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ABSTRACT

A study is made of multiple feedback filters, which are defined
to be an interconnection of unilateral, active, CR sections, forming a
structure which has at least one forward path through the filter and a
multiplicity of feedback loops. Particular attention is paid to
structure, which is taken to be the configuration of feedback loops
and forward paths.

The analysis of multiple feedback filters is described. Both a
matrix method related to the block diagram representation, and a
topological method related to the signal flow graph representation are
given. Sensitivity performance is of special interest, and explicit
expressions are given for both differential and finite difference
sensitivities of the transfer function with respect to changes in the
block diagram parameters. A new summed sensitivity invariant is given,
applicable to the branches of a 'cut' of the signal flow graph. The
dynamic range of a multiple feedback filter is discussed, and is
related to the imperfections of the constituent sections by the use of
'noise transfer functions' and 'intermediate transfer functions'.

Methods of transforming a multiple feedback filter are described
in some detail. These may be used to obtain new structures or to
obtain some improvement in performance. Some transformations
presented here have the interesting property of altering the structure
without affecting the block diagram sensitivities.

Multiple feedback filters are classified in this thesis firstly
by the arrangement of feedback loops which are introduced to reduce
the sensitivity of the filter, and secondly by the three methods of
realizing transfer function zeros, This classification gives insight
into the function of structure in multiple feedback filters, and it
also reveals some new structures, for which simple design methods are

proposed.



Finally the new structures presented in this thesis, together
with a representative selection of known structures, are compared
by means of a computational study of sensitivity. This study verifies
some theoretical results given in earlier chapters, and it increases

ourunderstanding of filter sensitivity.



STATEMENT OF ORIGINALITY

My aim in this thesis is to advance the study of multiple
feedback active CR filters, by giving new insight into the mechanisms
by which the structure of a filter influences certain performance
characteristics. During the course of this dissertation I give
several results which to the best of my knowledge and belief are new,
and are my original work., Most of these results I have published in
references (451, [77], [84] and [88], which by their nature give
supporting evidence of originality. '

The principal contributions are some new facts concerning the
analysis and transformation of multiple feedback filters in general,

a new classification of multiple feedback filters as an aid to insight,
and the development of several new multiple feedback structures.

In respect of the analysis and transformation of multiple
feedback. filters, I have given a scaling transformation which is new
in its generality of application. I have shown that sensitivity is
invariant for this transformation, and I have discussed the use of
scaling to maximize dynamic range. Related to this scaling
transformation, but derived independently, is a new summed sensitivity
invariant, applicable to the branches of a cutset of the signal flow
graph of the multiple feedback filter. I have also pointed out the
previously unrecognized sensitivity invariance of flow graph reversal,
and the sensitivity invariance of interchanging cascaded subnetworks.

The new classification presented in this thesis is a refinement
of the one I published in Ref [84]. I have classified multiple
feedback filters in terms of two aspects of their structure. Firstly
by the arrangement of the feedback loops which are introduced to
reduce the sensitivity of the filter, and secondly by the method of
realizing transfer function zeros., I identify three fundamental
methods of producing these zeros, namely series zero producing

sections, parallel forward paths, and the method which I call complex



feedback. This classification gives insight into the function of
structure in multiple feedback filters, and it also reveals the
existence of new structures.

I have given several new multiple feedback filters. The one
which has aroused the most interest has come to be known in the
literature as the Inverse Follow the Leader Feedback filter, I have
shown that other new structures may be obtained from known structures
by the use of flow graph reversal, and I also demonstrate the
existence of certain intermediate structures which are based on little
used analogue computing networks. Yet another new structure results
from a continued fraction expansion of a lowpass prototype transfer
function.

I have undertaken a computational study of the sensitivity of
various multiple feedback filters., For several of these structures
the sensitivity performance has not previously been investigated.
This study shows that the worst case deviation of transmission zeros
is lower if series notch sections are used as opposed to parallel
forward paths. The analysis also reveals a common pattern to the

sensitivity of structures having nested feedback loops.
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INTRODUCTION

Electric wave filters are widely used in electronic systems
to alter the energy content of electrical signals. For instance,
if a filter is considered in the frequency domain, it may be
required to pass energy in a certain band of frequencies (the
passband) and to block the transmission of energy at other
frequencies (the stopbands). The first filters comprised an
interconnection of inductors, capacitors, and resistors (LCR filters).
Subsequently many other electronic components have been used in
filters, and of considerable practical interest are filters
composed of capacitors, resistors, and active devices which are
usually monolithic integrated circuit amplifiers. These are called
active CR filters [138].

Such filters avoid the use of inductors, and therefore offer
the potential advantages of fabrication as a microelectronic
integrated circuit, and of having response characteristics which are
not degraded by the imperfections associated with inductors.

However in active CR filters the imperfections of integrated circuit
amplifiers can have a considerable effect on the response
characteristics, and in some cases can cause the filter to oscillate.
Such parasitic effects, combined with a high sensitivity to component
tolerances, limited the initial application of active CR filters to
low frequencies and low orders of complexity.

The construction of more complicated active CR filters became
possible when techniques were developed for deriving active CR
filters from LCR filter designs, in a way which gives the active CR
filters some of the desirable low sensitivity properties of certain
LCR filters. Some of these techniques will be described briefly in
this introduction.

Firstly we will describe the method of inductor replacement,

whereby active CR 1-port sub-networks are used to realize inductance



in place of each magnetic inductor in the LCR filter. Secondly

the method of applying complex impedance scaling to an LCR filter,
which results in a network of capacitors, resistors, and active

CR 2-port impedance converters. Thirdly we will see that an
analogue simulation of the LCR filter results in an interconnection
of active CR sub-networks, which are unilateral, and are of a type
commonly used in the tandem or cascade connection to form simple
filters.

In the filter produced by simulation, the unilateral sub-
networks (called sections) are interconnected by a forward path
and several feedback loops. It is the presence of these feedback
loops which gives the simulation filter a low passband sensitivity
when compared with more simple active CR filters. There are
several ways of arranging feedback loops around unilateral
sub-networks in order to redvce the passband sensitivity, and three
of them will be described in this introductory Chapter. The first
arrangement occurs in the network which simulates an LCR ladder
filter, and it is called 'leapfrog feedback'l!s}. The other two
arrangements result from a method of designing the filter directly
from the required transfer function, and in the literature they
are called 'follow the leader feedback'thd 'inverse follow the
leader feedback'.

Some types of filter responses require transmission 2zeros,
and in this introduction we will describe the three ways in which
the unilateral sub-networks or sections may be interconnected
to produce transmission zeros. The first is the use of notch
sections in the forward path of the filter; the second method is
by the cancellation of signals from a number of parallel forward
paths; and the third method is to use feedback loops in a particular
way, called in this thesis 'complex feedback',

Many patterns of forward paths and feedback loops are possible
and the examples to be described are just some members of a class
of networks which comprise an interconnection of active CR sections.
It is this class of networks which forms the subject matter of this
thesis.
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1.1 Active CR filters derived from LCR filters

Orchard [1]was the first to suggest that high-order insensitive
active CR filters could be made by first designing a low-sensitivity
ILCR filter, that is one having maximum power transfer in the passband,
and then replacing each inductor with an active CR network exhibiting
inductance at a pair of terminals, It is possible to design such

inductance networks, and moreover they can often be made with a
higher Q-factor than the corresponding magnetic inductor, and can
have a smaller temperature coefficient. The result is an active CR
filter with a performance superior to that of the corresponding LCR
filter (2],

It is important to base the design on a low sensitivity LCR
filter. To obtain low sensitivity at passband frequencies it is
desirable to use an LC 2-port to couple a resistive source to a
resistive load, and to arrange that maximum power transfer occurs
at the frequencies of minimum loss in the passband. It is this
feature which has been found in practice to make the passband
response insensitive to variations in the value of inductance and
capacitance., This was explained by Orchard {1l in the following way.
At a frequency at which maximum power transfer occurs, a change in
the value of any inductance or capacitance can only reduce the
transfer of power. Thus if the amplitude response is considered
as a function of an element value, the response will have a maximum
at the nominal element value, and the first derivative will be zero.
Hence a variation of an element value from its nominal will cause
less change in the response at this frequency than it would if the
filter were not designed for maximum power transfer. Futhermore it
is argued that at other passband frequencies there will be almost
maximum power transfer, and the sensitivity will not be degraded by
very much. This explanation and subsequent elaborations[3,4,5]
are qualitative rather than quantitative, since only the first
derivative is considered. In practice the second and higher
derivatives are usually acceptably low.

To obtain low stopband sensitivity it is usual to choose the
LC 2-port to have a ladder structure. The transfer function zeros
may then occur at the zeros of series admittances, and at the zeros
of shunt impedances.

As a simple example of the method of inductor replacement consider
the 6-th degree bandpass filter shown in Fig 1.1(a). An active CR
filter is obtained when the two grounded inductances, L, and L,,

are realized by active CR grounded inductance networks, and the
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Fig 1.1 Filter produced by inductor replacement

a) LCR filter
b) Active CR circuit realizing grounded inductance [6]
(c) Active CR circuit realizing floating inductance [7]
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floating inductance |, is realized by an active CR floating
inductance network., Examples of active CR realizations of grounded
and floating inductance are shown respectively in Fig 1.1(b) and
Fig 1.1(c). Although the technique of inductor replacement was
known earlier [8], Orchard's paper [1] is widely regarded as a turning
point in the design of high complexity, precision, active CR filters.
The main difficulty with inductor replacement concerns floating
inductance, e.g. L, in Fig 1.1. Although floating inductance can be
produced in several different ways [9], the ensuing networks are
all in some way inferior to those which are used to produce grounded
inductance. Complex impedance scaling was introduced as a means of
avoiding the need for floating inductance networks. It is a
development of the ideas of Gorski-Popiel [10] and Bruton [11], in which
impedance scaling is applied to various parts of the LCR filter, and
where the scale factor is not a constant but is some multiple of the
complex frequency variable s, or its reciprocal., The method is
described most fully in Ref {12], and one way of proceeding, called
full impedance scaling, is illustrated in Fig 1.2. The first step is
to use Norton equivalent networks [13] to change the LCR filter into
a network having all its capacitors grounded, or a network with all
its inductors grounded, or a tandem connection of the two as shown in
Fig 1.2(b). Equivalent networks may also be used to reduce the range
of element values to within practically realizable limits. The second
step is to scale the impedance of the capacitor subnetwork by s, and
to scale the impedance of the resistor-inductor subnetwork by 1/5,
Impedance converters are then inserted between the two scaled
sub-networks, as shown in Fig 1.2(c) and (d). The forward transfer
voltage ratio F(s)= v(s)/ e(s) is unaltered by impedance scaling.
Furthermore the active CR filter (Fig 1.2(c)) retains the structure of
the LCR filter (Fig 1.2(b)), and each resistor in Fig 1.2(c) corresponds
to a capacitor or an inductor in Fig 1.2(b). Consequently a change
in the value of one of these resistors has the same effect on F(-)
as a change in the value of the corresponding inductor or capacitor,
and the desirable low sensitivity property of the LCR filter is
retained. The impedance converters have no counterpart in the LCR
filter, but the effect of a change in a conversion ratio is the same
as a change in the value of one or more components of the LCR
filter, In addition to having a low sensitivity, the active CR
filter is particularly suitable for fabrication as a microelectronic

unit. The resistors may be accurate and easily adjustable thick-film
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Fig 1.2 Filter produced by complex impedance scaling

a) ILCR filter

b) ICR filter after Norton transformations

c) Active CR filter

d) Circuit of the 1:s® impedance converter used in (¢) [6]
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devices, and the impedance converters may be adjusted individually
in a way which takes into account all their component tolerances
and amplifier imperfections (at a given frequency). The capacitors
may then have wide selection tolerances, and be all of the same
nominal value. Another method of complex impedance scaling, called
partial impedance scaling (12}, can have certain advantages in the
more demanding filter applications.

Simulation is another method of designing an active CR filter
by derivation from an LCR filter. It is closely related to methods
of simulating networks on analogue computers [14], in which equations
describing the constitutive constraints, and equations describing
the topological constraints are represented or 'simulated! by an
interconnection of summing amplifiers, coefficient potentiometers
and summing integrators. Voltages in the analogue computer
simulation are proportional to, and represent, voltages and currents
in the network being simulated. The technique of designing filters
by simulation was originated by Girling and Good in 1955 [15],
but was not popularized until later [16], when integrated circuit
operational amplifiers were readily available. The essence of
simulation is to arrange circuits to represent equations of the LCR
network. It is convenient for our purposes to represent these
equations by a block diagram. Simulation then proceeds in two stages:-
first the derivation of a block diagram from the LCR filter, and then
the creation of an active CR circuit realization of the block diagram.
There are many active CR circuits that can simulate a given LCR
ladder network, and the use of a block diagram will allow us to
investigate properties common to all realizations of a given set of
equations. The process of obtaining a block diagram from a ladder
network is illustrated in Fig 1.3. Fig 1.3(a) shows an impedance Z
and a corresponding block diagram representation* of the equation
v=/1. Dually, the representation of admittance is shown in Fig 1.3(b).
Kirchhoff's current law equations and Kirchhoff's voltage law equations
are represented in the block diagram by a symbol which we shall call
an adder, as shown in Fig 1.3(c) and (d). One other block diagram
symbol will be used, this is an open arrow as used in the two
feedback paths in Fig 1.3(f), and it indicates multiplication by the

associated constant; in this case =1. It should now be possible

* Such a representation is often called a "Black box". This is in
honour of the network theorist H. S Black, who first used the symbol
in 1934 in connection with stabilized feedback amplifiers.
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(ag Representation of impedance
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for the reader to trace the way in which the block diagram in
Fig 1.3(f) represents the ladder network shown in Fig 1.3(e).

Several different block diagrams can be obtained from a given
ladder network, depending on which set of Kirchhoff equations is
used, and depending on the choice of impedance representation or
admittance representation for each branch of the ladder. Not all
block diagrams are useful, and the one shown in Fig 1.3(f) was chosen
as an example because in at least two cases it leads to practical
filter realizations, using the required type of active CR circuits.

Firstly, if the ladder network is a lowpass filter as shown in
Fig 1.4(a), then the block diagram (shown in Fig 1.4(b)) may be
realized by an interconnection of summing integrators, summing lossey
integrators, and inverting amplifiers. A simple manipulation of the
block diagram, involving sign changes only, enables us to use inverting
integrators and just one inverting amplifier, as shown in Fig 1.4(c).
This is the 'leapfrog feedback' filter introduced by Girling and
Good [16].

Secondly, if the ladder network is a bandpass filter as shown in
Fig 1.5(a), then the blocks will be quadratic functions as shown in
Fig 1.5(b), and the block diagram may be realized by an intercomnection
of active CR quadratic circuits [17,18,19]. Such unilateral quadratic
circuits* have been studied at great length for use in simple active
CR filters, and the types shown in Fig 1.5(c) and (d) were given
respectively by Ha.igh-'r and Fliege [20]. We have avoided the use of
inverting amplifiers by using an inverting quadratic circuit to
realize the block Y,, and the adders have been realized as an integral
part of the quadratic circuits [22].

Complex impedance scaling and simulation, as represented
respectively in Fig 1.2 and Fig 1.5, are widely used methods of
designing high order active CR filters. Comparison of the performance
of the two configurations is difficult; depending for instance on the
type of impedance converter used in impedance scaling, and on the
type of quadratic circuit used in simulation. One contribution [23]
compares a filter using the circuit in Fig 1.2(c) and (d), with a

filter of the type shown in Fig 1.5 but using quadratic circuits

* Variously called blocks, sections, building blocks, resonators,
biquads, cells, filter modules (filterbausteine) or standard
selective functional blocks.

1t This unpublished circuit was described to the writer on
3 March 1980 by Dr D G Haigh, who designed it from the Fliege
circuit by the method of terminal interchange [21].
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having one amplifier and three capacitors each. The authors

indicate that the two methods give roughly comparable sensitivity
performance, with the leapfrog feedback* filter slightly inferior

in the variation of frequency independent gain. It must be noted
however that the single amplifier quadratic circuits they use are
probably inferior to the two-amplifier circuits suggested in Fig 1.5.
Whilst there remains some doubt about the detailed comparison, it

is certain that both configurations have good sensitivity performance
in the passband (compared with the simple cascade filter) as a result
of being derived from a low sensitivity LCR filter.

The methods of complex impedance scaling and simulation are
examples of the two major trends in high order active CR filter
synthesis, one based on the use of impedance converters, and the
other based on the use of unilateral subnetworks. Both methods are
capable of extension beyond the scope indicated by the simple
exanmples given here, but in this thesis we shall consider only
filters based on the use of unilateral subnetworks.

We will be concerned with various aspects of the performance
of such filters, the most important being sensitivity and dynamic
range. Our treatment of these will be introduced in the next two

sections, using the simulating filter as an example,

* The nomenclature used in Ref 23 is different to that adopted in
this thesis. In Ref 23 the filter produced by complex impedance
scaling is refeﬁ%d to as a Simulating Circuit, and the filter
produced by simulation is called a Leapfrog Circuit.

19
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1.2 Sensitivity

In the previous section we have seen that in the case of complex
impedance scaling there is a correspondence between the resistors
in the active CR realization and the inductors and capacitors in the
LCR realization. It follows that the sensitivity of the transfer
function to changes in the values of these components is the same
for both realizations. Such is not the case for the filter designed
by simulation, since for example in Fig 1.5(a) and (b) the components
G:,C,, and [ are all simulated by the first block Z;. This block
would normally be characterized by its resonance frequency Coo=\[Fr7ET

its quality factor Q=JI,C, /G: , and its gain constant K= 1/C. .
so that:
Z - K S (1.2.1)
2 2
S 4 &S + 0,
Q

These intermediate variables are functions of the constituent
elements of the block, and the functions depend on the type of
quadratic circuit being used to realize the block. We will in
Chapter 5 be studying sensitivity in terms of these intermediate
variables in order to obtain results which are independent of the
particular way in which the blocks are realized. In this section
we will show that it is the presence of feedback loops which gives
the simulating filter its low passband sensitivity, and in doing so
we will introduce the formal definitions of sensitivity.
Accordingly consider first the structure of the simple cascade
filter shown in Fig 1.6(a). If the blocks represent quadratic
circuits then this structure would realize a 6-th degree response.
Evidently we have:
Fis)2 v(s) = G,G,6, (1.2.2)

e(s)

For purposes of design it is usually desirable to know how, in the
sinusoidal steady state, the amplitude response \F(iw)\ deviates

from its nominal value due to component tolerances and parasitic
effects. This information can be obtained by a statistical analysis[25S]
or a worst-case analysis%gg the complete filter network. Our

'purpose however is to acquire an understanding of network behaviour

in the hope that new insight will enable us to design better filters.
We therefore consider separately the effect of changes in each

element of the block diagram. So in (1.2.2) we give, for instance, in
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§a) Cascade structure of simple active CR filters

b) Leapfrog feedback structure of the analogue simulation filter
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G3, an increment AG, which causes an increment

AF = F(s; G3+AG3) - F (5 3 Gs) . One measure of sensitivity
would be the divided difference 1&F/A(5 , but it is usual to take
the dimensionless ratio of the fractional change in the transfer
function F(S) to the fractional change in an element w, and to

define this as the finite difference sensitivity, thus:

-

ZS _ W Fs; w+Aw) -~ Fs; w) (1.2.3)
w F(s;w) Aw

whence from (1.2.2) the finite difference sensitivity of F(s) to

change in G, is found to be:

E (1.2.4)

Similarly for the other block diagram elements.
It is often useful,and easier, to use the differential

sensitivity, defined as :

F F

6 a Lt é v aF(S) (1.2.5)
w Aw >0 W F(S) ’aw

For example from (1.2.4) we have:

SF _ (1.2.6)
G,

This known result is in fact a very simple special case of a summed
sensitivity invariant, which has been found by the writer and is
described fully in Chapter 2.

Using a known result of the sensitivity calculus, it follows
from (1.2.6) that:

S\F\ —Re SF _ 1 (1.2.7)
Gy Gy
and similarly for the blocks G, and G,. Such modulus sensitivities
give us the information we require to study the way in which the
deviation of the amplitude response \F(iw)\ is influenced by each
element in the block diagram. In addition to providing insight into
network behaviour, these sensitivities may be combined to give an
estimate of the worst case variation [24] or the statistical
variation [25] of the amplitude response.

Now consider the structure of the filter designed by simulation,
shown in Fig 1.6(b). When feedback paths occur around adjacent pairs
of blocks, the structure is said to have 'leapfrog feedback'. The
transfer function may be found by analysis (described in Chapter 2)

to be:



Flo) 2 vis) G,6,6, (1.2.8)
e(s) \ - q,q_GnGz ~ Uy 6163

The differential sensitivities of this structure may be found by
direct application of the definition (1.2.5) to the transfer function
(1.2.8), or by one of the many other methods, including the one
described in Chapter 2. This gives, for example, for the third block:

(s
SF) = | 4y, k) (1.2.9)

G,(s) G.(s)
from which we see, by comparison with (1.2.6) for the cascade
structure, that the presence of the feedback path a,, has altered the
sensitivity of the third block.
Expressions for the sensitivities to the other block diagram
elements have been found, and are shown in Fig 1.6(b). Notice that

we have, for example:
55F ESF -1 (1.2.10)

This again is a special case of the summed sensitivity invariant,
to be described in Chapter 2.

For the leapfrog feedback structure the sensitivities are
evidently freguency dependent. To investigate these further we
identify the leapfrog feedback structure shown in Fig 1.6(b), with the’
filter designed by simulation, shown in Fig 1.5(a) and (b). We will
assume that this filter has been designed from a lowpass prototype
having equal valued terminating resistances (for low sensitivity),
and that the usual transformation has been used to give a bandpass
response which is geometrically symmetrical about a centre freguency

of W, - It follows that:

wf:_f'_:_‘Le N (1.2.11)
C. L. C,
and at the center frequency, when 5:1(00, we have:
(1.2.12)

F—.:. 1 3 Z‘ —.:_l_ L) Z3:_1_
4 / 7 /
G‘+63 G, G3

so that, refeﬁing to Fig 1.6(b), the frequency dependent terms which

appear in the sensitivities have the values:

A, Fliw) = 0O, Fliw) — -1 (1.2.13)
G,(tws) G, (iwo) 2

whereupon the modulus sensitivities for the three blocks become:



[F(tws) IFliwa)] 1
Gliws)  TGyiw) 2
G, (Lw.)

compared with unity for all three blocks in the cascade structure.

We also have:

fslrau%>\=: ES\F(UJJ\ L (1.2.15)

Q. Q,s 2

At frequencies in the upper stopband of the filter we have in
Fig 1.5(b):

1.2.16
Zo=d o, Yyet o, Z,s (1.2.16)
© sC, sk, sCy
so that, for s=ilw,, W» W, , refering to Fig 1.6(b), we have:
(1.2.17)

ala F(i(‘)‘) = __1__.
. ’ 2

Gs(\«c\)\) W, ClLZ

For flat passband filters the factor C,L, has the approximate value:

2 (1.2.18)

CGL, = 24q
Wo?

where q is the geometric centre frequency w, divided by the width

of the passband. Whence for upper stopband frequencies:
. 2
a, Fliw) = o, |
G, (iw.) w2 cvz
<« 1 (1.2.19)

Similarly for Q,, Fliw) /G,(L(,J.) . Hence for the upper stopband

the modulus sensitivities become:

IFiwd) \Flwdl ES\Fuwn\ (1.2.20)
ESG,uagb I R D I N (Y N
as in the cascade structure, and

[F(iwn] 1F(iwd) (1.2.21)
S =5 « 1

Qe Qaa

A similar argument shows that (1.2.20) and (1.2.21) are also valid for
the lower stopband.

In this section we have compared the structure of the filter
designed by simulation with the structure of the simple cascade

filter, as an illustration of how the presence of feedback loops
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affects the sensitivities with respect to the blocks. At a
frequency in the centre of the passband the sensitivities are
reduced by feedback, and at stopband frequencies, where the feedback
loops become inoperative, the sensitivities of the two structures
are approximately the same.

The reduced sensitivities at the frequency w, are not a complete
indication of superior performance, because we are also interested
in the sensitivity at other passband frequencies. When studying the
sensitivity of filters in Chapter 5, we will compute the sinusoidal
steady state amplitude response |F(iw)l of the filter and will
plot this as a function of frequency. Superimposed on this will be
a plot of the amplitude frequency response which results from one
of the block diagram elements being changed by a finite non-zero
amount, or from one or more of the intermediate variables
(w, » Q etc.) of a block being changed by a finite non-zero amount.
A collection of such plots for changes in all block diagram elements
of a given filter will give a very good indication of the sensitivity
performance of the filter, and will allow us to compare structures
in a way which is independent of the particular circuits used to -

realize the sections of the filter.
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1.3 Gain and dynamic range

The gain of the filter designed by simulation is determined by
the gain of the LC:it filter which it simulates. The gain can usually
be adjusted. For instance in Fig 1.5(c) and (d) the potential
dividers at the input of the sections can be changed to alter the
gain of the sections, without any alteration to the main part of the
circuit, and hence their sensitivity performance as isolated
quadratic circuits is- not changed.

In terms of the block diagram elements in Fig 1.6(b), if, for
the first block, G, is multiplied by a constant N, and if the
feedback constant aQ,, is divided by A, then the transfer function
of the filter (hence the gain) will be multiplied by a factor A.
However the block diagram will no longer simulate the ladder network,
because, for example, the first adder will no longer represent a
Kirchhoff equation. This raises the question of whether the
sensitivity performance of the complete filter will be affected. The
answer is no, as will be proved in Chapter 3, where a much more general
scaling transformation will be presented, together with an account
of its affect on sensitivity. '

In addition to adjusting the overall gain of the filter, the
scaling transformation may be used to adjust independently the
signal levels at the outputs of each internal section of the filter.
By this means the maximum signal levels at the outputs of all
sections can be made equal to each other, thus maximizing dynamic
range without imparing the seznsitivity performance. A fuller
discussion of dynamic range, and the use of the scaling transformation

to maximize dynamic range, is given in Chapters 2 and 3.
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1.4 Multiple feedback filters

In section 1.2 we illustrated how the low passband sensitivity
of the filter designed by simulation was made possible by the
presence of the feedback paths. It is possible to obtain comparably
low sensitivity with several other arrangements of feedback paths,
and one such structure called 'follow the leader feedback' is shown in
Fig 1.7, for the case where the filter has three blocks. This
structure is related to a method of simulating transfer functions
on an analogue computer [26] by an interconnection of integrators,
coefficient potentiometers, and summing amplifiers. It was first
used to realize high order filters by Hurtig III [27] in his 'primary
resonator block' filter. Hurtig's design proceeds directly from the
required transfer function, and it is not in any way related to an
ICR filter. All the blocks are identical to each other, and for a
bandpass filter could for example be realized by the type of section
shown in Fig 1.5(d). The quality factor Q of the sections is
predetermined in Hurtig's design by the fact that he sets the first
feedback path Q, equal to zero. The primary resonator block
filter is capable of a sensitivity performance similar to that of
a filter designed by simulation [28].

The same structure was used later but independently by Laker [29]
in his 'follow the leader feedback' filter. Laker did not restrict .
all blocks to have the same value of Q, and he used this additional
flexibility to minimize a measure of sensitivity, in a computer
optimization procedure. This procedure used a multiparameter
sensitivity measure that was integrated over a wide band of frequencies,
The integrated sensitivity measure of the optimized follow the leader
feedback filter was lower than that of a fiiter having a leapfrog
feedback structure. At a frequency in the center of the passband
however the leapfrog feedback filter had a lower sensitivity measure.
In subsequent work, Laker showed that the sensitivity measure of the
follow the leader feedback filter had a broad minimum [30], thus
allowing some flexibility in the choice of Q values without serious
degradation of sensitivity. He also showed that the sensitivity
measure of the primary resonator block filter was not far short of
the minimum [31]. Schaumann and others [32] have shown how Laker's
follow the leader feedback filter may be designed to have maximum
dynamic range.

We have so far considered polynomial filters, that is filters

which have their transfer function zeros all either at the origin of
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the s-plane or at infinity. It is often desirable to realize
transfer functions which have zeros in complex conjugate pairs on
the imaginary axis of the s-plane, These give transmission zeros
at finite non-zero frequencies, and would be used for example in
Cauer type filters.

There are three methods of introducing such transmission zeros,
the most common of whicn is the method used in the simple cascade
filter. Refering to Fig 1.6(a), if one of the blocks has the factor
st 4 mnz in the numerator polynomial of its transfer function, then
by (1.2.2) this will also be a factor in the numerator of F(s)
and the filter will have a transmission zero at W, rad/s. The
case where such a factor is cancelled by the same factor being
introduced to the denominator of F{Q by one of the other blocks
is always avoided in practice. A section having a factor SZ+CJJ
in the numerator of its transfer function is called a "notch section',
and when such a section occurs in the forward path of a structure
we say that a transmission zero is produced by a 'series notch
section'.

Consider now the leapfrog feedback structure shown together with
its transfer function in Fig 1.6(b). One can see that again a
quadratic factor in the numerator polynomial of one of the blocks
will also appear in the numerator of the transfer function.
Szentirmai [33], Dubois & Neirynck [34,104] and Miller [35] have
given methods of designing leapfrog feedback structures which
incorporate series notch sections. Series notch sections may also
be used with the 'follow the leader' feedback structure, shown in

Fig 1.7, and suitable design methods have been given by Biernacki &

Mulawka [36], Dubois & Neirynck [371, Tow [38,39], Gensel [(40,41], and

Padukone, Mulawka & Ghausi [42]. These design methods allow
transmission zeros to be placed at any required frequency, and the
resulting structures are therefore often called 'generalized'.
Whilst series notch sections allow arbitrary placing of
transmission zeros, the next method to be described leads to a very
simple realization for geometrically symmetrical bandpass filters.
It consists of adding together signals from a number of forward
paths, and the transmission zeros occur at frequencies at which these
signals sum to zero. Many structures use this method, and because
of its importance in the study of structure it will be illustrated
here by describing in detail one particular structure which uses

the technique.

29



The method is applicable to any bandpass filter that can be
obtained from a lowpass prototype by the usual lowpass to bandpass
transformation. The lowpass prototype transfer function is
synthesized by a well known analogue computing circuit, using
integrators as active components, and the required bandpass network
is obtained by lowpass to bandpass transformation. This changes
the integrators into bandpass quadratic sections having an infinite
Q-factor., We prefer to use sections having a finite Q-factor, and
this is achieved by predistortion (I138].

To describe the method in detail, let the transfer function of

the lowpass prototype be:

n 1. Q1
D)o v, +1Vs+. .. +V,5 65 -1 (1.4.1)

’ n
§,+B5+...4+8,s"

This is predistorted by the transformation S+——>5-x, giving:
1. .2
Ols-w)= Vo + Vls-x)+.. .+ Vafs-w)" (1.4.2)
8 + B, (s-a)+. . .+ &, (s-a)"
which, using the binomial theorem,can be written as:

Y v ZJ @)(_u‘)ﬁsi-f (1.4.3)

@(5-0(-):—. J=: t=0 3 Sn':i

(2w s

As an intermediate step, we synthesize @(s-o(.) s using the

Bn=1

?

M

=0 t=0

[

'successive-integration' method of simulating transfer functions on
analogue computers {43,44]. The computer network (using positive-
gain integrators) is shown in Fig 1.8(a), and its transfer function is:
Fs)— v(s) — bo+bs+...+bys" (1.4.4)

n-\

e(s) -0,-0,5-...-QnS  +s"

Now @(s-aJ can be written in this form by interchanging the order
of summation in (1.4.3) and introducing the index k=j-{, so that
the coefficients of the powers of s are stated explicitly:

n n . S-k K
Y v (e s (1.4.5)
@(S-OC.) - k=0 j=k } (k) : 6n=1

Zﬂ Zn GH (\J() ('D‘«)j-k 8"

k=0 j=k

Comparing (1.4.4) and (1.4.5), we have the design equations for the

analogue computer network:
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bo=) ¥ (J>(‘%)J.k k=01 ... n (1.4.6)

" -k (1.4.7)
0 =-y 8 (k)(-o(.) k=01, .., n-|
j:k

The effect of predistortion is now removed by applying the inverse
transformation S—— 553, to the computer network. This
affects only the integrator blocks, which become G(s)= ‘\/(s ) ,
and the result is a block digram, shown in Fig 1.8(b), which
realizes the lowpass prototype transfer function @(5),

It should be noted that in the conventional use of predistortion,
@(s—u) would be synthesized as a passive network and would
therefore need to be stable, thus limiting the possible values of q,.
Such is not the case here and &, is not limited.

The required bandpass response can now be obtained by applying

the lowpass to bandpass transformation [140]}:

S
where q is the geometric center frequency divided by the width of the

5&————>q(s+1) (1.4.8)

passband. This affects only the blocks G(s) , which will now have

the transfer function:

Gls)= 1 s (1.4.9) -
4 STy s + 1

9,

as shown in Fig 1.8(b). The resulting bandpass structure consists

of an interconnection of identical bandpass quadratic blocks, which,
due to predistortion, have a finite quality factor Q= q,/oc‘ .
Evidently, if the filter is to use sections having a positive
Q -factor, then o, must be positive. The feedback and feedforward
constants are given by (1.4.7) and (1.4.6) as for the lowpass
prototype. They may be positive or negative, and their signs will
vary, depending on the value chosen for «, . The consequent need
for inverting amplifiers can sometimes be avoided by the use of
inverting and non-inverting quadratic sections, as will be shown
by an example.

As an illustration of the design method, a 6-th degree, elliptic
function, bandpass filter has been designed and is shown in Fig 1.9.
The lowpass prototype response has a passband ripple of 1.254B, a

minimum stopband attenuation of 40.5dB, and a transition band of
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1: 2.3662. The lowpass prototype transfer function is:

Py~  0.06386 5° + 0.4655 (1.4.10)
S ¢ 0.84758° + 11688 s + 0.4555

For the required bandpass response q = 10. The value of the
predistortion constant o, was chosen to be 0.5, whence from (1.4.6),

(1.4.7) and (1.4.10):

b, = 0.4815

b, = -0.06386

b, = 0.06386 (1.4.11)
by = 0

Q, = 0.0195

Q, = -1.0213

a, = 0.6024

The transfer function of the blocks G is given by (1.4.9) with q = 10
and o,= 0.5, thus giving a quality factor Q = 20, as shown in
Fig 1.9(a). The two negative constants q,and b, were accommodated
by changing the signs of these constants and also changing the signs
of the first two blocks. This is a simple application of the scaling
transformation which will be described in Chapter 3, The resulting
network, shown in Fiz 1.9(b), uses two inverting bandpass quadratic
sections and one non-inverting bandpass quadratic section, thus
avoiding the need for inverting amplifiers. Each of the three sections,
shown encompassed by dashed lines in Fig 1.9(b), realizes a block
together with its preceding adder and associated constant multipliers.
The multiple feedback structure described above was first
published by the writer in Ref. [45], where it was presented as having
an advantage over existing structures in some cases by virtue of
using fewer operational amplifiers. It is described here to illustrate
how transmission zeros may be realized by adding together signals
from a number of forward paths. In the example shown in Fig 1.9(a)
there are three forward paths which come together at the third adder,
and it is at the output of this adder that the two pairs of complex
conjugate zeros of the bandpass transfer function first appear.
These zeros are not present at the outputs of the first two sections,
as can be seen from the frequency responses at these two points,
which have been superimposed on a plot of the frequency response of
the filter in Fig 1.9(0). We say that these transmission zeros are
produced by 'parallel forward paths'. The third block has one zero at

the origin of the s-plane and another zero at infinity, and, since
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all three forward paths pass through the third block, these zeros
form the two transmission zeros of the bandpass response at extreme
frequencies.

It is worth noting that although no attempt was made to minimise
sensitivity in the example, the structure can have a low sensitivity
at passband frequencies, due to the presence of the three feedback
loops. The sensitivity does depend on the choice of the predistortion
constant o, , and this will be discussed further in Chapter 5. The
three feedback loops are nested in a manner similar to the follow-
the-leader feedback, and in the literature this structure has been
called 'inverse follow the leader feedback'(lt], It will be seen in
Chapter 3 that this arrangement of feedback paths may preferably be
described as 'flow graph reversed follow the leader feedback' or
'transpose follow the leader feedback'.

It should also be noted that the design method can be applied
with minor modification to other analogue computer networks [46],
thus leading to other multiple feedback structures. For example
Tow's 'Shifted companion form' network in Ref. [47] can be obtained
by using the computer network in section 3.2C of Ref. [46]. Conversely
Tow's design method can be adapted to yield the structure described
above,

Tow's shifted companion form network [47,28] uses a structure
which combines parallel forward paths with follow the leader
feedback. Other design methods for this combination have been
given by Laker & Ghausi [48], and Gensel [40,41]. Parallel forward
paths may also be combined with leapfrog feedback, and suitable
design methods for some structures which use this combination have
been given by Tow & Kuo [49]; Wetenkamp & Van Valkenberg [50];

Ford (see section 3.1); Kriiger [51]; Jacobs, Allstot, Brodersen
& Gray [52]1; Muller [53]; and Davis [143].

We will now consider the third method of producing transmission
zeros. Although the concept is very simple, and despite the fact
that it can be identified in published circuits, this remaining
method of realizing transmission zeros in multiple feedback filters
was not recognized as such in the literature until it was pointed
out by the writer in Ref. [88]. The method may be illustrated by
considering the simple feedback network shown in Fig 1.10, If the
block G6,(s) has a numerator polynomial V.(s) and a denominator
polynomial  §,(s) which are relatively prime, and if %,(s)

and szug are also relatively prime, then the transfer function
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of this network may be written as:

Fiya v = & (1.4.12)
e 8|Sz - 1‘)I VZ
and we may make two observations. Firstly if 1(s) has a factor

s*+ ,> then this will also be a factor in the numerator of
F(s) and the network will have a transmission zero at w, rad/s.
This would be a transmission zero produced by a series notch section
as previously defined. 3Secondly if §,(s) has a factor sz+(of
then this will also be a factor of the numerstor of F(s) , and
the network will have a transmission zero at W, rad/s. This
process wkereby the complex ccnjugate poles of a block G,(s) become
complex conjugate zeros of F(s) is the third method of realizing
transmission zeros, and in this thesis we will refer to it as
producing transmission zeros by 'complex feedback'.

The use of complex feedback will be illustrated by describing
the continued fraction structure, which was first published by
the writer in Ref. [84]. A lowpass prototype transfer function

®(s) is expanded into a continued fraction of the form:

ey + 1 (1.4.13)

A+ A, + AL

where the partial remainders are of the form:

A;=g;s + b; Q;, by real, constant (1.4.14)

If the continued fraction exists, the partial remainders AJ may

be identified with the denominators of the blocks in the continued
fraction structure, as shown in Fig 1.11. Application of the lowpass
to bandpass transformation will then give a realization of the
required bandpass transfer function as an interconnection of bandpass
quadratic sections. All transmission zeros at finite non-zero
frequencies are realized in this structure by complex feedback.

For example the lowpass prototype transfer function @) given
in (1.4.10) may be expanded into a continued fraction of the form
(1.4.13) with partial remainders:

A, = 15.658 s + 14.053
- 0.010436s + 0.01036 (1.4.15)
A3 = -11.581 s - 11.498

Identifying these with the denominators of the blocks, and performing

>
>
n

the lowpass to bandpass transformation (1.4.8) with q = 10 gives
the bandpass network shown in Fig 1.12., This example has a structure

comprising one forward path and two feedback loops. The feedback
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loops exist to provide transmission zeros by complex feedback, and
are not in this case introduced to reduce sensitivity. Indeed it will
be shown in Chapter 5 that this filter has a very large sensitivity
at passband frequencies.

From Fig 1.12{(b) it will be seen that at passband frequencies
the signal level at the output of block-2 is about twelve times the
signal level at the outputs of the other two blocks. This disparity
can be reduced considerably by using the scaling transformation which
will be described in Chapter 3.

Note that the block G2 in Fig 1.12(a) has a negative Q-factor on
account of a, and bz having different signs in (1.4.15). If it is
necessary to avoid the use of sections having a negative Q-factor
then this may be achieved by using a slightly different continued
fraction expansion. This is of the form (1.4.13) but has partial
remainders of the form (1.4.14) alternating with partial remainders

of the form:
A

J

S

and is such that for each partial remainder AS’ the constants aq;
and kﬁ have the same sign. According to a theorem given by
Gorski-Popiel & Drew [54] such an expansion always exists. Whilst
this ensures that all blocks have a vositive @-factor, a partial
remainder of the form (1.4.16) produces a notch section in the
bandpass filter if the constants a;, by are both non-zero.
Continued fractions have been used in a similar way for digital
filters, butthe expansion (1.4.13) (1.4.14), when bilinearly
transformed, will not in general be realizable as a digital filter
due to the occurrence of delay free loops [55].

The first use of complex feedback was by Scott [56], who
connected a parallel-T notch circuit in the feedback path of an
amplifier to give a tuned amplifier response, for use as a wave-form
analyser, Scott's circuit has the structure shown in Fig 1.10 with
G,=K and G, = (s"+co.,‘)/(sz+4w°s+ ARS) , so that by
(1.4.12) the transfer function is:

- K '+ dwes + wd (1.4.17)

1=K ¢4 40we 5+ W
| -K

Fis) &

vy
e

The complex conjugate zeros of F(s) are the complex conjugate poles

of G,(s) , and we may say that these zeros are produced by complex
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feedback, even though the zeﬁgzhare not on the imaginary axis as
would usually be the case for filters.

In the context of multiple feedback filters it is possible to
identify the use of complex feedback in at least two structures, in
addition to the continued fraction structure just described. The
first is the signal flow graph simulation of LC ladder filters as
described by Brackett & Sedra [57,58,59]. Wherever the LC ladder
filter has a resonant circuit for realizing a transmission zero, and
when this resonant circuit is associated with either a loopset of
capacitors or a cutset of inductors, then the simulation will have
in its forward path a subnetwork with the structure shown in Fig 1.10.
In this subnetwork, the block G, will be an infinite-gain
operational amplifier, and the block G, will be a two-integrator
loop forming an inverting bandpass quadratic section having an
infinite Q-factor. The transmission zero is thus produced by
complex feedback. The operational amplifier occurring in the forward
path of such subnetworks is called a 'reciprocator' by Brackett &
Sedra, on account of the fact that it simulates that part of the
reactance extraction procedure of ladder synthesis where one takes
the reciprocal of an immittance function [57]. Our observation that
the simulating network employs complex feedback is an alternative
interpretation of how the reciprocators contribute to the production
of transmission zeros.

The other published structure which may be interpreted as having
complex feedback is Adams' 'coupled band-elimination filter' [60].
Whereas for bandpass filters it is usually important to have low
sensitivity at passband frequencies, for bandstop filters it is also
important to have low sensitivity at stopband frequencies., For many
filters the sensitivity at stopband frequencies is determined by the
sensitivity of the transmission zeros, or equivalently the
sensitivity of the transfer function zeros; and the sensitivity at
passband frequencies is determined by the sensitivity of the transfer
function poles. Adams derived his network by simulating a low
sensitivity LC ladder network, and then using some signal flow graph
transformations to arrive at a structure in which both the passband
sensitivity and the stopband sensitivity are lower than that of the
simple cascade structure. Adams gives an example of a 6-th degree
bandstop filter designed using his method. It may be thought of as
having the simple feedback structure snown in Fig 1.10, with the

block G, representing a constant multiplier, and the block 6,
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representing a complex subnetwork. This subnetwork 6, comprises
three infinite-3 bandpass quadratic blocksAinﬁerconnected oy
leapfrog feedback and a multiplicity of forward paths. The
leapfrog feedback ensures that the poles of G, have a low
sensitivity at mid-band frequencies, and by complex feedback, in
association with G, , these low-sensitivity poles become the zeros
of the transfer function of the filter. The concept of complex
feedback thus explains why Adams' structure has a low stopband
sensitivity.

By describing some carefully chosen examples in this Chapter, we
have introduced the main topics of interest in this thesis; which
concerns multiple feedback filters formed by an interconnection of
unilateral subnetworks. We are primarily interested in obtaining low
sensitivity and maximum dynamic range from such filters, and we are
interested in understanding how the structure or pattern of
interconnection affects these performance criteria. We have so far
encountered three feedback structures which may be used to reduce
sensitivity at passband frequencies: namely leapfrog feedback, follow
the leader feedback and transpose follow the leader feedback. We have
also identified three properties of structure which are used to
produce transmission zeros: namely series notch sections, parallel
forward paths, and complex feedback. We have also seen that low
sensitivity multipie feedback filters may be designed by simulating
a low sensitivity LCR filter, or they may be designed directly from
the required transfer function. The reader is now sufficiently
acquainted with the subject to be able to appreciate the objectives
of this thesis, which are described in thé next section.

In the course of this introductory chapter, some material has
been presented whicnh is the original work of the writer., Firstly
the multiple feedback structure with parallel forward paths shown in
Fig 1.8, together with the derivation of explicit design equations
(1.4.1) to (1.4.9). Secondly the introduction of the concept of
complex feedback for the realization of transmission zeros, as
illustrated in Fig 1.10., Thirdly the continued fraction structure,
shown in Fig 1.11. These contributions were first published by

the writer in references [45], [88], and [84] respectively.



1.5 Objectives of this thesis

Many multiple feedback filters have been proposed in the
literature, for instance in respect of bandpass filters there are
currently more than fifty design methods, using between them more
than twenty five different structures of interconnection. We will
in this thesis attempt to form the berinnings of a unified treatment
by giving some analytical results whicn apply to all multiple
feedback filters. It is hoped that this general approach will give
some new insizght into the mechanisms which produce the good performance
shown by some multiple feedback filters, and in particular we wish to
determine how the structure of the filter contributes to this good
performance,

In order to study the structure it will be useful to use the
language and notation of graph theory, in addition to the block
diagrams used so far, This is done in Chapter 2 which deals with the
definition and analysis of multiple feedback filters, and in Chapter 3
which describes the transformation of multiple feedback filters.

Some of the general results to be presented in Chapters 2 and 3
have already been mentioned in this introduction. For instance the
summed sensitivity invariant has as a special case the equation
(1.2.10) which was used to demonstrate how leapfrog feedback reduced
the passband sensitivity in the simple analogue simulation filter,
Also the general scaling transformation has been mentioned in
section 1.3 in connection with adjusting the gain of the analogue
simulation filter, and it has been used to eliminate unnecessary
inverting amplifiers in the 6~th degree bandpass filter éxample shown
in Fig 1.9.

It will be shown in Chapter 4 that a particular classification
of existing structures for multiple feedback filters reveals the
possibility of new structures., The basis for this classification
has already been established in this introduction., It is in terms
of the feedback loops used to reduce passband sensitivity, and the
way in which transmission zeros are produced.

In Chapter 5 we will study the sensitivity of some specific
filters with a view to understanding how best to choose a structure
for low sensitivity. It will be demonstrated that the use of a
particular structure is not enough to guarantee low sensitivity.

The insight obtained in this study will lead to some guidelines
for choosing suitable structures for low sensitivity multiple

feedback filters.
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THE CONCEPT OF MULTIPLE FESDBACK

The reader will already have a concept of multiple feedback.
This will be as a result of reading the introductory chapter, and
as a result of recalling the many other instances in electrical
engineering where the term occurs. The concept being the sum total
of the ideas brought to mind by the use of the term multiple
feedvack. Although in a sense this chapter can only add to the
concept, the real purpose is to both expand it by the presentation
of some analytic results of a general nature, and to delimit it by a
definition of terms as used in this thesis. This should convey the
writers concept of multiple feedback in the specific context of this
thesis.,

Accordingly in this chapter we will discuss our use of the term
to refer to the interconnection of a number of active CR sections to
form a multiple feedback filter., We wiil describe the properties
required of the active CR sections, and will give a more detailed
account of how a multiple feedback filter can be represented by a
block diagram or a signal flow graph.

A general form of multiple feedback filter will be analysed to
find its transfer function. The finite difference sensitivities and
differential sensitivities of the transfer function to changes in the
block diagram parameters will also be found, and in the context of
analysis a new summed sensitivity invariant will be given. The
mechanisms which limit dynamic range will be discussed, and a method
of analysing the dynamic range of any given multiple feedback filter

will be given.



2.1 Definition of multiple feedback

In this section we will define multiple feedback, and as a
starting point we will consider the individual active CR circuits
which are to be interconnected. Such circuits have been studied in
great detail in connection with cascade active CR filters, particularly
in respect of their sensitivity. Two examples have already been given
in Fig.1.5, and another is shown in Fig 2.1(a) [61]. This is
commonly called a multiple feedback circuit on account of the three
feedback paths from the output of the operational amplifier., To avoid
confusion of ideas, we do not call it a multiple feedback circuit, we
call this and all similar circuits an active CR section, or just section
for brevity. The properties required of a section are that it can be
characterised by a single equation, and that this equation is not
affected by the interconnections. For the example in Fig 2.1(a) the
characteristic of interest is the forward transfer voltage ratio
G, () = vz(s)/v, (s). Since the voltage V, is the output of an
operational amplifier, G,, will (within limits set by the performance
of the operational amplifier) be independent of the output port
termination, and V, can form the input to another section without
mutual interaction., A section will usually contain capacitors whence
Ga|

The degree of the denominator is seldom greater than two, and this

will be a rational function of the complex frequency variable §.

fact allows us to characterize the transfer function by a small number
of constants. In the case of the bandpass quadratic section shown in
Fig 2.1(a), the transfer function is of the form:

G & vl — K 5 (2.1.1)

v, (s) 52+ o S 3 (‘)oa
Q

fully characterized by the values of the resonance frequency w, , the

quality factor Q, and tne constant multiplier K, In this thesis we
will consider the performance of sections in terms of such constants,
and we will not be concerned with the particular realization of
sections. In order to interconnect the sections we will have to
accommodate several inputs, and we will have to control the constant
multiplier K. This can usually be done by having a potential
divider network at the input of the section [22] as illustrated in
Fig 2.1(b).

*
More generally, a section will be an unbalanced 01+1) -port

* An unbalanced N-port is one in which all ports have a common
terminal, usually called the ground or datum terminal.
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Gyt G +G,+Ge =G,

Fig 2.1 Example of an active CR section

(a) as used in simple filters
(b) as used in multiple feedback filters



network, with n input ports and one output port, as shown in Fig 2.2.

It will have a hybrid matrix description of the form:

— —

i, Y, Y O]V
. . . (2.1.2)
[ Yo " Yo O|Va
Vol (Gt 77 Gon O] Ve

where the zero elements are a consequence of an (ideal) amplifier
output being connected to the output port. A multiple feedback filter
comprises an interconnection of a number of such sections. The rules
of interconnection are obvious and are as follows:
(i) because the sections are unbalanced, all interconnections are
made by connecting ports in parallel,
(ii) no two output ports can be connected together on account of each
having zero source impedance,
(iii) an input port is always connected to an output port or the
input to the filter,
(iv) the input to the filter is an independent voltage source, and it

is connected to one or more input ports,

(v) the output from the filter is taken to be the output port voltage

of one of its sections.

In multiple feedback filters, the port voltages and relations
between the port voltages are our main concern. It would of course
be possible to consider multiple feedback filters on a current basis,
or even on a mixed voltage/current basis, but with present circuit
techniques using operational voltage amplifiers, there seems to be no
practical advantage in doing so.

From (2.1.2) the (n+1) -port section is characterized by the

equation:
V, =Gy v, +. . .+ G,V (2.1.3)
which has a block diagram representation shown in Fig 2.3(a). If, as

is usually the case, the functions G are equal to constant

of
multiples of a function G(s) , then éhe equation will have the
representation shown in Fig 2,3(b). Most sections are of this form,
but there are a few exceptions [62,63,64,101,145,155], for instance

Bach's circuit [62] in Fig 2.4(a) uses sections of the type shown in
Fig 2.4(b), for which the representation in Fig 2.3(a) is necessary.

With Bach's circuit we have:
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Fig 2.2 (n+1)-port representation of a section

(a)
K
(b) Y —>—
Ko
Vo >
* | : G(s) VO
K
Vi >

Fig 2.3 Block diagram representations of the equation characterizing
a section

a) General case
b) Special case of (a) with Goj($)= Ki6ls) , j=1,2,....,n
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Fig 2.4 Bach's circuit

(a) Configuration for fourth degree, polynomial, lowpass filter
(b) Section used in Bach's circuit

0——AMN\/ AV
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+ 2 —©
o—MA~
0

Fig 2.5 Summing amplifier section



G, = 1 (2.1.4)
1+s(CR

and:

6oy — __SCR (2.1.5)
1+ sCR

The block diagrams obtained in these few cases, although valid, are
somewhat cumbersome for practical analysis, and other approaches may
be preferred. Most sections however will, like that in Fig 2.1(b),
admit of the representation in Fig 2.3(b). Sometimes we will use a
section which does not contain capacitors, such as the summing
amplifier in Fig 2.5, in which case we can put G(5)=-1 and omit
the block from the diagram.

As we have already indicated, a block diagram is simply a way of
writing down a set of equations. When a block diagram represents the
characterizing equations of a multiple feedback filter, it will be
called the block diagram of the filter. Where a multiple feedback
filter is designed so that its characterizing equations are those of
a given block diagram, it will be called a realization of the block
diagram,

Fach block diagram symbol represents an equation of a particular
type. These equations may also be represented by a Mason signal
flow graph [65,66,67]. In Table 2.1 we show the equations, the block
diagram representation, and the equivalent signal flow graph (SFG).
BEvidently for every block diagram representing a multiple feedback
filter, there exists an equivalent signal flow graph. As an
illustration we show a multiple feedback filter [45] in Fig 2.6,
together with its block diagram and an equivalent SFG. This filter
has been designed to have a 6-th degree, 1.25dB ripple, Chebychev
bandpass characteristic, with a passband width equal to 10% of the
center frequency, which is 100 rad/s. The quadratic sections were
chosen to have a Q-factor of 30. Each of the three sections, shown
encompassed by dashed lines, realizes a block, its associated adder,
and a constant multiplier. In a block diagram we distinguish a block
from a constant multiplier as an aid to visualization of how the block
diagram may be realized. This distinction is lost in the SFG,
however, it will be convenient to express certain resulis in terms of
signal flow graphs.

The pattern of feedback loops and forward paths shown by a block
diagram or a signal flow graph will be called the structure of the
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Table 2.1

Block diagram symbols

Element Equation Block Diagram Symbol Equivalent SFG
y(s) x (5)
Block x(3)= G(s\g(s) yls) Ge) x(s) GG)
(s)
Constant | x(g)= \/\‘5(5) yls) WK x(s) WS)
multiplier

Adder

x() =Y y;9)
j=1
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a,, = - 0.104751

¢ a,, = ~0.884857
a3 < Uy = 0.093556
(b) 923 —5 |
e 53 G,
G1 Gz 3 v "62 = 10 5
Gy °,100 s 4 10"
30

(c)

Fig 2.6 Example of a multiple feedback filter and its representation

b) Block diagram of filter

a) Active CR filter
c) Signal flow graph equivalent to (b)
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filter. Various aspects of structure can be defined in terms of

signal flow graphs, and will be of use later.

(i) A cutset is a minimal set of branches the removal of which
will separate the graph into exactly two pieces. For example
{G,, Chs} and { G,, Oyq a33,(33} are cutsets in Fig 2.6(c).

(ii) A loopset is the set of branches of a connected subgraph such
that every node is common to exactly two branches. For example
{G‘, Qs » Q13} and {Ga, G., a23} are loopsets.

(iii) A forward path is the set of branches of a connected subgraph
such that the nodes and branches form a sequence, starting from
node e (the filter input) and terminating at node v (the filter
output), in which all nodes and branches occur once only, and
where the direction of the branches determines the sequence,
For example the SFG in Fig 2.6(c) has only one forward path:
{b,,6,,6,,6G,}.

(iv) A feedback loop is a loopset in which all branches have the same
direction., For example the loopset {62, G, , QZG} is a
feedback loop, but the loopset {G,, Az 9 azs} is not.

(v) In an m-node graph, any connected m-node, (m-1) —~branch
subgraph is called a tree and its branches are called tree
branches. For any tree, the complementary sub-graph is called
its co-tree. In Fig 2.6(c) for example one of the trees has
tree branches b., Ay y Qpg Ga , and its co-tree has branches
Gy G335 Gy

(vi) TFor any tree, each tree branch forms a cutset in association
with one and only one set of co-tree branches, These are
called basic cutsets., For example {b,} , {(lm ,G‘} ,

{G., Qgy s Qay 9 63} , {Ga s Oy G,} is the set of basic
cutsets for the tree given in (v).

Associated with every forward path is a forward path gain P, given

by the product of the weights of the branches in the forward path.

Similarly, associated with every feedback loop is a feedback loop

gain (or loop gain for brevity) T, given by the product of the weights

of the branches in the feedback loop.

Multiple feedback is defined to be a plurality of feedback loops.

A multiple feedback filter thus has a structure comprising at least

one forward path (to provide signal transmission through the filter)

and two or more feedback loops. This definition does not include

certain simple structureswhich we shall consider, for instance the

* We identify a branch of a graph by its associated weight
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cascade structure which has no feedback loops, but our analysis will
accommodate all structures allowed by the rules given on page 46
Our main concern however is with structures having multiple feedback,

because of their potential for improved performance.



2.2 Analysis of multiple feedback filters

Having defined multiple feedback we now show how a multiple
feedback filter may be analysed. Our main interest is in the transfer
function, from which the frequency domain or the time domain response
of the filter may be found as required., In section 2.2.1 we give both
an algebraic method and Mason's topological method of finding the
transfer function.

Also of interest is the effect on the transfer function of
variations in the constituent parts of the filter. This is a
complicated subject and in a later chapter we will resort to
computation to investigate the sensitivity of filters. However a
certain amount can be done analytically as was discussed in section 1.2,
and in section 2.2.2 we derive some expressions for various
sensitivities. We also introduce a new summed sensitivity invariant
which is of use in the calculation of sensitivity.

The dynamic range of a filter is often important, and as a
contribution to the study of dynamic range we show in section 2,2.4
how multiple feedback determines the way in which the dynamic range
of a filter is related to the imperfections of its constituent

sections.
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2.2.1 Transfer function

In this section an analysis of a filter having a general
structure will be given. DMost structures are particular cases of this
general structure, and those which are not can be made so by simple
manipulation. The filter we shall consider is composed of n + 1
sections, each section having a block diagram of the type shown in
Fig 2.3(b). The first n sections are fully interconnected, with
constant multipliers qjk , as shown in Fig 2.7. The (single) filter
input e is applied to all n sections, with constant multipliers EU .
The n section outputs are added together with weights C; by a
summing amplifier section, and the (single) filter output v is taken
to be the output of this section., There is also a direct connection
of the filter input e to the summing amplifier section, with a

constant multiplier d. We define the following matrices:

'—an : - : am i —G,(S) ]
. . G,(s)
‘)4& %/z %(5) ~—A_:
[ Gn 7T G L Gals)
b, | [, ] EN 'S
b, Ca Xe Y (2.2.1)
b2 ca N yal
L b".J _C' " _3( " _‘ﬁn |

whence, for the n blocks we may write:

X = % Y (2.2.2)

The equatiors of the associated adders may be written as:

g="42§+b€ (2.2.3)
and the equation of the output adder is:

v=cyx +de (2.2.4)
Eliminating y from (2.2.2) and (2.2.3), and substituting in (2.2.4)
gives the transfer function of the filter F(s):

FoL v = ¢ (4 -o)"b +d (2.2.5)
e (s)

This is similar to expressions used in state variable theory and
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Fig 2.7 Multiple feedback filter having n fully interconnected
sections.
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feedback theory. When used in state variable theory, the matrix %,(s)
would represent differentiation thus z%(sf‘:= }g U 169]. 1
Sandberg's multi-loop feedback theory [68], the matrix é% would
represent the constants associated with dependent sources., As an
example of its application to multiple feedback filters, consider the

filter shown in Fig 2.6. From the block diagram we construct the

matrices:
O O a4 G,
A={1 o Opy «%s G, (2.2.6)
O 1 0Qy Gy
\ 0
0 1

and using (2.2.5) we obtain the transfer function of the filter:

-1

Fi= v =[0 o t]fe" 0 -a, \

e '\ Gz -023 0]
0 -l 6,'-as, V)

F(s) = \

6, 6; Gy ~05,66,' ~0,6, " ~a,

Fis) — 6,6, 6, (2.2.7)
Alternatively the filter may be analysed by taking the equivalent

signal flow graph and using Mason's topological rule for the analysis
of SFG's [66, 67]. Mason's Rule has the form:

; P [1“2-’3 +27}Tk - ] (2.2.8)
P-L T+ T TR *+ - -
P q r

Fs) =

in which the transfer function F(s) is expressed in terms of loop
gains T and forward path gains P only. The summation p is over all
feedback loops. The summations 9s ry... are over all products of
'non-touching' feedback loops. Two feedback loops L, and L, do not
'touch! if for all branches w, € L, and for all branches w,€ L,
there is no pair of branches Ww,,w, incident at a common node. The

summation f is over all forward paths, and for each forward path the



summations a,b,... are over all products of feedback loops which do
not touch each other or the forward path.

As an example consider again the filter in Fig 2.6. The SFG has
one forward path {b. ) G, G, , 63} and three feedback loops {63, Q33 },
{Gz » Gy au} and {G. y G, G, a.g} . The corresponding forward
path gain is P, = b,6,6,G, = 6,6,6; , and the corresponding loop
gains are T,=06,a;, , T,= 6,G;0,3 and Ty= 6,6,G;0,.

All feedback loops touch each other, aad all touch the forward path.
Thus (2.2.8) becomes:

Fs) = P
1= (T, + T+ Ts)

F(s) — 6,G, G, (2.2.9)
1"' 63033 - GZG3q13 - GIGZG3Q|’$

which agrees with (2.2.7).
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2.2.2 Sensitivity of the transfer function

Having obtained an expression for the transfer function of a
multiple feedback filter, we are now able to investigate the
sensitivity of the transfer function to changes in the block diagram
parameters @ , bj , ¢, d and G;(s) .  Some authors give
expressions for differential sensitivity [69,70,1341, but the
expressions for finite difference sensitivity given in this section
have not yet appeared in the literature.

Using the.definition of finite difference sensitivity (1.2.3),
and the expression for the transfer function in (2.2.5), we can
obtain the sensitivities to b; , ¢; and d directly. If Uy
represents the j-~th column of the unit matrix, then as

bj v——————-—>—bj +Abj we obtain:

F -1 - (2.2.10)
/é (5)= LN (’%(S)"ﬁ) Y

b; Fls)
Similarly as G

AF@: G (%(Sgl_ 04)-\& | (2.2.11)

S F(s)

and as d +——>-d+Ad we obtain:

éf-'(s): d (2.2.12)
d F(s)

Notice that the sensitivities in (2.2.10), (2.2.11) and (2.2.12) are

¢ +AC3 we obtain:

all independent of the increment. Therefore in each case the finite
difference sensitivity is equal to the differential sensitivity. This
is not true of the remaining sensitivities. To find these we use the
following expression for the inverse of a matrix in which one

component m;, is given an increment wmy +——m-—>— mMjk +Amjk

(M Ay vy u)' = M~ A M Uy M
1+ Amy, cof my
det it (2.2.13)

This expression may be verified by multiplying the incremented matrix

(‘/[/(, + Amjk u; ukt) by its inverse as given in (2.2.13), to obtain
the unit matrix.

Now as Qu ————> Q;+Aa;x we have from (1.2.3) and (2.2.5):

F(s)

é = Gjk (Et(%(si"ﬂ'ﬂagk Y ukt\-‘b - Lt (@(sg"f)é‘)—l \2)

~s

F(s) Ao (2.2.14)
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using (2.2.13):
F(s)

é — Qik Aok %(s) (}4 Us Uyt fg(s-\‘ 04

Ak F(s) Ao 1 — Aay, cof ey (2.2.15)

det (%(s-)‘- #A)
where cofe k is the cofactor of the element ek in the matrix
-1
dg f%ﬁﬂ &%’ . Simplifying (2.2.15) gives the finite difference
sensitivity as a function of the fractional change Z&a;”/u kS

F(s)

A =L 1 ¢ BsToh) uu,, (Gosch)'
O Fy 1 _ Aap  cofey ~
Q5 QA de’c(%(si'-%) (2.2.16)
From (2.2.16) and (1.2.5) we may also obtain the differential
sensitivity:
F(s) -1 -1 -1 ol
S = ap & - Ay u, (he)-A) R
% (s) (2.2.17)
Similarly as GJ' *'——>*GJ+AGJ we have
G;' +———>-(63+AGJ-)-'= G-~ DG
G; (6;+A6;)
so that from (1 2.3) and (2.2.5):
F(s) a4 -
A Y. G ( (Kgm oh-_86y bt)‘b _gt(J%(ss-A)'b)
68 F(9) A6, G(GJ«LAG)
using (2.2.13): |
F(S) '—ZXE‘— -1 -1 -1 -1
é — G", 63 (63+A63) st(%@)’(f() u; l‘@t<%(5)’04) b
Gy FloAG 1 AG; cof e;;
6 (6,+46)) det(%(si'-a@ (2.2.20)
F(s) -1 -
é‘szL 1 ¢ (G- AT'y; uy, eitA) '
6 F& G+ _A_;<G cof &3 )
G dd’.(%(ss‘-u‘{)
From this we may also obtain:
Smgzi_lgdgﬁﬂrﬁ%%QW”x
G;(s)  Fls) Gylo) (2.2.22)

The differential sensitivities (2.2.22) and (2.2.17) may also be
obtained directly from (2.2.5)by differentiation.

(2.2.18)

(2.2.19)

(2.2.21)
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We have now found both the finite difference sensitivity and the
differential sensitivity of the transfer function F(s) to changes
in each of the parameters in the block diagram in Fig 2.7.

As an example we use these expressions to find some of the
sensitivities of the multiple feedback filter shown in Fig 2.6. Using

(2.2.21) and the matrices in (2.2.6) we obtain:

Fls) i
56. = \ X

t
F6) G, 4 AG, (G' 616 anG' - ay,

G| Guh'GldG;"‘ ays G:IG:’Q,; 6.-"(2.3 /
-1 . -t
[oo1]fe: o -as | [1][too][6" 0 -as |4
-l 6y -an | |O -6 -an | |0
0 -1 6;‘-q33 0 o - 6;"‘133 0

é — _!_ 1 CO’F € CO‘FQ..
6, F(5) G446, (G,_ 6,6 ~056; = s )da(@'-ﬂ) det (6™ of)
R R T A eI

G Gy' =0y G;' - Qs
é _ 666 -y G 6: -G G -0
6 G+ &(6, _ 66 - 016; - A )
6, 66163 =053 6 b7 = Apy 6, -1

6\ - 033 G|G3 - a'l_‘s G\Gi 63

F(s)

é — 1~ a;,G; = 03 6,65 = a,,6,6.6, (2.2.23)
6. 6,+AG [G_ G -0y 665 -0y 6,66, 5
6, 1"‘“3363'023 G,6, - Ais 6.6. G,

Similarly using (2.2.16) and (2.2.6) we obtain

F(s)

5= | :

Oy F(s) i - AQI, GI"
Gy Ous 667 6"~ 053 6'6; -0,y G-t

- -1 - -
[O O 1] 6|| O 'qﬁ O [O O 1] G\l O "0|3 ‘ |
-1 G: "au | "l G;l ‘alg O
o - 6;'"0;3 0 o -l G;‘Qn 0
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F(s)
=1 ! cof ey cote,
dy  F(s) 1 _ Qay, G det(%"—udf) det%'-%)
Qzs 077 G.-‘GL-‘G;I~ (o BN G;‘G;‘-— Qes G‘.'— Ui
6. G,
F(S)_.. /- Qss 63 ~Qqs G, Gs - A G|6163
ay V- AL 655
Qs G 1-0506,-0,,0,6,- 1, G.6:6s (2.2.28)

Using (2.2.17) and (2.2.6) we obtain:

SF(S\)z_ai[O 0 1]{6* 0 -as |'[o][0 0 1][6" 0 ~as "]
I O -l G -ay 0 -G -0y, 0
O ~I G;"ag‘s | o - G-;'—Q;‘, O

S — 0Oy cofey, cof ey
Gy Fls) det(fz"—o‘ﬂ det(é,"-c%%)

F( "o
q ) _ 0, 6.6, _ 0, 6;
az‘\ 6\"61:l 6:‘033 G;‘Gz.‘"az3 G:ta'l 1— 03‘363— q23 GIGZ - q|3 GlGl Gl
(2.2.25)
Using (2.2.22) and (2.2.6) we obtain:
F -1 T - - -1 -l
S“L@_‘Looﬂc.'o —as o]0 o 1][6" o ~a‘31 n
Gy Flo -G 04 0 -l 6" -ap 0
0 - G3-05) || 0 -l ;"an_l 0
SF“): 66's: _ 1
63 G:|G£,G;"‘qn G:lG;—l = Qg Gt."qrs 1'033 G;—G,,Gng‘ O|3G, G‘LG;
(2.2.26)

From (2.2.23) and (2.2.24) we can write the corresponding differential

sensitivities, which, together with (2.2.25) and (2.2.26), will be used

to illustrate the summed sensitivity invariant described in the next

section:

sz 1= 05,65 - 0y 6. 65 (2.2.27)
6, 1-036; =023 G,65-0a,06.6,6,

Fls) _ Qqs 6,65 (2.2.28)
(0P { “03-563 ~ 023616} = Oy GIG?-G'$

The expressions (2.2.10), (2.2.11), (2.2.12), (2.2.17) and
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(2.2.22) could form the basis of an efficient computer programme for
the analysis of differential sensitivities. Assuming that the matrix
method (2.2.5) is used to determine the nominal response Fr@) , the
matrix ( (SfL d4)-l would be available. From this the matrices
Qt(%(ﬁto4-‘ and (%As?~d4y|b are readily obtained, and
need be determined once only at each frequency. From these two
matrices, all the differential sensitivities follow with very little
extra computation. It will be seen in Section 2.2.4 that (%(5104)4b
is a column matrix of intermediate transfer functions, and that

gt (%(SS‘- ()‘5{")—l is a row matrix of noise transfer functions, which
are used in the analysis of dynamic range.

Both finite difference sensitivity and differential sensitivity
may also be found from a signal flow graph by using lMason's rule and
flow graph reversal (commonly called the adjoint approach when used
in network analysis) [71]. The concept of flow graph reversal will

be described in section 3.3.



2.2.3 A summed sensitivity invariant

For LCR and active CR networks, various summed sensitivity
invariants have been derived from Euler's relation for homogeneous
functions, They are of theoretical interest in that they provide
bounds [T72] to some sensitivity norms [73]*, and they have a practical
use as an aid to the computation of sensitivities.

In this section we present a new summed sensitivity invariant,
which is novel in several respects. It is not here derived from
Euler's relation, but is found from a consideration of the SFG of a
multiple feedback filter, and the associated sensitivities as given
in the previous section, The invariant applies to the branches of a
cut of the SFG. A cut is similar to a cutset but is slightly more
general. We will derive the summed sensitivity invariant for certain
specific cuts, and will then combine these results in such a way that
enables us to write a summed sensitivity invariant for any given cut.

First we define a cut. If the m nodes of an m-node graph are
divided into two non-null sets ‘Vq and de, then any set of branches
each of which has one node in ‘QO and the other node in th, is
called a cut (or seg [74]) of the graph. A cut is either a cutset or
a disjoint union of cutsets. If NL or TQb contains only one node, the
corresponding cut is the set of branches incident at that node, and it
is called a nodal cut or node cut. It follows that every node of the
graph defines a node cut.

Now consider the block diagram of the general multiple feedback
filter shown in Fig 2.7. This has an equivalent SFG shown in Fig 2.8.
A cut C of the SFG will divide the nodes of the SFG into two sets Na
and N, , and without loss of generality we take N, to be the set
containing the node € . If the p branches of the cut C are
represented by their associated branch weights w,, w,, . .., W, then
we may represent the cut:

C={wi, Way---» W} (2.2.29)
We define the sensitivity sum & associated with the cut C to be:

£ F (2.2.30)

o2 n w;
[ S, )
where 52; is the differential sensitivity of the transfer function F

with respect to wW; , as found in the preceding section; and sgn w; is

¥ A sensitivity norm is sometimes taken to be a measure of
multiparameter sensitivity, and in the mathematical sense that is
just what it is., Most sensitivity norms however do not assign
relative importance to different sensitivities, and none so far
proposed give any indication of the deviation AF or AlFl.
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+1 or -1 depending respectively on whether the branch w; is
directed away from or towards the set N, (which contains the
filter input node e).

We will now determine the sensitivity sum o for each of three
node cuts of the SFG in Fig 2.8. Firstly, the k-th output node ¢,
which defines a node cut Cxu :
ka={Gks Crs Gy Qo s - - -va"k} (2.2.31)
for which the set Nb contains only one node, namely o, . Since
Gk is the only branch of ka directed away from the set N, , the

is:

sensitivity sum c_“\« associated with the cut Clk

F F N ~F
o - S - 5
h 5Gk c 3:21 Qi

(2.2.32)

K
This may be evaluated using (2.2.22), (2.2.11) and (2.2.17):

c \G-A) v u, (AT — e u, (G-oA)k

~ ~2t

O, = 1 1
F Gy F

Xy

-y E (G- A vs v, (§-A)"
J:l

= Jels o - Yol |, (A

= | Cy (%;"04)-‘ _"a-lk | "Ck\ _L B\Et (%|'%>-‘h (2.2.33)
- Qg F
G\:‘—akk
L";nk i J

which, using the matrix é:e-: %-‘-04/ , may be written as:

2= (€ e -c F1 u, '-cA) "

o, = | C




- T — § )
c;ck = 1 Cy CO‘F ey - - - cof € || Cy |~ Cx i M%"O‘f) l b
det & . . . =
cofewm ™ 7 7 Cof Cun || €] (2.2.34)
and since:
: (2.2.35)
PR Co‘cesa:{ o : L#k
j:\ det é : Q..___: k
we have:
oo ={eew )L w, (G4
G‘:rk= O (2.2.36)

Thus the sensitivity sum 03 associated with the node cut Cy
defined by the k—-th output node x,, is equal to zero. This is true
for each of the n output nodes x,, x, , ..., Xy .

Secondly the k-th input node ‘jk defines a node cut C5k

2,2,
Cgk:{Gk s by Qs Qugs - - - Oinl ( 37)

for which the sensitivity sum O"BK is:
F F n
W ==9 +5 +)
I« :
Gk bk le
which may be evaluated using (2.2.22), (2.2.10) and (2.2.17):

G—Bk:—%_‘: Qt(q;"ﬁ)ﬂlﬂ i, (%/-L(#)db, . _}_3_\3_ Q{(%’\‘ﬂ)_‘l}\g

oy gtug-a@"wt(gr'-oﬂ-‘

(2.2.38)

aki

¢, (X -A#) u, [ b, -[~au "(%“—af()"b (2.2.39)

=1
F - qke
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In a manner similar to treatment of the output node o, we may show
that:
oy, =0 (2.2.40)
that is the sensitivity sum G_’:ik associated with the cut CBu
defined by the k-th input node Yy, is equal to zero, This is irue
for each of the n input nodes Yis Yo s v e Yn -

Thirdly the filter output node Vv defines a node cut C\,:
C,={d,csCon.-.sCh} (2.2.41)

for which the sensitivity sum o, is:

F n ~F (2.2.42)
0., — +
- 5I+ LS,
This may be evaluated using (2.2.12) and (2.2.11):
n - -\
Gy =._°_\. +Z g E;‘t(%’ —04) b
F j:\ F
Sy =_1{d tCy (%“'04)453
F.'
Using (2.2.5):
(2.2.43)

oy =1
Thus the sensitivity sum o], associated with the node cut Cv
defined by the filter output node VvV is equal to unity.

The three results (2.2.36), (2.2.40) and (2.2.43) together give
the sensitivity sum O~ for each node cut of the SFG shown in Fig 2.8,
except the node cut corresponding to the filter input node e, We
have therefore considered all cuts for which the set Nb contains
only one node. Now we describe how these cuts may be combined.

Consider a first cut (, dividing the nodes of the SFG into two
sets Ng and Ny (with node e in N,;). This is illustrated in
Fig 2.9(a), where the nodes constituting the set NH are shown
inside the dashed line marked WN,, , and where the branches
constituting the cut C, are the branches intersected by the dashed
line marked NM . Similarly consider a second cut C, dividing
the nodes of the SFG into two sets Ny, and N, (with node e in
N,, ), with the condition that N,, and N,, are disjoint (that
is Ny and N, have no nodes in common). This is also illustrated
in Fig 2.9(a). Notice that although Nb‘ and Ny, are disjoint, the
cuts C, and C, may have branches in common.

Now consider a third cut C; dividing the nodes of the SFG into
* two sets Nyy and N, where N, consists of the nodes in Ny,
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together witn the nodes in Ny, : "
Nbs = Ny v Ny, - (2.2.44)

as illustrated in Fig 2.9(b). The branches of the cut C; will

evidently be the branches in C, together with the branches in C,

but excluding any branches common to C, and C, . This is known as

the symmetrical difference of the two sets C, and C, and is denoted
thus:

C,=C+Cs (2.2.45)

Let o, ,0; and g3 be the sensitivity sums corresponding
respectively to the cuts C, , C; and C, . Then the sum a; + 03
will have one term for each branch in C(, and one term for each
branch in C, . Hence for branches common to C, and C, there will
be two terms in ¢ + 03 . They will be equal in magnitude, but one
of them will have a positive sign and the other will have a negative
sign, on account of the common branches having one orientation with
respect to T\lb‘ and the opposite orientation with respect to sz .
These terms will cancel in ©,+30, 1leaving only terms corresponding
to the non-common branches in C, and C, . But these non-common
branches are identically.the branches in C; , furthermore the
orientation of these branches with respect to Ny; is the same as
their orientation with respect to Nb‘ or sz as appropriate.
Therefore 0, + T, is the sensitivity sum corresponding to the cut C,. -
So we can say that if a cut C,; is the symmetrical difference of two
cuts C, and C, :

C,=C+C, (2.2.46)
such that:

Ny = Ny v Ny, NyA N, = @ (2.2.47)
then:

03= 0, + 0, (2.2.48)

This result can be used successively to combine any number of node
cuts as follows. Consider any cut C of the SFG shown in Fig 2.8,
dividing the nodes of the SFG into two sets Na (wvhich contains node e)
and Nb . If the set N, contains q nodes then N, is the disjoint

each containing a single node of Nb:

(2.2.49)

union of q sets an ceey Nba’

Np= Ny v Ny, veoov me
Corresponding to each of these q nodes is a node cut C,,Cp, ... ,Cq
and since the symmetrical difference is associative, we may write,
using (2.2.44) and (2.2.45):

C=C+Ct+...+Cq (2.2.50)



and from (2.2.46) and 2.2,48) it follows that:

O-=0_‘+0-9_'1'...+O—:L (2.2'51)

But we have already evaluated the sensitivity sums for each possible
node cut, and they are all equal to zero, except o5, which is equal
to unity (see(2.2.36), (2.2.40) and (2.2.43)), Whence:

T = {O : vé N, (2.2.52)
1 : VEN,

which is the required result. Since the value of the sensitivity sum

O~ is quite independent of the values of any of the branch weights, we

call it a summed sensitivity invariant. We summarise our conclusion

in the following:

For any cut C={w| s Wy g oe- } dividing the nodes of
the SFG of a multiple fesdback filter into two sets N,
and N, , with € € Ny , there exists an invariant

sensitivity sum o given by:

°‘=E(59n w; 5\:) = {? vel, (2.2.53)

wJ-GC vE Nb
where sgn w; — {-H * w; directed away from Ng
=1 * w; directed towards Nq

As an example take the multiple feedback filter shown in Fig 2.6,
and consider the cut C = {G‘ y Oga 9 Gyy s 63} as indicated by the
dashed line in Fig 2.10. Here extra unity weight branches have been
inserted to make this graph a special case of the SFG in Fig 2.8.

The branches "G, y G,y » d3; are directed away from the set of nodes
N
The branch G, has the opposite direction, hence sgn G,=-1.

o containing node e, hence sgn G, = sgn Gzy = S9N Oy = 1.

Furthermore the node Vv is not in the set N, , so that we have

from (2.2.53):

oY (SSH W35F>= SF+ SF N SF ‘”SF _ 0 (2.2.54)
wi€c Wi G, Q3 O3y G,

Expressions for the four sensitivities in (2.2.54) were given in the

previous section, and one use of the sensitivity invariant is to

check the results so obtained. Thus from (2.2.25), (2.2.26), (2.2.27)

and (2.2.28):
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Fig 2.10 Example of the summed sensitivity invariant
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S S +S S — (-0, 6, - a“GG)-ranGG + 05 G5 -1 _0
O3 1= 043 G3 = 045 6,64 - Q‘.SGG G,
which checks with (2.2.54)

Alternatively the sensitivity invariant may be used to simﬁlify

the calculation of sensitivity. For example consider the leapfrog

feedback structure shown in Fig 2.11. Using the cut:
C=:{0k#“ 1 Gm| ’ sza R Gn}
we can write the sensitivity sum o :

G___S +Z ) S :{?ivﬁNb

1 i= v €Ny

and, since Vv € N, when n-k is odd and v € N, when n-k is even,

this enables us to express the sensitivity to the feedback path Oy yat

in terms of the sensitivities to the subsequent blocks as:
ESF

Thus once the sensitivities to the branches G; have been determined,

n-k

n-k Y ~F _
= Z (‘\) S + (_L -4 (2.2.55)
\}:‘

o} Gk+j 2 2

Kkt

the sensitivities to the branches Gy x, may be easily found. It
is of interest to note that Szentirmai [33] has given the following

expression, based purely on intuitive reasoning:

F- n-k =

S = Z - ‘)3“ S (2.2.56)

Ay ket =t Gk43
Comparison with (2.2.55) proves that it is valid for cases where n-k
is even. The reader may construct further examples of the sensitivity
invariant from the sensitivity expressions given in Fig 1.6 and
Fig 1.7.

The sensitivity invariant (2.2.53) was first reported by the
writer as a footnote in Ref.[771. Subsequently the writer published
a proof in Ref.[881, which will be given in Chapter 3 since it is an
alternative proof to that given in this chapter. Simultaneously
with Ref.[88], but quite independent from it, Acar published very
similar results for SFG's in general[137]. His approach is quite
different, and it involves the construction of a ‘'sensitivity graph'
to find relationships between dependent and independent sensitivities,

Stimulated by Acar's work, we may say in the context of multiple
feedback filters that a set of basic cutsets of the SFG will yield a

set of independent relationships between the sensitivities.
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Leapfrog feedback structure
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If the SFG has m-nodes, then a tree of the SFG will have m-1 branches.,
Bach tree-branch defines a basic cutset, for which we can write the
corresponding summed sensitivity invariant. The set of invariants
defined by a given tree will constitute a set of m-1 linearly
independent equations relating the SFG sensitivities., We may also
say that the sensitivities of the transfer function with respect to
the co-tree branch weights will constitute a set of independent
sensitivities, Note that the use of the summed sensitivity invariant
enables us to arrive at these results without having to construct
Acar's Sensitivity Graph.

For example, consider again the multiple feedback filter shown
in Fig 2.6, and take the particular tree indicated by the heavy line
in Fig 2.12, Each of the four tree branches b., Ay Gyq Gz
defines a basic cutset, and the summed sensitivity invariant for each
of these cutsets is shown in the figure. The four equations are
linearly independent, and the sensitivities of F with respect to the
co-tree branch weights G, , Gy and G3 . form a set of independent
sensitivities.

In Chapter 5 we will be studying the deviations of the magnitude
response \F(iw)l , caused by the weights of the branches in the SFG
being changed by small amounts. We note here that taking separately
the real part and the imaginary part of (2.2.53) leads to equations

relating respectively the magnitude sensitivities and the phase

sensitivities:
F (2.2.57)
Z (SSY\WSS\\):{O.'Vng
w€eC Wi 1° veEN,
argF
Z <53n w, argF 5 >___ 0] (2.2.58)
WSEC W\)

These follow using known results of the sensitivity calculus.
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Fig 2,12 Example of a set of independent sensitivity equations
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2.2.4 Dynamic range

In the context of filtering, dynamic range is a measure of
signal handling capability. It is an indication of the limits
imposed by the filter on the range of signal levels over which the
filter performance is acceptable. At the upperU%%mit the signal is
distorted by the non-linear voltage or slew-rate, limitations of the
operational amplifiers, and at the lower limit the signal is
distorted by noise generated within the filter.

Dynamic range is usually considered in the frequency domain,
although for pulse filters it would be more appropriate to use the
time domain. We will use the frequency domain, and will consider the
lower and upper limits to dynamic range separately.

The upper limit to dynamic range is imposed by the voltage limited
or slew-rate limited outputs of the operational amplifiers. If the
signal level is high enough, these lead to non-linear distortion of
the filter output, and in some cases to jump resonance [75]. We
assume that to maintain acceptable performance it is necessary that, in
the sinusoidal steady state, the operational amplifier output voltages
do not exceed a specific value. In single amplifier sections, such as
that shown in Fig 2.1(b), the amplifier output is coincident with the
output of the section, and we therefore consider the section output
voltages oc; in Fig 2.7. If multiple amplifier sections such as the
ones shown in Fig 1.5(c) and (d) are used, then there will be a
further problem (not considered here) of relating the output voltages
of the additional amplifiers to the section output voltage. The
sinusoidal steady state output voltage phasor V’=:lVﬂ eiuTSV
(where v(t)= Re Vetwt ) of the filter is determined by the

transfer function (2.2.5), and its magnitude is:

-1 -t 2.20
V1= les (Gea-#)" +a |- 1£) (2.2.59)
and the output voltages AG of the internal sections are determined by

the intermediate transfer functions 3@3(5)/&(5) , which are
obtained from (2.2.2) and (2.2.3) as:

Gje(s)—ég_cﬁz lﬁt(%(s)-‘-()‘?)'\b j=h2,.,n
e (s)

(2.2.60)

thus:

|47 1= \gjt(fg(aw)"—ﬂ)"bl “\£| §=1,2,..,m (2.2.61)
The input |£ | must not exceed the value (denoted by \Z?‘ ) which

causes any one of these voltages to become distorted.

Discussion is aided by plotting these voltages as functions of

77



78

frequency. As an example these voltages have been computed for the
filter design illustrated in Fig 2.6, and they are plotted in Fig 2.13.
The voltages are plotted for an input \EW =1 , so that the graphs
also represent the moduli of the intermediate transfer functions from
the filter input to the outputs of the various sections. The output
of section 3 is, in this example, also the filter output and it is
determined by the specified transfer function of the filter. If, as
the input voltage |£| is increased, it is an internal section which
first causes distortion, then the dynamic range of the filter is
probably unnecessarily restricted, because, as will be shown in
section 3.4, it is in theory always possible to scale the signal levels
without affecting sensitivity. Thus the signal level at the output of
the offending internal section could be reduced in scale until that
section is no longer the prime cause of distortion.

Conversely, if it is the output section which first causes
distortion, there may be an internal section at which the signal level
is too low, so that the section makes an unnecessarily large
contribution to the filter noise, It is usually assumed therefore
that the optimum condition is achieved when all amplifiers start to
distort at the same value of |£| . The graphs in Fig 2.13 show that
this condition is almost achieved in the example, for the usual case of
all amplifiers having identical performance, in that the maxima of the
three curves are within about 1dB of each other., The attainment of
this optimum condition depends on being able to obtain the required
gain from the type of section being used.

In practice the input to the filter is unlikely to be a steady
state sinusoid, and the above analysis may not give a good indication
of the maximum voltages., However, if the input signal has a Laplace
transform, the filter transfer function (2.2.5) and the intermediate
transfer functions (2.2.60) can be used to determine the maximum
voltages. If the input signal is a random process, then it may or
may not be possible to determine the maximum voltages, depending on
the nature of the process. If, for instance, all that is known about
the input signal is its spectral density, then it is possible to find
the mean square voltages, but not the peak voltages., In these
circumstances one might assume that the optimum condition for maximum
dynamic range is obtained when the mean square voltages at the outputs
of all the sections are equal.

It will be noticed in Fig 2.13 that the frequency response at the

output of an internal section can have considerable variation over the
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Fig 2.13 Signal levels of the filter shown in Fig 2.6; plotted
for |£l=1
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passband. In the example, the passband response of l)}\ varies by
11.5dB., IFMultiple feedback filters differ in the extent of such
variation, and at one time it was assumed that the filter with the
lowest variation had the best dynamic range [76,77]1. The intuitive
assumption was that since the signal level was more removed from the
noise level, the noise produced by the filter would be lower. More
recent work [78,79,80] has questioned this assumption, and it is
therefore necessary to investigate the way in which noise is produced
by the filter.

In active CR filters, thermal noise is generated in the resistors,
and various mechanisms generate noise in the operational amplifiers
[81]. With careful design the noise produced by an isolated section
can be minimized [82]. When several sections are interconnected to
form a multiple feedback filter, each section will contribute to the
noise output of the filter, and we are interested in how this noise is
affected by multiple feedback. The noise produced by a given section
can be modelled by an equivalent noise voltage source connected to the
input of that section.

Accordingly we will analyse the general multiple feedback filter
in Fig 2.7 with an additional voltage source €; at the input of each

section, and with the filter input suppressed, such that:

y=ofx +e where e, ] (2.2.62) -

[ Cn]

whence from (2.2.62), (2.2.2) and (2.2.4) with the filter input e=0

we obtain:

V=gt (U“%(s) 04’)“%(5) g
= o ) (2269

Thus the voltage transfer ratio ijb) from the voltage source €;

to the filter output v is:

-\ - .

Gils) & V(o) — gt(l%@—#) u j=4,2,..,n (2.2.64)
g;(s)

We will call these the noise transfer functions. Now when €;(t) is

taken to be an equivalent noise source it is assumed to be a sample

function from an ergodic random process, and it is characterized by its
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*
spectral density ensﬁo) with units of voltsﬁ/Hz. The 'power'

transfer functiont ‘GYjﬁuﬁ\E is used to find the resulting spectral
density  eg(w) at the output of the filter {83] thus:

s 2

en (@ =Gy ey (2.2.65)

The mean square noise voltage e;; produced at the output of the
filter by the noise generated in the j-th section may be obtained

from the spectral density [83]* :

= 4 oo
en32=L/ e,fj (w)dw (2.2.66)
2 _
= f )G (tw) nj(w) dw (2.2.67)
21

f G, (9 GVJ( s)e,. (S) ds (2.2.68)
2_'“’!. - L0 i

Since the noise sources are uncorrelated and have zero mean value, the
noise spectral densities e:SUM (and hence the mean square noise
voltages €, ) will add together at the output of the filter, Thus
the spectral density e, (w) at the filter output is given by:

Env() = €, (W) +Z e,; (w)
=

(2.2.69).

~

€. (W) = e, (w) + i]gt(%(mi‘-ﬂ)" u; lze,3 ()
j:,|

where e, (w) 1is the spectral density of the noise produced by the
summing amplifier section at the output of the filter (Fig 2.7), and
is unaffected by multiple feedback. The mean square noise voltage at

the filter output is:

— ® (2.2.70)
€ =_i_/ env(w)dw
a1 T

Computation of this noise is simplified when one can assume that the

spectral densities are constant over the frequency range of interest

[80].

¥ Many engineers prefer to use the square root of the spectral
density, with units of volts/J s for which the familiar
voltage transfer functions obtaln

1 Note that the spectral density of a random voltage is often thought
of as a normalized power density, and the squared modulus functions
are hence called power transfer functions.

T Some authors prefer to use the one-sided spectral gensity for which
the corresponding expression is of the form: EE:i[ e(f)df.
©
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The dynamic range D of a filter is usually defined to be the
ratio of the root mean square value of the maximum undistorted
sinusoidal steady state output voltage li>(/vﬁf , that is achievable
for all passband frequencies, to the root mean square value of the
noise voltage Vfgff at the output of the filter. Thus for multiple
feedback filters:

D_ " (2.2.71)

J2 el —
where |/#|  is given by (2.2.59) with |£|= }é;[ ,and ¢, is
given by (2.2.69) substituted in (2.2.70).

We have seen that the dynamic range of a multiple feedback filter
is related to the imperfections of its constituent sections By the
intermediate transfer functions (2.2.60) and the noise transfer
functions (2.2.64). In section 3.4 we will show how the scaling
transformation can be used to maximise the dynamic range of any given

filter, without degrading the sensitivity performance.



2.3 Summary

In this chapter we have defined a multiple feedback filter to be
an interconnection of active CR sections, forming a structure which
has at least one forward path, and a multiplicity of feedback loops.
The definition is flexible enough to encompass all structures
proposed to date, including Bach's circuit which is not normally
thought of in this context. We have seen how a multiple feedback
filter may be represented by eitner a block diagram or a signal flow
graph.

We have shown that a multiple feedback filter may be analysed
using Sandberg's matrix method, or Mason's topological method.
Explicit expressions have been given for the differential
sensitivities and the finite difference sensitivities of the transfer
function of any given multiple feedback filter with respect to changes
in the block diagram parameters. The expressions for finite
difference sensitivities are given here for the first time. An
indication has been given of how sensitivities may alternatively be
found by using Mason's rule and flow graph reversal.

A new summed sensitivity invariant has been given, applicable to
the branches of a cut of a SFG. It is valid for SFG's in general, but
has been presented here in the specific context of multiple feedback
filters. The proof given in this chapter is based on matrix analysis
of a general structure. An alternative proof based on the scaling
transformation and Euler's relation will be given in Chapter 3. The
result was first published by the writer as a footnote in Ref [77],
and later in Ref [88] together with the alternative proof.

Dynamic range has been discussed, and it has been shown that,
given the noise and limiting properties of the sections, the dynamic
range of any given multiple feedback filter may be determined by
using the noise transfer functions and the intermediate transfer

functions of the structure.
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TRANSFORMATION OF MULTIPLE FE«DBACK FILTERS

There are many methods of synthesising a multiple feedback
filter, and they lead to a variety of different structures. Once a
particular filter has been obtained as a result of synthesis, it may
be manipulated further by an application of the transformations
described in this chapter. The transformations may be used to obtain
new structures from known structures, or they may be used to improve
the performance of the filter in some way. For instance they have
been used variously to reduce complexity, to reduce sensitivity, and
to increase dynamic range; all without affecting the transfer function.

Most transformations are manipulations of the SFG of a filter,
and we start by describing rudimentary SFG equivalents which are
useful for simplifying the realization. Some transformations have
the interesting property, first pointed out by the writer in (84,771,
of altering the SFG without affecting the block diasram sensitivities
(block diagram sensitivities were given in section 2.2.2)., One of
these, namely scaling of signal levels, has already been mentioned
in the discussion of dynamic range. The other two are the interchange
of cascaded sub-networks, and the reversal of a signal flow graph.
These may also affect the dynamic range, and flow graph reversal may
sometimes reduce the complexity.

In some cases a similarity transformation of the matrix & can be
used to alter the structure of a filter without affecting the transfer
function. It has been used by some authors [49,69,85,86] in a search

for low sensitivity structures.
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3.1 Equivalent signal flow graphs

Mason [ 65] has given some equivalent signal flow graphs which can
be used to manipulate a SFG in order to obtain new structures or to
simplify the realization., These rudimentary equivalents are shown in
Fig 3.1.

The use of these equivalents will be illustrated by the derivation
of a structure which will be studied in a later chapter. Starting from
the LCR filter shown in Fig 3.2(a), we obtain a block diagram by
simulation, in the way that was described in section 1.1. This block
diagram (Fig 3.2(b)) is not in a form suitable for practical
realization because the transfer function of the second block has a
pole at infinity. In practice a voltage ratio can never have a pole
at infinite frequency, and circuits which give the required response
over a limited band of frequencies are usually excessively noisy. The
difficulty is overcome by redrawing the block diagram as an SFG
(Fig 3.2(c)) and then using the rudimentary SFG equivalents to
eliminate the term sC, from the transfer function of the second block
(Fig 3.2(d) and (e)). The resulting realization would need three
integrator sections and two summing amplifier sections. However
further use of the SFG equivalents (Fig 3.2(f) and (g)) leads to a
structure with a simpler realization.

In the process of drawing the block diagram in Fig 3.2(h)
equivalent to the SFG in Fig 3.2(g),we have changed the sign of some
branch weights, in a way which does not alter the transfer function
but which associates the negative signs with the blocks. Although
this is a fairly obvious transformation, it is interesting to note
that it is a special case of the scaling transformation which will be
described in section 3.4. A realization of this block diagram uses
three integrator sections and only one summing amplifier section, and
in this form the realization is the circuit attributed to Ford in
Ref (171 .

It should also be noted that having transformed the network, it
is no longer a direct simulation of the LCR filter. The leapfrog
feedback structure has been retained, but the term sC, in the
transfer function of the second block in Fig 3.2(b) has been replaced
by extra feedback and feedforward paths in Fig 3.2(h). In the same
way that the capacitor C@ affects mainly the stopband performance
of the LCR filter, so these extra paths affect mainly the stopband
performance of the multiple feedback filter in Fig 3.2(h), as will be

shown in Chapter 5, where we study a bandpass version of this filter.
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Fig 3.2 Transformation using equivalent signal flow graphs
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LCR lowpass ladder filter

Block diagram obtained by simulation (see Fig 1.3)
Signal flow graph equivalent to (b)

Transformation of the SFG using rudimentary equivalents

continued:
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In Fig 3.2 the SFG equivalents have been used to obtain a block
diagram which may be easily realized by active CR sections. There
are other possibilities, for instance SFG equivalents have been
applied to the same simulation (Fig 3;2(b)) to obtain a block diagram
which is suitable in some circumstances* for realization by three
switched capacitor sections, and the result is shown in Fig 3.3 [52].
A different application of SFG equivalents to the simulation shown in
Fig 3.2(b) results in the block diagram given by Doblinger 11441,
which is suitable for realization by differential-input integrator

sections and summing amplifier sections.

% This is suitable when the sampling frequency is much greater than
the highest frequency present in the input e. If this is not the
case then the sampled-data nature of switched capacitor filters must
be taken into consideration.
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3.2 Interchange of cascade subnetworks

Certain flexibilities in the cascade structure are often exploited
to maximize dynamic range. One can for instance change the oxrder in
which the blocks occur, This transformation can sometimes be applied
to filters having a more complicated structure, as was first pointed
out by the writer in Ref [771].

For example the network in Fig 2.6 has been redrawn in Fig 3.4(a)
with dashed lines indicating two subnetworks which are connected in
cascade. These two subnetworks may be interchanged without affecting
the transfer function; and without affecting the differential
sensitivities or the finite difference sensitivities of the transfer
function to changes in the block diagram parameters. The result of
interchanging the two subnetworks is shown in Fig 3.4(b). In this
example the process can be repeated to give other networks, as shown
in Fig 3.4(c) and (d). In the case of a multiple feedback filter
having n blocks, one forward path, and n nested feedback loops,
successive interchange of cascaded subnetworks will yield a total of
2n—1 different networks, each one having identical block diagram
sensitivities,

Although the different networks have the same transfer function,
the responses at the internal sections will in general be different.
These responses have been computed for the networks shown in Fig 3.4,
and are shown in the Figure. They are different for each network.

The two networks in Fig 3.4(a) and (c) have known structures
[45,29] and are related to each other by flow graph reversal (which
will be described in the next section). Schaumann [78,80] has given
examples of eighth degree versions of these two networks, for which he
has calculated and also measured the dynamic range. He reports that
there is only a small difference between the dynamic ranges of the two
networks, despite the fact that one of the networks (FLF structure)
has very much greater passband ripple at the internal sections. This
disproves by counterexample the intuitive assumption, mentioned in
section 2.2.4, that the filter with the lowest variation has the best
dynamic range.

Schaumann's results need careful interpretation because the two
networks he uses have different realizations of the adders. In the FLF
structure the adder is realized by a separate operational summing
amplifier section (similar to the one shown in fig 2.5), whereas in
the other network the three adders are realized by resistive networks

at the input of the associated sections (in the manner illustrated in
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Fig 2.1(b)). Only when the filters are designed to have unity gain
does the extra amplifier in the FLF filter not substantially affect

the dynamic range, and only in that case is there a direct comparison
of the two structures which is independent of the realization. When
the two filters are designed to have higher than unity gain, Schaumann
reports that the FLF filter has better dynamic range. This is entirely
due to the extra operational amplifier which is used as an adder and
which provides gain in the FLF filter. If a similar amplifier were

to be included in the other network then the two filters would again

"have approximately the same dynamic range.
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3.3 Flow graph reversal

We now consider the transformation of a multiple feedback filter
by reversal of its signal flow graph., To reverse a SFG one simply
reverses the direction of all the branches, thus reversing the direction
of 'signal flow' through the network. It is known that flow graph
reversal (FGR) does not alter the transfer function of the filter [67],
and since the branch weights are not changed, it follows that the
differential sensitivities and the finite difference sensitivities of
the transfer function to changes in the branch weights (or
equivalently the block diagram parameters) are not altered either.
This was first pointed out by the writer in Ref [84].

As an example consider the block diagram shown in Fig 3.5(a),
which is of a 6th-degree elliptic-function bandpass filter, having
a 1.25dB passband ripple, 40.5dB stopband attenuation, a passband
width equal to 10% of the centre frequency, a transition bandwidth
of 1:2.366, and a centre frequency of 100 rad/s. The quadratic
sections were chosen to have a Q-factor of 20. The structure has
three nested feedback loops, and three parallel forward paths for the
realization of transfer function zeros. The equivalent SFG is shown
in Fig 3.5(b) together with the frequency responses at the output of
each section. Reversal of this graph results in the SFG shown in
Fig 3.5(c). In this example the reversed network has smaller
variation of passband frequency response at the internal sections.
Note also that it does not use a summing amplifier section at the
filter output, hence it can be built using fewer components.

If we reverse the SFG of the general multiple feedback filter
shown in Fig 2.8, then matrix analysis of its transfer function

Fo. (s would give:

Far

F.. ()= fbt(%@-‘_"%)-l!& v d (3.3.1)

F6R
which is simply the transpose of the matrix expression (2.2.5) for the
transfer function of the original network. For this reason the flow
graph reversed network is most aptly called the transpose network.

We may represent flow graph reversal of the general multiple

feedback filter (Fig 2.8) by the mapping:
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Fig 3.5 Flow graph reversal

a) Block diagram
b) Equivalent SFG
c) Reversed SFG [84]
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It is of interest to note that when this mapping is applied to the
intermediate transfer functions (2.2.60) we obtain for the reversed

network:

- ~1
ﬂ: E‘it( (S)"(#{ EJ j:‘_"a,...,ﬂ (3-303)

e
which may be written as:

ﬁ’: St (%(SS‘— 04)~I$ j=1,2,...,v1 (3.3.4)
) .

which will be recognized as the noise transfer functions (2.2.64) of
the original network. Also if we apply the mapping (3.3.2) to the
noise transfer functions (2.2.64), then we obtain for the reversed

network:

Y = 'b-"t <%(S).'- 04%').‘!!' j=1’27"'a"‘ (5.3.5)

vV = gt%(ﬂ"-cf‘p)-‘b i=h2,...,n (3.3.6)

which will be recognized as the intermediate transfer functions
(2.2.60) of the original network. Thus one effect of flow graph
reversal is to interchange the intermediate transfer functions and
the noise transfer functions.,

It is of interest to consider the product of the noise transfer
function GYI and the intermediate transfer function Gﬁe associated

with & particular block G; :
- -1 o 2
ij ng = ¢y (%(s) ‘_(74> U %t( (s)_#) b (3.3.7)

The right hand side will be recognized as a factor in the expression

K
?  given in (2.2.22). Trom (2.2.22) and

for the sensitivity SG (s)
§

(3.3.7) we may write:

aF(S) — G":\ Gje

The second factor in (3.3.8) may be identified with the particular

(3.3.8)

i

transfer function of the SFG in Fig 2.8 from node e to node Y; -

The first factor in (3.3.8) may be identified with a transfer function
in the reversed SFG, between the nodes corresponding to nodes VvV and
X5
using Mason's rule for SFG's (2.2.8), and in fact equation (3.3.8)

in Fig 2.8. Both of these transfer functions may be evaluated by

illustrates the relationship between the explicit formulation adopted

in this chapter, and the so called 'adjoint' method, mentioned at the
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end of section 2.2.2, for finding sensitivities by using Mason's rule
and PGR. A similar relationship exists between the expression for the
finite difference sensitivity 16;?; in (2,2.21) and the SFG method
given in Ref [71]. Equation (3.3.8) and its counterpart for finite
differences also provide an alternative proof of the invariance of

sensitivity under flow graph reversal.
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3.4 Scaling of signal levels

We have already mentioned that the signal level at the output of
an internal section of a multiple feedback filter may be scaled in
order to improve the dynamic range of the filter, without affecting its
transfer function. Many authors have used scaling in this simple form,

and for some specific structures it has been demonstrated [32,33]
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that scaling does not affect the differential sensitivity of the transfer

function with respect to the block diagram parameters.

Here we present scaling in a novel way by considering it to be
an operation on the branches of a cutset of a SFG, It will as a
consequence apply to all multiple feedback filters, and furthermore,
we will show that not only are differential sensitivities unaffected
but that also the finite difference sensitivities are not affected by
this scaling transformation.

Consider any cutset of a SFG., The cutset will divide the nodes of
the graph into two sets Ny and N, , and without loss of generality
we take Tﬂd to be the set containing the input node e . The scaling
operation consists of multiplying the weight of each branch in the
cutset by a factor A or 1/). . If a branch is directed towards N,

then its weight is multiplied by A , and if it is directed away from

N, its weight is multiplied by L/% . The result is that the signal

level at the nodes in the set Ny will be scaled by a factor A
relative to the signal level at the input of the filter,

As an example consider again the filter shown in Fig 2.6, and
take the cutset {G,, Q,, , Oz, O;} as indicated by the dashed line in
Fig 3.6. Since the branches G6,, Q4,, and a,, are directed
towards the set of nodes N, (not containing the input node e), their
weights are multiplied by A , and since the branch G, 1is directed
away from N, its weight is multiplied by 1/X . The result is that
the signal levels at the nodes &, and 3¢, have been scaled by the
factor A.

To show the effect of the scaling transformation on the transfer
function in the general case we use Mason's rule (2.2.8), which
expresses the transfer function F(s) as a function of feedback loop
gains 'Tk and forward path gains Fﬁ only.

Consider first the feedback loops. There will be an even number
(possibly zero) of branches common to both the cutset and any given
feedback loop, as illustrated in Fig 3.7(a). Half of these common
branches will be directed towards the set of nodes Ny , and the

other half will be directed away from P*b- Hence the feedback loop
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Fig 3.6 Example of the scaling transformation
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(2)

(c)

Fig 3.7 Effect of scaling on the transfer function

b) Effect on forward path gains P, , case gi) -~ node v in set Ng

a.; Effect on loopgains T; — a feedback loop is shown in isolation
c ii) - node v in set N,

Effect on forward path gains P; , case
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gain T; will be multiplied by the factor A and multiplied by the
factor \/)\ an equal number of times. These factors will cancel
leaving T; unaffected by the scaling transformation.

Now consider the forward paths. There are two cases:

Case (i) where the cutset is such that the output node v is in the
set PQQ (which also contains the input node e), as illustrated in
Fig 3.7(b). In this case the cutset has an even number (possibly
zero) of branches in common with any given forward path, one half of
them directed towards N, and the other half directed away from Nj.
Hence the forward path gain P; will be multiplied by the factor A
and the factor 1/% an equal number of times., These factors will
cancel leaving P; unaffected by the scaling transformation.

Case (ii) where the cutset is such that the output node v is in the
set N, , as illustrated in Fig 3.,7(c). In this case the cutset has
an odd number of branches in common with any given forward path. This
odd number may be thought of as an even number plus one. The factors
due to the even part will cancel as before, but the extra common branch
will cause each forward path gain Fﬁ to by multiplied by the factor A,

From iason's rule (2.2.8) it follows that scaling does not affect
the transfer function F(s), unless the cutset separates the input
node e from the output node v (case (ii) where node e is in set Ng
and node Vv is in set N, ), in which case the transfer function F(s)
is multiplied by the factor A.

The scaling transformation may be applied in turn to any number
of different cutsets of a SFG, and it follows that the transformation
is also valid for a cut; a cut being either a cutset or a disjoint
union of cutsets.

So far we have said nothing about the nature of the factor A.

In general A may be a function of the complex frequeney variable s,
although scaling with A= A(s) would not normally be used with
cutsets (or cuts) for which node v € Ny (case (ii)), because the
transfer function would then be multiplied by the complex factor A(s).
In other cases a complex scale factor can be useful. For instance
consider the leapfrog feedback network shown in Fig 3.8(a), which may
be realized by four bandpass sections and three inverters. Use of the
scaling transformation with A= 1/5 will permit the same transfer
function to be realized using the same structure, but with two highpass
sections and two lowpass sections instead of the four bandpass sections,
as shown in Fig 3.8(b). The effect of this particular transformation
on sensitivity and dynamic range has not yet been investigated. Note

that one would not perform the corresponding transformation on a
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Fig 3.8 Some uses of the scaling transformation

a§ SFG of a filter using the leapfrog feedback structure
a

b) A transformation of ga; with A= 1/s

c) A transformation of with A= -1
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leapfrog feedback network having an odd number of sections since the
transfer function would in that case be multiplied by 1/8.

For other uses of the scaling transformation the factor A is
restricted to be real and constant. This constant may be negative, and
this is often useful for eliminating unnecessary inverting amplifiers.
For example a direct realization of the SFG in Fig 3.8(a) would use
three inverting amplifier sections corresponding to the three branches
with weights equal to -1. This would be necessary because bandpass
sections do not normally accommodate both positive and negative inputs,
However, if the scaling transformation is applied with A=-1 to the
cut of the SFG shown in Fig 3.8(0), then the resulting SFG may be
realized without using any inverting amplifier sections. Note that
two of the bandpass sections have become inverting bandpass sections,
For most types of section, both inverting and non-inverting versions
are known.

Transformations of the type shown in Fig 3.8 are not new, indeed
it may be said that they are intuitively obvious. They are mentioned
here because they are now seen to be special cases of the more general
scaling transformation described in this section. This fact may be
useful in that it provides a systematic way of applying the
transformations to more complicated networks.

When the scaling transformation is used to alter the gain of a
filter, or to maximize its dynamic range, then the factor A is
restricted to be a real positive constant., This is the case which
we now consider in respect of sensitivity.

The fact that scaling does not alter the differential sensitivity
of the transfer function F(s) Qith respect té any branch weight w

follows from a known result of the sensitivity calculus:

ESF ES?F p,q real, positive, constant (3.4.1)

since the effect of scaling is to multiply F(s) by a constant p
(which may be A or 1), and to multiply w by a constant q (which may
be A, 1/X or 1). This result can be extended to finite difference

sensitivities by using Taylor's theorem as follows. From (1.2.3) we

__(A\A_/)wd_zf P | (AW)““W“"A“F + R,
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and similarly for the scaled network:

ng 2 qw O(pF)

W pF A(%w)
- _fm{d_(@ i A(%W))quz(PF) - (A(e,W))n“(qw;dd“(EF) ¥ Rn'}
pF (dlgw) 2!\ qw c\(qyw)2 nl\ qw d(qvw)"
(3.4.3)
which, since dw — 1 — ;1_ , may be written:
d(qvw) d(gqw) q,
dw
PF n-l el g /
p =£{QE +1_(M)wgi+...¢(m) w Q_F+_‘LRn}
qw F dw 2! qw dw’ n! qw dw" p
(3.4.4)

*
If the Taylor series converge then from (3.4.2) and (3.4.4) we see that:

F F
A () = A (M) (3.4.5)
w \w qw \ qw

thus the finite difference sensitivity of the transfer function F(s) to

changes in any branch weight w is in general a function of the
fractional change of the branch weight Aw/w , and this function is
not altered by scaling,

The summed sensitivity invariant in section 2.2.3, and the scaling
‘transformation in this section have been derived independently. The
two results are however related by Euler's relation for homogeneous
functions. Every scaling transformation implies a certain homogeneity
of the transfer function, and Euler's relation for this homogeneity in
turn implies a summed sensitivity invariant. Since Euler's relation is
both a necessary and a sufficient condition for homogeneity [871, the
converse is true: every summed sensitivity invariant implies a certain
homogeneity of the transfer function, which in turn implies a possible
scaling transformation.

For example, consider again the scaling transformation illustrated
in Fig 3.6. From this transformation we can say that the transfer
function F(s) is homogeneous of degree 0 with respect to the variables
G, , Oy 5 Gy and G, , thus:

F(s3 06, Ny s Ny , 263 ) = N F(s56, 4 0ass 055 G') (3.4.6)

- from ‘which follows Euler's relation:

* It is possible to derive the result in (3.4.5) by matrix analysis.
This alternative proof does not rely on convergence of the Taylor
series, but is much longer than that presented here.
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- (3.4.7)

GF *auF +05F + Gy Fea =0
whence:

F F I~ F (3.4.8)
SRR

G, Qs a,, G,
and since ESF| =:,_ESF we have the summed sensitivity invariant:

Gy G,

F F F F
_ _ 0
SG‘+ San + Sa% 563 _ (3.4.9)

as was shown in Fig 2.10.

The formulation of the scaling transformation as an operation on
a cutset of a SFG so that it applies to all multiple feedback filters,
and the demonstration of the invariance of the finite difference
sensitivities and differential sensitivities, were first given by the

writer in Ref [77].



3.5 Similarity transformation

The matrix analysis of multiple feedback filters described in
section 2,2.1 provides a means of changing the structure of a filter
by the use of a similarity transformation. The similarity
transformation of1 — J A will alter the values of

the components of (ﬁf . In particular it can give a non-zero

component where there was previously a zero valued component, thus
introducing a new branch into the SFG. Similarly it can give a zero
valued component where previously there was a non-zero component,
thus suppressing a branch in the SFG. By suppressing and introducing
branches, the similarity transformation can be used to alter the
structure of the SFG.

If the transfer function F(s) is to remain unaltered, then the
other matrices must be changed in accordance with the following

mapping:

%@ e 3"1%(5)3

& —IFY

——J"h (3.5.1)
— T, ¢

—_— d

o0 o

When this mapping is applied to the transfer function F(s) in (2.2.5)

it gives:

Fo)= ¢ I(T%0 )~ Tt 9 )" I7'h +d
=TI (hs7'-A)IT' IR +d
= (- oA)p +d 6:5:2

which is the same as (2.2.5), hence F(s) is not altered by the mapping
(3.5.1). Thus the mapping may be applied to a known structure, having
a given transfer function, in order to derive new structures having the
same transfer function. The new structures do not necessarily have the
same sensitivity and dynamic range properties as the initial structure,
and the mapping (3.5.1) may therefore be used to search for structures
with improved performance [49,69,85,86,1571. The algebraic procedure
described in Ref [49] is equivalent to using the transformation to
change a follow-the-leader feedback structure into a leapfrog feedback
structure. In Refs [69,85,86] the final structure is the outcome of a

computer optimization procedure.
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If the transformed structure is to be a multiple feedback filter
as defined in Section 2.1, then the matrix j'ﬁ%(g J must be a
diagonal matrix, just as the matrix ,949 must be diagonal. This
may be achieved in one of two ways. Either (s) 1is a scalar
multiple of the unit matrix, /%(s) = G() U, in which case ﬂg(s)
is unchanged by the mapping, irrespective of 3, since

3“,65(5)“3 =6 UT = Gy U (3.5.3)
or, if A%(q is not a scalar multiple of the unit matrix, the
transformation matrix J must be chosen such that 3-'%(5)3 is
constrained to be diagonal.

In the first case all the blocks Gj(s) in the block diagram
are identical to each other. This case was used in Refs. [49,69,86],
and it is related to the method in linear system theory of finding
all 'equivalent realizations'. In the second case the blocks GSQ%
are not necessarily identical., The only use of this case has been in
Ref [85], but unfortunately the authors of that paper overlooked the
fact that their similarity transformation did not constrain the
matrix 3'5%15)tj to be diagonal. Their method is consequently of
little practical value since an extra block must be used for each
non-diagonal term introduced by the transformation.

This difficulty does not arise in the method proposed by Mackay &
Sedra [86]. In their method, all blocks are identical to each other '
and are taken to be simple integrators Gj(s) = 1/ 5. Constraints
are introduced in the optimization procedure to ensure that successive
pairs of integrators become connected as two-~integrator loops, thus
forming quadratic sections. These two-integrator loop quadratic
sections need not all be the same.

It is of interest to note that for the case where all blocks are
identical to each other, Biswas & Kuh [69] have shown that the

sensitivity sum:

SR (Y5 .54
j=r o Gjls) Ftsy G(s)

is invariant under the similaritytransformation. Application of the
transformation (3.5.1) to the following expression obtained from

(2.2.22)
n F(s)

- - - - -1
Q=1 e (G -ot) e (b -A) (3.5.5)
3:\ G\S(SB F(S)
shows that the sensitivity sum is also invariant for the case where

the blocks Gj(s) are not identical to each other.
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3,6 Summary

Several ways of transforming a multiple feedback filter have
been described. Masons equivalent signal flow graphs may be used to
manipulate the SFG of the filter, and as an example they have been used
here to derive a structure which will be studied in Chapter 5. Cascade
subnetworks may be interchanged without affecting the transfer function
or the sensitivities, as was first pointed out by the writer in Ref {77].
A multiple feedback filter may be transformed by reversing its SFG,
again without affecting the sensitivities,as was first pointed out by
the writer in Ref [84]. We have shown that one effect of FGR is to
interchange the noise transfer functions and the intermediate transfer
functions.

We have shown that the signal levels of a multiple feedback
filter may be scaled, systematically and with complete generality, by
performing the described transformation on the branches of a cut of
the SFG., A complex scale factor can sometimes be used to change the
types of section used; a negative scale factor can be used to eliminate
unnecessary inverting amplifiers, and a real positive constant scale
factor is used to alter the gain of the filter and to maximize its
dynamic range. We have shown that neither the differential
sensitivities nor the finite difference sensitivities are altered by
this transformation., These new results were first described by the
writer in Ref [77]. The use of the scaling transformation together
with Buler's relation for homogeneous functions provides an alternative
proof of the summed sensitivity invariant given in Chapter 2. The
presentation of both proofs in this thesis is justified in the writers
view because (apart from the fact that he discovered both proofs) the
more ways we have available for studying networks, the richer our
understanding of the subject becomes, and greater is the stimulus to
further investigation.

For completeness, this chapter included a comment on the use of
the matrix similarity transformation to alter the structure of a

multiple feedback filter.



CLASSIFICATION OF MULTIPLE FEEDBACK STRUCTURES

The human propensity to classify can sometimes be of great help
in understanding the complexities of nature, provided always that care
is taken to avoid stereotyping and the consequent prejudice. Many
different multiple feedback filters have been proposed, and in this
chapter we will classify those filters which use biquadratic sections.
The classification is in terms of structure and it uses concepts
introduced in Chapter 1. It is presented in the form of a Table,
which shows relationships between existing networks, and which also
reveals some new structures. Two methods of determining the block
diagram parameters for these new structures will be described, In
addition to revealing new structures this classification is related
to the sensitivity properties of the various networks, and it provides

a framework for the study of sensitivity undertaken in Chapter 5.

4.1 The basis of the classification

We have already seen that the ability to construct transfer
functions is fundamental to the study of multiple feedback filters, in
that it not only allows us to investigate the frequency response of
the filter but also enables us to determine sensitivities using the
concept of flow graph reversal (3.3.8), and to compute dynamic range
using the noise transfer functions (2.2.64) together with the
intermediate transfer functions (2.2.60). Mason's rule (2.2.8) for
determining a transfer function of a SFG is expressed in terms of
forward path gains and feedback loop gains only. It follows that
forward paths and feedback loops are the essential elements of
structure.

Obviously at least one forward path is necessary to provide

signal transmission through the filter, and in Chapter 1 we saw that
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a multiplicity of forward paths may be used to produce transmission
zeros at finite non-zero fregquencies. We also saw that feedback
loops may be used to reduce sensitivity, or they may be used to produce
transmission zeros by complex feedback.

The classification presented here is based on the arrangement of
forward paths and feedback loops, in a way which relates to the
sensitivity properties of the various structures. Firstly we consider
the patterns of feedback loops which are introduced specifically for
the purpose of reducing sensitivity at passband frequencies, e.g.
leapfrog feedback, follow the leader feedback etc., and secondly we
consider the method used to produce transmission zeros (which will
have a dominant effect on sensitivity at stopband frequencies), e.z.
series notch sections, parallel forward paths or complex feedback.

The two dimensional classification is presented in Table 4.1,
with the types of feedback listed horizontally and the methods of
producing transmission zeros listed vertically. Numerical entries in
the table are references to the published design methods which utilize
the structure indicated by the particular row and column in which the
entry occurs. Alphabetical entries occur where the writer's
classification has led to the design of new structures.

The majority of published multiple feedback filters are composed
of an interconnection of biquadratic sections, and the Table is
restricted to such networks. Other filters such as those comprising
an interconnection of integrators are not included*. Most of the
entries in the Table refer to bandpass filters, and where other types
occur they are indicated as follows: lowpass (LP), bandstop (BS),
equalizers (EQ), variable equalizers (VE), multiple notch (FN). A
design procedure which has been shown to be applicable to several
different types of frequency response (e.g. lowpass, highpass and
bandpass) is indicated as (G). Multiple feedback has of course many
other uses, for example in the linearization and stabilization of
amplifiers [128], in automatic control systems [129], multi-loop
feedback oscillators [130], and quadrature phase shift networks [131].
In this thesis however we restrict our attention to multiple
feedback filters,

The implementation of multiple feedback filters may take one of
several different forms, in that the blocks may be realized not only

by active CR sections, but also by active switched C sections [52,1561,

# Except inasmuch as a two-integrator loop can be considered to be
a quadratic section.



active R sections [105], active C sections [127], active piezoelectric
sections [108], voltage or current tunable sections [114,1441, or
digftally controlled sections [135]. Although we have in this thesis
considered mainly active CR sections when discussing specific
realizations of block diagrams, we could equally have considered any
of the different types of section just mentioned. All that is
required of a section for it to realize a block is that it must be
unilateral and that its port voltages must be related by the
characterising equation of the block, without being affected by the
interconnection of blocks. This was described fully in Chapter 2,
but is repeated here to indicate the scope of the design methods
listed in the Table.
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TABLE 4.1 Classification of multiple feedback filters using quadratic sections

Type of feedback used to reduce passbend sensitivity
None Leapfrog Nested All paths Other
Follow the Intermediate Transpose follow
leader the leader
89 Sallen, Key 17 Girling, Good 27 Hurtig 1171 771 Perry 84 Perry 115(G) Gorski-Popiel [132 Deliyannis +
101 Haigh 18 Girling, Good 29 lLaker, Ghausi 113 Spudil 116 Laker, Ghausi 133 Deliyannis +
19 Adams 105 laker, Schaumann + 70 Styblinska 146 Fliege
96 Bruton 106 Schaumann, Brand + 86 Mackay, Sedra 161 Fotopoulos +
Polynomial filters 97 Bruton, Salama 114 Hurtig I11 136 Laker, Ghausi 162 Mijat, Moschytz
98 laker, Ghausi, Kelly|154 Johnson,Hilburn +
99 Laker, Ghausi, Kelly|159 Schubert
100 Constantinides +
52 Jacobs, Allstot ++
90 Kerwin, Huelsman 33 Szentirmai 36 Biernacki, Mulawka 37 Dubois, Neirynck 117 Gdniileren 38 Tow
102 Szentirmai 37 Dubois, Neirynck 39 Tow
a 103 Tuttle 38 Tow 120 Biey, Premoli
Series noteh 34 bubois, licirynck |39 Tow B 147E°; Gonuleren
104 Dubois, Neirynck |40 Gensel 148(G) Kriiger
35 Miiller 41 Gensel 149(LP) Biey
§ 63 Yoshihiro ++ 42 Padukone, Mulawka +
S 91 Pearl 49 Tow, Kuo 48 Laker, Ghausi
o 92 Calahan 107 Laker, Ghausi
2 Feedforward |121(IMN) Plotkin 28 Tow
a g to output 40 Gensel D A
R 41 Gensel
é & 108 Hrubg, Novotn§
B3 49 Tow, Kuo 47 Tow 45 Perry
3 g 51 Kriiger 28 Tow 109(G) Biernacki +
| 8| Feedforward 110(G) Biernacki 1
5 | from input c 111(G) Biernacki +
“l 112(G) Biernacki +
?; o 145(G) El-Masry
g § 93 Russell, Chan 84 Perry 86 Mackay, Sedra 124?333 Gadenz
s 94 Moran 53 Miller 125(8S) Gadenz
& Other 122(EQ) Luder 144 Doblinger 160 Takagi,Fujii
“ 118 Hills
: 119 Gadenz
§ 84 Perry 57 Brackett, Sedra
2 Complex 58 Brackett, Sedra
feedback 59 Martin, Sedra
60(BS) Adams
95 Urbas
Mixed 12)$VE) Takasaki ++++
126(VE) Takasaki +++

ctl
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4.2 Multiple feedback loops for reducing passband sensitivity

We now consider the first aspect of the classification, namely
the pattern of the feedback loops which are used to reduce sensitivity
at passband frequencies. These are listed horizontally in Table 4.1.

The first column is composed of networks which do not have any
feedback loops for the purpose of reducing passband sensitivity.

These include certain 'canonic' structures which will be described
in Section 4.3.

The subsequent five columns contain the common arrangements of
feedback loops, most of whicn have already been encountered in earlier
chapters., They are illustrated diagrammatically in Fig 4.1 for the
case of filters having three sections. The leapfrog feedback structure
in Fig 4.1(&) was described in Chapter 1, and a design using the method
of simulation was shown in ¥ig 1.5. The follow the leader feedback
structure in Fig 4.1(b) was shown previously in Fig 1.7, and the
transpose or flow graph reversed follow the leader feedback structure
in 7ig 4.1(d) (proposed by the writer in Ref [84]) has been used as an
example in several places throughout earlier chapters. Figure 4.1(0)
shows one of the structures which are intermediate between follow the
leader feedback and transpose follow the leader feedback, these
intermediate structures being obtained by interchange of cascade
subnetworks as described by the writer in [77]. They were illustrated '
earlier in Fig 3.4.

The column headed "All Paths" in Table 4.1 contains structures
which have all possible constant multiplier feedback paths around the
blocks in some given forward path. In the absence of complex feedback,
this arrangement may be defined more precisely in terms of the
components of the matrix &?’ (2.2.1). If the blocks are numbered in
the sequence in which they occur in the given forward path, then the
lower diagonal of A will contain components corresponding to the
forward path, and all components in the upper triangle of d¢
corresponding to the feedback paths, will be non-zero, as in (4.2.1).
Any non-zero components in the lower triangle (apart from the lower
diagonal) would correspond to extra forward paths. If any of these
are present then there may be more than one forward path which passes
through all the blocks, depending on the components of the column
matrices b and ¢ . The Crab's Eye filter [118] is an example of a
structure which has all feedback paths and also extra forward paths.

It was originally conceived as a channel bank filter but in Chapter 5

we will consider the use of the Crab's Eye structure as a single
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Fig 4.1 Common arrangements of feedback loops for reducing passband
sensitivity

é g leapfrog feedback [17]
follow the leader feedback [27]
(c) example of an intermediate structure [77]
(d) transpose or FGR follow the leader feedback [84]
(e) all feedback paths [115]



115

output multiple feedback filter. We will show that despite the fact
that it has all feedback paths, these do not lead to a low sensitivity
in the passband. For that reason, the Crab's Eye filter appears in the
first column of Table 4,1, It is mentioned here because it is the only
example of a published structure which uses all feedback paths in
conjunction with parallel forward paths. When the multiple feedback
Crab's Eye filter uses more than two blocks, then there exists more
than one forward path which passes through all the blocks. A constant
multiplier path may appear to be a feedback path with one sequence of
block numbering, but may become part of the main forward path with
another sequence of numbering.

As indicated in the following matrix, the common feedback
structures illustrated in Fig 4.1 are special cases of the structure

having all feedback paths.

Follow the leader feedback

- ‘ -\
(A N Qg Qs Ay, Qg

(4.2.1)

0 0 l qux‘ﬁa;;~
T N >A\ Leapfrog feedback
: 4

O O 0 | Qg

Transpose follow the leader feedback

Components on the main diagonal of A correspond to feedback paths
around single blocks, These are usually, but not necessarily,

included in the structure having all feedback paths (Fig 4.1(e))_ It

is commonly stated that such paths effectively change the Q-factor of
the blocks around which they occur, but not the resonance frequency @, .
This is true if the block has a 2nd-degree bandpass, symmetrical notch,
or allpass transfer function. It is not true for 2nd-degree lowpass,
highpass, or unsymmetrical notch functions, as may be seen by using the
equivalent transfer function given in Fig 1.10,.

The last column in Table 4.1 is for structures which do not fit



into any of the previous categories. They may use some combination of
the previous structures or they may use some other subset of the
feedback paths occurring in the general case (4.2.1). In this class
there is increasing interest in structures which are essentially like
the cascade structure, but which have feedback around pairs of blocks
implementing those poles of the transfer function which have the

highest Q-factor [38,39,120,133,147,149,161].
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4.3 Method of producing transmission zeros

We now consider the second aspect of the classification, namely
the method of producing transmission zeros. These are listed
vertically in Table 4.1.

The multiple feedback structures described in the previous
section, and illustrated in Fig 4.1, are suitable for the realization
of polynomial filters, that is filters having transmission zeros all
either at the origin of the & -plane or at infinity. This is
achieved by using lowpass, highpass or bandpass polynomial sections
as appropriate. Design methods for such filters are indicated in the
first row of Table 4.1.

For the realization of transmission zeros at finite non-zero
frequencies, as used in Cauer filters, there are three possible
methods, as described in Chapter 1, The three methods have been
refeﬂ?d to as series notch sections, parallel forward paths, and
complex feedback. These are listed vertically in Table 4.1. The
bottom row in Table 4.1 is for structures which use some combination
of the three basic methods.

The three methods of producing finite transmission zeros are
illustrated most clearly by three structures which may be called
canonic by virtue of the fact that their design methods are
adumbrative of the canonic expansions of LC 1-port immittances. They
are shown in Fig 4.2. The factored or cascade structure [90] shown in
Fig 4.2(a) is designed by expressing the required transfer function as
a product of biquadratic factors, and identifying each factor with one
of the blocks in the block diagram. Transmission zeros are realized
in the cascade structure by the use of series notch sections., The
partial fraction structure [93] shown in Fig 4.2(b) is designed by
expressing the required transfer function as a sum of quadratic
partial fractions, and identifying each partial fraction with one of
the blocks in the block diagram. Transmission zeros are realized in
the partial fraction structure by means of parallel forward paths.

The continued fraction structure [84] shown in Fig 4.2(c) is designed
by expressing a lowpass prototype transfer function as a continued
fraction, then identifying each partial remainder with one of the
blocks in the block diagram, and finally applying a lowpass to
bandpass transformation to the block diagram. Transmission zeros

are realized in the continued fraction structure by means of complex
feedback, as was fully described in section 1.4. These three

'canonical' structures do not use feedback loops for the purpose of
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Fig 4.2 The three 'canonical' expansions of a transfer function

(a) Cascade or factored structure [90]
b) Partial fraction structure {93]
c) Continued fraction structure [84]
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reducing passband sensitivity, and therefore they occur in the first
column of Table 4.1.

The three methods of producing finite transmission zeros may
also be used in structures which have feedback loops for the
reduction of passband sensitivity. Consider for example the leapfrog
feedback structures which occur in the second column of Table 4.1, and
which are illustrated for the case of 6-th degree filters in Fig 4.3.
Series notch sections may be used in the basic leapfrog feedback
structure shown in Fig 4.3(a), as described in Chapter 1. This was
first proposed by Szentirmai [33]. Parallel forward paths may be
introduced in several ways, and Figures 4.3(b) and (c) show the
structures proposed by Tow & Kuo [49], refeﬁ%d to respectively as
feedforward to the output and feedforward from the input. There are
other methods of applying parallel forward paths to the leapfrog
feedback structure, and one example is shown in Fig 4.5(d). This has
the structure of Ford's lowpass network which was discussed in Section
3.1, and for which the blocks represent integrators. In Ref [84] the
writer proposed using the lowpass to bandpass transformation to
obtain a bandpass filter for which the blocks G,, G, and G,
represent bandpass quadratic sections. The constant multiplier G,
together with its associated adder represents a summing amplifier
section (see Fig 2.5) which is also required for this structure.
Leapfrog feedback may also be used in conjunction with complex
feedback as illustrated in Fig 4.3(e). This is one of several
structures which may be constructed by SFG simulation of an LCR
filter*, using the procedure given by Brackett & Sedra 157Tt In this
simulation the two leapfrog feedback loops {G,, G, , a.z} and
{ sz 63, ng} reduce the sensitivity at passband frequencies, and the
two complex feedback loops {64, Gs } and {Gka G, } realize the
finite transmission zeros by complex feedback.

Although the structures shown in Fig 4.3 are for 6-th degree
filters, the design methods quoted are applicable to filters of any
complexity. The corresponding extension of the structures shown in

Pig 4.3 is fairly obvious, except perhaps for Ford's structure in

# The LCR filter used was that shown in Fig 3.2(a), transformed by the
usual lowpass to bandpass transformation.

¥ It will be noted that most of the structures shown in Fig 4.3 use
three quadratic sections and possibly one summing amplifier section,
whereas the SFG simulation in #ig 4.3(e) uses four quadratic
sections and a reciprocator G, . This excessive use of sections is
characteristic of the simulation method described in Ref [571.



(b)

(c)

(a)

(e)

&
Qg
€ u G, G, > Gz v
<
G2
i)
AY
e G| + 62 G3
Qa3
< Cs
G2
Vd
>C| f\+/ v
a
Z 12
N\

Az3
| %
b, b, N b,
e
0\3
N b3 A
4 A3

¢ i
Gy
<Q|'L
Gy
Gz——>oo
G +
y 4
e D G, PO— G, %
Gy
PLrE!
N

Fig 4.3 Realizing transmission zeros with structures using leapfrog

feedback
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Fig 4.3(d). 1In the Ford simulation the paths a, aad d,, occur
as a consequence of the terminating resistances in the LC ladder
filter being simulated. 1In general, the central zero-producing branches
of the LC ladder give rise to feedforward paths around pairs of blocks
(such as b, in Fig 4.3(d)), and to feedback paths which encompass a
pair of quadratic blocks and itwo summing amplifier sections. IMiiller
[53] has extended Ford's original idea to a general and systematic
passive ladder simulation method.

We have considered in some detail the first two columns of Table
4.1. Other columns show where the three methods of realizing finite
transmission zeros have been applied to the remaining feedback
structures. Two examples have been encountered in previous Chapters.
In Section 1.4 a design procedure was given for a structure which
combines transpose follow the leader feedback with parallel forward
paths which are fed forward from the input. This is the entry (451 in
Table 4.1, In Section 3.3 an example was given of a structure which
combines intermediate nested feedback with parallel forward paths fed
forward to the output. This corresponds to the entry D in Table 4.1.
The use of series notch sections together with follow the leader

feedback was briefly mentioned in Section 1.4.



4.4 New structures indicated by the classification

When references to all existing design methods are entered in the
Table, then blank spaces indicate new structures, which may be used
to realize filters provided that some design method can be found.

We will now describe simple design methods for structures A,B,C & D.

Consider the possibility of reducing passband sensitivity by the
use of transpose follow the leader feedback, and simultaneously
realizing transmission zeros by feedforward to the output. This is
the structure indicated by the letter 'A' in Table 4.1. We have
stated in section 3.2 that, for polynomial filters, the follow the
leader feedback structure [27] is related to the transpose follow the
leader feedback structure [84] by flow graph reversal. The process of
PGR also relates the structure 'A' to the follow the leader feedback
structure with feedforward from the input (471, as can be seen in
Fig 4.4. Hence any design procedure for the latter structure is
immediately applicable to the new structure 'A'.

We have shown in Section 3.2 how interchange of cascade
subnetworks leads to the intermediate forms of nested feedback. The
example given in Section 3.2 was a polynomial filter, but the
transformation also applies to filters with series notch sections.
Interchange of cascade subnetworks thus allows us to design filters
having the intermediate structures 'B' by a trivial extension of the
techniques described in references [36] to [42].

Several structures in Table 4.1 are similar to arrangements used
to simulate transfer functions on analogue computers. This fact is
useful for realizing those bandpass transfer functions which are
obtained from lowpass prototype transfer functions by the lowpass to
bandpass transformation s%————————a—(1(5 + 1/5). It is usually a
simple matter to realize a lowpass prototype transfer function as an
analogue computer network comprising an interconnection of integrators
having the transfer function 1/s. When this network is subjected to
the lowpass to bandpass transformation, the integrators become
bandpass quadratic sections having the transfer function s/[q,@$+4)].
These sections have an infinite Q-factor, but it is possible to arrive

at a network having finite-Q sections by pre-distorting the lowpass
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prototype transfer function. This was described in detail in Chapter 1,

in respect of the structure [45] having transpose follow the leader
feedback and feedforward from the input. This simple design
procedure can utilize any suitable analogue computer circuit, and of

particular interest here are the circuits described in section4.2 of
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FGR

(b)

Fig 4.4 Deriving the new structure ‘A’ by FGR

(a2) Tow's structure [47] using follow the leader feedback and
feedforward from the input

(b) New structure 'A' using transpose follow the leader -feedback
and feedforward to the output
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Ref [46], which have an intermediate form of nested feedback combined
with feedforward from the input. The method‘thus provides a way of
designing filters to have some of the intermediate structures marked
'C' in Table 4.1. The use of FGR on these filters would yield
D-structures.

There are other intermediate structures which do not correspond
to established analogue computer networks, for example the structure

shown in fig 3.5(b). In these cases it is a simple matter to arrive
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at a suitable analogue computer network by analysing the structure with

all of the block transfer functions Gj set equal to 1/s.

The remaining blank spaces in Table 4.1 indicate the possibility
of other structures, but as yet no design procedure has been proposed
for them. It is conceivable however that they may arise from known
structures as a result of using an optimization programme which alters
structure. The existence of such programmes was mentioned in section

3.5 in the context of the similarity transformation.
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4.5 Low sensitivity structures

Having classified multiple feedback filters in terms of their
structure, it is interesting to examine their structures in order to
identify any property of structure which may be common to all low
sensitivity multiple feedback filters., ILow sensitivity filters are
represented in the second and subsequent columns of Table 4.1.

The feature which is common to the majority of published low
sensitivity multiple feedback filters is that there exists one, and
only one, forward path which passes through all of the blocks in the
block diagram*. The only exceptions to this are the few structures
which use complex feedback [57,58,59,60] for which there can be no
forward path passing through all of the blocks., However in these
cases where a forward path cannot pass through blocks because they are
in the feedback part of a complex feedback loop, then the forward path
will pass tnrough the reciprocator which is associated with those
blocks., Cur observation is therefore that, for low sensitivity
multiple feedback filters, there exists one and only one forward path
which passes through each block (or possibly its associated reciprocator)
in the block diagram.

In Chapter 5 it will be shown that this is by no means a
sufficient condition for low sensitivity. Whether or not it can be

recarded as a necessary condition is not yet known.

¥ The structure may of course have in addition other forward paths
which do not pass through all of the blocks.
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4.6 Summary

In this chapter we have classified the existing mwltiple feedback
filters composed of biquadratic sections, firstly in respect of the
pattern of feedback loops used to reduce passband sensitivity, and
.secondly in respect of the method by which transmission zeros are
realized, Presentation of the classification in the form of a table
has indicated new structures. Some of these may be derived from
existing structures by the transformations of FGR and interchange of
cascade subnetworks. Others may be designed by association with
analogue computer networks. There are other possible structures for
which specific design procedures have yet to be proposed.

The classification of structure described in this chapter is
based on a classification set out by the writer in Ref [84). This has
been extended here, not only by the inclusion of references to
subsequent publications, but also by the inclusion of complex
feedback as a method of producing transmission zeros. Complex
feedback was described by the writer in Ref [88].

The classification has drawn attention to the fact that all
published low sensitivity multiple feedback filters have one, and only
one, forward path which passes through each block (or possibly its
associated reciprocator) in the block diagram, and also to the fact _
that the common feedback arrangements for reducing passband sensitivity
are special cases of the structure having all feedback paths.

This classification provides a framework for the computational

study that will be undertaken in the next chapter.



COMPUTATIONAL STUDY OF MULTIPLE FEEDBACK FILTERS

Multiple feedback filters were initially created to provide
filters having a lower sensitivity than that of the simple cascade
filter., Having proposed a number of new multiple feedback filters
it is therefore necessary for us to study their sensitivity
performance and to compare it with the sensitivity of known filters.
There are various ways of doing this and we must choose a method which
suits our overall objective of obtaining insight into network
behaviour. We could follow the example of some authors and compare
different filters on the basis of a single scalar measure of
sensitivity, such as would be used by a computer optimization
programme, However whilst this may be possible in the context of a
specific engineering application for which detailed performance
requirements are known and for which constraints imposed by the method
of fabrication are also known, a scalar measure of sensitivity does
not reveal why one filter is better than another, and is therefore
an inappropriate tool for our purposes, At the other extreme, listing
the algebraic expressions of sensitivity would be equally uninformative.
In the approach adopted here, a specific transfer function is
synthesized using each of the various structures in turn. For each
structure the nominal, sinusoidal steady state, magnitude response is
computed and plotted as a function of frequency. Superimposed on this
is a family of computed plots showing how the magnitude response is
affected by finite changes in the block diagram constants Gk o bj, Cs
etc, and by finite changes in the intermediate parameters of the blocks

, Q, K etc. The results will therefore be independent of the
particular sections being used, and interpreted with care will allow
the various structures to be compared. This approach undoubtedly has
its limitations, as it seems does any comparison of sensitivity [138;2
but it will allow some comparison to be made, it will verify somg\“‘
theoretical results of earlier chapters, and hopefully it will increase

our understanding of network sensitivity.



5.1 Details of the sensitivity computation

The transfer function that has been chosen is not intended for
any particular application, but it has a bandpass characteristic and
it also has transmission zeros at finite non-zero frequencies in view
of our interest in such features. The bandpass response is obtained
by transformation of a prototype lowpass response. This is the
third-order elliptic-function characteristic which is sketched in
Fig 5(a). From Tables of poles and zeros [139] we obtain the lowpass

prototype transfer function:

(5.1.1)
Foe= | 5+ Qu!
C (s-a)(s*-2a,5 +a’+b?)
where: C = 15.658010

Q= 2.6998758817
-a,= 0.4806933238
-Q, = 0.2084141239
*h,= 0.9617829016

The bandpass function is obtained by applying the lowpass to bandpass

transformation:

S >CL(S+_1_) where q = 10 (5.1.2) |

S

(q is the required ratio of geometric centre frequency to bandwidth)

in turn to each singular point 5, of the lowpass transfer function

to obtain two singular points S, of the bandpass transfer function as

follows [140]:

Sa= S, + (s,_ )2_ 1 (5.1.3)
2q, 2q,

The bandpass response is scaled to have a centre frequency of 100 rad/s

by applying the mapping:

S ~s/a | a = 100 (5.1.4)
whence the required bandpass transfer function:
Fls) — K 5(s*+ ) (84 War) (5.1.5)
<sl+ AN +w;)(sl+ Woy S +m°f><sl+ Wea S+ w°:>
Q, Q. Qs
where K = 0.638650761 = 95.306399 Q, = 48.036847

UJO\
Wy, = 87.40767309 W,, = 100.0 Q, = 20.80328458
Wp = 114.4064319 Wy, = 104.924749 Q= 48.036847
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the magnitude response of which is sketched in Fig 5(b).

This 6-th degree transfer function was chosen to have the minimum
complexity that was necessary to distinguish between the multifarious
structures, without at the same time making the examples unduly
complicated. The parameters of the frequency response are limited by
this low order of complexity and are somewhat arbitrary, but it may be
said that the high value of passband ripple is typical of the crude
filters used to separate signalling tonesin a telecommunications
system. This transfer function has been used in the previous examples
shown in Fig 1.9, Fig 1.12 and Fig 3.5.

For the sensitivity analysis in this Chapter, each structure will
be realized by an active CR network, for three reasons. Firstly it
shows that it is possible for the structure to be realized by an active
CR network, although no attempt has been made to select the most
appropriate types of guadratic section. Secondly, since the adders will
be realized as part of the quadratic sections [22] (see Fig 2.1(b)),
it will allow us to determine the minimum number of operational
amplifiers needed by each structure (for the particular transfer
function being considered). Thirdly it allows us to use a readily
available network analysis programme, It would of course have been
possible to write a special purpose programme to analyse multiple
feedback filters represented in block diagram form, and it would have
been relatively easy to obtain the sensitivity graphs from such a
programme. However the emphasis in this work is not on writing
computer programmes, and the required changes in the block diagram
parameters were obtained by altering the values of the appropriate
resistances and capacitances of the active CR network.

The characteristics of major interest are the effects, on the
magnitude response, of changes in the resonance frequencies w, of
the individual blocks. Since ®, has the dimension of inverse time,
it will in theory be proportional to the reciprocal of a CR time
constant., Hence ), has an irreducible variation of at least as much
as the product of capacitance and resistance variations. TFor a thick
film construction using ceramic capacitors this might typically have
a worst case value of *0.013%/deg C for temperature variations and

¥ 3% for selection tolerance.

On the other hand the quality factor Q is dimensionless and could
in theory be made to depend only on the ratios of resistances, and the
ratios of capacitances. These can often be controlled more accurately

than the CR time constant, depending on the fabrication method used.



However the value of Q also depends on the gain-bandwidth products of
the operational amplifiers, which are less easily controlled.

For bandpass sections in general, the gain constant K as defined
by (2.1.1) will vary in the same manner as W, » but it will be seen
in this Chapter that it has a relatively minor effect on the frequency
response. The remaining block diagram parameters Gjk, bj, Cj are
all determined by ratios of resistances, and are not usually affected
by variations in the gain-bandwidth product of operational amplifiers.

For each representative design studied in subsequent sections,
we will plot the effect on the magnitude response of changing each of
the resonance frequencies W, by 3%, and of changing each of the
remaining parameters Q, K, a;x, b;, c; etc by 10%. The resulting
collection of graphs will give a good visual impression of the
sensitivity performance of each design, and will form the basis for a

comparison of structures.
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5.2 The three canonic expansions of a transfer function

Following the sequence adopted in Chapter 4, we start by
describing the performance of the three 'canonical' structures, which
occur in the first column of Table 4.1, and which were shown in block
diagram form in Fig 4.2. These structures do not employ feedback
loops for the purpose of reducing sensitivity, and we shall see that

the sensitivity is relatively large.

5.2.1 Cascade or factored structure

First the cascade or factored structure [90]. The numerator and
denominator factors of the transfer function (5.1.5) have been paired
in accordance with Lee's method of pairing poles and zeros for minimum
sensitivity [141], and these pairs form the transfer functions of the
blocks as shown in the block diagram in Fig 5.1(a). Poles and zeros of
the blocks are identically poles and zeros of the transfer function,
and transmission zeros are hence produced by series notch sections.
The circuit diagram of one possible realization of the block diagram
is shown in Fig 5.1(b), and the frequency responses of this circuit
are plotted in Fig 5.1(c). Obviously there is scope for scaling the
signal levels to improve the dynamic range, and indeed the pairing
of poles and zeros could have been chosen to maximize dynamic range
[142] instead of minimizing sensitivity, but it is sensitivity that is
of immediate concern here,

Consider first the effect of changes in resonance frequency.
Since for most biquadratic sections a change in the value of a
component is likely to change both W, and w, together, we show in
Fig 5.2(a) the effect of increasing both w, and w,, of the first
section by 3%. Similarly Fig 5.2(b) shows the effect of increasing
W, and W,, by 3%. Figure 5.2(c) shows both the effect of an
increase and a decrease in w,, of the third section. Evidently these
changes in resonance frequencies cause a gross error in the magnitude
response. Notwithstanding this high sensitivity, the cascade
structure is quite adequate for non-critical filter applications,
particularly if some form of adjustment is performed since the
post-adjustment variation of resonance frequencies may be very much
less than 3%.

Changes in the Q-factor of the sections have much less effect on
the frequency response of the filter, as can be seen in Fig 5.3. The

relatively small effect of Q variations was found also by Bruton [150],
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(a)

(b)

Y
B FREQ.G12 19

Fig 5.2 Cascade structure sensitivity to changes in resonance frequency

(a) w,increased by 3% from 95.3 to 98.2, and
Wpiincreased by 3% from 114.4 to 117.8

(b) Wy, increased by 3% from 104.9 to 108.1, and
wpyincreased by 3% from 87.4 to 90.0

(c¢) w,yincreased by 3% from 100 to 103 and
wy,reduced by 3% from 100 to 97
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Fig 5.3 Cascade structure sensitivity to changes in Q and K
(a) Qqincreased by 10% from 48.04 to 52.84

b) Q,increased by 10% from 48.04 to 52.84

c Q, increased by 10% from 20.8 to 22.88

(d) K, or K, or K, increased by 10%
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who investigated first-order differential sensitivity of the cascade
filter. This does not imply of course that Q-variations are
unimportant since in some sections it is possible for @ to change
much more than w, (e.g. 5‘:"'.30 , Sioc Q).

The sensitivity of the cascade structure is easily understood
since the transfer function F is simply the product of the block

transfer functions:

Fev — G,G,G, (5.2.1)
e
On a Jogarithmic scale, the magnitude response is the sum of the
magnitude responses of the three sections, and any change in the
magnitude response of one of the sections is reflected directly in the
overall response. Because of its common usage and simplicity of
construction, the sensitivity performance of the cascade structure is
often taken as a reference against which the performance of other

structures are assessed.

5.2.2 Partial fraction structure

The second canonical structure to be considered is the partial
fraction structure shown in Fig 5.4. Using the method described by
Russell and Chan in Ref. 93, the bandpass transfer function (5.1.5)
has been expanded into quadratic partial fractions, and each partial
fraction has been identified with a block in the block diagram Fig 5.4(a)
As in the cascade structure, the poles of the transfer function FE:V/@
are identically the poles of the three blocks. The zeros of the
transfer function however are produced by parallel forward paths.

When the resonance frequency ®,, is increased by 3%, it can be
seen from Fig 5.5(3) that the stopbands become distorted. The upper
transfer function zero increases in frequency by about 3%, and the
lower zero increases in frequency by 10%, moving to a frequency at the
edge of the passband and thereby causing severe distortion of the
passband response., Both zeros move away from the imaginary axis, as
seen by the reduced depth of the notches. Changes in w,, and'wos
also severely distort the stopband as shown in Fig 5.5(b) and (c).
Changes in the Q-factors cause deviations which are almost identical
to the corresponding deviations for the cascade structure, and they
are not shown explicitly. The very poor stopband sensitivity
performance of the partial fraction structure probably accounts for
the fact that it has not been widely used.



(a) G, _ K,

AM

v
@, = 95.3064
Q, = 48.0368
, = 20.5574
K, =-1.9887
0,y = 1049247
Q, = 48.0268
A, ==227342
K, ==2.17957
@, = 100
Q, = 208033
K, = 480693

3

-
32
3

o
. e

|

o
H—

GAIN (dB)

(e)

i N
18 FREQD tHz) ¥

Pig 5.4 Partial fraction structure [93]
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Fig 5.5 Partial fraction structure sensitivity to changes in resonance
frequency

a) @, increased by 3% from 95.3064 to 98.16559
We, increased by 3% from 104.9247 to 108.0725
(¢) w,,increased by 3% from 100 to 103



5.2.3 Continued fraction structure

The third canonical structure to be considered is the continued
fraction structure [84], which was introduced in Chapter 1 as an
illustration of transmission zeros produced by complex feedback.

As was described in Section 1.4, the lowpass transfer function (5.1.1)&
(1.4.10) is expanded into a continued fraction, and the three partial
remainders (1.4.15) are identified with the denominators of the three
blocks in the block diagram Fig 5.6(a). Lowpass to bandpass
transformation (5.1.2) and frequency scaling (5.1.4) then yield the
required parameters. Use of the scaling transformation (Section 3.4)
is also necessary if the single-amplifier sections shown in Fig 5.6(b)
are to be used. The transformation increases the signal level at the
output of block-1 and the output of block-3. This re-distributes the
gain and makes all three blocks realizable by single amplifier sections
as shown. The resulting frequency responses are shown in Fig 5.6(c).
For uniformity of presentation, however, the frequency responses in
Fig 5.7 and 5.8 have all been scaled by a factor which makes the
nominal mid-band gain equal to 0dB.

Sensitivity performance of the continued fraction structure has
nothitherto been studied. It is found to be very poor in the passband.
A change of 3% in W, can cause as much as 20dB error over the entire
passband as can be seen in Fig 5.7. In the stopband however, a change
of 3% in o, causes less than 3% shift in the notch frequencies
which is better than the cascade structure. Changes in the @Q-~factors
again cause relatively large errors in the passband response as can

be seen in Fig 5.8.

5.2.4 Sensitivity relations

If the summed sensitivity invariant (2.2.57) is épplied to a cut
containing all three blocks of the factored structure described in
Section 5.2.1, then the following relationship is obtained:

IF]

[F) IF)
5 " 96, " 9¢, =

which is consistent with the fact that:

‘\F\__ 1 (5.2.3)

SG y Y

J
For the partial fraction structure the corresponding expressions are:

(5.2.2)
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Fig 5.6 Continued fraction structure [84]

(a; Block diagram

(b) Active CR realization of the block diagram
(c) Computed frequency responses
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Continued fraction structure sensitivity to changes in
Q-factor

Qqincreased by 10% from 11.14 to 12.256
[Q,! increased by 10% from 10.07 to 11.079
Q,increased by 10% from 10.07 to 11.079
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\Fl \Fl IF (5.2.4)
+ =1
S¢ * Se, T 06
S‘F‘ R & , Y (5.2.5)
G F

Noting that (3| and G2 are inverting quadratic blocks and 63 is
non~-inverting, it can be seen that the sensitivities in (5.2.4) are
not necessarily all of the same sign, so that individually the
sensitivities may be greater than those in (5.2.3) for the factored

structure., Conversely, since:

16l (Re Gy ¢ el -2:6)
IFl F | F)
the differential sensitivities (5.2.5) are less than those of the
factored structure at frequencies for which IGj] < lFTl « In the
example studied, this applies over the passband, except at the
frequencies oaﬁ s as can be seen from Fig 5.4(c). Comparison of
Fig 5.5(a) with Fig 5.2(a) shows that there are frequencies in the
passband at which the deviation in the response of the partial
fraction structure is greater than the corresponding deviation in the
factored structure. This may be due to higher order derivatives being
significant in this case, or it may be due to the fact that a 3%
change of the intermediate variable wWw,, may not produce the same
change in G, for the two structures, on account of the fact that
different types of quadratic blocks are used in the two structures.
For the continued fraction structure the invariant (5.2.2) obtains, but
expressions for the individual sensitivities are more complex.

Of the three canonic structures, only the cascade is in common
use. The partial fraction structure has a greater sensitivity in the
stopbands, and the continued fraction structure has a greater
sensitivity in the passband. The partial fraction structure has been
proposed for use as an all-pass group-delay equalizer [122], which of
course does not have a stopband and therefore might not have a greater
sensitivity than the corresponding cascade structure. However the
partial fraction structure does have the disadvantage of requiring

a summing amplifier section
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5.3 Structures with leapfrog feedback

Continuing the sequence used in Chapter 4, we now present the
sensitivity performance of structures which use leapfrog feedback to
reduce sensitivity in the passband. These occur in the second column
of Table 4.1, and are illustrated in Fig 4.3. Structures in this
section will illustrate how the three methods of producing transmission

zeros may be applied to low sensitivity filters.

5.3.1 Node-voltage simulation

Firstly we consider the leapfrog feedback structures which
incorporate transmission zeros by means of series notch sections.
Several synthesis procedures are refered to in Table 4.1, but the
method which is most easily applied to the present case is 'node
voltage simulation', introduced by Yoshihiro, Nishihara and
Yanagisawa in Ref.63. It uses the principles of ladder network
simulation described fully in Section 1.1, except that only the
node~to-datum voltages are simulated, as indicated in Fig 5.9.

Starting with an LCR realization of the bandpass transfer function
(5.1.5), shown in Fig 5.10(a), a leapfrog feedback structure is
produced by node-voltage simulation and the resulting block diagram

is shown in Fig 5.10(b). It will be seen that three sections are used,
two of them having multiple inputs (in the sense of Fig 2.2) as
indicated by the broken line around the first section. The three
sections have different resonance frequencies, but the spread of
frequencies is not asgreat as in the cascade structure (Fig 5.1), or
the partial fraction structure (Fig 5.4). One possible realization

of the block diagram is shown in Fig 5.10(c), and the frequency
responses are shown in Fig 5.10(d). The active CR realization has a
mid-band gain of -6,02dB, simulating the mid-band gain of the LCR
filter. Evidently the scaling transformation (Section 3.4) may be used
to improve dynamic range. For uniformity of presentation, the
frequency responses in Figures 5.11 to 5.14 have all been scaled by a
factor which makes the nominal mid-band gain equal to 0dB.

The effects of increasing the resonance frequencies associated
with each of the three sections in turn are shown in Fig 5.11, from
which it can be seen that, as anticipated, the node-voltage simulation
has a reduced passband sensitivity compared with the cascade structure.
For both structures there tends to be a large error at the edges of the

passband, due to the proximity of the steep slope in the transition
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(a; LCR ladder network
(b) Structure produced by node-to-datum voltage simulation
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bands, but over the remainder of the passband the cascade structure
exhibits a larger level shift and a greater slope distortion. The '
stopband sensitivity of the two structures is substantially the same,
which is not surprising since in both cases the transmission zeros
are produced by series notch sections. As in the case of the cascade
structure, all resonance frequencies associated with a particular
section have been changed simultaneously to produce the results shown
in Fig 5.11. So for example in Section-2 the three frequencies Won
Wiy

perturbed response shown in Fig 5.11(b). This response is approximately

and w,, have been increased together by 3% to produce the

the additive composition of the three responses shown in Fig 5.12, which
are the result of separate changes to the three frequencies.

Changes in the Q-factors of sections 1 and 3 again cause less
distortion of the passband response than do corresponding changes in
the cascade structure. As can be seen from Fig 5.13(a) and (c), the
effect is mainly a slight shift of signal level, which is usually of
less importance than a distortion of the passband shape. The second
section has a nominally infinite Q-factor which cannot be changed in
the same manner. In order to illustrate the sensitivity of the
passband response to changes in the value of this Q-factor, the
perturbed response in Fig 5.13(b) shows the effect of reducing (23
from an infinite value to a somewhat arbitrarily chosen value of 230,
The resulting distortion is comparable to that observed in the cascade
structure.

A 10% increase in the value of each of the gain constants K\ to
Ks causes a slight shift of level and a very small distortion of the
passband shape, as shown in Fig 5.14. The response shown in Fig 5.14(a)
is the same as thatobtained for a 10% increase in a gain constant of the
cascade structure., All the other perturbations shown in Fig 5.14 are
smaller.

The structure produced by node-voltage simulation is easily
derived from the appropriate LCR ladder filter. Comparison of the
active CR realization in Fig 5.10(c) with the realization of the cascade
structure in Fig 5.1(b) shows that the improved block-diagram
sensitivities at passband frequencies are achieved at the cost of very

few extra components.

5.3.2 Coupled-biquad structure

Now we move on to consider the leapfrog feedback structures which



incorporate transmission zeros by means of parallel forward paths.
Refering to Fig 4.3, it can be seen that the two cases of feedforward
to the output (Fig 4.3(b)) and feedforward from the input (Fig 4.3(c))
can be taken together because they are related by FGR, and we have
pointed out in Section 3.3 that block diagram sensitivities are
invariant under the transformation of FGR. Noting that feedforward

to the output requires the use of an extra summing amplifier section,
we choose to study feedforward from the input.

Following the procedure given by Tow & Kuo in Ref. 49, we start
with a 'follow the leader feedback' representation of the lowpass
transfer function (5.1.1) shown in Fig 5.15(a) (this representation
is known from work on analogue computing [46]), and apply the
similarity transformation (3.5.1) described in Section 3.5*. By
constructing a transformation matrix '} such that the matrix 3'U4Lﬁ
is tri-diagonal, the transformed structure has leapfrog feedback as
shown in Fig 5.15(b). Although general methods are available [151,152,
1531, in this simple example the transformation matrix ﬂ is produced
by the coefficient matching technique described by Tow & Kuo [49].
Taking the structure shown in Fig 5.15(b), we incorporate the path
Q,, into its associated block so that the transfer function of that
block becomes 1/(5-—a") , and similarly with the path a,,. Then
lowpass to bandpass transformation (5.1.2) and frequency scaling
(5.1.4) produce the required bandpass structure. Use is made of the
scaling transformation to reduce the number of inverting amplifiers
required, and the resulting block diagram is shown in Fig 5.16(a).
This is called a Coupled Biquad Configuration by Tow & Kuo. One
possible realization of the block diagram is shown in Fig 5.16(b) and
the frequency responses are shown in Fig 5.16(c).

The design method is such that the end blocks have a finite
Q-factor and the centre block has an infinite Q-factor, as would be
the case for a simulation of a doubly terminated LC ladder. Other
methods of tri-diagonalization can produce structures which have finite

Q-factors for all blocks [51]. Unlike the structure produced by

* Tow & Kuo present their method in terms of state variable equations
rather than the matrix representation used in Section 3.5. The
difference however is in this case entirely one of presentation; the
similarity transformation is identical. Refering to the general
structure in Section 2.2.1, if all the blocks are integrators

(s)= 14 WL , then the state-variable equations (with zero initial

cdonditions) are: d_dt? ’o\cl:(t)z &499(‘1:) + l’g e(t)

vit)= ¢, x()+de(})
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Fig 5.15 Design of Coupled-Biquad structure [49]

(a) Follow the leader feedback representation of lowpass transfer

function [46]
(b) Structure obtained by use of similarity transformation (3.5.1)
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node-voltage simulation, all blocks of the Coupled Biquad structure
have the same resonance frequency.

The effect of increasing the resonance frequencies of each of the
three blocks by 3% is shown in Fig 5.17. Although the Coupled Biquad
structure is not a simulation of an LCR ladder, the resulting
deviations in the passband are comparable to those observed in the
node-voltage simulation. In the stopbands however, there are
differences arising from the different method of producing transmission
zeros. Section-1 and section-2 both affect the two transmission zeros,
and a 3% increase in the resonance frequency w, of either section
produces slightly less than 13 increase in the frequency of the notches.
If changes in the two resonance frequencies are uncorrelated then there
is some possibility for cancellation, and a statistical measure of
block diagram sensitivity may indicate that there is a reduction of
stopband sensitivity compared with any structure using series notch
sections [125]. This improvement is somewhat illusory because if both
Wo, and W,, are increased by 3% simultaneously, then the notch
frequencies will also increase by an average of 3% Indeed the worst
case is slightly inferior to that for series notch sections, because,
given that the changes in w, for the coupled biquad structure are
the same as the change in ,, for a structure using series notch
sections, there is in the Coupled Biquad structure an additional
dependence on the values of the forward path constants b, and bs
as shown in Fig 5.18, and on the values of K, and K, (not
illustrated). It was found for example that, whilst the average
deviation of the two notch frequencies did not exceed 33%, a 10%
variation in these constants in addition to the 3% variation of
resonance frequencies could, in the worst case, cause the lower
transmission zero to deviate by 63%. It should also be noted from
Fig 5.17(a) and (b) that a change in resonance frequency reduces the
depth of the notches. The extent to which the notch depth is reduced
by a series notch section depends on the nature of the section used.

Since deviations in the frequencies of the transmission zeros
have a dominant effect on the stopband response, it is to be expected
on the basis of the foregoing results that the Coupled Biquad structure
has a higher worst case stopband sensitivity than a leapfrog feedback
structure having series notch sections. Conversely, for the same
two structures, it is possible for a statistical measure of stopband
sensitivity to indicate that the Coupled Biquad structure has a lower

variance. Statistical analyses therefore need to be interpreted with



caution. Comparison of the foregoing results with the responses
shown in Fig 5.5 however, indicates that the embodiment of paralilel
forward paths in the Coupled Biquad structure leads to a much lower
stopband sensitivity than the arrangement of parallel forward paths in
the partial fraction structure.

Changes in the Q-factors of the sections produce the responses
shown in Fig 5.19, and changes in the gain constants and feedback
factors are shown in Fig 5.20. These are all of a similar nature to

the corresponding responses of the node-voltage simulation.

5.3.3 Ford's structure

We now consider leapfrog feedback used together with a different
arrangement of parallel forward paths. Starting with the LCR
realization of the lowpass transfer function (5.1.1) shown in
Fig 5.21(a),a leapfrog feedback structure is produced by simulation
and subsequent use of SFG equivalents as was illustrated in Fig 3.2.

A lowpass filter having the structure shown in Fig 3.2(h) was
attributed to Ford in Ref 17. Use of the lowpass to bandpass
transformation (5.1.2), and frequency scaling (5.1.4) leads to an
interconnection of three bandpass quadratic sections and one summing
amplifier section, shown as a block diagram in Fig 5.21(b), and as an
active CR realization in Fig 5.21(c). As in the Coupled Biquad
structure, all three quadratic blocks have the same resonance frequency
@, s and the centre block G, has an infinite Q-factor.

Since SFG equivalents have been used to change the structure
from the basic simulation, it is of interest to see how this affects
the sensitivity performance. We note that in the LC ladder filter
(Fig 5.21(a)) the finite transmission zero is introduced by the
inclusion of a modifying capacitor C, . If we put C,=0O then in
the block diagram (Fig 5.21(b)) the paths bs , Q, , Qa4 are
eliminated, and G, becomes equal to -1 (this is evident from
Fig 3.2(h)). The structure then reduces to the basic leapfrog feedback
simulation shown in Fig 1,5, the sensitivity of which has been studied
by several authors e.g. Adams [19]. By analogy with the LC filter we
expect that putting by= Q43 = Qa;, =0 and G,=-1 will have
little effect on the response at passband frequencies, and this is
confirmed in Fig 5.22., It follows that in this example, the low
passband sensitivity expected of a leapfrog feedback simulation will
not be degraded by the manipulations that have been performed on the
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Fig 5.22 Frequency response of Ford structure with by= q, = a;,=0
and G‘5='1
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SFG in order to realize the transmission zeros by means of parallel
forward paths. The stopband sensitivity of the Ford structure however
cannot be related to that of a passive ladder filter, and furthermore
no results have previously been published on the stopband performance
of the Ford structure.

The frequency responses of the bandpass Ford structure are shown
in Fig 5.21(d). The -6.02dB midband gain resulting from the simulation
may of course be adjusted by use of the scaling transformation in
order to improve dynamic range. All subsequent graphs have been scaled
so that the nominal midband gain is 0dB, for uniformity of presentation.

The effect of increasing the resonance frequency w, of each of
the three quadratic blocks by 3% is shown in Fig 5.23. The resulting
deviations at frequencies in the passband are less than those for the
node-~voltage simulation or the Coupled Biquad structure. 1In fact the
Ford structure has the lowest passband sensitivity of all the
structures studied in this Chapter. One noticeable feature, not found
in the other structures, is that the perturbed response (Fig 5.23)
nowhere exceeds 0dB. This is also true for the case of w, being
reduced by 3%, although these responses are not shown here. Such
behaviour appears to be in accordance with Orchard's theory described
in Section 1.1. There is however no reason to expect that changes in
W, alone would conform to the Orchard theory, because such a change
does not have a counterpart in the LC ladder filter (see Fig 1.5(a)
and (b)). A change in the value of a reactive element of the passive
ladder filter would correspond to simultaneous changes in the values
of W, , Q and possibly K in the leapfrog feedback simulation. To
investigate this further, the writer has studied a Ford structure
implementing a 6-th degree elliptic function bandpass transfer function
similar to (5.1.5) but having 0.2dB nominal passband ripple instead of
1.25dB. Fig 5.24 shows the effect of various changes to the value of
wOI

responses are slightly in excess of 0dB. Similar responses were

for the first section, and from this it can be seen that some

observed by Adams [19] for a leapfrog feedback simulation of the type
shown in Fig 1.5. Whilst this detailed examination shows that
Orchard's theory does not apply to changes in W), , it remains true
that the resulting distortion of the passband response is relatively
small,

Returning to the structure shown in Fig 5.21, and the responses
in Fig 5.23, we see that the stopband sensitivity is similar in nature
to that of the Coupled-Biquad structure, but rather better than the
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Coupled Biquad structure in respect of preserving the depth of the
notches. In both structures the transmission zeros are produced by
parallel forward paths which span two of the quadratic blocks. It is
relevant to note that for higher order filters, the parallel forward
paths in the Ford structure will never individually encompass more than
two quadratic blocks, whereas in the Coupled Biquad structure, if the
response has one zero at the origin and one at infinity, then parallel
forward paths will span all but one of the blocks. This has been
reported to lead to an unacceptably high stopband sensitivity in the
Coupled Biquad structure [125,158). For high order filters it seems
likely therefore that the Ford structure will have a lower stopband
sensitivity than the Coupled Biquad structure. The comments made
previously, about comparison of the use of parallel forward paths with
the use of series notch sections, apply also to the Pord structure. A
statistical measure of block diagram sensitivity may indicate that the
Ford structure has a lower standard deviation in the stopband, but the
worst case shift of the notch frequencies will be lower in a structure
such as the node-voltage simulation which uses series notch sections.
Changes in the Q-factors of the three quadratic sections produce
the responses shown in Fig 5.25. They are similar to those of the
Coupled Biquad structure and the node~voltage simulation. The effects
on the passband response of changing the values of the remaining
constants are shown in Fig 5.26. These again are of a similar nature
to the preceeding leapfrog feedback structures. In addition, K, , K,
and b3 affect the frequency of the notches, but curiously Qi and

Q,, have very little effect at any frequency.

5.3.4 leapfrog feedback together with complex feedback

It is possible for a leapfrog feedback structure to incorporate
transmission zeros by means of complex feedback [57,58,59], however
no example of this structure is studied in this Chapter. Although the
method is a direct simulation of a passive ladder filter, the excessive
number of sections required and the difficulties associated with
implementing reciprocators make it less attractive from the practical
point of view. »

The design method described in Ref. 58 could have been used here
in two ways. Either the lowpass LCR ladder network shown in Fig 5.21(a)
could have been simulated, followed by lowpass to bandpass

transformation and frequency scaling of the resulting structure, or the
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bandpass LCR ladder network shown in Fig 5.10(a) could have been
simulated directly. The first case produces the structure shown in
Fig 4.3(e), which illustrates the fact that four quadratic sections
are needed instead of the three quadratic sections required by the
node-voltage simulation, Coupled Biquad and Ford structures.
Referring to Fig 4.3(e), the two end blocks have transfer functions
which are identical to those used in the Ford simulation, and the two
centre blocks (54 and (55, used in conjunction with the reciprocator
Gz'—*wﬂ y are infinite-Q bandpass sections, producing transmission
zeros by complex feedback as described in Section 1.4. The second
case referred to above leads to a slightly different structure (see
Fig 5.27), but again four quadratic sections are needed. The extra
section arises as a consequence of the LCR ladder network being
non-canonic in the number of elements. Doblinger [144] has studied
the simulation of canonic Brune-sections.

In the commonly used doubly-terminated LC ladder networks the
occurrence of cutsets containing capacitors only, and also the
occurrence of loopsets containing inductors only, both lead to
unobservable and uncontrollable natural frequencies at the origin
of the s-plane, Whilst this is of no consequence for a passive filter,
in a direct simulation it leads to operational amplifiers having an
uncontrolled d.c. output level. For example the lowpass LCR network
shown in Fig 5.21(a) has neither a loopset of inductors nor a cutset
of capacitors, and the lowpass simulation in the structure of
Fig 4.3(e) is satisfactory at zero frequency. However the bandpass
transformation of the network in Fig 5.21(a) has a loopset containing
inductors only, and in the bandpass versions of the structures shown
in Fig 4.3(e) and Fig 5.27 there is no d.c. feedback around the
infinite gain reciprocator (32 . Amplifier offset voltages are thus
unrestrained unless the structure is modified in some way, but this
would depart from direct simulation and in some cases could distort
the frequency response. Another difficulty is that the phase response
associated with a practical implementation of a reciprocator can lead
to high-frequency instability. Martin & Sedra have studied the
stabilization of reciprocators [59].

Because it is a simulation of a low-sensitivity LC ladder
network, the structure illustrated in Fig 5.27 is likely to have a
passband sensitivity similar to the other leapfrog structures studied
in this section. Stopband sensitivity however has not been studied,

and is likely to depend on the specific structure used. For example
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Fig 5.27 Leapfrog feedback together with complex feedback [57]



in Fig 4.3 (e) the part of the structure most affecting the stopbands
is associated with the reciprocator. It is similar in form to the
continued fraction structure studied in Section 5.2.3. and might
therefore have similar sensitivity properties at stopband frequencies.
The alternative structure shown in Fig 5.27 will have a stopband

sensitivity performance more like that of series notch sections.
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5.4 Structures having nested feedback loops

This section presents the sensitivity performance of structures
in the third, fourth, and fifth columns of Table 4.1. They all have
feedback loops which are nested one inside the other. Results
presented here will illustrate the fact that finite difference
sensitivity is invariant under the transformation of FGR. Further
results will show that there is a common pattern to the sensitivity of
structures having nested feedback. It will also be shown that for the
simple design procedure described in Section 1.4, the pre-distortion

constant (¢, may be chosen for minimum sensitivity.

5.4.1 Follow the Leader feedback and its transpose

We start by comparing two structures which are related by the
transformation of FGR, without at this stage making any attempt to
minimise their sensitivity. The first structure was presented in
Section 1.4 as an example of a multiple feedback filter in which the
transmission zeros are produced by parallel forward paths. The simple
design method described in Section 1.4 has been used to implement the
bandpass transfer function (5.1.5), with the pre-distortion constant a,
chosen to give quadratic blocks having a Q-factor equal to 20. The »
resulting structure is shown in Fig 5.28. Alongside this, in Fig 5.29,
is shown the structure related to it by FGR. It has Follow the Leader
feedback and parallel paths fed forward to the output. In both
structures the scaling transformation has been used to eliminate the

Vnéed for inverfing amplifiers. This has been achieved by the use of
both inverting and non-inverting quadratic sections. Flow graph
reversal relates the block diagram parameters of the two structures in
accordance with the identities shown in Table 5.1. Note that in both
structures the blocks are numbered in sequence from the input to the
output, so that for example the first block (3‘ of the transpose
structure transforms into the last block G, of the follow the leader
feedback structure.

" The effect of increasing the resonance frequencies of each of the
three blocks by 3% is shown in Fig 5.30 for the transpose follow the
leader feedback structure, and in Fig 5.31 for the follow-the-leader
feedback structure. It can be seen that the sensitivities are related
by the identities listed in Table 5.1. For example, increasing the
resonance frequency J, of the first block G, of the transpose

structure by 3% produces a perturbed response which is identical to
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that produced by a 3% increase in the resonance frequency Woq Of

the last block (33 of the follow the leader feedback structure. The
responses due to an increase of 10% in the Q-factors of the blocks,
shown in Figs 5.32 and 5.33, are related in the same way. These
results illustrate the fact that finite difference sensitivities are
invariant under the transformation of FGR. Although they are not
shown here, responses caused by changes in the values of the remaining
block diagram parameters have been computed, and it is again found
that parameters related by the identities listed in Table 5.1 have

identical finite difference sensitivities.

TABLE 5.1 Flow graph reversal identities

Transpose follow ?he FGR Follow the.leader
leader feedback Fig 5.28 feedback Fig 5.29

G, G,

G, G,

G, G,

Qgq Qa,

Qyq A

Ay, Qs

b, C

b, ¢,

b, Gy
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5.4.2 Shifted companion form and intermediate structures

We now consider two more nested feedback structures, both
designed by an adaptation of the method described in Section 1.4.

The first is Tow's 'shifted companion form' structure [47], and the
second is an intermediate structure of Type-C in Table 4.1, first
proposed by the writer in Ref 84. For both structures, the block
diagram is analysed with the block transfer functions G; replaced
by 1/s in order to obtain expressions for the path constants in terms
of the transfer function coefficients. These expressions are used to
implement the required lowpass prototype transfer function (5.1.1),
pre~-distorted by the constant o, . Pre-distortion is removed by
replacing 1/s with 1/'(s-+m.) , and then lowpass to bandpass
transformation and frequency scaling produce the block diagrams shown
in Figs 5.36 and 5.37.

Plots of the frequency responses resulting from changes in the
values of the block diagram parameters reveal that the sensitivities of
the different nested feedback structures are related in a way which
encompasses the identities described in the previous section. In cases
where FGR does not apply, the relationship is not precise and it is
necessary to consider the passband and the stopbands separately.

Take for example the response due to a 3% increase in the value
of the resonance frequency ,, of the third section G; in the
Shifted Companion Form (Fig 5.38(c)), and compare this with the response
due to a 3% increase in the value of the resonance frequency Wy, of
the first section G, of the intermediate structure (Fig 5.39(a)). At
frequencies in the passband the two responses are almost identical, and
furthermore they are similar to the responses caused by a 3% increase
in @,, of the transpose follow the leader feedback structure
(Fig 5.30(a)), and by a 3% increase in w,,of the follow the leader
feedback structure (Fig 5.31(c)). It is possible to identify a
characteristic of the structure which applies to each of these four
responses; that is they all relate to a block which is a member of just
one feedback loop. Further similarities can easily be found, and they
are set out in Table 5.2. This table has been compiled from a study
of all the relevant frequency response graphs, not all of which have
been reproduced here, for brevity. From the Table, it sSeems reasonable
to conclude that the similarities in the sensitivities are a
consequence of the corresponding similarities in the structure, and
that the Table may be extended to include other nested feedback

structures. The invariance of passband sensitivity indicated by



Q= 0.602478
a,~1.021308
044=0.013501

Gj:Kj S
1
S+ Yo 540,

Q

w, = 100

Q = 20

by=0.400978
b,=-0.025338
D3=-0.063365

j=1,2,3
K= 10
Ky=Ks= -10

@, =0.014501
Oy, = 0.602418
045 = 1.021308

G

j=Kj S
Q

W, = 100
Q = 20

2 1
S+WoS + Wy

by = 0.481449
b, = 0.025388
by =-0.063865

j=1,2,3

Ky= Ky=-10

K1= 10

H—v

(a)

L=

(a)

s

eC JREN

(o)

x\\ > \\M# ' i
R h B
- [

Fig 5.36 Shifted Companion
Form [47]

a) Block diagram
b) Active CR realization
(c) Frequency responses

Fig 5.37 Intermediate
structure [84]

b) Active CR realization

&a Block diagram
(c) Frequency responses

. R
e e T —
O Q)
7 AT
I oy ’ f \ ——
A 1 - I
/ 4 ' N <
|7 , vt . \\ \\
/ [0 B BT AN
; L NG
<1 5 i P
A ESR : . e
_.X\A e - \\ l’
Y SEIETEY
ot 0 - iy

179



180

Fig 5.39 Intermediate structure

5.38 Shifted Companion

Fig

sensitivity to changes

in resonance
frequencies

Form sensitivity

to changes in

resonance frequencies



181

17

168 FREC. D)

e

Rl

Thei T

1457 FREQ.

T

165 FREQ. ingt

155

&

1857 FREQ. tHa)

Intermediate structure

41

Fig 5

40 Shifted Companion

Fig 5

sensi

tivity

to changes in
Q-factors

i

Form sens

tivity to

changes in Q-factors



182

160]) N9

e e e ]
- o -

16P] NiYD

- )

185 FREQ. )

I S0 Sy

——

[

1€

!
IIG

65 FREQT (H2]

155

N )

T

15

Then o T
Yol

T e =

A

I o

T a8 T FRga. Izl

v v

W FREQ w11

"
i
1
L

» fo s 19

"by +10%

0 ®
ue
&o
+
58
]
+
n o
+2
.wyts
atmr
orf o] o
o > P
QA 0~
m.tnP
- O
O noP
tm m
R
N
<
L]
n
&0
o
=y
=
O M
o] 4
8% ¢
By o ol :
g+ 0
O+ W &~
on o 0]
g &+ A
Lo B ml
[T ] ="
+ + oo
umcmm
g 0 00
NEP OH
N
4
L]
tn

Fig



183

Table 5.2 is similar to the invariance of sensitivity exhibited by
the transformation shown in Fig 3.4. 1In that transformation,
cascaded subnetworks may be interchanged to obtain new structures

without affecting the sensitivity performance.

TABLE 5.2 Similar passband sensitivities

Transpose Follow the | Shifted Intermediate
follow the | leader Companion |Structure
leader feedback Form Fig 5.37
feedback Fig 5.29 Fig 5.36 :
Fig 5.28
'In three feedback
G’3 Gt GI G2 loops
G, G, G ’ G, In two feedback loops
G, G 3 G3 G‘ In one feedback loop
s, Q,, a,, Q,, Loop around one block
Q,y Q,, a,, Q)4 Loop around two blocks
Loop around three
Q‘s (.1\3 (1|3 a|3 blocks
Forward path through
b, C b, b, one block
Forward path through
bz Ca bz bz two blocks
Forward path through
b, Cs b| b, three blocks

At stopband frequencies there is a slightly different pattern of
similarities, and these are set out in Table 5.35. In the stopbands,
the response is not affected by the feedback path constants a;k,
and the similarities in the sensitivities relate to the forward paths,
as opposed to the feedback loops which have a dominant effect on the
passband response. There are in the stopbands some minor variations
in respect of the depth of the notches.

On the basis of Table 5,2 and Table 5.3 it can be said that all
of the nested feedback structures studied here have almost identical

sensitivities, and it is likely that this can be extended to include
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other arrangements of nested feedback loops. The choice between these
structures, at least for design methods which produce identical blocks,
may therefore be made using some other criterion, such as the number
of amplifiers used. ZFor a given structure and a given transfer
function, the number of amplifiers will depend on the choice of the

pre-distortion constant &, , and this is studied in the next Section.

TABLE 5.3 Similar stopband sensitivities

Transpose| FLF SCF Intermediate
FLF structure
Fig 5.28 | Fig 5.29( Fig 5.36 |Fig 5.37

Block with no parallel

paths G, G, G, Gy
Blocks with parallel

forward paths G'z ) G| Gz a G3 Gz s G. Gz ’ G|
Forward path through

one block b3 Cy b3 b;

Forward path through
two blocks b, C, b, b,

Forward path through
three blocks b, Ca b, b,
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5¢4.3 Choice of pre-~distortion constant

For the simple design procedure described in Section 1.4, the
selection of a value for the pre-distortion constant ®, is equivalent
to choosing a @~factor for the quadratic blocks, because the Q-factor
of the blocks Q is given by the Q-factor of the required response q
divided by w,: Q::q/xv In all previous examples of structures
having nested feedback loops, the value of the pre-distortion constant
®¢, has been chosen somewhat arbitrarily to give block transfer
functions having a Q-factor equal to 20. In this section we discuss
how o, may be chosen more advantageously.

In Hurtig's Primary Resonator Block filter [27] (a follow the
leader feedback structure for polynomial filters), the Q-factors of
the blocks are such that the innermost feedback loop is eliminated.

The corresponding condition may be found for the nested feedback
structure described in Section 1.4. With reference to Fig 1.8, the
innermost feedback loop is eliminated when a,,=0, which, from (1.4.7)
with k=n-1, gives the required condition in terms of the coefficients

of the lowpass prototype transfer function as:
lx’\ = Sn-i (5.4.1)
no,

Tow {28] reports that the Primary Resonator block filter has near
optimum sensitivity.

Johnson, Hilburn and Irons [154] suggested, in respect of a follow
the leader feedback polynomial filter, that in some cases it may be
possible to choose ®, to be such that all the feedback path constants
ij become non-negative, thus avoiding the need for inverting
amplifiers, This depends on the values of the coefficients in the
denominator of the transfer function, and it may not always be possible
to eliminate amplifiers in this way.

Hruby and Novotny [108] used a structure having follow the leader
feedback and feedforward to the output, in order to realize very
narrow band filters. They chose &, to suit the high Q-factor of the
piezo-electric resonator sections which they used.

In connection with the Shifted Companion Form structure, Tow
suggested that «, may be selected for optimal sensitivity [28]. He
considered standard deviation, as a function of frequency, derived
from a 'Monte Carlo! analysis of specific active CR realizations. His
observation was that there existed a broad range of «, for which the
standard deviation was relatively low, and that this range included

Hurtig's design. More recently, Schubert [159] arrived at a similar
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conclusion from a study of multi-parameter coefficient sensitivity.

In this section we will take the intermediate structure shown in
Fig 5.37, and will present the block diagram sensitivities for wvarious
values of the pre-distortion constant ,. If the lowpass prototype

transfer function (5.1.1) is written as

FU’(S) = Vo + U, 52 63__.. 1 (5.4.2)

2 3
8+ 8,5 +8,5 +8555

then the design method gives the following expressions for the block

diagram parameters:

d,, = -5,+ 3¢,
Cl7_3 "8, + 2 52“\ - 3«.\2

]

A,y = -8+ 8, - &, &’ +a (5.4.3)
b3 = Vz
bz = VZ (0(’!- 62)

b, = V,+ V, ol
Approximate values of these parameters are tabulated below to illustrate

their dependence on «,.

TABLE 5.4 Intermediate structure parameters

x. | =0.5 0 0.01| 0.1 | 0.2 | 0.33| 0.5 | 1.0 |10
Q=24.| —20 00 1000 | 100 | 50 30 20 |10 1
Q. | -1.40 | =0.46 | =0.45 | =0.35 | =0.26 | -0.14 | 0.02 | 0.81 | 921

Cays -2.82 | =1.,17 | =115 | =1.02 | =0.93 | =0.90 | =1,02 | =2.37 | —283
Ay -2.40 | -0.90 | -0.87 | =0.60 | -0.30 | 0,10 | 0.60 | 2.10]| 29.1
b, 0.48 | 0.47| 0.47 | 0.47| 0.47 | 0.47 | 0.48 | 0.53| 6.85
b, -0.09 | -0.06 | -0.06 | -0.05 | -0.04 | =0.04 | =0.03 | 0.006 | 0.58
b, 0.06 | 0.06| 0,06 | 0,06 | 0.06 | 0.06 | 0,06 | 0,06 | 0,06

Active CR realizations corresponding to each of these values of «,
have been investigated, and it will be seen that the sensitivities to
the different block diagram parameters do not have the same dependence
on the value of «,.

Consider first the effect of a 3% increase in the resonance
frequencies W, , Wo, and W,, shown respectively in Fig 5.44,
Fig 5.45, and Fig 5.46. The stopbands are mostly unaffected by the
value of o, but the passband is affected, and, depending on the
feature of interest, the sensitivity reaches a minimum somewhere

between ® = 0.2 and «,= 0.5. It is of interest to note that for
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this example the Hurtig condition (i.e. the elimination of the

innermost feedback loop) corresponds to:

%, = 5, = 0.299 (5.4.4)
38,

hence the results are in agreement with Tow's empirical observation

that the Hurtig condition is near to the optimum. In the region of
minimum sensitivity, the performance is not as good as that of the
leapfrog feedback structures studied in previous Sections, but it is
better than the cascade. At extreme values of «, the sensitivity
becomes quite poor. For o,=0 the sensitivity is worse than that of
the cascade structure, and when «,=10 the sensitivity is so large
that the design is impracticable. At an optimum value of o, the first
block has the greatest sensitivity, and it is interesting to note that
the first block is in one feedback loop only. The other two blocks
are members of two feedback loops (CJ.22 being approximately zero at
optimum values of u\), and these blocks have sensitivities which are
similar to each other but lower than the sensitivity of the first
block. This observation is consistent with the analysis of the
differential sensitivities of a leapfrog feedback structure given in
Section 1.2, where it was shown that the centre block - a member of
two feedback loops - has a lower sensitivity than the two outer blocks,
each of which is a member of only one feedback loop. This suggests
that the key to obtaining low sensitivity in multiple feedback filters
is to include as many feedback loops as possible. Some success has
been reported with this approach (Column 6 in Table 4.1), but the only
design methods for which confirmatory sensitivity results are
available are those which involve a search for minimum sehsitivity by
means of a computer optimisation routine, as described in Section 3.5.

The sensitivities to changes in the @Q~factors of the blocks do
not depend on the value of &, in the same way. From Fig 5.47 it can
be seen that the sensitivity to Q, is proportional to oo, over the
range o,= 0 to o= 0,5. The sensitivities to changes in @2 and
Q, are also proportional to «,. Since o, = q,/Q, this balances the
tendency for the variability of quadratic sections to increase in
proportion to Qrfactoé?g]For o, = 1/3, the perturbed responses are
comparable to those computed for the leapfrog feedback structures, as
are the responses caused by changes to the other block diagram
parameters.

It will be seen from Table 5.4 that it is possible to use a

negative value of «,, corresponding to a negative Q-factor for the
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blocks. Such a design can be realized if the Q-enhancement type of
quadratic section is used. There is however no practical advantage
in doing so, indeed it was found that with «,= -0.5 the passband
sensitivity was appreciably greater than with «,= +0.5.

Whilst even for the optimum value of «, the passband sensitivity
is not as low as that of the leapfrog feedback structures, the nested
feedback structures described in this Chapter have a sensitivity lower
than that of the cascade structure; they have a simple design

procedure, and may be constructed from identical sections having a

low Q-factor.
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5.5 Structures having all feedback loops

The results presented in Section 5.4.3 suggest that the lowest
passband sensitivity may be obtainable by including as many feedback
loops as possible. Several authors have proposed methods for designing
such structures, and these are indicated in Column-6 of Table 4.,1. In
most of them the added flexibility has been utilized to obtain a
minimum measure of sensitivity, for specific examples, by means of a
computer optimization programme [70,86,116,136]. Only one design
method has been applied to bandpass filters incorporating finite
transmission zeros by means of series notch sections [1171, and there
is a difficulty with that method, not explored by the author of Ref.117,
in that early stages of the design procedure require a knowledge of the
final result. Sensitivity minimization, by use of the similarity
transformation, is not directly applicable to existing structures
having series notch sections because these do not have all blocks
identical to each other (see discussion in Section 3.5). The
similarity transformation has however been applied successfully to
structures having parallel forward paths [861, in order to minimize
sensitivity. There is as yet no practical method of incorporating
finite transmission zeros into a low sensitivity structure having all
feedback paths, without invoking a computer optimization routine. The
next example will show that the presence of all feedback loops is in

itself not sufficient to guarantee low sensitivity.

5¢5.1 An adaptation of the Crab's Eye filter

Hills' Crab's Eye filter [118] is a bank of band separation
filters having the structure illustrated in Fig 5.48(a) for the case
of three channels. There is one block for each channel, and each
block has a bandpass characteristic centred around its associated
channel frequency. Also each block G;(s) is arranged to have a
transfer function equal to =1 at its centre frequency: Gj(iwoﬁ:z—i.
At this frequency the coupling is arranged to cause a cancellation of
the signal at the input to the other blocks. Thus at the centre
frequency of each channel, all other channels have a transmission zero.
By this means the Crab's Eye filter can provide an efficient means of
separating tones [119].

The Crab's Eye filter may be adapted for use as a single channel
filter, realizing the bandpass transfer function (5.1.5). The structure
is re-drawn as a single channel filter in Fig 5.48(b), from which it
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can be seen that all feedback paths are present and that transmission
zeros are produced by parallel forward paths. Each block has a
bandpass quadratic transfer function, and, in order to realize
transmission zeros by the Crab's Eye method, W, 1is set equal to the
frequency of the upper transmission zero and w,, equal to the
frequency of the lower transmission zero. Additionally Q;k= i Vj,k H
by=1 Vj; and Gj (i woi\z -1 )=1,2. When the structure
in Fig 5.48(b) is analysed with these constraints, the remaining free
parameters (Q., Q; 5, Q;, K; ,0%3) may be chosen by matching the
coefficients of the various powers of s in the denominator of the
resulting transfer function with the coefficients of the corresponding
powers of s in the required transfer function (5.1.5). The resulting
structure realizes the required transfer function to within a constant
multiplier, as shown in Fig 5.48(d). If required, the scaling
transformation (see Section 3.4) may be used to alter the gain, and to
improve the dynamic range. The Crab's Eye approach has not previously
been applied to a single channel filter, and its sensitivity has been
studied only in the context of channel bank filtering.

Increasing the resonance frequencies of each of the three blocks
by 3% results in the responses shown in Fig 5.49, from which it can be
seen that there is a large sensitivity at passband frequencies, despite
the presence of all feedback loops. The feedback loops originate from
the Crab's Eye method of producing transmission zeros and are not
introduced as a means of reducing sensitivity. In this adaptation to
a single channel filter however, the paths d,, and Q,, do not
contribute to the formation of transmission zeros, but the computed
results indicate that their presence does not lead to low passband
sensitivity. It is of interest to note that the spread in the
resonance frequencies of the three blocks is greater than is the case
for the cascade structure.

In the stopbands, the sensitivity is similar to that of the
cascade structure in that a 3% increase in the resonance frequency of
either of the first two blocks causes a 3% increase in the frequency
of the associated transmission zero. The depth of the notches is
dependent on the value of the gain constant K of the associated
block.



5.6 Summary

Whilst it is not usually possible to draw general conclusions
from particular examples, the computational analysis undertaken in
this Chapter has contributed to our understanding of multiple feedback
filters, and it has clarified relationships between the sensitivities
of different structures. For some of the structures considered,
sensitivity results have not previously been published, and for other
structures the sensitivity has not been studied by the method adopted
here. The different structures have been considered in four
categories.

Structures in the first group are designed by a canonic expansion
of the transfer function. They do not have feedback loops for the
reduction of sensitivity, and the computed results confirm that the
sensitivity is relatively large. Because of its common usage and
simplicity of construction, the cascade or factored structure is often
taken as a reference against which other structures are compared. The
partial fraction structure has a greater sensitivity in the stopbands
and the continued fraction structure has a greater sensitivity in the
passband. The sensitivity of the continued fraction structure has not
previously been studied.

In the second group are structures having leapfrog feedback for
the reduction of passband sensitivity. The computed results show
these to have the lowest passband sensitivity of all the structures
studied. Node-voltage simulation of an LCR ladder filter leads to the
use of series notch sections, and it has a low stopband sensitivity
similar to that of the cascade structure. A sensitivity analysis of
the node-voltage simulation has not previously been published. The
Coupled Biquad structure realizes transmission zeros by the use of
parallel forward paths, and this enables all the blocks to have the
same resonance frequency. Computation shows that in the worst case the
transmission zero frequencies can move further away from the nominal
than is the case for series notch sections. It was pointed out that a
statistical analysis could give misleading results. The Ford structure
uses a different arrangement of parallel forward paths and has a
slightly better performance than the Coupled Bigquad structure in both
passband and stopbands. The passband sensitivity of the Ford structure
has been related to that of a simple simulation. Sensitivity
performance of the Ford structure has not previously been published.
Although it is possible for a leapfrog feedback structure to

incorporate transmission zeros by means of complex feedback, such
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structures have not been analysed in this Chapter, because the
excessive number of sections required and the difficulties associated
with implementing reciprocators make it less attractive from the
practical point of view.

Structures in the third group have feedback loops nested one
inside the other. Computed results have illustrated the fact that
finite difference sensitivity is invariant under the transformation of
FGR. Further results have revealed that there is a common pattern to
the sensitivity of structures having nested feedback, The method of
plotting finite changes shows clearly that particular structural
features produce the same perturbed response in the different nested
feedback structures. For the simple design method desribed in Section
1.4, the pre-distortion constant «, may be chosen for minimum
sensitivity. A value of «, chosen to satisfy Hurtig's condition is
close to this optimum value. The computed results show that whilst
there is a definite minimum in the sensitivity to changes in w,,
the sensitivity to Q-factors is proportional to the pre-distortion
constant «,.

Of all the structures studied in this chapter, those having
leapfrog feedback exhibit the lowest passband sensitivity. The work of
some authors indicates that a further reduction of sensitivity is
possible, especially by including all possible feedback paths, but as
yet the only means of achieving such an improvement is by recourse to
computer optimization routines, The mere presence of extra feedback
paths is not sufficient, as shown by the novel adaptation of the Crab's
Eye filter.
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CONCLUSIONS

This thesis has made various contributions to the study of
multiple feedback filters. Some of the results are of a theoretical
nature, such as the summed sensitivity invariant, whilst others, such
as the computational study of sensitivity, address more directly the
problem of designing the most appropriate multiple feedback filter for
a given application. This requires a balancing of the requirements for
minimum sensitivity, maximum dynamic range, fewest component parts,
ease of adjustment, standardization of sub-assemblies, ease of design,
and so on. The objective in this thesis is to aid the process of
design, by acquiring greater insight into the performance of multiple
feedback filters,

A wide variety of circuits is encompassed by defining a multiple
feedback filter to be an interconnection of single output, multiple
input, active CR sections, which form a structure having at least one
forward path through the filter, and a multiplicity of feedback loops.
Such structures may be represented by a block diagram or by a signal
flow graph, and these may be analysed either by a matrix method or by
Mason's Topological method. Analysis yields expressions for both the
differential and the finite difference sensitivities of the transfer
function with respect to the block diagram parameters. Dynamic range
may be determined from the noise and limiting properties of the
sections, by using the noise transfer functions and the intermediate
transfer functions.

The writer has presented a new summed sensitivity invariant. This
interrelates the sensitivities of any set of branches which forms a
cut of the signal flow graph. Two proofs of this result are available;
one based on matrix analysis and the other based on the scaling
transformation together with Euler's relation for homoéeneous
functions.,

A multiple feedback filter may be transformed in several different



ways, in order to change its structure or to obtain some improvement
in performance. Rudimentary equivalent signal flow graphs may be
used to change the structure of a filter into a form suitable for a
particular method of implementation. For example SFG equivalents have
been used to derive Ford's structure. The structure of a multiple
feedback filter may also be changed by the use of a matrix similarity
transformation. When this is incorporated into a computer
optimization programme, it enables the programme to search for new
structures which are in some sense optimum.,

The writer has pointed out that some transformations do not
affect the differential sensitivities or the finite difference
sensitivities of the transfer function with respect to the block
diagram parameters. Any pair of subnetworks which are connected in
cascade may be interchanged without affecting the sensitivities. Also
the signal flow graph of a multiple feedback filter may be reversed
without affecting the sensitivities. One effect of flow graph reversal
is to interchange the noise transfer functions and the intermediate
transfer functions. In view of Schaumann's empirical results on
dynamic range {78,801, it is conjectured that it may be possible to
construct some expression of dynamic range which is symmetrical with
respect to the noise transfer functions and the intermediate transfer
functions, thus remaining invariant under the transformation of FGR.

Another transformation is that of scaling. The writer has shown
that the signal levels in a multiple feedback filter may be scaled,
systematically and with complete generality, by performing the
described transformation on the branches of a cut of the SFG. A
complex scale factor can sometimes be used to change the nature of
the transfer functions required of the sections; a negative scale
factor can be used to eliminate unnecessary inverting amplifiers; and
a real positive constant scale factor can be used to alter the gain of
the filter and to maximise its dynamic range. The writer has proved
that neither the differential sensitivities nor the finite difference
sensitivities are altered by this transformation.

The writer has classified the existing multiple feedback filters,
firstly in respect of the pattern of feedback loops which are
introduced specifically for the purpose of reducing passband
sensitivity, and secondly in respect of the method used to produce
transmission zeros. The three existing techniques for producing
transmission zeros are series notch sections, parallel forward paths,
and complex feedback. It is thought probable that these are the only

possible methods of producing transmission zeros, but this has yet
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to be proved. The concept of complex feedback was introduced by the
writer and was embodied in the continued fraction structure. This
concept has enhanced our understanding of some existing structures.

Presentation of the classification in the form of a Table has
shown relationships between existing structures, and has revealed some
new structures. Some of these may be derived from existing structures
by the transformations of FGR and interchange of cascade subnetworks.
Others may be designed by using an analysis of the corresponding
integrator network. It has been observed that all known low
sensitivity multiple feedback filters, have just one forward path
which passes through each block (or possibly its associated
reciprocator). It is not known whether this is a necessary condition.

Considerable information on the sensitivity performance of a
filter can be obtained by plotting the frequency responses resulting
from finite changes to the various block diagram parameters. Tais
has been done for a variety of structures, and for several of these
the sensitivity performance has not previously been published. The
sensitivity of the cascade structure is taken as a reference against
which the performance of other structures are assessed.

The three canonic structures do not use feedback loops for
sensitivity reduction, and their sensitivity is relatively high,
Compared with the cascade structure, the partial fraction structure
has a greater sensitivity in the stopbands, and the continued fraction
structure has a greater sensitivity in the passband.

0f all the structures studied, those embodying leapfrog feedback
were found to have the lowest passband sensitivity. Any of the three
methods of producing transmission zeros can be used together with
leapfrog feedback, but it appears that at frequencies in the stopbands,
the lowest worst case sensitivity is achieved by the use of series
notch sections.,

Four structures having nested feedback loops were studied, and
they were found to have almost identical sensitivity performance.
Similar perturbed responses in the different structures were related
to specific structural features. The choice between these structures
may therefore be made using some other criterion such as the number
of amplifiers used. For the simple design method used here,the value
of the pre-distortion constant «, may be chosen for a minimum (-
sensitivity, resulting in a value of ¢, close to that given by
Hurtig's condition. The Q-sensitivity did not have a corresponding

minimum, but was proportional to «,.
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The nested feedback structure proposed by the writer [451, and
described in Section 1.4, has aroused considerable interest in the
literature. It has for example provided the inspiration for Wilson's
easily adjustable biquadratic section [163], and it was a stimulus to
Schaumann's work on dynamic range [78,80].

The results of the computational study suggest that the key to
obtaining further reduction of passband sensitivity is to include as
many feedback paths as possible, although this is by no means a
sufficient condition. At present the only préctical methods available
for designing such structures are those which use computer programmes
for optimization. There would be some utility in developing suitable

design methods which do not require the use of optimization.
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