] p®>

2 <abs (E% [[s]] p*).abs (E* [[c]} p5)> induction hypothesis

abs oy (<ES [[s]] p** . E* [[e]] p*>)

abs ;o (ES [[<5.0>]] p%)

() E® [[4s.13) p® = &E® [[s]] p.E® [[c]] p*%

\

$abs S (E* [[s]] p*).abs (£ [[e]] p*) % induction hypothesis

abs g g, (£ES [[s]) o™ E* [[c]] p$)

abs ;g (ES [[&s.t3]] p*")

(8) E® [[i()]] p® = (E [[5]] p)
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2 ilabs L(E* [[s]] p*)) induction hypothesis

abs o g ((E* [[s]] p*))

abs 5 ¢ (£ [[i(s)]] p*)
and similarly for j(¢).

(9) E®[[<0.5>]] p® = <0.£% [[5]) p%>

\\V4

<0.abs G(E [[5]] p¥)>
= absg (<0.E¥ [s]1p¥>)
= absg (E¥ [[<0.5>]1p™)

a

The correctness of the abstract interpretation and the theorems regarding context-free
and context-sensitive information follow exactly as in Chapter 2. We state Theorems
5.6.2 10 5.6.4 without proof because the proofs arc the same as the proofs of Theorems
2.8.2, 2.9.1 and 2.9.2 respectively.

Theorem 5.6.2: (Correctness Theorem for Abstract Interpretation)

The abstract interpretation we have developed is correct. That is, given f : c—7 and
interpretations of constants satisfying the conditions of Theorem 5.6.1, we have that
it 5 € D& and (E®[[f]1p%) (5) = ¢ then for all s € Conc,(5), (&% [[f1] p*) (s) €
Conc ,(1).

Theorem 5.6.3: (Context-Free Information Theorem)

Iff:0,~ --0,—~7and

;TDSI) ."TD:Iu =t_

+1 n

ELUN ™ Tpp - Tpp

then for all e

10, j#=i, forall 5, € Concg (s;), we have
ES [[Mp E {le ) p* - -+ ES [le,;— 11 p* s; E¥ e o™ -+ ES lley 11 p € Conc (1)

O
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Theorem 5.6.4: (Context-Sensitive Information Theorem)
Givenf :0,— --- —0o,—7 and an application fe, --- e, :7,if

E®[ p® £ (le N p® - - - E® (le,- )] p% 5, E% [[e; 1 p% -+ E®[le,]] p® = ¢

then forall s, € Cunco'(s—[)
ES [[[]] p"‘" ISt [[c,]] p.\‘l N 26 [[01—1]] psl 5, £ [["’i+1]] p.s'l R [[cn ]] p“ € Cone T(,‘)

a

5.7. Abstract Domains, Abstraction Maps and Evaluators.

In section 3.1 we chose abstract domains which modelled the way that the
- evaluators broke up the standard interpretation of a type. We were then able to give a
definedness interpretation and use this to find out when we could change evaluation
strategiecs to do some evaluation of arguments to functions. While the abstract
interpretations of domains constructed using the smash product, coalesced sum and lifting

seem to preserve this property, domains constructed using the cartesian product do not.

The problem with the cartesian product is that there is no concept of head normal
form, for the bottom clement of the domain is just a pair of bottom elements. Thus the
bottom element of the abstract domain, which has been used to show when we can
cvaluate expressions to head normal form, is redundant. If we were to change the
interpretation of the cartesian product so that we stopped evaluation when we discovered
we had a pair of clements, then we would be modelling a lifted cartesian product, where
an extra bottom element has been added to the bottom of the domain.

A similar distinction is made by evaluating functions only as far as weak head
normal form instead of as far as head normal form. According 1o the usual semantics of
the function space [Scott 1981, 1982], the function which returns the value | for all
arguments is the bottom of the function space. However, evaluation of such an ¢xpression
would stop at Ax.e, where e has | as its semantics if only evaluating expressions to weak
head normal form. This appears to add an extra bottom in the formation of the function
space. Further investigation is necessary to find out the relationship between head normal

form and wecak hecad normal form.
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5.8. Relationship to Other Work.

We have taken a very simple approach to the abstract interpretation of the extra
type constructs that we have added to our language in this chapter where, for instance,
products still stay products, albeit in a more restricted category. This is considerably less
general than the work of [Nielson 1984], where the interpretation of these type

constructors is not so constrained.

5.9. Conclusion.

The work contained in this thesis has up to this chapter been assuming that the
function space creator was the only data type constructor available in our language; all
other more complex types were relegated to being "base” types. In this chapter we have
extended the allowable types to include finite combinations of base types using sums,
products and lifting. Because sums, products and lifting are functors, we can define in a
natural way abstract domains and abstraction maps for types involving these

constructors.

The correctness of the abstract interpretation and the context-free and context-
sensitive information theorems follow exactly as in Chapter 2.

The methods used in this chapler cannot be cxiended in the natural way 1o
recursively defined types because they result in infinite abstract domains, c.f. [Nielson
1984). Therefore, recursive lypes mustl be given special abstract interpretations as has

been done with Alist in this thesis.



Chapter 6

Further Work and Applications

We began this thesis by i“\ikkahﬂ) that the obvious way of obtaining parallelism in the
evaluation ol functional programs was not sensible because it created too many tlasks,
many of which were to evaluate expressions whose values were not needed. Our work
has been to develop and apply a framework for abstract interpretation, which can be
implemented in a compiler to annotate programs to show where it is safe 1o initiate
parallel evaluation. The abstract interpretation can also be used to change the evaluation
strategy for a sequential machine, moving from a lazily evaluated program 1o one which
has a mixture of call-by-value and lazy evaluation.

In this chapter we summarise some of the theoretical issues which have still to be
resolved, the most outstanding of which is a satisfacltory treatment of polymorphic

functions.

Alrcady this work is being applied in projects on parallel architectures for running
functional languages. Some of this work is briefly discussed in the final section.

6.1. Further Work.

6.1.1. Polymorphism.

In this thesis we have been using a mono-typed language. whereas we know that the
function which calculates the length of a list :
length[] = 0
length x:xs = 1 + length xs
does not neced to know what the type of the elements of the list is, but behaves in the
same way on all types with the same top-level structure, that is, lists. One can then
assign the polymorphic type [Milner 1978]

a-list—int

10 the function length, which says that length is a function which will take a list of
clements of any type o and return an integer. Anyone who has had to write programs in
a strongly. monomorphically typed language will recognise what an advantage it is to be
allowed to write polymorphically typed functions.

Since the framework we developed depended on functions having mono-types, we

must find some way of handling polymorphically typed programs.
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Our first solution is to notice that a polymorphically typed program can be uniquely
expanded to a mono-typed program [He\mstem 1983]. However, while this gives the
advantages of polymorphism to the programmer, it gives none of the advantages to the
compiler when doing the abstract interpretation - it must give an abstract interpretation

for every type instantiation of a function.

It would be good if we could find a single expression for the abstract interpretation
of a f'unction which could be used for any type instantiation. Ilowever, as was shown in
[Burn 1985], this is not in gencral possible for recursive functions, for the number of
iterations of the fixed pointing algorithm goes up with the complexity of the type of the
expression being fix pointed. A possible solution would be to try and find some sort of
"most general type occurrence” of a function in a program and work out an expression for
the abstract interpretation of this.

In [Abramsky 1985a) a framework for proving properties of functions which are
polymorphically invariant is given. Basically, a property is polymorphically invariant if
its truth at one particular instantiation of a type implies its truth at all possible
instantiations of the type. He shows that strictness is such a property, which means we
can test. the strictness of a polymorphic function in its arguments at the simplest
instantiation of the type and know the results hold for all higher types.

6.1.2. A Junction Between Operational and Denotational Semantics.

Throughout this thesis we have been using the idea of neededness in an intuitive
manner. However, the idea of neededness has been formalised in some systems, for
example [Huet and Levy 1979] and [Barendregt and Sleep 1986]. One could formalise the
idea of neededness for the system we have been using, and see how the expressions which
turn out to be needed correspond with those we have said are safely evaluable.

We believe that, if the semantics of an expression is not bottom, then our method for
changing evaluation strategies will only allow at most as much evaluation of an
expression as would have eventually been done by a lazy evaluator. However, this is
only a conjecture and should be received as such. To prove its correctness or otherwise, an
operational model must be constructed for the way annotated programs are evaluated and
compared with an operational model for lazy evaluation. If the conjecture is true, then
the final expressions that are obtained in evalualing an expression using the altered
evaluation strategy and using the lazy strategy should be exactly the same; if they are not
then one could try and find out in what way they differed and try to formulate some
syntactic/operational notion of equivalence (because they will be semantically equivalent
by our insistence on correct cvaluation strategies).
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6.1.3. Pragmatic Issues.

It was shown in section 3.6 that the framework we have developed will support
finding out more information about nested structures than is available using the four
point domain. Furthermore, in Chapter 5. we have added interpretations for base types
constructed from finite combinations of sums, products and liftings. Adding extra
evaluators means that they must be supported in the hardware of the machine. This
means that more space will have 1o be allocated for evaluation transformers (because
there are more of them). more complex labels must be placed on data objects (10 show
how much evaluation has been done), and many other similar issues. As well, the
compiler must be adjusted 10 have all of these elements taken into account when working
out the abstract interpretation. We note that having more points in the abstract domains
means that taking fixed points takes much longer.

The evaluators £, and £3 that we have used calculate the whole spine of a list. If the
list is very long, then this may not be a space or processor cfficient thing to do. Idcally.
one would like to use some sort of bounded evaluator which only evaluated a list n
elements ahead of the process which was consuming the list. Unfortunately, we cannot
guarantee that we will only ever have 10 keep at most n elements of the list at a time
because the list may be being used by more than one function, and we can quite easily
write two functions which consume a list where the second function is & elements behind
the first function in consuming the list for any %.

6.2. Applications.

As well as finding application in the work in ESPRIT Project 415 (Parallel
Architectures and Languages for AIP - A VLSI-Directed Approach), the work of this
thesis is being incorporated into several other research projects 1o do with parallel

architectures for evaluating functional programs.

A simple form of strictness detection is being done for programs which are then
compiled and run on the G-machine [Johnsson 1983], where arguments 1o strict operators
and variables appearing in the condition of the conditional are detected as being cvaluable.
The exciting thing is that for this sequential machine, taking note of this strictness
information is responsible for an improvement of an order of magnitude in the speed of
running some programs [Johnsson 1986]. Only experiments can show how much
improvement can be made with a full definedness analysis.

The GRIP (Graph Reduction in Parallel) Project [Peyton Jones, Clack and Salkild
1985] is a project to build a multi-processor machine 1o do graph reduction. Strictness
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analysis [Burn, Hankin and Abramsky 1985al, [Hankin, Burn and Peyton Jones 1985] and
the work of this thesis has influenced the way that the machine has been designed to run
programs.

In general, the finding of fixed points is n-exponentially complete [Damm 1986],
[Meyer 1985]. but it is quite hard to construct functions for which the algorithm takes a
significant number of steps. A SERC-funded project run by Chris Hankin at Imperial
College is. amongst other things, implementing the abstract interpretation of this thesis.
This will give us a better idea of the practicality of using this work in a production
compiler. Furthermore, through a chain of other projects, code to run functional
program$  with lazy semantics in parallel on Alice [Darlington and Reeve 1981] will be
produced. It will be the first parallcl implementation of a lazy lunctional language on
Alice.

The COBWEB machine [Shute 1983], [Hankin, Osmon and Shute 1985], [Karia 19861
is a parallel reduction machine designed specifically to be implemented on a wafer. Our
work will influence the way programs are evaluated and the design of processing

elements.
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