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ABSTRACT 3

This thesis is mainly a theoretical investigation of the effects of 

some periodic refractive index variations on the wave propagation in 

optical waveguides, and possible applications of these structures.

Wave propagation in cylindrical periodic structures, in particular 

the large-cored Bragg fibre, is considered. It is shown that the 

infinite Bragg fibre supports Bloch-type modes and may be lossless 

at certain wavelengths of operation, and that the attenuation of all 

the modes in a real finite fibre decrease with increasing number 

of cladding layers. The application to guiding of long wavelength 

laser radiation is discussed.

The Bragg fibre is also considered for multimode transmission of 

broad band radiation. It is found that increasing the number of 

claddings does not cause the wavelength dependence of the loss to 

become unacceptably large, and that it improves the tolerance to 

bending when the fibre is used for multimode transmission.

Some characteristics of a slab dielectric waveguide with a periodic 

index perturbation in the direction of propagation are considered. 

Approximate formulae for the fields resulting from the propagation 

of a pulse signal in a periodic medium are derived, which describe 

the fields as a sum of components with similar signal velocities and 

dispersions but different path lengths. Hence it is shown that a 

periodically perturbed guide may be designed which has a minimum 

dispersion at a chosen wavelength.

A waveguide with two periodic perturbations of similar pitch but 

different amplitude is considered. Monochromatic wave propagation in 

such a guide, in which the harmonics of the perturbation are 

interacting, is analysed. The use of this "doubly" periodic design 

is shown to result in a limited narrowing of the reflection band.

A second part of this thesis contains an analysis of the effect of 

short-range correlations on the permittivity of Nematic Liquid 

Crystals
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1. INTRODUCTION

1.1 Backgrounds

The use of periodic structures .[1] in classical (or "bulk") 

optics is well established and has a broad range of 

applications. One important device is the diffraction grating 

[2]. This may be a physical grating structure, for example cut 

into the surface of a device, or it may be a refractive index 

variation of a permanent or transient nature. Its applications 

include acousto-optic spectrum analysis [3], beam deflection 

[4], beam splitting, optical spectrum analysis [5], pulse shaping

[6] and compression [7]. A closely related component is the 

hologram, which is used for wavefront reconstruction, displays 

[8], spatial filtering [9], signal processing [2] and data storage 

[10]. Another commonly used periodic structure is the multilayer 

coating, which is used essentially for impedance matching [11], 

both for high-reflectance, as in Bragg reflectors, and for 

anti-reflection coatings .[12]. In these applications the optical 

wave propagates in what is, in effect, an unbounded medium.

The past two decades have seen a rapid increase in the use of 

optical frequency radiation in a variety of engineering 

systems, where previously predominantly electrical techniques were 

employed [13]. Perhaps one of the best known examples is that of 

optical fibre communication [14], [15]. Other examples include 

optical sensing [16], laser welding in medical and industrial 

applications and optical computing [17]. The potential of 

dielectric optical waveguides for communications was first noted 

in 1966 [18]. Since about this time the possibility of the use of
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optical frequencies attracted considerable interest and this has 

continued with the development of continuous-wave room 

temperature operation semi-conductor lasers in 1970 [14], 

efficient semi-conductor detectors and the development of low loss 

materials [19], [20]. Together with these advances there has been 

improvement in the fabrication capabilities and technology, 

allowing manufacture of reliable high-quality optical scale 

components.

As well as utilising the bulk optic components, this new 

generation of optical systems and devices has relied heavily on 

waveguided optical radiation, particularly in integrated optics 

and, of course, optical transmission. These devices have included 

many with periodic features [21], such as distributed feedback 

lasers, [22], reflection and transmission filters [23], [24], 

surface acoustic-wave cells [25], input/output grating waveguide 

couplers [26], grating multiplexers [27] and phase matching in 

parametric interaction [28]. Other examples are distributed Bragg 

reflection lasers [29] and Bragg reflection waveguides [30], 

[31].

The characteristics of a dielectric waveguide depend primarily on 

the materials of which it is composed and on its structure, in 

particular its refractive index profile. The extent to which a 

guide can be designed to possess a desired set of characteristics 

is limited by the availability of materials of suitable 

refractive index, absorption and dispersion and by fabrication 

properties. One method by which the range of possible structures 

can be increased is by the creation of periodic structures from 

the available materials. For example, we have mentioned the use of 

multilayers for impedence matching to minimise reflection
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(in general of an unguided wave), when use of a single layer of 

appropriate refractive index is impossible or impractical [11]. 

Pulse compression by grating pairs relies on the additional 

(angular) dispersion provided by the gratings [7]. The topics 

considered in this thesis may be regarded as examples of 

waveguiding structures in which periodic refractive index 

variations are used to create characteristics which are not easily 

achievable with available uniform materials.

1.2 Outline of contents

The effect of a discontinuity in the refractive index of a 

dielectric on a propagating electromagnetic optical wave is to 

cause part of the wave to be reflected and part of it to be 

refracted and transmitted. When there is a periodic series of 

these discontinuities, interference of the successive reflections 

and refractions gives rise to resonance phenomena. In particular, 

for certain frequency bands the interference is such that very 

little power is transmitted and the wave is strongly reflected

(the reflection bands) or scattered . These phenomena can be

described using the dispersion curve ( the variation of the

propagation constant with frequency), and in these terms the

periodic perturbation causes the dispersion curve to be distorted. 

The dispersion curve can be regarded as characterising, to a large 

extent, the features of propagation for a particular material or 

structure (or in general the combination of both of these). Thus 

the introduction of a periodic perturbation may in some
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circumstances be utilised to produce desired properties in a 

device.

The following two chapters of this thesis are concerned with 

effects which occur ( at frequencies inside or near the reflection 

bands ) when a multilayer Bragg reflector is used as the cladding 

for a hollow cylindrical guide, the Bragg fibre [32]. The 

multilayer reflector will, of course, reflect a wave incident in 

air. Therefore if we compare an infinite multilayer cladding with 

the cladding of a step-index fibre, which must have an index less 

than that of the core if it is to be lossless, we can consider the 

former to have an effective refractive index of less than unity. 

Thus in some senses the cladding is analagous to a metal with zero 

absorption. However for any finite number of claddings the loss 

from the less than total reflection must be considered and so 

the wave is still attenuated, though by a different mechanism. 

There are features of the multilayer which differ significantly 

from that of a metal, in particular the strong wavelength and 

angular dependence of the reflectivity [31] and the polarisation 

dependence [28].

The first chapter investigates the dispersion relation of the 

large-cored Bragg fibre and considers how to optimise the layer 

thicknesses for low loss. The attenuation of a low loss mode at 

wavelengths of high material absorption is calculated. In the 

second chapter the analysis is altered slightly in order to 

consider much less well confined modes and wavelengths of 

operation at which the cladding is less than maximally reflecting. 

The suitablity of the Bragg fibre for use as a component of a 

high-temperature sensor is considered.

In chapters four and five some phenomena which take place in a
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slab dielectric waveguide with a longitudinal periodic index 

variation, and which occur at frequencies outside the reflection 

band, are considered.

Even at frequencies well away from the resonance frequency, 

there is a small but non-zero distortion of the dispersion curve. 

Therefore the variation of the propagation constant with frequency 

has been altered and this will effect the manner in which a pulse 

of finite spectral width is transmitted. This is analysed in 

chapter four. This effect may be regarded as an additional 

waveguide or material dispersion, which may be , varied to a 

relatively large extent by varying the pitch and amplitude of the 

perturbation. As an example of this, the possibilty of introducing 

a zero velocity dispersion point at a chosen wavelength in a 

single mode, doped silica guide is considered.

As the frequency of operation approaches a band edge, the group 

velocity of propagation is reduced. Chapter five is concerned 

with the manner in which this reduction affects the bandwidth of a 

further periodic perturbation with resonance frequency in this 

area. In order to determine this, propagation in a multiply 

periodic waveguide is considered.

1.3 Analysis of Electromagnetic Wave propagation in Periodic media

Wave propagation in a medium may be described in terms of a 

complete set of normal modes. Any possible wave motion can be 

expressed as a linear combination of these modes [33]. When a 

periodic variation is introduced into a uniform medium, the effect
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on the propagation is commonly regarded in one of two ways. The

resulting medium can be considered to have an altered set of

characteristic modes, the form of which is given by

Floquet's/Bloch’s theorem [34], [31]. Alternatively the periodic 

perturbation can be viewed as causing two of the normal modes of 

the uniform structure to become degenerate, leading to transfer of 

power between them. This is the Coupled Mode theory [35], 

[31].( Both these methods are used in the analysis of a very wide 

range of wave phenomena and are not limited to optical or general 

electromagnetic waves [34]). In this section we will summarise 

the main features of these two approaches (these are

described in more detail in the references ).

(a) Bloch modes

It can be shown that wave propagation governed by a one

dimensional periodic equation of motion may be described by a 

complete set of normal modes, or Bloch waves, of the form 

F(z) = exp(iQz) U(z)

where F is a component of the electric or magnetic field, z is the 

direction of the periodicity, A is the periodicity, m is an 

integer, U is a periodic function of period A. and Q is the "Bloch 

wavenumber" characterising the particular mode. Thus the effect

of propagation through one period of the medium is only to change

the wave by a scalar multiple exp(iQA). This is clearly closely 

related to the idea of an eigenfunction of the medium. Since U is 

periodic it can be expanded in a, Fourier series. These Fourier 

coefficients, { A(Q-m2TT/A) } say, are obtained by requiring that 

the Bloch mode satisfies the wave equation. The Bloch wavenumber Q 

has that value which leads to a non-trivial solution . That is,

Q is such that the matrix of coefficients of {_ A } , known as
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Hill's determinant [36], is zero. As long as the Fourier series 

of the periodic variation is absolutely convergent the solution 

is [36]

sin^(QA/2) = det(O) sin^(pA/2)

where the determinant of the coefficients is det(QA/2) and p is 

the propagation constant in the direction of the periodicity at 

which the wave is incident into the medium. At frequencies for 

which Q is real the wave propagates and these are the pass or 

allowed bands. Between these lie frequency ranges for which Q is 

complex. Here the wave is strongly reflected and these are the 

stop or forbidden bands. When propagation in a two-dimensional 

medium ( with one dimensional periodicity) is considered, there 

are in general frequency bands, at which Q is strongly perturbed 

from its value in an uniform medium but remains real, for which 

the incident wave may be scattered into another forward direction. 

These are the general results. There are some special cases of 

interest.

When the perturbation is small ( this is the case for most 

gratings) the only directions of propagation which are 

significantly coupled are those with propagation constants in the 

direction of the periodicity p^, such that 

P^ - P2 =Zn 7T /-A for integer n.

This is the Bragg condition and holds for both forward and 

backward scattering. For the case of a one dimensional medium, if 

Q -Zm n /A = p then Q -2(m+n) tt/A = -p and so as long as the nth 

harmonic of the index perturbation is non-zero, either of these 

two terms (and only these two) may be large. Light incident at 

one of these angles can be strongly scattered into the other as it 

propagates. The dispersion relation is (setting m= 0) [31]
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( Q2 - f2)[ (Q ~ 2 e M ) 2  -  f 2  ] ~  (w2u.|e |)2 = 0 

where is the amplitude of the nth harmonic of the permittivity.

When the medium is bounded the above equation determines the set 

of possible transverse propagation constants in terms of Q. Q 

must then be obtained from the boundary conditions [37].

For a purely cosinusoidal variation the wave equation is known as 

Mathieu's equation and the solutions for the fields are the 

periodic Mathieu functions [34].

An important structure for which the Fourier series of the 

variation is not absolutely convergent is that of a stratified 

periodic medium [34]. However in this case an exact solution can 

be obtained, since the boundary conditions at the interfaces can 

be easily expressed. The requirement that after translation 

through one whole period the wave vector changes by exp(iQA) only 

means that the Bloch wave is an eigenvector of the translation 

matrix [38], [39]. The eigenvalues are of course exp(iQA) and the 

frequency regions of real and complex Q lead again to the 

characteristic stop and pass bands.

(b) Coupled mode theory

At any point z in the direction of propagation, the field may be 

expressed as a superposition of the normal modes of the 

unperturbed guide. Therefore the field in the periodic medium may 

be expressed as a z-dependent superposition of the unperturbed 

modes [31], [33]. The requirement that the field satisfies the 

perturbed wave equation and the use of the orthogonalitiy of the 

normal modes leads to a set of coupled differential equations. 

Assuming the effect of the perturbation to be slowly varying with 

z and assuming that the terms with non-zero arguments in the 

exponential make no contribution over moderate distances, because
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of cancellation, leads again to the Bragg condition for 

non-negligible coupling. For the case of backward coupling by a 

small perturbation in an infinite medium, this yields the same 

dispersion equation as is obtained from considering Bloch 

modes. For a bounded medium and for co-directional coupling, the 

equations in the coupled mode theory are of essentially the same 

form as for backward coupling in an infinite medium and are thus 

simpler than the Bloch wave approach in these cases.

-1.4 The Dispersion diagram and the Reflectivify

The diagram showing the variation of the propagation constant 

with frequency for a periodic medium contains most of the 

characteristics of the propagation. This diagram is shown in 

figure 1.1(a) for the case in which the perturbation causes strong 

reflection, or equivalently, coupling to the backward mode [31].

The frequencies at which Q is first complex are the band 

edges. At these frequencies it can be assumed that the waves with 

forward and backward phase velocities have equal amplitudes and so 

form a standing wave.

For any possible Bloch wavenumber Q, 2n TT/A - Q is also a 

solution near the nth resonance frequency and so these two modes 

can be interpreted as the two normal Bloch waves of the structure 

in this case. The successive curves in the dispersion 

diagram of positive slope can be interpreted as representing the 

fundamental and harmonic components of a Bloch wave with positive 

group velocity. The curves with negative slope similarly represent
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Figure 1.1(a) Schematic dispersion diagram for backward 
coupling
-- components of Bloch wave with forward group velocity
-- components of Bloch wave with backward group velocity

Figure 1.1(b) Schematic dispersion diagram for forward 
coupling between modes (ij and (iij. The 

• dotted sections indicate the unperturbed

dispersion when it differs significantly 
from the perturbed values [l!8].
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the other Bloch mode. The reflection or forbidden bands occur 

where the curves of the two Bloch modes intersect. Thus the 

forbidden bands can be interpreted as the frequencies at and near 

which the modes would become degenerate if they could propagate. 

Since the normal modes must be independent, they cannot propagate.

The dispersion curves may also be interpreted in terms of 

coupling between modes. The two curves through the origin 

represent the forward and backward propagating modes of the 

uniform structure. The reflection bands are the frequencies for 

which the perturbation causes power to be transferred between 

these two modes. The other dispersion curves are described by the 

coupled mode formulae, which can be made arbitrarily accurate by 

retaining enough terms, as in the Bloch wave formalism, but they 

do not have a simple interpretation in terms of the normal modes 

of the original unperturbed structure.

Figure 1.1(b) shows the (schematic) dispersion curve for the case 

of coupling between two forward waveguide modes by a periodic 

perturbation. Now the propagation constant remains real always. 

Similar remarks to those above apply regarding the Bloch wave and 

coupled mode interpretations.

Figure 1.2 shows the reflectivity for backward coupling in a 

periodic medium as a function of- frequency. The width of the 

central reflection band is a function of the effective amplitude 

of the periodic index variation. It is independent of the length 

of the periodic medium in the long length approximation. The value 

of the maximum reflectivity inside this band depends on the 

length of the device, as does the position of the first zero 

crossing outside the reflection band. The envelope of the 

reflectivity is similarly independent of the length outside the



Reflectivity

Figure 1.2 Reflectivity in a periodic medium. The envelope function 
2 2,

oc |&nl /( P  “ ft/A ) outside the stop band \o
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reflection band. However as the length increases the oscillations 

inside this envelope become larger and more rapid. The positions 

of the first zeros tend to the band edges. Therefore although the 

region for which the propagation constant is complex is 

essentially independent of length, the width of the central 

reflection lobe can be considered to decrease with increasing 

length. However the maxima of the side lobes also increase and 

move towards the band edge. In the limit of an infinite structure 

the reflectivity is described by the envelope function.

For forward coupling the amount of power transferred into the 

coupled mode does net increase monotonically with length. The 

power is exchanged periodically between the two modes as the 

length is increased [31]. This may also be interpreted as the 

interference between the fundamental and harmonic components of

the two Bloch modes of the structure.
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2 . THE INFINITE BRAGG FIBRE

2.1 Introduction.

The Bragg fibre [32] is a cylindrical waveguide in which the 

cladding is composed of periodic layers of alternately high and 

low refractive index (figure 2.1). The power is confined to the 

core by reflection at the successive layer interfaces of the 

cladding, which acts as a cylindrical analogue of a dielectric 

mirror. The core is generally assumed to be of a lower index than 

the cladding layers, since otherwise guiding could be obtained 

more simply and efficiently in the conventional manner, that is, 

by total internal reflection.

The Bragg fibre structure was proposed by Yeh, Yariv and Marom in 

1978 [32] and the TE mode of the guide was analysed. This 

analysis showed that, when the wavelength is small enough compared 

to the core radius, the optimum thicknesses of the cladding 

layers ( that is, for greatest reflectivity ) are such that the 

layer interfaces occur at the successive zeros and maxima of the 

electric field. This result is the same as that for a planar 

periodic medium. These optimium thicknesses were obtained 

for both geometries by minimising the "outflowing" power of a 

radiation mode of the structure [43]. In the cylindrical case TM 

and hybrid modes were not considered.

In contrast to the case of cylindrical geometries, optical wave 

propagation in a planar stratified periodic medium has been 

considered widely [28], [38], [44], [45]. It has been shown that 

determining the optimum thicknesses by minimising the outflowing 

power is equivalent to maximising the reflectivity of a Bloch wave



Figure 2.1 Gross-section and refractive index profile 
of the Bragg fibre
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in the cladding and hence that these thicknesses are one quarter 

of the effective wavelength in the material in the direction of 

the periodicity [43]. The dispersion relation for a planar Bragg 

waveguide has been obtained by matching the fields at the core 

boundary to those of a Bloch wave in the cladding [38], and 

guiding by a Bragg layer has been observed experimentally [46].

Although the planar Bragg waveguide is better understood, the 

cylindrical fibre seems to represent a potentially more useful 

structure. We will consider in particular the hollow-cored Bragg 

fibre. Hollow-cored waveguides have a possible application in the 

guiding of high power long wavelength radiation, for which 

material absorption is in general very large . A hollow guide with 

a oxide glass functioning as a cladding of refractive index less 

than one ( and hence with a non-zero absorption ), has been 

proposed for this purpose [47]. Several hollow metal guides, 

with both planar [48] and cylindrical [49], [50] geometries have 

also been considered. In general the cylindrical guide suffers 

from the disadvantage that the lowest loss mode is the TE the 

field distribution of which has a null at the centre of the core 

[50]. This differs greatly from the Gaussian field profile of 

the output from a typical laser.

Metal guides with inner single or periodic multilayer dielectric 

coatings to provide an increased reflectivity have been suggested, 

in particular for use in transmission of long wavelength CO2 

laser radiation. The planar [51], (singly coated) rectangular [52] 

and the cylindrical [53], [54], [55] cases have been considered. 

The multilayer structures have been analysed by considering an 

effective wave impedance and admittance of a finite number of 

dielectric layers surrounded by an infinitely thick metal
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cladding. This analysis is a generalisation of that for a hollow 

cylindrical guide with a single cladding [50]. Expressions for 

the attenuation constants of the low loss leaky modes have been 

obtained.

In this chapter we will consider propagation in the infinite 

Bragg fibre. We will show that modes analogous to the Bloch modes 

in planar periodic media can be supported by cylindrical periodic 

structures as long as the radius of curvature is large enough. By 

using these modes we obtain the dispersion relation for the Bragg 

fibre. This expression holds for any periodic cladding, and not 

only for one with optimised layer thicknesses, ( for which the 

equations reduce to simple forms) as has been the case for 

previous results concerning cylindrical periodic guides [54], 

[55].

The previous analysis of the Bragg fibre [32] has used a power 

minimisation to determine the optimum cladding layer thicknesses 

of the TE mode only. We will extend this method to include the 

TM and hybrid modes and show that the results so obtained are 

equivalent to those obtained from the use of Bloch waves. The 

values for the attenuation constants of low loss modes of the 

Bragg fibre are obtained. The field patterns and designations 

of these modes are considered and the suitability of this fibre 

for transmission of CC^ laser light with a wavelength of 10.6 |Um

is discussed.
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2.2 Bloch waves in a weakly curved, radially periodic meduim

We will consider electromagnetic wave propagation in a 

cylindrically symmetric medium consisting of an infinite number of 

concentric dielectric layers of alternating refractive indices 

n^, n2  (dielectric permittivities e^, ) and thicknesses

T^, (figure 2.1). The radii of curvature, r,are assumed to 

be large, that is

X/r «  1

It will be shown that this medium has a set of modes which are 

analogous to the Bloch modes of a linearly periodic medium.

Using cylindrical polar co-ordinates r,0,z (figure 2.1) 

eigensolutions to Maxwell's equations may be written [40]

E = E(r) cos(10) exp(i^z-iwt)

H = H(r) sin(10) exp(ifz-iwt)

where E, H are the electric and magnetic fields respectively 

1 is an integer

(all results follow similarly for the orthogonal polarization, for 

which the 0 dependences of the electric and magnetic field are 

interchanged). Then for a region of uniform dielectric

perimittivity e and magnetic permeability Jl, the longitudinal 

field components are given by

(d2 + 1 d - l2 + w2|ue - p2) Ez = 0  (2.1a)

2 2dr r dr r

(d2 + 1 d - l2 + w2pe - p2) Hz = 0

2 2dr r dr r

(2.1b)
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The tangential components are

Eq = i (-piEz - w|AdHz ) sin(19) exp(ipz-iwt) (2.2a)

k2 r dr

Hq = i (piHz + w€dEz ) cos(10) exp(ipz-iwt) (2.2b)

k2 r dr

2 2 2 where k = w jute-p

The exact solutions to (2.1) are Bessel functions [40]. However,in

order to obtain a Bloch wave solution, it is convenient to

1 / 2transform the equations by multiplying them by r to yield

( d2 + k2( 1 + 0.25 - l2 ) ) ( r1/2 Ez ) = 0

dr' .2 2k r

(2.3a)

( d2 + k2( 1 + 0.25 - l2 ) ) ( r1/2 Hz ) = 0 (2.3b)

dr' i 2 2k r

If we define a periodic function

k(r) = kj = w2-1 - p2- 2mA < r < (2m+l)A

^2 = wV e2 ~ P^ (2m+l)A< r < (2m+2)A

then equations (2.3) determine the fields in the periodic medium.

Neglecting terms of order (1/kr) (strictly we neglect terms of 
2

order (1/kr) ), the solution in the mth cladding layer of

refractive index n^ may be written

E = 1 ( A« . cos(k .x) + B0 . sin(k .x) )z 2m j j 2m j j
1/2

(2.4a)
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H = 1 ( C0 . cos(k .x) + D0 . sin(k .x) ) (2.4b)z ____  2m-j j 2m-j j

r 1/2

where A  is the radial period 

x = r - a - (m-l)A-Aj

a is the radius of curvature of the first cladding layer

A . = 0 if 3 = 23
Tx if j=l

To the same order of accuracy, equations (2.3) are invariant under 

translation by A. However, since they are derived from the reduced 

Maxwell equations for a region of uniform permittivity, it is 

necessary to consider the boundary conditions.

At each of the cladding layer interfaces, E , Hq , H , Eq 

must be continuous. Using (2.2)-, (2.4)

—  — 1—  —

r1/2Ez cos(k .x) 
3

sin(kjx) 0 0 A0 . 2m-j

r1/2H / i  
0 ejgi ej®2 plcos(k .x) |31sin(kjX) 2m-j

r1/2Hz

— k.2r
3

. 2 k . r 
3

0 0 cos(kjX) sin(kjx) 2m-j

r ^ 2E /i
e

plcos(k .x) pisin(k .x) f . B l lX 82 2m-j

— —
k.2r
J

k .2r 
J _ _ _

M .(x,r) V0_ (2. 5)

where g, = cos(k .x) + sin(k .x) 
1 .1 J

2rk
J

k .
J

g~ = sin(k .x) - cos(k.x)
 ̂ _____ J 3

22rk
J

k .
J

Then at an interface with a layer of thickness T^, index n^ on



the left, the boundary conditions may be written

V T l’r) V2m-1 = V ° ’r) V2m ( 2 . 6 a )

and at an interface with index n2 on the left

M2(T2,r) V2m_2 = (0,r) (2.6b)

From equations (2.5) it is clear that equations (2.6) are not 

periodic because of the presence of terms of 0(l/kr). These same 

terms also couple together (A ,B ) and (C ,D ),so that,if 

a Bloch type solution did exist, Ez and Hz would have to have 

the same Bloch wave number.When terms of 0(l/kr) are negligible, 

these effects may be ignored and then both the defining equations 

and the boundary conditions are periodic.

Neglecting terms of 0(l/kr),(2.6) becomes

V2m = M 1 V2m-1 (2.7a)

V2m-1 = »2 Vo O 2m-2 (2.7b)

where , for i = 3 - j

C—
l.

II cos(kjTj) sin(k .T .) 
J 3

0 0

-k.e .sin(k .T.) 
i J J J

k.e .cos(k .T . 
i J J J

) o 0

k .e.
J i

k .e.
J i

0 0 cos(kjTj) sin(k .T .) 
J 3

0 0 -k. sin(k.T.) 
i 3 3

k.cos(k .T .) 
_J- 3 3 ■

k  .
J

k .
J __

1/2 1/2Therefore r E and r H are uncoupled z z and are defined

exactly as field components in a linearly periodic two-dimensional

medium. Thus results which are analagous ( in fact nearly

identical) to those for linear periodicity hold in the radially

periodic case. The main equations [43], for fields in the layers

of index n2, are listed here for later convenience. The
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corresponding expressions for the fields in the layers of 

refractive index n^ follow from (2.7b).

The matrices for translation by one whole period are

A2m
=

C1C2 SMS1S2 °1S2 + SMS1C2 A2m-2

B2m ”cls2 " SlC2/gM C1C2 ” SlS2/gM B2m-2

C2m
=

C1C2 “ gESlS2 C1S2 + gESlC2 C2m-2

i--
--

ro B

i

-cls2 - slC2/gE Clc2 - slS2/gE D2m-2

where c. = cos(k.T.), s. = sin(k.T.) 
J 3 3 3 J ]

gM k le2/k2£l 

SE ~ k ]/k2

(2.8)

(2.9)

The corresponding Bloch waves are:

= 1 exp(iQM(r-a)) exp(- iQ^) ( A^costk^x)

~ 2
r

H = 1 exp(iQ£(r-a)) exp(- iQ£x) ( Cocos(k2x)

where exp(iQ ), exp(iQ„ ) are the eigenvalues
n ht

(2.8), (2.9) and (A ,B ), (C ,D ) areo o  o o

eigenvectors.That is

+ B sin(k0x) ) o 2

+ D sin(k0x) ) o 2

of the matrices in 

the corresponding

c o s (Qm A) = c xc2 - 0.5( gM + l/gM )s1s2

exp(iQMA) = c o s(QmA) + N cos (Qm A) - 1

( so Q.., -Q-. are both solutions ) M M

c o s (Qe A) = 0 ^ 2  - 0.5( g£ + 1/g >s js2

exp(iQ£A) = cos(Q£A) + Jcos2(QEA) - 1

(2 .10)
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( so Q , -Q are both solutions )
lL  JZj

(Ao’ Bo )T = ( C1S2 + SMS1C2 > exP(1V °  - c 1c2+8MS1S2 5 

(Co> Do )T = ( C1S2 + SES1C2 ’ ' ClC2+gESlS2 }

(2.11)

As in the case of linear periodicity, the frequency dependence of 

the propagation may be described in terms of pass and stop 

frequency bands. We are primarily interested in the reflective 

properties of the medium. The reflection bands for Ez,Hz occur 

for [43]

| cos(QA) | > 1

and then

Q = nTT/A + iQ^ for integer n (2.12)

for Q = Qm , Qe

Inside the reflection band the physically possible solution is

that for which the wave amplitude is decaying radially. For

E , E , Hq, this requires |exp(iQMA)| < 1 , so the sign

chosen . in (2.10) must be opposite to the sign of cos(Q^), that

is, the trace of the translation matrix. The analagous condition

in terms of Q holds for the H , E , EQ fields. The mostE z r y

rapid decay occurs (considering Ez and Hz separately) for [43] 

k lTl = k2T2 = 71/2

This condition is the same for the E and H fields and soz z

clearly here at least the respective reflection bands overlap. We 

will see in more detail later the relative variation of the stop 

and pass bands.

Thus in summary, for weak curvature, that is as long as terms of 

0(l/kr) are negligible, a radially periodic structure is fully
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analagous to a linearly periodic one. It will support modes which

have the form of Bloch waves, but which decay in amplitude 

- 1/2radially as r , as is expected from the cylindrical geometry. 

These Bloch type modes are not supported for smaller radii of 

curvature. Therefore, for example, if we require our solutions to 

be accurate to within 2% and the wavelength of the radiation is 

lpm, then we must consider only structures with minimum radius of 

curvature of at least 8.3|Um. In practice, the structures of 

interest are likely have much larger radii.

2.3 Dispersion relation for large-cored infinite Bragg fibre

Having determined the characteristics of propagation in the 

cladding of the Bragg fibre, we may now obtain the dispersion 

relation of the guide. For a waveguide, the periodic cladding is 

assumed to be preceeded by a single cladding layer of index n^. 

This ensures that the boundary conditions are correct for the 

first interface of the periodic cladding.The notation is changed 

appropriately, the coefficients in the core being denoted Aq, 

Bq, C , Dq and those in the first layer of the periodic 

cladding being C 2 , ^2 * ^ confined mode will exist

if evanescent Bloch waves can be excited in this cladding. 

That is, if the mode propagation constant at some frequency 

is such that the field is non-decaying in the core but the Bloch 

wave numbers Q , Q both lie in the forbidden gap. As long

as the core refractive index is lower than both those of the 

cladding layers, the fields must, be non-decaying in each cladding
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layer (but will have decreasing amplitudes in successive layers). 

Another possible use of the structure is as a multichannel tube 

waveguide, in which the fields are evanescent in the core and low 

index cladding layers. If one of the cladding indices is lower 

than that of the core then it is conceivable that modes for which 

the field is evanescent in the low index cladding layers, but not 

in the core, may propagate. The dispersion relation which will be 

derived may be applied to these cases by allowing the appropriate 

wavenumbers to be imaginary. However the specific case of interest 

here is that in which the structure is used as a hollow waveguide, 

with the bulk of the power confined to the core.

The radially dependent parts of the fields in the core ( r < a ) 

may be written

E = A J., (k r) z o 1 o

where k^ = w^jieo~p

eQ = permittivity of the core

n = refractive index of coreo

= 1th order Bessel function of the first kind.

and those in the first cladding layer

Ez 1 ( A^ cos(k^(r-a)) + sin(k^(r-a)) )
1/2-

r

Hz 1 ( cosCk^Cr-a)) + sin(k^(r-a)) )

T /tr

The boundary conditions at the core/cladding interface, r=a, are
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A1
1 / 2 .  a A — o i—1 3̂

B1 + k.e Jn ' + Blk, 1 o 1 " 1 Jn ( 1 - 1 ) R 1 o

2k^a k e, we, a o 1 1
2 2 k k, o 1

C1 R J, o 1

D1 pik1 J ± ( 1 - 1 ) + ( J-, + k, Jn ' ) R 1 1 1  0

.  «

w^a 2 2 k k. o 1 2k, a k 1 o
(2.13)

where = J,(k a) 1 0

R = C /A0 O 0

V = 1 dJ,(k__l '

k dr 
o

and at the first interface between cladding layers, r=a+t^, are

cos(kjt^) + sin(kjt^)

^2£ 1  ̂ ~ A 1 + cos(k^tj) )

k l£2

cos(k^t^) + sin(k^t^)

k 2  ̂ ~ C 1 sin^ 2 t 2^ + D i cos(h^t^) )

(2.14)

In order to excite a Bloch wave , from (2.11), it is necessary for

^2 = C1S2 + SMS1C2

B2 exp (iQ MA) -  CjCj + gMs 1 s 2

= c ls2 + 8ES 1C2
D2 e xp (iQ EA) -  c 2c 2 + § £ S 1 S 2

(2.15)
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From (2.13), (2.14), (2.13), setting

B1 = NM = SMA2 t311̂ ! 1̂ ) + B25 Di = n e = §eC2 t311̂ ! 1̂  + D2 

Aj ~ B2 tan(k1t1) C1 g£C2 - D2 tan(k1tJ)

and eliminating the unknown parameter R ,

(pik1 (1 -1 ))2 

w/eaT a k Q k^
( V f  J1 + k i V  )( V i  - J1 + k i V i ' )

2k, a k 1 o 2k, a k e, 1 o 1

Neglecting terms of order 1/ka (but retaining terms containing

N„, N„ as these may not be of order unity) this is E M

( n 1 )2 ( J 1 - N_, ) ( J-, ’e 1 E 1

n k a k ajl k.a k aj,o o o i l  o 1

where ng = e f fe c t iv e  index  = pX/27T

6 1NM >

e k.a 
o 1

(2.16)

This is the dispersion equation for the infinite Bragg fibre for 

the unknown p in terms of a, t, T^, T2> that is any

given structure. It holds for any periodic cladding, and not only 

for optimum layer thicknesses. It is convenient at this point to 

define ( analogously to the case of a finite cladding [50], 

[54])

r N„ for TE modesE

N = ) N.. for TM modesM

N.,/2 = (N_ + (e./e )NM)/2 for hybrid modes 1 H E 1 o n
As long as N is real ( using the approximation n «  1 ), the

solution for p is real. Therefore the frequencies for which
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this quantity is real can be taken as the effective reflection 

bands for the corresponding mode. The regions for which N^, 

N and are real and complex as functions of w,b (for real 

p) are shown in figure 2.2.

Equation (2.16) is clearly similar in form to the dispersion 

equation for a hollow guide with a single dielectric cladding 

[50], and may be solved in the same way as long as N^, are

not too large. For TE and TM modes the equation is linear in 

Jl’/Ji* For hybrid modes, regarding the equation as a 

quadratic in if we can neglect terms of order

M 2
\ 2V /

then (2.28) becomes

V N • + n 1H - e

J, k a 2k, a 1 o 1 n (k a)‘ o o

If also ng ̂  nQ then the equation for hybrid modes takes the same

form as that for TE and TM modes giving

J, , «  + k a N J, 
1 ^ 1  ~~ o  1

k^a

(2.17)

where N takes the value appropriate for the particular mode. If

u is such that J,-.(u ) = 0, then since the right hand side 
o 1+1 o

of (2.17) is small,

k a ~  u ( 1  o o N )

k^a

Setting p = + ip^ and assuming p^ is small, this implies that

(n 24H2/A2 - p 2)1/2a «  u ( 1 + Re(N)/k,a) o i r o I (2.18)
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Figure 2.2 Reflection and transmission bands in a periodic medium 

The shaded areas are the reflection bands 

=  k . Q  and n^ = 1.5
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o< = B. = + u Im(N)1 I 1 —  o ______ _

n 2 n a ^ k , a  o 1

and from  (2 .1 3 )

Ro = J eQ/jx ( 1 + OCl/k^) )

Equa tion  (2 .1 8 ) i s  id e n t ic a l  to  th a t f o r  a h o llow  s in g ly  c la d  
gu ide [5 0 ] .  Thus i f  the  mode cons ide red has low  lo s s  and N_,fcj
N-j a re  no t too  la rg e , the  change in  the re a l p a r t  o f  the  
p ropaga tio n  co ns tan t as a r e s u l t  o f  the  m u lt ip le  c la d d in g s  is

small. Figure 2 .3 shows how N„, E NM’ Nu vary with w for the n
first hybrid ( HE1 1 ) mode.

When p is real, the propagation is theoretically lossless.

Therefore the modes for which the field amplitudes are

exponentially decaying may be taken to correspond to guided modes 

of the fibre. The modes for which the amplitudes are increasing 

correspond to the conventional unphysical modes with the same p 

which increase exponentially with increasing radial distance from 

the core. Thus the infinite Bragg fibre can be considered to 

posses^a set of guided modes similar to those resulting from total 

internal reflection in a conventional high index core fibre-.

The solutions obtained at frequencies for which N is complex 

correspond to leaky modes of the fibre. The mode corresponding to 

an outgoing wave is obtained by choosing the Bloch eigenvalue with 

positive imaginary part ( the plus sign in equation (2.10)), which 

ensures that is positive.

However, the Bloch wave numbers Q^, Q^, which describe the 

shape of the envelopes of the fields, cannot be related directly 

to the propagation constants in the radial direction for a singly
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cladded hollow or high index cored guide. In particular, in the 

latter cases, these constants are equal for the field components 

in all directions, while Q_ f  Q .

The solutions analogous to the conventional radiation modes may 

be obtained either by removing the constraint of exciting a 

Bloch-type mode in the cladding or by taking the field in the 

cladding to be a sum of both the incoming and outgoing Bloch waves 

which may exist for any given vaue of p (that is assuming Bloch 

wavenumbers |Q_ |, | I  for one wave and — IQ |, - 1 QM | for 

the other ). In both these cases the number of unknown 

coefficients increases by two, which results in an inhomogeneous 

set of equations (and one undetermined coefficient) and so removes 

the constraint on p. The fields are only meaningful when Q , 

are real and so the range of values of p is that for which N 

is complex, that is the range of values for which "lossless” modes 

cannot be excited. These properties are of course those of 

radiation modes of conventional cylindrical fibres also.

In the following section we will consider the cladding layer 

thicknesses which will minimise the loss in the Bragg fibre.

2.4 Optimal Bragg fibre

For a Bloch mode of a planar periodic stratified medium it has 

been shown that the decay rates of the field amplitudes in the 

claddings IQ. I, !Q . I ( defined in (2.12) ) are each

maximised when the cladding layers are "quarter-wave" thicknesses

[43]. That is
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klTl = k2T2 = 1 X 1 1 (2.19)

In this case, if the mode is a TE (TM) mode, the electric

(magnetic) field and its derivative (in the direction of the 

periodicity) are zero at alternate interfaces between 

cladding layers. It has been shown also that this field pattern 

(and so the same layer thicknesses (2.19)) is a sufficient 

condition for the outflowing power at each successive cladding 

interface to have a minimum value.

For the cylindrical Bragg fibre the optimum structure for the

TE and TM modes has been obtained by minimising the outflowing

power. It has been shown that, if terms of order (1/kr) may be

neglected, then similarly to the planar case, the TE (TM) mode

field has zeros of the H (E ) field and its radialz z

derivative at alternate cladding interfaces.

We have seen in sections 2.2, 2.3' that in fact TE, TM and 

hybrid Bloch type modes exist in weakly curved cylindrical 

periodic media. Therefore the maximum decay of Ez> Hz (at 

least when these fields are considered separately) is acheived 

for each of these modes when the layers are of the corresponding 

"quarter-wave" thicknesses given by (2.19). In this case the Bloch 

eigenvalues and eigenvectors (for a decaying wave) and the 

dispersion relations are as follows (considering in particular 

hybrid modes).

Since in our notation k^ < k^, 

exp(iQEA) = ~k2/k1

C2/D2 = 0 (2.20)

Ne = -1/tan(k^t^)

There are two cases to consider:

(i) k2e1/k1e2 = l/gM < 1
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exp(iQ MA) = -  k 2e 1 / k 2e 1

A2/B2 = 0 (2.21)

So

= -tan(k^t ̂ ) = C-̂ /D.̂

This leads directly to a condition on Rq independently of t

( R - 1 ) Blk, J, ( 1  - 1 ) + R k, J-. ' ( e - 1 ) = 0 (2.30)O ' l l  o_1 i _0_

k e,1 wa 2 2 k k /  o 1

(2.22)
Also N-. = —l/tan(k1t1) 

M 1 1

k xt x = n / 2

NH = 0

Therefore if 

then

so k a = u , R = Je/uTo o o v o r

This is of course a possible low loss solution and so the first 

cladding is also part of the periodic reflector (that is, an 

initial layer to satisfy the boundary conditions to excite a Bloch 

wave is unnecessary). It seems likely that this thickness of the 

first cladding layer will give maximum power confinement and it 

will be shown simply in the following chapter that this is indeed 

the case.

(ii) k2e1/k1e2 = l/gM > 1

Now

exp(iQMA) = - k l e2/ k 2e l

B2/A2 = 0  (2.23)

So

B 1^A 1 = tan(k it l^ = ~C]/D i

and the equation for Rq is
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[ B1 f e  + R ^ V i ^ i  ' + R e (J-. ,Z+ f>2 l 2 J-,Z ) ] (1 + 0 / 1 \  ) = 0 r __o o | 1 1 o o l r  1 \

wkoa V/1
2 . 2 2  w ue k a 
| o o \k ia ‘

(2.24)

A lso

so

n m  =

Nh = tanCkjt^) - (e1/eotan(k1t1))

Now it is not clear that k^t^ = n/2 leads to a possible low

loss solution since this makes N„ large. Therefore in this case
H

an intermediate layer between the core and periodic reflector is 

required. The optimum value in this case is considered in chapter 

3.

From the form of the eigenvectors ( (2.20), (2.21), (2.23) ) and

translation matrix (2.7b) evaluated for the case of quarter-wave

thicknesses it is clear that the E , H fields and theirz z

radial derivatives have zeros at the alternate layer interfaces in 

the optimum case.

We have seen that the propagating mode in a Bragg fibre may have 

different properties depending on whether g^ is greater or less 

than one. The condition g ® 1 represents the case when the 

refractive indices and propagation constant are such that the 

TM-like part of the field is incident on the periodic cladding at

the Brewster angle and so the power corresponding to this part of

the field is totally lost. Here becomes large and it

should be remembered that approximate solution for the

attenuation is valid only for small loss.

For a real Bragg fibre with a finite number of layers, the power

loss is not zero even for frequencies inside the reflection band,

as the reflectivity is always less than one. We may estimate this 

loss if we know the power lost radially per unit length. Therefore 

we will extend the result obtained for TE and TM modes [32] to
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o b ta in  an e xp re ss ion  f o r  the  o u tf lo w in g  power o f  a gene ra l h y b r id  
mode.

In  o rd e r to  r e ta in  some g e n e ra l i ty ,  we w i l l  w r i t e  the  f ie ld s  in

the c la d d in g  la y e rs  as fo l lo w s :

E = ( A . J n( k r )  + B. Y.. ( k r )  ) cos(10) e x p ( iB z - iw t)
Z J -L J -L

H = ( C. J , ( k r )  + D. Y, ( k r )  ) s in (1 0 ) e x p ( iB z - iw t)z J 1 J 1 r

R e -w r it in g  these exp ress ions in  terms o f Hankel fu n c t io n s

2E = ( A . + B . / i  ) H ^C k r )  + ( A . -  B . / i  ) l J 2\ k r )  z J J 1 J J 1

2H = ( C. + D . / i  ) H ^C k r )  + ( C . -  D . / i  ) H ^C k r )  z J J 1 j j 1

For ou r cho ice  o f e x p o n e n tia l fa c to r ,  H ^ \ k r )  is  a ssoc ia te d

w ith  a wave t r a v e l l in g  in  the  p o s i t iv e  r  d i r e c t io n ,  i . e . ,  an
(2)ou tgo ing  wave, and H-̂  ( k r )  re p re sen ts  an incom ing  

w ave .C ons ide ring  the ou tg o ing  z - f ie ld s  and the  co rrespond ing  
r a d ia l and ta n g e n t ia l . components o n ly , the tim e-ave raged Poyn ting  
v e c to r o f  the  ou tgo ing  wave in  the  j t h  c la d d in g  la y e r  is

S = Re r
= w

 ̂ ^0ou t ^Zout ^zou t 
( e(A 2 + B 2 ) +f*(Cj 2

H0ou t ) / 2

+ D ) ) (  J ^ '

8k

J ' Y 
J1 *1 )

Using the  W ronskian o f  the  Besse l fu n c tio n s  [3 6 ] and in te g ra t in g

over a u n i t  le n g th  c y l in d r ic a l  su rfa ce  g ives the  r a d ia l ly  outward

power f lo w  pe r u n i t  le n g th  in  the  j t h  c la d d in g  as

P . = w ( e (A .2 + B.2) + W.(C.2 + D .2) ) r  J ___  J J • • J J
(2 .2 5 )
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From the well known asymptotic expressions for the Bessel

functions in terms of circular functions [36], when A , B ,m m

C , D are the coefficients for the fields expressed in m m

circular functions (defined by (2.4)) the right-hand side of 

equation (2.25) must be multiplied by TTk^/2 to give,

P = w7T( e(A 2 + B 2) + K(C 2 + D 2) )(1 + 0(l/kr))/4k (2.26)rm m m j m m

It should be noted that Prm gives an estimate of the loss given 

that the last cladding is the (m+l)th and does not represent the 

net power flow out of the (m+l)th cladding for each m. Also, we 

have satisfied the boundary conditions for a radiation mode, which 

has both incoming and outgoing components, but we have only taken 

the contribution to the power flow of the outgoing part. In the 

last cladding layer the amplitudes of a mode with only an outgoing 

component must be twice those of the radiation mode. Therefore the 

actual value of the outflowing power must be taken as 4P . This 

then gives agreement with the leaky mode result [50] for the case 

of a singly cladded guide.

From (2.10), (2.26) in a layer of index for a Bloch wave

(for given values of p, A^, B^, C^, D^)

Pr 2m = W7T( e2exP( i V 2m~2 )A )B2 2 ( 1  + k 2

+ exp(iQH(2m-2)A)D22(l+Q22/D22) )/4k

(2.27)

For an "optimum" Bragg fibre with 2m+l cladding layers we get 

from (2.20), (2.21), (2.23)
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U >  %  > 1

r2m wTT A 2( e9 (1/g )2m + e (1/g )2m )/4k o Z M o E

(ii) gM < 1

Pr2m = W7T Ao 2( e2 SM2\ 2 + (1V 2l"C22 )/4k

Clearly the power is reduced for a fixed number of cladding

layers if g„ is increased and gw is increased in the first case and E M

decreased in the second. Figure 2.4 shows the contours of

constant g^, 8M as the refractive indices n^, n£ are varied.

From this it can be seen that, for most likely refractive indices

for which g„ is large, g„ is less than one.E M

Now that we have an expression for the outward radial power flow 

per unit length 4P , the attenuation constant oC^( that is the 

imaginary part of the propagation constant ) can be determined 

since these quantities are simply related by [50]

2oc^ = 4Pr/ (longitudinal power flow)

Therefore it is useful to consider 

radially outward power flow per unit length in the (m+l)th clad 

longitudinal power flow in the core and first m claddings

= 4P /( P + , * , „rm zcore [__zcladds
s - 1

m

E )

P and P , , , are obtained by integratingzcore zcladds J °  °

z-component of the time averaged Poynting vector

S = Re( E H * -  EqH * ) / 2  z r 0 0 r

over the relevant cross-section to yield

P ro = (7T?2/2k 4) A 2[ 21R ( 1 + (w2u.e /&2) J 2 ) +zcore T o o  o j o  r l

the

w(e+MR 2)( (k 2a2-l2)J 2 + k 2a2J,?2 + 2k al2J1J1,)/B i o o i o i  o i i r
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Pzcladds ; 7Tpw( k r (  (eAg2 + + 0 .5 k r ( J ^ ' 2 + J^2) )

+ (eB 2 + uD 2 )(Y1Y-1 ' + 0.5kr(Y., ,2 + Y 2 )) s i s 1 1 1 1

+ 0 .5(eA B + liC D ) ( J  2 - Y 2 )(1 + 0 ( l / k r ) )  ) / k 4 s s r s s 1 1

= n 2pwT (eAg2 + eBg2 + futCg2 + |wDg2 )(1 + 0(l/kr))/4k

where J, = J,(k a) and similarly for J , ' 
i 1 o l

and if the cladding layer s has index n^ (j = 1,2) then

k = k ., e =e ., T = T .J J J
In fact for low loss cases,

m

Pzcore >> zcladds (2.28)
.------ 5=1

and also if R /M., k a ^ u  (2.18) then
o v o I o o

P = 7T A 2(Je /u)a2J 2zcore o v o | 1

and so we can write for a structure with m+1 claddings

2<*lm ■ 4Prm/( i > (2'29>

Thus from (2.27), (2.29) we have obtained an expression for the

attenuation constant of a low loss Bragg fibre with a finite

number of cladding layers.

2.5 Alternative derivation of optimal Bragg., fibre.

In this section we will show that we can obtain a low loss Bragg 

fibre structure for a general hybrid mode by minimising the 

outflowing power in each successive cladding layer. It should be 

noted that neither this procedure, or the equivalent one of 

maximising J Q | , i.e. setting T^, T£ to satisfy (2.19), gives an 

exactly optimum structure for any finite number of cladding 

layers. However it will be assumed that for a low loss mode for
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which the  f i e l d  am p litu des  a re  sm a ll a t  the la s t  c la d d in g  la y e r ,  
the  i n f i n i t e  s t ru c tu re  is  a good app rox im a tio n  to  the f i n i t e  one.

We now co n s id e r an a r b i t r a r y  ra d ia t io n  mode o f the Bragg 
f ib r e .  T he re fo re  th e re  i s  no d is p e rs io n  equa tion  and p can take  
any chosen va lu e  le s s  than no27T / \ .  We then c o n s tru c t a s t ru c tu re  
which w i l l  p ropagate a mode w ith  t h is  va lue  o f p w ith  low  lo s s .

For a c la d d in g  boundary a t  r^  ( f ig u r e  2 .5 ) w ith  c la d d in g  r e f r a c t iv e

in d ic e s  n ^ , n2 on the  le f t - h a n d  s id e  and r ig h t-h a n d  s ide  o f the

in te r fa c e  re s p e c t iv e ly ,  the  f ie ld s  in  the  two c la d d in g s  a t the

r i t t e n  as shown below ( s in ce  A . ,B . ,C . ,D .  and
J J J J

n.

in te r fa c e can be

hence E , ,  z l H , a re  z l

n i

Ez ( k l r j ) ■  Ez l
HZ^k l Tj ) = Hz l

E ( k 0r )  = (AJ 10 + BY10) cos(10 ) 
Z 2 12 12

H ( k 0r )  = (CJ10 + DY,0) s in (1 0 )  z 2 1 2  1 2

where J^ 2 = J ^ k ^ ) ,  Y^2 = Y1 ( k 2r ^ )

From continuity of Hz, Eq , Hq at the interface

A = TTk„r_.( E_,Y10 ' -  k ne ,E _ 1 f Y1 2  -  p i 1 ( k £ -  1 ^ z i ^ 1 2  )'2 j  z l  1 2  2 1 z l

k l 62 k 0r  . we0 k ,2 j 2 1

B = 7Tk0r . ( “ E .J  ' + k 0e . E / J 10 + B1 1 ( k 0 -  1 )H , J 10 ) 2 j  z l  1 2  2 1 z l  1 2  r 2 z l  1 2
22 k,e0 k0r . we0 k,1 2  2 j 2 1

C 7T k 2r i ( Hz 1Y1 2 ' k 2Hz l ' Y1 2  P1  1 ( k 2 1 )Ez l Y1 2  ^
k 0r  . w m . k , ‘
2 J P  1

D = 7Tk0r.(-H .J- ' + k 0H / J 10 + B1 1 ( k0 - 1 )E ,J10 ) 2 q zl 12 __zl 12 r________2 zl 12
2k2r . vji

(2 .3 0 )



" i  n4
I
I
I
I nz

0C

I
I
I

i
i
i
i

__I___________ I_____ I_______ !_
r=0 a=r0 n r2

F igu re  2 .5  N o ta tio n  used in  s e c t io n  2 .5
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Therefore substituting from (2.30) into equation (2.25) gives, to 

0(1/kr),

,  . . 2 ,  .  2 „  2 .  ,
•2e z i + r Hz i

Prj = w (TTk2ri)2( Jx2 + Y12 ) (60E„,2 + jiH 2

2k2 2

+ e2k22Ezl’2 + uk22Kzi’2)C 1 + 0( 1 ) )

1 1 k . r .
1 J

So

dPr.i ^ k 2rj) ( Ji + Y1 e2EzlEzl’  ̂ 1 k2 el ^
2 2 2

2 V  V e2dr. 
J

+ uHzlHz l '( 1 - k 22 ') ]( 1 + 0( 1 ) )

~ 2
1 V j

and

d2P 2, , 2
rj = ( 7Tk2r j) ( + Yi  ~ k 2 ^

dr/
J

2 ' M  2 , 2

2

x ( * ( Ez l ’2 ' Ezl2 > + ( Hz l ’2 * Hzl2 >

V j

(2.32)

where = ( k ^ e ^  ~ ^ 2 e l ^  ^  ~ k2^  ^

From equation (2.32) it can be seen that, unlike in the case of

TE modes [32], having placed a cladding boundary at rj_x t0

minimise P . ,, the first zero of dP ./dr. is not necessarily a rj-1’ rj j

minimum point of Prj* However, if X > 0 and it is possible to 

put cladding boundaries at

Ezl ■ Hzl = 0 if k i > k2 (2.33)

Ezl’ = Hzl’ = 0 if k i < k2
2 2then dP ./dr. has its first zero and d P ./dr. > 0

r J J r j  j

at each boundary. Similarly this is true when < 0 if it is 

possible to put cladding boundaries at
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E 1 ’ z 1 = H 1 zl

oII i f
k i

> k2

Z x
= H 1 ’ zl

oII i f
k i

< k2

(2.34)

The condition > 0 is equivalent to requiring to be

greater than one if ^2^1 ;*■s, t ^ t  is, the two cases here

correspond to those encountered in the Bloch wave approach 

’M
and & = 0 when g = 1.

The form of the fields assumed in the core and cladding layers 

are those of a radiation mode of the structure. As in the case 

of the conventional step-index cylindrical guide, in these 

radiation mode solutions, one coefficient, without loss of

generality the ratio of the amplitudes of Ez and Hz in the 

core, remains undefined by the field equations and the boundary 

conditions (including the axial power flow) [56]. This degree of 

freedom can be used to obtain modes which satisfy equations

(2.33), (2.34). We consider the usual two cases.

(i) # < 0

Neglecting terms of 0(l/kr),

Jx ' (kr) = -Y^kr)

Y1 ,(kr) = Jx(kr)

so E , = H . ' = 0 at r . if zl zl j

A. ,/B. . = - D. J C .  ,
J - l  J_1 J - l  J - l

(2.35)

Requiring E ^ ’ = = 0 at r^ also yields equation (2.35).

Now from the expressions for the coefficients in terms of the 

fields on the left hand side of the interface with the previous 

layer, equation (2.30), if E = 0 then

V Bj = ' Y12/J12' = J12/Y12 ( 1 + )

Dj/Cj = - J12/Y12 ( 1 + 0(l/kxr ) )

S O

A./B. = - D./C. ( 1 + 0(l/k,r.) ) 
J J J J 1 J

(2.36)
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Similarly if E  ̂ = H = 0 then again equation (2.36) is 

satisfied. Therefore by induction, the condition on the fields, 

equation (2.34), will be satisfied at each interface when

A1/B1 = - D1/C1 (2.37)

(ii) X > 0

Similarly and more simply, equation (2.33) is satisfied if

Al/Bl = Cl/Dl (2.38)

Equations (2.37), (2.38) are exactly the conditions required

to excite an optimum Bloch mode and they are satisfied when 

equations (2.22), (2.24) hold. Thus although conditions (2.33),

(2.34) were imposed rather arbitrarily, the results of the 

previous sections show that they are indeed the conditions for a 

minimum loss mode, at least for an infinite structure. Also it is 

clear that (2.22), (2.24) are the conditions that the relative 

"phases" radially of Ez, Hz are such that the layer boundaries 

occur at the correct postions for both the field amplitudes to be 

reduced by the layer structure, as is clearly necessary for a low 

loss solution. This is illustrated in figure 2.6, which shows the 

Eq field in the cladding layers for various values of R for 

the optimum structure in each case.

In order to calculate p it is necessary to minimise , rather 

than just P , since the longitudinal power flow is a function 

of p also. Terms of order kQa cannot be neglected and so 

P = w (nk,r)2 (J112+Y112)( e ,E_,2 + ^ zl2 +ro 11 11 1 z 1

2k

e ik i2 Ez i ’2 +  rk i2 Hz i ’2 +

e k o o
2 ? 2 

k l (Hz! + Ezl >•
, 2  2 2 , 2  k a w k o o f -

2
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/#

/
/

F ig . 2 .6  : Sca led va lu e s  o f  EQ f i e l d  in  c la d d in g  la y e rs ,  f o r
0 = TT / 2  ; X  = 1 0 .6^ ;  a = 1 .0 ram ; n = 1 .5 ;

n 1 = 2 *38 ; P = P o p t im a l'

In  the  core,- | Eft | has a maximum a t  r  = 0 (n o t shown) 
o f  o rd e r 1Cr



5^

. 2B k,2 ( e E ,'H , + H ,'E , ) )~ r ___r 1 __o zl zl zl zl
k awk  ̂ e,o o  1

The results of a minimisation of£<^o are shown in figure 2.7 and

figure 2.8. Table 2.1 gives the optimium values for kQa and Rq

for various values of refractive index and core radius.

The field pattern in the core of the minimum loss Bragg fibre is

essentially determined by Rq. Since the optimum value of Rq

can be regarded as one of an infinite number of possible values

for a radiation mode with the same value of p, it is likely that

the particular field pattern contributes to minimising the loss.

It is well known that, for example, if 1 = 1 and Rq = J e / j K  then

the fields in a large cored step-index fibre (both for high and

low index cores) are linearly polarised. For a hollow core, this
-3

corresponds to R0 = 2.653791 x 10

From table 2.1 it is clear that this condition is satisfied at

least approximately for the minimum loss mode. The field patterns

for a minimum loss mode and non-low loss modes are shown in

figures 2.9 and 2.10. Clearly the minimum loss mode corresponds

closely to the most linearly polarised mode. Also, from table

2.1, the first minimum of o(. occurs at k a = 2.4 and here’ lo o
-3

Rq ~  2.6 x 10 , the exact value depending on a, p, n^,

n£* Thus in general the minimum loss mode has transverse

electric and magnetic fields which have a radial dependence

Jo(kQr). Therefore this mode corresponds very closely to the

HEjj mode of the conventional step-index fibre, both for # > 0

and b < 0, the similarity being greater for £ > 0 and also large

a / \ ,  as suggested by the results of section 2.4.

The next minimum of °<-io occurs for k a =o 5.13 and here
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F ig . 2 .7  : Power a t te n u a t io n  co n s ta n t vs number o f  c la d d in g  la y e rs ,
f o r  d i f f e r e n t  va lues  o f  R

o

ym. 1 . 0  mm, n£= 1 .5 . n^ = 2 . 3 8 , u q = 2.4037\= 10.6 a
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F ig . 2 .8  : Power a t te n u a t io n  co n s ta n t vs kQa

A = 10.6 jum, n^= 1 .5 . n>j = 2 .3 8 .
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F igu re  2 .9  : F ie ld  l in e s  o f  tra n s ve rs e  e le c t r ic  f i e l d
( f o r  f ix e d  a ,  p> )
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Fig. 2.10 : Ratio of magnitudes of transverse electric fields
E , E in the core (6 = TT/4).

x y

= 10.6 jum, n 2.= 1 - 5 ' n-j = 2 . 3 8 . & :

R = R = 2 . 6 8 4 4  x O 1 UJ

o  0
R 2 . 5  x 10“ 3o
Ro 2 . 8  x 10 3

1 .0 mm. k£= 2.463



1st minimum 2nd minimum

X /urn 21 /mm nz nl Y 1̂ 3. Ro k Qa Ro

10.6 0.5 1.5 2.38 negative 2.401 2.7162xlO_3 5.127 - 2 . 3886xlO-3

10.6 1.0 1.5 2.38 negative 2.403 2.6844xlO~3 5.136 - 2 . 6552xlO~3

10.6 1,0 1.3 1.5 positive 2.405 2.6529xlO-3 5.131 - 2 . 5 1 4 3 x 1 0 ~3

1.0 1.0 1.3 1.5 positive 2.'405 2,6529xlO~3 5.136 - 2.6553xlO~3

10.6 1.0 1.5 4.003 negative 2.401 2.6895xlO-3 5.129 - 2.5082xl0~3

Table 2.1
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Rq = -2.65 x 10 . This gives a mode with fields with 

transverse parts which have a radial dependence J^Ck^^r). 

This mode has a similar field pattern to the E H ^  mode of the 

conventional step-index fibre.

In general, we find that the (2m-l)th and the 2mth minima of <*£ 

have field patterns similar to those of the conventional HE^m and 

EH^m modes respectively. However, for increasing m, the transverse 

fields deviate more from the field patterns of the conventional 

modes, as seen from Table 2.2.

- 3

2.6 Application to guiding of long wavelength radiation.

Numerical values of the leakage loss of the TE mode of the Bragg 

fibre that would result from a realistic finite number of 

claddings have been calculated previously for a guide with indices 

and dimensions reprsentative of the wavelength range of interest 

in optical communications [57]. These calculations suggest that 

the Bragg fibre is unlikely to compete effectively with existing 

solid-core, conventional fibres where the loss in available 

materials at the relevant optical wavelengths is extremely small, 

of the order of 0.2 dB/km for silica at its minimum loss 

wavelength of 1.55|mm [20]. However the balance of the argument may 

well change at substantially longer wavelengths, for example 

10.6jum and above, where material losses are high [58], required 

propagation distances small and allowable losses relatively large 

by the standards of modern optical communication [59].

We will determine the likely power loss owing to the less than



X = 10.6 urn n 2_ “ 1 . 5  n1 = 2 . 3 8  a = 1.0 mm A O

th . . .  n minimum of
p 
i n=l 2 3 4 5 6

k 0 a
2 . 4 0 3 5 . 1 3 6 5 . 5 1 5 8 . 4 1 0 8 . 6 4 6 1 1 . 6 1 1

R_ x 103 o 2 . 6 8 4 4 - 2 . 6 5 5 2 2 . 8 2 8 5 - 2 . 3 0 5 0 3 . 1 1 1 8 - 2 . 0 5 1 1

' Similar '
conventional
mode HEn EHn HE12 EH12 HE13 EH13

k  a  of '

conventional
mode

2 . 4 0 5 5 . 1 3 6 5 . 5 2 8 . 4 1 7 8 . 6 5 4 1 1 . 6 2 0

Table 2.2 Mode characteristics

CN
m
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unity reflectivity at the core/cladding interface for light

with a wavelength of 10.6juun by using the results of the previous 

sections. The mode considered is the lowest loss mode with angular 

dependence 1 = 1. We have already seen that this mode is similar

to the conventional H E ^  mode. Its transverse electric field

profile has a maximum at the centre of the core and is similar in 

shape to a Gaussian beam profile. Therefore this mode is likely to 

have a relatively high launching efficiency and to be of most 

general interest. First we consider briefly the power 

distribution of this mode between the core and the cladding and 

hence estimate the reduction in the effective absorption

coefficient which results from using a guide in which the bulk of 

the power propagates in a hollow core.

Let the core absorption coefficient be o< /m and cladding
co

absorption coefficient be <* ^/m (taken to be approximately equal 

for all the cladding materials). A power attenuation coefficient 

may be defined as

where P(z) is the power flow through a cross section of the guide 

at fixed z and dP(z) is the change in power in propagation through 

a distance dz.

Assuming the power outside the guide to be negligible,

°^abs^z  ̂ = ” dP(z)/dz

dP(z) = -oC dz Pco - o< dz zcore cl

and J

j
For a hollow waveguide, o< = 0, so G co *

+ ]  P zcore !__zcore zcladdj
J
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From calculation it is found that this is typically of the order 
_6

of 10 or less for an optimal structure with 16 claddings. We 

will find that this loss is negligible when compared with the 

leakage loss (Table 2.3).

Figure 2.11 and 2.12 show calculated values of the attenuation

coefficient, for leakage loss only, for optimal Bragg fibre

structures for the H E ^  mode for various core radii and

refractive indices. As expected log(cx^) decreases approximately

linearly with increasing number of claddings.From the figures it

can be seen that for a hollow-cored guide with eight claddings, of

alternately, say, KBr and KRS-5, whose indices are 1.50 and 2.38

respectively at 10.6 îm, we can expect losses of 3^ x 10 dB/m
_2

for a core radius of 0 .5 mm and ^ . 8  x 10 dB/m for a core radius

of 1.0mm. For a structure with 16 cladding the losses are $ . 2  x 

—2 —310 dB/m and 6.4- x 10 dB/m respectively. If take the 

absorption coefficient to be that of KRS-5, 2dB/m [58], the

absorption loss in the latter case is 4 x 10 dB/m. This is

insignificant when compared with the leakage loss and may be 

neglected. Thus the total loss can be taken to be given by the 

leakage loss. This may be compared with, for example, a measured 

overall loss in a KRS-5 fibre of ldB/m. Clearly the Bragg fibre 

structure has a considerably lower loss.

In general the loss of a Bragg fibre is reduced if 

(i) In general, the difference between the indices n^ and is 

increased.

From figure 2.4, for a fixed value of n., l/gw is small
1 M

for = 1 ( so the loss is low) and then tends to one as n^ 

increases. For larger than the value at which g^ = 1, we

are interested in increasing 1 /g^ and 1 /g^ increases as n^



X ni ni a /mm' aabs/aC£

10.6 pm 1.5 2.38 0.5 1.3 x 10 6

10.6 pm 1.5 2.38 1.0 1.7 x 10-7 .
-7

10.6 pni 1.3 1.5 1.0 8.0 x 10 . 
-9

1.0 pm 1.3 1.5 1.0 1.0 x 10

Table 2.3 Effective relative absorption coefficient
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Fig. 2.11 : Attenuation of the optimal structure vs number of
cladding layers for different core radii.

A = 10.6 jjm. n^= 1 -5 . n^= 2 .3 8 .
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Fig. 2.12 : Attenuation of the optimal structure vs number of 
cladding layers for different values of index 
difference, n^-n^ . = 10.6 jjm, a = 1 .0 mm.

---------- n z = 1.3

-------------- n?_ = 1.5

---------- ' n z  - 1 .5

nj = 1.5 ( K> 0 )

n, = 2.38 ( Y <  0 )

ni = 4.003 ( 1 < 0 ) •
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does. Therefore now the loss decreases as n | ~ n 2 i-s reduced. 

l/gw reaches its local maximum at a value of n 0 which 

increases with increasing n^. Suitable available materials are 

likely to have indices greater than = 1.3 and so in practise in it 

is desirable to increase n^. Beyond this value of n 2 ? 

1/g^ decreases again as n 2 tends to n ^ . Therefore in 

general it is best to maximise n^~ but there is a small 

range of for which the loss does not decrease with increasing 

n l ~ n2* The achievable difference for any specific 

application is of course governed by material limitations, both 

availability and ease of fabrication.

(ii) The ratio a A , that is the relative size of the core, is 

increased. This is true for low index cored guides in general [50] 

( , physically we can imagine that the light is reflected and 

transmitted at the core boundary fewer times per unit length). 

Thus increasing the core size appears to offer a much simpler 

alternative to increasing the number of claddings. However as the 

core size is increased for a fixed number of claddings the 

susceptibility of the guide to bending losses increases. We shall 

discuss this further in chapter 3.

(iii) The number of claddings is increased. At least in theory 

this offers the possibility of designing an arbitrarily low loss 

guide. In practise the attenuation of lowest loss mode is likely 

to deviate from that predicted as the number of layers is 

increased^ because of the difference of the cladding layer 

thicknesses from the optimal value. This difference may result 

from inaccuracy in fabrication or possibly from the approximate 

nature of the analysis, although this latter effect seems likely

to be small.
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As we have seen, there are an infinite number of first-order 

hybrid-mode solutions with the same propagation constant. These 

modes are not, in general, orthogonal to the preferred low-loss 

mode. However they can all be represented as linear 

combinations of the low-loss H E ^  mode and an orthogonal 

mode. Since the low-loss H E ^  m°de is most nearly plane

polarised, it may be expected that the orthogonal mode is much 

less plane polarised and hence coupling from our preferred mode 

must require a z-dependent perturbation that is not isotropic. 

Thus undesirable mode conversion may not be too severe over 

reasonable distances.

It is perhaps worth discussing briefly also the launching 

efficiency of the Bragg fibre. It seems likely that a low loss 

mode will have a very different field pattern from the orthogonal 

mode with the same propagation constant. If the latter has a high 

loss its fields are likely to be small inside the core. Therefore 

coupling to high loss modes from, for example, a Gaussian shaped 

input field,( the degree which is determined primarily by the 

"overlap integral" of the transverse fields [33] ) is likely to be 

small and most of the power is likely to be coupled into low loss 

modes with propagation constants in a small interval about the 

minimum loss mode. Thus the launching efficiency of the Bragg 

fibre is likely to be adequate, and very probably better than that 

of a singly cladded hollow guide.
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3. THE BRAGG FIBRE FOR MULTIMODE AND BROAD BAND TRANSMISSION.

3.1 Introduction

One of the main advantages of the Bragg fibre over a conventional 

step index waveguide is that it allows the confined power to 

propagate in an air core. It is primarily when this feature 

outweighs the disadvantage of the relatively large leakage loss 

that the Bragg fibre is likely to compare favourably with other 

guides. One such application, that of transmission of light at 

wavelengths of high material absorbtion, has been considered in 

chapter 2. For this application, the guide was ideally single mode 

at the single wavelength of operation. Another possible 

application of the Bragg fibre will be considered in this chapter 

which involves its use as a multimode guide for broadband 

transmission.

The temperature of a hot object can be determined from the 

spectrum of the emitted radiation. Therefore remote temperature 

sensing can be achieved by analysing the radiation transmitted by 

a waveguide from a hot or hostile environment. At very high 

temperatures, conventional solid-cored fibres cannot be used for 

this purpose. For example the glass transition temperature of 

silica is approximately 1500 °C. Materials of sufficiently high 

melting point for use at, say, 2000-2500 °C, such as magnesium

oxide, zirconia, alumina and high temperature metals (for example 

molybdemum, tungsten) are likely to be difficult to draw into 

fibres or to be highly absorbing, or both.

I t  i s  p o s s ib le  t h a t ,  f o r  v e ry  h ig h  tem p e ra tu re  s e n s in g , a Bragg
f i b r e  s t r u c tu r e  may p ro v id e  a d e s ig n  which i s  r e l a t i v e l y  easy  to
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fabricate and which has low absorption loss. The multilayers 

may conceivably be made by vapour deposition on the inner surface 

of a metal tube, followed by high temperature heat treatment, 

the remaining inner hollow forming the core. This may be a cheap 

alternative to fabricating a high temperature waveguide fibre by, 

for example, growing a single crystal of alumina of the required 

dimensions [60], [61].

In order to obtain an accurate estimate of the temperature it is 

desirable to transmit as much of the radiated power as possible 

and with minimum spectral distortion. Therefore it is now 

necessary to consider the suitability of the Bragg fibre for 

multimode transmission of a broad range of wavelengths. It has 

already been noted that the leakage loss increases with mode 

number as for any low index core (leaky) guide. In addition the 

multilayer reflector of the Bragg fibre is likely to be 

significantly wavelength sensitive.

The modes of a Bragg fibre which are not necessarily low loss, 

either because of high mode order or because the layer thicknesses 

are not optimised at this particular wavelength, may be obtained 

by solving the general dispersion equation (for a large cored 

guide), equation (2.16) of chapter 2. However this equation is 

based on the assumption of Bloch type modes, which hold strictly 

for an infinte structure. For finite structures for which the loss 

is large, this may be an unacceptable assumption, since the field 

is non-negligible at the last cladding layer. Therefore it is 

useful to model the Bragg fibre as a finite structure. We will use 

exactly the same boundary condition approach as in chapter 2 and 

substitute explicit expressions appropriate to a finite structure 

for Ng and into equation (2.16). This allows the
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dependence of the propagation charateristics of the Bragg fibre on 

wavelength and number of cladding layers to be easily calculated. 

As mentioned in chapter 2, a calculation for a hollow guide 

with a finite number of dielectric periodic cladding layers 

surrounded by a metal has been carried out [54], using the leaky 

mode approach. The general form of the solution for a low 

impedence and admittance cladding has been given.The explicit 

analytical expressions obtained were specifically for the case of 

"quarter-wave" layers (surrounded by a metal), and do not apply 

for a general wavelength.

3.2 Dispersion relation for the ..finite Bragg fibre__

The dispersion relation for the finite Bragg fibre may be derived 

in a manner similar to that for the infinite case. The interest 

here is in the higher order mode and wavelength dependent 

characteristics of the guide and so the losses to be determined 

will be much larger than for the previously considered minimum 

loss case. Therefore it is necessary to bear in mind the limits of 

the validity of the solution which will be obtained. As before the 

total loss of the guide is ideally as small as possible and so we 

assume a large core radius relative to the centre wavelength (and 

so in fact, all wavelengths) considered.

The form of the dispersion equation is exactly as in the previous 

chapter, equation (2.16) (and we will use essentially the same 

notation here ), since, in our approximation of large radius, the 

Ez and Hz fields are not coupled in the cladding layers.
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However the expressions for ^1^2 anc* ^ 2 ^ 2  are n0W t l̂ose 

for a finite structure. Equations (2.8), (2.9) give the

transformation of the vector^ of the field coefficients by one 

period, that is, a pair of claddings. It is convenient to invert 

these relations to yield

A 2m
=

C 1C2 SlS2/gM C 1S2 gMSlC2 A 2m+2

B2m c ls2 + S lC2/gM C 1C2 " gMSlS2 B2m+2

= I J ' A2m+2

K L B2m+2

say

_C2m'
=

"c lc2 " S1S2/8E C 1S2 gESlC2 C2m+2

D2m c ls2 + SlC2/sE C1C2 " gESlS2 D2m+2

= I' J' C2m+2

K f L ' D2m+2_

The mth power of a unimodular matrix may be obtained by 

diagonalisation (the Chebychev identity) [38] and so for a 

cladding composed of m pairs of layers,

CM

= I J m _ IU U 0 m- 1 m- 2 JU . m- 1 A2m+2

B2
—

K L KU , m- 1 LU U 0 m- 1 m- 2 B2m+2

(3.1)

where U = sin( (m+1 )Q,,A) m ___________M

sin(QMA)

and exp(iQ^A) is the eigenvalue of the single period translation

matrix, and similarly
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C2 _
= I* J ’

m
I ’U ’ U* 0 J ’U ’ , m-1 m-2 m-1 C2m+2

D2 K ’ L' K'U' , L'U’ ,- U f 0 m-1 m-1 m-2 D2m+2

(3.2)

For a leaky mode of the structure there is no incoming wave into

the guide in the last cladding layer. Therefore since ^ ^ + 2 *

B~ are the coefficients of the sine and cosine functions ( 2m+2
equation (2.4) ), and exp(-ik2r) corresponds to an incoming

wave,

B 2m+2 = lA2m+2

and similarly

^2m+2 ^B2m+2

Therefore from equations (3.1), (3.2)

A 2 = I - U + iJ 

B2 K + i( L - U )

C2 = I' - U' + i J ’’

D2 K* + i ( L U ’)

where U = U 0/U . = sin( (m-1 )Qx.A)/sin(mQ..7\)m-2 m-1 XM

U' = sin((m-1)QgA)/sin(mQgA)

U, U' are always real and it is convenient to write the

above equations as a sum of real and imaginary parts. Using the

definitions of U, U' and the expressions for Q , Q we obtainM E

A 2 = IK + JL - U(J + K) + i( U(I + L) - 1 - U )

2 2 
K + ( L - U )



7^

= 1(I-L)(K-J)+(J+K) sin(QMA) - i sin2(QMA)
- -

2 tan(mQ^A) sin (mQ^A)

K2 + ( l(L-I) + sin(QMA) )2 

2 tan(mQ^A)

and similarly

C2 = 1(I'-L’)(K'-J')+(J’+K') sin(QEA) - i sin2 (QEA)
—

D2 2 tan(mQEA) sin (mQ£A)

K ’ 2 + ( l(L’-I’) + sin(QEA) ) 2 

2 tan(mQ A)hj

Since

NM = gM Â 2/B2 )tan(klt l) + 1 

gM (A2/B2 ) - tan(k^tj)

taking k^, k 2 real to 0(l/kr) as before, the imaginary part of 

N„ ^

Im(N^) = -gM sec2 (k1t 1) Im(A2/B2)

(gMRe(A2/B2) - tan(k1t1))2 + gM2Im(A2/B2)2

= gM sec2(k1t1) sin2 (QM A)/sin2 (mQM A)

8M2(j2+Tml2) ” 2gMtan(klt l)Tm2 +

where T ^ 2 = ( (I - L) + sinCQ^A) )2

2 tanCmQ^A)
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Tm2 = ( I  -  L)(K -  J) + (J  + K) sin(QMA)
2 tan(m() A)

M

Tm32 = ( (L -  I )  + sin(QMX> )2 

2 tanCmQ^A)

and a corresponding expression of course holds for Im(Ng)

From these expressions, Im(N ), Im(N_.) and Im(N ) are

non-zero and so now OĈ  is in general non-zero, as is necessary

for a finite structure. However it is small when Q.,, are

complex and very much larger when either or both Q^, is real.

Therefore we will continue to refer to the frequency regions for

which both Q^, are complex as the reflection bands and the

remaining regions as pass bands. For large values of m, Im(N^)

and ImCN.-) decrease as exp(-mQ .A), exp(-mQ . fA)sL M l HjI
respectively inside the reflection band.

Since we wish to consider high order mode and non-low loss 

wavelength solutions, it is useful to consider the range of values 

for which the above expression is valid. The approximations used 

in its derivation are as follows.

(i) 1/kr «  1

This is necessary to justify the simple planar form of the 

translation matrices and hence the use of the Chebychev identity 

and (in the last chapter) Bloch-type modes. It was also used to 

simplify the form of the dispersion equation. If We take a = 1mm,

A = liun, then this constraint requires 1 ^ 100.



Assumptions (ii) and (iii) are similarly used to simplify the 

dispersion equation.
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(ii) | 2N/kxa I2 «  1

If a = 1mm, A = lium then t h is  req u ires
| 2N | «  4 X 107

For a single cladding, = 1. Therefore this inequality

seems unlikely to be a limiting condition, and we will see in the 

following section that this is indeed the case for a wide range of 

wavelengths and numbers of cladding pairs.

(iii) n = ne o

Since ne

this is true if |kQ2a2/(47T 2a 2/\2 ) I << 1

If we assume a/A = 1000 then this requires

2 2 7
k a «  4 X 10 o

If we are considering a high order mode so jkQa | = 1000 then it is 

necessary that

A 2/a2 «  4 X 10

(iv) ( n 247T2 ~ u 2 (l-Re(N)) )2o ___ __o ____ _ »  4(u 2Im(N))2 o______

A 2 a2 2k^a

This is satisfied if

( 1 +Z(Im(N)-Re(N))/k1a))

1

where u q is the nth zero of J^, J^_^, ^l+l I n ’for TE and TM, HE
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EHi modes respectively. This is assumed in obtaining an 

expression for £> from the first order perturbation solution (about 

u q ) for kQa. The expression for the real part of k Qa is then

k a = u ( 1 - Re(N) ) o o _____

a k^a

If this expression is approximated further to kQa = u q then it is 

being assumed additionally that 

Re(N) «  k xa

Thus considering all the constaints, if the core radius is 1mm 

and the wavelengths considered are less than ~  1.5jiAm, the results 

are accurate for u q < 1000 as long as 1 < 100.

3.3 Optimal thickness of first cladding layer

In this section we will obtain the expression for the loss of the 

mode for which the periodic cladding thicknesses are 

optimised/that is, such that

k lT l = k 2T2 = 71/2 (3.3)

and hence obtain the thickness of the first cladding layer which

minimises the attenuation for this mode.

When (3.3) holds,

J = K = J' = K ’ = 0

1 1/§M ’ L " ~8M

1 1^8E ’ L SE

Therefore

A2

B2

-i

2m
’M

u “ -gM ( 1 - g
2m-2

M

(
2m

’M

)

)
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So

Im(NM) = 1

( 1/Gm - Gm )cos2(k1t1) + Gm 

and similarly 

Im(NE) = 1

( 1/G£ - G£ )cos2(k1t1) + Ge

where = §M2m-1 GE gE
2m-1

Therefore in order to obtain the optimal value of t^ for hybrid 

modes we consider

dIm(NR) = k 1sin(2k1t1)( e^l - G^)Im(N^ ) 2 + (1 - GE)Im(NE ) 2 )

dt e G„ o M
(3.4)

d2Im(NH ) = 2kx[ (ex(l-GM )Im(NM )2 + (l-GE )Im(NE )2 ) k 1cos(2k1t1)

dt £ Gm  o M

+ (e1(l-GM)Im(NM)dIm(NM) + (l-GE)Im(NE)dIm(NE) )sin(2k1t1) ]

e Gm dt, G„ dt,o M 1 E 1
(3.5)

For TE modes the derivatives of Im(N) follow from those above by 

setting Im(N^) = 0 and for TM modes by setting Im(NE) = 0.

It is convenient to treat separately the usual two cases.

(i) gM > 1

Then G„ > 1 and since G_ > 1 always it follows that the firstM E
derivative (3.4) is zero if and only if

k^t^ = nn / 2 for integer n
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If n is odd then the second derivative is positive and if n is 

even the second derivative is negative. Therefore the first 

minimum occurs at

k 1t1 = 7T/2

This result is independent of the number of cladding layers and 

agrees with the result assumed in the previous chapter. It holds 

for TE, TM and hybrid modes.

(U) gM < 1

clearly the minimum point for TE modes remains unchanged and 

is as for case (i). However for TM modes the second derivative now 

has opposite sign and so the minimum occurs for

kjti = 0  or k^t^ = 77

For hybrid modes, both sin(2k^t^) and the term multiplying 

it in the expression for the first derivative (3.4) may be zero. 

Therefore there are now three possible values of t^ for which 

the first derivative vanishes.

(a) k^tj = TT/ 2

(b) cos2(k,t1) = n,G (1 - G ) ^ 2 - n G (G -1 ) ^ 211 I E  M o M E

M

ni(Gg 1 ) 0  Gm)  ̂ + nQ(l GM)(GE J_ )
1/2

ge gm M G_ (3.6) E

(c) k^tj = 0 or TT

Setting

X = e, 1 ( 1/Gm - Gm ) + 1 ( 1/G„ - G„ ) 1 M M  ___ E E
e G„ o M

Y '1 M l / G  -  M GM •* + GE ( 1/ge
e
o
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it follows from equation (3.5) that:

If X < 0 then Y < 0 and so (a) is a minimum and (c) is a maximum, 

(b) has no solution since the right hand side is negative.

If X > 0 and Y < 0 then (a) and (c) are both maxima. Also (b) has 

a solution and is a minimum.

If Y > 0 then X > 0 and so (c) is a minimum and (a) is a maxium. 

The right hand side of (b) is greater than one and so (b) has no 

real solution.

Therefore for small values of m the optimum thickness for the 

first layer is again a quarter "wavelength". Beyond some

threshhold value (depending on n^, n2), as m increases, the 

optimum thickness tends towards zero (or half a wavelength). This 

is illustrated in figure (3.1). It should be noted that for finite 

values of m, the perturbation solution of the dispersion equation 

(2.18) remains valid even for k^t^ = 7T/2. It is only when m 

is infinite that A0/B0 is exactly zero and so Nw becomes 

large for this value of t̂ .

When the thickness of the first layer is an integer multiple of 

n/Zk± at the optimum wavelength, simple expressions may be obtained 

for Im(N) at a general wavelength, since now the whole cladding is 

a periodic structure.

If k^t^ = 0 then for a structure with exactly 2m cladding

layers (so assuming the index surrounding the fibre is n2)

Im(N ) = sin2(Q A)M ____________________JM________________________

gM ( JT2 + ( I~L+ sin(QMA) ) 2 ) sin2(mQMA)

2 tan(mQ^A)

= at the optimum wavelength
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Thickness of the first cladding layer, t-̂ , as a function 
of the total number of cladding pairs, m, with refractive 
indices n^»

Figure 3.1
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Im(N ) = sin2(Q£A)

g£ ( T ’2 + ( I ’-  L ’+ sin(Q£J\) ) 2 ) sin2 (mQ£7\)

2 tan(mQ J\)h
= G_ at the optimum wavelengthhi

where J  = - - gMC ls2

J- = - Slc2 - gEc lS2

If k^t^ = 7T/2 then for a structure with exactly 2m cladding 

layers (so assuming the index surrounding the fibre is n^O

Im(NM ) = sin2 (QM7g

( J2 + ( I-L+ sinCQ^A) )2 ) sin2 (mQM A)

2 tan(mQ^A)

= 1/G^ at the optimum wavelength

Im(N£ ) = sin2 (QEA)

( J ’2 + ( I'- L ’+ sin(QEA) )2 ) sin2 (mQEA)

2 tan(mQ A)
hi

= 1/Q at the optimum wavelength
hi

When (b) is satisfied the expressions do not have such a simple 

form in general. At the optimum wavelength we have

Im(NE ) = C1/Gm -  Gm) 1 /2  £

Im(NM ) = (Ge - 1/Ge )1/2 &

Im(N„) = G2 (G„/G„ - 2G_Gm  H E M  E M + W
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where <3 = (1/G„ - G j 1 / 2 + (G - 1/G„ ) 1 /2  
M M___________E______ E

(1/Gm - G j G v - (G - 1 /G„)Gm M M E E E M

If G 2 «  1 and 1/G 2 «  1 then M E

Im (Nh) = ( 1
* ' - . V 1'2 >2

1/2

Since the periodic cladding of the Bragg fibre behaves in some 

respects analogously to a metal, it is interesting to consider

which mode has the lowest attenuation, in particular at the 

optimum wavelength. If the first layer has thickness 7T/2k^ then 

the HE^ mode has the lowest attenuation if

1.539/n, > G^/G^
1 E M

Otherwise the TEq  ̂mode has the lowest loss. If the first layer 

has thickness given by (3.6) then similarly the HE^ mode has 

the lowest loss if

1.539/n > (Gv - 1/G)/(1/Gm - GM)1 E e m m

and otherwise again the TEq  ̂ mode has the lowest loss (even 

though the thickness of the first cladding layer is optimal for 

the HEjj mode).

The right-hand sides of these conditions become large in general 

for large m. Therefore as the number of cladding layers is 

increased the behaviour of the Bragg fibre varies from that of a 

dielectric hollow guide to a structure resembling a hollow metal 

guide.



3 .4  V a r ia t io n  o f  th e  a t t e n u a t io n  w ith  w aveleng th  and mode number

Now that we have determined the optimal thickness for the first 

caldding layer we can return to the case of operation at a general 

wavelength ( near enough to the optimum wavelength for the 

conditions described in section 3.2 to remain satisfied).

The form of the expression for the attenuation constant of the 

Bragg fibre, that is

= u  ̂Im(N)1 o

allows the dependence on the mode number, which is contained 

essentially only in' uq, to, be separated from the wavelength and 

cladding number dependence. All the wavelength dependence of the 

multilayer cladding (as distinct from that of the resonance 

condition required in the core) is contained in Im(N). The 

variation of the loss with number of cladding layers is also 

contained only in this term, which thus may be considered to 

characterise the cladding. This decoupling of the terms in the 

attenuation describing the effects of the core and cladding is a 

consequence of the approximation

n *=* n e o
That is, all modes are treated as entering the multilayer 

cladding at grazing incidence. Therefore the size of the 

component of the wavevector in the radial direction is a function 

of the wavelength only. The interference effects of the cladding 

layers, which effect the detailed shape of the attenuation 

function, are strongly dependent on this magnitude. In contrast



the order of magnitude of the loss of a particular mode is 

determined primarily by the transverse resonance condition in the 

core (that is, that phase shift of a wavefront resulting from one 

round trip inside the core must be such as to interfere 

constructively with a following wavefront ) and so depends 

strongly on the exact mode angle. We have seen already that the 

effect of this condition dominates that of the periodic cladding 

on the real part of the wavevector in the direction of 

propagation, .

Thus it is possible to investigate first the wavelength and 

cladding number dependence of the Bragg fibre independently of 

the particular mode and then consider the effect of the mode 

number.

(i) Variation with wavelength and number of claddings

We consider first the case of hybrid modes of a structure such 

that kjtj = 7T/2 at the optimal wavelength. Very similar 

remarks of course hold for the simpler cases of TE and TM modes of 

this structure and also for the (less useful) case k^t^ = 0

Im(NH) =

2 tan(mQM A)

+

( J'^ + ( I* - L ’ + sin(Q£A) ) sin^(mQgX)

2 tan(mQ A)

Each o f  th e  two term s in  t h i s  e x p re s s io n  c o n s i s t s  o f  two p a r t s .
One i s  th e  r a t i o  o f  sq u ared  s in e  te rm s . T h is a lo n e  would le a d  to  a
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function with m-2 minima and m-1 maxima between the dominant

minima which occur at the band edges Q A  = n7T and have the 
2

value 1/m there. However this term is divided by another term 

which also contains a similarly oscillating component added to a 

slowly varying one. This term has a similar "periodic" 

behaviour and removes the singularities. Therefore the resulting 

function varies rapidly with "period" 27T/m-A. but with a slower 

modulation of period 2 H/A.

Since the reflection band of the first term is contained inside

the second, the total function will vary similarly as long as

Q_, Q.. are not very different. The width of the reflection

band of the sum is determined in effect by the minimum of the

two individual bandwidths, that is the range for which is

complex, since outside its forbidden band each term increases

rapidly. This in turn is increasing for increasing g^. Figure

3.2 shows Im(N ) as a function of frequency for various numbers

of cladding layers for indices such that g^ is greater than one.

Clearly the loss is symmetric about the optimum wavelength.

When g^ is less than one the expressions for Im(N) are more

complicated, but in general the wavelength dependence is likely to

be broadly similar. Figures 3.3, 3.4, 3.5 show ImCN^), ImdSL.),k* M

Im(N ) respectively in this case. Now t, (optimised for n 1

hybrid modes, as in equation (3.6) ) is less than 7T/2 and the 

functions are no longer symmetric.

Clearly in both cases the wavelength sensitivity increases with 

increasing number of cladding layers, as may be expected from 

the formulae and by analogy with the linear case. The width of 

the central minimum about the optimum wavelength decreases to a 

fixed value as the number of cladding layers is increased. The
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Figure 3*2 Attenuation factor for hybrid modes, Im(N^J as a function 
of normalised frequency w/wq, where w q is the frequency at the optimum 

wavelength A  , for various numbers of cladding pairs m 

n1 = 1.3, n^ = 1.3» a = lmm, A q = ljim



Figure 3*3 Attenuation factor for TE modes, as a functionSit
of normalised frequency w/w , f°r various numter of 
cladding pairs m.

n^= 2 .1 5 , n^= 1 .7*+* a = 1mm, ,\o =xjim
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Figure 3» ^ Attenuation factor for TM modes, Im(N^J, as a function • 
of normalised frequency n/wq, f°r various number of 
cladding pairs m.

n^ = 2 .15» rig - 1.7^» a = 1 mm, \Q = 1 urn



Figure 3 . 5  Attenuation factor for hybrid modes, Im ( ) ,  as a 
function of normalised frequency w/w 

= 2 .1 5 , n2 = 1 .?^, a = 1mm, Aq= ljim
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positions of the intermediate maxima and minima are determined by 

the number of cladding pairs m.

The asymmetry of the wavelength dependence of figure 3.5 may be 

transformed to a function approximating its reflection about the 

optimum wavelength by setting t̂  = TT-t^. It should be noted 

that when t̂  is not an integer multiple of 7T/2, and

may become large for a particular wavelength and number of 

claddings. For example, this occurs for 18 cladding pairs as shown 

in figure 3.6. For such large values of (or Nw) the

approximate solution of the dispersion equation is no longer valid 

and the value of the attenuation at this point may not be as 

calculated here.

Figures 3.7, 3.8 show how the loss varies with the number of 

cladding layers at various wavelengths of operation. Clearly the 

loss is monotonic only close to the optimum wavelength. At other 

wavelengths the effect of increasing the number of cladding layers 

is in general oscillatory. When k^t^ ^ TT/2 it may be very 

erractic. This is partly because in this case the precise 

positions,as well as the widths, of the minima and maxima are 

functions of the number of claddings. Therefore the exact curve is 

very strongly dependent on the precise wavelength considered.

(ii) Higher order modes

We now consider the effect of the cladding layers on the higher

order modes of the structure. Because the dependence of the loss

on mode number is purely through u q, all mode polarisations and

field patterns,that is, all TE, TM, HE, EH modes, affect the

wavelength and cladding dependence only insofar as they have

different losses in a hollow guide. As the value of u becomes
o

larger any variation of the attenuation with wavelength is



Attenuation factor for hybrid modes, Im(N,J, as a fraction 
of normalised frequency w/wQ for 18 cladding pairs.

n^ = 2 .1 5 , = 1.7^» a = 1mm, A 0 = I p

Figure 3*6
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Im(NH;

Figure 3*7 Attenuation factor for hybrid modes, Im(NuJ, as a
ri

function of the number of claddings pairs m, for 
operation at various frequencies.

n^ = 1 .5 >  n^ = 1.31 a = 1mm, = Ijim



Figure 3-8 Attenuation factor for hybrid modes, Im(Npjj, as a function of
number of cladding pairs, m, for operation at various frequencies.

nj = 2 .1 5 , n^ = 1.7^, a = l mm, ?\0- 1 yum
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exaggerated. This is illustrated in figure 3.9. Similarly the 

effect on the loss of increasing the number of claddings is 

increased. Figure 3.10 shows the variation of log(<x^) with 

number of cladding pairs for operation at the optimum wavelength 

and for operation at a slightly longer wavelength which also lies 

inside the reflection band. As before, the variation with number 

of cladding pairs is very nearly linear at the optimum wavelength, 

even for hybrid modes.

Physically the increased effects of the cladding on higher order 

modes is reasonable. The higher order modes have a larger 

component of the field parallel to the periodic cladding layers 

and are incident on the cladding at smaller•angles to the normal 

and so are more greatly effected by changes in the claddings. This 

is a well known charateristic of multilayer reflectors. Also, as 

was seen in the previous chapter, in the limit of an infinite 

number of claddings the attenuations of all the modes are equal 

and zero. Therefore the absolute reduction of the loss must be 

greater for higher order modes as the number of cladding layers is 

increased.

We may write u q in terms of the mode angle 0 to yield the 

attenuation as

°<̂  = 4 Im(N)( 1 - cos(6)) (3.7)

I 2 Taj n^ - 1

and so if we consider the attenuation as a function of 0 then the 

effect of additional cladding layers is to vary the slope of the 

linear dependence with cos(0). For example, from figure 3.10, 

a structure with 9 cladding pairs and the indices considered 

results in a reduction of the attenuation from that of a structure 

with a single cladding by approximately one order of magnitude.
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ioo<*

\
\
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11.62

5.52

2.4-03

Figure 3.9 Attenuation <*' as a function of normalised frequency w/ w q 
for various modes

n = 2.15 , n = 1 .7 ^ » a = 1 mm = 1  jum 
1 2  o >
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Figure 3*10 Attenuation as a function of the number of cladding 
pairs m, for various hybrid modes

n-̂  = 2 . 1 5  , n2  = 1 .7 ^ , a = 1 mm , \  = l̂ im
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3.5 Absorption and bending losses

So far we have considered the power attenuation which results

from the less than unity reflectivity at the interface between the

core and the cladding. We now investigate briefly the implications

of two other effects, namely the power absorbed by the dielectric

cladding and the power lost owing to bends in the guide.

We can calculate the "relative” absorption coefficient

numerically using the formula of section 2.6. The results of this

calculation for various modes show, perhaps not surprisingly, that 

2c< /u is independent of mode number. Therefore we can 

2 2compare o< /u with /u . Figure 3.11 shows
1  o a o °

2
c*a /uo as a function of frequency for various claddings. 

The variation follows fairly closely that of This is of

course reasonable since the latter describes the leakage loss from 

the core and the former depends on the proportion of the power in 

the cladding.

2 -9
The magnitude of ° ^ a / u 0 is of the order of 10 . This may

2 -5be compared with <*^/u ^  5 X 10 Clearly the

absorption loss may be neglected for dielectrics such as

magnesium oxide (index 1.74) and zirconium dioxide (index

2.15 ), which are likely to have absorption coefficients of order

one, or less, at a wavelength of ljim.

A significant disadvantage of hollow index cored optical

waveguides is the large increase in loss which occurs for even 

relatively small axial curvature. This effect has been
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2
Figure 3.11 Normalised relative absorption coefficient /u

as a function of normalised frequency w/w , for various

number of cladding layers

= 2.15 » n  ̂ = 1 .7^  , a = 1mm , = lum.
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analysed by Marcatili et al [50], and more recently by Miyagi 

et al [55], [62]. In the latter a formula is obtained for 

the bending loss of a hollow waveguide with given effective small 

surface impedence and admittance at the boundary between the core 

and the cladding. This result may be applied directly to the 

Bragg fibre structure. The derivation of the expression is given 

in detail in reference [62]. Therefore we will describe only 

briefly and qualitatively here how it was obtained and then use 

the result.

The general method is to use toroidal co-ordinates with the 

curved z-axis along the axis of the bent guide and to calculate 

the perturbations to the fields and propagation constant of the 

straight guide as a result of a bend of large radius R. The 

fields are written as a power series in 1/R, the zeroth order term 

being equal to the unperturbed value. Maxwell's equations in 

toroidal co-ordinates are used to express the first and second 

order perturbations to the field components as functions of the 

lower order terms. These expressions, Maxwells equations and 

Green's theorem are then used to obtain the change in the 

propagation constant. These calculations yield after 

considerable algebra [62] (in the notation used here ) the ratios 

of the attenuation to the attenuation in a straight guide 

that is the "relative bending losses"

" 1
- 1 ( n 2 71 a 

0
; (a; ( 1 - 3&l Im(NM ) ) M

TE mode

*1 6 /\u
0

R eo Im(NE )

= 1 - 1 ( n 2 7 1  a 
0

)4 (a ) 2  ( 1 - 3e„ Im(N-) ) E TM mode

*1 6 V c o R Im(N„)
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oL = l+l(n 2 7T a)^(a)2 (1- 41(l-2)+3cS, ,Im(e,N,, -e N ^ X u  2 -2)cos20) __b _ o _  ______ —  11 1 M o E o

c< 3 A u  R u 2 8 Im(e N,.) (3.8)
1 0 o o H

hybrid modes

where u q is the zero of the appropriate Bessel function for the 

mode and the two signs in the last expression (3.8) refer to HE, 

EH modes respectivley.

A significant feature of the last expression (3.8) is that the

relative loss is independent of the precise nature of the cladding

for hybrid modes such that 1^1. Therefore for all modes except the

TE, TM, HE, and EH, , the relative effect of bends is the

same for the Bragg fibre as for a singly cladded hollow guide.

This is an important result for our purposes. It indicates

that although the relative bending loss is not improved, any

reduction in loss due to increased number of cladding layers is

maintained in the bent guide. This is not the case if for example

the loss is reduced by increasing the core radius. The bending

loss is directly proportional to the core radius and inversely

proportional to the mode number. Thus in general lower order modes

and larger, lower loss guides have greater relative bending loss.

Figures 3.12, 3.13, 3.14 show e,Im(NM )/e Im(N_),l j1 o E

e Im(N )/e,Im(N ), Im(e,N -e N_,)/Im(e N)o E l M  I M 0 E 0

respectivley (that is the cladding dependent factor in the 

relative bending loss for TE, TM and HE, , EH, modes 

respectively) as a function of frequency for various numbers 

of cladding layers. The main feature in the case of the first 

order hybrid modes (figure 3.14) is that for a wide range of 

wavelengths near the optimum wavelength this function is only 

weakly dependent on the number of cladding layers and its absolute
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Figure 3.12 Bending loss coefficient for TE modes, e^Im(N^)/eo Iin(NjjJ 

as a function of normalised frequency w/w , f°r various 

number of cladding pairs m.

n^ = 2 . 15 , n^ = 1.7^-f a = 1 mm, AQ= 1 ûm
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Figure 3 .13 Bending loss coefficient for TM modes, 6QIm(NE

as a function of normalised frequency w /w q for various numbers of

cladding pairs m

nl  = 2 . 15 , n^ = 1 .7 ^ , a = 1mm, / \Q = lpm



Figure 3*1^ Bending loss coefficient for H E ^  and EH.^ modes, 
In^e^Njj - eQNE j/lm(e N) as a function of normalised frequency

vj/ w for various numbers of cladding pairs 

n^ = 2 .1 3 , = 1 .7 ^# a = 1 mm, X^ * Ijim

m
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value is less than 1 (this may be compared with 0.6443 for these 

indices for a single cladding). Therefore again the relative 

bending loss is only slightly altered and the absolute reduction 

in loss is preserved. For TE and TM modes the additional cladding 

layers can cause the relative bending loss coefficient to 

become very large away from the optimal wavelength. However, by 

comparision with figures 3.3, 3.4 it can be seen that these maxima 

occur because the absolute attenuation has become very small 

there. Therefore now the attenuation reduction resulting from 

additional cladding layers is to a large extent lost at certain 

wavelengths in the bent guide.

3.6 The Bragg fibre as a multimode waveguide.

In the previous sections we have determined the basic 

characteristics of propagation in the Bragg fibre for various 

modes and a range of wavelengths. We will now estimate the total 

power attenuation. This quantity depends of course on the modes 

and range of wavelengths that are launched.

The wavelength of maximum emission by some object at a 

temperature of about 2000-2500 °C (radiating it as a black body ) 

is approximately lpi [63]. In order to determine the temperature 

from the received radiation we will assume that it is sufficient 

to detect two wavelengths differing by about O.ljWn near this value 

[60]. The halfpower bandwidth of the blackbody spectrum near the 

temperature range of interest is approximately 2|wm. Therefore we 

assume that the variation of power radiated with wavelength may be
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neglected within the wavelength interval to be considered. From

figure 3.3 we see that although the effect of the multilayers

of the Bragg fibre is wavelength dependent, for example for a

fibre with 1 2  cladding pairs there is a significant reduction in

loss for wavelengths separated by about O.l^un about l^m (although

the loss is not reduced throughout this range). In general we may

expect to increase this range if we can use indices which lead to

a smaller value of g^ (see figure 2.4). Therefore, for

simplicity, in the present calculation we will treat the

attenuation as being independent of wavelength and equal to the

approximate average value in the range of interest, for example

for m = 12 we can take Im(N ) = 1.0
H

The amount of power transmitted also depends on the manner in 

which the power launched into the guide is distributed amongst the 

various modes. In the present context it seems reasonable to take 

the source to be isotropic. In order to estimate the power 

launched we will use a ray type model. Although this is a very 

approximate treatment, we are considering the case of. a large core 

•guide and so the approximation is relatively good. In addition it 

is difficult to determine the launching efficiency directly in 

terms of leaky modes, which are not true modes of the structure 

and therefore do not each retain a constant amount of power as 

they propagate through the guide. Mathematically this is 

manifested by their non-normalisabilty in an infinte space and the 

* subsequent lack of a orthogonality relationship.

Thus we will adopt a perhaps rather simplistic approach here and

assume that if the total power radiated into a spherical

surface 4 7T is
V the power launched into the mode with angle

9 is P dn, 
0

where dQ is an element of solid angle. This



107

requires a formula for the attenuation in terms of a continuous 

variable cos(0). It is straightforward to extend the expression 

for the attenuation of the hybrid modes in this way (and since the 

values of 0  corresponding to actual modes are very closely spaced 

the approximation is likely to be a reasonable one). However TE 

and TM modes cannot be easily included since this would require 

the use of a different formula at discrete points. It is 

difficult to quantify the error resulting from using instead the 

hybrid mode expression at these points also since, as mentioned 

above, the mode launching efficiencies are not well defined. If we 

assume that it is not significant then we obtain simply for the 

ratio of power remaining in the guide after lm 

0r o
P = exp(-2oc^(8) ) 2 7T sin(0) d0

Po

oJ

2 7T exp( -4(1 - cos(0))Im(N) ) d(cos(0)) (3.9)

a.I n 1 - 1

cos ( 0  ) 
o

4 Im(N)

(3.10)

The leaky waveguide has no cut-off and so we may set 0q = 7T /2. 

However the approximate linearised expression for the attenuation 

(3.7) used in the integral (3.9) is valid only for 0q near 

enough to zero. Therefore we will truncate the integral at the 

limit of validity of the formula, assuming in effect that all the

higher order modes are lossy enough to make no significant
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contribution. For this latter approximation to be reasonably 

accurate it is necessary for the attenuation at 0 q to be large 

enough, such that 2oc^(0q ) = 3 say. These two constraints 

together require

9a J n x 2 - 1/ 2lm(N) «  1

so we can assume (3.10) to hold for Im(N) ^ 0.18. For smaller

values of Im(N) the formula will tend to over-estimate the 

transmitted power.

From (3.10), the power transmitted is approximately inversely

proportional to Im(N). Therefore for example the addition of 9

cladding pairs reduces the loss by one order of magnitude. For a

Bragg fibre with 12 cladding pairs, the power remaining after lm 

-2
is 10 PQ . This is a very small fraction but the total 

power radiated may be large.

We have seen that the absorption loss is negligible for likely 

materials and so we do not consider this further.

The bending loss of the Bragg fibre is an important

consideration, as it is likely to be large. We have seen that

the relative increase in attenuation from bending is essentially 

the same as for a singly clad guide (again considering hybrid 

modes only). However the absolute value of the attenuation has 

been reduced and also (as for a singly clad guide), the effect 

of bending loss is reduced for higher order modes. In order to 

estimate very approximately the overall effect of bending loss 

on the power transmitted in a multimode guide we can consider

I = 2TT d (cos0) exp( ~4( l~ c o s (0 ))Im(N) ( 1 + 1  (27Ta )^ (a )^  )

J
cos(0^

n l ' 1
A u R
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where we have inserted an approximate form for the bending loss

2
which varies with mode number only simply through u q .

Changing the variable of integration we obtain

(l-cos ( 0  ))/a o r
27Ta exp(4 Im(N) ( -x - 1 ) )dx (3.11)

ni2-l 12R2x

If we use the same value of 0Q as before, the argument of 

the exponential at the upper limit of the integral in (3.11) is 

3/lm(N). Again we assume that this is large enough for 

contributions from all larger values to be negligible. Therefore 

we replace the upper limit by infinity to obtain

1 Kl{ 4lm(N) \

R {3 V R Jn x2-l /l)
where is a first order modified Bessel function.

Figure 3.15 shows how this varies with bending radius R. The 

addition of cladding layers leads to a smaller critical bending 

radius ( below which, in effect, no power is transmitted, say). If 

Im(N) = 0.25 then the power transmitted reduces to half that for a 

straight guide for a bending radius of '-'25 cm. This figure, 

although larger than for a conventional fibre, may not be 

unacceptably large. However it should be noted that TE and TM 

modes have been neglected in the calculation.

Thus we have found that the Bragg fibre offers signficant 

advantages over a singly clad hollow guide in terms of leakage 

loss and bending loss. The variation of attenuation with 

wavelength appears to be slow enough for these reductions to be 

useful. However it is worth noting that the leaky hollow guide may
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Figure 3.15 Normalised, power in guide after propagation through one metre 
as a function of bend radius R (metres; for various Bragg 
fibre structures
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n o t, in  p ra c t is e ,  be the  most s u ita b le  waveguide f o r  use as p a r t  
o f  a h igh  tem pera tu re  sensor i f  the a b so rp tio n  losses  in  a 
s u ita b le  m a te r ia l a re  sm a ll enough f o r  the  b u lk  o f  the  power to  be 
t ra n sm it te d  in  i t .  In  t h is  case the  d i f f i c u l t y  o f  d raw ing a rod  
a lone remains and t h is  suggests th a t  the  tube waveguide m igh t be a

more a t t r a c t iv e  a l t e r n a t iv e  s t ru c tu re .
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CONCLUSIONS FROM CHAPTERS TWO AND THREE

The large-cored hollow Bragg fibre possesses a set of leaky 

modes, the real parts of the propagation constants and field 

patterns in the core of which resemble closely those of the modes 

of a large-cored singly clad fibre. However the mode

attenuations in the Bragg fibre are in general significantly 

different and can be much lower for suitable layer thicknesses and 

wavelengths.

For the large-cored case considered, the Hz> E , field

components (TE-like components) are uncoupled from the E , H , HQ 

field components (TM-like components) in the cladding layers 

of the Bragg fibre. Therefore the infinite cladding supports 

Bloch-type modes and a general finite cladding has properties very 

similar to those of a plane multilayer dielectric mirror.

For operation at some given wavelength, the loss is

minimised, to a good approximation, when all the cladding layers,

except possibly the first one, are of "quarter-wave" thickness

(taking the wavelength in the radial direction, in the material).

The optimal thickness of the first layer is also one quarter

2 I-----2 2 I 2
wavelength when the parameter g^ = n 2 * n i ”  ̂n2 ~ ^

less than one. Otherwise the optimal thickness is a function of 

the number of cladding layers, 2 m, and tends to zero as m tends to 

infinite.

When the wavelength of operation is such that the layer 

thicknesses are optimised, we can perhaps characterise the 

multilayer cladding in terms of some equivalent uniform material. 

Although the Bragg fibre modes are leaky, the field amplitudes 

decay in the cladding layers. This suggests that the behaviour of
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the Bragg fibre will be reproduced by a cladding of a uniform 

material of refractive index less than one, but very near one, of 

a finite thickness. In this case the field amplitudes will decay 

very slowly in the cladding layers. The guide would have a high 

leakage loss, since the field amplitude would still be

significantly large at the further cladding boundary, where it 

would be surrounded by a necessarily higher index ? lossless 

material, or a lossy material with a possibly lower index. The 

loss would decrease with increasing cladding thickness, as in the 

Bragg fibre. The amplitudes of the TE- and TM-like parts of the 

fields decay at different rates and so the material is in effect 

birefringent (the form birefringence of planar periodic media is 

disscussed in reference [31]).

For a radial distance in the claddings of 2mA(assuming that the 

first layer also is approximately of quarter-wave thickness) the 

TE and TM like field amplitudes have decayed by 1/g m and£j
the minimum of l/g^m , g m , respectively. Therefore simple

calculation gives the effective refractive index of an equivalent

uniform cladding in the transverse and radial directions, n _
cE

and n respectively, as

ncV = ( 1 -  ( l n ( g)f) ) 2 ) 1 / 2  'S = E,M

n 2 ( l / i n 1 2 - l  +  l / i n 2 2 - ! ) 2

Thus the refractive index is lower ( and so the loss is lower) for 

larger values of Iln(gE)1, [ln(gM)l, as required. When n^ = 

2.15, n 0 = 1.74 this yields n = 0.997, n .. = 0.999. In

addition, a Bragg fibre cladding of 20 layers is only of the 

order of 5 wavelengths thick. Therefore the high values of the 

attenuation compared with conventional high index-cored guides are

reasonable.



114

This analogy with a mode (either leaky or guided) in a uniform 

material cannot be simply extended to a general wavelength, since 

now the loss may not be monotonic with increasing number of 

claddings. The wavelength dependence is similar to that of a 

multilayer cladding.

The Bragg fibre operating at the optimal wavelength offers an 

improved performance over the singly cladded hollow guide. All 

the mode losses are reduced, and so any loss from absorption in 

the cladding is reduced also. For a core radius of 1mm and a 

wavelength of 1 jam, and cladding indices 2.15, 1.74, the 

attenuation of a mode in a Bragg fibre structure with 9 cladding 

pairs is reduced from the singly cladded case by about a factor 

of 10. This same reduction occurs for multimode transmission when 

power is launched uniformly into all modes. The bending loss, 

which is very large in leaky guides in general, is reduced, 

although the critical bending radii of the indivdual modes is not 

significantly altered. The critical bending radius for multimode 

propagation however, is likely to be reduced with increasing 

number of layers. The bandwidth of, for example, a Bragg fibre 

made with about 8-12 cladding pairs of indices, 2.15, 1.74, over 

which the attenuation is substantially reduced, is 0.05-0.lpm 

about a wavelength of lpm. Losses may be large outside this range.

Thus the Bragg fibre is likely to be useful in applications 

where the singly cladd hollow guide is the main alternative and 

when only a moderate range of wavelengths need to be transmitted. 

This is probably the case for transmission of CO2 laser 

radiation with a wavelength of 1 0 .6pm, but may not be so for the 

high temperature tolerant guide considered.



115

4. -PULSE PROPAGATION IN A PERIODIC WAVEGUIDE^

4.1 Introduction

Structures which have periodic variations of permittivity are 

commonly used in optical systems as a means of achieving large and 

negative group velocity dispersion. For example, the use of 

grating pairs for compression and shaping of unguided optical 

signals is well established. This relies on the property of a 

grating pair that the optical path length and- hence the time delay 

through the system is an increasing function of wavelength. 

Thus unchirped pulses ( a chirped pulse is taken to be a pulse 

whose phase function is a second or higher order polynomial 

function of time) may be chirped and temporally shaped by 

propagation through such a* system [6 ], [64] and previously chirped 

signals can be compressed for example to generate ultra-short 

laser pulses. Several methods of chirping the input signal have 

been considered, such as by propagation through an optical Kerr 

cell [65] or, more recently, by propagation through an optical 

fibre [6 6 ], [67], [6 8 ]. This same dispersive property of the

grating pair may be used conversely as an analytical tool for 

determining the temporal shape and chirp characteristics of very 

short pulses [69], [70].

The details of the dispersive effect of propagation through a 

grating pair are generally analysed by assuming each reflected or 

scattered order ( of a monochromatic wave) from a single grating 

to consist of one plane wave with a well defined propagation 

constant, which differs from that of the incoming wave by an 

integer multiple of 27T/pitch of the perturbation [7]. That.is,
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all the frequencies are assumed to be incident at the Bragg angle, 

as is justified for thin gratings. The variation with frequency of 

the angle at which each frequency component is scattered or 

reflected leads to a variation in path length (in a 

dispersionless medium) and hence to a frequency dependent time 

delay.

There has also been interest in the properties of signals 

reflected from multilayer mirrors and other periodic distributed 

reflectors. These structures play an important role in various 

devices, notably Distributed Feedback lasers [71] and Bragg 

Reflection lasers [72]. There have been several experimental 

investigations of the pulse chirping caused by a Distributed 

Feedback laser [73], [74], [75], [76], [77].

A theoretical model of the response of a Bragg Reflection 

resonator to light pulses has been obtained by numerical 

integration of the time dependant coupled mode equations [78]. 

This predicts significant pulse distortion when the width of the 

input pulse is approximately equal to the transit time through the 

structure, but little such effect when the pulse width is greater 

than about ten times this. An experiment to verify these results 

for a passive waveguiding cavity and a short pulse has yielded 

qualitative agreement [79].

The coupled mode equations in the spectral domain have been used 

to analyse the reflected pulse from a quarter-wave dielectric 

mirror [80]. A numerical integration of these same coupled mode 

equations for a single periodic structure has been carried out and 

gives detailed pulse shapes for the cases considered [81].

For o p t ic a l f ib r e  systems, pu lse  compression and d is p e rs io n  
c a n c e lla t io n  by p ropaga tio n  th rough a s h o rt le n g th  o f a
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periodically perturbed waveguide (the periodicity being in the 

direction of propagation) have been suggested. This effect is 

similar to that of a grating pair. However now the thickness of 

the periodic structure must be considered, so the different 

frequencies are not all incident at the Bragg condition. The 

effective dispersion of the medium varies with difference from the 

Bragg angle and so the frequencies propagate with different time 

delays. Again the input pulse must be chirped to achieve 

compression, for example by material dispersion [82] or by 

non-linearity in the refractive index of the guide [83]. In these 

cases the periodic structure has been analysed as in reference 

[80] and [78] respectively. In the former [82] it has been shown 

that a periodic guide of about 2 cm long can equalise the pulse 

dispersion from propagation through 1 km of a conventional 

single-mode guide when operating at a wavelength of 1.27jUJi. The 

latter [83] has shown that, with a germania doped silica fibre 

of lm long and with a perturbation of amplitude readily available 

by the photorefractive effect, a pulse with a peak power of 100W 

will be compressed by a factor of three.

The use o f p e r io d ic  gu ides in  o p t ic a l f ib r e  systems has been 
concerned w ith  in s e r t io n  o f a s t ru c tu re  f o r  compression o f  a 
broadened p u ls e . Thus in  o rd e r to  l im i t  the  le n g th  o f  the  dev ice  
the  p i t c h  o f the  p e r tu rb a t io n  has been chosen such th a t  the  
wave leng th o f o p e ra t io n  occurs near the edge o f  the  r e f le c t io n  
band, a llo w in g  u t i l i s a t i o n  o f the la rg e  va lues o f  d is p e rs io n  
a v a ila b le  th e re . In  t h is  chap te r we w i l l  c o n s id e r in s te a d  how we 
may use the  sm a ll d is t o r t io n  to  the d is p e rs io n  which occurs when 
the  wave leng th o f  o p e ra tio n  i s  f a r  from  the  band edge. We w i l l  
show th a t  t h is  d is p e rs io n  can be combined w ith  the  m a te r ia l and
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(unperturbed) waveguide dispersions to create a zero dispersion 

point at a chosen wavelength. Now we are in effect continuously 

compensating for the dispersion of the unperturbed guide. It is 

necessary for the periodic variation to extend through the whole 

length of the guide. It is not inconceivable that this may be 

acheived by introducing a controlled high frequency vibration 

into the fibre production equipment, resulting in a periodic 

diameter variation of the fibre.

Much work has been done on designing optical waveguides which 

have a zero of the total dispersion at 1.55j*Am, the minimum loss 

wavelength of silica. Particular cases of interest are the 

triangular index profile core [84], [85], [8 6 ] and the quadruply 

clad guides (these latter guides have a very small dipersion over 

a broad wavelength range, about 0.35 jxm) [87], [8 8 ]. It is of 

course possible to design a step index guide with zero total 

dispersion at 1.55^un [40]. In general however, rather elaborate 

refractive index profiles have been favoured, in order to maintain 

the power confining properties, for example the spot size, of the 

guides. These modifications may possibly be avoided if a siutable 

periodic perturbation is imposed along the direction of 

propagation. However the power attenuation caused by the 

associated reflection from a periodic structure must be 

considered.

The next two sections of this chapter, 4.2, 4.3, contain an 

analysis of the changes to a signal which occur as a result of 

propagation through a periodic medium of finite length. The 

general form of the output signal is determined qualitatively and 

the effective signal velocity and dispersion are obtained in two

particular cases of interest.
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In the following section, 4.4, and the appendix, approximate 

analytic formulae are derived for the reflected and transmitted 

fields by evaluation of the relevant integrals. These 

resulting pulse shapes after propagation and the implied signal 

velocity and dispersion, both inside and outside,the reflection 

band are considered in section 4.5. The degree to which some 

simple definitions for these latter quantities are meaningful in 

the general case is discussed.

The formulae of these sections differ from analytic expressions 

previously assumed [80], [82], [83], but agree well with those 

obtained by numerical calculation [81].

In section 4.6 the particular dispersion characteristics of a 

longitudinally periodically perturbed waveguide are investigated 

using the results of the previous sections. The effects of 

material and waveguide dispersion are now included. It is shown 

that such a guide does indeed allow a considerable freedom of 

choice in the wavelength of zero dispersion.

4.2 Phase and Amplitude form of the transmitted and reflected 

fields

The characteristics of propagation of a monochromatic wave in a 

periodic medium are well established and can be derived using 

Coupled Mode theory [31], [35] or, less commonly, a Bloch wave

approach [38]. Expressions for the fields at frequencies near 

that for which the medium is strongly reflecting have been 

obtained. The configuration is as in figure 4.1. That is, a
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Figure *K1 Slab waveguide with longitudinal periodic 
perturbation
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planar region, for example a slab dielectric guide, of length L 

with a periodic perturbation of its permittivity (this may be in 

all or part of the medium, e.g a grating cut into the cladding 

surface of a guide) of pitch -A. and amplitude A e . It is assumed 

that there is an incoming wave ,i.e. a wave with forward phase 

velocity, at z= 0  of the form

and that there is no wave travelling into the guide, i.e. no wave 

with backward phase velocity, at z=L. It has been shown that 

these boundary conditions are equivalent to requiring continuity 

of the total electric field and its z-derivative as long as the 

periodic perturbation is small [89], that is

where k is the coupling coefficient ( proportional to Ae [31] ) 

p is the propagation constant of the mode 

For the TE mode, the reflected and transmitted fields are given 

by, respectively [31],

A exp(iwt)

Ik I «  f

E(w,0,t) = A exp(iwt) (-ik sin (sL)) (4.1)

(s cos(sL)+iB sin(sL))

E(w,L,t) = A exp(iwt-igL) s (4.2)

(scos(sL)+iB sin(sL))

where cr
CD

n/j^

B = p - g

These expressions hold when there is significant coupling only to 

the backward mode with propagation constant p, and not to any
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other modes, in the frequency range of interest.

I n  g e ne ra l, i f

E(w,z,t) = A exp(iwt+if(w,z)) U(w) (4.3)

for real functions U,f, then for a modulated input at z=0 of the 

form

h(0 ,t)= A (w )exp (iw t)dw (4.4)

cen tred  a t wq say, the  f i e ld  a f t e r  p ropaga tion  th rough  a d is ta n ce

z is given by [40]
r

E(z,t) = A(w) U(w) e x p ( iw t + i f ( w , z ) )  dw (4.5)

3 3When U(w) is  s lo w ly  va ry in g  compared to  w t+ f and (d f/d w  ) /z  and

higher derivatives are small, i.e. when

IT «  1 (4.6)

U(t + f ’)

away from the stationary frequency ( where t + f ' = 0  ) 

and

f ' ' '&vr << 1 

f ' ,

where ’ denotes differentiation with respect to w

&w is the frequency range for which A(w) is significantly

non-zero, i.e. the effective range of integration,

Taylor series expansions of U and f about w q and use of

the method of stationary phase show that the increase in pulse

width owing to the dispersive nature of the medium is

characterised by the value

f " ( w  ) (4.7)o

This is the standard method for determining the degree of pulse 

distortion and has been widely applied to both periodic and other 

dispersive media.

However the field expressions equations (4.1), (4.2) each
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represent a summation of two components of two Bloch waves 

(see later) and thus contain rapidly varying terms besides the 

exponential term when put in the form of equation (4.3) . For

example if we put (4.2) into this form then

U(w) = s

2 2 2 2 
( s cos (sL) + B sin (sL) )

f(w) = arctan (-B tan(sL) /s) (4.8)

Therefore

U* = - BB* tkl2 tan(sL) ( sL -tan(sL) )

U ( 1 + (B tan(sL)/s ) 2 ) s2

f f = B ’( ~lk | 2 tan(sL) + B 2 sL sec2 (sL) )

( 1 + (B tan(sL)/s ) 2 ) s^

It is not clear that U is in general more rapidly varying than 

t+f' for t=f', for example this is not the case when B/lkl is 

small. Also, if L is very large and w q lies inside the 

reflection band,

U' = ________ BB * I k 1 2L___________

U(t + f ’) (t s2(l + (B/s)2 ) + B *|k ! 2  

This is large for large L for t «  f' so the constraint (4.6) does 

not hold. Similarly,

f ,,f= s'L ( (1 + 3t2 ) ~ A 2(3 + t 2 )/s2 )( 1 + 0( 1 /L)) 

f ’’ t ( 1 + (B/s ) 2 t2 )

where t = tan(sL)

and it is clear that this expression is proportional to L for
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la rg e  L and f ix e d  w. A lso  i t  becomes la rg e  when sL = (m + 1 / 2 ) 7T 
f o r  in te g e r  m. Th is  in d ic a te s  th a t the  a pp ro x im a tio n  w i l l  be 
in v a l id  f o r  c e r ta in  frequency in t e r v a ls .  In  p ra c t is e  k is  o f te n  
im ag ina ry  and so f (w )  i s  id e n t ic a l  f o r  (4 .1 )  and (4 .2 ) .  T h is  
im p lie s  th a t ,  i f  (4 .7 )  de te rm ines the  d is p e rs io n , the  d is p e rs io n  
i s  id e n t ic a l  f o r  the  t ra n sm it te d  and re f le c te d  p u ls e .

These c o n s id e ra t io n s  suggest th a t  s im p ly  c o n s id e r in g  f ' ’ (w ) may 
no t g ive  an a c cu ra te  d e s c r ip t io n  o f  the  d is p e rs iv e  p ro p e r t ie s  o f  
the  medium, e s p e c ia lly  o u ts id e  the  r e f le c t io n  band, and 
approx im ate techn iques  f o r  e v a lu a t in g  the  in t e g r a l  (4 .5 )  must be 
a p p lie d  w ith  ca re .

.4.3 S e ries  forms o f  the  r e f le c te d  and tra n sm it te d  f ie ld s

In  o rde r to  e s tim a te  the  shape o f the pu lses r e s u l t in g  from  the  
f i e ld  exp ress ions ( 4 .1 ) ,  ( 4 .2 ) ,  i t  i s  u s e fu l to  w r i t e  
D = 1

s co s (sL ) + iB  s in (s L )

= 2 e x p ( - is L )  (1 + G e x p (-2 is L )  + (G e x p ( -2 is L ) )  + ..............)

( s + B )

(4.9)

where G = ( B - s ) / ( B + s )

For w o u ts id e  the  r e f le c t io n  band, i . e .  f o r  |B I > | k l ,  
s ig n (s )  = s ig n (B ) ( t h is  i s  c le a r  from  p h y s ic a l c o n s id e ra t io n s ,  
s in ce  the  the  p ro p e r t ie s  o f  the  gu ide must va ry  c o n tin u o u s ly  from
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the case in which there is no periodic perturbation), and so

cuts in the w-plane) and so again (4.10) holds. Therefore, except 

exactly at the band edges (i.e. s=0 ) the series representation

(4.9) is convergent and so is valid. As the band edges are 

approached, (from any direction), more terms of the series must be 

retained to give a reasonable approximation to the exact function. 

As Ikl is reduced, that is the amplitude of the periodic 

perturbation becomes less, more terms must be included in the 

series if w lies inside the stop band, and less terms need be 

included if w lies outside,the stop band. This indicates that this 

expansion is most useful when the medium is strongly reflecting 

and when it is behaving almost as a uniform region.

If the range of integration of (4.5) includes one or more of the 

band edges, it is convenient to use, in effect, a Laplace 

Transform A^ of h(t) rather than the Fourier transform of 

equation (4.4), that is

I G exp(-2isL) I < 1 (4.10)

Inside the reflection band

IG exp(-i2sL)l = |exp(-2SL)( B + iS )/( B - iS ) | 

where S = i|s I > 0 (see figure A4.1 of the appendix for the branch

A^(w-iP) = 1/271 h(t) exp(-i(w-ir)t) dt P > 0 (4.11)
J
o

Since h(t) = 0 for t < 0,

A^ w- iT ) = A(w-iT)

and so the  re f le c te d  and tra n sm it te d  f ie ld s ,  E , Er  t
respectively, are given by

- 1 r - o o

(4.12)

(B + s)

where p = G/(G-1) if n = 0 and p = 1 otherwise.



126

Et (L,t) =

-IP -t-o or
dw exp(iwt-igL-is(2n+l)L) A(w) (l-G)G1 (4.13)

71=0 J 
- Lr-oo

(extending all functions to the complex plane by their analytic 

continuations). Now, for large enough T , the series representation

(4.9) is valid along the whole of the path of integration and 

additionally the path avoids the branch points of s (which are 

also at the band edges). The variation of the exponential 

term increases relative to the rest of the integrand as L 

increases. The dependence on the length of the medium is as for a 

uniform medium with dispersive permittivity. In order to estimate 

the size of the contribution of the terms in (4.12), (4.13), it is 

useful to consider first their amplitudes for the case

A(w) = 6 (w-w ) 
o

(i.e. a monochromatic wave) as a function of the carrier frequency 

w q . These are shown in figures 4.2 and 4.3. Clearly the 

successive terms have decreasing amplitudes. When w q is inside 

the stop band , the leading reflected term becomes more dominant

as kLI is increased. When w q is outside the stop band the

amplitudes are a function of B/lkl only and are independent of L. 

The leading transmitted term dominates as [k| is increased. These 

conclusions are likely to hold for more general functions A(w) as 

in practise A(w) is usually sharply peaked at w q .

Thus it is likely that in general a good approximation to the 

output fields may be obtained by considering only the first few 

terms of the series (4.12), (4.13). In particular

(i) w outside the reflection band o

If (Ikl /B; «  4 then |G| << 1 (4.14)
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and so all the other terms in (4.12), (4.13) are negligible

compared with the leading transmitted ( n = 0, Gn = 1 ) term.

This latter term has a simple exponential integrand with a real 

argument for real w and the conventional method of evaluation and 

use of the second derivative of the phase (4.7) to describe the 

pulse are justified. Therefore

Signal velocity = vg = dw/ds = s/(B B*)

(4.15)

Pulse dispersion = d(L/v ) = (Bf,B + B ’̂  - B*^B^/s^)L_ s ______________________

dw s

If | kIL >> B/fkl then the exponential term in each integral with 

non-zero n is also rapidly varying compared with the rest of the 

integrand. Then again, as long as A(w) is negligible inside the 

reflection band, use of (4.7) is valid and so each integral, 

except the first reflected one, can be taken to represent a pulse 

travelling with velocity dw/ds through a distance mL (for integer

m) with a corresponding dispersion. If the original pulse width 

is substantially less than the transit time through the structure 

and the dispersion for this pulse is not too large, there will be 

little interference between the terms and they will result in a 

series of output pulses. Then the fields are composed of 

components each of which has travelled an integer number of round 

trips through the structure, • resembling a conventional

non-distributed resonator in a transmission mode.

2 2For example, if a Gaussian pulse has dispersion m^d s/dw per 

unit length, then from the standard formulae [40] and (4.15), the 

pulse half width after propagation through a distance L, W(L), is
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W(L) = W(0) ( 1 + 4  m32(|klL)24(B/|kI) )1/2

( (B/lkl)2 - 1 )3

where p = nw/c-, and A(B/1k t) is the normalised spectral half 

width of the pulse.

If B/|kl = 2, A(B/!k ! ) = 0.25, IkIL = 15, then we can assume that

each integral in (4.13) is normally dispersive and also 

W(0) ^  0.27Ln/c, W(L)/W(0) ** ( 1 + 0.13m32 )1/2

Therefore the first term arrives with a width increase of ~6%, 

and the next contribution is only non-zero after a time interval 

of about 7 times the half width of the first term, and so does not 

interfere significantly with it.

(ii) w inside the reflection band 
o

Now if IkIL (1 - (B/|k|)2)^^2 ^ 3 

then all terms except for the leading reflected ( n = 0 ) term 

may be neglected. The leading reflected term may be written

-iP + oo
r

J

dw exp( i arctan(\

Ik I

Ik I 2 - B2 )

-iP - <?o

and,in the approximation that k is constant ( k = k(wQ) )» the 

signal arrival time t and the time dispersion may be obtained in 

the usual way to give

t = B ’/S

(4.16)

dt /dw = ( B'’ + B ,2B )/s 2 o

Thus we have determined the dispersion in certain cases for small 

Ikl/B and large IklL. At first sight it is surprising that the 

dispersion apparently increases as IklL becomes smaller. However
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as |k!L tends to zero, the contribution from frequencies outside 

the stop band tend to zero. The contribution from frequencies 

inside the stop band interfere and cancel out. The 

dispersion may be interpreted as describing this interference. 

Only the leading transmitted term increases and approaches that 

for propagation in a uniform medium.

The expressions for the monochromatic fields, equations (4.1), 

(4.2), and the corresponding equations for the fields with forward 

and backward phase velocity at some distance z such that 0 < z < L 

[31] can be re-written to emphasise their composition of Bloch 

wave modes of the periodic structure.The latter become

E(z,w)=A(0)exp(iwt-igz)(s+B) (exp(isL~isz) + (s-B)exp(isz-isL))

• 2(s cos(sL) + iBsin(sL))

E(z,w)=A(0)exp(iwt+igz) k (exp(isL-isz) + (s-B)exp(isz-isL))

2(s cos(sL) + iB sin(sL))

Thus the transmitted field, which has forward phase velocity, is 

the sum of the fundamental component of a Bloch wave with a group 

velocity +dw/ds and the first harmonic of a Bloch wave with a 

group velocity -dw/ds . Similarly the reflected field is the sum 

of two waves with group velocities -dw/ds and +dw/ds. It is 

well known that the single group velocity of a Bloch wave (its 

components have propagation constants differing by integer 

multiples of 2TT/X ) is equal to the average over one period of 

the medium of the velocity of the energy flow [31]. However it is 

clear from above that the propagation of a signal in a finite 

periodic meduim, which is carried by two Bloch waves, cannot be
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described simply in terms of their two group velocities. For 

instance, from the series representation of the field equations 

(4.13), all the transmitted components have positive signal 

velocity, as is necessary physically. The signal velocity and 

dispersion of the transmitted signal in equation (4.15) are 

directly related to the slope of the w-p curve representing the 

fundamental component of the forward Bloch wave in the usual 

way. Equation (4.14) is the condition that the amplitudes of all 

the other components are negligible. However the propagation 

characteristics of the reflected pulse described by (4.16) cannot 

be related so straightforwardly to the w-ji curve.

It has been shown by Brillouin that, in absorbing dispersive 

media, the propagation velocity of the signal is not necessarily 

equal to the group velocity [90], [91]. We have seen that this 

appears to be the case in periodic media also and we have obtained 

some of the characteristics of the propagated signal. In order to 

consider these in more detail we shall apply the general method 

used by Brillouin, the method of steepest descent [92], to the 

case of a finite medium with a periodic variation of its 

refractive index.

,4.4 General formulae for the propagated signals

We consider an incoming signal with carrier frequency w q of the 

form

h(t) = 0  t < 0 '

h(t) = E exp(iw t) t > 0
o o

that is, a semi-infinite wave starting at t=0.
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The fields resulting from propagation of this signal can be used 

to obtain simply the output from a rectangular pulse of duration 

Z  by adding the field from h(t) to that from

h^t) = 0  t < T (4.17)

h,(t) = -E exp(iw t) t > z1 o r  o

F o r an input signal h(t), the corresponding "Laplace" transform

(4.11) is

A(w) = E
_________o_____ _

i( (w-in) - w ) 
o

and a typical integral appearing in (4.12), (4.13) may be written 

-iP +

*c<
k dw exp(F(w)) (4.18)

(w - w ) o
- i P  - co

where F(w) = iwt - im^sL + m^ln(B - s) - n^l^B + s)

for example the first two terms in (4.13) are

<*» = 0 and

m^ = 1, m̂  = 0, m^ = 0
m^ = 1, m^ = 2, m2 = 2 etc.

For both clarity and simplicity, in this section and the appendix 

we will ignore waveguide and material dispersion and consider the 

dispersive effect of the periodicity alone. Therefore we can write

B = (nw/c) - g
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where n is the (w-independent) average refractive index of the 

medium and c is the speed of light. Clearly other effects can be 

included by using the appropriate expression for B. We will also 

assume that we can set

should not effect the results qualitatively and will be removed 

for a particular case in the next section. Equation (4.18) is in 

a form which may be evaluated approximately using the method of 

steepest descent [91], [92]. Details of the calculation are given 

in the appendix to this chapter. Here and in the following section 

we will state and discuss the results.

In general the method of steepest descent yields a solution of an

integral as a sum of two non-negligible contributions. One,

Ig(t), is from the saddle point of the argument of the

exponential, and this describes the dispersive effect of the

meduim. The other contribution I^Ct), comes from the pole .in the

integrand at w = w q and corresponds to the effect of the

particular modulation. This form of solution leads to a simple

definition for the signal velocity. However it is an approximate

method (which improves in accuracy as {k jL increases ) and its

description of the pulse shape is rather cumbersome. For a

periodic medium we find that I = I + I such thats p

(i) The saddle point contribution

k = k(w ) = constanto

since k is relatively slowly varying with w q . These restrictions

for T < 1 (4.19)

exp(F(w ^))(l+id )̂ for T > 1 ____ s o (4.20)
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where T = tc/(m^nL) is the normalised time 

d = m^/(m^lklL)

m^ = m^ + m 2 
e2 = (»2/d2) - 1 

tf2 = t2 - 1

The position ot the saddle point w  ̂and the quantities K, d  ̂ are

functions of time: 

(a) for 0 < 'A2 < d2

J = “
v 2 _ f 2 . 1 / 2  , . f( 2 . 1 / 2K m^ (-e ) n d 1 ((-e ) - T)

c !k 1(1+d2)

(4.21)

d = 0  o

Wg = c (— |kId i (1 + (-e2)1^2) + g)

~  T 2n 0

(b) for tf2 > d2

j  = +»-
K^= 2m.e n d 1 (e2 + T2)4 ____ ______ _________

c !kI(1+d2) (e + T)

(4.22)

+ w — s

i ±o

c ( Ik Id (-i + e ) + g )

~  T 2n 6

2 2 2
+ (e - T) /(e - T )

(ii) The pole contribution

1 = 0
P

for T < T (4.23)

I = E k exp(F(w )) p o o for T > T (4.24)
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where T > 1 is a function of the carrier frequency and is 
o

defined as follows:

(a) for w inside the stop band, T > d + 1 and 
o o

T = d + 1 o
for B = 0 

o
(4.25)

T = T is the solution to 
o

BqT + ikld arctan(J|kf^ - Bq^) = Q~ (4.46)

otherwise

(b) for wo outside the stop band 

B0 = TQ~ + Jq±2  -  I k f 2y 2 

X2 '

T = T is the solution of 
o

(4.27)

where B = (nw /c) - g o o

Q* = |k ldTT /2

Q+ = I k l d  (e + arctan(l/e)) 

Q = - l k l d  (e + arctan(l/e) 

Clearly Tq tends to unity as lBq |

x 2 < d2 

X 2 > d2 
TT ) X2 > d2

tends to infinite.

The formulae for I and I become inaccurate near the lower endss p

of the ranges for which they are defined but they may be 

determined there by continuity (see appendix).

From equations (4.19), (4.23), we can interpret the m^ term in

(4.12), (4.13) as the contribution from that part of the field 

that has travelled at least m^ rounds trips inside the structure 

but less than m^ + 1.
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4.5 Signal velocity and dispersion

In general, for a uniform dispersive medium, well away from 

the frequencies of absorption,

I «  I (4.28)s p

for all times such that w is not too near w .s o

Therefore t = m~L nT /c, the time when I is first o 3 o ’ p

non-zero, has been taken as the arrival time of the signal, thus 

giving the signal velocity. This same quantity has been used to 

define the signal velocity in absorbing media, when (4.28) may 

not hold [91].

For a periodic medium, since even a monochromatic wave is not 

transmitted unperturbed, not only is (4.28) not necessarily true 

but also the saddle point contribution to the integral does not 

correspond directly to the distortion of the pulse. For example, 

greater transmission at frequencies different from w q will tend 

to reduce the distortion of the transmitted pulse and the presence 

of these frequencies is expressed by the saddle point term. Thus 

in general we cannot use t to obtain a signal velocity for 

each term (even though we have now taken into account the 

frequency dependence of the whole of each integrand) or dtQ/dw 

to represent its pulse dispersion,though we may do so in the 

special cases discussed in previous section.

Figures 4.4 and 4.5 show m3^0 as a function of the 

normalised carrier frequency for the first few values of

(m^m^) for IklL = 1 and Ik IL = 5 (positive B only is shown as 

the results are symmetric about B = 0 in the approximation Ik I =

c o n s t a n t  ) .  A n  o b v io u s  f e a t u r e  o f  t h e s e  f i g u r e s  i s  t h e  n e a r

s y m m e tr y  a b o u t  B= |k  I , t h a t  i s ,



Figure 4 .4  Normalised‘sig n a l arr iv a l” time m̂ TQ as a function  o f normalised frequency B /|k l fo r  the
f i r s t  few transm itted terms fo r  |k| L = 1 .0  and |k| L «* 5«0 
a i m̂  = 1 , = 0 b t m̂  -  l ,  m̂  « 2 c : m̂  « 3 , m̂ d i = 3» » 4
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Figure Normalised "signal arrival"  time m̂ TQ as a fu n ction  o f normalised frequency B /|k | fo r  the
f i r s t  few r e f le c te d  terms fo r  |k|L  * 1 .0  and |k |L  = a * m̂  = 0 , m̂  =* 1 b x m̂  = 2 , m̂  = 1 , c t m̂  * 2 ,  m̂  «= 3 vO
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nut (B/| k I ) = nut (|k|/B)J o  J o

From figure 4.4, we see that for small (k|L each integral term is

spread out and slowed down by the distributed nature of the

structure, since to for the two values of m, 4 for each m^ are

widely separated. As ]ktL is increased, figure 4.5, this effect is 

reduced and t tends to a single value for each value of m^. 

In each case a signal velocity may be meaningfully defined if the 

corresponding pole contribution dominates that of the saddle 

point.

Figures 4.6 and 4.7 show the transmitted and reflected field 

amplitudes for |k|L = 5 for various values of w^. The saddle 

point and pole contribution amplitudes are shown separately and 

also the amplitude of the sum.These latter results agree well with 

previous numericial evaluations (which were obtained by 

calculating 2048 point discrete Fourier transforms) [81] when the 

effect of a finite pulse width is included (4.17). The agreement 

improves for the larger value of ik|L, as can be seen by comparing 

figure 4.6 with figure 4.8, which shows the transmitted amplitudes 

for |k|L = 1. From these figures it is clear that the conclusions 

of section 4.2 concerning special cases are broadly justified, but 

that in general the signal may be significantly large at times 

different from the arrival of the pole contribution and that the 

effect of the periodic medium is to distort considerably the pulse 

shape. In addition the dispersion may not be negligibly small at 

the centre of the stop band when the undistorted term itself is 

very small (figure 4.6(a)).

We may define the dispersion of each term to be (to within a
2

sign, which can be obtained from the signal velocity ) | K [ 

This then is equal to the usual definition of dipersion when each
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Figure k,6 Amplitude of transmitted signal as a function of 

normalised time for |k|L = 5

------  Saddle point contribution
------  Pole contribution
------  Total



Figure 4 .7 Amplitude of r e fle c te d  sig n a l as a function  of normalised time for  |k |L  = 5 
---------  Saddle point contribution; -----  — Pole contribution; ------- Total amplitude

ro



l**3

Figure *f.8 Amplitude of transmitted signal as a function of

normalised time for k L = 1

------  Saddle point contribution
----- - Pole contribution
------  Total amplitude



integral is normally dispersive, but should be interpreted with 

care otherwise. Also the dispersion of the total pulse is not in 

general simply obtained from dispersions of the separate terms. The 

values of fKt are shown in figures 4.9 and 4.10 for IklL =5. 

This dispersion is greater for later arriving terms because of 

their longer effective path length. We have seen already that our 

expressions do not hold well for X d, and this is the time at 

which the pole contribution arrives if B =0. Thus the zero 

value of |KI at this point does not necessarily imply zero 

dispersion here. From the figures it is clear that the transmitted 

and reflected pulses have different dispersions in general.

For comparison, the dispersion obtained by using the second 

derivative of the phase of the total integrand, equations (4.7) 

and (4.8) is shown in figures 4.9, 4.10 also. This agrees well 

with the dispersion of the first reflected term inside the stop 

band since, for IklL = 5, only this term is significantly large 

and is normally dispersive. The agreement is not so good 

otherwise. For example we have found that the dispersion has a 

single sign (on each side) outside the stop band and does not 

oscillate. In addition the conventional method of evaluation 

describes the effect of the periodic medium simply as a broadening 

of the reflected and transmitted pulses and gives no suggestion of 

the infinite number of smaller following contributions. It is 

possible that the dispersion obtained by using equations 

(4.7), (4.8) gives the total dispersion, while our results give 

approximate values for component terms. However this does not 

seem to be likely. For example for a carrier frequency outside 

the stop band, the leading reflected pulse will arrive, with 

non-zero pulse spreading, before any other contribution is
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Figure 9 Dispersion term K as a function 

function of normalised frequency B/ k 

for the first few transmitted terms. The 

dotted line shows the dispersion obtained 

using the phase of the total transmitted 

field.
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non-zero. The result that these other contributions are zero for 

times less than twice the transit time is exact. This is not 

compatible with the existence of frequencies at which the

dispersion becomes effectively zero for the total pulse.

Similarly, the leading Gaussian transmitted pulse considered in 

section 4.3(i) will arrive with non-zero dispersion before all 

other transmitted contributions, at least for t B S/|k1 ^<2.

As w q approaches the band edges, the velocity of the pole 

contribution tends to zero. This is reasonable since the fields

combine to form a standing wave for w q at the band edges. Each

term becomes more dispersed (because of the singularity of 

2 2d s/dw ) and the magnitude of I is comparable with that

of I . In the limit the pole contribution does not arrive at a 
P

finite time and so clearly conservation of energy requires that 

I is non-negligible.

When w q lies inside the stop band and the reflectivity is 

large, the main contribution to the reflected field is from terms 

which have travelled only a short distance inside the structure. 

Therefore as|k|L increases or w q tends to the centre of the stop 

band the dispersion is reduced and becomes essentially independent 

of the precise length of the structure.

4.6 Periodic perturbation for dispersion control

In this section we will show how a periodic perturbation may be 

used for the control of the dispersion of a waveguide. We consider 

a long guide with a small periodic perturbation of its
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permittivity. We have seen in the previous sections that the

transmission response of such a guide to an input signal with a

carrier frequency very far from the band edge consists of a

leading pulse of large amplitude, whose dispersion is expressed by 

2 2d s/dw , followed by a series of terms of very small

amplitude. The reflected field is the sum of a series of very 

small terms only. The "amplitudes" of these pulses (figures 4.2 

and 4.3) are independent of L and ,for all terms except the 

leading transmitted pulse, decay at least as quickly as

IkI/2B (4.29)

Therefore in order to design a periodic guide with a zero of its 

dipersion at a given wavelength we will assume that only the 

leading pulse in transmitted and determine the required

perturbation. The validity of this can then be checked by 

calculating the amplitudes of the other reflected and transmitted

pulses for this particular guide. We will assume that the

dispersion of all these terms is small enough for their

amplitudes to be described accurately by equation (4.29). We have 

seen in the previous section that this is likely to be so as long 

as

Ik IL »  Ik /B I

or |B/ k I >> 1

both of which are satisfied in the case considered here. The 

dispersion of the leading transmitted term may be described using 

the usual w-p curve for a periodic medium and the qualitative 

argument for a "dispersionless" frequency at w^ in a periodic 

waveguide is as shown in figure 4.11 

The waveguide and material dispersion play an important part in 

determining the precise detailed propagation characteristics of a
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S'
Figure 4.11 Behaviour of the propagation constant /3 and its
first two derivatives near the Bragg frequency wB= He/(effective index.A)

---- —  Unperturbed guide, /3 = ft

--------  Perturbed guide , ^ = TT/A •+• s
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guide and so these effects are now included in the calculation. 

The refractive index is assumed to have a frequency dependence 

described by the Sellmeier equation [41] and the expression for 

the unperturbed propagation constant Jb is that of the first TE 

mode in a slab dielectric guide [31].

To a good approximation the pulse width is minimised for

2 2d s/dw (w )=0 ,assuming zero spectral width of the source

[40]. Now ( using again ' to indicate differentiation with respect 

to w )

s "  = (-s’2 + B B " +  B ’2 - |k||kl" - fk I ’2 )/s

and so we can vary the pitch or amplitude of the perturbation, or 

both, in order to make s ’’ = 0 at some chosen wavelength.

For a given amplitude, the required pitch is given by the 

solution to the cubic equation

B3 B ”  -  B2 | k 1 2 + B ! k I ( 2B * Ik 1 ’ -  B " | k l )  + I k | 2 ( l k 1 2 -  B ’ 2 ) = 0 
'where Ik |2 = I k ! Ik I ’ ’ + IkI '2
Since the leading transmitted term propagates with an effective 

L-independent propagation constant s, the field at z = L resulting 

from a Gaussian input pulse may be obtained in the usual manner to 

yield

E =exp(iwot-isoL-igL) AT exp(-(t-SQ ’L)2T2)exp(iso ’,L(t-so 'L)2)

X IX 12 I x f2

where s =s(w ) and similarly for derivatives o o
2 1 / 2 X = ( T + is ’’L) ' o

The guide considered is taken to have a core of silica doped with 

13.5% germanium dioxide and a cladding of silica doped with 13.3% 

boria. The core width is 30/g "'■'5.2pm. Figure 4.12 shows how s' 

and p* vary as a function of A for this guide. The unperturbed 

guide has a zero dipersion point at 1.3pm, near the zero of the
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Figure -̂.12 Variation of ds/dw and d(3/dw with wavelength A
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material dispersion. It is clear that the effect of the

perturbation is to introduce an additional zero dipersion point,

since the slope of s ’ varies from the positive slope of ’ for A

fa r  from the band edge to  - w a s  A approaches the band edge (though
2 2we have seen in the previous section that d s/dw alone does

not describe the dispersion near the band edge). The perturbation

has been chosen so that the dispersion zero occurs at 1.55pun, the

minimum loss wavelength for silica.

Figure 4.13 shows |k|/|B| as a functon of A  for the guide with

the perturbation used in figure 4.12. From this we can see that

-2
the power loss by reflection ~ 1.5 x 10 dB and the noise owing 

to the subsequent transmitted pulses ~  3.0 x 10  ̂ dB, 

independently of the length of the guide, at A  = 1.55 ûn. This may 

be compared with the material loss of silica at this wavelength 

which is about 0.2dB/km at present. Thus it is possible to make 

the dispersion at a given point zero and still remain

sufficiently far from the stop band ( about 100 bandwidths away 

from the band edge in this case) for the reflective nature of the 

structure to have a negligible effect on the amount of power 

transmitted.

2 2Figure 4.14 shows how d s/dw • varies with A for various

different values for the amplitude of the perturbation. In each

2 2case the pitch has been chosen so that the zero of d s/dw

2 2occurs at 1.55jum (Table 4-1 )• For comparison, d p/dw is 

also shown. Clearly, as the perturbation amplitude is increased, 

the zero dispersion point moves away from the band edge. Since the 

operating frequency lies below the reflection band and we wish 

to work at a fixed frequency, the required pitch becomes smaller 

as the perturbation amplitude is increased.
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Figure 4.13 Variation of |k|/|B| with wavelength X
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A  j m

Figure 4 . l 4 2 2Variation of a s/dvf with wavelength A for 

various perturbation amplitudes Ae
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Tab le 4.1

A S
g ra t in g
pitcK/jjm

d is p e rs io n  a t  
1.55 f o r  f u l l  
w id th  1 nm

B / |k l Wavelength to le ra n c e  
f o r  d is p e rs io n  < 8 ps/km  
f o r  f u l l  w id th  1 nm

icr5 0.5296 2 .0 -380 0 .05  %
1Cf4 0.5265 0 .7 -152 0 .18  %

3x1O-4 0.5223 0 .3 -110 0 .40  %
0 17.5 -
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It should be noted that if the zero dispersion point is to be 

introduced in a region of positive dispersion, then the operating 

point will be at a frequency above the reflection band. In this 

case the grating may cause coupling to the radiation modes and, if 

the perturbation is large enough, the resulting radiation losses 

are likely to be unacceptably high. However when d p/dw is 

negative, as for lightly doped silica at 1.55pun, this problem does 

not arise.

A noticeable feature of figure 4.14 is the rapid variation of

2 2 2 2 d s/dw with A. compared to that of d p/dw . In order to

determine the significance of this variation, we consider

approximately (Table 1) the effect of the spectral width of the

signal at the zero dispersion wavelength. From this we see that the

effect of the third derivative on the dispersion is likely to be

small (and varies as (dA) ) and that the presence of the

perturbation does result in a fairly significant reduction in

the dispersion. These values of dispersion may be compared with

those of other dispersion shifted waveguides, for example 1.5

ps/(km nm) for a quadruply clad fibre ( but this is additionally

attained throughout the wavelength range 1.3 to 1.6 jjim) [14] and

only 0.05 ps/(km nm ) for a triangular profile fibre [85].

The main consequence of the rapid variation appears to be that it 

introduces severe constraints on the fabrication tolerances. These 

are relaxed as the amplitude of the perturbation is increased. 

However this in turn means that a guide of higher An must be used,

so that the core size may have to be made smaller in order to keep

the guide single-moded, thus reducing the advantages of using a 

periodic structure.
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4.7 Conclusions

The transmitted pulse of a periodically perturbed waveguide may 

be considered as the sum of terms , the nth one of which is 

composed of that part of the field which has travelled at least 

2n-l lengths and less than 2n+l lengths of the guide. These terms 

all have similar signal velocities and velocity dispersions. 

Similarly the reflected pulse can be considered to be composed of 

terms which have travelled at least 2n-2, and less than 2n, 

lengths of the guide. The successive contributions have 

decreasing amplitudes and in general may overlap in time and 

interfere. Relatively simple formulae for these terms may be 

obtained. The actual signal is the sum of these components and 

so its shape as a function of time can be determined, but its 

dispersion cannot be simply directly related to those of these 

constituent terms.

However 3 in certain cases only one term may make a significant 

contribution and then the dispersion may be straightforwardly 

obtained. In particular the dispersion of the transmitted pulse 

for a small perturbation and a carrier frequency well outside the 

reflection band may be simply expressed. This is similarly true 

of the dispersion of a reflected pulse subjected to a large 

perturbation with a carrier frequency near the centre of the 

reflection band. In both these cases the dispersion is small and 

varies monotonically as the carrier frequency moves away from the 

band edge.

For frequencies near the band edge the medium is highly 

dispersive. The signal velocities of the component terms lose 

their meaning, as all the terms interfere significantly, but
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formally tend to zero here.

Thus it appears that the dispersion characteristics of the 

periodic medium are strongly influenced by both the distributed 

nature of the reflection and the finite nature of the device. The 

dispersion effects are significantly more complicated than those 

in a typical uniform dispersive dielectric.

However the effect of the periodicity on the dispersion curve is 

large compared with that of the waveguide and material 

dispersions. Thus even far away from the reflection band, where 

all, terms except the first transmitted pulse are negligibly small, 

it can cause the dispersion to change from some relatively large 

value ( for example 15 - 20 ps/(km nm) ) to zero. The third order 

dispersion must be considered here and in fact it is relatively 

large. It does not nullify the improvement gained by the zero 

second-order dispersion. A typical value of the dispersion which 

might be achieved is 2 ps/(km nm ). However it suggests that the 

structure may need to be fabricated to great accuracy ( less 

than about 0.1% error in the pitch of the perturbation) if it is 

to operate as predicted theoretically .
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APPENDIX TO CHAPTER 4

We will use the method of steepest descent 

approximately an integral of the form 

-i P + ®o

I
r

Eo

J

exp(F(w)) dw

2 T\ i(w-w ) o

- i p  -  © o

[91], [92] to evaluate

(A4.1)

where F(w) = iwt - im^sL + m^ln(B-s) - m^lnCB+s) (A4.2)

and the complex plane has branch cuts as shown in figure A4.1. We 

use the notation and assumptions described in section 4.3

(i) The integration contour (figure A4.1)

We first note that

if t < m^nL/c then Re(F) < 0 on /C’
/\

where C' is a semi-circle at infinity in the lower half 

w-plane.

Therefore in this case, we can close the contour of integration 

along 6* to give, since the integrand is analytic for all Im(w) <P 

1 = 0  for t < m^nL/c

However
a

if t > m^nL/c then Re(F) < 0 on C
A  _

where C is a semi-circle at infinity in Im(w) > r  

the integrand has a pole and branch cuts in Im(w) > P. In order to 

evalulate the integral the path of integration is deformed in 

accordance with the method of steepest descent to path "B. Thus the 

integration path starts on. 6 at Im(w) = P, then passes along €
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Br oo ch
cubs

Figure A^.l w-plane showing branch cuts and integration 
contours



l6l

until this intersects with the lines of steepest descent of 

F, that is, the contours

Im(F) = constant (A4.3)

which pass through the saddle points of F, the points w for 

which

dF/dw = 0 ' (A4.4)
A

From here B avoids the branch cuts by passing along these steepest 

descent lines (see below) and then completes the path to the end 

point along £. When a pole of the integrand lies in the region
A  A  A

between the original contour A and B, B must be further- deformed 

to pass around it.

The integrand vanishes on 'c . The steepest descent lines are those 

along which Re(F) varies most rapidly. Thus by integrating along 

these lines it may be assumed that the dominant contribution from 

this part of the integration contour comes from the vicinity of 

the saddle points (where Re(F) has a local maximum for w varying 

along one steepest descent line).

(ii) The Saddle Points

From (A4.2), (A4.4) there are .two saddle points given by (in the 

notation of section 4.4)

B = Ik Id (-i ± Te)/tf2 (A4.5)

The time dependent variable T appears as a parameter in (A4.5)

and so the saddle points and path of integration change with time.

The motion of the saddle points is as follows

For 'S = 0 the saddle points are at

B = -i«> , B = i d | k  I ( 1 -  d2)/2
2 2For 0 < "5 < d they move towards each other along the line
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Re(B) = 0

meeting at

B = -i|kld/&^ at time & = d 

2 2For > d they move apart along the line 

Im(B) = -ilkld/8^

and as T tends to infinite they tend to the band edges B = + Ik I.

The exception to this type of saddle point motion occurs when 

m = O.Then the saddle points are on the real axis and outside the 

stop band always. They start at ± o o and tend to the band edges.as 

T tends to infinite.
2

We will find that the results we obtain do not hold for % = 0
2 2

and & = d . At the latter time F'’ = 0  and so F has a higher
2

order saddle point. The solution for S = 0 may be determined as 

in reference [91]. At other times the solution is valid. In 

general, at the saddle points,

s = |kId ( -iT ± e)/#^ (A4.6)

,2 2 ,2 ( iT x2d F = + n im^ ed ±  e)

A 2 2dw c

CMId

( 1  + d2 >2

(A4.7)

(iii) The lines of steepest descent through the saddle points

The lines of steepest descent through the saddle points are, from

(A4.2), (A4.3), the lines defined by

w^t -  m^aL + m^qi -  1 1 ^ 2  “ K~= 0
where w = w + iw.r 1

s = a + ib

= argument of (B - s)
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= argument of (B + s)

and the superscripts +, - on K refer to the two saddle points 

defined by the +, - signs (the + and - saddle points) respectively 

in (A4.5).

These steepest.descent lines can be re-written

Re(B)T - a + (m^q^ - 11̂ 2 ) ~ Q~ = ^ (A4.8)

m3L

for Q~ = ( K~ + gT ^m^L

From B and s at the saddle points (A4.5), (A4.6) and (A4.8), we 

can solve for Q~ to obtain 

For % 2 < d^

Q~ = |k|d7T/2 (A4.9)

2 2 For is > d

Q+ = tk Id( e + arctan(l/e) ) (A4.10)

Q = 1 k |d(—e + TT - arctan(l/e) )

The points at which the steepest descent lines intersect the real 

axis are obtained by setting w^ = 0 in (A4.8). In general these

points may occur inside and outside the stop band. It is 

convenient to consider these cases separately. (Here Q = Q~ )

(a) B > IkI

B = (TQ + J q 2 ~ X 2!kl2)/X2 (A4.ll)

(b) - |k t < B < Ik  I

B is the solution to the transcendental equation

BT + m^ arctan ( J |k|2 - B^ ) = Q (A4.12)

m3L B
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(c) B < - IkI

B = T( Q + M ) + J(Q + M )2 - 'ft2 |k |2

where M = n  (m^ - n^/^m^L)

(A4.13)

(iv) .Gradients of the steepest descent lines in the vicinity of. 

the saddle points....

If F = F + iF. then along the line F. = constant, (about r l ° i

a saddle point wg),

F.(w +dw ) = F.(w ) + dF. £w + d2F. (6w )2 + , i s  r i s  l r  l r (A4.14)

dw dw

= F.(w ) l s

At a saddle point, dF^/dw^ = 0, and so the gradient at the saddle

point along the line of steepest descent is the gradient of the

2 2direction in which d F^/dw^ = 0 there. Therefore, expressing 

2 2d F^/dw^ in terms of partial derivatives, the required value of 

the gradient is

d = dw. = -(F.)w w. + J ((F.)w.w )2 - (F.)w w (F.)w.w. (A4.15)o l l r i  —  * i i r i r r  i i i

dw

where (F.)xy = d F. (w ) 1 J i s

(F.)w.w.l . i i

dxdy

This gives the gradients of the two steepest descent lines 

passing through the saddle point wg.

For any general analytic function F (where ’ denotes 

differentiation with respect to w )
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(F.)w.w = Re(F’’)1 1 r
(F.)w w = Im(F’') = -(F.)w.w. l r r i l l

Therefore from (A4.7), the two gradients are given by 

(a) tf2 < d2

d = - sign((F.)w w. x co (A4.16)o l r l

d_ = 0

at the + saddle point

(A4.17)

at the - saddle point

(b) * 2 > d2

dQ - * (e ±  T)2
2 2 e - T

d = + (e + T)2 o — ___~

(v) Directions of decreasing F  ̂ along steepest descent lines

It is necessary to determine along which of the two lines of 

steepest descent through each saddle point F^ is decreasing away 

from the saddle point, since it is this line which must be chosen 

as part of the integration contour.

At the saddle points,

(a) X 2 < d2

d F = F' ' r

dw

when d = 0 o

(A4.18)
2

d F = -F*' when d = + o or o

dw 2 r

The integration path will be deformed to a steepest descent line
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with d = 0 (see below and figure A4.2). From (A4.7), when

%2 < d2 ,
-f-

F,f(w“) = + (positive number)s —

therefore the contour must run along the path through the lower of 

the two saddle points.

2 2(b) o > dZ

d2F = -2d lFf,l2 (A4.19)___r o_______

dw 2 Im(F’') r

2
and d^ = + ( e - T )  x positive number

2 2 2Im(F’’) (e-TZ)Z

Therefore at both the saddle points the steepest descent line 

along which F decreases corresponds to the lower sign. From

(A4.17) the relevant gradients have opposite signs at the two 

saddle points.

Using the results of (iii), (iv), (v) and the limiting case of

m^ = = 0 (for which the steepest descent lines have

rational equations), the relevant characterstics of the steepest 

descent lines can be determined. These are shown in figure 

A4.2 (with arrows pointing in the direction of increasing F ) 

together with the resulting path of integration.

(vi) The signal velocity

A  A
When the contour A is deformed to either of those marked A* in 

figure A4.2, the contribution of a pole lying on the real axis at 

B = Bq must be included when the points where the new contour



Figure a4.2 Lines of Steepest Descent
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intersects the real axis + r^, ±  are such that

(a) 1til < B !0 if B > 0 Ihl

(b) 1r2 1 > |Bo ! if B < 0 i kl

The time at which = 1B 1 or I r2  1 = Ib I, whichever is

appropriate, may be defined, by analogy with the lossless case

[91], as the arrival time of the signal. This leads to the

definitions of Tq in equations (4.25), (4.26), (4.27) directly

from (A4.ll), (A4.12), (A4.13). From this time onwards, the

contribution to the integral from the part of the contour

encircling the pole must be included. This contribution is

obtained very straightforwardly from Cauchy's theorem and is

I = E exp(F(w )) p o o

(vii) The saddle point contribution

The saddle point contribution, Ig, to the integral is obtained 

in the usual way by approximating the exponential function to a 

Gaussian and replacing the integration contour by the tangent to 

the steepest descent line at the saddle point. The change of path 

is justified by the assumption that the contributions to both the 

original and the approximate integral are negligible except near 

the saddle point, where they coincide.

Thus oo
I - E I exp(F(w )) (1 + id ) dwrexp(-K2(w -w )2/2)
S O  | S O  SIT IT

. 27Ti (w - w )  s o

where w = w + iw . is the saddle point s sr si r

K2 = d2F (w )/dw 2 r s r

so I = E exp(F(w )) (d - i)s o ____ s_____ o____ _

(w - w ) <Jl 7TK s o
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and K, dQ are obtained from (A4.7),' (A4.16), (A4.17), (A4.18), 

(A4.19) to give (4.21), (4.22).

(viii) Limits to the validity of the calculation

The above approximate evaluation of the saddle point contribution 

ceases to be valid when

(a) iw - w q I becomes small on the integration contour.

At these times l/(w - w ) is not slowly varying along the path 

of integration near the saddle point and so this term cannot be 

taken as constant for the integration. In order to correct for 

this, the integration contour may be deformed around the pole as 

it approaches the pole and so, strictly speaking, this

contribution should be added to the integral [91]. This

makes I continuous.
P

(b) K tends to zero. At these times the integrand does not 

become negligible for values of w away from wg (since the 

exponential term is not rapidly decreasing for increasing w - 

wg) and so the change of integration path is not justified. In 

addition, the approximation of the exponential to a Gaussian form 

may be invalid if third and higher derivatives of are large 

enough. From (4.21), (4.22), K becomes small when

T ~  1 (A4.20)

X 2 «  d2

IklL is small

In order to determine the range of values of I klL for which the

calculation is valid, we need to calculate

d2F (Sw )2 ___ r __r

dw 2 2
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We will assume that

nw /c >> |B!o

dw /w = 100r o

nw /c > 4001k 1 (in practise nw /c ~10^ I id )
o o

Table k l+ .l shows required resulting minimum values for | k I 

various values of T, m^, m^

At the times described in (a) and (b) (A4.20), it is

L for

most

convenient to determine the saddle point contribution graphically 

by continuity, as illustrated in figure A4.3.



T

oII >\=2 “4 =3

1 .1 1.1 3 . 1 1 7 . 0 1 9 . 3
2 . 1 0 . 2 0 . 9 1 .4 1 . 9

3 . 1 0 . 1 0 . 5 0 . 8 1 . 2
4 . 1 0 . 0 5 0 . 4 0 . 6 0 . 9
5 . 1 0 . 0 2 0 . 3 0 . 5 0 . 7

Table A^.l Minimum values required for k L for

the first few transmitted terms ( m^ = 1 

and m^ = 3 for the corresponding m^ )



172

Figure Â+. 3 Example of how the saddle point contribution may
be obtained by continuity at times when the formulae 
become singular.

I from formulae PIp assuming continuity
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5. WAVE PROPAGATION IN A DOUBLY.PERIODIC GUIDE

5.1 Introduction

A waveguide with more than one periodic perturbation of its 

refractive index may be described as a multiply periodic guide 

(figure 5.1). Clearly such a index variation can also be 

considered as one periodic perturbation of a longer pitch. 

However, in this case, the amplitudes of the harmonics of the 

perturbation will not, in general, be decreasing with increasing 

order, and may affect the propagation at frequencies significantly 

different from their resonance (maximum reflection) frequencies. 

This is not so for the perturbation which results from the 

generally considered small amplitude single periodic variation.

Monochromatic wave propagation in the presence of a single 

periodic perturbation has been analysed extensively, in particular 

for unbounded or semi-infinite media [2], [34], [93], [94], [95]. 

The two methods most commonly employed for this are a Bloch wave 

expansion and Coupled Mode theory. For infinite media these 

approaches are very similar and the amplitudes of the coupled 

waves in the two cases are related directly by Fourier 

transformation or, for finite truncations, simply by a re-grouping 

of the modes in the expressions for the fields [96]. In general 

higher order modes are included in the analysis, but these 

have only a small effect away from their resonance frequency as 

long as only one perturbation is considered. Thus the finite set 

of components which must be retained in the analysis is usually 

clear from physical considerations. These analyses have led to 

the well known descriptions of the multiple reflection and
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transmission bands. It has been shown that there is a weak 

interaction between the harmonic components which results in 

"phase-speeding", that is, the occurence of the stop band at a 

frequency slightly greater than that predicted by the lowest order 

two-wave approximation [96]. Stronger anomalous interactions have 

been observed in perfectly conduction gratings, such as Wood’s 

anomalies and the excitation of surface plasmons [97].

A case closer to that of a multiply periodic structure is that of 

a modulated infinite periodic medium. Such a perturbation has been 

expressed as the sum of closely spaced harmonics [98] and has 

been analysed using coupled mode theory. The reflectivity has been 

obtained from an approximate form of the Riccati equation which is 

accurate for small perturbations. Only weak inter-harmonic 

interaction has been considered. It has been shown that for 

a suitable modulation, the maxima of the side lobes of the 

reflection band are reduced and the bandwidth of the main 

lobe is increased.

The multiple harmonics in a periodic waveguide have not been 

investigated so widely. The Bloch wave approach has been used to 

analyse unguided and radiation modes in transversely bounded 

general periodic media [99], [100]. This method has also been used 

to determine the characteristics of a general periodic dielectric 

guide [37], again with essentially one perturbation giving rise 

to the multiple harmonics. In this latter case the (truncated) 

infinite determinant must first be used to obtain the set of 

possible transverse dependences (which are coupled together by the 

periodicity) and then the boundary conditions must be applied to 

determine the propagation constant. This differs from the case of 

an infinte medium where the only parameter to be determined is the
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propagation constant. Thus the use of the Bloch wave formalism 

for guided modes requires numerical solution of a complicated 

transcendental equation.

In contrast, the coupled mode theory for a waveguide is very 

similar to that for an infinite medium, except that now the 

unperturbed modes do not relate directly to the Floquet-Bloch 

case. The only unknown parameter is the propagation constant as 

the transverse boundary conditions have already been applied to 

obtain the unperturbed modes. Coupled mode theory has been 

applied to almost periodic waveguiding structres [101], [102]. 

These have perturbations which have continuous variations of 

amplitude or pitch (tapers or chirps respectively) and so cannot 

be treated as a sum of periodic components.

In this chapter we will use a simple general coupled mode 

approach in order to determine the characteristics of propagation 

in a multiply periodic guide in which there is significant 

interaction between the harmonics.

Previously there has been some interest in multiply periodic 

waveguides [1] and their analysis using the method of multiple 

scales [103], [104]. Coupling from one forward guided mode to 

two backward guided modes via two suitable periodic index 

variations has been considered. It has been shown that for 

suitable perturbation amplitudes the three-mode coupling device 

has, perhaps not surprisingly, lower transmission than a singly 

periodic two-mode coupling one. However the method of multiple 

scales [105] requires that more terms must be included as the 

length of the device is increased, which is a rather undesirable 

feature.

The singly periodic waveguide has an important use as a narrow
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frequency band reflection filter [23]. Because of the interactions 

which occur in a multiply periodic structure, this device may 

have potential applications for filtering also. For example, for 

frequencies in the vicinity of the resonance frequency of a large 

amplitude perturbation, but outside the stop band, the group 

velocity is significantly reduced. Thus if another perturbation is 

imposed with a stop band in this region, it is conceivable that 

the slow variation of frequency with wavenumber would lead to its 

having a very narrow frequency bandwidth of reflection. In terms 

of mode-coupling the bandwidth can be considered to decrease with 

increasing angle between the two coupled mode dispersion curves 

(figure 5.2). However the advantage of reducing the group 

velocity must be balanced against the corresponding increase in 

reflection.

Using the generalised coupled mode theory described in the 

following section, 5.2, we determine in this chapter the 

propagation characteristics for a doubly periodic waveguide. 

Sections 5.3 and 5.4 are concerned with obtaining the propagation 

constant and reflection coefficient. Section 5.5 contains a 

numerical evaluation of these parameters for a suitable guide.

5.2 Generalised Coupled Mode theory

We consider the electric field of the TE mode of a slab waveguide 

lying in the y-z plane, with propagation in the z-direction. The 

periodic perturbation is in the z-direction and all quantities are 

independent of y. The coupled mode equations are derived by



Figure 5.2 Schematic dispersion curves for (a) singly and (b) doubly periodic perturbations, ©i > ©,
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expressing the electric field as a z-dependent superposition of 

the modes of a uniform guide. That is, if the uniform guide has 

guided modes Em (x)expC+iji^z) and radiation modes E(tf ,x)exp(+i^z) 

then the electric field of the perturbed guide is [31], [40]

E = E exp(iwt)
y

= exp(iwt) Cy~~ ( A^(z)exp(-iB z) + A (z)exp(iB z) ) E (x)■h—- m 1 m m 1 m mm
+ JdX( AOJ, z)exp(-ip^z) + A (2 , z)exp(ip^z) )E(#,z)]

(5.1)

This infinite sum over all modes is exact and so holds for 

arbitrarily large perturbations, though any finite approximation 

must have a limit to its validity. An expression for each mode 

amplitude is obtained by requiring that E must satisfy the wave 

equation, that the normal modes satisfy the unperturbed wave 

equation and by using the orthogonality of the normal modes. This 

gives, for a perturbation to the permittivity of Ae, [31], [40]

, ,2 +( d A ___n

dz“

exp(2ipnz)( d2A" + 2iB dA~ ) ) <E |E > + ___n • i n__n n n

dz2 dz

w2u. (11+ fdtf)exp(iB z) <E |Ae|E >(A,"exp(-iB z) + A exp(iB z))=0 / f o J  in n m m  rm m r m

(5.2)

where <E Ae E > = n m

<E |E > n n

E (x) Ae(x,z) E (x)dx n m

<E | 1 |E > n 1 1 n

Here and below we use the symbol + d^ ) to indicate a sum
m j

over all guided modes and an integration over all radiation modes. 

We will also use the suffix m to refer to either a guided or a
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radiation mode in this section.

Applying equation (5.2) to each mode in turn yields the set of

coupled mode equations. Since the forward and backward propagating

modes with the same are not orthogonal, we can define A*(z),

A (z) for each mode to be such that A+ (z)exp(-iB z) and m m I m

Am(z)exp(ipmz) are forward and backward going waves respectively. 

Then writing

Am (z) = J p*(k) exp(-ikz) dk
A (z) = [ p~(k) exp(-ikz) dk m J m

we can assume that

p+ (k) = 0 for k < -B m fm

p” (k) = 0 for k > B (5.3)rm rm

If we take the wave number of the periodicity to be g = 27T /-A-and 

write

Ae = ) e.. (x) exp(-ilgz) 
l t o 1

then Fourier transforming equation (5.2) gives

pn (k) + Pn (k + ^  =

" V  ( £  + f d* > <En l6l |Em>{ P+n,(k+V P m -18 ) +
<En lEn>k(k+2pn ) (5.4)

The right hand side of (5.4) is large when k 0 or k ft -2|5 .

When k 0, p”(k + 2B ) = 0  from (5.3) and so n i n

P> )  -

WV  ( £ + 1 d*  > <Enl 61 1 V R (k+Pn- V 1S> + P ^ + f V P n T 1^ }

<En lEn>k(k+2pn ) (5 .5 )
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Similarly when k -2pn, p*(k) = 0 from (5.3). Writing k=k'-2|>n ,

Therefore each Fourier component is large only when the modulus 

of its argument is small. Thus' for example, the only terms which 

make a significant contribution to the right hand side of (5.4) 

are those with m and 1 such that

Expressions for these coupled components can in turn be obtained 

using (5.5) and (5.6) and so on. Equation (5.7) is the familiar 

phase-matching or resonance condition for coupling between modes 

by a sinusoidal index variation.

Coupling to several modes, large amplitude perturbations and 

similar quite complicated problems may be treated by considering 

the relatively simple simultaneous linear homogeneous equations 

obtained by retaining only the terms which are large and coupled 

together from (5.5) and (5.6). A non-trivial solution may be 

obtained in the usual way by requiring that the determinant of the 

matrix of coefficients M, say, is zero. In general M is sparse and 

may be arranged in a banded form, so that a simple iterative 

expression for its determinant may be derived, for example as in 

the next section.

(5.6)

k + Pm + h  ~ ^  “ 0 ° r  k + -  f m - Ig  = 0 (5 .7 )

Clearly in this form the coupled mode equations are very similar
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to the Bloch wave expansion for a periodic guide [37]. However 

they have the important advantage that they yield an expression 

for the unknown k (which determines the fundamental propagation 

constant) directly from det(M) = 0.

J5.3 Doubly periodic perturbation

We now apply the results of the previous section to the case of 

coupling to the backward mode in a single moded guide with two 

sinusoidal perturbations of the permittivity. The periodicities of 

the perturbations are taken to be -A./L, -A/(L+1) for integer L, (so 

the pitch- of the total perturbation is ^-). Therefore 

Ae = e^exp(-iLgz) + e_^exp(iLgz)

+ eL+1e x p (-i(L + l)g z ) + e_L_ 1ex p (i(L + l)g z)
When one of the perturbations is large enough, it will affect 

the propagation significantly even at frequencies rather different 

from its phase-matching frequency, and in particular at the 

phase-matching frequency of the other perturbation. At a given 

frequency w q , |2jKwQ ) - Lg I is some fixed value, (where p is the 

propagation constant of the guided mode) and so if we choose

g < |2 P -  Lgl (eL+1/e L)2

L > _ Z P _ (eL /e-L+l)2

l2f. -  Lgl
(for (e^+ ^|/je^[ >> 1 and w q of the order of a bandwidth from the 

band edge of the smaller perturbation say) then

|e L l2/l2p -L g l =  leL+1l 2/ |2 f -L g -g | (5 .8 )
So if we make the two periodicities close enough, then from (5.5),
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(5.6) the mode coupling resulting from e^+| is comparable to that 

resulting from This in turn implies that components with

arguments’ k+mg and k+2p-Lg+mg for small integers m may be 

non-negligible. The fact that these components may become 

significant is generally true when several periodicities are 

superimposed, thus increasing the pitch of the perturbation.

We will assume that

p-|5*-Lg »  2P-Lg (eL+1/e L) 2
for propagation constants J3̂ of the radiation modes, so that 

coupling to the latter is negligible. That is, the perturbation 

does not cause the waveguide to radiate power in the range of 

wavelengths of interest here.

From (5.5), (5.6), (5.7), for small integers m,

P̂ "(k + mg) = - ( CL pj(k+mg+d) + CL+1 p^k+mg+d-g) ) (5.9)

(k+mg)(k+mg+2p)

p~(k+d+mg) = - ( C_L p*(k+mg) + C_L_1 p*(k+mg+g) ) (5.10)

(k+d+mg)(k+mg-Lg)

where d = 2j3 - Lg

CL ~ ~w ^ ^ E1 1 eL ̂ E1 ^

< E X I E i >

If we write

leL /eL+l 1 =r l «  1

then from (5.8)

Id 1/ Id+mg 1^  0 (tĵ )̂

Then for example since

0(p^"(k) ) = 0(CL/(k (k+2p) ) ) ,
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p” (k+d-g) = OCij2 ) p^(k-g) + 0(tj) p*(k) 

and so assuming p^(k — g) ~  0 ^p*(k)^ (this latter assumption is 

clearly certainly justified physically) 

p“(k+d-g)~ 0(i^)p|(k)

In this way it is easy to show that a self consistent solution in

terms of orders of magnitude is obtained by assuming that

Pj(k+d+mg), p*(k+mg) are non-increasing for increasing |m| (this

then implies they are decreasing) and that if terms of order
4

greater than t| are neglected , the only significant terms are 

p^(k + mg), p^kr + 2p - Lg -mg) for m = 0,-1,+1,2 (5.11)

Therefore retaining the.terms in (5.11) only and writing

D,-n = ( k + mg )( k + mg + 2p ) 

hl,m = Cl/Dn

(5.12)

equations (5.9), (5.10) become 

M . P = 0

where M is an 8x8 matrix:

(5.13)

1 h_ CMih
iir—| 1 1 0 0 0 0 0 0

lL+1,-1 1
hL,-l 0 0 0 0 0

0 h_-L,-L-l 1 h-L-l,-L-l 0 0 0 0

0 0 hL+l,0 1 hL,0 0 0 0

0 0 0 h-L,-L 1 h -L-l,-L 0 0

0 0 0 0 hL+l,l 1 hL,l 0

0 0 0 0 0 h "L,-L+l 1 h-L-l,
0 0 0 0 0 ° hL+l, 2 1
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and

P

P-j_( k + d - 2g ) 

p|( k - g )

p~( k + d -g)

P*( k )

p~( k + d )

p*( k + g )

p~( k + d + g )

p|( k + 2g )

Using LU decomposition [106],

det (M) = b l b2 b3 b4 b5 b6 b7 b8

where

bl = 1

b2m = 1 - (CL+1 C- L - l /,(b2m-l D-2+m D-L-3+m) m lj2’3’4

b2m+l = 1 - (CL C-L)/(b2m D-2+m D-L-2+m) m=l,2,3

(5.14)

(5.12) and (5.14), det(M) is a polynomial in k and so

det(M) = 0

may be solved quite simply numerically. It is interesting to note 

that this equation can be written

D2 - lcL+1I2/(DL_1 - lcL l2/c / ( D - l  -  l CL+ l l  /DL+2> ’  0
and this is very similar to the continued fraction form of the 

dispersion equation obtained from the Bloch wave method for wave 

propagation in an infinite periodic medium [93].

Once k is known, (5.13) can be solved for P to within a scalar 

multiple. This gives
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P 1 ~CL C- L - l  / (  b l  b 2 b3 D- L -2  }
P2 CL C- L - l  ^  b 2 b3 D- 1  ^
P3 = P* ( k ) _CL + l/ (  b 3 D- L - l }
P5 - b 4 / (  c L dl  )

P6 b5 b4 / (  CL C- L - l  ° - L + l  ^
P7 - b 6 b5 b4 / (  c L2 d_ l+ 1  )

_ P8 _ b 7 b 6 b 5 b4 ^ ( CL C- L - l  \  ^

(5 .15 )
For any so lu tio n  k+p = kQ+p, from (5 .9 ) ,  (5 .1 0 ) , a l in e a r ly  

independent s o lu tio n  i s  k+p = Ng -  (kQ+p) fo r  in te g e r  N. Thus the  
pertu rbed  guide supports two independent modes. The so lu tio n  i s  
based on th e  assum ption th a t  |k | 5=5 0 and so i t  fo llow s th a t

N = L (5 .16 )
The exp ressio ns fo r  the  e le c t r i c  f i e ld  and the r e f le c t io n  

c o e f f ic ie n t  fo llow  e x a c tly  as fo r  r e f le c t io n  from a s in g le  
harmonic p e r tu rb a tio n . The r e s u l t s  a re  c le a r ly  th e  in tu i t iv e  
ex ten sio n s o f th i s  l a t t e r  c a se . From (5 .1 ) ,  ( 5 .9 ) ,  (5 .16 ) the
e le c t r i c  f i e ld  in  the  pertu rb ed  guide i s

E exp(iw t) =
E ^(x )ex p (iw t)j Aq e x p ( - i(k Q + p ) z ) ^ J p ^ ( k Q + mg)exp(-imgz) +

p~(ko+2p-mg-Lg)exp(i(Lg+mg)z) ]
+ Bq e x p ( i(k Q+ p )z ) Y ~ ^p*(Lg-2p-ko+mg)exp(-i(Lg+mg)z) +

(T) - -1 _
P 1 (-kQ-mg)exp(imgz) J >

where Aq and Bq a re  co n s tan ts  determ ined by the  boundary 
c o n d itio n s . Id e n tify in g  th e  forward and backward p ropagating  p a r ts
we can w rite
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+ r~ +
A^(z) = Aoexp(-i(ko+p)z)2_P1(ko+mg)exp(-imgz)

ms"1 a.
+ BQexp(-i(Lg-ko-p)z ]F p1(Lg-2p-ko+mg)exp(-imgz)

JL
= BQexp(i(kQ+ p ) z p ~  (-kQ-mg)exp(-imgz)

m*-| x
+ Aoexp(i(Lg-kQ-p)z p^(-Lg+2p+k -mg)exp(imgz)

m--i

For a perturbation of length D, we take the boundary conditions 

( for k << p ) as A*(0) = I, A^(D) = 0.

Then writing
2.

Q(k,z) = ) nt(k+mg) exp(-imgz)nv&—i 1

R(k,z) = Pj^C'k-mg) exp(imgz)

we have

A,(0) = R(k ,D) R(d-k ,0) + exp(-i(2k ~d)D) R(d-k ,D) R(k ,0)1 o o o o o

A^(0) R(kQ,D) Q(kQ,0) - exp(-i(2kQ-d)D) R(d-kQ,D) Q(d-kQ,0)

(5.17)

and* this yields the reflection coefficient 

R  = I A” (0) | 2

Aj(0)

5.4 Explicit expression for the propagation constant

Before considering the numerical implications of the results of 

the previous two sections we digress briefly to obtain, for the 

particular case of coupling to the backward mode only, an explicit 

solution for k.

By defining

qm(k) = p! (k ) + Pm(k+2P)
i.e. expressing each mode
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A*(z)exp(-ip z) + A (z)exp(iB z)=exp(-iBz) m i m m im im

we have instead of (5.4),

q (k)exp(-ikz)dk m

qn (k) (E  +fd& > qm ( k+W 1« >

<En |En>k(k+2Pn)

and q (k) is large for k ~  0, k ~  -2B . n I n

For a single mode guide with perturbations 1 = +L, ±(L+1) and 

such that coupling to radiation modes is negligible,

q l(k) = 1 ( CLq x(k-Lg) + C_Lq^(k+Lg) + CL+1q 1(k-(L+l)g)

(k+p>2-p2

- C_(L+1)qi(k+(L+l)g) ) (5.18)

Clearly q-̂ (k) couples only to q^(k+mg) for integer m as before. 

Therefore, applying (5.18) to k=k+mg for all integers m leads to a 

homogeneous set of equations with infinite determinant

A(x = k+B) = det(B ) ' mn

where B = 1mm

B ,-i m,m+l = c ,/D -1 m 1— HL, +(L+1)

Bmn = 0 otherwise

This determinant is closely related to Hill’s determinant which 

appears commonly in problems of wave propagation in infinite 

periodic media [36] and so the condition A(k+p) = 0 has an 

explicit solution for k [36]

sin2(TT (k+J3)) = A(0) sin2(7Tp)

8 8

(5.19)

An alternative form of this equation can be obtained simply by



determining the unknown constant in the derivation of the solution 

in terms of A(g/2) (appendix). This then gives
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(5.20)

8 g

The question arises as to whether the exclusion of radiation 

modes remains justified when (5.18) is applied to k=k+mg for 

arbitrary integer m. The only terms which make a non-neglgible 

contribution to A are those for which

Since we have assumed coupling to radiation modes is negligible, 

the equations represented by these terms are valid. The additional 

equations are always numerically insignificant (i.e. when

they are also simultaneously satisfied does not impose a spurious 

constraint. Thus the infinite determinant has no physical 

significance and may be considered as resulting from a periodic 

extension of a finite set of equations. However although the 

solutions (5.19) (5.20) of A(k+p) =0 can be obtained to arbitrary 

accuracy by retaining more terms in the expression for the 

determinant, the value of k does not become exact because of the 

exclusion of the radiation modes in the definition of A.

A(0) and A(g/2) have to be evaluated by appropriate truncation. 

When L is large, the truncated form of A is necessarily very 

large. However, A is clearly related to det (M) and its extension 

to include more terms. If k *  0 then since also Lg «=2]}, it 

follows that k~Lg ~  -2j3 «  k - (L+l)g. Therefore for small

k + mg + p «  ± p

evaluated give 0(n) so requiring that
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integers m,

q^k+mg) *5 1 ( C^Ck+mg-Lg) + C^ ^ ^ k + m g - C L + D g )  )

(k+mg+p)2-p2

(5.21)

q1(k+mg-Lg)» 1 ( C^q^k+mg) + C_L_1q 1 (k+mg+g) )

(k+mg-Lg+p)2-p2

(5.22)

Clearly equations (5.21) and (5.22) are identical to (5.10), 

(5.11) by the identifications

q1(k) = p^(k) k > -p
q^(k) = p^(k+2p) k < -p

(this transformation is well defined since either k « 0  or k«-2p) 

Any finite truncation of A(k+p) is obtained by using the 

determinant of the matrix of the set of equations obtained from 

,(5.21), (5.22) by retaining (m s.t. Ik+mg ! = 0) and this is

equivalent to the determinant of (5.10) and (5.11) for the same 

set of m, A(k+p) say. Therefore in practice we may take

A(k+p) = A(k+p)

Let N -be the integer which minimises |Ng + pf and write

-6 = Ng + p (5.23)

Then A(0) = A(Ng + 6+p) = A(6+p)

(since the infinite determinant A is periodic with period g)

For small S/g the appropriate truncation for A(6+p) is det(M) and 

so A(0) = det(M : k=6)

However for odd integers 1, near the phase matching condition 

2p = Lg, from (5.23)

6 »  g/2

so A(<5+p) is slowly convergent for/large L and may be unstable. 

Therefore it is now more convenient to define
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-6’ = Ng + p -g/2

again choosing integer N to minimse l 6 'I, so that .

A(g/2) = A(p+6'+Ng) = det(M : k=6') 

and to use equation (5.19).

The frequency range near 2p = lg for which k is complex (and so 

there is locally a significant reflection) can be obtained from 

A(g/2) cos2(n p/g) < 0 for odd 1

A(0) sin2(7Tp/g) < 0 for even 1

An explicit solution for k cannot be obtained in the manner 

described in this section for coupling to other guided modes. In 

these cases the determinant is not in a form which can be related 

directly to Hill's determinant.

5.5 Numerical results

We now investigate whether a waveguide with two suitable

perturbations of very different amplitudes, as described in section

5.1 and figure 5.1 , does indeed have a narrower reflection band 

than the corresponding guide with a single perturbation. The 

unperturbed slab guide is assumed to be symmetric and 

single-mode. The cladding index is 1.47, the core index n^ is 

1.50 and the core thickness is 40/Lg. The perturbation amplitudes 

are eT = 8x10 2n 2, e = 4x10 ^n 2

and the perturbation amplitudes extend over a distance

D = lO'V(Lg). The value of k(w) is calculated using (5.14). P is 

then evaluated from (5.15) and the reflection coefficient JL from

(5.17).
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We are concerned here with the effect of the large perturbation, 

eT , on the half-power bandwidth of the reflection band of theXj

small perturbations andhow this varies as L/(L+1) tends to
L+l

2
unity for fixed Lg (or alternatively as e^/(n^ ) tends to unity). 

Figures 5.3 and 5.4 show the dispersion curve and group velocity 

respectively for propagation in a doubly periodic guide for 

L = 40, 80, 160, 240 and 320. Since Lg is fixed and «  6.̂ ,

the curves are independent of L except near 2j3 = (L+l)g. Figure

5.5 shows how the half-power bandwidth of the reflection peak 

centred at 2|3 = (L+l)g varies with the group velocity near this 

point (but outside the reflection band). From this it can be seen 

that the bandwidth does increase with increasing L for L < 200.

When L = 160, that is when the difference in the pitches of the 

two perturbations 0.6%, the bandwidth is reduced from its value 

for = 0 by 11%. The group velocity near 2£ = 161g has been

reduced by 13%. This is as we would expect. For coupling to a 

backward going mode by a single small perturbation, the reflection 

bandwidth ~  6w 2v |c,|/(Lg) and it is clear from the figures that 

for this small value of the weaker perturbation-does not

distort the dispersion curve significantly outside its stop band.

However, as the difference between the pitches is reduced 

further, as for L = 240, 320, the bandwidth increases again. Now 

the large side bands of the reflection of the strong perturbation 

overlap with the main reflection band of the small perturbation 

and the reflections caused by the two perturbations are no longer 

distinct (figure 5.6). The bandwidth of the reflection from the 

small perturbation can no longer be meaningfully determined. Thus 

the bandwidth reduction that can be achieved by this configuration

is limited.
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Figure 5.3 Normalised frequency as a function of the normalised 
real part of the propagation constant for a multiply 
periodic guide.



Figure $ A  Group velocity as a function of frequency in a mutiply periodic guide. 4=-
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bandwidth / (2(3 - L g) D 

k

Figure 5.5 Normalised, reflection bandwidth of the small pertubation 
as a function of the group velocity. The group velocity 
is taken at the reflection frequency, but in the absence 
of small pertubations.

>►
3-10*8



Figure $ , 6  Reflectivity near the small amplitude perturbation 

resonance frequency as a function of normalised 

frequency for various doubly periodic structures
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5.6 Conclusions

We have seen that the signal velocity of a periodic guide may not 

necessarily be described by its group velocity. However, by 

definition, the group velocity does determine how the frequency of 

operation of a mode changes as the propagation constant is varied. 

By analysing a doubly periodic guide we have found that the 

characteristics of the reflection phenomena associated with a 

periodic perturbation are determined essentially by the 

propagation constant. The centre and edges of the reflection band 

occur at particular values of p. The frequencies at which these 

effects occur can vary and may be altered to produce desirable 

characteristics.

Thus the introduction of a very large amplitude perturbation 

causes the reflection band of another perturbation to be centred 

at a different frequency, and occur over a different frequency 

range, since now the greatly altered propagation characteristic 

leads to the relevant propagation constants occuring at different 

frequencies. When the group velocity is very small, as near 

the band edge of the large amplitude perturbation, the frequency 

changes very little over the tunchanged) range of p which forms 

the reflection band of the small perturbation. Thus the bandwidth 

is indeed reduced. However the obtainable effects are rather 

small. For example, in order to achieve an 11% reduction in band 

width it is necessary for the large perturbation amplitude to be 

approximately 500 times the small one and for the pitches of the 

two perturbations to differ by only 0.6%. This order of 

improvement is also likely to represent the maximum possible case. 

For smaller differences in pitch, the sidelobes of the large
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perturbation are significant and overlap with the main reflection 

band of the small perturbation for smaller differences in pitch, 

resulting in a broadened composite band.

Therefore again we have found that there are additional effects 

in a periodic medium which mean that they behave simply as a 

uniform dispersive dielectric only to a rather limited extent.
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APPENDIX TO CHAPTER 5

The derivation of (5.17) is given in reference [36] when the 

following identifications are made: 

ip = 2(k + p)/g 

A 1 = A

eo = 2p/g
Also from reference [36], in the same notation, it is clear that

Aj(ip) (cos(7T i^) - cos(7T 0q)) =

cos(TTifn) - cos(TT 0 ) + 4K sin^( 7T 6 /2)cot(TT 0 /2)t o  o o
where K is a constant to be determined by setting a value for ij-l. 

The standard method is to set ip=0, giving (5.17). Setting ip=l 

gives

A^(i|i) (cos(7T ip)-cos( 7T fl0.)) ~ A^(l) (-l-cos(7T 0q))

= cos( 7Tiju) + 1

Therefore A^(ip) = 0 implies that

i .e.

cos(TTip) + 1 = Aj(l) ( 1 + cos( 7T 0q) ) 

cos^(TT iju/2) = A2(1) cos^(7T &Q /2)

Thus using the identifications above this is equation (5.18)
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6. A STUDY OF THE EFFECTS OF SHORT-RANGE CORRELATION ON THE. 

PERMITTIVITY OF NEMATIC LIQUID CRYSTALS,

6.1 Introduction^..

This chapter is concerned with a theoretical investigation of 

short-range correlationsin Nematic LiquidCrystals. It is part of a 

larger study of direct-current field induced behaviour of guest 

non-linear materials in a host liquid crystal.

Liquid Crystals play an important role in various optical and 

electro-optical devices. In this context, the attractive property 

of the liquid crystal is, in many cases, its change in refractive 

index under the influence of an applied electric field. This 

change is a result of re-orientation of the anisotropic 

birefringent molecules of the material. Thus the response times 

are slow compared*to those of electronic effects, and are of the 

order of milliseconds, but the change in permittivity or

refractive index is also very large, since in general the 

polarisability of the molecules (which are often thin and long ) 

is very different in the directions parallel and perpendicular to 

the molecular axis. These properties mean that liquid crystals 

are suited to applications such as displays [1], [2], [3] and 

slow-speed switches (for example for Local Area Networks).

The anisotropy of the molecules in a typical liquid crystal and 

the orientational order, which is present at low enough 

temperatures, mean that in general molecular theories are 

complicated. Several factors are likely to influence the positions 

of the molecules, and models of isotropic liquids cannot usually 

be applied. In addition, the properties are often strongly
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temperature dependent. Various models of liquid crystals include 

the Van der Waals mean field theory [4], the Maier Saupe mean 

field model and director fluctuation or continuum theory [5].

If a reasonably accurate model is used, it may be hoped that the 

macroscopic properties such as the dielectric permittivity, the 

refractive index and the elasticity of a liquid crystal may be 

predicted from the characteristics of its constituent molecules. 

This in turn may allow compounds likely to posses some desired 

property to be suggested. For many applications in optics the 

refractive index and dielectric permittivity are, of course, of 

great importance. These quantities may be related to the molecular 

polarisabilities and permanent dipole moments if these are 

suitably averaged. Therefore it is useful to consider factors 

which may effect this average.

The simplest and least ordered type of liquid crystal is the 

Nematic type. Here there is no long-range translational order 

(that is, which persists over a distance of a large number of 

molecules ), but there is long-range orientational order below 

some critical temperature. The average deviation of the axes of 

the molecules from any given direction is not uniform with 

direction. It is minimised in some direction which depends on the 

external or boundary conditions, and this direction is known as 

the director. A quantity which indicates the degree of ordering 

with respect to this director has been defined, namely the order 

parameter S.

The anisotropy of liquid crystal molecules suggests that there is 

likely to be also some degree of local ordering ( for example two 

neighbouring rod-like shaped molecules seem more likely to lie 

parallel than perpendicular to each other ). It is possible that
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this short-range correlation affects the way in which the 

microscopic and macroscopic dielectric properties, in particular 

the non-linear optical properties, of a Nematic are related.

In order to determine the dielectric properties of a liquid 

crystal from its molecular characteristics it is necessary to use 

a model for the internal field, which effects the equilibrium 

positions and orientations of the molecules. Several such models 

have been proposed [6]. However, of the recent models which 

include the anisotropy of the internal field [7], [8], [9], only 

that of Bordewijk and de Jeu [10], [11] predicts accurately the 

observed temperature dependence of the refractive index. From the 

statistical mechanical expression for the dielectric permittivity 

[12] it is clear that this latter empirical formula corresponds 

closely to the assumption that the molecules are totally

correlated, that is that they are all oriented at the same 

(variable) angle to the director.

In this chapter we will investigate the degree to which the 

dielectric permittivity, e., of a nematic liquid crystal is 

affected by short-range (non-electrostatic) orientational 

correlation of its molecules, a feature which is ignored in mean 

field theories. This will be done by first evaluating the term in 

e which accounts for two-particle interaction using Faber’s 

continuum theory [13], [14] ( this theory describes both director

fluctuations and short-range correlations ), and then inferring 

from this the effect of local ordering in general.

We will find that, in fact, for a reasonable spatial 

pair-correlation function, the effect of short-range orientational 

correlation is rather small and may be neglected. Therefore it is 

possible to obtain an expression for e from its statistical
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mechanical series expansion by assuming that the molecular 

orientations are uncorrelated. Perhaps surprisingly, the resulting 

formula yields refractive index values for the liquid crystal 

p-azoxyanisole ( PAA1) which agree closely with those predicted by 

the expression deduced assuming total correlation by Bordewijk and 

de Jeu [11]. Since the new expression has been derived in a 

semi-rigorous fashion, this may be seen as a justification for the 

empirical formula of de Jeu and Bordewijk.

The contents of the remainder of this chapter are follows. In 

the following section, 6.2, the form of the pair-correlated terms 

is determined from an expression for e. This expression relates e 

to the averages of molecular quantities and is a generalisation of 

the method derived by Bordewijk and de Jeu [10]. In sections 6.3,

6.4 and 6.5 we evaluate the two-particle term and consider the 

approximations involved in this. The averages appearing in the 

expression for e are calculated by assuming no short-range 

correlations in section 6.6. In section 6.7 the numerical results 

for the refractive index of PAA are shown to be close to those 

obtained from the totally correlated expression of reference 

[11].

6.2 The Permittivity expression

An expression for the dielectric constant, e, of an isotropic 

liquid in terms of averages of the polarisabilities and dipole 

moments of its molecules ( a generalisation of the

Kirkwood-Frolich equation ) has been derived by Bordewijk [15].
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Bordewijk and de Jeu have shown how these averages may be 

evaluated if a particular internal field factor is assumed [10], 

[11]. In this section we will use this method, but make no special 

assumptions about the internal field, and obtain an equation for 

e .

From [10], the dielectric constant is given by

eo

e S t e y + ( 6©oV ”  6 *  ) J

1 < (

KBT
i' y

(6 .1)
1,1

and the induced moment of the ith dipole due to the external field 

( that is, for fixed positions and orientations of the molecules) 

is

= [ £  + ( I - ).£6 ] *«E
~  ~  j ~  ~  ~  ~  ~  ~

= ai^A'^i.[ e + ( I - e ).QS ] *[ e + ( e - e ).Qe ] .E 
J

(6.2)

The sample is taken to be a sphere of volume V embedded in a 

dielectric of the same permittivity, the surroundings being 

treated as a continuous medium. The subscripts 11 and l refer to 

the directions parallel and perpendicular to the macroscopic 

director respectively. JO is a geometrical factor depending on 

e^/e^ and the subscript o indicates that the average is taken 

for zero external field, ju1 is the permanent dipole moment and 

a1 the polarisability of the ith molecule. A is a
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3 n-dimensional tensor, = ( 1̂ + a.JT' ) * , which accounts for

the increase of each dipole due to the effects of the rest of the

medium [10] and A1  ̂ is its projection on the product of the i

and j subspaces. JE and are the Maxwell fields in the

surrounding dielectric and inside the sample respectively.

Y ~ A^1 is obtained by equating the right-hand side of (6.2) to an 
j
expression for the polarisation of a dipole in the same sample, 

but with the permanent moments set to zero, for the same Maxwell 

field. This is done in [10] using an independently obtained 

internal field factor. More generally, for given positions and 

orientations of the molecules, the induced polarisation can be 

obtained from that of the sphere in vacuo. In this case the 

external field for a general Maxwell field inside the sample, 

E^, is given by

E = (2l + € * ) E / 3  

Therefore, if we define

a1 = [ i  - L x l j -a.j + H l i j -£j C l jk - i  -  • • • • ]
j j k

where Tij is the vacuum dipole propagation tensor, then

P,1 = a1 .A1. [ 21 + a,*, ].E /3 (6.3)

For the case of total correlation of orientation of the

molecules, the average value of p1 is equal to that derived in

[11]. However the expression before averaging is different because

in the expression (6.3) it has been assumed that the external

field E and not the Maxwell field E is uncorrelated with the ~o ~s

molecular orientations.

Since (6.3) holds generally for fixed molecules and a given 

Maxwell field JE , as in [10] we can equate this expression for
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p1  to that in equation (6 .2 ) to yield an expression f o r ^  A ^ 1

3 ~

y ~ A jl = A 1 . (21 + e^).[ & + (I - e).Qe ].[ e + (e^ - e) .Q6  ] 1/3

3

Therefore from (6.1)

e0 (eS S  + (eootf e*)n S J v /e^

9KBT

1

This reduces to the Kirkwood-Frolich equation [12] in the 

isotropic case.

The averages in (6.4) may be calculated in the limiting cases of 

total orientational correlation and no orientational correlation 

(this latter calculation is carried out in section 6 . 6  below), but 

an exact general evaluation would involve second, third and higher 

order correlations and would be extremely difficult. In order to 

estimate the effect of the short-range correlations we consider in 

the following sections how we may evaluate approximately the 

two-particle orientational averages.

6.3 The Pair Correlation term in the Permittivity.

In this section we will consider the terms on the right-hand side 

of equation (6.4) which contain only orientational correlation of 

two particles. These terms can be expressed in a simple form by 

making certain assumptions and may then be evaluated using Faber's
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continuum theory.

Since there is no long-range translational ordering in the 

Nematic phase, we will ignore third and higher order positional 

correlation and express all positional averages in terms of the 

spatial pair-correlation function g 2 (R, n,1 } where R. is the

intermolecular separation and ii1  is the director at the position 

of the ith molecule. For each position of the jth molecule we take 

for its orientation the average value given the position and 

orientation of the ith molecule. Thus we assume

g 2 = g2( ft, n1 , np(R, n*) ) = g( jt, njL )

Using this we will replace the moment of the jth molecule by its 

average value over all positions. Finally we average over the 

positions and orientations of the ith molecule. We will assume 

also that, with respect to axes fixed in the ith molecule, g is 

independent of the orientation of molecule i [16]. The first 

orientationally correlated term i s :

. i
< ^  •£

-e. 1 < J  g(R,n1) ji1 j i '.C l ~ 3RR) .a^ d3R. > .e (6.5)

4 n  e V V.+V 0 R 3o 1 2

( since ju1  is independent of R for given n 1  ) where R = |R.|,

'N
R = JR/R, the symbols - and < > denote a positional and

orientational average respectively and e_ is the unit vector in the 

direction of the applied field ( || or 1 ). The integration is 

performed over volumes V^, as shown in figure 6 .1 , where the 

radius is large enough for short-range correlations to be 

neglected in V2 * Then for a spherical sample the integral over V 2

vanishes.
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Figure 6 .1 Integration volumes and
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We will use axes fixed in the ith molecule, with one axis 

parallel to the molecular long axis (i-axes). Then g = g(R) and we 

assume further that g is independent of the azimuthal angle (j> . 

As in continuum theory [13], [14], we take the correlations to be 

isotropic. Therefore in equation (6.5) only ̂  has any 

dependence and when this tensor is expressed in i-axes the 

contributions from its off-diagonal elements vanish because of the

<1> integration. Therefore by rotation of uniaxial tensors the
1R

average on the right-hand side of (6.5) is

H =  - g(R)< [jui 2 (l-3Ri2 )I + A(^i2 . (1-3^?)) n^n^'].[aJI +  AanAi^] >d3jl 

Vl R 3  (6 .6 )

2  A A  9
where a, jlijj, = and RR = JL are referred to axes fixed in the 

molecule (The molecule is assumed to be rotating about its long 

axis so we treat jjji as a uniaxial tensor), Aa = a^ - a^ and 

similarly for A(jli2 .(I^- 3g?) ).

From (6 .6 ) the only term in H which depends on short-range

correlation is

d^R g(R)(l - n 1 n 1 .nJnJ >

R*

(6.7)

In the next section we will use continuum theory to evaluate this

integral.
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6.4 Evaluation using Fluctuation Theory

In Faber's continuum theory [13], orientation dependent averages 

may be expressed ( in the Random Phase Approximation (R.P.A.) ) in 

terms of the sum of the director fluctuations X defined in [14] 

and, if the orientations of two molecules are involved, a factor 

o((R) indicating the lack of correlation at separation R:

<*(R) = 2

q 0  nc

( 1 - sin(qR) )dq 

qR

where the minimum wavelength of the fluctuations is 2 7T/qc •

The parallel and perpendicular components of J may be evaluated 

using [13]

U = < cos(0^)cos(0'i'^)cos(0^) >

= 4S/9 + 1/9 -2Q/9 + (4/9oC) dQ/dX

and

< sin(0 '*')cos(<|);i')cos(0 i^)sin(0 ^)cos(<j)^) >

= U/2 - V/4 + 1/12 - S/3 + 2Re(C)/3

respectivley,

where 01, (J)1, are the polar angles of n1 w.r.t to the fixed frame 

is the angle between n1 and n~*

Q = < 3cos2 (0lj) - 1 >/2 

V = < cos2 (0i) cos2 (03) >

C = 4TT < Y 2 2 ( 0 \  (J)1 ) Y 2 2 *(0j , (|>j) >/5 

Y 2 2 (0 , <|)) is a normalised spherical harmonic 

U, Q, V, C can all be obtained from differential equations in X.

In figure 6.2 we show

J„ = I g(R) ( 1 ~ 3ft.,2 ) U(R) d3R

R ‘
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Figure 6.2 Variation with S of pair correlated integral assuming isotropic
correlations, J,, .(fy/ht) = 2.^. Curves are shown for b^= v.2fi/qc 
for various v and for the totally correlated and uncorrelated case.*



as a function of the order parameter S, limiting our consideration 

to high values of S, for which the R.P.A. should be valid. We have 

taken
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g(R) if R e E/-w

U  if R M

(6 .8)

where E is the set of points in a spheroid with the long molecular

axis as its major axis. The ratio of the major to minor axis b-^/b^ 

is 2.4, and we have assumed this to be independent of temperature. 

The error introduced by this approximation is likely to be small 

as we are considering a small temperature range and additionally 

there is short-range correlation of anisotropic molecules even in 

the isotropic phase [16].

Changing b^/bt to, for example, 1.8 appears to make mo 

qualitative difference to Jj|, which is not surprising in view of 

the isotropy of c<.

Clearly the shortest wavelength fluctuation must be at least as 

long as b^ and so b^ = v27T/qc for some v < 1. Faber has suggested 

that for a nematic composed of hard spheres with packing fraction

0.4, v ^ O . 6 4  [13]. By the same reasoning, for hard spheriods with 

packing fraction p,

q b «£ 1 . 1  
Mc t

367T p

V bt

1 / 3

Since there is long-range orientational order we would expect

p > 0.4, but b-j/b^ > 1 also and so q b is likely to be only
I t  c t

weakly temperature dependent for small values of b^/b^. Therefore 

we would expect v «  0.55 - 0.6.

For the purpose of comparison, we have shown in figure 6.2 for 

several values of v and also for no correlation and total 

correlation. The totally correlated case appears to be a good
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approximation only when the shortest fluctuation wavelength is 

significantly longer than ( — 5-10 times) b^, that is, when there 

is very little disorder at lengths of 2-3 molecular widths. 

Clearly for v ''-'0.6 the S dependence of Jj| is closer to that for 

no short-range correlation.

The obvious limitation of the above considerations is the neglect 

of the anisotropy of the correlations. We discuss this briefly in 

the next section.

6.5 Anisotropy of the correlations

In reality, because the bend elastic constant is larger than 

the splay elastic constant K^, the orientational correlation 

between two molecules is likely to be larger when R, is parallel to 

the director than when it is perpendicular to it. We can include 

this anisotropy into the R.P.A. averages of correlated terms if 

the degree of uncorrelation a depends on the direction as well as 

the magnitude of II.

In the appendix an approximate analytical expression is derived 

for c*(R). For PAA for S = 0.669, 0.562, using data from references 

[6 ] and [7], we find that the anisotropy of <x is less than + 2 0  % 

and is only weakly temperature dependent, figure 6.3. ( This may 

help to justify the assumed temperature independence of 

b^/b^). We can try to quantify the effect of this small 

anisotropy by calculating the pair-correlation dependent term in 

equation (6.5) with an isotropic excluded volume ( for isotropic 

correlations this integral vanishes ).Now ^  cannot be replaced
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F ig u r e  6 . 3  A n is o tr o p y  o f  p a ir  c o r r e l a t i o n  f a c t o r  ex (R j a s  a  f u n c t i o n  
o f  0 ,  th e  a n g le  b e tw e e n  R and th e  d i r e c t o r ,  f o r  v a r io u s  
v a lu e s  o f  |jtj  = r .2 /T /q c  . 

o
T = 3 7 8  K , S = 0 .6 6 9
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by a diagonal molecular tensor since the correlations are

independent of the azimuthal angle in the molecular axes.

example the parallel component is given by 
r

L = d3R ( 3c o s2(6) - 1 )(3V - U) 

R>v27T/qc R 3  2

not

For

In table 6.1 we give some values of Lj| for PAA, for various S. 

Clearly the integral is nearly two orders of magnitude smaller 

than J||. We conclude that the anisotropy of the hard core is much 

more important than that of the correlations.

In order to express the anisotropy of the correlations relative 

to molecular axes it is necessary to consider the change locally 

of the elastic constants resulting from the disorder. Thus the 

correlations between fluctuations must be described and so the 

random phase approximation should be abandoned. This can be 

avoided by simply using the anisotropic expression for <*(R) in the 

expressions for <n1 n 1 ,n^n^> in (6.7) The effect of this on 

Jjl is shown in figure 6.4. However the physical interpretation 

of the integral is now not clear. Since we have found that the 

anisotropy of the correlations is small, we shall assume that the 

isotropic case is a good approximation to the correct value.

,6 . 6  Expression for the Permittivity neglecting correlations

We now consider how we may obtain an expression for ê . Using the 

approximations described in section 6.3, the average in (6.4) can 

be evaluated in the limiting cases of no short-range correlation
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T/K

V
0.6 o 00

378 0.669 0.237 x 10~2 0.203 x 10-2

383 0.646 0.221 x 10"2 0.193 x 10"2

388 0.620 0.210 x 10-2 0.187 x 10"2

393 0.597 0.190 x 10-2 0.173 x 10-2

398 0.562 0.170 x 10-2 0.160 x 10'"2

- bt = v 2TTTable 6.1 Values of the integral L for PAA for b
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F ig u r e  6 .4  V a r ia t io n  o f  th e  p a i r  c o r r e l a t e d  i n t e g r a l  a s su m in g  
a n i s o t r o p i c  c o r r e l a t i o n s ,  J |( , w i t h  S ,  f o r  PAA. 
C u rv es  a r e  show n f o r  b^ = v27T/qc  f o r  v a r io u s  v  
and f o r  t h e  t o t a l l y  c o r r e l a t e d  and u n c o r r e la t e d
c a s e  s .
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and total orientational correlation. The latter leads to a formula 

similar to that derived by Bordewijk and de Jeu [10] (see section 

(6.2) ). However, from figure 6.2, the uncorrelated value of J^ is 

— 9 % less than its value when b = 0 . 6  x 2 TT/qc , while the

totally correlated value is ~  19 % larger than this value.

Therefore if we assume that these results hold qualitatively for 

higher order correlations too, we would expect the uncorrelated 

case to lead to a better approximation to e. The term containing J 

is likely to contribute ~  25 % of the value of 1̂ , which suggests

~  3 % error from the neglect of local order.

In the absence of short-range order we have

< u V . T 1 J .aJ.Tjk >o

< JLÎ U1 .T 1  J > .< a j.Tjk > .< ak .Tkl > . r  r  ^  o ~  0 ~-~- o
<ar>

and for a large number of molecules N, such that 

NP + 0 (NP_1) —  NP

since < a^.T^k >,. < a -̂ > are independent of j,-k, we have

< . e > «  
o

< (ji1  - N̂ j1  .JT1  j . (I + <a^. T^k> ) 1. <ak> ) .je x

£  ' ¥
11 j .(I + <a*

-i *k 1
.TJ ^ >

- 1  k ’
) 1 .<ak >).e

(6.9)

Writing D 1  = Nu1 . ( T 1 J .<a:i> - <aJ.T*ik> ), since <a:1*T^k> is 

diagonal, (6.9) becomes
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n u  ,  i, . i i ' i ’
—  V 7  < u .A .e u .A .e > = 1 l f- ~  ~  P  —  ^  o

Y1Y1 ,  ,■ i  r y ^  „  r . i ’ - n 1
1 1 7  < (j^-JD^.je (j^ -Dx ).e >Qe.( I + <ah^k> ) 2 .e_

■j -jĵ
< a_J -X > can be evaluated as in section 6.3, but more simply as 

now all correlations are neglected, to give

jj^jk 

where

< a J .TJ" > = [ a U I + (anU„ - a tU.)<nJn J> ]/(V e ) (6.10)— 1 l'-*  II II 1 1 ------  o

r
u = - 1

4TT V

d3,R g(£) ( I - 3g.2 )

R'

For g as in (6 .8 ), JJ = - 0, + 1/3, where 0, is the depolarising

tensor of the ellipsoid E. Similarly,

1 , 1
< (^-D^.e, (^-DM).e > = e . ( M±2I + (M ^ 2 )<n n> ). e_

where

M x 2 =  jli± 2  e.( I + NAUa(|<n n>/V )2 .e

M (j2 = jj) (2  e.( I - NAUai ( I - <n n> )/V )2 .e

Thus if as usual we write

gk = 1 + ) < (j^-D1 ).^ (jfL,-D1,).e >

i t i ’< (ji'-D1 ).^ (ju^-D1 ) . e >

then from (6.4),

€o^ey ~ ey + 3 v

e 8 < 2 + e» v  ^

N g w  e . (  M,2I + (M(|2 - M 2)<n n> ) .e
9 0  e . ( I + JKa 1  .T1*^ )2 .eD ~  /W *—

y - i u
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Hence in addition to the long-range orientational order effects, 

there is an effective contribution to the dipole moment as a 

result of the anisotropy of the molecules, AU, even when 

short-range order is neglected.

As usual we can derive a from the extrapolated high frequency 

permittivity^^. From (6.3), summing terms as in (6.9),

eQ (e^ - I) = (N/V)[ X +  ( N / V X a 1 .!1^  ]- 1 .<aJ’> (6.11)

and < a1 .1!1  ̂ > is given by (6 .1 0 ).

-6.7 Comparison with Experimental Data

In general, verification of expressions for e, is difficult 

because of the uncertainty in the values of the various molecular 

parameters, for example a, ji. For polar molecules it is further 

complicated by the lack of a model for the degree of permanent 

dipole anti-parallel ordering; an alternative .expression for e 

just provides another possible value for g^. For the refractive 

index (and the permittivity of non-polar molecules) this latter 

problem does not arise and so we will compare the theory with the 

experimental data for this case.

From (6.11) and (6.10), for g(JR) as in (6 .8 ),

eooy = 1 + (N/Ve ) [ ~a + Aa( <n n>Y - 1/3 ) ]

1 - (N/Ve ) [ aQ + A(aQ) ( <n n> - 1/3 ) ]
O  ~  ^  o

(6 .12)
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where £ = 1 1, i

a = a jj /  3 + 2a^/3 
aO = a Q](/3  + 2 3 ^ / 3  
A(ag) = a ((Q(l -  a^Q^

Equation ( 6 . 1 2 )  is rather similar to the expression derived by 

Palffy-Muhoray and Balzarini [ 8 ] ,  [ 1 8 ] .  However they assumed that 

the polarisation J? and the local field £  satisfy 

<P> = <a.F> = <a>.<F>

while we have found that the second inequality does not hold for 

anisotropic molecules.

We have calculated values for the components of the refractive

2
index n ^ , n^ for PAA from (6.12) ( with n  ̂ = e ) and from the 

totally correlated case as in [1 1 ], i.e. from

nv = 1 + (N/Ve ) 
o O 2 a

L 3(1 - (N/Veo )a n ) 3(1 - (N/Ve )a,Q.)o 1 1

+ / a (( - a^ A (<n n> - 1/3)

V (1 - (N/Ve )a Q ) (1 - (N/Ve )a 0  )o II II o i l

(6.13)

We have used values from [11] for a, and b^. Since (6.12) and

(6.13) are identical for S = 1 we have used the value of a

calculated from the solid state refractive indices. The values of

b^ and b are those generated from the crystallographic data. S

and the density p are from references [6 ] and [19] respectively.

Figure 6.5 shows the percentage deviation of the calculated value 

2
of n^ - 1 (tf = 1 1,1 ) from the measured value [2 0 ] as a function of
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Order Parameter S

F ig u r e  6 . 5  Graph sh o w in g  p e r c e n ta g e  d i f f e r e n c e  o f  c a l c u l a t e d  
6^ -  1 ( v = II , i )  from  th e  m easu red  v a lu e  t=y- 1 
a s  a  f u n c t i o n  o f  S f o r  PAA. The c u r v e s  TCj| , TC^ show  
t h e  r e s u l t s  u s in g  th e  t o t a l l y  c o r r e l a t e d  fo r m u la  and  
UC|| , UGj_ show  th e  r e s u l t s  u s i n g  th e  u n c o r r e la t e d  
fo r m u la .
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S. The two sets of curves correspond to equations (6.12) and

(6.13).

From figure 6.5 it is clear that both sets of curves deviate from 

the measured value in a very similar way, which suggest a common 

error. The deviation is consistent with errors in the values of if,

phase and solid phase data. This effect appears to dominate any 

which might result from the neglect or otherwise of the 

short-range correlation. There is no indication that (6.12) is a 

better approximation than (6.13). However, if the treatment of the 

correlation were the only error, we would expect the measured 

value to lie between the two calculated ones. Since this is not 

the case it is difficult to determine the degree of correlation 

suggested by the data.

Equation (6.13) was derived in order to satisfy the conditions

calculated from (6.12) and (6.13) are very similar it follows that

(6.12) too has these properties to a good approximation. Therefore 

it seems that the observed temperature dependence of the 

refractive indices may be obtained without any assumption about 

the degree of correlation, as long as the dependence of g(R) on 

the orientation of the molecules is properly accounted for. The 

close agreement between the totally correlated and uncorrelated 

cases may be seen as a justification for the empirical equation

(6.13) . However, the different S dependences may be significant to 

the calculation of the static permittivity.

Thus, in conclusion, we have investigated the effect of

short-range orientational correlation on the term in the

_2
, (n — 1 )/p '— constant

obtained from the experimental data. Since the values of n (), n^
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expression for e, which describes two-particle interaction and we 

have found that it is likely to be small. Therefore we have 

averaged over molecular orientations by neglecting the effects of 

local ordering. Hence we have obtained a relationship between e_, 

the molecular parameters a, jj, Q and the order parameter S. This 

equation both describes an anisotropic internal field and 

predicts, to a good approximation, the temperature dependence of 

the refractive index data. Theoretical considerations suggest that 

it should be an improvement on the previous expressions for j=. 

However, because of the difficulty in extracting molecular 

parameters from the experimental data, we have not yet been able

to determine whether this is in fact the case.



2^3

APPENDIX TO CHAPTER 6

A method for predicting the degree of short-range correlation 

using continuum theory has been given in reference [13]. However 

the calculation has been simplified by considering isotropically 

averaged correlations. In this appendix we will remove this 

simplification and determine approximately the anisotropy of the 

correlations. We use the notation of reference [13].

For a single fluctuation (p = ip cos(q.jR), the difference 

between the twists at R^ and R_. is [13]

AljJ = - iĵi = -2 VjJQSin( q.(Rj+R_)/2 )sin( q.(Rj-Ri )/2 )

Averaging over R^ + R_. for fixed EL - R^ gives

( (  1 - cos(q^. (R_ - EL)) )/3

Taking a thermal average, using the average of Ip

(a<|/y > = 21^1 ( 1 - cos( q-CR^ - R^) )
Vq 2 ( sin2 (0) + K, cos2 (0) )

where £ = 1 , 2  for a splay/bend, twist/bend mode respectively, and 

q = ( qsin(0 )cos(<j>), qsin(0 )sin(<j>), qcos(0 ) )

Summing all the modes, retaining an isotropic cut-off for the

fluctuation wavelengths, 271/q , and using the definitions of X,K

c
r<  (av : > = V r

(27T)
3^1

2K T K ( 1 - cos(qR cos(0 _.)) ) d q p _________________________qK______
Vq 2 K^sin2 (0) + K 3 cos2 (0)

= X [ 2 -
- E
4 TT q Y:l 

nc

cos(qR cos(0^R )) sin(0) d0d<j)dq ] 

Ky sin2 (0 ) + cos2 (0 )

where 0^R is the angle between q and R



Thus we d e fin e  <x(R) an a logou sly  to  <*(R) by

cx(R) = 2 - K

4TT q

cos(qR cos(0^R )) sin(0) d0dcj»dq

2 2
sin (0 ) + cos (0 )

The integral appearing in this expression^,cannot be evaluated 

straightforwardly. However the R dependence is contained in the 

term cos(qR cos(0q^)) and the denominator is just a "weighting" 

factor indicating the fluctuation amplitude for each q. Therefore 

we substitute

D2 = 1/K^ + (1/K3 ~ X/lV  + ^ )cos2(0) - V o s ^ ( 0 ) ]

for

Dj = l/( sin2 (0 ) + cos2 (0 ) )

and assume that the anisotropy with respect to jl will not be 

significantly altered. The two expressions are equal for cos(0) = 0 

and cos(0 ) = 1 . is obtained by a least squares estimate fit of

to D 2  for 0 = 0 to 7T. This yields

K* = 128 [1 /16  -  3/8L -  3/2L2 -  1/L3 + ( 1/L+2/L2+1/L3 ) / ( n[l+I) ] /3  
where

L = (K3 -  Kx )/Kj
With this substitution and by taking the polar axis parallel to R̂  

we can write for M

M ~ j c o s ( q R  cos(0^R )) sin(0^R ) D 2 (0 ) d0^Rd<j)̂ Rdq

Since cos(0) = cos(0 n )cos(0_) + sin(0 )sin(0_, )cos ( 6  -<b_,)
qK R qR R rqR rR

where R. = (R, 0R , (J>R ) with respect to the fixed z (extraordinary)

axis, the expression can be integrated to yield
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*(R) ~  2 - [ Q ^ q ^ )  + 1 ( 1 - 1 ) [ P n (cos2 (0R ))Q1 (qcR) +
^=i —

2 K jj

P2^ ( c o s 2 (0R) )Q 2 ( q cR)+P3^ ( c o s 2 (0R) )Q 3 ( q cR )+P ^ ^ ( c o s2 (0R) )Q ^ ( q cR) ] ]

where

Qj(qcR) - ( sin(qcRx)/qcRx )dx

Q2 (qcR) - cos(qcR)/(qc 2 R 2 )

Q3 (qcR) = sin(qcR)/(qc 3 R 3 )

Q4 (qcR) = [ cos(qcR) - sin(qcR)/(qcR) ]/(qc4 R4 )

P ^ ( c o s 2(0r )) = 1 + Kg/4 + (-1 + Kg/2)c o s2(0r ) - 3KgCos4 (0R )/4 

P 2 ^(c °s 2 (0R )) = 1 + K * / 4  " 3 ( 1  + Kg /2)cos2 (0R ) + 5KgCOS4 (0R )/4 

P32(c o s 2(0r )) =-l -7K^/4 + (3 +33Kg/2)cos2 (0R )- 75K^cos4 (0R )/4 

P4^(c o s 2(6r )) = - 6 Kg[ 3/4 + 15c o s 2(0r )/2 + 35cos4 (0R )/4 ]
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