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ABSTRACT

A study is made of multiple feedback filters, which are defined 
to be an interconnection of unilateral, active, CR sections, forming a 
structure which has at least one forward path through the filter and a 
multiplicity of feedback loops. Particular attention is paid to 
structure, which is taken to be the configuration of feedback loops 
and forward paths.

The analysis of multiple feedback filters is described. Both a 
matrix method related to the block diagram representation, and a 
topological method related to the signal flow graph representation are 
given. Sensitivity performance is of special interest, and explicit 
expressions are given for both differential and finite difference 
sensitivities of the transfer function with respect to changes in the 
block diagram parameters. A new summed sensitivity invariant is given, 
applicable to the branches of a 'cut' of the signal flow graph. The 
dynamic range of a multiple feedback filter is discussed, and is 
related to the imperfections of the constituent sections by the use of 
'noise transfer functions' and 'intermediate transfer functions'.

Methods of transforming a multiple feedback filter are described 
in some detail. These may be used to obtain new structures or to 
obtain some improvement in performance. Some transformations 
presented here have the interesting property of altering the structure 
without affecting the block diagram sensitivities.

Multiple feedback filters are classified in this thesis firstly 
by the arrangement of feedback loops which are introduced to reduce 
the sensitivity of the filter, and secondly by the three methods of 
realizing transfer function zeros. This classification gives insight 
into the function of structure in multiple feedback filters, and it 
also reveals some new structures, for which simple design methods are 
proposed.
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Finally the new structures presented in this thesis, together 
with a representative selection of known structures, are compared 
by means of a computational study of sensitivity. This study verifies 
some theoretical results given in earlier chapters, and it increases 
ourunderstanding of filter sensitivity.



STATEMENT OP ORIGINALITY

Ify aim in this thesis is to advance the study of multiple 
feedback active CR filters, by giving new insight into the mechanisms 
by which the structure of a filter influences certain performance 
characteristics. During the course of this dissertation I give 
several results which to the best of my knowledge and belief are new, 
and are my original work. Most of these results I have published in 
references [451 t 1771> (841 and [88], which by bheir nature give 
supporting evidence of originality.

The principal contributions are some new facts concerning the 
analysis and transformation of multiple feedback filters in general, 
a new classification of multiple feedback filters as an aid to insight 
and the development of several new multiple feedback structures.

In respect of the analysis and transformation of multiple 
feedback filters, I have given a scaling transformation which is new 
in its generality of application. I have shown that sensitivity is 
invariant for this transformation, and I have discussed the use of 
scaling to maximize dynamic range. Related to this scaling 
transformation, but derived independently, is a new summed sensitivity 
invariant, applicable to the branches of a cutset of the signal flow 
graph of the multiple feedback filter. I have also pointed out the 
previously unrecognized sensitivity invariance of flow graph reversal, 
and the sensitivity invariance of interchanging cascaded subnetworks.

The new classification presented in this thesis is a refinement 
of the one I published in Ref [8 4 ]• I have classified multiple 
feedback filters in terms of two aspects of their structure. Firstly 
by the arrangement of the feedback loops which are introduced to 
reduce the sensitivity of the filter, and secondly by the method of 
realizing transfer function zeros. I identify three fundamental 
methods of producing these zeros, namely series zero producing 
sections, parallel forward paths, and the method which I call complex
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feedback. This classification gives insight into the function of 
structure in multiple feedback filters, and it also reveals the 
existence of new structures.

I have given several new multiple feedback filters. The one 
which has aroused the most interest has come to be known in the 
literature as the Inverse Follow the Leader Feedback filter. I have 
shown that other new structures may be obtained from known structures 
by the use of flow graph reversal, and I also demonstrate the 
existence of certain intermediate structures which are based on little 
used analogue computing networks. Yet another new structure results 
from a continued fraction expansion of a lowpass prototype transfer 
function.

I have undertaken a computational study of the sensitivity of 
various multiple feedback filters. For several of these structures 
the sensitivity performance has not previously been investigated.
This study shows that the worst case deviation of transmission zeros 
is lower if series notch sections are used as opposed to parallel 
forward paths. The analysis also reveals a common pattern to the 
sensitivity of structures having nested feedback loops.



6

CONTENTS

Abstract 2

Statement of originality 4

1 Introduction 8
1.1 Active CR filters derived from LCR filters 10
1.2 Sensitivity 20
1.3 Gain and dynamic range 26
1.4 Multiple feedback filters 27
1.5 Objectives of this thesis 42

2 The concept of multiple feedback 43
2.1 Definition of multiple feedback 44
2.2 Analysis of multiple feedback filters 54-
2.2.1 Transfer function 55
2.2.2 Sensitivity of the transfer function 59
2.2.3 A summed sensitivity invariant 64
2.2.4 Dynamic range 77
2.3 Summary 83

3 Tramsformation of multiple feedback filters 84

3.1 Equivalent signal flow graphs 85
3.2 Interchange of cascade sub-networks 91
3.3 Flow graph reversal 94
3.4 Scaling of signal levels 98
3.5 Similarity transformation 106
3.6 Summary 108

4 Classification of multiple feedback structures 109
4.1 The basis of the classification 109
4.2 Multiple feedback loops for reducing passbamd

sensitivity 113
4.3 Method of producing transmission zeros 117
4.4 New structures indicated by the classification 122
4*5 Low sensitivity structures 125
4.6 Summary 126



7

5 Computational study of multiple feedback filters 127
5.1 Details of the sensitivity computation 128
5.2 The three canonic expansions of a transfer function 152
5.2.1 Cascade or factored structure 132
5.2.2 Partial fraction structure 136
5.2.3 Continued fraction structure 139
5.2.4 Sensitivity relations 139
5.3 Structures with leapfrog feedback 144
5.3.1 Node-voltage simulation 144
5.3*2 Coupled-biquad structure 151
5 .3.3 Fordfs structure 160
5.3.4 Leapfrog feedback with complex feedback 168
5.4 Structures having nested feedback loops 172
5.4.1 Follow the leader feedback and its transpose 172
5.4.2 Shifted companion form and intermediate structures 178
5.4*3 Choice of pre-distortion constant 185
5.5 Structures having all feedback loops 193
5.5*1 An adaptation of the Crab's Eye filter 193
5.6 Summary 197

6 Conclusions 199

References 203



1
INTRODUCTION

Electric wave filters are widely used in electronic systems 
to alter the energy content of electrical signals. For instance, 
if a filter is considered in the frequency domain, it may be 
required to pass energy in a certain band of frequencies (the 
passband) and to block the transmission of energy at other 
frequencies (the stopbands). The first filters comprised an 
interconnection of inductors, capacitors, and resistors (LCR filters). 
Subsequently many other electronic components have been used in 
filters, and of considerable practical interest are filters 
composed of capacitors, resistors, and active devices which are 
usually monolithic integrated circuit amplifiers. These are called 
active CR filters [I38>].

Such filters avoid the use of inductors, and therefore offer 
the potential advantages of fabrication as a microelectronic 
integrated circuit, and of having response characteristics which are 
not degraded by the imperfections associated with inductors.
However in active CR filters the imperfections of integrated circuit 
amplifiers can have a considerable effect on the response 
characteristics, and in some cases can cause the filter to oscillate. 
Such parasitic effects, combined with a high sensitivity to component 
tolerances, limited the initial application of active CR filters to 
low frequencies and low orders of complexity.

The construction of more complicated active CR filters became 
possible when techniques were developed for deriving active CR 
filters from LCR filter designs, in a way which gives the active CR 
filters some of the desirable low sensitivity properties of certain 
LCR filters. Some of these techniques will be described briefly in 
this introduction.

Firstly we will describe the method of inductor replacement, 
whereby active CR 1-port sub-networks are used to realize inductance



in place of each magnetic inductor in the LCR filter. Secondly 
the method of applying complex impedance scaling to an LGR filter, 
which results in a network of capacitors, resistors, and active 
CR 2-port impedance converters. Thirdly we will see that an 
analogue simulation of the LCR filter results in an interconnection 
of active CR sub-networks, which are unilateral, and are of a type 
commonly used in the tandem or cascade connection to form simple 
filters.

In the filter produced by simulation, the unilateral sub­
networks (called sections) are interconnected by a forward path 
and several feedback loops. It is the presence of these feedback 
loops which gives the simulation filter a low passband sensitivity 
when compared with more simple active CR filters. There are 
several ways of arranging feedback loops around unilateral 
sub-networks in order to reduce the passband sensitivity, and three 
of them will be described in this introductory Chapter. The first 
arrangement occurs in the network which simulates an LCR ladder 
filter, and it is called 1 leapfrog feedback'll53. The other two 
arrangements result from a method of designing the filter directly 
from the required transfer function, and in the literature they[30]
are called 'follow the leader feedback* and 'inverse follow the 
leader feedback'.

Some types of filter responses require transmission zeros, 
and in this introduction we will describe the three ways in which 
the unilateral sub-networks or sections may be interconnected 
to produce transmission zeros. The first is the use of notch 
sections in the forward path of the filter; the second method is 
by the cancellation of signals from a number of parallel forward 
paths; and the third method is to use feedback loops in a particular 
way, called in this thesis 'complex feedback'.

Many patterns of forward paths and feedback loops are possible 
and the examples to be described are just some members of a class 
of networks which comprise an interconnection of active CR sections. 
It is this class of networks which forms the subject matter of this 
thesis.



1.1 Active CR filters derived from LCR filters

Orchard[1]was the first to suggest that high-order insensitive 
active CR filters could be made by first designing a low-sensitivity 
LCR filter, that is one having maximum power transfer in the passband, 
and then replacing each inductor with an active CR network exhibiting 
inductance at a pair of terminals. It is possible to design such 
inductance networks, and moreover they can often be made with a 

higher Q,-factor than the corresponding magnetic inductor, and can 
have a smaller temperature coefficient. The result is an active CR 
filter with a performance superior to that of the corresponding LCR 
filter [2].

It is important to base the design on a low sensitivity LCR 
filter. To obtain low sensitivity at passband frequencies it is 
desirable to use an LC 2-port to couple a resistive source to a 
resistive load, and to arrange that maximum power transfer occurs 
at the frequencies of minimum loss in the passband. It is this 
feature which has been found in practice to make the passband 
response insensitive to variations in the value of inductance and 
capacitance. This was explained by Orchard [1] in the following way.
At a frequency at which maximum power transfer occurs, a change in 
the value of any inductance or capacitance can only reduce the 
transfer of power. Thus if the amplitude response is considered 
as a function of an element value, the response will have a maximum 
at the nominal element value, and the first derivative will be zero. 
Hence a variation of an element value from its nominal will cause 
less change in the response at this frequency than it would if the 
filter were not designed for maximum power transfer. Futhermore it 
is argued that at other passband frequencies there will be almost 
maximum power transfer, and the sensitivity will not be degraded by 
very much. This explanation and subsequent elaborations[3>4>5) 
are qualitative rather than quantitative, since only the first 
derivative is considered. In practice the second and higher 
derivatives are usually acceptably low.

To obtain low stopband sensitivity it is usual to choose the 
LC 2-port to have a ladder structure. The transfer function zeros 
may then occur at the zeros of series admittances, and at the zeros 
of shunt impedances.

As a simple example of the method of inductor replacement consider 
the 6-th degree bandpass filter shown in Fig 1.1(a). An active CR 
filter is obtained when the two grounded inductances, L, and L 3 , 
are realized by active CR grounded inductance networks, and the



Fig 1.1 Filter produced by inductor replacement

(a) LCR filter
(b) Active CR circuit realizing grounded inductance [6]
(c) Active CR circuit realizing floating inductance [71
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floating inductance L a is realized by an active CR floating 
inductance network. Examples of active CR realizations of grounded 
and floating inductance are shown respectively in Pig 1.1(b) and 
Fig 1.1(c). Although the technique of inductor replacement was 
known earlier [8], Orchard’s paper [1] is widely regarded as a turning 
point in the design of high complexity, precision, active CR filters.

The main difficulty with inductor replacement concerns floating 
inductance, e.g. [_z in Fig 1.1. Although floating inductance can be 
produced in several different ways [9l» the ensuing networks are 
all in some way inferior to those which are used to produce grounded 
inductance. Complex impedance scaling was introduced as a means of 
avoiding the need for floating inductance networks. It is a 
development of the ideas of Gorski-Popiel [10] and Bruton [11], in which 
impedance scaling is applied to various parts of the LCR filter, and 
where the scale factor is not a constant but is some multiple of the 
complex frequency variable 5 , or its reciprocal. The method is 
described most fully in Ref 112], and one way of proceeding, called 
full impedance scaling, is illustrated in Fig 1.2. The first step is 
to use Norton equivalent networks [13l to change the LCR filter into 
a network having all its capacitors grounded, or a network with all 
its inductors grounded, or a tandem connection of the two as shown in 
Fig 1.2(b). Equivalent networks may also be used to reduce the range 
of element values to within practically realizable limits. The second 
step is to scale the impedance of the capacitor subnetwork by s , and 
to scale the impedance of the resistor-inductor subnetwork by l/s. 
Impedance converters are then inserted between the two scaled 
sub-networks, as shown in Fig 1.2(c) and (d). The forward transfer 
voltage ratio F(s) =  v ($ ) /e (s ) is unaltered by impedance scaling. 
Furthermore the active CR filter (Fig 1.2(c)) retains the structure of 
the LCR filter (Fig 1.2(b)), and each resistor in Fig 1.2(c) corresponds 
to a capacitor or an inductor in Fig 1.2(b). Consequently a change 
in the value of one of these resistors has the same effect on F(-) 
as a change in the value of the corresponding inductor or capacitor, 
and the desirable low sensitivity property of the LCR filter is 
retained. The impedance converters have no counterpart in the LCR 
filter, but the effect of a change in a conversion ratio is the same 
as a change in the value of one or more components of the LCR 
filter. In addition to having a low sensitivity, the active CR 
filter is particularly suitable for fabrication as a microelectronic 
unit. The resistors may be accurate and easily adjustable thick-film



Fig 1•2 Filter produced by complex impedance scaling

I
 a} LCR filter
b) LCR filter after Norton transformations 
c) Active CR filter

d) Circuit of the 1:s2 impedance converter used in (c) [6]

ijM
i-
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devices, and the impedance converters may be adjusted individually 
in a way which takes into account all their component tolerances 
and amplifier imperfections (at a given frequency). The capacitors 
may then have wide selection tolerances, and be all of the same 
nominal value. Another method of complex impedance scaling, called 
partial impedance scaling [12], can have certain advantages in the 
more demanding filter applications.

Simulation is another method of designing an active CR filter 
by derivation from an LCR filter. It is closely related to methods 
of simulating networks on analogue computers [141* in which equations 
describing the constitutive constraints, and equations describing 
the topological constraints are represented or 'simulated* by an 
interconnection of summing amplifiers, coefficient potentiometers 
and summing integrators. Voltages in the analogue computer 
simulation are proportional to, and represent, voltages and currents 
in the network being simulated. The technique of designing filters 
by simulation was originated by Girling and Good in 1955 M5l> 
but was not popularized until later [161, when integrated circuit 
operational amplifiers were readily available. The essence of 
simulation is to arrange circuits to represent equations of the LCR 
network. It is convenient for our purposes to represent these 
equations by a block diagram. Simulation then proceeds in two stages:- 
first the derivation of a block diagram from the LCR filter, and then 
the creation of an active CR circuit realization of the block diagram. 
There are many active CR circuits that can simulate a given LCR 
ladder network, and the use of a block diagram will allow us to 
investigate properties common to all realizations of a given set of 
equations. The process of obtaining a block diagram from a ladder 
network is illustrated in Fig 1.3* Fig 1.3(a) shows an impedance Z

■X-
and a corresponding block diagram representation of the equation 
v =  Zi . Dually, the representation of admittance is shown in Fig 1.3(b)* 
Kirchhoff's current law equations and Kirchhoff's voltage law equations 
are represented in the block diagram by a symbol which we shall call 
an adder, as shown in Fig 1.3(c) and (d). One other block diagram 
symbol will be used, this is an open arrow as used in the two 
feedback paths in Fig 1.3(f), and it indicates multiplication by the 
associated constant; in this case -1. It should now be possible

* Such a representation is often called a "Black box". This is in 
honour of the network theorist H. S Black, who first used the symbol 
in 19 5 4 in connection with stabilized feedback amplifiers.
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Fig 1.3 Block diagram of a ladder network

(aj Representation of impedance
(b) Representation of admittance
(c) Representation of Kirchhoff's current law
(d) Representation of Kirchhoff's voltage law 
(e^ Ladder network
(f) Block diagram derived from the ladder network in (e)
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for the reader to trace the way in which the block diagram in 
Fig 1.3(f) represents the ladder network shown in Fig 1.3(e).

Several different block diagrams can be obtained from a given 
ladder network, depending on which set of Kirchhoff equations is 
used, and depending on the choice of impedance representation or 
admittance representation for each branch of the ladder. Not all 
block diagrams are useful, and the one shown in Fig 1.3(f) was chosen 
as an example because in at least two cases it leads to practical 
filter realizations, using the required type of active CR circuits.

Firstly, if the ladder network is a lowpass filter as shown in 
Fig 1 .4 (a), then the block diagram (shown in Fig 1.4(b)) may be 
realized by an interconnection of summing integrators, summing lossey 
integrators, and inverting amplifiers. A simple manipulation of the 
block diagram, involving sign changes only, enables us to use inverting 
integrators and just one inverting amplifier, as shown in Fig 1 .4 (c). 
This is the ’leapfrog feedback' filter introduced by Girling and 
Good [16].

Secondly, if the ladder network is a bandpass filter as shown in 
Fig 1.5(a), then the blocks will be quadratic functions as shown in 
Fig 1.5(b), and the block diagram may be realized by an interconnection 
of active CR quadratic circuits [17,18,191. Such unilateral quadratic

■jfcircuits have been studied at great length for use in simple active 
CR filters, and the types shown in Fig 1.5(c) and (d) were given 
respectively by Haigh^ and Fliege [20], We have avoided the use of 
inverting amplifiers by using an inverting quadratic circuit to 
realize the block Y2 , and the adders have been realized as an integral 
part of the quadratic circuits [2 2 ].

Complex impedance scaling and simulation, as represented 
respectively in Fig 1.2 and Fig 1.5, are widely used methods of 
designing high order active CR filters. Comparison of the performance 
of the two configurations is difficult; depending for instance on the 
type of impedance converter used in impedance scaling, and on the 
type of quadratic circuit used in simulation. One contribution [2 3 ] 
compares a filter using the circuit in Fig 1.2(c) and (d), with a 
filter of the type shown in Fig 1.5 but using quadratic circuits

* Variously called blocks, sections, building blocks, resonators, 
biquads, cells, filter modules (filterbausteine) or standard 
selective functional blocks.

+ This unpublished circuit was described to the writer on
3 March 1980 by Dr D G Haigh, who designed it from the Fliege 
circuit by the method of terminal interchange [21 ].
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(c)

Fig 1.4 Lowpass leapfrog feedback filter 

(a) LCR ladder

!
b) Block diagram of simulation 
c) Active CR realization
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(a)
D 2. L-2.

V

Fig 1.5 Filter produced by simulation

(a) LCR filter
(b) Block diagram of simulation
(c) Circuit realizing block Y2 and its associated adder*
(d) Circuit realizing block Z1 and its associated adder [20l.

Block Z 3 is similar.
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having one amplifier and three capacitors each. The authors 
indicate that the two methods give roughly comparable sensitivity 
performance, with the leapfrog feedback filter slightly inferior 
in the variation of frequency independent gain. It must be noted 
however that the single amplifier quadratic circuits they use are 
probably inferior to the two-amplifier circuits suggested in Fig 1.5. 
Whilst there remains some doubt about the detailed comparison, it 
is certain that both configurations have good sensitivity performance 
in the passband (compared with the simple cascade filter) as a result 
of being derived from a low sensitivity LCR filter.

The methods of complex impedance scaling and simulation are 
examples of the two major trends in high order active CR filter 
synthesis, one based on the use of impedance converters, and the 
other based on the use of unilateral subnetworks. Both methods are 
capable of extension beyond the scope indicated by the simple 
examples given here, but in this thesis we shall consider only 
filters based on the use of unilateral subnetworks.

We will be concerned with various aspects of the performance 
of such filters, the most important being sensitivity and dynamic 
range. Our treatment of these will be introduced in the next two 
sections, using the simulating filter as an example.

* The nomenclature used in Ref 23 is different to that adopted in 
this thesis. In Ref 23 the filter produced by complex impedance 
scaling is referred to as a Simulating Circuit, and the filter 
produced by simulation is called a Leapfrog Circuit.
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1.2 Sensitivity

In the previous section we have seen that in the case of complex 
impedance scaling there is a correspondence between the resistors 
in the active CR realization and the inductors and capacitors in the 
LCR realization. It follows that the sensitivity of the transfer 
function to changes in the values of these components is the same 
for both realizations. Such is not the case for the filter designed 
by simulation, since for example in Fig 1.5(a) and (b) the components 
G< , Cj , and H  are all simulated by the first block . This block
would normally be characterized by its resonance frequency C00 = x/P, /C , 
its quality factor Q —  J T \C X / G*x , and its gain constant K =  1 /C, ,
so that:
Z 1 = s  K _ _ _ _ S _ _ _ _ _  ( 1 . 2 . 1 )

5Z + CJ0 S + to/'
Q

These intermediate variables are functions of the constituent 
elements of the block, and the functions depend on the type of 
quadratic circuit being used to realize the block. We will in 
Chapter 5 be studying sensitivity in terms of these intermediate 
variables in order to obtain results which are independent of the 
particular way in which the blocks are realized. In this section 
we will show that it is the presence of feedback loops which gives 
the simulating filter its low passband sensitivity, and in doing so 
we will introduce the formal definitions of sensitivity.

Accordingly consider first the structure of the simple cascade 
filter shown in Fig 1.6(a). If the blocks represent quadratic 
circuits then this structure would realize a 6-th degree response. 
Evidently we have:
F(s) = v(s) _  6 , 6 * 6 3  (1.2.2)

e(s)

For purposes of design it is usually desirable to know how, in the
sinusoidal steady state, the amplitude response |F('uo)| deviates
from its nominal value due to component tolerances and parasitic
effects. This information can be obtained by a statistical analysis [25}

[24-1
or a worst-case analysis^of the complete filter network. Our 
purpose however is to acquire an understanding of network behaviour 
in the hope that new insight will enable us to design better filters.
We therefore consider separately the effect of changes in each 
element of the block diagram. So in (1.2.2) we give, for instance, in
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e

Fig 1.6 Two structures and their differential sensitivities

(a) Cascade structure of simple active CR filters
(b) Leapfrog feedback structure of the analogue simulation filter
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G 3 , 3X1 i n c r e m e n t  A G 3  w h i c h  c a u s e s  a n  i n c r e m e n t
A F  = F(s; G3 + AG3) - F ( 5  *, 6 3 ) . One measure of sensitivity
would be the divided difference A F / A 6  , but it is usual to take 
the dimensionless ratio of the fractional change in the transfer 
function F(s) to the fractional change in an element w , and to 
define this as the finite difference sensitivity, thus:

£

F

w

W

F(s;w)
F(s; w tA w )  -  f (s ; w ) 

Aw

(1 .2 .3 )

w h e n c e  f r o m  ( 1 . 2 . 2 )  t h e  f i n i t e  d i f f e r e n c e  s e n s i t i v i t y  o f  F ( s )  t o  
c h a n g e  i n  G 3  i s  f o u n d  t o  b e :

Similarly for the other block diagram elements.
It is often useful, and easier, to use the differential 

sensitivity, defined as :

C F i  Lt X F 3 R Q
w & v j - * 0  F(s)

(1.2.4)

(1 .2. 5)

For example from (1.2.4) we have:
(1.2.6)

This known result is in fact a very simple special case of a summed 
sensitivity invariant, which has been found by the writer and is 
described fully in Chapter 2.

Using a known result of the sensitivity calculus, it follows 
from (1.2.6) that:

s ’"  =  %  s f  - 1 " • 2-7)
- I ,  ^

and similarly for the blocks G, and G 2 . Such modulus sensitivities 
give us the information we require to study the way in which the 
deviation of the amplitude response |F(£to)| is influenced by each 
element in the block diagram. In addition to providing insight into 
network behaviour, these sensitivities may be combined to give an 
estimate of the worst case variation [2 4 l or the statistical 
variation [251 of the amplitude response.

Now consider the structure of the filter designed by simulation, 
shown in Fig 1.6(b). When feedback paths occur around adjacent pairs 
of blocks, the structure is said to have 'leapfrog feedback'. The 
transfer function may be found by analysis (described in Chapter 2)
to be:
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Rs) =  v(s) «______ G,G3G3_______
efe) 1 -c^e.G , - « M Gxe,

(1.2.8 )

The differential sensitivities of this structure may be found by 
direct application of the definition (1 .2 .5 ) to the transfer function 
(1 .2 .8 ), or by one of the many other methods, including the one 
described in Chapter 2. This gives, for example, for the third block:

F(̂  • (1 .2 .9 )
5

=  l 4- QZ3 F(s) 
G,(s) G,(s)

from which we see, by comparison with (1 .2 .6 ) for the cascade 
structure, that the presence of the feedback path Q 23 has altered the 
sensitivity of the third block.

Expressions for the sensitivities to the other block diagram 
elements have been found, and are shown in Fig 1.6(b). Notice that

(1.2.10)
we have, for example:

s ;  - s ;  « 1G 3 a w

This again is a special case of the summed sensitivity invariant, 
to be described in Chapter 2.

For the leapfrog feedback structure the sensitivities are 
evidently frequency dependent. To investigate these further we 
identify the leapfrog feedback structure shown in Fig 1.6(b), with the' 
filter designed by simulation, shown in Fig 1 .5 (a) and (b). We will 
assume that this filter has been designed from a lowpass prototype 
having equal valued terminating resistances (for low sensitivity), 
and that the usual transformation has been used to give a bandpass 
response which is geometrically symmetrical about a centre frequency
of CO, It follows that:

a
"o —co_ —  r 1 _  D 2 f 2

c, L. c.■a v 3

and at the center frequency, when

z, _ 1
5=lC0o , we have

z 3 =  _ l
G , '

(1 .2 .1 1 )

(1 .2 .1 2 )
F  = ___1___ ,

g ; + g 3'  ^  g :
so that, referring to Fig 1.6(b), the frequency dependent terms which 
appear in the sensitivities have the values:

a.. F(;»Q =  a„ FQcoJ =  -1  (1.2.13)
GjCuoo) Z

whereupon the modulus sensitivities for the three blocks become:
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c  lF(iu^\

^JF(£to.^| 

G * ( l  Wo)

r  | F U o 0')|

o
G 3(tto.)

o

l

a

(1.2.14)

compared with unity for all three blocks in the cascade structure.
We also have:
|F(iw5)\ r  i k l w . h  A (1.2.15)

5
I F U cOoM  j

a J
ci,\z v/l23

At frequencies in the upper stopband of the filter we have in
Fig 1.5(b):

Z . ^ J L  ,
sC,

Y2 = _ L  ,
c  0 \ '

S L

1
(1.2.16)

3 z’ r2 ^ i- 3

s o  t h a t ,  f o r  , 6 0 , »  6 0 o  , r e f e r i n g  t o  F i g  1 . 6 ( b ) ,  w e  h a v e :
r- /. \ 1 (1.2.17)

a,- F(ico,) 1

G3(CCO v) G,L2
For flat passband filters the factor 0,1.* has the approximate value: 

2 (1.2.18)
c ,l 2 -4-

tor

where is the geometric centre frequency divided by the width 
of the passband. Whence for upper stopband frequencies:

a ,i H i d , )  =  toQ2 _ ! ___

G,(lcoO - CO^Zcy2

^  ^ (1.2.19)

Similarly for 0l22 y/G,(lcJ,̂  . Hence for the upper stopband

(1.2.20)
the modulus sensitivities become:

\F(iu.l| \F (Iu M  _  lF(Cu),ll

S = 5 =5 = 1
G.(itOi) G 3(vtOi)

as in the cascade structure, and
lF(tco,)l iFUwOj (1 .2 .2 1 )

5n ^ S « 1
A similar argument shows that (1.2.20) and (1.2.21) are also valid for 
the lower stopband.

In this section we have compared the structure of the filter 
designed by simulation with the structure of the simple cascade 
filter, as an illustration of how the presence of feedback loops
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affects the sensitivities with respect to the blocks. At a 
frequency in the centre of the passband the sensitivities are 
reduced by feedback, and at stopband frequencies, where the feedback 
loops become inoperative, the sensitivities of the two structures 
are approximately the same.

The reduced sensitivities at the frequency (O0 are not a complete 
indication of superior performance, because we are also interested 
in the sensitivity at other passband frequencies. When studying the 
sensitivity of filters in Chapter 5» we will compute the sinusoidal 
steady state amplitude response |F(iu>)l of the filter and will 
plot this as a function of frequency. Superimposed on this will be 
a plot of the amplitude frequency response which results from one 
of the block diagram elements being changed by a finite non-zero 
amount, or from one or more of the intermediate variables 
(to > Q  etc.) of a block being changed by a finite non-zero amount.
A collection of such plots for changes in all block diagram elements 
of a given filter will give a very good indication of the sensitivity 
performance of the filter, and will allow us to compare structures 
in a way which is independent of the particular circuits used to 
realize the sections of the filter.
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1.3 Gain and dynamic range

The gain of the filter designed by simulation is determined by 
the gain of the LCd filter which it simulates. The gain can usually 
be adjusted. For instance in Fig 1.5(c) and (d) the potential 
dividers at the input of the sections can be changed to alter the 
gain of the sections, without any alteration to the main part of the 
circuit, and hence their sensitivity performance as isolated 
quadratic circuits is not changed.

In terms of the block diagram elements in Fig 1.6(b), if, for 
the first block, G, is multiplied by a constant "X, and if the 
feedback constant Q lr is divided by ^  , then the transfer function 
of the filter (hence the gain) will be multiplied by a factor X. 
However the block diagram will no longer simulate the ladder network, 
because, for example, the first adder will no longer represent a 
Kirchhoff equation. This raises the question of whether the 
sensitivity performance of the complete filter will be affected. The 
answer is no, as will be proved in Chapter 3> where a much more general 
scaling transformation will be presented, together with an account 
of its affect on sensitivity.

In addition to adjusting the overall gain of the filter, the 
scaling transformation may be used to adjust independently the 
signal levels at the outputs of each internal section of the filter.
By this means the maximum signal levels at the outputs of all 
sections can be made equal to each other, thus maximizing dynamic 
range without imparing the sensitivity performance. A fuller 
discussion of dynamic range, and the use of the scaling transformation 
to maximize dynamic range, is given in Chapters 2 and 3»



1.4 Multiple feedback filters

In section 1.2 we illustrated how the low passband sensitivity 
of the filter designed by simulation was made possible by the 
presence of the feedback paths. It is possible to obtain comparably 
low sensitivity with several other arrangements of feedback paths, 
and one such structure called 'follow the leader feedback' is shown in 
Fig 1.7* lor the case where the filter has three blocks. This 
structure is related to a method of simulating transfer functions 
on an analogue computer [26] by an interconnection of integrators, 
coefficient potentiometers, and summing amplifiers. It was first 
used to realize high order filters by Hurtig III [271 in his 'primary 
resonator block' filter. Hurtig's design proceeds directly from the 
required transfer function, and it is not in any way related to an 
LCR filter. All the blocks are identical to each other, and for a 
bandpass filter could for example be realized by the type of section 
shown in Fig 1.5(d). The quality factor Q  of the sections is 
predetermined in Hurtig's design by the fact that he sets the first 
feedback path equal to zero. The primary resonator block
filter is capable of a sensitivity performance similar to that of 
a filter designed by simulation [28l.

The same structure was used later but independently by Laker [291 
in his 'follow the leader feedback' filter. Laker did not restrict 
all blocks to have the same value of Q, and he used this additional 
flexibility to minimize a measure of sensitivity, in a computer 
optimization procedure. This procedure used a multiparameter 
sensitivity measure that was integrated over a wide band of frequencie 
The integrated sensitivity measure of the optimized follow the leader 
feedback filter was lower than that of a filter having a leapfrog 
feedback structure. At a frequency in the center of the passband 
however the leapfrog feedback filter had a lower sensitivity measure. 
In subsequent work, Laker showed that the sensitivity measure of the 
follow the leader feedback filter had a broad minimum [5 0 ], thus 
allowing some flexibility in the choice of Q values without serious 
degradation of sensitivity. He also showed that the sensitivity 
measure of the primary resonator block filter was not far short of 
the minimum [3 1 ]. Schaumann and others [5 2 ] have shown how Laker's 
follow the leader feedback filter may be designed to have maximum 
dynamic range.

We have so far considered polynomial filters, that is filters 
which have their transfer function zeros all either at the origin of
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the s-plane or at infinity. It is often desirable to realize 
transfer functions which have zeros in complex conjugate pairs on 
the imaginary axis of the s-plane. These give transmission zeros 
at finite non-zero frequencies, and would be used for example in 
Cauer type filters.

There are three methods of introducing such transmission zeros,
the most common of which is the method used in the simple cascade
filter. Refering to Fig 1.6(a), if one of the blocks has the factor
S2 + 6Jn2 in the numerator polynomial of its transfer function, then
by (1.2.2) this will also be a factor in the numerator of F(s)
and the filter will have a transmission zero at rad/s. The
case where such a factor is cancelled by the same factor being
introduced to the denominator of F(s) by one of the other blocks

2 2is always avoided in practice. A section having a factor 5 + 
in the numerator of its transfer function is called a 'notch section', 
and when such a section occurs in the forward path of a structure 
we say that a transmission zero is produced by a 'series notch 
section'.

Consider now the leapfrog feedback structure shown together with 
its transfer function in Fig 1.6(b). One can see that again a 
quadratic factor in the numerator polynomial of one of the blocks 
will also appear in the numerator of the transfer function.
Szentirmai [331 * Dubois & Neirynck [34*1041 and Muller [351 have 
given methods of designing leapfrog feedback structures which 
incorporate series notch sections. Series notch sections may also 
be used with the 'follow the leader' feedback structure, shown in 
Fig 1.7, and suitable design methods have been given by Biemacki & 
Mulawka [3 6 I, Dubois & Neirynck [371» Tow [38>39l* Gensel [40,4H* and 
Padukone, Mulawka & Ghausi [421. These design methods allow 
transmission zeros to be placed at any required frequency, and the 
resulting structures are therefore often called 'generalized*.

Whilst series notch sections allow arbitrary placing of 
transmission zeros, the next method to be described leads to a very 
simple realization for geometrically symmetrical bandpass filters.
It consists of adding together signals from a number of forward 
paths, and the transmission zeros occur at frequencies at which these 
signals sum to zero. Many structures use this method, and because 
of its importance in the study of structure it will be illustrated 
here by describing in detail one particular structure which uses 
the technique.



The method is applicable to any bandpass filter that can be 
obtained from a lowpass prototype by the usual lowpass to bandpass 
transformation. The lowpass prototype transfer function is 
synthesized by a well known analogue computing circuit, using 
integrators as active components, and the required bandpass network 
is obtained by lowpass to bandpass transformation. This changes 
the integrators into bandpass quadratic sections having an infinite 
Q-factor. We prefer to use sections having a finite Q-factor, and 
this is achieved by predistortion (I3SJ.

To describe the method in detail, let the transfer function of 
the lowpass prototype be:

$(s)_ V , + V, S + . . . * s"
S0 + S,s + . . . + 6„ s'1

This is predistorted by the transformation

$(s-«.,)= v. 4 V.(S-*.) + • . . + M s -K .)"

Sh

6 n= 1

(1.4.1)

giving:
(1.4.2)

S. + 8 , (s -k .) + . . . + 8 „ (s-tf.y

which, using the binomial theorem,can be written as:

$(s-«.) =

(1.4.3)

S„=l
i-e

j=0 1=0

As an intermediate step, we synthesize $?(s-o{,) , using the
Successive-integration1 method of simulating transfer functions on 
analogue computers [43 *44-3• The computer network (using positive- 
gain integrators) is shown in Fig 1.8(a), and its transfer function is

F(s) = v(s) ~  b 0 + b,s + . . • 1- b n sn (1.4.4)
e (s) - q0 - a, 5 - . . .  - an„ s"'1 + s"

Now $(s-a.) can be written in this form by interchanging the order 
of summation in (1.4.3) and introducing the index k = j-t , so that 
the coefficients of the powers of 5 are stated explicitly:

n v\

„ E E  * 4 )  (-«■>" V (1 .4 .5 )

S„ = l

k=0 i = k

j - W
E H  8 j ({,](-*.) s

Comparing (1.4 .4 ) and (1.4.5)» we have the design equations for the 
analogue computer network:
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k= 0 ,1 , ..., y\
(1.4.6)

Qw k= 0,1,... , n-
(1.4.7)

The effect of predistortion is now removed by applying the inverse
transformation si-------- =>-5 + D(, to the computer network. This
affects only the integrator blocks, which become G(s3=: \ / [ S + dC,)̂  
and the result is a block digram, shown in Fig 1.8(b), which 
realizes the lowpass prototype transfer function $(s).

It should be noted that in the conventional use of predistortion, 
$(s-oc1') would be synthesized as a passive network and would 
therefore need to be stable, thus limiting the possible values of a, . 
Such is not the case here and Ct, is not limited.

The required bandpass response can now be obtained by applying 
the lowpass to bandpass transformation [I40]:
Si---------+ (1.4.8)

where is the geometric center frequency divided by the width of the 
passband. This affects only the blocks G(s) , which will now have 
the transfer function:

G (s)_ _1_ _____ S______

°!r

(1.4.9)

as shown in Fig 1.8(b). The resulting bandpass structure consists 
of an interconnection of identical bandpass quadratic blocks, which, 
due to predistortion, have a finite quality factor Q =  /oCt . 
Evidently, if the filter is to use sections having a positive 
Q l -factor, then oc, must be positive. The feedback and feedforward 
constants are given by (1 .4 .7 ) and (1 .4 .6 ) as for the lowpass 
prototype. They may be positive or negative, and their signs will 
vary, depending on the value chosen for 0£, . The consequent need 
for inverting amplifiers can sometimes be avoided by the use of 
inverting and non-inverting quadratic sections, as will be shown 
by an example.

As an illustration of the design method, a 6-th degree, elliptic 
function, bandpass filter has been designed and is shown in Fig 1.9. 
The lowpass prototype response has a passband ripple of 1.25dB, a 
minimum stopband attenuation of 4-0 .5&B, and a transition band of



33

Fig 1.9 6-th degree elliptic-function bandpass filter

(a) Block diagram
ib) Active CR realization
(c) Computed frequency response
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1: 2.3662. The lowpass prototype transfer function is:

$(s) =  0.0633,6 sa + 0.4-655___________
S3 t  O W I S  s' + l.U $5  S + 0.4655

For the required bandpass response q = 10. The value of the 
predistortion constant a, was chosen to be 0 .5 , whence from (1 .4 -6 ), 
(1 .4 -7 ) and (1 .4 .1 0 ):

b0 = 0.4815
b, = -0.06386
ba = 0.06386

b3 = 0
do = 0.0195
a, = -1.0213
a2 = 0.6024

The transfer function of the blocks G is given by (1.4-9) with q = 10 
and (X, = 0.5, thus giving a quality factor Q = 20, as shown in 
Fig 1.9(a). The two negative constants a, and b, were accommodated 
by changing the signs of these constants and also changing the signs 
of the first two blocks. This is a simple application of the scaling 
transformation which will be described in Chapter 3* The resulting 
network, shown in Fig 1.9(b), uses two inverting bandpass quadratic 
sections and one non-inverting bandpass quadratic section, thus 
avoiding the need for inverting amplifiers. Each of the three sections, 
shown encompassed by dashed lines in Fig 1.9(b), realizes a block 
together with its preceding adder and associated constant multipliers.

The multiple feedback structure described above was first 
published by the writer in Ref. [45l9 where it was presented as having 
an advantage over existing structures in some cases by virtue of 
using fewer operational amplifiers. It is described here to illustrate 
how transmission zeros may be realized by adding together signals 
from a number of forward paths. In the example shown in Fig 1.9(a) 
there are three forward paths which come together at the third adder, 
and it is at the output of this adder that the two pairs of complex 
conjugate zeros of the bandpass transfer function first appear.
These zeros are not present at the outputs of the first two sections, 
as can be seen from the frequency responses at these two points, 
which have been superimposed on a plot of the frequency response of 
the filter in Fig 1.9(c). V/e say that these transmission zeros are 
produced by 'parallel forward paths'. The third block has one zero at 
the origin of the s-plane and another zero at infinity, and, since
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all three forward paths pass through the third block, these zeros 
form the two transmission zeros of the bandpass response at extreme 
frequencies.

It is worth noting that although no attempt was made to minimise 
sensitivity in the example, the structure can have a low sensitivity 
at passband frequencies, due to the presence of the three feedback 
loops. The sensitivity does depend on the choice of the predistortion 
constant <x, , and this will be discussed further in Chapter 5- The 
three feedback loops are nested in a manner similar to the follow- 
the-leader feedback, and in the literature this structure has been 
called 'inverse follow the leader feedback'[76]. It will be seen in 
Chapter 3 that this arrangement of feedback paths may preferably be 
described as 'flow graph reversed follow the leader feedback' or 
'transpose follow the leader feedback'.

It should also be noted that the design method can be applied 
with minor modification to other analogue computer networks [4 6 ], 
thus leading to other multiple feedback structures. For example 
Tow's 'Shifted companion form' network in Ref. (471 can be obtained 
by using the computer network in section 3-2C of Ref. [4 6 ]. Conversely 
Tow's design method can be adapted to yield the structure described 
above.

Tow's shifted companion form network (47>28] uses a structure 
which combines parallel forward paths with follow the leader 
feedback. Other design methods for this combination have been 
given by Laker & Ghausi 148], and Gensel [40,411- Parallel forward 
paths may also be combined with leapfrog feedback, and suitable 
design methods for some structures which use this combination have 
been given by Tow & Kuo [491; Wetenkamp & Van Valkenberg [50];
Ford (see section 3-1 )» Kruger [5II; Jacobs, Allstot, Brodersen 
& Gray [52]; Muller [53]» and Davis [1431-

We will now consider the third method of producing transmission 
zeros. Although the concept is very simple, and despite the fact 
that it can be identified in published circuits, this remaining 
method of realizing transmission zeros in multiple feedback filters 
was not recognized as such in the literature until it was pointed 
out by the writer in Ref. [88], The method may be illustrated by 
considering the simple feedback network shown in Fig 1.10. If the 
block G,(s) has a numerator polynomial V,(s) and a denominator 
polynomial 8,(s) which are relatively prime, and if V2(s) 

and 62(s) are also relatively prime, then the transfer function



F (s )^  V(s) -  8 ,Va
e(s) S . S a - V ^ a

Fig 1.10 Simple network illustrating * complex feedback*

i i

F (s) A  v_ _  J _  J _  J_
e  A ,  +  A 2  +  A 3  +  .

Fig 1.11 Continued fraction structure
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of this network may be written as:
F ( s ) ^ _ V  =  6, (1 .4 .12 )

e  S , S 2  -  v ,  v 2
and we may make two observations. Firstly if V2(s) has a factor 
S2 + Gbn2 then this will also be a factor in the numerator of 
F(s) and the network will have a transmission zero at rad/s.
This would be a transmission zero produced by a series notch section 
as previously defined. Secondly if 8,(s) has a factor S2+C0o2 
then this will also be a factor of the numerator of F(s) , and 
the network will have a transmission zero at (0o rad/s. This 
process whereby the complex conjugate poles of a block G,(s) become 
complex conjugate zeros of F(s) is the third method of realizing 
transmission zeros, and in this thesis we will refer to it as 
producing transmission zeros by ’complex feedback*.

The use of complex feedback will be illustrated by describing 
the continued fraction structure, which was first published by 
the writer in Ref. [8 4 ]. A lowpass prototype transfer function 

is expanded into a continued fraction of the form:

$(s)=  J _  _1_ (1.4.13)
A, + A 2 + + . . .

where the partial remainders are of the form:
Aj = OjS 4- bj dj , bj real, constant (1 .4 .1 4 )
If the continued fraction exists, the partial remainders Aj may 
be identified with the denominators of the blocks in the continued 
fraction structure, as shown in Fig 1.11. Application of the lowpass 
to bandpass transformation will then give a realization of the 
required bandpass transfer function as an interconnection of bandpass 
quadratic sections. All transmission zeros at finite non-zero 
frequencies are realized in this structure by complex feedback.

For example the lowpass prototype transfer function $(s) given 
in (1.4.10) may be expanded into a continued fraction of the form 
(1 .4 .1 3 ) with partial remainders:
A 1 = 15.658 s + 14.05 3
A* = - 0 .0 1 0 4 3 6s + 0 . 0 1 0 5 6 (1 .4 .1 5 )
A 3 = -11.581 S - 11.498

Identifying these with the denominators of the blocks, and performing 
the lowpass to bandpass transformation (1.4.8) with q = 10 gives 
the bandpass network shown in Fig 1.12. This example has a structure 
comprising one forward path and two feedback loops. The feedback
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Fig 1.12 6-th degree elliptic-function bandpass filter
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aj Block diagram
b) Computed frequency response



loops exist to provide transmission zeros by complex feedback, and 
are not in this case introduced to reduce sensitivity. Indeed it will 
be shown in Chapter 5 that this filter has a very large sensitivity 
at passband frequencies.

From Fig 1.12(b) it will be seen that at passband frequencies 
the signal level at the output of block-2 is about twelve times the 
signal level at the outputs of the other two blocks. This disparity 
can be reduced considerably by using the scaling transformation which 
will be described in Chapter 3*

Note that the block G^ in Fig 1.12(a) has a negative Q-factor on 
account of a2 and bz having different signs in (1 .4 .1 5 ). If it is 
necessary to avoid the use of sections having a negative 0,-factor 
then this may be achieved by using a slightly different continued 
fraction expansion. This is of the form (1.4.13) but has partial 
remainders of the form (1 .4 .1 4 ) alternating with partial remainders 
of the form:

A j =  Clj S + bj 
S

(1.4.16)

and is such that for each partial remainder Aj , the constants dj 
and bj have the same sign. According to a theorem given by 
Gorski-Popiel & Drew [5 4] such an expansion always exists. Whilst 
this ensures that all blocks have a positive Q,-factor, a partial 
remainder of the form (1.4.16) produces a notch section in the 
bandpass filter if the constants Oj , bj are both non-zero.
Continued fractions have been used in a similar way for digital 
filters, butthe expansion (1 .4 .1 3 ) (1 .4 *1 4 )> when bilinearly 
transformed, will not in general be realizable as a digital filter 
due to the occurrence of delay free loops [551.

The first use of complex feedback was by Scott [ 56 ], who 
connected a parallel-T notch circuit in the feedback path of an 
amplifier to give a tuned amplifier response, for use as a wave-form 
analyser. Scott’s circuit has the structure shown in Fig 1.10 with 
G 2 = K and G, = (s1 + C0o1)^(sI + 4 C0oS + C0oz) , so that by
(1.4.12) the transfer function is:

F(s) 4  v ~  K  s* -t- 4t0oS + cj02 (1.4.17)

e I ~ K  S1 + 4co0 s 1- co02 
l - K

The complex conjugate zeros of F(s) are the complex conjugate poles 
of G,(s) , and we may say that these zeros are produced by complex
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feedback, even though the zeros are not on the imaginary axis as
notch

would usually be the case for^filters.
In the context of multiple feedback filters it is possible to 

identify the use of complex feedback in at least two structures, in 
addition to the continued fraction structure just described. The 
first is the signal flow graph simulation of LG ladder filters as 
described by Brackett & Sedra [57>58»59]. Wherever the LG ladder 
filter has a resonant circuit for realizing a transmission zero, and 
when this resonant circuit is associated with either a loopset of 
capacitors or a cutset of inductors, then the simulation will have 
in its forward path a subnetwork with the structure shown in Pig 1.10. 
In this subnetwork, the block 6a will be an infinite-gain 
operational amplifier, and the block 6V will be a two-integrator 
loop forming an inverting bandpass quadratic section having an 
infinite Q^factor. The transmission zero is thus produced by 
complex feedback. The operational amplifier occurring in the forward 
path of such subnetworks is called a 'reciprocator' by Brackett & 
Sedra, on account of the fact that it simulates that part of the 
reactance extraction procedure of ladder synthesis where one takes 
the reciprocal of an immittance function [57)• Our observation that 
the simulating network employs complex feedback is an alternative 
interpretation of how the reciprocators contribute to the production ' 
of transmission zeros.

The other published structure which may be interpreted as having 
complex feedback is Adams' 'coupled band-elimination filter' [60], 
Whereas for bandpass filters it is usually important to have low 
sensitivity at passband frequencies, for bandstop filters it is also 
important to have low sensitivity at stopband frequencies. For many 
filters the sensitivity at stopband frequencies is determined by the 
sensitivity of the transmission zeros, or equivalently the 
sensitivity of the transfer function zeros; and the sensitivity at 
passband frequencies is determined by the sensitivity of the transfer 
function poles. Adams derived his network by simulating a low 
sensitivity LC ladder network, and then using some signal flow graph 
transformations to arrive at a structure in which both the passband 
sensitivity and the stopband sensitivity are lower than that of the 
simple cascade structure. Adams gives an example of a 6-th degree 
bandstop filter designed using his method. It may be thought of as 
having the simple feedback structure shown in Fig 1.10, with the 
block 6 Z representing a constant multiplier, and the block 6,
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representing a complex subnetwork. This subnetwork G, comprises 
three infinite-Q, bandpass quadratic blocks interconnected by 
leapfrog feedback and a multiplicity of forward paths. The 
leapfrog feedback ensures that the poles of G, have a low 
sensitivity at mid-band frequencies, and by complex feedback, in 
association with G 2 , these low-sensitivity poles become the zeros 
of the transfer function of the filter. The concept of complex 
feedback thus explains why Adams' structure has a low stopband 
sensitivity.

By describing some carefully chosen examples in this Chapter, we 
have introduced the main topics of interest in this thesis: which 
concerns multiple feedback filters formed by an interconnection of 
unilateral subnetworks. We are primarily interested in obtaining low 
sensitivity and maximum dynamic range from such filters, and we are 
interested in understanding how the structure or pattern of 
interconnection affects these performance criteria. We have so far 
encountered three feedback structures which may be used to reduce 
sensitivity at passband frequencies: namely leapfrog feedback, follow 
the leader feedback and transpose follow the leader feedback. We have 
also identified three properties of structure which are used to 
produce transmission zeros: namely series notch sections, parallel 
forward paths, and complex feedback. We have also seen that low 
sensitivity multiple feedback filters may be designed by simulating 
a low sensitivity LCR filter, or they may be designed directly from 
the required transfer function. The reader is now sufficiently 
acquainted with the subject to be able to appreciate the objectives 
of this thesis, which are described in the next section.

In the course of this introductory chapter, some material has 
been presented which is the original work of the writer. Firstly 
the multiple feedback structure with parallel forward paths shown in 
Fig 1.8, together with the derivation of explicit design equations 
(1.4.1) to (1.4 .9 ). Secondly the introduction of the concept of 
complex feedback for the realization of transmission zeros, as 
illustrated in Fig 1.10. Thirdly the continued fraction structure, 
shown in Fig 1.11. These contributions were first published by 
the writer in references [45l» [88], and [8 4 ] respectively.



42

1.5 Objectives of this thesis

llany multiple feedback filters have been proposed in the 
literature, for instance in respect of bandpass filters there are 
currently more than fifty design methods, using between them more 
than twenty five different structures of interconnection. We will 
in this thesis attempt to form the beginnings of a unified treatment 
by giving some analytical results which apply to all multiple 
feedback filters. It is hoped that this general approach will give 
some new insight into the mechanisms which produce the good performance 
shown by some multiple feedback filters, and in particular we wish to 
determine how the structure of the filter contributes to this good 
performance.

In order to study the structure it will be useful to use the 
language and notation of graph theory, in addition to the block 
diagrams used so far. This is done in Chapter 2 which deals with the 
definition and analysis of multiple feedback filters, and in Chapter 5 
which describes the transformation of multiple feedback filters.

Some of the general results to be presented in Chapters 2 and 5 
have already been mentioned in this introduction. For instance the 
summed sensitivity invariant has as a special case the equation 
(1.2.10) which was used to demonstrate how leapfrog feedback reduced 
the passbana sensitivity in the simple analogue simulation filter.
Also the general scaling transformation has been mentioned in 
section 1.3 in connection with adjusting the gain of the analogue 
simulation filter, and it has been used to eliminate unnecessary 
inverting amplifiers in the 6-th degree bandpass filter example shown 
in Fig 1.9 .

It will be shown in Chapter 4 that a particular classification 
of existing structures for multiple feedback filters reveals the 
possibility of new structures. The basis for this classification 
has already been established in this introduction. It is in terms 
of the feedback loops used to reduce passband sensitivity, and the 
way in which transmission zeros are produced.

In Chapter 5 we will study the sensitivity of some specific 
filters with a view to understanding how best to choose a structure 
for low sensitivity. It will be demonstrated that the use of a 
particular structure is not enough to guarantee low sensitivity.
The insight obtained in this study will lead to some guidelines 
for choosing suitable structures for low sensitivity multiple 
feedback filters.



2
THE CONCEPT OP MULTIPLE FEEDBACK

The reader will already have a concept of multiple feedback.
This will be as a result of reading the introductory chapter, and 
as a result of recalling the many other instances in electrical 
engineering where the term occurs. The concept being the sum total 
of the ideas brought to mind by the use of the term multiple 
feedback. Although in a sense this chapter can only add to the 
concept, the real purpose is to both expand it by the presentation 
of some analytic results of a general nature, and to delimit it by a 
definition of terms as used in this thesis. This should convey the 
writer’s concept of multiple feedback in the specific context of this 
thesis.

Accordingly in this chapter we will discuss our use of the term 
to refer to the interconnection of a number of active CR sections to 
form a multiple feedback filter. We wixl describe the properties 
required of the active CR sections, and will give a more detailed 
account of how a multiple feedback filter can be represented by a 
block diagram or a signal flow graph.

A general form of multiple feedback filter will be analysed to 
find its transfer function. The finite difference sensitivities and 
differential sensitivities of the transfer function to changes in the 
block diagram parameters will also be found, and in the context of 
analysis a new summed sensitivity invariant will be given. The 
mechanisms which limit dynamic range will be discussed, and a method 
of analysing the dynamic range of any given multiple feedback filter 
will be given.
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2.1 Definition of multiple feedback

In this section we will define multiple feedback, and as a 
starting point we will consider the individual active CR circuits 
which are to be interconnected. Such circuits have been studied in 
great detail in connection with cascade active CR filters, particularly 
in respect of their sensitivity. Two examples have already been given 
in Pig.1.5, and another is shown in Pig 2.1(a) [61], This is 
commonly called a multiple feedback circuit on account of the three 
feedback paths from the output of the operational amplifier. To avoid 
confusion of ideas, we do not call it a multiple feedback circuit, we 
call this and all similar circuits an active CR section, or just section 
for brevity. The properties required of a section are that it can be 
characterised by a single equation, and that this equation is not 
affected by the interconnections. For the example in Pig 2.1(a) the 
characteristic of interest is the forward transfer voltage ratio 
G^(s) =  Vj,(s) /  V, (s). Since the voltage v z is the output of an 
operational amplifier, G2V will (within limits set by the performance 
of the operational amplifier) be independent of the output port 
termination, and Va can form the input to another section without 
mutual interaction. A section will usually contain capacitors whence 
G a, will be a rational function of the complex frequency variable S . 
The degree of the denominator is seldom greater than two, and this 
fact allows us to characterize the transfer function by a small number 
of constants. In the case of the bandpass quadratic section shown in 
Pig 2.1(a), the transfer function is of the form:

G „ ( s ) 4  v ,(i) =  K  s  ( 2. 1 . 1 )

v,(s) S2+ « o S  + co„*
Q

fully characterized by the values of the resonance frequency coo , the 
quality factor Q, and the constant multiplier K. In this thesis we 
will consider the performance of sections in terms of such constants, 
and we will not be concerned with the particular realization of 
sections. In order to interconnect the sections we will have to 
accommodate several inputs, and we will have to control the constant 
multiplier K. This can usually be done by having a potential 
divider network at the input of the section [22] as illustrated in 
Fig 2.1(b).

More generally, a section will be an imbalanced (n + 1) -port

* An unbalanced N-port is one in which all ports have a common 
terminal, usually called the ground or datum terminal.
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(b)

Fig 2.1 Example of an active CR section

(a) as used in simple filters
(b) as used in multiple feedback filters
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network, with n input ports and one output port, as shown in Fig 2.2. 
It will have a hybrid matrix description of the form:

(2.1.2)

where the zero elements are a consequence of an (ideal) amplifier 
output being connected to the output port. A multiple feedback filter 
comprises an interconnection of a number of such sections. The rules 
of interconnection are obvious and are as follows:

(i) because the sections are unbalanced, all interconnections are 
made by connecting ports in parallel,

(ii) no two output ports can be connected together on account of each 
having zero source impedance,

(iii) an input port is always connected to an output port or the 
input to the filter,

(iv) the input to the filter is an independent voltage source, and it 
is connected to one or more input ports,

(v) the output from the filter is taken to be the output port voltage 
of one of its sections.

In multiple feedback filters, the port voltages and relations 
between the port voltages are our main concern. It would of course 
be possible to consider multiple feedback filters on a current basis, 
or even on a mixed voltage/current basis, but with present circuit 
techniques using operational voltage amplifiers, there seems to be no 
practical advantage in doing so.

From (2.1.2) the (n+1) -port section is characterized by the 
equation:
V0 =  V, + . . . + G onv„ (2 .1 .3 )

which has a block diagram representation shown in Fig 2.3(a). If, as 
is usually the case, the functions G0j are equal to constant 
multiples of a function G(s) , then the equation will have the 
representation shown in Fig 2.3(b). Most sections are of this form, 
but there are a few exceptions (62,6 3 ,64j101 ,1 4 5 1*1551 > for instance 
Bach's circuit [62] in Fig 2.4(a) uses sections of the type shown in 
Fig 2 .4 (b), for which the representation in Fig 2.3(a) is necessary. 
Y/ith Bach's circuit we have:

i ,

>-S *
1 ____

• = *

• •

X , ,  •

f<
-

0 1 
_

_ G 0 i  '

Y,„ 0 V,

4 9 ‘

Xin 0 Vn

G-  0 _  ̂0



Fig 2.2 (n+1 )-port representation of a section

00

Fig 2.3 Block diagram representations of the equation characterizing
a section

!
a,) General case
b) Special case of (a) with G0j($) = Kj 6(s) 5 j= 1>2>.-,n
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R

Fig 2.4 Bach*s circuit

(a) Configuration for fourth degree, polynomial, lowpass filter
(b) Section used in Bachfs circuit

Fig 2.5 Summing amplifier section
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G  = ____ 1 _  (2«1 *4)

1 + s C R

and:

s C R  
1 + s C R

The block diagrams obtained in these few cases, although valid, are 
somewhat cumbersome for practical analysis, and other approaches may 
be preferred. Most sections however will, like that in Fig 2.1(b), 
admit of the representation in Fig 2.3(b). Sometimes we will use a 
section which does not contain capacitors, such as the summing 
amplifier in Fig 2.5* in which case we can put G(s)=l and omit 
the block from the diagram.

As we have already indicated, a block diagram is simply a way of 
writing down a set of equations. When a block diagram represents the 
characterizing equations of a multiple feedback filter, it will be 
called the block diagram of the filter. Where a multiple feedback 
filter is designed so that its characterizing equations are those of 
a given block diagram, it will be called a realization of the block 
diagram.

Each block diagram symbol represents an equation of a particular 
type. These equations may also be represented by a Mason signal 
flow graph [65,66,671. In Table 2.1 we show the equations, the block 
diagram representation, and the equivalent signal flow graph (SFG). 
Evidently for every block diagram representing a multiple feedback 
filter, there exists an equivalent signal flow graph. As an 
illustration we show a multiple feedback filter [451 in Fig 2.6, 
together with its block diagram and an equivalent SFG. This filter 
has been designed to have a 6-th degree, 1.25dB ripple, Chebychev 
bandpass characteristic, with a passband width equal to 10% of the 
center frequency, which is 100 rad/s. The quadratic sections were 
chosen to have a Q-factor of 30. Each of the three sections, shown 
encompassed by dashed lines, realizes a block, its associated adder, 
and a constant multiplier. In a block diagram we distinguish a block 
from a constant multiplier as an aid to visualization of how the block 
diagram may be realized. This distinction is lost in the SFG, 
however, it will be convenient to express certain results in terms of 
signal flow graphs.

The pattern of feedback loops and forward paths shown by a block 
diagram or a signal flow graph will be called the structure of the

(2.1.5)



Table 2.1 Block diagram symbols
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00

a , 3  =  - o . i o q 7 5 i  

a 2,=  - 0 . m 3 5 7  
a J 3  =  0 . 0 3 3 5 5 6

G,'
-G'l r ~ 1 0_____ 5_________

g3 s\m . s + io"
30

Fig 2,6 Example of a multiple feedback filter and its representation

( a ) Active CR filter
ib) Block diagram of filter
(c) Signal flow graph equivalent to (b)
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filter. Various aspects of structure can be defined in terms of 
signal flow graphs, and will be of use later.

(i) A cutset is a minimal set of branches the removal of which
will separate the graph into exactly two pieces. For example 
{ G, , Cl,3 } and { G, , , a 3 3  , Gj } are cutsets* in Fig 2.6(c).

(ii) A loopset is the set of branches of a connected subgraph such
that every node is common to exactly two branches. For example 
{G, , Cl,* , a «  } and (G 2 1  6 3  , a 23} are loopsets.

(iii) A forward path is the set of branches of a connected subgraph
such that the nodes and branches form a sequence, starting from 
node e (the filter input) and terminating at node v (the filter 
output), in which all nodes and branches occur once only, and 
where the direction of the branches determines the sequence.
For example the SFG in Fig 2.6(c) has only one forward path:
{ b, , G| , 6 Z 5 G 3 }.

(iv) A feedback loop is a loopset in which all branches have the same 
direction. For example the loopset {G2 , G3 , Q.23} is a 
feedback loop, but the loopset {G, , a 13 , OI2.3 } is no',:*

(v) In an m-node graph, any connected m-node, (m-1) -branch
subgraph is called a tree and its branches are called tree 
branches. For any tree, the complementary sub-graph is called 
its co-tree. In Fig 2.6(c) for example one of the trees has 
tree branches b, , , a 2 3  , 6 2 , and its co-tree has branches
G, , ^ 3 3  5 G3 •

(vi) For any tree, each tree branch forms a cutset in association 
with one and only one set of co-tree branches. These are 
called basic cutsets. For example { b, } 9 { dl3 , G, } ,
{G, , a w, G3) , { , a 33 , G3} is the set of basic 
cutsets for the tree given in (v).

Associated with every forward path is a forward path gain P, given 
by the product of the weights of the branches in the forward path. 
Similarly, associated with every feedback loop is a feedback loop 
gain (or loop gain for brevity) T, given by the product of the weights 
of the branches in the feedback loop.

Multiple feedback is defined to be a plurality of feedback loops.
A multiple feedback filter thus has a structure comprising at least 
one forward path (to provide signal transmission through the filter) 
and two or more feedback loops. This definition does not include 
certain simple structureswhich we shall consider, for instance the

* We identify a branch of a graph by its associated weight



cascade structure which has no feedback loops, but our analysis will 
accommodate all structures allowed by the rules given on page 46 

Our main concern however is with structures having multiple feedback 
because of their potential for improved performance.



2.2 Analysis of multiple feedback filters

Having defined multiple feedback we now show how a multiple 
feedback filter may be analysed. Our main interest is in the transfer 
function, from which the frequency domain or the time domain response 
of the filter may be found as required. In section 2.2.1 we give both 
an algebraic method and Mason1s topological method of finding the 
transfer function.

Also of interest is the effect on the transfer function of 
variations in the constituent parts of the filter. This is a 
complicated subject and in a later chapter we will resort to 
computation to investigate the sensitivity of filters. However a 
certain amount can be done analytically as was discussed in section 1.2, 
and in section 2.2.2 we derive some expressions for various 
sensitivities. We also introduce a new summed sensitivity invariant 
which is of use in the calculation of sensitivity.

The dynamic range of a filter is often important, and as a 
contribution to the study of dynamic range we show in section 2.2.4 
how multiple feedback determines the way in which the dynamic range 
of a filter is related to the imperfections of its constituent 
sections.



55

2.2.1 Transfer function

In this section an analysis of a filter having a general 
structure will be given. Most structures are particular cases of this 
general structure, and those which are not can be made so by simple 
manipulation. The filter we shall consider is composed of n + 1 
sections, each section having a block diagram of the type shown in 
Fig 2.3(b). The first n sections are fully interconnected, with 
constant multipliers , as shown in Fig 2.7. The (single) filter
input e is applied to all n sections, with constant multipliers bj . 
The n section outputs are added together with weights Cj "by a 
summing amplifier section, and the (single) filter output v is taken 
to be the output of this section. There is also a direct connection 
of the filter input e to the summing amplifier section, with a 
constant multiplier d. We define the following matrices:

whence, for the n blocks we may write:
(2.2.2)

The equations of the associated adders may be written as:

u =■ c ^ x  + b e. (2.2.3)
and the equation of the output adder is:

v = c-t x  + de (2.2.4)
Eliminating ^  from (2.2.2) and (2.2.3)» and substituting in (2.2.4) 
gives the transfer function of the filter F(s)'

F(s)^  v(s) _  c t ( ^ . ( s )A) ' b + d (2.2.5)
e(s)

This is similar to expressions used in state variable theory and
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Pig 2.7 Multiple feedback filter having n fully interconnected
sections.



feedback theory. When used in state variable theory, the matrix Ĵ ,(s) 
would represent differentiation thus /̂ (s) =  LI [68], In 
Sandberg's multi-loop feedback theory [68], the matrix would 
represent the constants associated with dependent sources. As an 
example of its application to multiple feedback filters, consider the 
filter shown in Fig 2.6. From the block diagram we construct the 
matrices:

0 0 CX,3 G i
l 0 Ge

0 l

(2.2.6)

)

0 c -

r
o

 
o

 
--

--
--

-1

_0_ l
,

d = 0

and using (2.2.5) we obtain the transfer function of the filter:

ot Q
t II>1II

Li_ V 0  - q ,3
-1

1
e -1 G 't -Q !3 0

_0 -1 Gj"' - an_ 0

F(s)_
6, Gt Gs ~<33}Gi Gt - o33 6, - q,3

F(s) = ________G,G»63__________  (2.2.7)
1 ~ Q33 G3 ~ Qjj Ĝ Gj ^ij GiGjGj

Alternatively the filter may be analysed by taking the equivalent 
signal flow graph and using Mason's topological rule for the analysis 
of SFG's [66, 6 7 ]. Mason's Rule has the form:

F (s) =
1 - E tj + E TiT* -ETjThTt +. . .

p T r

(2.2.8)

in which the transfer function F(s) is expressed in terms of loop 
gains T  and forward path gains P only. The summation p is over all 
feedback loops. The summations r,... are over all products of 
'non-touching' feedback loops. Two feedback loops L, and L2 do not 
'touch' if for all branches w, € Lv and for all branches w z 6. Lz 
there is no pair of branches w, , w 2 incident at a common node. The 
summation f is over all forward paths, and for each forward path the
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summations q b,... are over all products of feedback loops which do 
not toucn each other or the forward path.

As an example consider again the filter in Fig 2.6. The SFG has 
one forward path { b, , G, , 62 ? } and three feedback loops {G3 , Cl33 },
{Gz ,G31 CU3} and { 6, , G2 , G3 , a ,3 } , The corresponding forward
path gain is P, - b,G,GzG3 =  G,6263 , and the corresponding loop 
gains are T, = G3ci33 , Ta= G* G3 a23 and "T̂  = G,GlS 3 a l3 .
All feedback loops touch each other, and all touch the forward path. 
Thus (2.2.8) becomes:

Ffc) =  P,

l-(T,+Tt+T,)

Rs) — _________ 6,G26 3_________________  (2 .2 .9)

1 -  G 3 o t 3 3  -  G 2 G 3 a ? 3  -  G , G ; G 3 a , i

which agrees with (2.2.7).
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2.2.2 Sensitivity of the transfer function
Having obtained an expression for the transfer function of a 

multiple feedback filter, we are now able to investigate the 
sensitivity of the transfer function to changes in the block diagram 
parameters , bj , Cj , d and Gj (s) . Some authors give 
expressions for differential sensitivity [69,70,13 4 1, but the 
expressions for finite difference sensitivity given in this section 
have not yet appeared in the literature.

Using the definition of finite difference sensitivity (1.2.3), 
and the expression for the transfer function in (2.2.5), we can 
obtain the sensitivities to b: , Cj and d directly. If Uj

/■v
represents the j-th column of the unit matrix, then as

cr
 T bjtAb: we obtain:

J J

4 ‘5)= b)

(2.2.10)

Similarly as Cj>--------------- > - q  +  A c j we obtain:
a R $ )

=  C)

c$ ) '  b
(2.2.11)

cj F(s)

and as d  |------------- > - d + A d  we obtain:
Ffe)

_d_

F(s)

(2.2.12)

Notice that the sensitivities in (2.2.10), (2.2.11) and (2.2.12) are 
all independent of the increment. Therefore in each case the finite 
difference sensitivity is equal to the differential sensitivity. This 
is not true of the remaining sensitivities. To find these we use the 
following expression for the inverse of a matrix in which one 
component is given an increment \--------+ A mjk

((At + Awijk Uj _  _____Am-'k______  Uj (AA>
1 +  A m ik cof Win

det M  (2.2^3)
This expression may be verified by multiplying the incremented matrix 
( A t  + ArrijU U] Ukt) by its inverse as given in (2.2.13), to obtain 
the unit matrix.

Now as a-jk \-------- >-Qjk+Acijk we have from (1.2.3) and (2.2.5):

Q jk_ (c t (^ (sv4 - A a iltUj MjtVfe -£ t ( ^ < s > -c K )  b
F(s) Acijk (2.2.14)
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using (2.2.13):

________A i y  c t(^&)W) Uj Ukt { lX s ) -< d ) b

aju F(s) AcXjk 1 -  Aoji, caf gju (2.2.15)
—  QjU

where cof is the cofactor of the element ê u in the matrix
S> =  -̂ (s)- <$f . Simplifying (2.2.15) gives the finite difference
sensitivity as a function of the fractional change Aciju/oLjU *

a " ” - t(4«s
aĵ  F(s} 1 _  A a ^  cofei

b

ilk.
diu aiU det(^(swf) (2.2.16)

From (2.2.16) and (1.2.5) we may also obtain the differential
sensitivity: 

FCs)
5  5 =  Bb. %  Ujt (A (sf-e^) ' Jb
0 ai" F(s) ~  ~

Similarly as Gj F G;+AG: we have:0 0

G
-i

(G- +AGj ) =  G f ' - _ A G L _

G ^ G ^ A G , )

(2 .2 .17 )

(2.2.18)

so that from (1.2.3) and (2.2.5):

% ^  / Ct |^(s)-c^-_Aii—  Uj O  b - Gt(^(sV(^)
^ b )  F(s) AG-  \  ' 63 ( G ^ A /Gib) F(s) A G j 

using ( 2 .2 .1 3 ) :

(2.2.19)

/7

6  - G

AGj

6; fa + AG;) c^fel'c^) U; \^t ( f y s ) -tA ) b

Sj(5) Fa) AĜ  1 _  AG; cof e;-,

G^^+A^detfefe)'-^) (2 .2 .2 0)

iX ' "  ± _______
M S j t t )  F «  64 + &6j. / 6j _ cofe;,i ' 

Si V det(^s)'-X)j 
From this we may also obtain:

^ ( s v X ) ^  uit (^W-X) 'b

(2.2.21)

c R s )  = i i £ (  c ^ e s r - ^ r  s

^ 6j(s) F W G j W  (2 .2 .2 2 )

The differential sensitivities (2.2.22) and (2.2.17) may also be 
obtained directly from (2.2.5)by differentiation.
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We have now found both the finite difference sensitivity and the 
differential sensitivity of the transfer function F(s) to changes 
in each of the parameters in the block diagram in Fig 2.7.

As an example we use these expressions to find some of the 
sensitivities of the multiple feedback filter shown in Fig 2.6. Using 
(2.2.21) and the matrices in (2.2.6) we obtain:

Ffe)

6,

1
Ffe) G, + A M G ,  _ G ; V - a „ G ; '- a

5, l

x13
6, Gt Gj - a s-j G, Gt - o t* G, -a,-*

jo 0 1] g ;' 0
-1

1 [ 1 0  0 ] g :' 0 ~Qi3
-1

1

- i Gz -a?3 0 -1 Gz" ~Gz3 0

0 -l Gj -a ^ 0 0 -1 G5‘'-a33_ 0

F(s)

6 ,

1 cafe.i cof e,

- q 356 ; '- a »  j det(̂ '-c4)Rs) 6,4. AS, / 6 ,_

G, \ Gj’Gt"GC' G,' G i'-  q„G,''- a,3

Gi G;' - aw  G2" - cxzz
Rs)

6,

_______ 6) Gt’Gs ~ (Xyi Gi 61 ~ ciz3 Gi - Q 1

G, A 0 ! G, — Gz G3 - G2 -

\ G^G^'-a^GrGr-anGr-a,,

Rs)
G, -  G, G3 -  G,Gz G3 

t ~ Gj — Q23 ^3 ~ G t G,G*

G, -y AG, / G, _ G, -  a n  G, G3 -  qn  G, 6zG3 

Gi \  — ^23 G^Gj Gz G3

(2.2.23)

Similarly using (2.2.16) and (2.2.6) we obtain

Rs) J_ _  Aa  

a‘13 a 13 G, Gt Gj1 - 6,‘Gx - Qn G, -a,3

X

[0  0 1 ] 6,' 0
-1

0 [ 0 0 1 ] 6,"' 0 -0,3
- \

I

-l Gt' -an 1 -I Gi' -a„ 0

0 -| G^-d33 0 0  - I Sj'-Qn _ 0 _
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Rs)
co-fe23 co-f en

^  Ffs) 1 Aa23 g ;

Q23 Gi Gt, G-v - Q33 G, Gt ~ ci ĵ G, “■ ci,3
det(^‘-c4) de.'fĉ '-ĉ ')

Ffs)
GtG>

] -  a 3 3 G3 -  a 7 3 GtG3 -  a 13 G,GZG

l*3 1 _  A a I3 GtGi

Ẑ3  ̂ 3̂3 G3 - G26j ~ d,3 G, GiG;*

Using (2.2.17) and (2.2.6) we obtain:

^  Rs) „ r

(2.2.24)

a 33 F fc)

0 1 ] G," 0 -G13 -l 'o ' [0 0 1] ~G"

1
<310 -1

1
- i Gt" “ 7̂3 0 -1 6»' -a „ 0
0 -I G3 “fly* 1 0 0

. -

co-fe cof e13C  —  Q33 

Qy> Rs) det(^'-c4 ) de.t(^"-c4 )

r F(s1

r-»
G, Gt a,, 6 ,

33 G,''Gi'Gs" - a „ G , " S !' ,- a I i G ;'-a,1 1 - Q3 iG 3-  q n G ,G 2 - q 136 , S £G,
(2.2.25)'

Using (2.2.22) and (2.2.6) we obtain: 
Rs)C  =  S£^ [_o o 1]

° G ,  F u

G ,1 0
-1

0 [0 0 1 ]

1
£O1

O -1
l

G  7' - 0̂ 3 0 “1 G i  Q23 0

0 - \  63-033 i _0 - l  G3 -  CJ33_ 0

G.Gx Gj 1
G, Gj, Gj ~ 3̂5 6, Gt ~(Xt3G, ~ q ,3 1 ~ G j ■“ Q33GtG g ~ Q i3G,GtG3

(2 . 2 . 26)
From (2.2.23) and (2.2.24) we can write the corresponding differential 
sensitivities, which, together with (2.2.25) and (2.2.26), will be used 
to illustrate the summed sensitivity invariant described in the next 
section:

Ffe)

5  >
— 1 3̂3 G3 — G23 Gt G (2.2.27)

G, 1 djjGj'-Q't'j Gj G3 — d 13 G, G^Gj

s r =
Q 23 G t G j

cx̂ 'i  ̂~ ̂ 33G3 ^23GzG3 ~ a lj6,GtG3

The expressions (2.2.10), (2.2.11), (2.2.12), (2.2.17) and

(2.2.28)



(2.2.22) could form the basis of an efficient computer programme for 
the analysis of differential sensitivities. Assuming that the matrix 
method (2.2.5) is used to determine the nominal response F(s) , the 
matrix (JL(sf- c$) would be available. From this the matrices 
Ct (̂ (s)-c4) and A ) \  are readily obtained, and
need be determined once only at each frequency. From these two 
matrices, all the differential sensitivities follow with very little 
extra computation. It will be seen in Section 2.2.4 that (^(s)~iA) lo 
is a column matrix of intermediate transfer functions, and that 
c t ( ^ ( i s  a row matrix of noise transfer functions, which 
are used in the analysis of dynamic range.

Both finite difference sensitivity and differential sensitivity 
may also be found from a signal flow graph by using Mason's rule and 
flow graph reversal (commonly called the adjoint approach when used 
in network analysis) [711. The concept of flow graph reversal will 
be described in section 3«3«
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2.2.3 A summed sensitivity invariant
For LCR and active CR networks, various summed sensitivity

invariants have been derived from Euler's relation for homogeneous
functions. They are of theoretical interest in that they provide

*bounds [72] to some sensitivity norms [731 ? and they have a practical 
use as an aid to the computation of sensitivities.

In this section we present a new summed sensitivity invariant, 
which is novel in several respects. It is not here derived from 
Euler's relation, but is found from a consideration of the SFG of a 
multiple feedback filter, and the associated sensitivities as given 
in the previous section. The invariant applies to the branches of a 
cut of the SFG. A cut is similar to a cutset but is slightly more 
general. We will derive the summed sensitivity invariant for certain 
specific cuts, and will then combine these results in such a way that 
enables us to write a summed sensitivity invariant for any given cut.

First we define a cut. If the m nodes of an m-node graph are 
divided into two non-null sets N a and N b, then any set of branches 
each of which has one node in Nla and the other node in Nlb , is 
called a cut (or seg 1741) of the graph. A cut is either a cutset or 
a disjoint union of cutsets. If N Q or N b contains only one node, the 
corresponding cut is the set of branches incident at that node, and it 
is called a nodal cut or node cut. It follows that every node of the 
graph defines a node cut.

Now consider the block diagram of the general multiple feedback 
filter shown in Fig 2.7. This has an equivalent SFG shown in Fig 2.8.
A cut C of the SFG will divide the nodes of the SFG into two sets Nla 
and , and without loss of generality we take N a to be the set 
containing the node €L . If the p branches of the cut C are 
represented by their associated branch weights w,, w* , . . . , w p then 
we may represent the cut:
C =  {w, , , * • , W P} (2.2.29)
We define the sensitivity sum <r associated with the cut C to be:

(2.2.30)

w h e r e  5 „ .  is t h e  d i f f e r e n t i a l  s e n s i t i v i t y  o f  t h e  t r a n s f e r  f u n c t i o n  P 
w i t h  r e s p e c t  t o  Wj ,  a s  f o u n d  i n  t h e  p r e c e d i n g  s e c t i o n ;  a n d  s g n  w »  i s

* A sensitivity norm is sometimes taken to be a measure of
multiparameter sensitivity, and in the mathematical sense that is 
just what it is. Most sensitivity norms however do not assign 
relative importance to different sensitivities, and none so far 
proposed give any indication of the deviation AF  or A|f |.
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V

Fig 2,8 Signal flow graph of general multiple feedback filter
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+1 or -1 depending respectively on whether the branch w/j is 
directed away from or towards the set N a (which contains the 
filter input node e).

We will now determine the sensitivity sum o~ for each of three 
node cuts of the SFG in Fig 2.8. Firstly, the k-th output node 0Ck 

which defines a node cut :
âcw ^k ’ j 2̂k » * • • i (2.2.31 )
for which the set contains only one node, namely x k • Since
G k is the only branch of directed away from the set N a , the
sensitivity sum associated with the cut is:

- -  =  5 - b F -i. S F
^k Qjk

(2.2.32)

This may be evaluated using (2.2.22), (2.2.11) and (2.2.17):

_L —  Hi b

n

F

'-dfT'uj { § ' - d y \

&lk

“Q2k

•

- c k

•

\ GnU _ y

1  H i t  ' k
( 2 . 2 . 3 3 )

which, using the matrix , may be written as:

f  * - \  r n
- C k .

F
cc = C£

\

•»k

'2k
—  H it^ y _ĉ ) b
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cr __ 
*u

<

1 c t■ 'W L
dttfe

cof €„ *

1—
I-------
c«-+- 

• 
*

8 - C k 1  fe

V _cof em ' Co-f _̂ nl< | (2.2.34)

and since:
„ (2.2.35)

£ > j u cofei e = (  0 :
j = ' l del £ :  t =  k

we have:

Hst

<y% =  0 (2.2.36)

Thus the sensitivity sum associated with the node cut CX(<
defined by the k-th output node x k is equal to zero. This is true 
for each of the n output nodes x ( , oc% , . . . , x n .

Secondly the k-th input node ujk defines a node cut C

Cj, 1 •̂U‘2. i • • • ■> Qkr\}■y>c
for which the sensitivity sum cr is:y vc

r ' ^  C ' ^ r '  ̂
% = ~ S s  < - S b + E 5„

G* K j=l

which may be evaluated using (2.2.22), (2.2.10) and (2.2.17):

Ci"yl< =  ~ ^ !L  £ t  Ujj Uut ( 4 " '^ )  h. +  k .  £ t  !dk

+  £  0^  c t { § - < * ) ' 'Uv t k

i - 1 F

(2.2.37)

(2.2.38)

^  =  _ L  £ t V 1
t P K

--
--

--
1

F - a k(L

~  O'kU

_  _ t

1 (2.2.39)
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In a manner similar to treatment of the output node 3Cv< we may show 
that:
O-yk =  0 (2.2.40)
that is the sensitivity sum <3"yk associated with the cut C m 
defined by the k-th input node is equal to zero. This is true
for each of the n input nodes 1̂,, uj2 , . . . , ljn .

Thirdly the filter output node v defines a node cut C v -
C v  =  {d , C\ , Cg 1 • . . 1 (2.2.4 1)
for which the sensitivity sum (yv is:

(2.2.42)

This may be evaluated using (2.2.12) and (2.2.11):

<rv = 1
F F

<rv =  J_{d +

Using (2.2.5):
=  1 (2.2.43)

Thus the sensitivity sum c associated with the node cut C v 

defined by the filter output node V is equal to unity.
The three results (2.2.36), (2.2.40) and (2.2.43) together give 

the sensitivity sum CT for each node cut of the SPG shown in Pig 2.8, 
except the node cut corresponding to the filter input node e. We 
have therefore considered all cuts for which the set N b contains 
only one node. Now we describe how these cuts may be combined.

Consider a first cut C, dividing the nodes of the SPG into two 
sets Na1 and N bi (with node e in l\Ja1). This is illustrated in 
Fig 2.9(a), where the nodes constituting the set Kl̂ i are shown 
inside the dashed line marked Kjb1 , and where the branches 
constituting the cut C, are the branches intersected by the dashed 
line marked Nv,i • Similarly consider a second cut dividing 
the nodes of the SPG into two sets N a2 and (with node e in
N a2 )> with the condition that and are disjoint (that
is Nfei and have no nodes in common). This is also illustrated
in Fig 2.9(a). Notice that although N bl and are disjoint, the
cuts and C* may have branches in common.

• Now consider a third cut C3 dividing the nodes of the SFG into 
two sets N a3 and » where N  consists of the nodes in Klb̂
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F i g  2.9 Combination of cuts
fa} Cuts defined by disjoint sets and
(b) Cut defined by N b3 =  N^i w  N b2



(2.2.44)
together with the nodes in :

=  N w ^  N w
as illustrated in Pig 2.9(h). The branches of the cut will
evidently be the branches in C, together with the branches in Cg. 

but excluding any branches common to C, and C2 . This is known as 
the symmetrical difference of the two sets C, and C2 and is denoted 
thus:
C 3 =  C, 4- C 2. (2.2.45)

Let cr, , <37 and 07 be the sensitivity sums corresponding 
respectively to the cuts C, , C z and C3 . Then the sum 0", +• 07 
will have one term for each branch in C, and one term for each 
branch in C2 . Hence for branches common to C, and C2 there will 
be two terms in <r, + 07 . They will be equal in magnitude, but one 
of them will have a positive sign and the other will have a negative 
sign, on account of the common branches having one orientation with 
respect to Nlb, and the opposite orientation with respect to KJb2 . 
These terms will cancel in cr, + 07 leaving only terms corresponding 
to the non-common branches in C, and C*. . But these non-common 
branches are identically the branches in C3 , furthermore the 
orientation of these branches with respect to N b3 is the same as 
their orientation with respect to N bl or Nlb2 as appropriate. 
Therefore cr, + 07 is the sensitivity sum corresponding to the cut C3. - 
So we can say that if a cut C 3 is the symmetrical difference of two 
cuts C, and C2 •

C3=  C, 4- c2 (2.2.46)
such that:

w  N b2 , ^ N b2 =  0 (2.2.47)
then:
cr3=  07 +cr2 (2.2.48)

This result can be used successively to combine any number of node 
cuts as follows. Consider any cut C  of the SFG shown in Fig 2 .8 ,  

dividing the nodes of the SFG into two sets N a (which contains node e) 
and N b . If the set N b contains q nodes then N b is the disjoint 
union of q sets N bM . . . , N b(̂ each containing a single node of N b :
N b= Nw v, Nb* ^ ^
Corresponding to each of these q nodes is a node cut 
and since the symmetrical difference is associative, 
using (2.2.44) and (2.2.45)=
C — C, 4- Ci + . - . +

(2.2.49)
C 1 , Ci , -.. ,Ci, , 

we may write,

(2.2.50)
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and from (2.2.46) and 2.2.48) it follows that:
^  ^ ^ (2.2.51)

c r =  cr, + cr^ + - . . .  +
But we have already evaluated the sensitivity sums for each possible 
node cut, and they are all equal to zero, except orv which is equal 
to unity (see(2.2.36), (2.2.40) and (2.2.43))» Whence:

f O  : v 4- N b (2.2.52)
: v  £ N b

which is the required result. Since the value of the sensitivity sum 
cr is quite independent of the values of any of the branch weights, we 
call it a summed sensitivity invariant. We summarise our conclusion 
in the following:

For any cut C — {w, , w2 , .. . } dividing the nodes of 
the SFG of a multiple feedback filter into two sets N Q 
and N b  , with e G , there exists an invariant 
sensitivity sum cr given by:

cr* sj = {
J

where sgn w. _  ( +* 1
1-1

=  {  0 : v *
1 : v e  N b

Wj directed away from
(2.2.53)

Wj* directed towards Kl<

As an example take the multiple feedback filter shown in Fig 2.6, 
and consider the cut C —  { G, , Qi3 , Gtn , G^} as indicated by the 
dashed line in Fig 2.10. Here extra unity weight branches have been 
inserted to make this graph a special case of the SFG in Fig 2.8.
The branches ‘ G, > Qn , d33 are directed away from the set of nodes 
N a containing node e, hence sgn G, = sgn Qn  =  sgn a33 =  1 .
The branch G3 has the opposite direction, hence scyn G3-=: -1 . 
Furthermore the node v is not in the set N b , so that we have 
from (2.2.53):

CT
=  E  (s3 " “ ‘ S f ) = S f + 5 f  + 5 f - S "  =  °

W,€C V '->6, 'J Gi

(2.2.54)

Expressions for the four sensitivities in (2.2.54) were given in the 
previous section, and one use of the sensitivity invariant is to 
check the results so obtained. Thus from (2.2.25), (2.2.26), (2.2.27) 
and (2.2.28):
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Fig 2*10 Example of the summed sensitivity invariant
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^  ^  S 3  ”=r ~ ^ 7 Z  ^ * ^ 3 ^  G g ,G 3 ~̂~ ^3^ ^ 3  ~  ̂ __ 0

g , aM a3̂  g 3 1-a33G 3 - a73 GzG i - a ^ G vG2Gs
which checks with (2,2.54)*

Alternatively the sensitivity invariant may be used to simplify 
the calculation of sensitivity. For example consider the leapfrog 
feedback structure shown in Fig 2.11. Using the cut:

c =  {aw.ni 1 , GV*1 < • • - . G„}
we can write the sensitivity sum o' :

^ = - S F + i > ) i4' S F = { 0 : v ^ N b

ak,VM j=1 ^  : v £ N b

and, since V € K|b when n-k is odd and v Nj, when n-k is even, 
this enables us to express the sensitivity to the feedback path ak ̂  
in terms of the sensitivities to the subsequent blocks as:

^ F ^  , J+i F aS SG + ~ y ~  ~ j  (2.2.55)
Thus once the sensitivities to the branches Gj have been determined, 
the sensitivities to the branches Gw,k+\ may be easily found. It 
is of interest to note that Szentirmai 1331 bas given the following 
expression, based purely on intuitive reasoning:

(2.2.-56)

Comparison with (2.2.55) proves that it is valid for cases where n-k 
is even. The reader may construct further examples of the sensitivity 
invariant from the sensitivity expressions given in Fig 1.6 and 
Fig 1.7.

The sensitivity invariant (2.2.53) was first reported by the 
writer as a footnote in Ref.(771- Subsequently the writer published 
a proof in Ref.[88], which will be given in Chapter 3 since it is an 
alternative proof to that given in this chapter. Simultaneously 
with Ref.[88], but quite independent from it, Acar published very 
similar results for SFG's in general[1371 • His approach is quite 
different, and it involves the construction of a 'sensitivity graph' 
to find relationships between dependent and independent sensitivities.

Stimulated by Acar's work, we may say in the context of multiple 
feedback filters that a set of basic cutsets of the SFG will yield a 
set of independent relationships between the sensitivities.
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Fig 2,11 Leapfrog feedback structure
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If the SFG has m-nodes, then a tree of the SFG will have ra-1 branches. 
Each tree-branch defines a basic cutset, for which we can write the 
corresponding summed sensitivity invariant. The set of invariants 
defined by a given tree will constitute a set of m-1 linearly 
independent equations relating the SFG sensitivities. We may also 
say that the sensitivities of the transfer function with respect to 
the co-tree branch weights will constitute a set of independent 
sensitivities. Note that the use of the summed sensitivity invariant 
enables us to arrive at these results without having to construct 
Acar’s Sensitivity Graph.

For example, consider again the multiple feedback filter shown 
in Fig 2.6, and take the particular tree indicated by the heavy line 
in Fig 2.12. Each of the four tree branches ta, , Q,̂  , Q 23 , G 2 
defines a basic cutset, and the summed sensitivity invariant for each 
of these cutsets is shown in the figure. The four equations are 
linearly independent, and the sensitivities of F with respect to the 
co-tree branch weights G, , a33 and G3 . form a set of independent 
sensitivities.

In Chapter 5 we will be studying the deviations of the magnitude 
response |F(iw)| , caused by the weights of the branches in the SFG
being changed by small amounts. We note here that taking separately 
the real part and the imaginary part of (2.2.53) leads to equations 
relating respectively the magnitude sensitivities and the phase 
sensitivities:

(2.2.57)
O ' v £ Nb 
1 '• v S Nk

(2.2.58)

These follow using known results of the sensitivity calculus
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Fig 2,12 Example of a set of independent sensitivity equations
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2.2.4 Dynamic range

In the context of filtering, dynamic range is a measure of 
signal handling capability. It is an indication of the limits 
imposed by the filter on the range of signal levels over which the
filter performance is acceptable. At the upper limit the signal is

[1383
distorted by the non-linear voltage or slew-rate^ limitations of the 
operational amplifiers, and at the lower limit the signal is 
distorted by noise generated within the filter.

Dynamic range is usually considered in the frequency domain, 
although for pulse filters it would be more appropriate to use the 
time domain. We will use the frequency domain, and will consider the 
lower and upper limits to dynamic range separately.

The upper limit to dynamic range is imposed by the voltage limited 
or slew-rate limited outputs of the operational amplifiers. If the 
signal level is high enough, these lead to non-linear distortion of 
the filter output, and in some cases to jump resonance [751* We 
assume that to maintain acceptable performance it is necessary that, in 
the sinusoidal steady state, the operational amplifier output voltages 
do not exceed a specific value. In single amplifier sections, such as 
that shown in Fig 2.1(b), the amplifier output is coincident with the 
output of the section, and we therefore consider the section output 
voltages ocj in Fig 2.7. If multiple simplifier sections such as the 
ones shown in Fig 1.5(c) and (d) are used, then there will be a 
further problem (not considered here) of relating the output voltages 
of the additional amplifiers to the section output voltage. The 
sinusoidal steady state output voltage phasor V  —  ( V  ( e 1 av̂
(where v(t) =  Re. V  e Lu>^ ) of the filter is determined by the 
transfer function (2.2.5), and its magnitude is:

]l/ l =  + d | • |£"| (2-2.59)
and the output voltages X \ of the internal sections sire determined by 
the intermediate transfer functions XjU)/e.(s) , which are 
obtained from (2.2.2) and (2.2.3) as:

Gje(s) =4 Xj(s) _  Uj W W  -C#)"'b (2-2.60)
e(s)

thus:

I ^ H ^ U u T ’- C ^ r y  ■ \ £ \  j  -  \ , 2 , - . - , n  (2 .2 .61)

The input must not exceed the value (denoted by ) which
causes any one of these voltages to become distorted.

Discussion is aided by plotting these voltages as functions of
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frequency. As an example these voltages have been computed for the 
filter design illustrated in Fig 2.6, and they are plotted in Fig 2.13. 
The voltages are plotted for an input \ E \  = 1 , so that the graphs 
also represent the moduli of the intermediate transfer functions from 
the filter input to the outputs of the various sections. The output 
of section 3 is, in this example, also the filter output and it is 
determined by the specified transfer function of the filter. If, as 
the input voltage \ E \  is increased, it is an internal section which 
first causes distortion, then the dynamic range of the filter is 
probably unnecessarily restricted, because, as will be shown in 
section 3«4» it is in theory always possible to scale the signal levels 
without affecting sensitivity. Thus the signal level at the output of 
the offending internal section could be reduced in scale until that 
section is no longer the prime cause of distortion.

Conversely, if it is the output section which first causes 
distortion, there may be an internal section at which the signal level 
is too low, so that the section makes an unnecessarily large 
contribution to the filter noise. It is usually assumed therefore 
that the optimum condition is achieved when all amplifiers start to 
distort at the same value of \£I . The graphs in Fig 2.13 show that 
this condition is almost achieved in the example, for the usual case of 
all amplifiers having identical performance, in that the maxima of the' 
three curves are within about 1dB of each other. The attainment of 
this optimum condition depends on being able to obtain the required 
gain from the type of section being used.

In practice the input to the filter is unlikely to be a steady 
state sinusoid, and the above analysis may not give a good indication 
of the maximum voltages. However, if the input signal has a Laplace 
transform, the filter transfer function (2 .2 .5 ) and the intermediate 
transfer functions (2 .2 .6 0 ) can be used to determine the maximum 
voltages. If the input signal is a random process, then it may or 
may not be possible to determine the maximum voltages, depending on 
the nature of the process. If, for instance, all that is known about 
the input signal is its spectral density, then it is possible to find 
the mean square voltages, but not the peak voltages. In these 
circumstances one might assume that the optimum condition for maximum 
dynamic range is obtained when the mean square voltages at the outputs 
of all the sections are equal.

It will be noticed in Fig 2.13 that the frequency response at the 
output of an internal section can have considerable variation over the
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Fig 2.13 Signal levels of the filter shown in Fig 2.6; plotted
for \ £ \ =  1
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passband. In the example, the passband response of \ X Z\ varies by 
1 1 *5dB. Multiple feedback filters differ in the extent of such 
variation, and at one time it was assumed that the filter with the 
lowest variation had the best dynamic range (76,771• The intuitive 
assumption was that since the signal level was more removed from the 
noise level, the noise produced by the filter would be lower. More 
recent work (7 8 ,7 9 *8 0 ] has questioned this assumption, and it is 
therefore necessary to investigate the way in which noise is produced 
by the filter.

In active CR filters, thermal noise is generated in the resistors, 
and various mechanisms generate noise in the operational amplifiers 
[81]. With careful design the noise produced by an isolated section 
can be minimized [821. When several sections are interconnected to 
form a multiple feedback filter, each section will contribute to the 
noise output of the filter, and we are interested in how this noise is 
affected by multiple feedback. The noise produced by a given section 
can be modelled by an equivalent noise voltage source connected to the 
input of that section.

Accordingly we will analyse the general multiple feedback filter 
in Fig 2.7 with an additional voltage source at the input of each 
section, and with the filter input suppressed, such that:

(2.2.62) •

whence from (2 .2 .6 2 ), (2 .2 .2 ) and (2 .2 .4 ) with the filter input e ~ 0  

we obtain:

V= Ct ( 'U -^ M c # )  e
v =  (2.2.63)

Thus the voltage transfer ratio Gv. (s) from the voltage source 83 

to the filter output V is:

G v.(s) =  _vW_ (iL(s)-c?f) Uj (2.2.64)

We will call these the noise transfer functions. Now when 0j(t) is 
taken to be an equivalent noise source it is assumed to be a sample 
function from an ergodic random process, and it is characterized by its

4
=  c^3c + e where

e ~
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spectral density £„• (co) with units of volts2/Hz. The 1 power' 
transfer function 4" \ G vj (i is used to find the resulting spectral
density 0̂ * (w) at the output of the filter [831 thus:

(2-2 ’65)
✓ ? produced at the output of theThe mean square noise voltage £ / 2 

"3
filter by the noise generated in the j-th section may be obtained

+
from the spectral density [8 3 ] :

e «/ =  _ L  f  e::(<o)dM (2 .2 .6 6 )

■00

nJ

/
w  2
jGv. (Cco)\

_

= __J.

Z v r /
ICO

GviCs) Gv,(-s) e., M  ds
loo \ l /

(2.2.67)

(2.2.68)

Since the noise sources are uncorrelated and have zero mean value, the 
noise spectral densities £̂ .(u)) (and hence the mean square noise 
voltages ) will add together at the output of the filter. Thus
the spectral density €*v(u)) at the filter output is given by:

e w M  =  e*s M  +- M

3*'

e j w )  = e *5(u) 4- )“'& [ % ( « )
(2.2.69)-

where eMS(co) is the spectral density of the noise produced by the 
summing amplifier section at the output of the filter (Fig 2.7), and 
is unaffected by multiple feedback. The mean square noise voltage at 
the filter output is:

(2 .2 .7 0 )
(w)dioe„„ =  j

• aO

e,

2 tr

Computation of this noise is simplified when one can assume that the 
spectral densities are constant over the frequency range of interest 
[80].

* Many engineers prefer to use the square root of the spectral 
density, with units of volts / J  Hz , for which the familiar 
voltage transfer functions obtain.

t Note that the spectral density of a random voltage is often thought 
of as a normalized power density, and the squared modulus functions 
are hence called power transfer functions.
Some authors prefer to use the one-sided spectral density for which 
the corresponding expression is of the form: (f)df.

Jo
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The dynamic range D of a filter is usually defined to be the 
ratio of the root mean square value of the maximum undistorted 
sinusoidal steady state output voltage |K(/>/lT , that is achievable 
for all passband frequencies, to the root mean square value of the 
noise voltage \J en* at the output of the filter. Thus for multiple 
feedback filters:

D _  1 P ' 1  ( 2 . 2 . 7 1

a _
w h e r e  \f'\ i s  g i v e n  b y  ( 2 . 2 . 5 9 )  w i t h  ) £ " l  =  \S\ > a n d  i s
g i v e n  b y  ( 2 . 2 . 6 9 )  s u b s t i t u t e d  i n  ( 2 . 2 . 70 ) .

W e  h a v e  s e e n  t h a t  t h e  d y n a m i c  r a n g e  o f  a  m u l t i p l e  f e e d b a c k  f i l t e r  
i s  r e l a t e d  t o  t h e  i m p e r f e c t i o n s  o f  i t s  c o n s t i t u e n t  s e c t i o n s  b y  t h e  
i n t e r m e d i a t e  t r a n s f e r  f u n c t i o n s  ( 2 . 2 . 6 0 )  a n d  t h e  n o i s e  t r a n s f e r  
f u n c t i o n s  ( 2 . 2 . 6 4 ) .  I n  s e c t i o n  3 * 4  w e  w i l l  s h o w  h o w  t h e  s c a l i n g  
t r a n s f o r m a t i o n  c a n  b e  u s e d  t o  m a x i m i s e  t h e  d y n a m i c  r a n g e  o f  a n y  g i v e n  
f i l t e r ,  w i t h o u t  d e g r a d i n g  t h e  s e n s i t i v i t y  p e r f o r m a n c e .



2.3 Summary
In this chapter we have defined a multiple feedback filter to be 

an interconnection of active CR sections, forming a structure which 
has at least one forward path, and a multiplicity of feedback loops. 
The definition is flexible enough to encompass all structures 
proposed to date, including Bach’s circuit which is not normally 
thought of in this context. We have seen how a multiple feedback 
filter may be represented by either a block diagram or a signal flow 
graph.

We have shown that a multiple feedback filter may be analysed 
using Sandberg's matrix method, or Mason’s topological method.
Explicit expressions have been given for the differential 
sensitivities and the finite difference sensitivities of the transfer 
function of any given multiple feedback filter with respect to changes 
in the block diagram parameters. The expressions for finite 
difference sensitivities are given here for the first time. An 
indication has been given of how sensitivities may alternatively be 
found by using Mason’s rule and flow graph reversal.

A new summed sensitivity invariant has been given, applicable to 
the branches of a cut of a SEG. It is valid for SFG's in general, but 
has been presented here in the specific context of multiple feedback 
filters. The proof given in this chapter is based on matrix analysis 
of a general structure. An alternative proof based on the scaling 
transformation and Euler’s relation will be given in Chapter 3» The 
result was first published by the writer as a footnote in Ref 177U 
and later in Ref [881 together v/ith the alternative proof.

Dynamic range has been discussed, and it has been shown that, 
given the noise and limiting properties of the sections, the dynamic 
range of any given multiple feedback filter may be determined by 
using the noise transfer functions and the intermediate transfer 
functions of the structure.
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TRANSFORMATION OF MULTIPLE FEEDBACK FILTERS

There are many methods of synthesising a multiple feedback 
filter, and they lead to a variety of different structures. Once a 
particular filter has been obtained as a result of synthesis, it may 
be manipulated further by an application of the transformations 
described in this chapter. The transformations may be used to obtain 
new structures from known structures, or they may be used to improve 
the performance of the filter in some way. For instance they have 
been used variously to reduce complexity, to reduce sensitivity, and 
to increase dynamic range; all without affecting the transfer function.

Most transformations are manipulations of the SFG of a filter, 
and we start by describing rudimentary SFG equivalents which are 
useful for simplifying the realization. Some transformations have 
the interesting property, first pointed out by the writer in [84,77], 
of altering the SFG without affecting the block diagram sensitivities 
(block diagram sensitivities were given in section 2.2.2). One of 
these, namely scaling of signal levels, has already been mentioned 
in the discussion of dynamic range. The other two are the interchange 
of cascaded sub-networks, and the reversal of a signal flow graph.
These may also affect the dynamic range, and flow graph reversal may 
sometimes reduce the complexity.

In some cases a similarity transformation of the matrix &  can be 
used to alter the structure of a filter without affecting the transfer 
function. It has been used by some authors [49,69,85,861 in a search 
for low sensitivity structures.



3.1 Equivalent signal flow graphs

Mason [ 65] has given some equivalent signal flow graphs which can 
be used to manipulate a SFG in order to obtain new structures or to 
simplify the realization. These rudimentary equivalents are shown in
Fig 3.1.

The use of these equivalents will be illustrated by the derivation 
of a structure which will be studied in a later chapter. Starting from 
the LGR filter shown in Fig 3.2(a), we obtain a block diagram by 
simulation, in the way that was described in section 1.1. This block 
diagram (Fig 3.2(b)) is not in a form suitable for practical 
realization because the transfer function of the second block has a 
pole at infinity. In practice a voltage ratio can never have a pole 
at infinite frequency, and circuits which give the required response 
over a limited band of frequencies are usually excessively noisy. The 
difficulty is overcome by redrawing the block diagram as an SFG 
(Fig 3.2(c)) and then using the rudimentary SFG equivalents to 
eliminate the term sC2 from the transfer function of the second block 
(Fig 3.2(d) and (e)). The resulting realization would need three 
integrator sections and two summing amplifier sections. However 
further use of the SFG equivalents (Fig 3.2(f) and (g)) leads to a 
structure with a simpler realization.

In the process of drawing the block diagram in Fig 3.2(h) 
equivalent to the SFG in Fig 3.2(g), we have changed the sign of some 
branch weights, in a way which does not alter the transfer function 
but which associates the negative signs with the blocks. Although 
this is a fairly obvious transformation, it is interesting to note 
that it is a special case of the scaling transformation which will be 
described in section 3*4. A realization of this block diagram uses 
three integrator sections and only one summing amplifier section, and 
in this form the realization is the circuit attributed to Ford in 
Ref [171 .

It should also be noted that having transformed the network, it 
is no longer a direct simulation of the LCR filter. The leapfrog 
feedback structure has been retained, but the term sC2 in the 
transfer function of the second block in Fig 3.2(b) has been replaced 
by extra feedback and feedforward paths in Fig 3.2(h). In the same 
way that the capacitor C z affects mainly the stopband performance 
of the LCR filter, so these extra paths affect mainly the stopband 
performance of the multiple feedback filter in Fig 3.2(h), as will be 
shown in Chapter 5» where we study a bandpass version of this filter.
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Fig 5*1 Five rudimentary signal flow graph equivalents
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(b)

(c)

(d)

Fig 3*2 Transformation using equivalent signal flow graphs

!
a) LCR lowpass ladder filter
b) Block diagram obtained by simulation (see Fig 1.3)

c) Signal flow graph equivalent to (b)
d) Transformation of the SFG using rudimentary equivalentscontinued:
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Fig 3*2 continued

(e) to (g) Successive transformations of the

(h) Block diagram equivalent to (g)

SFG using rudimentary- 
equivalents
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In Fig 3*2 the SFG equivalents have been used to obtain a block 
diagram which may be easily realized by active CR sections. There 
are other possibilities, for instance SFG equivalents have been 
applied to the same simulation (Fig 3•2(b)) to obtain a block diagram 
which is suitable in some circumstances for realization by three 
switched capacitor sections, and the result is shown in Fig 3*3 152]• 
A different application of SFG equivalents to the simulation shown in 
Fig 3»2(b) results in the block diagram given by Doblinger l1441» 
which is suitable for realization by differential-input integrator 
sections and summing amplifier sections.

* This is suitable when the sampling frequency is much greater than 
the highest frequency present in the input e. If this is not the 
case then the sampled-data nature of switched capacitor filters must 
be taken into consideration.
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00

(c)

Fig 3.3 Block diagram transformed for switched capacitor realization 

Taj Block diagram
rb) Block diagram of the third section
(c) Realization of the third section
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3.2 Interchange of cascade subnetworks

Certain flexibilities in the cascade structure are often exploited 
to maximize dynamic range. One can for instance change the order in 
which the blocks occur. This transformation can sometimes be applied 
to filters having a more complicated structure, as was first pointed 
out by the writer in Eef l7 7 1 •

For example the network in Fig 2.6 has been redrawn in Fig 3.4(a) 
with dashed lines indicating two subnetworks which are connected in 
cascade. These two subnetworks may be interchanged without affecting 
the transfer function; and without affecting the differential 
sensitivities or the finite difference sensitivities of the transfer 
function to changes in the block diagram parameters. The result of 
interchanging the two subnetworks is shown in Fig 3.4(b). In this 
example the process can be repeated to give other networks, as shown 
in Fig 3 .4 (c) and (d). In the case of a multiple feedback filter 
having n blocks, one forward path, and n nested feedback loops, 
successive interchange of cascaded subnetworks will yield a total of 
2 different networks, each one having identical block diagram
sensitivities.

Although the different networks have the same transfer function, 
the responses at the internal sections will in general be different. 
These responses have been computed for the networks shown in Fig 3*4* 
and are shown in the Figure. They are different for each network.

The two networks in Fig 3.4(a) and (c) have known structures 
[45,291 and are related to each other by flow graph reversal (which 
will be described in the next section). Schaumann [78,80] has given 
examples of eighth degree versions of these two networks, for which he 
has calculated and also measured the dynamic range. He reports that 
there is only a small difference between the dynamic ranges of the two 
networks, despite the fact that one of the networks (FLF structure) 
has very much greater passband ripple at the internal sections. This 
disproves by counterexample the intuitive assumption, mentioned in 
section 2 .2 .4 * that the filter with the lowest variation has the best 
dynamic range.

Schaumann's results need careful interpretation because the two 
networks he uses have different realizations of the adders. In the FLF 
structure the adder is realized by a separate operational summing 
amplifier section (similar to the one shown in fig 2 .5 )* whereas in 
the other network the three adders are realized by resistive networks 
at the input of the associated sections (in the manner illustrated in



92

Pig 3 . 4 Successive interchange of cascade sub-networks

i
a.) Block diagram from Pig 2.6 
b) Intermediate structure -1

c) PLP structure
d) Intermediate structure -2



Fig 2.1(b)). Only when the filters are designed to have unity gain 
does the extra amplifier in the FLF filter not substantially affect 
the dynamic range, and only in that case is there a direct comparison 
of the two structures which is independent of the realization. When 
the two filters are designed to have higher than unity gain, Schaumann 
reports that the FLF filter has better dynamic range. This is entirely 
due to the extra operational amplifier which is used as an adder and 
which provides gain in the FLF filter. If a similar amplifier were 
to be included in the other network then the two filters would again 
have approximately the same dynamic range.
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3.5 Flow graph reversal

We now consider the transformation of a multiple feedback filter 
by reversal of its signal flow graph. To reverse a SFG one simply 
reverses the direction of all the branches, thus reversing the direction 
of Signal flow* through the network. It is known that flow graph 
reversal (FGR) does not alter the transfer function of the filter I67l> 
and since the branch weights are not changed, it follows that the 
differential sensitivities and the finite difference sensitivities of 
the transfer function to changes in the branch weights (or 
equivalently the block diagram parameters) are not altered either.
This was first pointed out by the writer in Ref [841.

As an example consider the block diagram shown in Fig 3*5(a )» 
which is of a 6th-degree elliptic-function bandpass filter, having 
a 1 .2 5dB passband ripple, 4 0 »5<FB stopband attenuation, a passband 
width equal to 10% of the centre frequency, a transition bandwidth 
of 1:2.366, and a centre frequency of 100 rad/s. The quadratic 
sections were chosen to have a Q,-f actor of 20. The structure has 
three nested feedback loops, and three parallel forward paths for the 
realization of transfer function zeros. The equivalent SFG is shown 
in Fig 3*5(b) together with the frequency responses at the output of 
each section. Reversal of this graph results in the SFG shown in 
Fig 3.5(c). In this example the reversed network has smaller 
variation of passband frequency response at the internal sections.
Note also that it does not use a summing amplifier section at the 
filter output, hence it can be built using fewer components.

If we reverse the SFG of the general multiple feedback filter 
shown in Fig 2.8, then matrix analysis of its transfer function 
F f g r  (s ) would give:

which is simply the transpose of the matrix expression (2 .2 .5 ) for "the 
transfer function of the original network. For this reason the flow 
graph reversed network is most aptly called the transpose network.

We may represent flow graph reversal of the general multiple 
feedback filter (Fig 2.8) by the mapping:

( 3. 5. 1 )

( 3. 3. 2)

d >*- d
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(a)

Q a =  0.014 500 b%2%

a2 = i .0213077S2 
a3 = 0 . 6  0 24-7 34-2$ 
b, = -0.0&3&&507 fc 
b2 - 0.02533774- 5
b3 = O A I M W W

6* '= ' 0 _____ S_____
- 6 -j  ̂ s + 5s + \0 V

Fig 3*5 Flow graph reversal

( a ) Block diagram
(b) Equivalent SFG
(c) Reversed SFG [8 4]



9 6

It is of interest to note that when this mapping is applied to the
intermediate transfer functions (2.2.60) we obtain for the reversed
network:

e ~
j= 1, 2,  , M (3.3.3)

which may be written as:

=  £ t (^(s)'-c?f) 'uj j= 1,2,... , " (3.3.4)

e
which will be recognized as the noise transfer functions (2.2.64) of 
the original network. Also if we apply the mapping (3.3*2) to the 
noise transfer functions (2.2.64)> then we obtain for the reversed
network:

V =  

e.s

]=  1, 2, . . .  , n (3.3.5)

v_ =. U j ^ M ' - c ^ r k  

ej

j -  1,2,..  . j vi (3.3.6)

which will be recognized as the intermediate transfer functions 
(2.2.60) of the original network. Thus one effect of flow graph 
reversal is to interchange the intermediate transfer functions and 
the noise transfer functions.

It is of interest to consider the product of the noise transfer 
function G v j  and the intermediate transfer function G j e  associated
with a particular block Gj : 

Gvj Gje =
(3 .3 .7 )

The right hand side will be recognized as a factor in the expression 
for the sensitivity given in (2.2.22). Prom (2.2.22) and
(3.3.7) we may write:

9 F(s) _  6„; Gje (3.3.1

9 Ĝ ) Gj If
The second factor in (3.3*8) may be identified with the particular 
transfer function of the SPG in Pig 2.8 from node e to node ij. .
The first factor in (3*3*8) may be identified with a transfer function 
in the reversed SPG, between the nodes corresponding to nodes V and 
Xj in Pig 2.8. Both of these transfer functions may be evaluated by 
using Mason*s rule for SPG*s (2.2.8), and in fact equation (3*3*8) 
illustrates the relationship between the explicit formulation adopted 
in this chapter, and the so called 'adjoint* method, mentioned at the
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end of section 2.2.2, for finding sensitivities by using Mason*s rule 
and FGR. A similar relationship exists between the expression for the 
finite difference sensitivity in (2.2.21) and the SFG method
given in Ref (71]# Equation (3*3«8) and its counterpart for finite 
differences also provide an alternative proof of the invariance of 
sensitivity under flow graph reversal.
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5.4 Scaling of signal levels

We have already mentioned that the signal level at the output of 
an internal section of a multiple feedback filter may he scaled in 
order to improve the dynamic range of the filter, without affecting its 
transfer function. Many authors have used scaling in this simple form, 
and for some specific structures it has been demonstrated (52,531 
that scaling does not affect the differential sensitivity of the transfer 
function with respect to the block diagram parameters.

Here we present scaling in a novel way by considering it to be 
an operation on the branches of a cutset of a SFG. It will as a 
consequence apply to all multiple feedback filters, and furthermore, 
we will show that not only are differential sensitivities unaffected 
but that also the finite difference sensitivities are not affected by 
this scaling transformation.

Consider any cutset of a SFG. The cutset will divide the nodes of 
the graph into two sets Na and N b , and without loss of generality 
we take N Q to be the set containing the input node e . The scaling 
operation consists of multiplying the weight of each branch in the 
cutset by a factor X or l/X . If a branch is directed towards N b 

then its weight is multiplied by X , and if it is directed away from 
Nb its weight is multiplied by t/X . The result is that the signal 
level at the nodes in the set N b will be scaled by a factor X 
relative to the signal level at the input of the filter.

As an example consider again the filter shown in Fig 2.6, and 
take the cutset Is, , , a33, G3} as indicated by the dashed line in
Fig 5*6. Since the branches G, , a 23 and a33 are directed 
towards the set of nodes Klb (not containing the input node e), their 
weights are multiplied by X , and since the branch G 3 is directed 
away from N b its weight is multiplied by 1/X • The result is that 
the signal levels at the nodes oc, and ocz have been scaled by the 
factor X  .

To show the effect of the scaling transformation on the transfer 
function din the general case we use Mason's rule (2.2.8), which 
expresses the transfer function l-(s) as a function of feedback loop 
gains Tj and forward path gains Pj only.

Consider first the feedback loops. There will be an even number 
(possibly zero) of branches common to both the cutset and any given 
feedback loop, as illustrated in Fig 5•7(a)• Half of these common 
branches will be directed towards the set of nodes , and the
other half will be directed away from N b . Hence the feedback loop
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Fig 3*6 Example of the scaling transformation
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Fig 3*7 Effect of scaling on the transfer function

(a.) Effect on loopgains *Tj - a feedback loop is shown in isolation 
ib) Effect on forward path gains Pj , case (i) - node v in set N a
(c) Effect on forward path gains Pj , case (ii) - node v in set N b
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gain Tj will be multiplied by the factor X and multiplied by the 
factor \ / X  an equal number of times. These factors will cancel 
leaving Tj unaffected by the scaling transformation.

Now consider the forward paths. There are two cases:
Case (i) where the cutset is such that the output node v is in the 

set N a (which also contains the input node e), as illustrated in 
Fig 3•7(b). In this case the cutset has an even number (possibly 
zero) of branches in common with any given forward path, one half of 
them directed towards and the other half directed away from
Hence the forward path gain Pj will be multiplied by the factor X  

and the factor \ / X  an equal number of times. These factors will 
cancel leaving Pj unaffected by the scaling transformation.

Case (ii) where the cutset is such that the output node v is in the 
set N b , as illustrated in Fig 3«7(c). In this case the cutset has 
an odd number of branches in common with any given forward path. This 
odd number may be thought of as an even number plus one. The factors 
due to the even part will cancel as before, but the extra common branch 
will cause each forward path gain Pj to by multiplied by the factor A.

From Mason's rule (2.2.8) it follows that scaling does not affect 
the transfer function F(s), unless the cutset separates the input 
node e from the output node v (case (ii) where node e is in set N a 
and node v is in set N b ), in which case the transfer function F(s) 
is multiplied by the factor A.

The scaling transformation may be applied in turn to any number 
of different cutsets of a SFG, and it follows that the transformation 
is also valid for a cut; a cut being either a cutset or a disjoint 
union of cutsets.

So far we have said nothing about the nature of the factor “X.
In general X may be a function of the complex frequency variable s, 
although scaling with X —  A(s) would not normally be used with 
cutsets (or cuts) for which node V £ XIb (case (ii)), because the 
transfer function would then be multiplied by the complex factor X(s).
In other cases a complex scale factor can be useful. For instance 
consider the leapfrog feedback network shown in Fig 3«8(a)> which may 
be realized by four bandpass sections and three inverters. Use of the 
scaling transformation with i/s will permit the same transfer
function to be realized using the same structure, but with two highpass 
sections and two lowpass sections instead of the four bandpass sections, 
as shown in Fig 3*8(b). The effect of this particular transformation 
on sensitivity and dynamic range has not yet been investigated. Note 
that one would not perform the corresponding transformation on a
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V

V

Pig 3«8 Some uses of the scaling transformation

(a ) SPG of a filter using the leapfrog feedback structure
(b) A transformation of fa} with l/s
(c) A transformation of (a) with X = - l
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leapfrog feedback network having an odd number of sections since the

For other uses of the scaling transformation the factor A is 
restricted to be real and constant. This constant may be negative, and 
this is often useful for eliminating unnecessary inverting amplifiers. 
For example a direct realization of the SFG in Fig 3*8(a) would use 
three inverting amplifier sections corresponding to the three branches 
with weights equal to -1. This would be necessary because bandpass 
sections do not normally accommodate both positive and negative inputs. 
However, if the scaling transformation is applied with A = -1 to the 
cut of the SFG shown in Fig 3*8 (0 ), then the resulting SFG may be 
realized without using any inverting amplifier sections. Note that 
two of the bandpass sections have become inverting bandpass sections. 
For most types of section, both inverting and non-inverting versions 
are known.

Transformations of the type shown in Fig 3*8 are not new, indeed 
it may be said that they are intuitively obvious. They are mentioned 
here because they are now seen to be special cases of the more general 
scaling transformation described in this section. This fact may be 
useful in that it provides a systematic way of applying the 
transformations to more complicated networks.

When the scaling transformation is used to alter the gain of a 
filter, or to maximize its dynamic range, then the factor A is 
restricted to be a real positive constant. This is the case which 
we now consider in respect of sensitivity.

The fact that scaling does not alter the differential sensitivity 
of the transfer function F(s) with respect to any branch weight w  
follows from a known result of the sensitivity calculus:

p,q real, positive, constant (3 .4 .1 )

(which may be A  or 1), and to multiply w by a constant q (which may

sensitivities by using Taylor’s theorem as follows. From (1.2.3) we 
have:

transfer function would in that case be multiplied by

since the effect of scaling is to multiply F(s) by a constant p

be A, l/A or 1). This result can be extended to finite difference

n-1 n-1 ,n | W di!E +R»
d w n (3.4.2)
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and similarly for the scaled network:

/Afywj\ (ĉ w) d (pF) + R n 1
ml \ ĉ w / d(cyw)M J

(3.4.3)

which, since d w  —  1 __ _1_ , may he written:
d  ( c ^ w )  d ( q , w )

d w

£ pP _  w  jfdF +  .  .  .  4.  t /Afywj\ w  cl°F +  g R„' j
'̂ -Ayw F Idw 2.1 V ĉ w / dw2 nil ĉ w / dwfl p J

(3.4.4)

If the Taylor series converge then from (3*4.2) and (3*4.4) we see that: 

j J  ( y  =  A pF (a (^w )| (3.4.5)

thus the finite difference sensitivity of the transfer function F(s) to 
changes in any branch weight w is in general a function of the 
fractional change of the branch weight Aw/w , and this function is 
not altered by scaling.

The summed sensitivity invariant in section 2.2.3, and the scaling 
transformation in this section have been derived independently. The 
two results are however related by Euler's relation for homogeneous 
functions. Every scaling transformation implies a certain homogeneity 
of the transfer function, and Euler's relation for this homogeneity in 
turn implies a summed sensitivity invariant. Since Euler's relation is 
both a necessary and a sufficient condition for homogeneity [871, the 
converse is true: every summed sensitivity invariant implies a certain 
homogeneity of the transfer function, which in turn implies a possible 
scaling transformation.

For example, consider again the scaling transformation illustrated 
in Fig 3*6. From this transformation we can say that the transfer 
function F(s) is homogeneous of degree 0 with respect to the variables 
G\ , Q23 , Q J3 and G 3-‘ , thus:

F* (s j 7\G, , >vQw , ^ F(^ j G, , Qrs 5 Q3 3 j Gj )

from which follows Euler's relation:
( 3. 4. 6)

* It is possible to derive the result in (3*4.5) by matrix analysis. 
This alternative proof does not rely on convergence of the Taylor 
series, but is much longer than that presented here.
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( 3 . 4 . 8 )F

s +- q f +  c
)  + C

F 0  ( 3 . 4 . 8 )
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U. 
ys

iii we have the summed sensitivity invariant

S F + S F + S F - S "  = °  ( 3 . 4 . 9 )
° G ,  ~ a n A ,

as was shown in Fig 2.10,
The formulation of the scaling transformation as an operation on 

a cutset of a SFG so that it applies to all multiple feedback filters, 
and the demonstration of the invariance of the finite difference 
sensitivities and differential sensitivities, were first given by the 
writer in Ref [771.
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5 . 5  S i m i l a r i t y  t r a n s f o r m a t i o n

The matrix analysis of multiple feedback filters described in 
section 2.2.1 provides a means of changing the structure of a filter 
by the use of a similarity transformation. The similarity
transformation cA  l---------->—  3 '<?f 3 will alter the values of
the components of . In particular it can give a non-zero 
component where there was previously a zero valued component, thus 
introducing a new branch into the SFG. Similarly it can give a zero 
valued component where previously there was a non-zero component, 
thus suppressing a branch in the SFG. By suppressing and introducing 
branches, the similarity transformation can be used to alter the 
structure of the SFG.

If the transfer function F(s) is to remain unaltered, then the 
other matrices must be changed in accordance with the following 
mapping:

4  (s) i— — -  r t & n
< &  1— --------- T ' < A y

Jo 1---- -----
C 1-----

\ d i-----
-------c
-------d

( 3 . 5 . 1 )

When this mapping is applied to the transfer function F(s) in ( 2 . 2 . 5 )  
it gives:

F(s)= ct 3 ((T!^(s)^)"- r W T ’b + d

= c ^ { T { ^ i ' - c A W r \  +a

(5-5 -2)

which is the same as (2.2.5), hence F(s) is not altered by the mapping 
( 3 * 5*0* Thus the mapping may be applied to a known structure, having 
a given transfer function, in order to derive new structures having the 
same transfer function. The new structures do not necessarily have the 
same sensitivity and dynamic range properties as the initial structure, 
and the mapping (3•5•1) may therefore be used to search for structures 
with improved performance [49,69,85,86,157)• The algebraic procedure 
described in Ref (49) is equivalent to using the transformation to 
change a follow-the-leader feedback structure into a leapfrog feedback 
structure. In Refs (69,85,861 the final structure is the outcome of a 
computer optimization procedure.



If the transformed structure is to be a multiple feedback filter 
as defined in Section 2.1, then the matrix 3 must be a
diagonal matrix, just as the matrix must be diagonal. This
may be achieved in one of two ways. Either Jt̂ Cs) is a scalar 
multiple of the unit matrix, —  G(s) in which case V s)
is unchanged by the mapping, irrespective of , since

= Gw r u  3 = g (s) u (3-5-3)
or, if is not a scalar multiple of the unit matrix, the
transformation matrix 3 must be chosen such that T' is
constrained to be diagonal.

In the first case all the blocks G-. (s) in the block diagram
v

are identical to each other. This case was used in Refs. I49»69f861, 
and it is related to the method in linear system theory of finding 
all 'equivalent realizations'. In the second case the blocks Gj(s) 
are not necessarily identical. The only use of this case has been in 
Ref [8 5 ], but unfortunately the authors of that paper overlooked the 
fact that their similarity transformation did not constrain the 
matrix t) to be diagonal. Their method is consequently of
little practical value since an extra block must be used for each 
non-diagonal term introduced by the transformation.

This difficulty does not arise in the method proposed by Mackay & 
Sedra [86]. In their method, all blocks are identical to each other 
and are taken to be simple integrators G- (s') =  t / 5 . Constraints 
are introduced in the optimization procedure to ensure that successive 
pairs of integrators become connected as two-integrator loops, thus 
forming quadratic sections. These two-integrator loop quadratic 
sections need not all be the same.

It is of interest to note that for the case where all blocks are 
identical to each other, Biswas & Kuh [6 9 I have shown that the 
sensitivity sum:

£ S™ =11 fe (3*5,4)
j=i Gj(s) F(s) 6(s)
is invariant under the similaritytransformation. Application of the 
transformation to the following expression obtained from
(2.2.22)

y  q F(5> = _ l  c t (&(svc4 )"'^(sf ( A ^ ' - c ^ y ' b  (3.5.5)
F(s)

shows that the sensitivity sum is also invariant for the case where 
the blocks Gj(s) are not identical to each other.
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3.6 Summary-

Several ways of transforming a multiple feedback filter have 
been described. Mason’s equivalent signal flow graphs may be used to 
manipulate the SFG of the filter, and as an example they have been used 
here to derive a structure which will be studied in Chapter 5. Cascade 
subnetworks may be interchanged without affecting the transfer function 
or the sensitivities, as was first pointed out by the writer in Ref (77l. 
A multiple feedback filter may be transformed by reversing its SFG, 
again without affecting the sensitivities, as was first pointed out by 
the writer in Ref 1841. We have shown that one effect of FGR is to 
interchange the noise transfer functions and the intermediate transfer 
functions.

We have shown that the signal levels of a multiple feedback 
filter may be scaled, systematically and with complete generality, by 
performing the described transformation on the branches of a cut of 
the SFG. A complex scale factor can sometimes be used to change the 
types of section used; a negative scale factor can be used to eliminate 
unnecessary inverting amplifiers, and a real positive constant scale 
factor is used to alter the gain of the filter and to maximize its 
dynamic range. We have shown that neither the differential 
sensitivities nor the finite difference sensitivities are altered by 
this transformation. These new results were first described by the 
writer in Ref [77]• The use of the scaling transformation together 
with Euler*s relation for homogeneous functions provides an alternative 
proof of the summed sensitivity invariant given in Chapter 2. The 
presentation of both proofs in this thesis is justified in the writer’s 
view because (apart from the fact that he discovered both proofs) the 
more ways we have available for studying networks, the richer our 
understanding of the subject becomes, and greater is the stimulus to 
further investigation.

For completeness, this chapter included a comment on the use of 
the matrix similarity transformation to alter the structure of a 
multiple feedback filter.
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CLASSIFICATION OF MULTIPLE FEEDBACK STRUCTURES

The human propensity to classify can sometimes be of great help 
in understanding the complexities of nature, provided always that care 
is taken to avoid stereotyping and the consequent prejudice. Many 
different multiple feedback filters have been proposed, and in this 
chapter we will classify those filters which use biquadratic sections. 
The classification is in terms of structure and it uses concepts 
introduced in Chapter 1. It is presented in the form of a Table, 
which shows relationships between existing networks, and which also 
reveals some new structures. Two methods of determining the block 
diagram parameters for these new structures will be described. In 
addition to revealing new structures this classification is related 
to the sensitivity properties of the various networks, and it provides 
a framework for the study of sensitivity undertaken in Chapter 5.

4.1 The basis of the classification

We have already seen that the ability to construct transfer 
functions is fundamental to the study of multiple feedback filters, in 
that it not only allows us to investigate the frequency response of 
the filter but also enables us to determine sensitivities using the 
concept of flow graph reversal (3*3«8)» and to compute dynamic range 
using the noise transfer functions (2.2.64) together with the 
intermediate transfer functions (2.2.60). Mason's rule (2.2.8) for 
determining a transfer function of a SFG is expressed in terms of 
forward path gains and feedback loop gains only. It follows that 
forward paths and feedback loops are the essential elements of 
structure.

Obviously at least one forward path is necessary to provide 
signal transmission through the filter, and in Chapter 1 we saw that



a multiplicity of forward paths may be used to produce transmission 
zeros at finite non-zero frequencies. We also saw that feedback 
loops may be used to reduce sensitivity, or they may be used to produce 
transmission zeros by complex feedback.

The classification presented here is based on the arrangement of 
forward paths and feedback loops, in a way which relates to the 
sensitivity properties of the various structures. Firstly we consider 
the patterns of feedback loops which are introduced specifically for 
the purpose of reducing sensitivity at passband frequencies, e.g. 
leapfrog feedback, follow the leader feedback etc., and secondly we 
consider the method used to produce transmission zeros (which will 
have a dominant effect on sensitivity at stopband frequencies), e.g. 
series notch sections, parallel forward paths or complex feedback.

The two dimensional classification is presented in Table 4.1, 
with the types of feedback listed horizontally and the methods of 
producing transmission zeros listed vertically. Numerical entries in 
the table are references to the published design methods which utilize 
the structure indicated by the particular row and column in which the 
entry occurs. Alphabetical entries occur where the writer's 
classification has led to the design of new structures.

The majority of published multiple feedback filters are composed 
of an interconnection of biquadratic sections, and the Table is 
restricted to such networks. Other filters such as those comprising 
an interconnection of integrators are not included . Most of the 
entries in the Table refer to bandpass filters, and where other types 
occur they are indicated as follows: lowpass (LP), bandstop (BS),
equalizers (EQ), variable equalizers (VE), multiple notch (MN). A 
design procedure which has been shown to be applicable to several 
different types of frequency response (e.g. lowpass, highpass and 
bandpass) is indicated as (G). Multiple feedback has of course many 
other uses, for example in the linearization and stabilization of 
amplifiers [128], in automatic control systems [129], multi-loop 
feedback oscillators [1 3 0 ], and quadrature phase shift networks [1 3 1 1 * 
In this thesis however we restrict our attention to multiple 
feedback filters.

The implementation of multiple feedback filters may take one of 
several different forms, in that the blocks may be realized not only 
by active CR sections, but also by active switched C sections 152,1561

* Except inasmuch as a two-integrator loop can be considered to be 
a quadratic section.
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active R sections [105l, active C sections [1271, active piezoelectric 
sections [108], voltage or current tunable sections [114,1441, or 
digitally controlled sections [1351* Although we have in this thesis 
considered mainly active CR sections when discussing specific 
realizations of block diagrams, we could equally have considered any 
of the different types of section just mentioned. All that is 
required of a section for it to realize a block is that it must be 
unilateral and that its port voltages must be related by the 
characterising equation of the block, without being affected by the 
interconnection of blocks. This was described fully in Chapter 2, 
but is repeated here to indicate the scope of the design methods 
listed in the Table.



TABLE 4.1 Classification of multiple feedback filters using quadratic sections
Type of feedback used to reduce passband sensitivity

None Leapfrog Nested All paths Other
Follow the 

leader
Intermediate Transpose follow 

the leader

Polynomial filters

89 Sallen, Key 
101 Haigh

17 Girling, Good
18 Girling, Good
19 Adams
96 Bruton
97 Bruton, Salama
98 Laker, Ghausi, Kelly
99 Laker, Ghausi, Kelly
100 Constantinides + 
52 Jacobs,Allstot ++

27 Hurtig III 
29 Laker, GhauBi
105 Laker, Schaumann +
106 Schaumann,Brand + 
114 H urtig III
154 John s o n , H i 1burn + 
159 Schubert

77 Perry 84 Perry 
113 Spudil

115( g ) Gorski-Popiel 
116 Laker, Ghausi 
70 Styblinska 
86 Hackay, Sedra 
1 36 Laker, Ghausi

132 Deliyannis +
133 Deliyannis + 
146 Fliege
161 Fotopoulos +
162 Mijat, Moschytz
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S eries notch 
sections

90 Kerwin,Huelaman 33 Szentirmai
102 Szentirmai
103 Tuttle
34 Dubois, Ueirynck
104 Dubois, Neirynck 
55 Muller
63 Yoshihiro ++

36 Biernacki, Mulawka
37 Dubois,Neirynck
38 Tow
39 Tow
40 Gensel
41 Gensel
42 Padukone, Mulawka +

B

37 Dubois, Neirynck 1 1 7  Conuleren 38 Tow
39 Tow
120 Biey, Premoli 
1 4 7 (g ) Gonuleren 
1 4 8 (g ) Kruger 
149(LP) Biey
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el
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F e edforward 
to output

91 Pearl
92 Calahan
1 2 1 (MN) Plotkin

49 T ow, Kuo 48 Laker, Ghausi
107 Laker, Ghausi 
28 Tow
40 Gensel
41 Gensel
108 Hruby, Novotny

D A

Feedforward 
from input

49 Tow, Kuo 
51 Kruger

47 Tow 
28 Tow

C

45 Perry
109( g ) Biernacki + 
110(GJ Diernacki t 
1 1 1 (C) Biernacki + 
112( g ) Biernacki + 
145(G) El-Masry

Other

93 Russell, Chan
94 Moran 
122(EQ) Liider
118 Hills
119 Gadenz

84 Perry 
53 Muller 
144 Doblinger

86 Mackay, Sedra 124(BS) Gadenz 
125vBs) Gadenz 
160 T akagi, Fuj i i

Complex
feedback

84 Perry 57 Brackett, Sedra
58 Brackett, Sedra
59 Martin, Sedra 
6 0 (BS) Adams

Mixed
95 Urbas
123(VE) Takasaki ++++ 
126(VE) Takasaki +++ 112
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4.2 Multiple feedback loops for reducing- passband sensitivity

We now consider the first aspect of the classification, namely 
the pattern of the feedback loops which are used to reduce sensitivity 
at passband frequencies. These are listed horizontally in Table 4.1.

The first column is composed of netv/orks which do not have any 
feedback loops for the purpose of reducing passband sensitivity.
These include certain ’canonic' structures which will be described 
in Section 4*3«

The subsequent five columns contain the common arrangements of 
feedback loops, most of which have already been encountered in earlier 
chapters. They are illustrated diagrammatically in Fig 4.1 for the 
case of filters having three sections. The leapfrog feedback structure 
in Fig 4.1(a) was described in Chapter 1, and a design using the method 
of simulation was shown in Fig 1.5. The follow the leader feedback 
structure in Fig 4*1 (l>) was shown previously in Fig 1.7* and the 
transpose or flow graph reversed follow the leader feedback structure 
in Fig 4.1(d) (proposed by the writer in Ref [8 4 ]) has been used as an 
example in several places throughout earlier chapters. Figure 4 .1 (c) 
shows one of the structures which are intermediate between follow the 
leader feedback and transpose follow the leader feedback, these 
intermediate structures being obtained by interchange of cascade 
subnetworks as described by the writer in [77l• They were illustrated 
earlier in Fig 3.4-

The column headed "All Paths" in Table 4.1 contains structures 
which have all possible constant multiplier feedback paths around the 
blocks in some given forward path. In the absence of complex feedback, 
this arrangement may be defined more precisely in terms of the 
components of the matrix (2.2.1). If the blocks are numbered in 
the sequence in which they occur in the given forward path, then the 
lower diagonal of will contain components corresponding to the 
forward path, and all components in the upper triangle of 
corresponding to the feedback paths, will be non-zero, as in (4.2.1). 
Any non-zero components in the lower triangle (apart from the lower 
diagonal) would correspond to extra forward paths. If any of these 
are present then there may be more than one forward path which passes 
through all the blocks, depending on the components of the column 
matrices b and jc . The Crab's Eye filter [118] is an example of a 
structure which has all feedback paths and also extra forward paths.
It was originally conceived as a channel bank filter but in Chapter 5 
we will consider the use of the Crab's EJye structure as a single
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Fig 4.1 Common arrangements of feedback loops for reducing passband
sensitivity-

leapfrog feedback [1 7 ]
follow the leader feedback [271
example of an intermediate structure [7 7]
transpose or FGR follow the leader feedback [8 4 ]
all feedback paths [115 J
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output multiple feedback filter. We will show that despite the fact 
that it has all feedback paths, these do not lead to a low sensitivity- 
in the passband. For that reason, the Crab's Eye filter appears in the 
first column of Table 4*1* It is mentioned here because it is the only 
example of a published structure which uses all feedback paths in 
conjunction with parallel forward paths. When the multiple feedback 
Crab's Eye filter uses more than two blocks, then there exists more 
than one forward path which passes through all the blocks. A constant 
multiplier path may appear to be a feedback path with one sequence of 
block numbering, but may become part of the main forward path with 
another sequence of numbering.

As indicated in the following matrix, the common feedback 
structures illustrated in Fig 4-1 are special cases of the structure 
having all feedback paths.

Follow the leader feedback

( 4 . 2 . 1 )

Leapfrog feedback

Transpose follow the leader feedback

Components on the main diagonal of correspond to feedback paths 
around single blocks. These are usually, but not necessarily, 
included in the structure having all feedback paths (Fig 4«l(e)). It 
is commonly stated that such paths effectively change the Q-factor of 
the blocks around which they occur, but not the resonance frequency coD . 
This is true if the block has a 2.nd-degree bandpass, symmetrical notch, 
or allpass transfer function. It is not true for 2nd-degree lowpass, 
highpass, or unsymmetrical notch functions, as may be seen by using the 
equivalent transfer function given in Fig 1.10.

The last column in Table 4»1 is for structures which do not fit



into any of the previous categories. They may use some combination of 
the previous structures or they may use some other subset of the 
feedback paths occurring in the general case (4.2.1). In this class 
there is increasing interest in structures which are essentially like 
the cascade structure, but which have feedback around pairs of blocks 
implementing those poles of the transfer function which have the 
highest Q-factor [58,39,120,133,147,149,1611.
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4.3 Method of producing' transmission zeros

We now consider the second aspect of the classification, namely 
the method of producing transmission zeros. These are listed 
vertically in Table 4*1*

The multiple feedback structures described in the previous 
section, and illustrated in Fig 4.1> are suitable for the realization 
of polynomial filters, that is filters having transmission zeros all 
either at the origin of the S -plane or at infinity. This is 
achieved by using lowpass, highpass or bandpass polynomial sections 
as appropriate. Design methods for such filters are indicated in the 
first row of Table 4*1 •

For the realization of transmission zeros at finite non-zero 
frequencies, as used in Cauer filters, there are three possible
methods, as described in Chapter 1. The three methods have been

rreferred to as series notch sections, parallel forward paths, and 
complex feedback. These are listed vertically in Table 4*1 • The 
bottom row in Table 4*1 is for structures which use some combination 
of the three basic methods.

The three methods of producing finite transmission zeros are 
illustrated most clearly by three structures which may be called 
canonic by virtue of the fact that their design methods are 
adumbrative of the canonic expansions of LC 1-port immittances. They 
are shown in Fig 4.2. The factored or cascade structure [901 shown in 
Fig 4.2(a) is designed by expressing the required transfer function as 
a product of biquadratic factors, and identifying each factor with one 
of the blocks in the block diagram. Transmission zeros are realized 
in the cascade structure by the use of series notch sections. The 
partial fraction structure (931 shown in Fig 4.2(b) is designed by 
expressing the required transfer function as a sum of quadratic 
partial fractions, and identifying each partial fraction with one of 
the blocks in the block diagram. Transmission zeros are realized in 
the partial fraction structure by means of parallel forward paths.
The continued fraction structure [841 shown in Fig 4.2(c) is designed 
by expressing a lowpass prototype transfer function as a continued 
fraction, then identifying each partial remainder with one of the 
blocks in the block diagram, and finally applying a lowpass to 
bandpass transformation to the block diagram. Transmission zeros 
are realized in the continued fraction structure by means of complex 
feedback, as was fully described in section 1.4. These three 
'canonical' structures do not use feedback loops for the purpose of
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Pig 4*2 The three ’canonical* expansions of a transfer function

(a) Cascade or factored structure [901 
Partial fraction structure [951

c) Continued fraction structure [841
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reducing’ passband sensitivity, and therefore they occur in the first 
column of Table 4.1•

The three methods of producing finite transmission zeros may 
also be used in structures which have feedback loops for the 

reduction of passband sensitivity. Consider for example the leapfrog 
feedback structures which occur in the second column of Table 4.1» and 
which are illustrated for the case of 6-th degree filters in Fig 4*3. 
Series notch sections may be used in the basic leapfrog feedback 
structure shown in Fig 4«3(a )» as described in Chapter 1. This was 
first proposed by Szentirmai [33 3• Parallel forward paths may be 
introduced in several ways, and Figures 4.3(b) and (c) show the

rstructures proposed by Tow & Kuo (491> refer.ed to respectively as 
feedforward to the output and feedforward from the input. There are 
other methods of applying parallel forward paths to the leapfrog 
feedback structure, and one example is shown in Fig 4*3(d). This has 
the structure of Ford’s lowpass network which was discussed in Section
3.1, and for which the blocks represent integrators. In Ref [841 the 
writer proposed using the lowpass to bandpass transformation to 
obtain a bandpass filter for which the blocks , G 2 and G 4 
represent bandpass quadratic sections. The constant multiplier G3 
together with its associated adder represents a summing amplifier 
section (see Fig 2.5) which is also required for this structure. 
Leapfrog feedback may also be used in conjunction with complex 
feedback as illustrated in Fig 4-3(e). This is one of several 
structures which may be constructed by SFG simulation of an LCR

. .4-filter , using the procedure given by Brackett & Sedra 1571 * In this 
simulation the two leapfrog feedback loops { G, , G a , Q,r } and
{ G 2 , G t, , Cl*-*} reduce the sensitivity at passband frequencies, and the 
two complex feedback loops { , 6 5 } and {G a , } realize the
finite transmission zeros by complex feedback.

Although the structures shown in Fig 4*3 are for 6-th degree 
filters, the design methods quoted are applicable to filters of any 
complexity. The corresponding extension of the structures shown in 
Fig 4-3 is fairly obvious, except perhaps for Ford's structure in

* The LCR filter used was that shorn in Fig 3.2(a), transformed by the 
usual lowpass to bandpass transformation.

t It will be noted that most of the structures shown in Fig 4.3 use 
three quadratic sections and possibly one summing amplifier section, 
whereas the SFG simulation in Fig 4»3(e) uses four quadratic 
sections and a reciprocator Ga . This excessive use of sections is 
characteristic of the simulation method described in Ref (571.
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(a)

00

(o)

(d)

(a)

Fig 4*3 Realizing transmission zeros with structures using leapfrog
feedback

!a,) Series notch section l531
b) Parallel forward paths: Feedforward to the output (491

(c)  Parallel forward paths: Feedforward from the input (491
(d) Parallel forward paths: Fordfs structure (841
(e) Complex feedback l571
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Pig 4.3(h). In the Ford simulation the paths a3v and CL3A. occur 
as a consequence of the terminating resistances in the LC ladder 
filter being simulated. In general, the central zero-producing branches 
of the LG ladder give rise to feedforward paths around pairs of blocks 
(such as b3 in Fig 4.3(d)), and to feedback paths which encompass a 
pair of quadratic blocks and two summing amplifier sections. Muller 
I 531 has extended Ford’s original idea to a general and systematic 
passive ladder simulation method.

We have considered in some detail the first two columns of Table
4.1. Other columns show where the three methods of realizing finite 
transmission zeros have been applied to the remaining feedback 
structures. Two examples have been encountered in previous Chapters.
In Section 1.4 a design procedure was given for a structure which 
combines transpose follow the leader feedback with parallel forward 
paths which are fed forward from the input. This is the entry [451 in 
Table 4*1. la Section 3*3 an example was given of a structure which 
combines intermediate nested feedback with parallel forward paths fed 
forward to the output. This corresponds to the entry D in Table 4.1. 
The use of series notch sections together with follow the leader 
feedback was briefly mentioned in Section 1.4.



4.4 New structures indicated by the classification

'//hen references to all existing design methods are entered in the 
Table, then blank spaces indicate new structures, which may be used 
to realize filters provided that some design method can be found.
We will now describe simple design methods for structures A,B,C & D.

Consider the possibility of reducing passband sensitivity by the 
use of transpose follow the leader feedback, and simultaneously 
realizing transmission zeros by feedforward to the output. This is 
the structure indicated by the letter fA' in Table 4.1. We have 
stated in section 3*2 that, for polynomial filters, the follow the 
leader feedback structure [2 7 l is related to the transpose follow the 
leader feedback structure [841 by flow graph reversal. The process of 
FGR also relates the structure ,A t to the follow the leader feedback 
structure with feedforward from the input (471 , as can be seen in 
Fig 4 .4 . Hence any design procedure for the latter structure is 
immediately applicable to the new structure *A'.

We have shown in Section 3*2 how interchange of cascade 
subnetworks leads to the intermediate forms of nested feedback. The 
example given in Section 3*2 was a polynomial filter, but the 
transformation also applies to filters with series notch sections. 
Interchange of cascade subnetworks thus allows us to design filters 
having the intermediate structures !B' by a trivial extension of the 
techniques described in references [3 6 ! to [4 2 ].

Several structures in Table 4.1 are similar to arrangements used 
to simulate transfer functions on analogue computers. This fact is 
useful for realizing those bandpass transfer functions which are 
obtained from lowpass prototype transfer functions by the lowpass to
bandpass transformation si---------1/s). It is usually a
simple matter to realize a lowpass prototype transfer function as an 
analogue computer network comprising an interconnection of integrators 
having the transfer function 1/s. When this network is subjected to 
the lowpass to bandpass transformation, the integrators become 
bandpass quadratic sections having the transfer function s/[c^ .
These sections have an infinite Qr-factor, Nut it is possible to arrive 
at a network having finite-Q, sections by pre-distorting the lowpass 
prototype transfer function. This was described in detail in Chapter 1 
in respect of the structure [ 451 having transpose follow the leader 
feedback and feedforward from the input. This simple design 
procedure can utilize any suitable analogue computer circuit, and of 
particular interest here are the circuits described in section4 . 2 of
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FGR

V

00

Fig 4*4 Deriving the new structure 'A1 by FGR

(a) Tow*s structure [4 7 ] using follow the leader feedback and
feedforward from the input

(b) New structure *A* using transpose follow the leader feedback
and feedforward to the output
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Ref [4 6 I, which have an intermediate form of nested feedback combined 
with feedforward from the input. The method thus provides a way of 
designing filters to have some of the intermediate structures marked 
’C1 in Table 4»1« The use of RGR on these filters would yield 
D-structures.

There are other intermediate structures which do not correspond 
to established analogue computer networks, for example the structure 
shown in Rig 3•5(h). In these cases it is a simple matter to arrive 
at a suitable analogue computer network by analysing the structure with 
all of the block transfer functions Gj set equal to 1/s.

The remaining blank spaces in Table 4«1 indicate the possibility 
of other structures, but as yet no design procedure has been proposed 
for them. It is conceivable however that they may arise from known 
structures as a result of using an optimization programme which alters 
structure. The existence of such programmes was mentioned in section
3.5 In the context of the similarity transformation.
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4.5 Low sensitivity structures

Having classified multiple feedback filters in terms of their 
structure, it is interesting to examine their structures in order to 
identify any property of structure which may be common to all low 
sensitivity multiple feedback filters. Low sensitivity filters are 
represented in the second and subsequent columns of Table 4.1.

The feature which is common to the majority of published low 
sensitivity multiple feedback filters is that there exists one, and 
only one, forward path which passes through all of the blocks in the 
block diagram . The only exceptions to this are the few structures 
which use complex feedback I57»58>59j60] for which there can be no 
forward path passing through all of the blocks. However in these 
cases where a forward path cannot pass through blocks because they are 
in the feedback part of a complex feedback loop, then the forward path 
will pass through the reciprocator which is associated with those 
blocks. Our observation is therefore that, for low sensitivity 
multiple feedback filters, there exists one and only one forward path 
which passes through each block (or possibly its associated reciprocator) 
in the block diagram.

In Chapter 5 it will be shown that this is by no means a 
sufficient condition for low sensitivity. Whether or not it can be 
regarded as a necessary condition is not yet known.

* The structure may of course have in addition other forward paths 
which do not pass through all of the blocks.
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4.6 Summary

In this chapter we have classified the existing multiple feedback 
filters composed of biquadratic sections, firstly in respect of the 
pattern of feedback loops used to reduce passband sensitivity, and 
secondly in respect of the method by which transmission zeros are 
realized. Presentation of the classification in the form of a table 
has indicated new structures. Some of these may be derived from 
existing structures by the transformations of PGR and interchange of 
cascade subnetworks. Others may be designed by association with 
analogue computer networks. There are other possible structures for 
which specific design procedures have yet to be proposed.

The classification of structure described in this chapter is 
based on a classification set out by the writer in Ref [8 4I . This has 
been extended here, not only by the inclusion of references to 
subsequent publications, but also by the inclusion of complex 
feedback as a method of producing transmission zeros. Complex 
feedback was described by the writer in Ref [88].

The classification has drawn attention to the fact that all 
published low sensitivity multiple feedback filters have one, and only 
one, forward path which passes through each block (or possibly its 
associated reciproca/tor) in the block diagram, and also to the fact 
that the common feedback arrangements for reducing passband sensitivity 
are special cases of the structure having all feedback paths.

This classification provides a framework for the computational 
study that will be undertaken in the next chapter.
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COMPUTATIONAL STUDY OF MULTIPLE FEEDBACK FILTERS

Multiple feedback filters were initially created to provide 
filters having a lower sensitivity than that of the simple cascade 
filter. Having proposed a number of new multiple feedback filters 
it is therefore necessary for us to study their sensitivity 
performance and to compare it with the sensitivity of known filters. 
There are various ways of doing this and we must choose a method which 
suits our overall objective of obtaining insight into network 
behaviour. We could follow the example of some authors and compare 
different filters on the basis of a single scalar measure of 
sensitivity, such as would be used by a computer optimization 
programme. However whilst this may be possible in the context of a 
specific engineering application for which detailed performance 
requirements are known and for which constraints imposed by the method 
of fabrication are also known, a scalar measure of sensitivity does 
not reveal why one filter is better than another, and is therefore 
an inappropriate tool for our purposes. At the other extreme, listing 
the algebraic expressions of sensitivity would be equally uninformative. 
In the approach adopted here, a specific transfer function is 
synthesized using each of the various structures in turn. For each 
structure the nominal, sinusoidal steady state, magnitude response is 
computed and plotted as a function of frequency. Superimposed on this 
is a family of computed plots showing how the magnitude response is 
affected by finite changes in the block diagram constants , bj , Cj 
etc, and by finite changes in the intermediate parameters of the blocks 
C0o , Q , K etc. The results will therefore be independent of the 
particular sections being used, and interpreted with care will allow 
the various structures to be compared. This approach undoubtedly has 
its limitations, as it seems does any comparison of sensitivity [1381,

p p \ 6) - \ b  ?
but it will allow some comparison to be made, it will verify some 
theoretical results of earlier chapters, and hopefully it will increase 
our understanding of network sensitivity.
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5.1 Details of the sensitivity computation

The transfer function that has been chosen is not intended for 
any particular application, but it has a bandpass characteristic and 
it also has transmission zeros at finite non-zero frequencies in view 
of our interest in such features. The bandpass response is obtained 
by transformation of a prototype lowpass response. This is the 

third-order elliptic-function characteristic which is sketched in 

Fig 5(a). From Tables of poles and zeros [139] we obtain the lowpass 
prototype transfer function:

Flp (s ) = J _________ _________________
C (s -a ^ s 1- 2a,s +a? + b,2)

(5 .1 .0

where: C = 15*658010
0 . , = 2.6998758817

0.4806935238
-Q, = 0.2084141239
±b,= 0.9617829016

The bandpass function is obtained by applying the lowpass to bandpass 

transformation:

St------------where q = 10 (5*1.2)

(q is the required ratio of geometric centre frequency to bandwidth) 

in turn to each singular point sL of the lowpass transfer function 
to obtain two singular points SB of the bandpass transfer function as 
follows [140]:

±

2 %

(5.1.3)

The bandpass response is scaled to have a centre frequency of 100 rad/s 
by applying the mapping:

5 1------------------^  s/a a = 100 (5*1*4)

whence the required bandpass transfer function:

F(s) K sk'+ujW+uj)__________
f$> 4- 8 + W0I 'j f 5 + (dp2 S 4- (d02 + tops S 4-

V Q,  /  \ J \  Q 3  ,

(5.1.5)

where K = 0.638650761 ^01= 95.306399
Wm= 87.40767309 co01= 100.0
u>n = 114.4064319 (00 l= 104.924749

Q, = 48.036847
Qz= 20.80328458

Q3= 48.036847
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Pig 5(a) Prototype lowpass response

Fig 5(b) Bandpass response
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the magnitude response of which is sketched in Fig 5(b).

This 6-th degree transfer function was chosen to have the minimum 

complexity that was necessary to distinguish between the multifarious 
structures, without at the same time making the examples unduly 
complicated. The parameters of the frequency response are limited by 
this low order of complexity and are somewhat arbitrary, but it may be 
said that the high value of passband ripple is typical of the crude 
filters used to separate signalling tones in a telecommunications 
system. This transfer function has been used in the previous examples 

shown in Fig 1.9, Fig 1.12 and Fig 3«5«

For the sensitivity analysis in this Chapter, each structure will 

be realized by an active CR network, for three reasons. Firstly it 
shows that it is possible for the structure to be realized by an active 
CR network, although no attempt has been made to select the most 

appropriate types of quadratic section. Secondly, since the adders will 
be realized as part of the quadratic sections [22] (see Fig 2.1(b)), 
it will allow us to determine the minimum number of operational 
amplifiers needed by each structure (for the particular transfer 

function being considered). Thirdly it allows us to use a readily 
available network analysis programme. It would of course have been 

possible to write a special purpose programme to analyse multiple 
feedback filters represented in block diagram form, and it would have 
been relatively easy to obtain the sensitivity graphs from such a 
programme. However the emphasis in this work is not on writing 
computer programmes, and the required changes in the block diagram 
parameters were obtained by altering the values of the appropriate 
resistances and capacitances of the active CR network.

The characteristics of major interest are the effects, on the 
magnitude response, of changes in the resonance frequencies co0 of 
the individual blocks. Since co0 has the dimension of inverse time, 
it will in theory be proportional to the reciprocal of a CR time 
constant. Hence (00 has an irreducible variation of at least as much 
as the product of capacitance and resistance variations. For a thick 
film construction using ceramic capacitors this might typically have 

a worst case value of £0.013%/deg C for temperature variations and 
£ 3% for selection tolerance.

On the other hand the quality factor Q is dimensionless and could 
in theory be made to depend only on the ratios of resistances, and the 
ratios of capacitances. These can often be controlled more accurately 
than the CR time constant, depending on the fabrication method used.
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However the value of Q also depends on the gain-bandwidth products of 
the operational amplifiers, which are less easily controlled.

For bandpass sections in general, the gain constant K as defined 
by (2.1.1) will vary in the same manner as oo0 , but it will be seen 
in this Chapter that it has a relatively minor effect on the frequency 
response. The remaining block diagram parameters OjW , bj , Cj are 

all determined by ratios of resistances, and are not usually affected 
by variations in the gain-bandwidth product of operational amplifiers.

For each representative design studied in subsequent sections, 
we will plot the effect on the magnitude response of changing each of 
the resonance frequencies (00 by 3%» and of changing each of the 
remaining parameters Q , K, a.jk -> bj , Cj etc by 10$. The resulting 
collection of graphs will give a good visual impression of the 
sensitivity performance of each design, and will form the basis for a 

comparison of structures.



5.2 The three canonic expansions of a transfer function

Following the sequence adopted in Chapter 4» we start by 
describing the performance of the three Canonical* structures, which 

occur in the first column of Table 4*1» and which were shown in block 
diagram form in Fig 4*2. These structures do not employ feedback 
loops for the purpose of reducing sensitivity, and we shall see that 
the sensitivity is relatively large.

5.2.1 Cascade or factored structure

First the cascade or factored structure [90]. The numerator and 

denominator factors of the transfer function (5*1•5) have been paired 
in accordance with Lee's method of pairing poles and zeros for minimum 
sensitivity [14U* and these pairs form the transfer functions of the 
blocks as shown in the block diagram in Fig 5»l(a). Poles and zeros of 
the blocks are identically poles and zeros of the transfer function, 
and transmission zeros are hence produced by series notch sections.

The circuit diagram of one possible realization of the block diagram 

is shown in Fig 5»l(b), and the frequency responses of this circuit 
are plotted in Fig 5*1(c). Obviously there is scope for scaling the 
signal levels to improve the dynamic range, and indeed the pairing 
of poles and zeros could have been chosen to maximize dynamic range 
[142] instead of minimizing sensitivity, but it is sensitivity that is 

of immediate concern here.

Consider first the effect of changes in resonance frequency.

Since for most biquadratic sections a change in the value of a 

component is likely to change both co0 and con together, we show in 
Fig 5»2(a) the effect of increasing both co0, and con, of the first 

section by 3%* Similarly Fig 5«2(b) shows the effect of increasing 
and 00^ by 3%» Figure 5-2(c) shows both the effect of an 

increase and a decrease in go03 of the third section. Evidently these 
changes in resonance frequencies cause a gross error in the magnitude 
response. Notwithstanding this high sensitivity, the cascade 
structure is quite adequate for non-critical filter applications, 
particularly if some form of adjustment is performed since the 
post-adjustment variation of resonance frequencies may be very much 

less than 3%*
Changes in the Q,-factor of the sections have much less effect on 

the frequency response of the filter, as can be seen in Fig 5«5* The 
relatively small effect of Q, variations was found also by Bruton [1501«
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Fig 5*1 Cascade or factored structure [90]

(a) Block diagram
(b) Active CR realization of the block diagram
(c) Computed frequency responses
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(a)

00

(c)

-Pis 5*2 Cascade structure sensitivity to changes in resonance frequency

(a) cooiincreased by 3% from 95.3 to 98.2, and 
go ̂ increased by 3% from H 4 .4 to 1 1 7 .8

(b) (^increased by 3% from 10 4.9 to 108.1, and 
(On2.increased by 3% from 8 7.4 to 90.0

(c) (o03increased by 3% from 100 to 103 and 
co03reduced by 3% from 100 to 97
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(a)

00

(<0

(d)

Fig 5.3 Cascade structure sensitivity to changes in Q and K

(d

Q1 increased by 10% from 48.04 to 52.84 
Q2increased by 10% from 48.04 to 52.84 
Q3increased by 10% from 20.8 to 22.88 
IC, or K2 or K3 increased by 10%
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who investigated first-order differential sensitivity of the cascade 
filter. This does not imply of course that Q-variations are 
unimportant since in some sections it is possible for Q to change 

much more than co0 (e.g. 0 , S j *  Q ).

The sensitivity of the cascade structure is easily understood 

since the transfer function F is simply the product of the block 
transfer functions:

F i v = G , G1G J (5‘ 2-
e

On a logarithmic scale, the magnitude response is the sum of the 
magnitude responses of the three sections, and any change in the 
magnitude response of one of the sections is reflected directly in the 
overall response. Because of its common usage and simplicity of 
construction, the sensitivity performance of the cascade structure is 
often taken as a reference against which the performance of other 
structures are assessed.

5.2.2 Partial fraction structure

The second canonical structure to be considered is the partial 

fraction structure shown in Pig 5«4« Using the method described by 

Russell and Chan in Ref. 93> 'the bandpass transfer function (5•1•5) 
has been expanded into quadratic partial fractions, and each partial 

fraction has been identified with a block in the block diagram Pig 5.4(a) 
As in the cascade structure, the poles of the transfer function F=v/e 
are identically the poles of the three blocks. The zeros of the 
transfer function however are produced by parallel forward paths.

When the resonance frequency C0ol is increased by 3%> it can be 
seen from Fig 5*5(a) that the stopbands become distorted. The upper 
transfer function zero increases in frequency by about 3%» and the 
lower zero increases in frequency by 10%, moving to a frequency at the 
edge of the passband and thereby causing severe distortion of the 
passband response. Both zeros move away from the imaginary axis, as 
seen by the reduced depth of the notches. Changes in ojoz and 60o3 

also severely distort the stopband as shown in Pig 5-5(b) and (c).
Changes in the (^-factors cause deviations which are almost identical 
to the corresponding deviations for the cascade structure, and they 
are not shown explicitly. The very poor stopband sensitivity 
performance of the partial fraction structure probably accounts for 
the fact that it has not been widely used.
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5 4 S +U 01

100
Qj -  20.8033 
K, = 4.80683

Fig 5*4 Partial fraction structure [93]
Block diagram
Active CR realization
Computed frequency responses
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(a)

00

00

Fig 5.5 Partial fraction structure sensitivity to changes in resonance
frequency

l a ) increased by 3% from 95-3064 to 98-16559
(b; cooz increased by 5% from 104-9247 to 108.0725
(c) to03 increased by 3% from 100 to 103
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5.2.3 Continued fraction structure

The third canonical structure to be considered is the continued 
fraction structure [841, which was introduced in Chapter 1 as an 

illustration of transmission zeros produced by complex feedback.

As was described in Section 1 .4* the lowpass transfer function (5*1*1)& 
(1.4*10) is expanded into a continued fraction, and the three partial 

remainders (1.4*15) are identified with the denominators of the three 
blocks in the block diagram Fig 5*6(a). Lowpass to bandpass 

transformation (5*1.2) and frequency scaling (5*1*4) then yield the 
required parameters. Use of the scaling transformation (Section 3*4) 
is also necessary if the single-amplifier sections shown in Fig 5*6(b) 
are to be used. The transformation increases the signal level at the 
output of block-1 and the output of block-3. This re-distributes the 
gain and makes all three blocks realizable by single amplifier sections 
as shown. The resulting frequency responses are shown in Fig 5*6(c). 
For uniformity of presentation, however, the frequency responses in 

Fig 5*7 and 5*8 have all been scaled by a factor which makes the 
nominal mid-band gain equal to OdB.

Sensitivity performance of the continued fraction structure has 
not hitherto been studied. It is found to be very poor in the passband. 

A change of 3% in U>0 can cause as much as 20dB error over the entire 
passband as can be seen in Fig 5*7* In the stopband however, a change 
of 3% in do„ causes less than 3% shift in the notch frequencies 
which is better than the cascade structure. Changes in the Qr-factors 
again cause relatively large errors in the passband response as can 

be seen in Fig 5*®*

5.2.4 Sensitivity relations

If the summed sensitivity invariant (2.2.57) is applied to a cut 
containing all three blocks of the factored structure described in 

Section 5*2.1, then the following relationship is obtained:

For the partial fraction structure the corresponding expressions are:

(5.2.2)

which is consistent with the fact that

(5.2.3)
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(a)

00
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100
U .I4

Q, K, * 25.546

G. -  K, S

- 
S

II 
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“ 10.07
1 1 l

S  + OJotS + O ol

Qx K t = 23.458

G> =  K i_ — 5--------- 1 100
s + s + Q * = 10.07

Q * K , « -34.53<i

Fig 5*6 Continued fraction structure [841 

(aj Block diagram
(b) Active CR realization of the block diagram
(c) Computed frequency responses
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(a)

(b)

(c)

Fig 5*7 Continued fraction structure sensitivity to changes in
resonance frequency

(a) co01 increased by 3% from 100 to 103
(b) U)oz increased by 3% from 100 to 103
(c) co03 increased by 3% from 100 to 103
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(a)

0>)

(o)

Fig* 5*8 Continued fraction structure sensitivity to changes in
Qrfactor

(a) increased by 10% from 11.14 to 12.256
(b) IQ2I increased by 10% from 10.07 to 1 1.0 7 9'
(c) (^increased by 10% from 10 .0 7 to 11 .0 7 9
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s

IFI
+

G, S “ + !

\F\
=  1

(5.2.4)

\F|

G; ~

Re. _Gj_ 
F

> Vj (5.2 .5)

Noting that G, and G2  are inverting quadratic blocks and G3  is 

non-inverting, it can be seen that the sensitivities in (5.2.4) are 

not necessarily all of the same sign, so that individually the 

sensitivities may be greater than those in (5*2.3) for the factored 

structure. Conversely, since:

(5.2 .6)
-  IGj < R e 6 j_

l FI  F IFI
the differential sensitivities (5.2 .5) are less than those of the 

factored structure at frequencies for which |G j |  < | F |  . In the 

example studied, this applies over the passband, except at the 

frequencies C0Oj , as can be seen from Fig 5.4(c). Comparison of 

Fig 5.5(a) with Fig 5«2(a) shows that there are frequencies in the 

passband at which the deviation in the response of the partial 

fraction structure is greater than the corresponding deviation in the 

factored structure. This may be due to higher order derivatives being 

significant in this case, or it may be due to the fact that a 3% 

change of the intermediate variable 600l may not produce the same 

change in G, for the two structures, on account of the fact that 

different types of quadratic blocks are used in the two structures.

For the continued fraction structure the invariant (5.2.2) obtains, but 

expressions for the individual sensitivities are more complex.

Of the three canonic structures, only the cascade is in common 

use. The partial fraction structure has a greater sensitivity in the 

stopbands, and the continued fraction structure has a greater 

sensitivity in the passband. The partial fraction structure has been 

proposed for use as an all-pass group-delay equalizer [122], which of 

course does not have a stopband and therefore might not have a greater 

sensitivity than the corresponding cascade structure. However the 

partial fraction structure does have the disadvantage of requiring 

a summing amplifier section
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5.3 Structures with leapfrog feedback

Continuing the sequence used in Chapter 4» we now present the 
sensitivity performance of structures which use leapfrog feedback to 
reduce sensitivity in the passband. These occur in the second column 
of Table 4.1> and are illustrated in Fig 4*3* Structures in this 
section will illustrate how the three methods of producing transmission 
zeros may be applied to low sensitivity filters.

5.3.1 Node-voltage simulation

Firstly we consider the leapfrog feedback structures which 

incorporate transmission zeros by means of series notch sections. 

Several synthesis procedures are refered to in Table 4*1 * but the 

method which is most easily applied to the present case is 'node 

voltage simulation1, introduced by Yoshihiro, Nishihara and 

Yanagisawa in Ref.63. It uses the principles of ladder network 

simulation described fully in Section 1.1, except that only the 

node-to-datum voltages are simulated, as indicated in Fig 5.9.

Starting with an LCR realization of the bandpass transfer function
(5.1.5)> shown in Fig 5«10(a), a leapfrog feedback structure is 

produced by node-voltage simulation and the resulting block diagram 

is shown in Fig 5«10(b). It will be seen that three sections are used, 

two of them having multiple inputs (in the sense of Fig 2.2) as 

indicated by the broken line around the first section. The three 

sections have different resonance frequencies, but the spread of 

frequencies is not as great as in the cascade structure (Fig 5»1)> or 

the partial fraction structure (Fig 5*4). One possible realization 

of the block diagram is shown in Fig 5.10(c), and the frequency 

responses are shown in Fig 5*10(d). The active CR realization has a 
mid-band gain of -6.02dB, simulating the mid-band gain of the LCR 
filter. Evidently the scaling transformation (Section 3*4) may be used 

to improve dynamic range. For uniformity of presentation, the 

frequency responses in Figures 5*11 to 5*14 have all been scaled by a 

factor which makes the nominal mid-band gain equal to OdB.

The effects of increasing the resonance frequencies associated 

with each of the three sections in turn are shown in Fig 5*11> from 

which it can be seen that, as anticipated, the node-voltage simulation 

has a reduced passband sensitivity compared with the cascade structure. 

For both structures there tends to be a large error at the edges of the 

passband, due to the proximity of the steep slope in the transition
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X  =  G t + s C ( 4

(a)

y * r3

V,
Q 0  X

V o

Y x = s C 4 + H
s

Y 3 =  + r 3

5

s

(b)

Fig 5*9 Node-voltage simulation [63]

(a} LCR ladder network
(b) Structure produced by node-to-datum voltage simulation
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(a)

(b)

(c)

(d)

V

g [ = i.o
C, =0.20803
r, = 2080.3
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G* = I.O 
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V
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K£ =0. i n 07 
£J01» I0I.822  
Q, = 24.045 
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(On =  87.407
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G _ K .  s Gy- Kj Gs _ K* S*+ CJns1 Ks =0.15032
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S 4. 0̂1 S 4 O0,

Q

'X.II Sl + an*
X X
s

u n5= 87 407

Fig 5.10 Structure produced by node-voltage simulation [65]

(a ) LCR filter 
ib) Block diagram
(c) Active CR realization
(d) Computed frequency responses
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Fig 5.11 Node-voltage simulation sensitivity to changes in
resonance frequency

(a) co01 increased by 3% from 101.822 to 1 0 4 . 8 7 7 and
conl increased by 3%  from 1 1 4 . 4 0 6 to 117 . 8 3 8

(b) cooz increased by 3% from 1 00 to 1 0 3 ,
COn3increased by 3% from 1 1 4 . 4 0 6 to 117.838 and
cort4 increased by 3% from 8 7 . 4 0 7 to 90.03

(c) co05 increased by 3% from 98.21 to 101,156 and 
C0„5 increased by 3% from 8 7 . 4 0 7 to 90.03



(a)

(b)

(o )

Fig 5.12 Sensitivity to 2nd-section resonance frequencies

(a) co03 increased by 5%
(b) increased by 3%
(c) con4. increase<i by 3%
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(a)

(b)

(o)

Fig 5*13 Node-voltage simulation sensitivity to changes in Q-factor

Q-1 increased by 10% from 2 4 . 0 4 5 to 26.449 
Q3 reduced from an infinite value to 230 
Q5increased by 10% from 24.045 to 26.449
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bands, but over the remainder of the passband the cascade structure 
exhibits a larger level shift and a greater slope distortion. The 
stopband sensitivity of the two structures is substantially the same, 
which is not surprising since in both cases the transmission zeros 
are produced by series notch sections. As in the case of the cascade 
structure, all resonance frequencies associated with a particular 
section have been changed simultaneously to produce the results shown 
in Fig 5.11. So for example in Section-2 the three frequencies c0O3 
£0n3 and u>n4 have been increased together by 5% to produce the 
perturbed response shown in Fig 5*11(*>)• This response is approximately 
the additive composition of the three responses shown in Fig 5*12, which 
are the result of separate changes to the three frequencies.

Changes in the Q-factors of sections 1 and 3 again cause less 
distortion of the passband response than do corresponding changes in 
the cascade structure. As can be seen from Fig 5 * 1 5 ( a - )  and (c), the 
effect is mainly a slight shift of signal level, which is usually of 
less importance than a distortion of the passband shape. The second 
section has a nominally infinite Q-factor which cannot be changed in 
the same manner. In order to illustrate the sensitivity of the 
passband response to changes in the value of this Q-factor, the 
perturbed response in Fig 5 * 1 3 ( h )  shows the effect of reducing Q 3  
from an infinite value to a somewhat arbitrarily chosen value of 2 3 0 .
The resulting distortion is comparable to that observed in the cascade 
structure.

A 10% increase in the value of each of the gain constants Kj to 
K 5 causes a slight shift of level and a very small distortion of the 
passband shape, as shown in Fig 5»14« The response shown in Fig 5«14(a) 
is the same as thatobtained for a 10% increase in a gain constant of the 
cascade structure. All the other perturbations shown in Fig 5*14 are 
smaller.

The structure produced by node-voltage simulation is easily 
derived from the appropriate LCR ladder filter. Comparison of the 
active CR realization in Fig 5*10(c) with the realization of the cascade 
structure in Fig 5*1(h) shows that the improved block-diagram 
sensitivities at passband frequencies are achieved at the cost of very 
few extra components.

5.3«2 Coupled-biquad structure
Now we move on to consider the leapfrog feedback structures which
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incorporate transmission zeros by means of parallel forward paths. 
Refering to Fig 4*3* it can be seen that the two cases of feedforward 
to the output (Fig 4.3(b)) and feedforward from the input (Fig 4.3(c)) 
can be taken together because they are related by FGR, and we have 
pointed out in Section 5*3 that block diagram sensitivities are 
invariant under the transformation of FGR. Noting that feedforward 
to the output requires the use of an extra summing amplifier section, 
we choose to study feedforward from the input.

Following the procedure given by Tow & Kuo in Ref. 49* we start 
with a 'follow the leader feedback' representation of the lowpass 
transfer function (5*1.1) shown in Fig 5.15(a) (this representation 
is known from work on analogue computing [4 6 ]), and apply the 
similarity transformation (3.5.1; described in Section 3*5 • 3y 
constructing a transformation matrix 3  such that the matrix tJ’W ’CJ 
is tri-diagonal, the transformed structure has leapfrog feedback as 
shown in Fig 5.15(b). Although general methods are available [151*152* 
1531 * in this simple example the transformation matrix 3 is produced 
by the coefficient matching technique described by Tow & Kuo [491. 
Taking the structure shown in Fig 5.15(b), we incorporate the path 
CLU into its associated block so that the transfer function of that 
block becomes l/(s-CL„) , and similarly with the path a 33 • Then 
lowpass to bandpass transformation (5 .1 .2 ) and frequency scaling
(5 .1 .4 ) produce the required bandpass structure. Use is made of the 
scaling transformation to reduce the number of inverting amplifiers 
required, and the resulting block diagram is shown in Fig 5.16(a).
This is called a Coupled Biquad Configuration by Tow & Kuo. One 

possible realization of the block diagram is shown in Fig 5.16(b) and 

the frequency responses are shown in Fig 5.16(c).

The design method is such that the end blocks have a finite 
Q-factor and the centre block has an infinite Q-factor, as would be 
the case for a simulation of a doubly terminated LC ladder. Other 
methods of tri-diagonalization can produce structures which have finite 
Q-factors for all blocks [51)• Unlike the structure produced by

* Tow & Kuo present their method in terms of state variable equations 
rather than the matrix representation used in Section 3.5* The 
difference however is in this case entirely one of presentation; the 
similarity transformation is identical. Refering to the general 
structure in Section 2.2.1, if all the blocks are integrators 
&(s) = Vs ^  * bhen the state-variable equations (with zero initial 
conditions) are: £  x(t)= + b efc)

v(t)= ct octo+ de(t)
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Fig 5.15 Design of Coupled-Biquad structure [49]

(a) Follow the leader feedback representation of lowpass transfer
function [46]

(b) Structure obtained by use of similarity transformation (3.5.1)
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Fig1 5*16 Coupled Biquad structure I49J

(aj Block diagram
(b) Active CR realization
(c) Computed frequency responses
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(a)

00

(e)

Pig 5*17 Coupled Biquad structure sensitivity to changes in
resonance frequency

(a ) C001 increased by y/o from 100 to 103
fb) cooz increased by y/o from 100 to 103
(c) co°3 increased by y/o from 100 to 103
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(a)

(b)

(c)

Fig 5*18 Coupled Biquad structure sensitivity to changes in
feedforward constants

(aj b<increased by 10% from 0.46489 to 0.511383 
(b; b2increased by 10% from 0 . 0 4 5 5 4 9 to 0.050104
(c) b3increased by 10% from O.O6 3 8 6 5 to 0.0702516
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(a)

00

Pig 5*19 Coupled Biquad structure sensitivity to changes in Q-factor

(a) Q, increased by 10% from 14 .0 2 1 to 15 .4 23
(b) Q2 reduced from an infinite value to 230
(c) Q3 increased by 10% from 54.256 to 59.681
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(a)

(b)

(c)

(d)

(e)

Fig 5*20 Coupled Biquad structure sensitivity to changes in gain
constants and feedback factors

!aj IK1J increased by 10% from 10 to 11
b) IKjJ increased by 10% from 10 to 11

c) K3 increased by 10% from 10 to 11
d) la12l increased by 10% from 0.516688 to O .570556
(e) a23increased by 10% from 0.518688 to O .570556
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node-voltage simulation, all blocks of the Coupled Biquad structure 
have the same resonance frequency.

The effect of increasing the resonance frequencies of each of the 
three blocks by 3% is shown in Fig 5*17« Although the Coupled Biquad 
structure is not a simulation of an LCR ladder, the resulting 
deviations in the passband are comparable to those observed in the 
node-voltage simulation. In the stopbands however, there are 
differences arising from the different method of producing transmission 
zeros. Section-1 and section-2 both affect the two transmission zeros, 
and a 3% increase in the resonance frequency oo0 of either section 
produces slightly less than 1-§% increase in the frequency of the notches. 
If changes in the two resonance frequencies are uncorrelated then there 
is some possibility for cancellation, and a statistical measure of 
block diagram sensitivity may indicate that there is a reduction of 
stopband sensitivity compared with any structure using series notch 
sections [1231. This improvement is somewhat illusory because if both 
000, and o0OZ are increased by 3% simultaneously, then the notch 
frequencies will also increase by an average of 3% Indeed the worst 
case is slightly inferior to that for series notch sections, because, 
given that the changes in w 0 for the coupled biquad structure are 
the same as the change in 00M for a structure using series notch 
sections, there is in the Coupled Biquad structure an additional 
dependence on the values of the forward path constants b, and b 3 
as shown in Fig 5«18» and on the values of K, and K q_ (not 
illustrated). It was found for example that, whilst the average 
deviation of the two notch frequencies did not exceed 3i%> a 10% 
variation in these constants in addition to the 3% variation of 
resonance frequencies could,in the worst case, cause the lower 
transmission zero to deviate by 6^%. It should also be noted from 
Fig 5*17(a) and (b) that a change in resonance frequency reduces the 
depth of the notches. The extent to which the notch depth is reduced 
by a series notch section depends on the nature of the section used.

Since deviations in the frequencies of the transmission zeros 
have a dominant effect on the stopband response, it is to be expected 
on the basis of the foregoing results that the Coupled Biquad structure 
has a higher worst case stopband sensitivity than a leapfrog feedback 
structure having series notch sections. Conversely, for the same 
two structures, it is possible for a statistical measure of stopband 

sensitivity to indicate that the Coupled Biquad structure has a lower 
variance. Statistical analyses therefore need to be interpreted with
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caution. Comparison of the foregoing results with the responses 
shown in Pig 5*5 however, indicates that the embodiment of parallel 
forward paths in the Coupled Biquad structure leads to a much lower 
stopband sensitivity than the arrangement of parallel forward paths in 
the partial fraction structure.

Changes in the Q,-factors of the sections produce the responses 
shown in Pig 5.19» and changes in the gain constants and feedback 
factors are shown in Fig 5*20. These are all of a similar nature to 
the corresponding responses of the node-voltage simulation.

5•3*5 Ford's structure

We now consider leapfrog feedback used together with a different 
arrangement of parallel forward paths. Starting with the LCR 
realization of the lowpass transfer function (5.1.1) shown in 
Fig 5.21(a), a leapfrog feedback structure is produced by simulation 
and subsequent use of SPG equivalents as was illustrated in Pig 3*2.
A lowpass filter having the structure shown in Fig 3.2(h) was 
attributed to Ford in Ref 17* Use of the lowpass to bandpass 
transformation (5.1.2), and frequency scaling (5*1.4) leads to an 
interconnection of three bandpass quadratic sections and one summing 
amplifier section, shown as a block diagram in Pig 5.21(b), and as an 
active CR realization in Fig 5.21(c). As in the Coupled Biquad 
structure, all three quadratic blocks have the same resonance frequency 
C j0 , and the centre block G 2 has an infinite Q-factor.

Since SPG equivalents have been used to change the structure 
from the basic simulation, it is of interest to see how this affects 
the sensitivity performance. We note that in the LC ladder filter 
(Pig 5.21(a)) the finite transmission zero is introduced by the 
inclusion of a modifying capacitor C 2 . If we put C 2= 0  then in 
the block diagram (Pig 5.21(b)) the paths b3 , a 3, , a 34 are
eliminated, and G 3 becomes equal to -1 (this is evident from 
Fig 3.2(h)). The structure then reduces to the basic leapfrog feedback 
simulation shown in Pig 1.5* "the sensitivity of which has been studied 
by several authors e.g. Adams [191. By analogy with the LC filter we 
expect that putting b 3 = a 3, =  Ct34. = 0  and G 3= ~ 1  will have 
little effect on the response at passband frequencies, and this is 
confirmed in Fig 5*22. It follows that in this example, the low 
passband sensitivity expected of a leapfrog feedback simulation will 
not be degraded by the manipulations that have been performed on the
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C, =  2.0803 C 2 «O.I5q4- C * » 2 . 0 8 0 3

G . - K .  s K . = - 4 . 3 0 6 ^

S2-M0o S+COo £0o* IOO

Q, Q , =  20.803

G ,  =  K» s K 2 -  -I1.417I

s\a?

Gz =  s K* = - 4.806^4

s S oj.S+w* £}<,= 2 0 . 8 0 3

G, =■- 0.867117 

bj 3  0]|3  Q — 0.0*766236 

= o2^= l.o

Pig 5.21 Ford*s structure [17>841

(a) LCR filter
(b) Block diagram
(c) Active CR realization
(d) Computed frequency responses
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Fig 5*22 Frequency response of Ford structure with b3 = a31 s = 0
and G3=-1
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(a)

(b)

(c)

Fig 5.23 Ford structure sensitivity to changes in resonance frequency

(a) increased by 3% from 100 to 103
(b) 60O2 increased by 3% from 100 to 103
(c) co04. increased by 3% from 100 to 103
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(a)

00

00

(d)

Pig 5.24 Ford structure with 0.2dB nominal passband ripple

(aj (0o, increased by 1%
(b) 60o, increased by 0.2%
(c) 00ol reduced by 0.2%
(d) w ot reduced by 1%
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(a)

(b)

(c)

Fig 5*25 Ford structure sensitivity to changes in Q-factor

(a) Qt increased by 10?o from 20.803 to 22.883
(b) Q2 changed from an infinite value to a value of 230, and

also a value of - 2 3 0
(c) Q4 increased by 10% from 20.803 to 22.883
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(s)

Fig 5#26 Ford structure sensitivity to changes in gain constants

(D
(g)
(h )

IK,I increased by 10% from 4•8069 to 5*2877 
IKZI increased by 10% from 11.617 to 12.778 
IK4I increased by 10% from 4*8069 to 5*2877 
b3 increased by 10% from 0.0766 to 0.08428 
a3, increased by 10% from 0.0766 to 0.08428 
a34increased by 10% from 0.0766 to 0.08428 
a,3increased by 10% from 1.0 to 1.1 
a24increased by 10% from 1.0 to 1.1



SFG in order to realize the transmission zeros by means of parallel 
forward paths. The stopband sensitivity of the Ford structure however 
cannot be related to that of a passive ladder filter, and furthermore 
no results have previously been published on the stopband performance 
of the Ford structure.

The frequency responses of the bandpass Ford structure are shown 
in Fig 5.21(d). The -6.02dB midband gain resulting from the simulation 
may of course be adjusted by use of the scaling transformation in 
order to improve dynamic range. All subsequent graphs have been scaled 
so that the nominal midband gain is OdB, for uniformity of presentation

The effect of increasing the resonance frequency <0 0 of each of 
the three quadratic blocks by 5% is shown in Fig 5.25* The resulting 
deviations at frequencies in the passband are less than those for the 
node-voltage simulation or the Coupled Biquad structure. In fact the 
Ford structure has the lowest passband sensitivity of all the 
structures studied in this Chapter. One noticeable feature, not found 
in the other structures, is that the perturbed response (Fig 5.23) 
nowhere exceeds OdB. This is also true for the case of co0 being 
reduced by 3%, although these responses are not shown here. Such 
behaviour appears to be in accordance with Orchard's theory described 
in Section 1.1. There is however no reason to expect that changes in 
C0o alone would conform to the Orchard theory, because such a change 
does not have a counterpart in the LC ladder filter (see Fig 1.5(a) 
and (b)). A change in the value of a reactive element of the passive 
ladder filter would correspond to simultaneous changes in the values 
of (x)0 , Q and possibly K in the leapfrog feedback simulation. To 
investigate this further, the writer has studied a Ford structure 
implementing a 6-th degree elliptic function bandpass transfer function 
similar to (5.1*5) but having 0.2dB nominal passband ripple instead of 
1.25dB. Fig 5.24 shows the effect of various changes to the value of 
£0 o, for the first section, and from this it can be seen that some 
responses are slightly in excess of OdB. Similar responses were 
observed by Adams [191 for a leapfrog feedback simulation of the type 
shown in Fig 1.5. Whilst this detailed examination shows that 
Orchard's theory does not apply to changes in 0Jo , it remains true 
that the resulting distortion of the passband response is relatively 
small.

Returning to the structure shown in Fig 5.21, and the responses 
in Fig 5.23» we see that the stopband sensitivity is similar in nature 
to that of the Coupled-Biquad structure, but rather better than the
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Coupled Biquad structure in respect of preserving the depth of the 
notches. In both structures the transmission zeros are produced by- 
parallel forward paths which span two of the quadratic blocks. It is 
relevant to note that for higher order filters, the parallel forward 
paths in the Ford structure will never individually- encompass more than 
two quadratic blocks, whereas in the Coupled Biquad structure, if the 
response has one zero at the origin and one at infinity, then parallel 
forward paths will span all but one of the blocks. This has been 
reported to lead to an unacceptably high stopband sensitivity in the 
Coupled Biquad structure [125,1581* For high order filters it seems 
likely therefore that the Ford structure will have a lower stopband 
sensitivity than the Coupled Biquad structure. The comments made 
previously, about comparison of the use of parallel forward paths with 
the use of series notch sections, apply also to the Ford structure. A 
statistical measure of block diagram sensitivity may indicate that the 
Ford structure has a lower standard deviation in the stopband, but the 
worst case shift of the notch frequencies will be lower in a structure 
such as the node-voltage simulation which uses series notch sections.

Changes in the Q,-factors of the three quadratic sections produce 
the responses shown in Fig 5*25* They are similar to those of the 
Coupled Biquad structure and the node-voltage simulation. The effects 
on the passband response of changing the values of the remaining 
constants are shown in Fig 5*26. These again are of a similar nature 
to the preceeding leapfrog feedback structures. In addition, K, , K 2 

and b3 affect the frequency of the notches, but curiously a3l and 
a.34 have very little effect at any frequency.

5.3*4 Leapfrog feedback together with complex feedback
It is possible for a leapfrog feedback structure to incorporate 

transmission zeros by means of complex feedback [5 7 ,58,591 , however 
no example of this structure is studied in this Chapter. Although the 
method is a direct simulation of a passive ladder filter, the excessive 
number of sections required and the difficulties associated with 
Implementing reciprocators make it less attractive from the practical 
point of view.

The design method described in Ref. 58 could have been used here 
in two ways. Either the lowpass LCR ladder network shown in Fig 5*21(a) 
could have been simulated, followed by lowpass to bandpass 
transformation and frequency scaling of the resulting structure, or the



bandpass LCR ladder network shown in Fig 5*10(a ) could have been 
simulated directly. The first case produces the structure shown in 
Fig 4»3(e)> which illustrates the fact that four quadratic sections 
are needed instead of the three quadratic sections required by the 
node-voltage simulation, Coupled Biquad and Ford structures.
Referring to Fig 4*3(e)* the two end blocks have transfer functions 
which are identical to those used in the Ford simulation, and the two 
centre blocks Ĝ . and G s * used in conjunction with the reciprocator 
G2 — *~oo , are infinite-Q, bandpass sections, producing transmission 
zeros by complex feedback as described in Section 1.4. The second 
case referred to above leads to a slightly different structure (see 
Fig 5*27)> but again four quadratic sections are needed. The extra 
section arises as a consequence of the LCR ladder network being 
non-canonic in the number of elements, Doblinger [1441 has studied 
the simulation of canonic Brune-sections.

In the commonly used doubly-terminated LC ladder networks the 
occurrence of cutsets containing capacitors only, and also the 
occurrence of loopsets containing inductors only, both lead to 
unobservable and uncontrollable natural frequencies at the origin 
of the s-plane. Whilst this is of no consequence for a passive filter 
in a direct simulation it leads to operational amplifiers having an 
uncontrolled d.c. output level. For example the lowpass LCR network 
shown in Fig 5*21(a) has neither a loopset of inductors nor a cutset 
of capacitors, and the lowpass simulation in the structure of 
Fig 4 .3 (e) is satisfactory at zero frequency. However the bandpass 
transformation of the network in Fig 5*21(a) has a loopset containing 
inductors only, and in the bandpass versions of the structures shown 
in Fig 4 .3 (e) and Fig 5*27 there is no d.c. feedback around the 
infinite gain reciprocator G z . Amplifier offset voltages are thus 
unrestrained unless the structure is modified in some way, but this 
would depart from direct simulation and in some cases could distort 
the frequency response. Another difficulty is that the phase response 
associated with a practical implementation of a reciprocator can lead 
to high-frequency instability. Martin & Sedra have studied the 
stabilization of reciprocators l5 9 l•

Because it is a simulation of a low-sensitivity LC ladder 
network, the structure illustrated in Fig 5*27 is likely to have a 
passband sensitivity similar to the other leapfrog structures studied 
in this section. Stopband sensitivity however has not been studied, 
and is likely to depend on the specific structure used. For example
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V

Fig 5*27 Leapfrog feedback together with complex feedback [571
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in Fig 4*3 (e) the part of the structure most affecting the stopbands 
is associated with the reciprocator. It is similar in form to the 
continued fraction structure studied in Section 5«2.3» and might 
therefore have similar sensitivity properties at stopband frequencies. 
The alternative structure shown in Fig 5*27 will have a stopband 
sensitivity performance more like that of series notch sections.



5.4 Structures having nested feedback loops

This section presents the sensitivity performance of structures 
in the third, fourth, and fifth columns of Table 4*1• They all have 
feedback loops which are nested one inside the other. Results 
presented here will illustrate the fact that finite difference 
sensitivity is invariant under the transformation of FGR. Further 
results will show that there is a common pattern to the sensitivity of 
structures having nested feedback. It will also be shown that for the 
simple design procedure described in Section 1.4* the pre-distortion 
constant cvs, may be chosen for minimum sensitivity.

5.4.1 Follow the Leader feedback and its transpose

We start by comparing two structures which are related by the 
transformation of FGR, without at this stage making any attempt to 
minimise their sensitivity. The first structure was presented in 
Section 1.4 as an example of a multiple feedback filter in which the 
transmission zeros are produced by parallel forward paths. The simple 
design method described in Section 1.4 has been used to implement the 
bandpass transfer function (5*1 •5)* with the pre-distortion constant 
chosen to give quadratic blocks having a Q-factor equal to 20. The 
resulting structure is shown in Fig 5*28. Alongside this, in Fig 5*29* 
is shown the structure related to it by FGR. It has Follow the Leader 
feedback and parallel paths fed forward to the output. In both 
structures the scaling transformation has been used to eliminate the 
need for inverting amplifiers. This has been achieved by the use of 
both inverting and non-inverting quadratic sections. Flow graph 
reversal relates the block diagram parameters of the two structures in 
accordance with the identities shown in Table 5»1» Note that in both 
structures the blocks are numbered in sequence from the input to the 
output, so that for example the first block of the transpose
structure transforms into the last block G 3 of the follow the leader 
feedback structure.

The effect of increasing the resonance frequencies of each of the 
three blocks by 3% is shown in Fig 5*30 for the transpose follow the 
leader feedback structure, and in Fig 5*31 for "the follow-the-leader 
feedback structure. It can be seen that the sensitivities are related 
by the identities listed in Table 5-1• For example, increasing the 
resonance frequency (0o, of the first block G, of the transpose 
structure by 3% produces a perturbed response which is identical to
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a13 = 0.0i4501 b., = 0.48141*1
ai3= 1.021308 b2= 0.0638 65
a33= 0.602478 b3= 0.063865

GJ = K j _ s ---- . j. 1,2,3
S + C0o S + Wo

Q
co0= 100 K n = K a = - 1 0
Q -  20 K 3 = 10

(a)

an = 0.60247 8 C, = 0.063865
a 12 = 1 . 0 2 1  3 0 8 C2 = 0.063865
a , 3 = o . o i q 5 o i C3 = 0.48 1444

5---—  j-1.2,3
S + Wo s  4.

Q
C0o- 100 K 1= 10
Q = 20 K1= K3 = -10

(a)

Fig 5*28 Transpose follow the 
leader feedback (451

Fig 5*29 Follow the leader 
feedback [281

Block diagram 
Active CR realization 
Frequency responses

Block diagram 
Active CR realization 
Frequency responses
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Fig 5.30 Transpose follow the 
leader feedback 
sensitivity to 
changes in resonance 
frequencies

Fig 5.31 Follow the leader
feedback sensitivity 
to changes in 
resonance frequencies
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Fig 5«32 Transpose FLF 
sensitivity to 
changes in 
Q-factors

Fig 5*53 FLF sensitivity to 
changes in 
Qrfactors



176

Fig 5.34 Transpose FLF 
sensitivity to 
changes in constant 
multipliers

Fig 5*35 FLF sensitivity to 
changes in constant 
multipliers
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that produced by a 3% increase in the resonance frequency 60O3 of 
the last block G 3 of the follow the leader feedback structure. The 
responses due to an increase of 10% in the Q-factors of the blocks, 
shown in Figs 5*32 and 5»33» are related in the same way. These 
results illustrate the fact that finite difference sensitivities are 
invariant under the transformation of FGR. Although they are not 
shown here, responses caused by changes in the values of the remaining 
block diagram parameters have been computed, and it is again found 
that parameters related by the identities listed in Table 5»1 have 
identical finite difference sensitivities.

TABLE 3.1 Flow graph reversal identities

Transpose follow the  ̂ FGR  ̂ Follow the leader
leader feedback Fig 5*28 ^  ^ feedback Fig 5*29

G 3

G,

G,

G3

g ,3
b3

k
b,

a„
2

0-13

C,
C2
C3



178

5.4*2 Shifted companion form and intermediate structures
We now consider two more nested feedback structures, both 

designed by an adaptation of the method described in Section 1.4.
The first is Tow's 1 shifted companion form* structure [471, and the 
second is an intermediate structure of Type-C in Table 4*1» first 
proposed by the writer in Ref 8 4. For both structures, the block 
diagram is analysed with the block transfer functions Gj replaced 
by 1/s in order to obtain expressions for the path constants in terms 
of the transfer function coefficients. These expressions are used to 
implement the required lowpass prototype transfer function (5*1.1), 
pre-distorted by the constant oct . Pre-distortion is removed by 
replacing 1/s with 1 j  (s+oc,) , and then lowpass to bandpass
transformation and frequency scaling produce the block diagrams shown 
in Figs 5*36 and 5 .3 7.

Plots of the frequency responses resulting from changes in the 
values of the block diagram parameters reveal that the sensitivities of 
the different nested feedback structures are related in a way which 
encompasses the identities described in the previous section. In cases 
where FGR does not apply, the relationship is not precise and it is 
necessary to consider the passband and the stopbands separately.

Take for example the response due to a 3% increase in the value 
of the resonance frequency co03 of the third section G 3 in the 
Shifted Companion Form (Fig 5*38(c)), and compare this with the response 
due to a 3% increase in the value of the resonance frequency 60o, of 
the first section G, of the intermediate structure (Fig 5«39(a-)). At 
frequencies in the passband the two responses are almost identical, and 
furthermore they are similar to the responses caused by a 3% increase 
in 60ol of the transpose follow the leader feedback structure 
(Fig 5 *3 0(21)), and by a 3% increase in co03of the follow the leader 
feedback structure (Fig 3*31(c))* It is possible to identify a 
characteristic of the structure which applies to each of these four 
responses; that is they all relate to a block which is a member of just 
one feedback loop. Further similarities can easily be found, and they 
are set out in Table 5*2. This table has been compiled from a study 
of all the relevant frequency response graphs, not all of which have 
been reproduced here, for brevity. From the Table, it seems reasonable 
to conclude that the similarities in the sensitivities are a 
consequence of the corresponding similarities in the structure, and 
that the Table may be extended to include other nested feedback 
structures. The invariance of passband sensitivity indicated by
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a„ - 0.602478 
a12 - 1.021308 
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(a) (a)

( c )

Fig 5.36 Shifted Companion
Form (47l

Fig 5*37 Intermediate 
structure [8 4]

(a} Block diagram
(b) Active CR realization
(c) Frequency responses

Block diagram 
Active CR realization 
Frequency responses
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Fig 5*38 Shifted Companion 
Form sensitivity 
to changes in 
resonance frequencies

Fig 5,39 Intermediate structure 
sensitivity to changes 
in resonance 
frequencies
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Fig 5*40 Shifted Companion 
Form sensitivity 
to changes in 
Q-factors

Fig1 5*41 Intermediate structure 
sensitivity to 
changes in Q-factors
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Fig 5.42 Shifted Companion 
Form sensitivity 
to changes in 
constant 
multipliers

Fig 5*43 Intermediate structure 
sensitivity to changes 
in constant 
multipliers
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Table 5*2 is similar to the invariance of sensitivity exhibited by 
the transformation shown in Fig 3*4» In that transformation, 
cascaded subnetworks may be interchanged to obtain new structures 
without affecting the sensitivity performance.

TABLE 5*2 Similar passband sensitivities

Transpose 
follow the 
leader 
feedback 
Fig 5.28

Follow the 
leader 
feedback 
Fig 5.29

Shifted 
Companion 
Form 
Fig 5.36

Intermediate 
Structure 
Fig 5.37

g 3 G, G, G2
In three feedback 
loops

g 2 Gz G 2 g 3 In two feedback loops

G\ g 3 In one feedback loop

Q33 Qu Q„ Loop around one block

2̂3 a,i Q 12 ■̂23 Loop around two blocks

0̂ 3 0.13 Q. 13 a„
Loop around three 
blocks

b 3 c, b3 b3
Forward path through 
one block

cr c2 bz b 2
Forward path through 
two blocks

b, c 3 b» b,
Forward path through 
three blocks

At stopband frequencies there is a slightly different pattern of 
similarities, and these are set out in Table 5.3* In the stopbands, 
the response is not affected by the feedback path constants djU > 
and the similarities in the sensitivities relate to the forward paths, 
as opposed to the feedback loops which have a dominant effect on the 
passband response. There are in the stopbands some minor variations 
in respect of the depth of the notches.

On the basis of Table 5*2 and Table 5*3 it can be said that all 
of the nested feedback structures studied here have almost identical 
sensitivities, and it is likely that this can be extended to include



other arrangements of nested feedback loops. The choice between these 
structures, at least for design methods which produce identical blocks 
may therefore be made using some other criterion, such as the number 
of amplifiers used. For a given structure and a given transfer 
function, the number of amplifiers will depend on the choice of the 
pre-distortion constant a, , and this is studied in the next Section.

TABLE 5.3 Similar stopband sensitivities

Transpose
FLF
Fig 5.28

FLF

Fig 5.29

SCF

Fig 5.36

Intermediate
structure
Fig 5.37

Block with no parallel 
paths G t g 3 g 3

Blocks with parallel 
forward paths G,,G. G 2, G3 G2 , G, G 2 , G,

Forward path through 
one block b 3 c, b 3 cr ip

Forward path through 
two blocks b 2 c2 b2 b2

Forward path through 
three blocks b, C3 b, b,
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5.4*3 Choice of pre-distortion constant

For the simple design procedure described in Section 1.4, the 
selection of a value for the pre-distortion constant ocx is equivalent 
to choosing a Q-factor for the quadratic blocks, because the Q-factor 
of the blocks Q is given by the Q-factor of the required response 
divided by Q-q^jocx. In all previous examples of structures
having nested feedback loops, the value of the pre-distortion constant 
0Cx has been chosen somewhat arbitrarily to give block transfer 
functions having a Q-factor equal to 20. In this section we discuss 
how a, may be chosen more advantageously.

In Hurtig's Primary Resonator Block filter [271 (a follow the 
leader feedback structure for polynomial filters), the Qr-factors of 
the blocks are such that the innermost feedback loop is eliminated.
The corresponding condition may be found for the nested feedback 
structure described in Section 1.4* With reference to Fig 1.8, the 
innermost feedback loop is eliminated when a n_1 = 0 1 which, from (1.4*7) 
with k=n-1, gives the required condition in terms of the coefficients 
of the lowpass prototype transfer function as:

PCt —  S n., (5.4.1)
n  S „

Tow [28] reports that the Primary Resonator block filter has near 
optimum sensitivity.

Johnson, Hilbum and Irons [1541 suggested, in respect of a follow 
the leader feedback polynomial filter, that in some cases it may be 
possible to choose 0CX to be such that all the feedback path constants 
Qjk become non-negative, thus avoiding the need for inverting 
amplifiers. This depends on the values of the coefficients in the 
denominator of the transfer function, and it may not always be possible 
to eliminate amplifiers in this way.

Hruby and Novotny [1081 used a structure having follow the leader 
feedback and feedforward to the output, in order to realize very 
narrow band filters. They chose ocx to suit the high Q^factor of the 
piezo-electric resonator sections which they used.

In connection with the Shifted Companion Form structure, Tow 
suggested that oc, may be selected for optimal sensitivity [281. He 
considered standard deviation, as a function of frequency, derived 
from a 'Monte Carlo* analysis of specific active CR realizations. His 
observation was that there existed a broad range of oc, for which the 
standard deviation was relatively low, and that this range included 
Hurtig's design. More recently, Schubert [1597 arrived at a similar
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conclusion from a study of multi-parameter coefficient sensitivity.
In this section we will take the intermediate structure shown in 

Fig 5«37» and will present the block diagram sensitivities for various 
values of the pre-distortion constant 06,. If the lowpass prototype 
transfer function (5.1.1) is written as

i - . (5.4.2)Flp(s) = ____Vo + V* 5
S„ + S, s + S , s  + S, s3

S , =  1

then the design method gives the following expressions for the block 
diagram parameters:

0.2'i — S 2 3oc,
Q 13 =  - S, + 2 S 2oc, - 3oc,2 
Q 13 =  - S Q + S, oc, - S 2 + oc, (5.4.3)

>Q T  o ,  U,, -  O z w., 1“ W.,

b 3 = Vz

b2 = 2̂ (°b ~ S2) 

b, =  K  + V2 a:t2

Approximate values of these parameters are tabulated below to illustrate 
their dependence on oc, .

TABLE 5*4 Intermediate structure parameters

(X, -0.5 0 0.01 0.1 0.2 0.33' 0.5 1.0 10

Q = ’% , -20 00 1000 100 50 30 20 10 1
Q|3 -1.40 -0.46 -0.45 -0.35 -0.26 -0.14 0.02 0.81 921
Cl23 -2.82 -1.17 -1.15 -1.02 “0.93 -0.90 -1.02 -2.37 -283
0.U -2.40 -0 . 9 0 -0.87 -0.60 -0 . 5 0 0.10 0.60 2.10 29.1
b, 0.48 0.47 0.47 0.47 0.47 0.47 0.48 0.53 6.85
b* -0.09 -0.06 -0.06 -0.05 -0.04 -0.04 -0.03 0.006 0.58
b3 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Active OR realizations corresponding to each of these values of oc, 
have been investigated, and it will be seen that the sensitivities to 
the different block diagram parameters do not have the same dependence 
on the value of oc, .

Consider first the effect of a 3% increase in the resonance 
frequencies 6J0, , CJoz and C0O3 shown respectively in Fig 5*44>
Fig 5.459 and Fig 5.46. The stopbands are mostly unaffected by the 
value of oc, but the passband is affected, and, depending on the 
feature of interest, the sensitivity reaches a m in imum somewhere 
between (X, = 0.2 and o(,= 0.5. It is of interest to note that for
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Fig 5.44 Sensitivity to an increase of 3% in the value of co
for different values of a 01

t
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Fig 5*45 Sensitivity to an increase of 3% in the value of ( A o z

for different values of a,
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Fig 5*46 Sensitivity to an increase of 3% in the value of 6303
for various values of 06,



this example the Hurtig condition (i.e. the elimination of the 
innermost feedback loop) corresponds to:

ot, = S, _  0 . 2 ^ (5.4.4)

hence the results are in agreement with Tow's empirical observation 
that the Hurtig condition is near to the optimum. In the region of 
minimum sensitivity, the performance is not as good as that of the 
leapfrog feedback structures studied in previous Sections, but it is 
better than the cascade. At extreme values of ot, the sensitivity 
becomes quite poor. For oc.,̂ 0 the sensitivity is worse than that of 
the cascade structure, and when ct,=10 the sensitivity is so large 
that the design is impracticable. At an optimum value of a, the first 
block has the greatest sensitivity, and it is interesting to note that 
the first block is in one feedback loop only. The other two blocks 
are members of two feedback loops ( d 2^ being approximately zero at 
optimum values of «,), and these blocks have sensitivities which are 
similar to each other but lower than the sensitivity of the first 
block. This observation is consistent with the analysis of the 
differential sensitivities of a leapfrog feedback structure given in 
Section 1.2, where it was shown that the centre block - a member of 
two feedback loops - has a lower sensitivity than the two outer blocks, 
each of which is a member of only one feedback loop. This suggests 
that the key to obtaining low sensitivity in multiple feedback filters 
is to include as many feedback loops as possible. Some success has 
been reported with this approach (Column 6 in Table 4«1)» but the only 
design methods for which confirmatory sensitivity results are 
available are those which involve a search for minimum sensitivity by 
means of a computer optimisation routine, as described in Section 

The sensitivities to changes in the Q-factors of the blocks do 
not depend on the value of a, in the same way. From Fig 5«47 it can 
be seen that the sensitivity to Q, is proportional to ot, over the 
range «,= 0 to 0C,= 0.5. The sensitivities to changes in Q 2 and

tendency for the variability of quadratic sections to increase in

comparable to those computed for the leapfrog feedback structures, as 
are the responses caused by changes to the other block diagram 
parameters.

It will be seen from Table 5*4 that it is possible to use a 
negative value of a, , corresponding to a negative Q-factor for the

Q 3 are also proportional to a,,. Since this balances the

1 /
proportion to Q-factor. For ot, = i /3 ? the perturbed responses are
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Fig 5*47 Sensitivity to an increase of 10% in the value of
for various values of OC,
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blocks. Such a design can be realized if the 0,-enhancement type of 
quadratic section is used. There is however no practical advantage 
in doing so, indeed it was found that with K, = -0.5 the passband 
sensitivity was appreciably greater than with <x, = +0.5*

Whilst even for the optimum value of a, the passband sensitivity 
is not as low as that of the leapfrog feedback structures, the nested 
feedback structures described in this Chapter have a sensitivity lower 
than that of the cascade structure; they have a simple design 
procedure, and may be constructed from identical sections having a 
low Q-factor.
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5 * 5  Structures having all feedback l o o p s

The results presented in Section 5*4*3 suggest that the lowest 
passband sensitivity may be obtainable by including as many feedback 
loops as possible. Several authors have proposed methods for designing 
such structures, and these are indicated in Column-6 of Table 4*1* In 
most of them the added flexibility has been utilized to obtain a 
minimum measure of sensitivity, for specific examples, by means of a 
computer optimization programme [70,86,116,156], Only one design 
method has been applied to bandpass filters incorporating finite 
transmission zeros by means of series notch sections [1171» and there 
is a difficulty with that method, not explored by the author of Ref.117» 
in that early stages of the design procedure require a knowledge of the 
final result. Sensitivity minimization, by use of the similarity 
transformation, is not directly applicable to existing structures 
having series notch sections because these do not have all blocks 
identical to each other (see discussion in Section 3*5)* The 
similarity transformation has however been applied successfully to 
structures having parallel forward paths [861, in order to minimize 
sensitivity. There is as yet no practical method of incorporating 
finite transmission zeros into a low sensitivity structure having all 
feedback paths, without invoking a computer optimization routine. The 
next example will show that the presence of all feedback loops is in 
itself not sufficient to guarantee low sensitivity.

5,5*1 An adaptation of the Crab's Eye filter

Hills* Crab*s Eye filter [1181 is a bank of band separation 
filters having the structure illustrated in Pig 5*48(a) for the case 
of three channels. There is one block for each channel, and each 
block has a bandpass characteristic centred around its associated 

channel frequency. Also each block Gj (s') is arranged to have a 
transfer function equal to -1 at its centre frequency: Gj (i coo.) = -i.

At this frequency the coupling is arranged to cause a cancellation of 
the signal at the input to the other blocks. Thus at the centre 
frequency of each channel, all other channels have a transmission zero. 
By this means the Crab's Eye filter can provide an efficient means of 
separating tones [1 1 9 1.

The Crab's Eye filter may be adapted for use as a single channel 

filter, realizing the bandpass transfer function (5*1*5). The structure 
is re-drawn as a single channel filter in Pig 5*48(b), from which it



(a)

00

Q i

0)0I« 114.4064 

Q, = 24.20 8 3 

K, « -«O0l / Q, 

0)M= 87.4076 
Q a = 24.2083 

K2= 'Woa/Qz 
(0O3= 1o°
Q 3= 156.58 
K3= -74.0561

(d)

Fig 5«48 Crab’s Eye derived structure [118]

(a} Hills’ band splitting Crab’s Eye filter
(b) Crab’s Eye derived structure for a single channel

!
c) Active CR realization
d) Computed frequency responses
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lii

Fig 5*49 Crab's Eye derived structure sensitivity to changes in
resonance frequencies
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can be seen that all feedback paths are present and that transmission 
zeros are produced by parallel forward paths. Each block has a 
bandpass quadratic transfer function, and, in order to realize 
transmission zeros by the Crab's Eye method, dJ01 is set equal to the 
frequency of the upper transmission zero and v0oz equal to the 
frequency of the lower transmission zero. Additionally = 1 V j }k *, 
bj ■= 1 Vj ; and G^(i. co0-') =  ~1 When the structure
in Fig 5.48(b) is analysed with these constraints, the remaining free 
parameters ( Q, , Q2 , Q3 , K3 , 60OJ) may be chosen by matching the 
coefficients of the various powers of s in the denominator of the 
resulting transfer function with the coefficients of the corresponding 
powers of s in the required transfer function (5.1.5). The resulting 
structure realizes the required transfer function to within a constant 
multiplier, as shown in Fig 5.48(d). If required, the scaling 
transformation (see Section 5*4) may be used to alter the gain* and to 
improve the dynamic range. The Crab's Eye approach has not previously 
been applied to a single channel filter, and its sensitivity has been 
studied only in the context of channel bank filtering.

Increasing the resonance frequencies of each of the three blocks 
by 5% results in the responses shown in Fig 5«49» from which it can be 
seen that there is a large sensitivity at passband frequencies, despite 
the presence of all feedback loops. The feedback loops originate from 
the Crab's Eye method of producing transmission zeros and are not 
introduced as a means of reducing sensitivity. In this adaptation to 
a single channel filter however, the paths CL^ and Q23 do not 
contribute to the formation of transmission zeros, but the computed 
results indicate that their presence does not lead to low passband 
sensitivity. It is of interest to note that the spread in the 
resonance frequencies of the three blocks is greater than is the case 
for the cascade structure.

In the stopbands, the sensitivity is similar to that of the 
cascade structure in that a 3% increase in the resonance frequency of 
either of the first two blocks causes a 3% increase in the frequency 
of the associated transmission zero. The depth of the notches is 
dependent on the value of the gain constant K of the associated
block
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5.6 Summary

Whilst it is not usually possible to draw general conclusions 
from particular examples, the computational analysis undertaken in 
this Chapter has contributed to our understanding of multiple feedback 
filters, and it has clarified relationships between the sensitivities 
of different structures. For some of the structures considered, 
sensitivity results have not previously been published, and for other 
structures the sensitivity has not been studied by the method adopted 
here. The different structures have been considered in four 
categories.

Structures in the first group are designed by a canonic expansion 
of the transfer function. They do not have feedback loops for the 
reduction of sensitivity, and the computed results confirm that the 
sensitivity is relatively large. Because of its common usage and 
simplicity of construction, the cascade or factored structure is often 
taken as a reference against which other structures are compared. The 
partial fraction structure has a greater sensitivity in the stopbands 
and the continued fraction structure has a greater sensitivity in the 
passband. The sensitivity of the continued fraction structure has not 
previously been studied.

In the second group are structures having leapfrog feedback for 
the reduction of passband sensitivity. The computed results show 
these to have the lowest passband sensitivity of all the structures 
studied. Node-voltage simulation of an LCR ladder filter leads to the 
use of series notch sections, and it has a low stopband sensitivity 
similar to that of the cascade structure. A sensitivity analysis of 
the node-voltage simulation has not previously been published. The 
Coupled Biquad structure realizes transmission zeros by the use of 
parallel forward paths, and this enables all the blocks to have the 
same resonance frequency. Computation shows that in the worst case the 
transmission zero frequencies can move further away from the nominal 
than is the case for series notch sections. It was pointed out that a 
statistical analysis could give misleading results. The Ford structure 
uses a different arrangement of parallel forward paths and has a 
slightly better performance than the Coupled Biquad structure in both 
passband and stopbands. The passband sensitivity of the Ford structure 
has been related to that of a simple simulation. Sensitivity 
performance of the Ford structure has not previously been published. 
Although it is possible for a leapfrog feedback structure to 
incorporate transmission zeros by means of complex feedback, such



structures have not been analysed in this Chapter, because the 
excessive number of sections required and the difficulties associated 
with implementing reciprocators make it less attractive from the 
practical point of view.

Structures in the third group have feedback loops nested one 
inside the other. Computed results have illustrated the fact that 
finite difference sensitivity is invariant under the transformation of 
FGR. Further results have revealed that there is a common pattern to 
the sensitivity of structures having nested feedback. The method of 
plotting finite changes shows clearly that particular structural 
features produce the same perturbed response in the different nested 
feedback structures. For the simple design method desribed in Section
1 .4 , the pre-distortion constant oc, may be chosen for minimum 
sensitivity. A value of a, chosen to satisfy Hurtig's condition is 
close to this optimum value. The computed results show that whilst 
there is a definite minimum in the sensitivity to changes in 0Jo , 
the sensitivity to Q-factors is proportional to the pre-distortion 
constant a., .

Of all the structures studied in this chapter, those having 
leapfrog feedback exhibit the lowest passband sensitivity. The work of 
some authors indicates that a further reduction of sensitivity is 
possible, especially by including all possible feedback paths, but as 
yet the only means of achieving such an improvement is by recourse to 
computer optimization routines. The mere presence of extra feedback 
paths is not sufficient, as shown by the novel adaptation of the Crab's 
Eye filter.
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CONCLUSIONS

This thesis has made various contributions to the study of 
multiple feedback filters. Some of the results are of a theoretical 
nature, such as the summed sensitivity invariant, whilst others, such 
as the computational study of sensitivity, address more directly the 
problem of designing the most appropriate multiple feedback filter for 
a given application. This requires a balancing of the requirements for 
minimum sensitivity, maximum dynamic range, fewest component parts, 
ease of adjustment, standardization of sub-assemblies, ease of design, 
and so on. The objective in this thesis is to aid the process of 
design, by acquiring greater insight into the performance of multiple 
feedback filters.

A wide variety of circuits is encompassed by defining a multiple 
feedback filter to be an interconnection of single output, multiple 
input, active CR sections, which form a structure having at least one 
forward path through the filter, and a multiplicity of feedback loops. 
Such structures may be represented by a block diagram or by a signal 
flow graph, and these may be analysed either by a matrix method or by 
Mason*s Topological method. Analysis yields expressions for both the 
differential and the finite difference sensitivities of the transfer 
function with respect to the block diagram parameters. Dynamic range 
may be determined from the noise and limiting properties of the 
sections, by using the noise transfer functions and the intermediate 
transfer functions.

The writer has presented a new summed sensitivity invariant. This 
interrelates the sensitivities of any set of branches which forms a 
cut of the signal flow graph. Two proofs of this result are available; 
one based on matrix analysis and the other based on the scaling 
transformation together with Euler*s relation for homogeneous 
functions.

A multiple feedback filter may be transformed in several different
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ways, in order to change its structure or to obtain some improvement 
in performance. Rudimentary equivalent signal flow graphs may be 
used to change the structure of a filter into a form suitable for a 
particular method of implementation. For example SFG equivalents have 
been used to derive Ford's structure. The structure of a multiple 
feedback filter may also be changed by the use of a matrix similarity 
transformation. When this is incorporated into a computer 
optimization programme, it enables the programme to search for new 
structures which are in some sense optimum.

The writer has pointed out that some transformations do not 
affect the differential sensitivities or the finite difference 
sensitivities of the transfer function with respect to the block 
diagram parameters. Any pair of subnetworks which are connected in 
cascade may be interchanged without affecting the sensitivities. Also 
the signal flow graph of a multiple feedback filter may be reversed 
without affecting the sensitivities. One effect of flow graph reversal 
is to interchange the noise transfer functions and the intermediate 
transfer functions. In view of Schaumann1s empirical results on 
dynamic range 178*80], it is conjectured that it may be possible to 
construct some expression of dynamic range which is symmetrical with 
respect to the noise transfer functions and the intermediate transfer 
functions, thus remaining invariant under the transformation of FGR.

Another transformation is that of scaling. The writer has shown 
that the signal levels in a multiple feedback filter may be scaled, 
systematically and with complete generality, by performing the 
described transformation on the branches of a cut of the SFG. A 
complex scale factor can sometimes be used to change the nature of 
the transfer functions required of the sections; a negative scale 
factor can be used to eliminate unnecessary inverting amplifiers; and 
a real positive constant scale factor can be used to alter the gain of 
the filter and to maximise its dynamic range. The writer has proved 
that neither the differential sensitivities nor the finite difference 
sensitivities are altered by this transformation.

The writer has classified the existing multiple feedback filters, 
firstly in respect of the pattern of feedback loops which are 
introduced specifically for the purpose of reducing passband 
sensitivity, and secondly in respect of the method used to produce 
transmission zeros. The three existing techniques for producing 
transmission zeros are series notch sections, parallel forward paths, 
and complex feedback. It is thought probable that these are the only 
possible methods of producing transmission zeros, but this has yet
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to be proved. The concept of complex feedback was introduced by the 
writer and was embodied in the continued fraction structure. This 
concept has enhanced our understanding of some existing structures.

Presentation of the classification in the form of a Table has 
shown relationships between existing structures, and has revealed some 
new structures. Some of these may be derived from existing structures 
by the transformations of PGR and interchange of cascade subnetworks. 
Others may be designed by using an analysis of the corresponding 
integrator network. It has been observed that all known low 
sensitivity multiple feedback filters, have just one forward path 
which passes through each block (or possibly its associated 
reciprocator). It is not known whether this is a necessary condition.

Considerable information on the sensitivity performance of a 
filter can be obtained by plotting the frequency responses resulting 
from finite changes to the various block diagram parameters. This 
has been done for a variety of structures, and for several of these 
the sensitivity performance has not previously been published. The 
sensitivity of the cascade structure is taken as a reference against 
which the performance of other structures are assessed.

The three canonic structures do not use feedback loops for 
sensitivity reduction, and their sensitivity is relatively high. 
Compared with the cascade structure, the partial fraction structure 
has a greater sensitivity in the stopbands, and the continued fraction 
structure has a greater sensitivity in the passband.

Of all the structures studied, those embodying leapfrog feedback 
were found to have the lowest passband sensitivity. Any of the three 
methods of producing transmission zeros can be used together with 
leapfrog feedback, but it appears that at frequencies in the stopbands, 
the lowest worst case sensitivity is achieved by the use of series 
notch sections.

Four structures having nested feedback loops were studied, and 
they were found to have almost identical sensitivity performance. 
Similar perturbed responses in the different structures were related 
to specific structural features. The choice between these structures 
may therefore be made using some other criterion such as the number 
of amplifiers used. For the simple design method used here,the value 
of the pre-distortion constant ot, may be chosen for a minimum c0o-
sensitivity, resulting in a value of close to that given by 
Hurtig's condition. The Q-sensitivity did not have a corresponding 
minimum, but was proportional to ot,.
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The nested feedback structure proposed by the writer [451» and 
described in Section 1.4> has aroused considerable interest in the 
literature. It has for example provided the inspiration for Wilson*s 
easily adjustable biquadratic section [1631, and it was a stimulus to 
Schaumann*s work on dynamic range (78*80].

The results of the computational study suggest that the key to 
obtaining further reduction of passband sensitivity is to include as 
many feedback paths as possible, although this is by no means a 
sufficient condition. At present the only practical methods available 
for designing such structures are those which use computer programmes 
for optimization. There would be some utility in developing suitable 
design methods which do not require the use of optimization.
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