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A B S T R A C T

A problem of rerandomization/resampling is the enumeration 

of all the configurations in the reference set. A suggestion 

to restrict the number of configurations in the reference set S to 

a much smaller set S' c s has been proposed by Tukey et al. (1978).

A method called Accelerated Resampling Technique (ART), for cutting 

down on the number of simulations and the number of bootstrap samples 

is developed in this thesis. The ART translates "randomly" 

generated coordinates of 6 separated points in ]Rn to resampled 

configurations by a coordinate-data matching code to form the 

restricted reference set. The ART is technically equivalent to 

the bootstrap resampling procedure. The balanced array 6-method 

(6^0) form of the ART performs well as measured by "discrepancy".

Some theoretical results justify the use of balancing and computational 

results from examples point to about 25% improvement.

A new method of generating likelihood is introduced providing 

a general application for the proposed ART and the bootstrap. The 

method is a reasonable and cheap way of obtaining inferences in 

complex situations with only a few distributional assumptions. A 

realized data set itself is used to generate the likelihoods and we 

hope the method will provide the necessary framework for "sensitivity

analysis".
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C H A P T E R  ONE

IN T R O D U C T IO N

The tedium of computational workload common to all re- 

randomization/resampling methods is tackled in this work. Most 

methods based on resampling produce less accurate results if the number 

of configurations is small, particularly in complex situations. To 

improve the accuracy of results, the suggestion has been to increase 

the number of configurations. Another form of solution to the 

problem is to adopt the variance reduction technique like in the 

bootstrap application of Therneau (1983). Generally the fundamental 

issues are:

(1) How many simulations/bootstrap configurations do we need 

for accurate results?

(2) Is it possible to risk a cutdown on the number of configurations 

without risking accuracy of the results? Can we find a 

simulation design that will perform the task of reducing the 

number of configurations and still achieve accuracy?

(3) If we succeed in (2), can we examine the properties of 

such a design in relation to existing designs? Has such 

a design any other beneficial statistical applications?

The main objective of this thesis is to examine the above

issues and provide some useful solutions. The motivation for this 

comes from two main sources. Tukey et al. (1978) suggested a 

restriction of the reference set of configurations S, to a much smaller 

set S' c S with #(S') = N' << N = #(S) in such a way that S' mimics 

S sufficiently well to obtain accurate permutation test confidence 

levels. The second source is the work of Therneau (1983) on the



10

"Bootstrap approach to variance reduction techniques" which has the

same objective as ours. Our method draws on the literature on

Monte Carlo methods and number theory in which low discrepancy

sequences (of points - configurations) are sought to improve numerical

integration over simple Monte Carlo. Chapter 2 stresses the main

problem of computational workload usually encountered in rerandomization/

resampling procedures. A new resampling design called Accelerated

Resampling Technique (ART) is formally introduced in Chapter 3. ART

requires the translation of coordinates of points in 3Rn to resampled

configurations by a very natural coordinate - data matching code.

The new technique selects "refined" configurations and with these it

produces reasonably accurate results. This resampling technique could

be thought of as a system that sieves out good "products" to form a

restricted set S' from a reference set S with N' << N. ART consists

of two main designs; viz: (i) the Randomized 6-method and (ii) the

Balanced Array 6-method. 5 is a spacing parameter adopted by the

technique for uniformly spreading out selected points in S. Good
2estimates are realized generally from only n configurations generated 

from a data set of size n. The balanced arrays design does better by 

giving lower discrepancy for the restricted S '  Q S . The detail 

properties of discrepancy are examined in Chapter 4. Ours is a 

discretized version of the works of Warnock (1972) and Zaremba (1968).

The purpose is essentially to approximate an integral of a function 

f(») over S by the integral over S' c s, the integral being with respect 

to the uniform measure in each case.

In Chapter 5, the bootstrap/resampling procedure is used 

repeatedly as a tool to generate likelihoods in a special way by making 

use of the realized data set itself. The technique requires the use 

of kernel density estimation without major theoretical development.



The amount of bootstrapping the construction of the likelihoods 

demands is so large that ART will certainly find ready application 

in such complex situations.

There are built-in computer Library and NAG routines for 

generating uniformly distributed random numbers (points). For this 

work, a NAG routine G05CBF, that produces uniformly distributed random 

numbers (with repeatable initial state) in (0,1) was used. Also 

Fortran 77 graphical routines PLTON, PLTLIN, PT and CONTR of the 

Imperial College, Department of Mathematics, graphical packages were 

used for all the graphs. All computer programs were run on the 

Imperial College CDC cyber 174 and 855 computer.
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C H A P T E R  TWO

G EN ER A L N O N PA RAM ETRIC S T A T I S T I C A L  IN F E R E N C E

2.1 Introduction

This chapter begins with nonparametric aspects of multiple

comparisons. In particular, an extension of Sen's (1966) testing

procedure for the one-way classification is given. Unlike Sen (1966),

our nonparametric statistical test of significance treats all the obser

vations together as a whole (viz: the rank of an observation is

determined by its ordering with respect to all observations in all

the samples). The test statistic W„ is based on functions of ranksN
and serves as a generalized nonparametric analogue of the Duncan 

Multiple Range test. The test statistic has some computational 

simplicity over most other multiple comparison tests. In section 2.5 

we discuss multiple comparisons or indeed statistical inference in 

general in the context of rerandomization. Rerandomization/Resampling 

in our context, compares the evaluation of data from a randomized 

experiment with an analogous evaluations of the same data calculated 

as though another experimental design had been used. The problem of 

the tedium of computational workload common in any rerandomization set­

up is stressed. This thesis seeks to find some solutions to this 

problem and in particular find a simulation design that might lead 

to accurate results for a reduced number of resampling configurations.

2.2 Nonparametric Multi-Sample Statistical Inference

It is generally accepted that Nonparametric Statistical 

Techniques are still appropriate when there is doubt about the normal 

theory procedures leading to some inexplicable results which may be



false. For the p-sample problem, there are p > 2 samples which

are assumed to have continuous cumulative distribution functions

(cdfs) F^(x), i = 1,2,...,p. Each ith sample has n^ identically

independent distributed random variables X . „ , X . _ , . . . , X .  . Interesti1 i2 in.
1

is usually centred on the testing of the null hypothesis

H0 = F ,  =  f 2 =  . . .  =  F p  -  F  ( 2 . 2 . 1 )

against any other alternative that the F^'s are not all equal.

Thus, Hq might be interpreted as that the sample are all from the same 

population. Consequently, if we consider the model to be of the 

form:

H : F (x) = F(x—8\ ) i = 1,2,...,p (2.2.2)

and for not all equal and 9 = (9̂  ̂ ^ , . . . ,9-̂ ) being a real vector. 

Thus, all the distributions being compared are equal except for the 

shifts 9̂  in location. Then, the null hypothesis (2.2.1) to be 

tested will be equivalent to

: 9 = 9^ = ... = 9 = 0 (2.2.3)
0 1 2  p

Various solutions have been offered to the above problem.

A more exhaustive review of this problem as well as some possible 

solutions are in Kruskal & Wallis (1952), Scheffe (1959), O'Neil & 

Wetherill (1971), Hollander (1966), Miller (1981) and So & Sen (1982/ 

1983). For two sample cases, the works of Wilcoxon (1945), Mann &

Whitney (1947), Steel (1960), Hodges & Lehmann (1963) and Sen (1966)
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among others have been useful and satisfactory within the limits 

of the derivation of their test statistics. Kruskal & Wallis (1952), 

gave a nonparametric analogue of the Snedecor's F-test. Their test 

statistic is

H = 12 P R . 2VN(N+1) u  n.
j= 1 3

- 3(N+1) (2.2.4)

for the cases without ties and,

H' = H (2.2.5
1-ZT/N(N -1)

for the cases with ties. Here, N is the total number of the combined

observations, R_. is the sum of the ranks received by the jth treatment,

n . is the number of observations in the jth treatment and 
3

g
ZT = ) T. for which T. = (t-1)(t)(t+1) and t is the number of obser-

U  k k
k=1

vations in the kth group of tied observations. These have proved quite 

useful in making a general decision about the null hypothesis (2 .2 .1 ) 

or (2.2.3). For ordered alternatives of the form:

H : 9  ̂ -8"  ̂ . . .  ^ 9
1 1 2  p (2 .2 .6 )

where at least one of the inequalities is strict, Jonckheere (1954) 

gave a test statistic

p P-1 P
j = y u

L, uv
V V” L L

u<v U=1 v=u+1

is simply the sum of p(p- 1

uv 2.2.7

uv
where



1 5

uvU

and cp(a,b)

n n u v
y y cp(x. ,x.L  L  r iu ]v
i=1 j=1

1 if a < b 

0 otherwise

( 2 . 2 . 8 )

(2.2.9)

For the r  ̂2 - way classification, the Friedman's (1937) type of 

simultaneous rank test statistic,

X
1 2 n

r p(p+1 )

PE h
i=1

- 3n(p+1) (2 .2 .10)

-  1 ^where, R. = — ) R..i* n L j 1 3

j = 1
(2.2.11)

and R. . is the rank of X. is applied to any two-way classification with 
1 3  1 3

one observation per cell.

Also, Sen (1968) gave the following test statistic for the two- 

way classification problem:

SN
j = 1

( 2 . 2 . 12 )

where,

N, j

in which

n E
a=i

N ,a z(j)N ,a

N ,a = JN«S> (1 ^ a  < N )

(2.2.13)

(2.2.14)

is an indicator, J„, is as defined in Chernoff and Savage (1958) N ,a  N ^
and n is the number of observations in each treatment.
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-  (p—1 ) n l  l
i=1 j=1

n  p

en ,r . . en ,r .1J 1
2.2.15)

in which,
P

_ 1 T
N,R p L  EN,R,,

j=1
ID

(2.2.16)

and R . . is the rank of X . . observation,i = 1 , 2 ,...,n, j = 1 ,2 ,...,p.
ID ID

However, for all the p > 2 sample cases, a natural question, 

viz: "Which is the offending sample(s)?" arises whenever the null 

hypothesis (2.2.1) or (2.2.3) is rejected. Obviously, the need to 

know the reasons leading to the rejection of the null hypothesis is of 

prime importance to the research statistician and his clients. We 

shall consider a solution to the above problem for the one-way layout 

in the context of multiple comparison. Our solution is motivated 

by the work of Sen (1966) on Simultaneous Confidence Regions and Test 

for the One-Criterion Analysis of Variance.

2.3 Assumptions and Notations

Let n^, i = 1,2,...,p be the number of observations in the ith 

treatment. Let us consider the case of equal sample sizes

n 1 = n „ = . . . n = n  (2.3.1)
1 2 p

Let X .„, X._,...,X. , i = 1,2,...,p be the ordered observations of i 1 i2 m .l
a sample from a population with continuous cumulative distribution 

function (cdf) F^(x), i = 1,2,...,p.

Let Xxl. = n./N (= n/N) (2.3.2)N i l

where N
i=1

np) (2.3.3)
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Let,

F (x) = —  (# of X.. < xf j  = 1,2,...,n., 1 = 1,2,.. . ,p)n . n. l *) il l
(2.3.4)

be the sample cdf of the observations in the ith sample.

Define,

H (x) = A FM ) (x ) + A F (2 )(x) + ... + A F (p)(x) = N N1 n N2 n Np n

_ r
-  L

i=1

/ A F (l)(x) 
L. Ni n (2.3.5)

Thus, is the combined sample cdf. The combined population cdf is

H(x) = A F(x) + A F (x) + ... + A m F ( x ) =  ) A m . F .N1 1 N2 2 Np p L, Ni l(x)
i=1

2.3.6)

For the formulation of a class of rank order statistics which we shall 

use in the work, let

i = 1,2,...,p (2.3.7) 

(2.3.8)

where,

EN,a = V i7T> (1 S a « N )  (2.3.9)

and is defined on the same line as in Chernoff & Savage (1958) and 

satisfies all the regularity conditions of Theorem 3.6.1 of Puri & Sen 

(1971).

X. = ( X  , X  .11 i2 ,X,_ )in

E„ = <EN,1'EN,2---'EN,p>

Let us write,
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E = 1 7  EN N L  N,a ( 2 . 3 . 1 0 )

a=i

and

. 2 = iN N 7  E2 -L N,a 3 (2.3.11)
a=i

Let zi^ = 1 if the ath smallest observation in the combined ranking N,a ^
of all the N observations is from the ith sample and let = 0

v N,0i
otherwise for a = 1 ,2 ,...,N.

Let us now consider (for the ith sample) the following class 

of rank order statistic

N
h  ( X .  ) =N l _L V E z (in. N,0l N,( i = 1,2,...,p (2.3.12)

a=i

Our i = 1,2,...,p, given in (2.3.12) are asymptotically

distributed as normal. This conclusion follows from the earlier 

works of Chernoff & Savage (1958), Puri (1964) and Hajek (1968).

For i = 1,2,...,p samples and for the special case of equal 

sample sizes n̂  = = ... = n^ = n, let us consider the following

test statistic

r _i .  - 1VJ = max I n A h (X.)-h (X.)N L N ' N i  N 3Ki ,  j<p
(2.3.13)

or

-  -1W = n2A [max h T(X . )-min h (X. ) ]N N N l N i i — 1 /2 ,...,p
(2.3.14)

For small samples, a permutation method of evaluating the exact null

hypothesis of W„ is as follows:N
Recall that X. = (X.1 fX.-,...,X. ) i = 1,2,...,p .l 11 i2 in.l
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Let us write,

XN = < V X2........ V

to represent the actual data set for the one-way layout. Under

the null hypothesis (2.2.1) or (2.2.3), X^ is composed of N i.i.d

random variables and hence conditioned on any given X , all the possible

(N!) permutations of the variates among themselves are equally likely.
P

There are altogether N!/II(n.)! possible configurations of N variables
P -1each occurring with probability (N!/ II (n.)!) . Thus, if we do
i= 1 1

a complete enumeration of all the configurations and for each compute 

the value of we will get at the permutation distribution of WrN
in the following manner. After computing the values of for all

the possible configurations, we then consider the exact probability

of the different values of W„ (a ) of W„ corresponding to the pre-N, p 0 N
assigned a level of significance. A point to worry about in the

above discussion of the exact distribution of VJ is that the amount ofN
computation needed for the implementation is considerably enormous.

For example, a data set consisting of only three treatments with three 

observations per treatment demands as much as 1680 configurations for 

a complete enumeration. For large samples the cost of generating 

the configurations is very much even with improved high speed computers 

For such large samples, the limiting (asymptotic) distribution of 

is discussed fully in Ogbonmwan (1983).

When no ties exist in the distribution,we shall have that

N

CL
"N,a ” N+1 1  ̂a < N (2.3.15)

and hence get
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e n

N
1 V’ ot
N L  N+1 

Ot= 1
( 2 . 3 . 1 6 )

Also,

y e2 yL N,a , . 2  L
a=l (N+1 )

2 = N(2N+1) 
6(N+1)

a=l
(2.3.17)

Substituting in (2.3.11), we get

2 N-1A„ =N 12(N+1) (2.3.18)

and becomes,

= max
N

12n(N+1 
N-1 h (X. ) -h (X .) N l N j

(2.3.19)

When ties do occur in the distribution, the variance component will 

be reduced by

1 1 r  JT_
N (N+1) 2 L  1 2

Zt
12N(N+1)

(2.3.20)

where,

T = (t-1)(t)(t+1) (2.3.21)

and t is the number of tied observations. The summation Z covers 

all groups of ties.

Subsequently, we have,

2 _ N(N2 - 1 )-Zt
N 212N(N+1)

and the test statistic W , becomesN

(2.3.22)
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**
WN max

1^i, j<p
rL 12 n N( N + 1 ) 2 

?N(N -1)-ZT
h (X.)-h (X .)n i n :

i,

2 . 3 . 2 3 )

2.4 Decision Rule

The multiple comparison test for p  ̂2 treatments may be form­

ulated as follows:

{1) Compute,

i  -1W = n 2A.T [maxhXT(X . )-minh (X. ) ]N N N l N l

(2) Compute the value of (̂OIq ) corresponding to the preassigned

a^-level of significance. More precisely, due to Theorem 1 of

Ogbonmwan ( 1 983), WrT (a.N, p 0
-+ R̂ Cot̂ ) in distribution, read the value of

R (0O  from the table of upper 100a_% point of the exact null distri-p 0 0

bution of X (t), where X (t) is the cdf of the sample range in a sample P P
of size p drawn from a standardized normal distribution.

(3) Reject the null hypothesis (2.2.1) or (2.2.3) if

W„  ̂wv, ( )  N N, p 0

or if

W  ̂R (a ) N P 0

Subsequently, we replace with the simplified version for the

cases without ties or with W„ for the cases with ties.N

REMARK:
In step (3) of the decision rule, we reject any set of k  ̂p

treatments if
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W._ ir > Wm (an} N,k N,p 0

or if

WN,k > R (a.) P 0

If any set of k  ̂p treatments is found not to be significantly

different, then any subsets of the k treatments are also not significantly

different and there might be no need to carry out separate tests on

the subsets of the k treatments.

Our test statistic W„ is quite close in form to equation 6.8.4N
of Puri & Sen (1971) which is designed for nonparametric simultaneous 

regions and tests for the one-way criterion analysis of variance.

Ours is not only an extension of Sen's (1966) but it is the nonparametric 

analogue of the Duncan (1955) multiple range test.

EXAMPLE:
In a laboratory experiment concerning Life Times, five grades 

of Â  Duracell batteries were tested.

The grades of the batteries had been determined by the time 

in hours to reach a specified End Point Voltage (EPV). The five 

grades were produced under exactly the same experimental conditions.

This means that any observable difference in the life times can only 

be due to the EPV level if it has any effect on the life times of the 

Duracell batteries. So, our null hypothesis is that the EPV has 

no effect on the life times of the A Duracell batteries. This is 

in agreement with our null hypothesis (2.2.1) or (2.2.3). The 

results obtained are given in Table 2.

The decisions made by the use of the Snedecor's F-test (see 

Scheffe (1959)), the Kruskal & Wallis (1952) H-test, i.e. by making use 

of equation (2.2.5), and the proposed testing procedures, using equation
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(2.3.23), are in agreement. They show that there are significant 

differences among the p (=5) samples (grades of the A Duracell 

batteries) - see Table 1 below.

Table 1
Decision Made Using the Proposed Testing Method, the Snedecor's 

F-test and the Kruskal & Wallis H-test.

Testing Procedure Calculated Test Statistic Decision

Proposed Method WXT = 6.4886 N S

F-test F . = 8.9555 ratio S

Kruskal & Wallis H' = 30.1991 S
H-test

Note: (1) R (0.05) = 3.86, F* (0.025) = 3.10 and x,(0.05) = 9.4885 45 4
are the critical values of the upper 1 0 0a^% point of the exact null
distribution of the cdf of the sample range in a sample of size p (=5)
drawn from the standardized normal distribution, the F-distribution and 

2the X -distribution respectively.
(2) S = significantly different.

(2.3.23) was used to test for significant differences among subsets

k < p = 5 samples (grades of Duracell batteries). The tests show

that the five grades of the Â  Duracell batteries could be put in two

main subclasses; viz. B, D, A and C, E. Arranging the grades of

the batteries in order of magnitude of the values of h„(X.) andN i

underlining the batteries that are not significantly different, we 

get,

B D A C E
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Recorded Life Times of Five Grades, A-E, of Duracell Batteries 
The Grades are Determined by the EPV levels put in parenthesis

T a b l e  2

GRADE OF A1 DURACELL BATTERIES

A B C D E
(0.8) (0.9) (1.0) (1.1) ( 1.2)

46.7 42.6 45.4 41 .5 48.3
44.1 40.8 45.5 41 .5 41 .7
46.9 42.7 45.9 42.0 50.6
44.5 41 .5 45.6 41 .3 49.2
46.5 42.2 46.3 42.2 50.2
35.9 35.0 46.9 42.8 47.7
45.6 41 .9 47.0 42.9 50.8
29.0 28.9 46.3 42.1 44.6
45.9 41 .9 45.7 41.7 51 .5
44.4 41 .6 46.2 41.9 50.2

2.5 Rerandomization

"Instead of enlarging the experiment we may attempt to increase 

its sensitiveness by qualitative improvement; and these are 

generally speaking, of two kinds: (a) the reorganization of its 

structure, and (b) refinements of technique. To illustrate 

a change of structure we might consider that, instead of fixing in 

advance that 4 cups should be of each kind, determining by a 

random process how the subdivision should be effected, we might 

have allowed the treatment of each cup to be determined inde­

pendently by chance, as by the toss of a coin, so that each treat­

ment has an equal chance of being chosen. The chance of classi­

fying correctly 8 cups randomized in this way, without the aid of
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sensory discrimination, is 1 in 2 , or 1 in 256 chances, and there 

are only 8 chances of classifying 7 right and 1 wrong; Consequently 

the sensitiveness of the experiment has been increased, while still 

using only 8 cups, and it is possible to score significant success, 

even if one is classified wrongly. In many types of experiment, 

therefore, the suggested change in structure would be evidently 

advantageous. For the special requirements of a psycho-physical 

experiment, however, we should probably prefer to forego this 

advantage, since it would occasionally occur that all the cups would 

be treated alike, and this, besides bewildering the subject by an 

unexpected occurrence, would deny her the real advantage of judging 

by comparison...." .

Sir Ronald A Fisher (1935, pp.22-23)

A computer aid methodology for doing multiple comparison or 

statistical inference can be based on Rerandomization. Rerandomization 

was basically introduced by Fisher (1935) who at that time thought 

it was not quite practical. Consider an experiment involving N 

units and p treatments in which each unit u has an equal chance of being 

assigned a measurable characteristic X of the kth treatment. InK f U
this context, we define:

Definition: A random assignment of units to treatments is called

an experimental design.

Thus for a given design, each unit u = (1,2,...,N), has an 

equal chance of being assigned the measurable characteristic XK f U

This would mean that a randomized experiment of a particular design 

is assumed to have been chosen at random from a reference set S of
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Ng possible designs. Estimates of parameters are based on the

X, 's. For instance, an estimate of the mean could be expressed k,u
as

X
l

Xk,u/N (2.5.1)

and for the variance, we could write 
N

V = Y  (X, -X)2/N (2.5.2)
L  k, u
u=1

Other estimates could be defined in the same line. The crucial point 

of any design is the process of the assignment of units.

Definition: Rerandomization is the process of assigning

experimental units to treatments by making use of the elements of 

the same data set.

Thus an observed data set is simply thought to be a single 

realization of an appropriate rerandomization process. Various 

rerandomization/resampling procedures have been discussed in literature. 

We shall discuss some of them shortly. What is commonly done is to 

start with a set of configurations and on this set, generate other 

sets of configurations at random based on a chosen design. For each 

newly generated configuration, calculate a statistic T. Since, the 

new configurations are generated at random, the calculated statistics 

become random variables on which further analysis could be carried out. 

Miller (1981) gives a good discussion on a permutation method for 

multiple comparison of p treatments for the one-way layout of which 

{x_, i = 1 ,2 ,...,p, j = 1 ,2 ,...,n} is the data set.

The variable
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M = max X
if D

(2.5.3)

based on the treatment means (X.,X_,...,X ) is calculated for each
1 2 p

rearrangement (configuration). Treatments i and j are said to be 

significantly different if

lx. -X. \ > R (Ct ) (2.5.4)
1 l • j • 1 c 0

where, R^a^) is the quantity of the distribution of range. 

However, other than for very small values of n and p, Miller (1981) 

stated "Nevertheless, except in rare circumstances, the amount of 

labour required to actually carry out the permutation test renders 

it impractical". A permutation methodology for multiple comparisons 

for treatment effects in r-way mixed model was constructed by 

Shuster & Boyett (1979). In their approach, for each M independent 

simulations chosen by simple random sampling with replacement (con­

stituting a configuration) from all the

b
n
j=1

* 3

n i j ' n 2 j PD
possible allocations

compatible with their design, the following steps are taken:

1) Independently, for each block B_., assign (by simple

random sampling without replacement) n subjects to 

treatment T..l

( 2 ) Compute the desired test statistic, R, for this allocation

of subjects. Denote these values by y^, & = 1,2,...,M.

Let,
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R(a ) = inf { x:F (x ) > 1 -a } 0 M U ( 2 . 5 . 5 )

where Fw is the emperical cumulative distribution of {r ,r ,r_,...,r } M 1 2 m
and x is the limit as y approaches x from below. Then for multiple 

comparison of all treatments, T^ and are significantly different 

if and only if

V Qkl * R(V (2.5.6)

where Q. is defined as i

Q. = Y  n. .d. .
i  L  i l  i D

j=1

(2.5.7)

i. . = Y  y. . /n. 
i n  L  i l k  i

= y. j .

if n. . > 0 2* i i  i l

if n . . = 0 12

(2.5.8)

n . * 2 = £ n .
i=1 12

n . . 12

ijk

= # of elements from block B. assigned to treatment T.
2 i

y = measurable characteristic associated with the kth subject
of block B. assigned to treatment T..2 i
max

1<i, j^p
Q.-Q . i 2

2.5.9)

By way of reducing the amount of computational workload Shuster &

Boyett (1979) suggested that "simulation, rather than complete enumeration 

will be required in most practical situations".

Gabriel & Hall (1983) and Gabriel & Hsu (1983) have made use 

of rerandomization (permutation) in making inference statements about 

regression and shift effects and in evaluating the power of rerandomization 

tests. They developed methods that reduce the computational workload. 

Gabriel & Hall (1983), observed that "the tedium of computation for
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randomization test is considerable" for the evaluation of power in the 

sense that the volume of computation become compounded, since each 

random plan (design), after being subjected to the effects has to 

be tested against all rerandomization of the outcomes. Petrondas & 

Gabriel (1983) do not seem to agree generally with inferences concerning 

pairs of treatments (and subsets) among p treatments as given by 

Miller (1981), Gabriel & Hsu (1983), Shuster & Boyett (1979) and some 

others. Petrondas & Gabriel (1983) warned that methods of simultaneous 

inference cannot simply be transplanted from distribution bound setups 

to those of rerandomization without risking excessive type I errors. 

Petrondas & Gabriel (1983) therefore provided a stepwise rerandomization 

procedure which remains valid within a rerandomization test. We shall 

not in this thesis contribute in the debate on how best to do multiple 

comparison in the context of rerandomization. Our interest is mainly 

focussed on the amount of computational workload required for a 

rerandomization exercise and on a simple likelihood based model as an 

alternative to the inversion of a permutation tests needed for some 

inference problems. Hartigan (1969) used subsamples as typical values 

to form a coverage probability for any parameter of interest $. This 

provides another interesting approach to resampling. For a real valued 

statistic T(X), values of T(X) are recomputed for the different sub­

samples of a balanced set to provide approximate confidence interval for 

the "true value" of T(X).

In this approach, the 2n possible subsamples of the reference 

set X ,X ,...,Xn are the rerandomized new configurations. But 

generating the 2 n subsamples for large values of n and picking the 

suitable ones, demands a lot of computation workload which might not 

be cheap. Tritchler (1984) makes the important connection with the

rerandomization likelihood. Efron (1979a, 1979b, 1982) Bootstrapping
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is a Monte Carlo resampling method. Consider the random sample X 

of size n from an unknown probability distribution F.

i.e. X = (X.,X_,...,X ) ~...F (2.5.10)
1 2 n lid

Let x = (x„,x„,...,x ) denote the observed realization of 
1 2 n

the random sample X. Usually, the bootstrap solves the problem of 

estimating the sampling distribution of a random variable T (X)r

(a statistic) depending on X and the unknown distribution F. The 

bootstrap adopts the following algorithm:

(1) Construct an estimate of the unknown probability 

distribution F by putting mass 1/n at x^, i = 1,2,...,n,

~ 1i.e. F : mass — at x . i=1,2,...,n.n i

(2) With F fixed draw a "bootstrap sample" of size n,

* * * *X = (X. ,X ,...,X ) from F
1 2 n

*i.e. X. ~ . F .i n d
* * * *

Calculate T~(X ) = T-(X„ ,X_ ,...,X ).F F 1 2 n

(3) The Monte Carlo step: Repeat Step (2) independently for

a large number B of times to obtain,
(1) * (2) * (B) *T~ (X ),T- (X ),...,T- (X ). Approximate the sampling F F F

distribution of T^(X) by the bootstrap distribution of

iyx*).

In Step (3) of the above algorithm, the histogram of the 
(1) * (2) * (B) *values T~ (X ), T- (X ),...,T~ (X ) is taken as the approximation F F F

*
of the bootstrap distribution of T~(X ). If Step (3) is omitted, oneF

★
can still approximate the distribution of T~(X ) by either a directr
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theoretical calculation or by Taylor series expansion (see Efron,

1979a). However, the crucial point in the use of the bootstrap

algorithm is that, once the data x is observed the distribution of
* *T~(X ) can be calculated. But how well this distribution of T M X  )F F

approximates the distribution of T (X) depends on the nature of T (X)F F
itself and on the size of B. The bootstrap resampling procedure 

has received various applications in several sections of Statistics.

Efron (1979a, 1979b, 1982) contain the fundamental introduction and 

use of bootstrap for the estimation of the distributions of basic 

statistics like; viz: the mean, the standard deviation, the median, 

bias, correlation coefficient, confidence interval, etc. Due to the 

important connection the bootsrap has with our proposed Accelerated 

Resampling Technique to be discussed in Chapter 3, we shall discuss 

the bootstrap confidence interval shortly. Therneau (1983) gives 

a detailed discussion on variance reduction techniques for the bootstrap. 

Freedman (1981) makes use of bootstrapping in regression analysis.

Also in a recent monograph, Wu (1985) gives a full length treatment 

of bootstrap regression. These papers cited above contain excellent 

discussions on the methodology for the use and give good guidelines for 

the adoption of the bootstrap resampling procedure for the various problems 

tackled. We shall consider the application of bootstrap procedure 

for estimating confidence interval in this work.

Suppose a parameter of the underlying distribution function 

of X is -S'. The approximate confidence interval (usually based on 

the Maximum Likelihood Estimation (MLE)) is given (see Efron, 1985) as:

$ E $ ± az(a) (2.5.11)

where & is the MLE of ■9-, 0 is an estimate of the standard deviation of
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~ (a)-9-, and Z is the a point of the standard normal variate.

Efron's (1982) bias-corrected percentile method constructs 

approximate confidence intervals for 9 in the following way:

(i) Construct an MLE F for the unknown density function F,

★  * *(ii) the bootstrap data vectors, X ,X , ...,X are obtained1 Z B
by i.i.d sampling from F;

1 ~ * 2  ~ * b(iii) the corresponding bootstrap MLE estimates 9- ,9 ,...,9 are

calculated giving the cdf of

G(t) = # {9"(l) < t}/B i = 1 ,2, . . . ,B

(2.5.12)

(iv) Calculate,

ZQ = $ 1 (G(9)} (2.5.13)

where $ is the standard normal cdf

(iv) the central 1 -2a interval for 9 is then taken to be

9E[G 1 {$(2ZQ+Z(a)}, G 1 {$(2Zq+Z( 1 a)}] 2.5.14)

If G(9) = 7 , then Z^ = 0 and the interval in (2.5.14) becomes 
~-1 " - 1[G (a), G (1-a)] which is the a and 1-a percentile of the bootstrap 

distribution. We have more on the percentile method of bootstrap 

confidence interval in §5.5 of Chapter 5.

We remark that step (ii) above can be, but does not always have 

to be by the Monte Carlo approach. However, when the Monte Carlo 

approach is adopted in this step (ii), Efron (1982) suggests that a 

large number of bootstrap replications, say, B  ̂ 1000 is necessary 

in order to get reasonable accuracy in the tails of the distribution.



3 3

A study using the percentile methods has recently been carried out 

by Schenker (1985). Schenker (1985) concludes that "If little is 

known about a problem, it is very difficult or impossible to check 

the assumptions underlying the use of bootstrap confidence intervals. 

Therefore, they should be used with caution in complex problems".

We conclude this section by observing that in a general rerandomization 

procedure, given are a data set X = (X ,X ,...,X ) and a statistic 

T(X). Interest is usually centred on finding estimates of the 

parameter -8-(X) of the population from which X has been taken as well 

as the general nature of the distribution of T(X). Earlier work in 

the literature (some of which have been cited above) have touched on 

the methods or procedures leading to the estimation of -9-(X) and T(X). 

Evidently, in all the cases cited so far, there is the worry over the 

tedium of computational workload. This worry at times might even result 

in modifications of the entire design model in some complex situations.

At times a preferred permutation method which would give exact results 

might not be employed owing to computational considerations. The 

questions arising therefore are: How many simulations do we need or can

one cut down on the number of simulations for an accurate estimate of 

\1(X) and distribution of T(X)? In particular, how many bootstrap 

configurations do we need for accurate results? This thesis seeks 

solutions to the second question in particular by making use of a new

resampling design technique.
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C H A P T E R  T H R E E

A C C E L E R A T E D  R E SA M P LIN G  T E C H N IQ U E :

T h e  R a n d o m iz e d  a n d  B a la n c e d  A r r a y  5 -M e th o d s

3.1 Introduction

This chapter tackles the problem of cutting down the number 

of Bootstrap configurations or the number of simulations in the 

context of resampling although this became apparent more from a reading 

of the rerandomization (permutation) literature which was discussed 

in Chapter 2. The basic framework for many simulation exercises 

for discrete problems can be reduced to the following:

(1) Select with probability 1/N one of a number of N 

possible configurations. We shall call this one 

simulation and call the set of all configurations the 

reference set.

(2) Perform some computations on the selected configuration.

(3) Repeat (1) and (2) M times independently to obtain M sets 

of numerical results one for each of the M configurations.

(4) Perform some kind of averaging or accumulation on the results 

in (3 ) .

For the simple Bootstrap case, given X„,X_,...,X ~ F, we draw
1 2  n

dependent samples of size n, B times. By putting probability mass 

1/n at each point x^, i = 1,2,...,n we can construct the sample cdf F. 

Furthermore, F is the fitted nonparametric MLE of the unknown F.

Since each sample has size n, each bootstrap (simulation) can be



3 5

considered as drawing one configuration with probability n n from 

the set S of all N = nn possible configurations. In a rerandomization 

problem, we may consider S to be all permutations of some basic 

configurations restricted possibly to satisfy some marginalization 

conditions. Both these ideas of bootstrapping and rerandomization are 

carefully "knitted" together in a new resampling design in this 

chapter. The randomized and balanced array forms of the new resampling 

design are fully discussed in §§3.3 and 3.5 and an example is 

considered in §3.7.

3.2 Some Background Ideas

We discuss briefly some motivating works. Kakutani (1975)

proposed or conjectured that "if the unit interval (0 ,1 ) is randomly

split into n points, then, the splitting points or the decomposition

points are uniformly distributed as n tends to infinity". Van Zwet

(1978) gave an expository algorithm and proof of the Kakutani's (1975)

conjecture and introduced randomness into the selection procedure.

Points are chosen at random in the largest interval. At the

nth step, choose a point at random in the largest of the n subintervals

into which the first (n-1) points subdivide (0,1). Let X̂  be

uniformly distributed on (0,1). For n = 2,3,4,.... the conditional

distribution of X given X„,X„,...,X „ is uniform on the largest ofn 1 2  n- 1

the n subintervals into which X„,X_,...,X . subdivide (0,1). Let
1 2  n- 1

F denote the emperical distribution function (df) of X,,X_,...,X . n 1 2 n
Thus,

n
-1 V'F = n ) 1 (3.2.1)n L

t=1 {X.<x}

Van Zwet (1978) then proved that:
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With probability 1,

lim Sup 
n->°o x€(0 , 1  )

F (x)-x = 0 (3.2.2)n

P
i.e. F (x) ■> x as n -* °° where x£(0 , 1  ) .n

Obviously, suppose {x^} i = 1,2,...,n are the first n

randomly selected points on the unit interval (0 ,1 ) according to the 

Van Zwet (1978) splitting procedure. Let N be a fixed integer and

i = 1,2,...,n are also uniformly distributed on the interval (o,N).

Let X and Y be two independent random variables (numbers) drawn from 

the interval (0 ,1 ) on the real line; all numbers in the interval being 

equally likely to be drawn. Let (X,Y) be the two dimensional random 

variables such that X and Y denote respectively, the first and second 

numbers drawn from the interval (0,1). We could regard X and Y 

to be the numbers drawn from (0,1) on the X- and Y-axis respectively. 

For X and Y independent, each with uniform distribution on (0,1), 

their joint density f(x,y) given as

let y. = Nx. such that {y.} i = 1,2,...,n are the projections of i i  i

the points {x^}, i = 1 ,2 ,...,n of the unit interval (o,1 ) onto the 

interval (o,N). Clearly, for large n, the projected points {y^}={Nx^},

2

0 otherwise (3.2.3)

2is uniform on (0,1) . Now suppose values of X and Y are selected

independently according to the Van Zwet's (1978) procedure and F^(x) 

and Fn(y) are the respective emperical distribution functions of 

X.j ,X^ , . • . and Ŷ  , Y^ , . . . , Ŷ . From Van Zwet ( 1 978 ), X^,X , ...,X

and Y^,Y ,...,Yn are uniformly distributed respectively on 

(0,1). From the above consideration it is clear that (X^,Y ),
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(X , Y (X ,Y ) in the unit square (0,1) are pairs of independent2 2 n n
random variables in (0,1) for the X^'s depend only on the characteristics 

of X while the Y^'s depend only on the characteristics of Y and there 

is presumably no reason to assume that the two sources (selections) 

influence each other's behaviour in any way. Thus, for any two 

independent ith points on the unit interval (0,1), there is only
2one corresponding ith point on the two dimensional unit square (0,1) .

2

Let us now consider a sequence of bivariate random variables

(X.,Y,),(X_,Y_),...,(X ,Y ) which satisfy our construction. Let 1 1  2 2 n n
their corresponding density functions be F^(x,y),F^(x,y),...,F^(x,y).

F (x,y) n
a. s -> F(x,y)

(in the limit)

But F(x,y) =
x y

r fj j
—00 —CO

f(t,s)dtds

(3.2.4)

(3.2.5)

From (3.2.3), we have (for X ~ uniform on (0,1), and Y ~ uniform on 

(0,1)) that

F(x,y)
fXfy
j .
0 0

f(t,s)dtds

which implies that

(3.2.6)

F(x,y) = xy (3.2.7)
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Hence

F (x, y) — — >• F(x,y)=xy (3.2.8)n J

=> F (x,y) — a'S > xy (3.2.9)n

Thus by our construction, (X,,Y.), (X_,Y_),...,(X ,Y ) is
1 1 2  2 n n

2"uniformly" distributed in (0 ,1 ) and we can therefore state that:

With probability 1

lim Sup |F (x,y)-xy| = 0 . (3.2.10)
n-x* (x,y )£ ( 0 , 1  ) 2 n

The above construction based on Van Zwet's (1978) splitting 

procedure can easily be extended to higher dimensions. We shall make 

use of the fundamental idea of the splitting process in separating 

points in 3Rn which we need for the development of our new resampling 

design. The Kakutani (1975) splitting procedure for the unit 

interval (0 ,1 ) serves only as a motivation for the development of our 

proposed procedure. We shall not split unit intervals or unit squares 

or unit cubes as done by Kakutani (1975) or Van Zwet (1978), rather 

we shall separate points within hypercubes by a rejection process.

3.3 The Proposed 6-Method

Our idea is to restrict the reference set S and sample randomly 

from the restricted reference set. The problem thus becomes one of 

simulation design. The idea of our design is to separate the members 

of the restricted set S' by a fixed amount 6 , where for points (in 3Rn),
(&) (m) r o .  (&) (m). . • i  x.  • o  n  i0) , 03 t S , o(oo ,00 ) is some simple metric on S. We make

use of the Euclidean distance.

Thus,
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*,,.(£) ,,(m) . 20 ( (jD , (jl) )
n

U) fl (m) 2 
i i

i=1

(3.3.1)

where the suffix i indicates the coordinate. Other metric could 

be considered as well. For instance, one could consider the r-norm 

metric:

6r(0)U) ,0) ( m ) [  j l / r ; r ? 1  _

'= 1 (3.3.2)

For the unbalanced (or randomized) version of the proposed 

method, which we shall call the randomized 6-method, we make use of the 

following algorithm in selecting distinct points in ]Rn.

(1) Choose a fixed interpoint spacing parameter, 6 .
( 1 ) n(2) Select a first point U) at random in ]R .

(3) Continue to draw points interdependently until for

some t and some s < t,

6 (0)(t) ,U)(S) )2 < 6 (3.3.3)

Reject any such point and continue sampling independently

and repeatedly.

Steps (2) and (3) simply mean that we choose the first point 

at random in the hypercube and create a 5-neighbourhood around this first 

point. Get a second point at random and check if this second point 

lies within the 5-neighbourhood of the first point. If so, reject it, 

otherwise accept it and also create a 6-neighbourhood around it. The 

process is then repeated for any new point randomly generated.

The spacing parameter 5, could also be changed either during
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the procedure or separately. The sketch below clarifies the 

selection/rejection procedure.

The larger the value of 6 the fewer the number of points to 

be selected. By the use of the spacing parameter 6 , the randomized 

6-method ensures that the points selected in ]Rn do not cluster 

together. But unfortunately, the selection process itself destroys 

independence which will make analytical results much more difficult.

An upper bound is placed on the total number of simulations (configu­

rations) and the procedure terminates when either this number is 

reached or a given number of unrejected (selected) points is found.

For example, we may take 1000 (= S) simulations to find just 100 (= S') 

"good" separated points in ]Rn. The method is equivalent to a



sequential random packing of spheres and is not unconnected with 

the idea of separating pieces of information in the theory of error 

correcting codes. The design of signaling system can be reduced 

to placing points inside a region of space while constraining them not 

to be too close together (see Sloane, 1984). On a similar line, we 

recall that one of the usual problems in sphere packing is to choose 

the centres so as to maximize the packing density. In our randomized 

6-method, we define (n,N,6 ,N̂ ) packing code as trying to drop N 

uniform balls (spheres) into an n-dimensional hypercube with a 

minimum packing (spacing) distance 6 , and getting  ̂N distinct 

balls actually packed in the hypercube. We repeat: Select

distinct points as possible from a total of N points in an n- 

dimensional hypercube while maintaining a minimum Euclidean distance 

of -/E between any two points. Note that the volume of the hypersphere 

of radius y (= 6 2) is

4 1

V
n/ 2  n it y

n,y n  n/2 + 1 )
f  TTn/2(̂ n/2

= r (n/2+1)

i . e V
n/2 on/ 2  TT 0

n , 5  T ( n / 2 + 1 )

1 0For a 10-dimensional hypercube [0,1] of unit length 9 the 

volume of the hypercube is 9^. If we let 6 = 20, then the volume 

of the hypersphere of radius -/20 will be approximately 1.36 x 10^.

It is observed that the rejection rate increases as 6 takes values 

greater or equal to 40. In the particular situation of 6 = 44,

N ' = 204 distinct points (spheres) are actually selected from N = 2000 

points. The selected number N' = 204 of distinct points is only just 

about 10% of the total number of points N = 2000. The volume of a
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10-dimensional hypersphere of radius -/T4 is approximately 7.02 x 10  ̂

and hence the total volume of 204 such hyperspheres is 1.43 x 101  ̂

which is surprisingly greater than the volume of the 1 0-dimensional 

hypercube of 9^.

The reason for this is that some of the points lie on the edge

or on the boundary of the hypercube and therefore have major part

of their volumes lying outside the hypercube. The distribution of

the coordinates for the N' = 204 selected distinct points for 6 = 44

as well as the coordinates for the N = 2000 points for 6 = 0 is given

below in Table 3. Clearly, there are more 1's and 10's than any
2other coordinate. The X “test for the null hypothesis that each co­

ordinate has equal probability of occurring in the distribution 

reveals that there _is significant differences between the coordinates 

of the N' = 204 selected distinct points for 6 = 44, while there is no 

significant differences between the coordinates of the N = 2000 points 

for 6 = 0 .  The distortion is corrected by "balancing" in section 3.5.

3.4 Coordinate-Data Matching Code

We consider points in IRn, n = 2,3,..., specified by n 

coordinates each taking values in [1,n]. The proposed 6-method 

considers only points with integer coordinates. This is however 

a restriction. Let us define a k-lattice S in n-dimensions. Thus 

we define

S = {(i1 ,i2 ,...,i^)|ij€(1,2,...,k), i = 1,2,...,n}

(3.4.1)

to be our reference set. Given a realized data set {x_,x_,...,x }
1 2 n

of size n and a point in S, our code is to match the jth element of



Table 3
Distribution of Coordinates of Selected Points

F R E Q U E N C Y
Coordinate N '=204 from N=2000, 5=44 N=2000 for 6 = 0

1 271 (+67) 1991 (-9)

2 208 (+4) 2081 (+81)

3 200 (-4) 2085 (+85)

4 177 (-27) 1982 (-18)

5 168 (-36) 1964 (-36)

6 139 (-65) 1934 (-6 6 )

7 190 (-14) 1972 (-72)

8 208 (+4) 2040 (+40)

9 191 (-13) 1975 (-25)

1 0 288 (+84) 1976 (-24)

Note: The values in parenthesis are the differences between 
the observed and the expected frequencies.
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the data set with the coordinate having the value j. For example, 

in ]R the ith point in S could be specified as ( , i1 ,i ,i ) . 

Using the matching code, we shall have the coordinates of the given 

point matched as:

*2
I

12
1 _ 

H- LD _
■rH X4

i+

X2

4-

X2 X1 X5

4-

X4

The new set { x ^ , x ^ rx ^ arising from the coordinate-data

matching in our illustration is a resampled set from the original

data set {x.,xn,x_,x.,x_}. Consequently, generating points at random 1 2 3 4 5
and transforming their coordinates leads to a resampling technique 

which is identical to Efron (1979a, 1979b, 1982) bootstrap resampling 

method. For instance, if we do a bootstrap of the given data set 

{x^,x^,x^, ,x^} we could have the resultant transformed coordinates 

(configurations) as follows:-

Sample Point

(x , x , x 5 , x 1 , x )

<X3 ' W X2 ' V  
(x ,x1,x2,x5,x5)

(1,1, 5, 1,1) 

(3,2,2,2,4) 

(4,1 ,2,5,5)

Applying the 6-method to this case, when 6 = 0, we have the 

standard bootstrap. For 6 > 0, we define the method as the 

Accelerated Resampling Technique (ART). This gives a reduced 

number of selected distinct points (configurations) in ]Rn from the
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total number of possible N = nn points that constitutes the reference 

set. When 6 = 1, we have a sampling without replacement version of 

the bootstrap.

Therneau (1983) considered a form of transformation linking

bootstrap samples (configurations) with sample proportions. Suppose,

we have a data set x = (x„,x^,...,x ) from a distribution function F
1 2  n

and we wish to consider the statistic T (=T(x)). Usually in the boot­

strap practice, F is unknown and it is simply replaced with the non-

parametric MLE estimate F which is discrete. Since F is the cdf
★  * * *

of X, then every bootstrap sample x = (x̂  , x^ ,...,xn ) is treated 
*as the pair (P ,X), where P is the vector of sample proportions.

For example, if a realized data set is x = (6 .4,9.1,9.9,8 .1,5.8 ) then 

some possible bootstrap samples from F along with their corresponding 

sample proportions could be:

*
x

(5.8 ,5.8 ,5.8 ,9.1 ,9.1 ) 

(9.1,5.8 ,9.9,9.9,6 .4) 

(5.8,8.1,9.9,9.1 ,6.4)

P

(0,2/5,0,0,3/5)

(1/5,1/5,2/5,0,1/5) 

(1/5,1/5,1/5,1/5,1/5)

* *
Thus, sampling x from F is equivalent to sampling P from

a multinomial distribution of t choices on n categories, which

would imply that

Prob{P =P}

t . ( 1 )
t

tp a vector of integerstp> UJ~ II

i

0 Otherwise
(3.4.2)
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However, there are difficulties in describing the bootstrap 

samples in terms of distribution because of the unequal weights attached 

to the different configurations. This difficulty is not present in 

our proposed 6-method. For instance, let us consider a situation 

where t = 3 and n = 3. Table 4 below gives the actual bootstrap 

configurations and the proportions along with the corresponding 

probabilities.

For a given data set x = (x„,x0,...,x ) the function which
1 z n

takes the point 03 in S into as explained in (3.4.1) we refer to as 

x(03) = (x (03) ,x (03) , . . . ,xn(03) ) . Thus in the usual bootstrap notation
•k

we would have x = x(03) .

3.5 The Balance Array Design

Instead of clinging to the idea of complete randomness in the

simulation procedure for the generation of the points in ]Rn needed

in our proposed ART, we shall deviate slightly and consider a Quasi-

Monte Carlo method that produces balanced array of coordinates of

the selected points. The new design is therefore called the Balanced

Array design. It can also accommodate the 6 spacing procedure.

The motivation for this new Balanced Array 6-method is to get a design

that gives low discrepancy (see Chapter 4) for the selected points on

which our estimates are to be based. We shall now consider a version of the

ART which produces balanced array of coordinates. This is first-order

balance (or simply balance). Let x = (x ,x , ...,x ) be the data set.

Let x(03) = (x. (03) ,x^ (03) , ... ,x (03)) be the vector of values for a given 1 2 n ^
point 03 G S. Define a general class of functions 

n
Y  t. (x . (03) )L  i i
i = 1

t (03)



4 7

Table 4

Configurations, Probabilities and Proportions of Proposed Method 
Compared with Therneau's (1983) Method, n = 3 ,  t = 3 .

Proposed 6-Method Therneau's (1983) Method
Configuration Probability P(distribution) Probability

(1 ,1 ,1 ) 1/27 (1 ,0 ,0 ) 1/27

(2 ,2 ,2 ) 1/27 (0 ,1 ,0 ) 1/27

(3,3,3) ir (0 ,0 ,1 ) 1/27

(1 ,1 ,2 )
(1 ,2 ,1 )
(2 ,1 ,1 )

ii
ti
ii

(2/3,1/3,0) 3/27

(1,1,3)
(1.3.1)
(3.1.1)

it
it
tt (2/3,0,1/3) 3/27

(1 ,2 ,2 ) 
(2 ,1 ,2 ) 
(2 ,2 , 1  )

ii
it
it (1/3,2/3,0) 3/27

(1.3.3)
(3.1.3) 
(3,3,1 )

ii
it
it (1/3,0,2/3) 3/27

(2,2,3)
(2.3.2)
(3.2.2)

it
ii
ii

(0,2/3,1/3) 3/27

(2.3.3)
(3.2.3) 
(3,3,2)

ii
ii
it (0,1/3),2/3) 3/27

(1.2.3)
(2.1.3)
(2.3.1)
(1.3.2) 
(3,2,1 )
(3.1.2)

it
ii
it
it
it

1/27

(1/3,1/3,1/3) 6/27
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More generally, ignoring the actual data set x we can write 

n
t (03) = ^  t^ (03̂ )

i=1

acting directly on S. The bootstrap expectation of t(03) can be 

written as

E - ( t ( 0 3 )  ) F ----  V  t  (03n n

where the summation is over all 03 in S. We can also define expectation 

with respect to a restricted set of configurations S' Q S:

Eg „ (t (03) ) = p̂- ^  t (03)
S '

We are interested in conditions under which

E~(t(03) ) = E , (t (0)) )r S

Definition: A set of configurations S' = {03^  ̂ . ,03̂ N is

said to be (first order) balanced if the quantities

M jk = # {1 03,
( i = j, i = 1,2,...,N'}

are equal for all k = 1,2,...,n, j = 1,2,...,n. HereM is actuallyjk
the number of j's in column k.

The common value of the M is M = N'/n.jk jk
If we arrange the points of S' as rows in an N' x n array 

then the condition merely says that each j = 1,2,...,n appears the 

same number of times in each column k = 1,2,...,n.
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The set of configurations S' is first order balanced if 

and only if

E-(t(OJ) ) = E .(t(W) )r o

for every choice of the functions t '2' , t

Proof:
Assume first order balance. Then,

E A t ( w )  ) - I  l  W
S' i=1 
n

NT I I
i=1 s'
n n

= iP [  [  Mijti(j) 
i=1 j=1

n n

= n [ [ V j)

- -  ' i  in . . . .1=1 3=1

n n
= —  Y  Y  t.(w.)n L, L, i i

n i=1 S

n n
E . (t (U3) ) = —  Y  Y  t. (U>. ) = E-(t(U)) )S n L. L. i i F

S i=1

Now assume that for fixed j
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t.(r) = 0 i * k1

i = k, r = j

0 otherwise

Then if E . ( t  (W) ) = E - ( t  (03) ) b r

we have

N x M.jk n

repeating this for all j and k we are done.

Notice that we suppress the data in our argument. In actual 

practical situation in the ART, balanced sets are generated in 

blocks of n samples so that within each block there is first order 

balance. Consider Table 5. This consists of 100 samples (configurations) 

each of size 10 made of 10 blocks. Observe that no digit appears more

than once in any column of a block. In fact, the entire (100 x 10)

matrix of Table 5 is simply made of 10 (10 x 10) matrices. The 

6-spacing is 6 = 25, is maintained across all the blocks but sampling 

is restricted so that balance is achieved by the end of a block.

If by any chance, the 6-separation rule is violated at a point within 

a block, the whole block is rejected so that first order balance is 

maintained. A practical way of generating the blocks and 

eventually constructing an (N' x n) balanced array matrix is the 

following stages. Here is the complete generation of a block for 

n = 4.

Stage 1:

For the purposes of illustration let us suppose that our 

first point is (4,1,2,2). We shall retain this point and generate

the first coordinate of the second point by choosing an integer number
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from {1,2,3,4}. If this first number is 4, reject it and choose 

another to replace it. If the first number selected is not 4, 

retain it and go to Stage 2.

Stage 2:
For the second coordinate of the second point, choose a number 

from (1,2,3,4,}. If this number is 1, reject it and choose another 

number. But if the number selected is not 1, retain it. So for 

the second stage we may have

4 1 2  2

reject

4 1 2 2

1 3 accept

Stage 3:
For the third coordinate of the second point, choose a number 

from {1,2,3,4} and retain it if it is not 2, otherwise reject it 

and choose another number to replace it.

Stage 4:

The fourth coordinate is generated in the same manner as 

described for the other coordinates above.

At the end of Stage 4, we may have our first two points to 

be

4 1 2 2

1 3 3 3

Stage 5:

For the coordinates of the third point, start by selecting
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the first coordinate from {1,2,3,4}. If this is 4 or 1 reject it 

and choose another to replace it. Treat the other coordinates 

in the same way by generating and checking with the corresponding 

coordinates of the first two points in the block. Coordinates for 

the fourth point are generated in the same manner.

Finally we may have our first block to be

4 1 2  2
1 3  3 3
2 2 1 4
3 4 4 1

Other points for the other blocks are then generated in 

the same way until the required number of points (configurations) 

is achieved. In a sense, this could be equivalent to first 

generating the points for each block and then mounting them on top 

of the other sequentially thereby forming the balanced array matrix.

It is easy to see that first order balance is maintained in each 

block. While generating the points of each block, the spacing 

parameter 5 could be introduced and maintained across all the blocks.

The above method of constructing balanced array matrices by a rejection 

rule on the coordinates of the points is obviously expensive. It is

cheaper if selection at each stage is made from only the integers 

actually involved. For example, in Stage 1, of the first block, 

we need only for the first coordinate (of the second point) to select 

a number from {1,2,3} and not from {1,2,3,4} since if 4 is selected, 

it will eventually be rejected. The same is true of the other coordinates 

of the second point. For the first coordinate of the third point of the first 

block, we only need to select a number from {2,3} and not from 

{1,2,3,4} which might lead to more than one rejection and so on.
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Clearly, by the time the last row of a b1ock is reached, it is 

completely determined. For example if n = 4 and we have generated

4 1 2  2
1 3  3 3
2 2 1 4

then the fourth point must be (3,4,4,1).

3.6 Estimates of Mean, Standard Deviation and MSE

The 6-method makes use of the following algorithm for 

estimating a parameter & of a distribution.

(1) for a data set X = (X„,X„,...,X ) from a distribution F1 2 n
(unknown), construct a nonparametric MLE F for F by putting

mass 1/n at X,, i = 1,2,...,n. i

(2) Select a point at random in ]Rn and regard the resultant 

transformed sample as a sample drawn with replacement 

from F and calculate a statistic

~ * *
$ = §(X. ,X_ ,...,X ) . (3.6.1)1 2 n

(3) All other selected points are independent repetitions of
~  ̂ *

(2), obtaining the replicates (statistics) & ,•& ,...,•8-̂ , .

For the estimate of the mean, we calculate
N'

= rrr ) (3.6.2)N l
i=1

For the estimation of the standard deviation, we calculate
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N'
9.STD

1

N'-1
r-* ~ ~ * o
L  <*i - a - > (3.6.3)
i=1

For comparing the boostrap sample results with the results 

obtained for the proposed ART, a useful criterion is the Mean Squared 

Error (MSE) of the estimators. Usually the theoretical population 

MSE is defined as

Ep[(9-9r] where ■8- is the estimate for

the parameter •9- and E is expectation,F
Now,

E [(9-9)2] = E f{ (9-E±,(9) ) + (E~(9)-9)}2]r  r  r  r (3.6.4)

which simplifies to

E [(9—9)2] = var-(9 ) + (bias)2 F F F (3.6.5)

where E (9) - 9 = bias. F (3.6.6)

If the true value of the parameter 9 is known, then the

observable MSE for ART (or the bootstrap) could be defined as
N'

MSE ■ r  Z  - V - 9) (3.6.7)
i=1

which simplifies to
N

MSE 1 t-1 ~ ~ ~ * o
= W7 L  (^i } + (3.6.8)

i=1

★   ̂ it ic 2i.e. MSE = var~(9. ) + (bias )F i (3.6.9
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* ★
where ■9- -9 = bias (3.6.10)

If on the other hand, the true value of the parameter 9 

is not known, we estimate it by 9 and then the observable MSE will 

be defined as

N '
~ * i c-1 ~ ~ o

MSE = — 7 ) (9. -9) (3.6.11)N l
i=1

which simplifies to

MSE = var(9. ) + (bias )̂  (3.6.12)l

where 9 # -9 = bias . (3.6.13)

In the balance array design, by Theorem 1, we always have
~ *

that 9. = 9  (estimates of the mean) and so we will always get
~ *

a bias of zero.

3.7 Example

A data set X = { 17.3, 9.6,33.8,10.4,24.0,13.0,15.0,21.8,16.6, 

17.2} of size 10 was taken at random from a certain test data set of 

size 90 (Rainfall in inches in Sacramento, California, 1854-1944, 

see Table 2.3, Alder & Roessler (1964)). The "true value" of the 

mean, y, is 17.9378 . For various values of 5 and various "length" N', 

sequence of points (configurations) were generated. The value of 

6 = 0  corresponds to the pure Monte Carlo (i.e. the standard bootstrap 

in this case). Table 6 contains the estimated results for the mean 

and standard deviation. The quantity F of the results in Table 6 is 

the sample cdf of the mean described above in §3.6. The graphs of 

some of these cdf's are in Figure 1. We considered both the Balanced
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Array and the Randomized Unbalanced 6-methods. The Monte Carlo simulation

(the standard bootstrap configurations) size is N = 2000 providing a

benchmark as a close approximation to complete numeration. For the cdf's,

the results given in Figure 1 are typical of a large number of results

obtained for all other examples tried in this work (which are however

not reported here for want of space). The best "fit" to the Monte

Carlo (standard bootstrap) with N = 2000 is provided by the Balanced

Array design with N' « N  for 6 > 0. They show more regular and more

uniform jumps (variations). For the simple bootstrap confidence

intervals in which tail areas are important, the Balanced Array with

6 > 0 always do very well by guaranteeing some points in the tails

(especially the upper tail). A rough recommendation is that for a data
2set of size n, a Balanced Array method of "length" n gives quite a 

reasonable fit. First order balance will favour results on the mean 

since the observable bias will be zero. The poor results from the 

unbalanced randomized 5-method are presumably due to edge effects of 

using Euclidean distance. However in all examples tried, results for 

the unbalanced randomized 6-method for 6 > 0 seem quite reasonable as 

well. A point of interest is that there is a very good gain in time 

and cost as a result of the cutdown of the number of configurations 

achieved by using the proposed ART. While, for the Monte-Carlo (the 

standard bootstrap) it took 24.424 cp seconds to generate points, trans­

form their coordinates and do the analysis for the mean, the standard 

deviation and the square root of MSE for N = 2000, it took 3.983 cp seconds 

to do the same by the Randomized 5-method (6=44) for N' = 200 and only 

2.260 cp seconds for N' = 100 for 6=52 and yet the cdf's in Figure 1 for 

the 200 and 100 selected configurations do comparatively well as the 2000 

Monte Carlo benchmark.

We are aware that many of the computation times could be 

lowered with more work on the sampling procedures in particular by
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by replacing the use of the NAG routine by "internal" random number 

generation. But we feel that the relative times given above are 

a good indication of the likely results. Furthermore the approach 

that maybe adopted is to store short codes for use in 

special problems - rather as an experimental design.

The choice between storage and generation of simulation codes points 

towards the need for much further work in the speed and "computability" 

of our methods.
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T a b l e  5

Example of
4 3 9 1 2 5 l A
7 7 3 9 4 4 2 8
1 1 1 3 7 9 3 9
9 3 7 3 7 7 1

10 3 6 4 6 7 10 5
6 10 7 6 3 6 9 2
3 9 8 a 1 3 A 10
3 a 4 3 10 1 8 4

6 10 10 8 10 4 7
8 4 2 2 9 8 3 3
7 3 3 1 3 5 3 3
4 2 3 4 1 9 9 7
8 6 1 3 7 8 8 7
9 10 4 3 7 7 3 1
3 8 7 9 9 1 10 4
2 7 10 8 10 4 1 10
1 4 5 6 8 A 7 3

10 5 9 7 4 7 7 5
3 1 6 10 6 10 4 6
6 9 7 7 3 3 A 9
3 9 2 4 9 3 3 7
4 7 7 9 8 2 2 4
1 3 6 7 7 3 1 3
6 6 1 10 10 9 7 2
2 8 8 3 3 7 4 1
3 3 3 1 8 9 9

10 -i 10 5 3 6 10 6
8 1 5 2 4 1 8 5
9 4 9 8 1 10 5 10
7 10 4 6 6 4 6 3
6 4 9 4 5 4 9 3
3 7 7 7 3 3 5 9
3 5 6 3 9 8 7 6
7 "> 5 6 10 10 10 3
4 3 -> 1 6 1 3 7
8 10 4 3 4 7 4 -1
1 9 10 10 n 3 1 10
7 6 8 7 1 9 7 1
9 1 1 5 7 6 3 8

1 0 3 3 9 3 2 6 4
7 6 8 2 3 1 5 4
8 8 9 9 9 3 9 8
2 10 1 6 3 3 A 2
3 2 7 1 2 4 a 9

10 9 4 10 1 8 10 5
3 3 3 3 4 A 3 10
1 4 1 0 3 6 9 7 7
& 5 3 3 1 0 7 4 1
9 7 n 4 7 10 1 A
4 1 6 7 8 7 3

BALANCED A

100 points in 10-di

code
3 l a 3 1 8
7 3 3 3 7 5
7 A 3 8 6
A 7 1 0 9 3
3 9 7 1 1 0 3

1 0 1 0 4 4 6 1
1 4 3 2 9 7
4 2 6 7 2 4
9 3 9 10 3 1 0
a 8 1 6 4 9
A 5 8 7 3 1 0
4 9 4 1 0 7 7
3 6 6 3 4 5
1 4 1 4 5 1

1 0 3 7 1 1 0 8
5 1 0 7 9 a 9
7 7 5 7 9 6
a 1 1 0 8 7 7
9 3 5 6 4
7 8 9 A 1 3
7 7 9 4 3 7

1 0 1 5 7 1 7
6 7 7 3 3 1
5 4 1 7 9 9
3 9 8 3 7 1 0
7 3 3 8 1 0 3
8 8 6 1 A A
4 3 4 9 5 4
1 1 0 7 6 4 a
9 6 1 0 1 0 7 3
4 7 3 1 0 8 7
7 7 4 1 3 1
6 6 3 3 6 7
3 1 0 1 0 7 1 0 4

1 0 1 3 9 7 8
9 8 A 7 4 9
5 3 2 3 3 6
1 9 1 8 9 10
7 4 7 6 7 3
8 5 9 4 t 5
7 3 4 4 n

1 0 3 3 a 3 1 0
1 1 7 7 4

3 7 A 3 1 3
5 7 8 2 9 A
4 6 7 l a 1
1 4 10 10 3 8
A 1 0 c? 6 6 7
9 3 9 9 10 9
3 9 7 3 4 5

METHOD

onal space with 6=25
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Results of the mean and standard deviation for the Monte Carlo (standard bootstrap, 6 =0), the 
randomized and the balanced array 6 - method. The true mean |i^ = 17.9378

Number of 
Simulations 
(Configurations) 
in the Reference 
Set

(N)

6

Number of 
Selected 
Configurations 
in the Restricted 
Set

(N ')

M E A N STANDARD DEVIATION

Randomized Balanced Randomized Balanced

2000 0 2000 17.9305 17.8700 2.2217 2.1541
1500 0 1500 17.9091 17.8700 2.2366 2.1787
1000 0 1000 17.9058 17.8700 2.2251 2.1769
900 0 900 17.9174 17.8700 2.1977 2.1936
800 0 800 17.9286 17.8700 2.1900 2.2164
700 0 700 17.8313 17.8700 2.1615 2.2106
600 0 600 17.8572 17.8700 2.1696 2.2143
500 0 500 17.9032 17.8700 2.1761 2.1783
400 0 400 17.9446 17.8700 2.1864 2.1902
300 0 300 17.9910 17.8700 2.1360 2.2150
200 0 200 18.0923 17.8700 2.1115 2.2015
2000 44 200

(204)
17.9864 1.9824

20 200 17.8700 2.2151
100 0 100 18.2284 17.8700 2.2482 2.2280

Table 6 continued...



Table 6 continued...

Number of 
Simulations 
(Configurations) 
in the Reference 
Set

(N)

6

Number of 
Selected 
Configurations 
in the Restricted 
Set

(N')

M E A N STANDARD DEVIATION

Randomized Balanced Randomized Balanced

2000 52 100 18.0818 1 .8801
(109)

25 100 17.8700 2.1567
90 0 18.3219 17.8700 2.2252 2.2562

2000 53 90 18.1754 1.9053
(99)

35 90 17.8700 2.1974
80 0 80 18.3466 17.8700 2.2301 2.2457

2000 55 80 18.1368 1.9585
(81 )

36 80 17.8700 2.2600
70 0 70 18.4510 17.8700 2.2334 2.2991

2000 57 70 18.1254 1.9520
38 70 17.8700 2.3238

60 0 60 18.4458 17.8700 2.2552 2.2670

Table 6 continued



Table 6 continued...

Number of 
Simulations 
(Configurations) 
in the Reference 
Set

(N)

6

Number of 
Selected 
Configurations 
in the Restricted 
Set

(N ')

M E A N STANDARD DEVIATION

Randomized Balanced Randomized Balanced

2000 58 60 18.3197 2.0023
(62)

38 60 17.8700 2.2476
50 0 50 18.2126 17.8700 2.1856 2.2524

2000 59 50 18.3210 1.9442
(54)

38 50 17.8700 2.2324
40 0 40 18.3328 17.8700 2.1954 2.3653

2000 63 40 18.1680 1.8992
38 40 17.8700 2. 1904

30 0 30 18.3073 17.8700 1 .8240 2.2593
2000 68 30 18.0490 1.9930

(31 )
40 30 17.8700 2.2976

20 0 20 17.9545 17.8700 1.6364 2.1565
2000 76 20 17.9295 2.0373

(21 )
45 20 1 7.8700 2. 1565

NOTE: The numbers in parenthesis are the actual numbers selected.
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Figure 1 :  C.D.F. of the mean. 5 = 0 is the Monte Carlo.
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Figure 1 continued... 63

(v)
(1) Randomized, N'= 100, 5 = 0
(2) Randomized, N=2000, 6 = 0

(vi)
(1) Randomized, N' = 100, 6 - 52
(2) Randomized, N = 2000, 6 = 0

(1) Balanced, N' - 100, 5 - 0
(2) Randomized, N = 2000, 6 = 0

(1) Balanced, N' - 100, 5 - 25
(2) Randomized, N=2000, 6 = 0
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C H A P T E R  FOUR

D IS C R E P A N C Y

4.1 Introduction

Many studies in the literature reveal that the pseudo-random 

number generators commonly used in the Monte Carlo method have poor 

distribution properties in spaces of many dimensions especially in 

cases where few observations are made in some complex situations.

We discuss the distributional properties of the sets (or sequences) 

of points at which the measurements of the statistical characteristics 

of interests are computed. There is a need to measure a quantity 

"discrepancy" which gives a measure of the lack of equidistribution 

(uniform spread) of the selected (distinct) points. Even spread 

of selected points gives low measures of discrepancy (see Zaremba,

1968). Of course one of the aims of the proposed ART is to spread 

out the points (observations) evenly and decrease errors in the 

quadrature. The success of this gives a guaranteed advantage over 

the usual Monte Carlo or indeed the standard bootstrap resampling 

procedures. In this chapter, we follow the approaches of Braaten 

& Weller (1979), Zaremba (1966, 1968, 1972), Halton (1972) and Warnock 

(1972) in which low discrepancy point sets are suggested for numerical 

integration as an alternative to direct application of the Monte Carlo 

procedure. There are various measures of discrepancy in the literature. 

We consider below a form of discrepancy which is adaptable to the

general bootstrap selection procedure.
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4.2 General Methodology and Computation of Discrepancy

Consider a finite sequence R = {r1 ,...,r^} of numbers 

contained in the interval [0,1]. One measure of discrepancy, 

denoted by D(R) of R, is the least upper bound for all the intervals 

I in [0,1],

|N 1V(I,R)-U(I)|

where V(I,R) denotes the number of elements of R contained in I and y(I) 

is the length of the interval. Thus D(R) in this case, is the measure 

of the lack of equidistribution of R over the interval [0,1].

For a more general consideration let us suppose that g is the distri­

bution of N points, not necessarily distinct, in the unit square 

0  ̂  ̂ 1 (i=1,2). For any point R = (r^r^) satisfying 0 < r^  ̂ 1

(i=1,2), let B(R ) denote the "box" consisting of all ii> = 

such that 0  ̂  ̂ 1 (i=1,2). Let r|[g,B(R)] be the number of

points of the distribution g that fall into the "box" B(R).

The function,

D(R)  ̂n[g,B(R)] - Nr .r (4.2.1)

is the measure of the irregularities of the distribution of the 

sequence of points at R. The irregularities of the distribution g, 

which is actually the local discrepancy, is measured in a number of 

ways by considering the behaviour of the function D(R). The above 

form of local discrepancy, D(R) does not lead to easy computation 

because the maximum discrepancy may not necessarily occur at any of 

the selected points of the box B(R).

For example, if we consider the three points P^, an^
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of the 2-dimensional sketch below. The overall maximum discrepancy 

for the three points may occur at P^F ,P or at the point P ^  

whose coordinates are the maxima of the corresponding coordinates of P̂  

and P^ or it may even occur at the boundary points: (x^,1) and (1,y^). 

This result can be generalized in an obvious way.

The situation is far worse in higher dimensions. A suitable 

form of measure of discrepancy considered for the bootstrap and the 

proposed ART is developed along the lines of Zaremba (1968) but for an 

easier analytical and computational treatment we adopt Warnock (1972). 

As in Zaremba (1968), let the domain of integration be a k-dimensional
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v (i.)cube, i.e. Q : 0 < U) < 1  i = 1,2 ,...,k and let

S (Rq , ^ .... r n} (4.2.2)

be any sequence of points of Q . Let V(R) with

D , (D (2) (k)R = (r ,r , . . . , r (4.2.3)

be the number of points of S in the k-dimensional interval 

0 ^ W {l) < 1, i = 1 ,2 ,...,k.

The function,

g(R) = N 1V (R ) - r ( 1] r(2) ... r(k) (4.2.4)

is the local discrepancy of S at R and the norm,

D ( S) = sup |g(R) 
REQk

(4.2.5)

is called the discrepancy or the extreme discrepancy. Furthermore, 

the norm,

T ( S) = 1 \ (g (R)) dR (4.2.6)

is the mean square (L ) discrepancy. Upper bounds in terms of either 

the extreme or mean-square discrepancy (i.e. D(S) or T(S)) are obtained 

for the error in the appropriate integration of g(R) over Q :

i.e. for
N-1

g(R)dR - N ^  g(Rj)
j=0



68

In fact, for the one dimensional consideration, Koksma (1960) proved 

that if the function f(R) has a finite total variation V(f(R)) over 

[0,1], then for any sequence,

RN ro'ri ' r N-1} (4.2.7)

of points of [0,1], we have,

N 1(f(r )+ ... + f ( r N-1)}-

1
»
f(R )dR

-
0

< V(f(R) .D(R ))N
(4.2.8)

Where V(*) is the total variation.

Hlawka (see Zaremba, 1972) extended Koksma's (1960) idea to an 

arbitrary number of dimensions. In particular for the two dimensional 

case, if

2 ) 1 )V = V (f(R)) + V (f(R,1)) + ( 1 )VV (f (1,R)) (4.2.9)

is finite and where V ( 1 ) and V (2 are one and two dimensional variations

R = {V r i ........ V 1 } (4-2- 10’

2is an arbitrary sequence of points of Q subject only to the condition 

that their coordinates should be smaller than 1, then

I f f (R) dR - N_1 ( f ( r ) + ... + f(r._ .)| < V.D(R) (4.2.11)J 0 N-1 1
Qk

The above bound was further extended by Zaremba (1966) to
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C f (R) dR - N 1 ( f ( r ) + ... + f(r . ))| < V(2) (f (r) ) .D(R)J 0 N-1 1
Q

+ V(f( 1 ,R))D(R(2)) + V(f(R,1))D(R(1}) (4.2.12)

where,

rk k = 0,1,2,...,N-1 (4.2.13)

(i) = {: (i) (i)
N-1 i = 1,2 (4.2.14)

and

f (r) f (r (1 ) (2 ). r ) (4.2.15)

There is already a large literature in Number Theory putting 

upper and lower bounds on discrepancy, D(S) as the number of points 

N ->• oo. For example Roth ( 1954) in his celebrated work gave a lower 

bound:

D(S) > C (k)(logN)2(k 1 } (4.2.16)

where k is the number of dimensions. Roth's (1954) bound is an 

improvement on Van Aardenne-Ehrenfest (1949) result of

D(S) > C (k) log log N 
log log logN (4.2.17)

Halton (1960) gave an upper bound of

k-1D(S) < C (k)(logN) (4.2.18)
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Schmidt (1972) gave a bound of

D(S) > C (k) log N (4.2.19)

The combination of Halton (1960) and Schmidt (1972) bounds 

for k = 2 yields

log N C .(k) < D(S) < C (k) log N (4.2.20)4 3

which shows that D(S) ~ O(logN).

Technically, from the basic definition and discussion so far, 

the local discrepancy (or the extreme discrepancy) is seen to be 

the difference between the empirical distribution function of the 

sequence and the theoretical distribution of the uniform distribution.

4.3 Computation of Discrepancy in the Proposed ART

Let our domain of reference be, say, a n-dimensional hypercube 

1 < S' < k, i = 1 ,2 , . . . ,n .

Let S = (w ,0) ,...,0) ). Our purpose is to approximate

an integral of a function f(») over a reference set S by the integral 

over a restricted set S' Q S, the integral being with respect to the 

uniform measure in each case. In what follows, N or N ' are the 

number of selected points for the sequence (reference set) S or for 

the restricted set S'respectively.
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Let us consider a k-lattice S in n-dimensions

S = ^(W1 ,a>2,... ,a)k ) |w. € ^1,2,... ,kj- , i=1,2,... ,k

(4.3.2)

Let S' Q. S. We can then define the "empirical distribution function" 

of S 'as

Vp ,((J) = p  # -j j | j £ S ' ,  Oh  ̂ j. i = 1 , 2 , . . . , nl l
(4.3.3)

V <u) = iP L
j£s' h ',!

4.3.4)

where [j,1 ] is the shorthand notation for the closed rectangle,

(n | j  ̂Tl < 1 , i = 1 ,2 ,... ,n}

For S itself, we may evaluate Vg(U)) as

V (to) = —  II 0). S . n ik i= 1
(4.3.5)

Vg(W) is the c.d.f. for the uniform distribution on S. The local 

discrepancy of S' at 0) is defined to be

g (co)

l . e .

7 ! ni ( o ) ) --- nL
jGs' [ j,1] kn i=1

(w) - VS(M) .

(4.3.6)

(4.3.7)
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The discrepancy (or the extreme discrepancy) is

D(S') = sup |g(W)| (4.3.8)
u£s '

and the mean-square discrepancy is

T(S') = [ jp £  (g(03) ) 2 ] ̂ , (4.3.9)
u£s'

00 2(4.3.8) and (4.3.9) are simply the L and L norms with respect to

the uniform measure putting mass N ** = k n at each point of S. It
,2 2is easier computationally, to consider T(S ) (orN T (S )) and this is 

what we shall do shortly.

Let us define,

e = £  f(U)) - ^ £  f((D) . (4.3.10)
o£s' u£s

Following Theorem 1 in §3.5, (4.3.10) in effect means that £ could 

be written as

e = E ,(f(U») - E (f(0») 4.3.11)

We shall obtain a bound on |e| depending on (i) T(S') and its lower 

dimension projects and (ii.) assessment of the variation in f.

Let us define the backward and forward difference operators on 

a particular component Oh for any function V(w) on S respectively as

1 -A = V(W1 ,U)_,.. ,ol , . . . ,w ) - V(0) , . . . ,co.-1 , . . . ,w ) (4.3.12)
00. 1 2 i n 1 i nl

A1+ = V(U)_ ,U)„ , . . . ,U). + 1 , . . . ,(0 ) -v( 0J ,U)„ , . . . ,03. , . . . , U) )
0). 1 2  i n 1 2  i n

i

(4.3.13)
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More generally, let T(h) be a subset of size n of components 

of 03 and then let us define

h
(h) v tx).W.ET(h) 1l

(4.3.14)

(4.3.14) is simply the difference analogue of the n-fold partial

derivative ~ ~ —  where co. ,0)., . . . ,ET(h) (see Zaremba, 1972). In 3o).3o). i 3
1 3

general, let us define S(T(h)) c s as the sublattice with 1  ̂to < k

for to.ET(h) and to. = k, to.ET(h). Let IJ(to) and V(to) be functions i i r
defined on S (with zero entries adjoined) for which V(to) = 0 if any

Oh = 0 and V(k,k,...,k) = 1. Then Ogbonmwan and Wynn (1985) give

the general relation

S' U(to) An V (03) L  w
coEs

L
h=1

(- 1 ) I  I Ah+u(w)v(tjo:
T(h) wE S(T(h ))

(4.3.15)

We can apply (4.3.15) to our particular problem in which
2U = t(x(io)) and V = g(w). Define the L (unnormalized) discrepancy 

of g(U)) for the sublattice S(T(h)) where n = k as

W(T(h))
l 9

(JOE'S (T (h) )

By taking the modulus of (4.3.16) 

inequality we have the following:

(4.3.16)

and using the Cauchy-Schwartz

THEOREM 2:

Let S' ^ s and define the local discrepancy as in (4.3.16).
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Then for a (bounded) function t on S,

£
n

J _
nn L
k= 1

£  W(T(h)) 
T (h)

L T(h) t(x(U)))
,2 -i 1

2

u£s(T(h))
(4.3.17)

The full proof of the above theorem is given in the Appendix.

(4.3.17) expresses the error in the "bootstrap" estimation of t(x(w)) 

over S' rather than S. An obvious consequence of (4.3.17) is that 

if we know that the variation in t(x(U))) is small in the sense that 

AT(h)t(x(w)) is small for larger values of h, we can reduce the error 

by making the W(T(h)) small for smaller values of h. As a consequence 

we could therefore extend W(T(h)) to

W(T(h) V
L (g(w))
u£s(T(h))

(4.3.18)

The only difference being the inclusion of the terms with Ob = k

rather than w. < k (for U).ET(h)).i i

Definition: A reduced reference set S' ^ S (n=k) is called kth

order balance if W(T(h)) = 0 for all T(h) with h = k

An obvious conclusion from the above definition is that if 

W(t(h)) = 0 for all T(h) with h = k, then W(T(h)) = W(T(h)) = 0 for 

all 1  ̂h  ̂k. Thus our definition of kth order balance is enough 

to make all the kth order and lower order terms zero in (4.3.17).

Hence, geometrically kth order balance means merely that every k- 

dimensional projection of the S' sequence is uniform on the grid 

S(T(h)). Our special interest in this work on discrepancy will again 

be first order balance which turns out to be a valuable property
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(see Chapter 3). In effect, this means that each component at
N'

( 1 < i  ̂n) take the values 1 ,2 ,...,n the same number of times —n
in every entry. This is perfectly in line with our earlier discussion 

on first order balance which is summed up in Theorem 1.

Now, let us redefine the mean square discrepancy of the 

k-lattice S in n-dimensions as:

T(S') = N
n n

r  2^  (g(ui) ) 
i= 1

(4.3.19)

which implies that

(S') = N ' 2 -L £  ••• £  (g(OJ) )
i= 1 i= 1

(4.3.20)

In which case, our measure puts mass —  at each of the grid points
kn

of S.

Thus,

t 2 (s ') = N , 2
k
V
L

k
£  (g(u3))2

0) =1 k

Writing g(0)) as

g(0)) = N '
l

n
n h (o).-y
i- 1  1

.)mi

where H(0J) is the Heaviside function, 

H(0)) = 0 if 0) < 0 .

n
II a). „ i

with H (OJ)

(4.3.21)

(4.3.22)

1 if 0)  ̂0 and

From (4.3.22), we get
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(g (0)) ) = N
N' N'

r
- 2 1

m= 1 q= 1 i= 1

/ n H(0).-Y ) H ( 0 ) . - Y  )
L j i mi 1 qi

N'
- 2N . i ^  2

) n a). h (u) . - v  ) + ( n a) .) ( 4 . 3
L> i i  mi . _ 1 i
m= 1 i=1

This implies that,

N' N'
N ' 2 (g (03) ) 2 y y n h (o).-y . )h (o).-y .)

U  U  1 mi l qi
m= 1 q= 1 i= 1

n 2 n 2 
-  2 N '  ) II 0 ) . H ( U ) . - Y  ) + N '  ( II 03.) ( 4 . 3

L, i i mi . . 1. . . i=1

Hence,

2 2N T  (S')

- 2N

which implies that

2 2 1 N' T (S') = —

m= 1 i= 1

k k N' N'

I ” • i  [
r
L

V
L

V 1 V 1 m= 1 q= 1

N'r-1 n
l n 03. H (03. - 

1 l Y . ) mi
m= 1 i= 1

k k N' N '

■ I  [ l
V
L

v 1 II3 m= 1 q= 1

qi

i= 1
(4.3

II H (03. —Y . ) H (03. — Yi mi i qi

- 2 .* —— • N' S  • • •
kn L

03 =1 03 =1 m=1 i=1
1 k

k N '
Y  [ y  n  0 3 . H  ( 0 3 .  — Y  
L  \ _ L  i i mi

N ' 2+ -- 7... y r ( n \
n 03. 2 1

k11 L L L 1 1 ; _ (4.3
03 =1 03 =1 i=1

1 k

.23)

.24)

.25)

)

.26)
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Simplifying we get

k k N' N '

7 . ..7 ri 7 7 n
n H (Cx). —Y . )H(0).

L L L L, L i mi i

V 1 ii3 m= 1 q= 1 i= 1

k k N ' N '
1

kn ' I • •• I
=1

rL V  nI  n (cp)
V 1 \

m= 1 q= 1 i= 1

= H (CO.-Y .)H(U).-y .)i mi i qi

= 1 if w. max (y . ,y .)l mi qi
= 0 otherwise .

E w
v 1

k-max(y . ,y .) + 1mi qi

k N' N '

GO =1 0), =1 m=1 q=1
1 k

F (<P) = ^ (k- max(Ymi': . . . . . . .  i= 1 k i=1

N' N"

N' N'
_ r~ L
m= 1 q= 1

^  ( 1 + Z ~ ^  ( Y _ ,  , Y _ .  ) )JL _ max
k k ' 'mi ' 'qi (4.

Simplifying the second term of (4.3.26) we have,

kn ^
IT ) aj.H(0).-y .) 

L, i i mi
n

= n
i=1 00. =1 i i=1

' -+ ( Y  •+ I 'mi mi k +  1 )

Let n = ky .mi

y . ) + i)qi

3.27)
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then Y . + (Y . + — ) +mi mi k + 1 = k (T̂+^ +1 ) + - * *+k)

1 fk(k+ i) _ (n- i )n .
k 2 2

1 2 , 2 .—  (k +k-n +n)

Hence we have,

k N '
- 2  • —  • N' V  ••• Y f Y n a).H(0).-Y .) , n L. \_ L, i i mi

w =1 ai =1 m=1 i=11 k

-n+1 T  1 ,, 2 , 2 ,= -2 • N ) —  (k +k-n +n)
1 k  m=1

m=1

- 2

= -2

—  • N 
kn

-n+ 1

= -2 -n+1

= kY . we mi get

k k N '

V  ... r r V  n 
L L  nL L

V i V 1 m= 1 i= 1

N'
N ' • r

L

n
n

(-*
m=1 i= 1

N
n (N ' • [ n

m=1
\

i= 1

N
■ 2 - n + 1 • N

i i mi

1 k Ymi Ymi ' 
k -  k2 + k ,

Y ■2 miY ■ +mi k

l

Y  . +1 \ , 2 mi A
1 - Y  • + — ,—1 mi k (4.:

m= 1 i= 1

.28)
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.21

Simplifying the third term of (4.3.26) we have by using
k(k+ 1 ) (2k-H ) 

6
that

N 2

kn
r  r
L

n
n
i= 1

>,2-
0).1 J J

= N , 2  f k(k+1 ) ( 2k+'l ) 
" 6k3

(4.3.29)

Hence substituting we have, (4.3.26) to be

N' N '
2 2N'T (S') ■ I  I n d+ £k

m= 1 q= 1 i= 1

max(y ,y )) mi qi

N

-I
Y . +1, 2 'mi

1 - Y  • + — z—mi k
m= 1 i= 1

+ N ,2 k(k+1 )(2k+1 ) 
6k3

(4.3.30)

With k = n, we obtain the square discrepancy for the nn grid.

For pure Monte Carlo, the y are all independent randommi
variables uniformly distributed on {l,2,...,k}. Explicit computation 

of the expectation of (4.3.30) yields

e (t2(s ) ) _l  r r nN' L l 2 J
l
3

n c
1 +

V

3
2k

1
J

(4.3.31)
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In the continuous case (as k “ ), we obtain E(T (S')) to be

n nr * \1 r f i )  - '  1 '
N' L 2 J l 3 J (4.3.32)

1 1which is formula (2i) in Halton (1972). In (4.3.32), the — and ——
k k2

terms arise from the discrete nature of the present problem. We 

note that when n = k and n -> °° in (4.3.32),

E(T (S') _l
N (4.3.33)

which shows that the discretization persists as the same size increases.

When Monte Carlo is carried out which is pure randomization except
2for the first order balance constraint again E(T (S )) can be explicitly 

evaluated. This follows since max(y .,y .) has a distribution whichmi qi
can be evaluated and the different components ŷ ,y_. remain independent.

Thus we model this sampling by saying that y ,y are sampled withoutmi qi
N'replacement from a list of strata with —  m  each stratum. For this

sampling we obtain

E(T (S' N'
\ n C

v

n
y 3

n n

y

r
1 +

v 2k
1 1 

2 ( N '-1 ) + (N '-1 )

for k > 1 this is le s s  than  the pure Monte Carlo value given in 

(4.3.31). We now summarize this as:

THEOREM 3:
2The expected square L discrepancy for first order balanced 

Monte Carlo is less than for pure Monte Carlo in every dimension greater
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than one.

Although the improvement is small for large N' the above 

Theorem 3 gives a rationale for using balanced sequences rather 

than unbalanced.

In Table 7, we give the raw discrepancy using equation (4.3.30)

for various numbers of selected points (configurations). Surprisingly,

the Randomized 6-method for 6 > 0, did not do so well. But the

Balanced Array 6-method, for 6 ^ 0 ,  gave excellent results which are

very much better than the results obtained from the straight Monte

Carlo or the standard bootstrap procedure. Figure 2 gives the

comparative plots of the raw discrepancy for the Balanced Array 5-method
2

versus the Monte Carlo. The -/e (T (S')) is for the values got using
2

(4.3.28). These values of ■/ E(T (S')) seen to be higher are perhaps
2 Ipartly due to the inequality of (E(T (S' ) ) ) 2 > E(T(S')). These results 

for t/e (T (S')) had to be used because of the difficult analytical 

problem of evaluating E(T(S')) directly. This is not an unusual 

approach. Warnock (1972) adopted the same approach for the comparative 

studies of the various low-discrepancy sequences. In figure 2(iii) 

which looks rather crowded, we tried to accommodate the discrepancy for 

various sizes of "configurations" contained in Table 6 . Clearly, 

we observe that as the number of points (configurations) increases, the 

discrepancy decreases. For very large number of points, say 

N' ^ 1000, the discrepancy tend to agree for all the methods adopted 

in this work. This is not true of small number of points as 

also shown in figure 2(i) and 2(ii). For our range of interest 

[50  ̂N' < 200], we observe that the 6-method, especially the Balanced 

Array 5-method with 6 ^ 0  does very well giving low discrepancy for 

relatively small numbers of configurations. In comparing the methods 

adopted, it is not so much the vertical difference in T(S') at a given
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N' that is very important, but the number of points (configurations)

required to give a given T(S'). The plot of figure 3, that is,
2N'T (S'), is highly recommended. The relative heights of the curves 

give a rough estimate of the efficiency of the different methods over 

the range of interest [50-200] recommended for the proposed ART 

rather than the usual  ̂ 1000 common in bootstrap experiments. For 

the cases considered here, the Balanced Array 5-method, with 5 ^ 0  

gives a relative improvement of about 25%. In chapter 3, a value 

of N = 2000 points, was set as our benchmark for the straight Monte 

Carlo (standard bootstrap, 5= 0 ) .  Suppose is the empirical 

cdf for computed N bootstrap means for a reference set S. Let F ,

be the emperical cdf for N'means for a restricted set S'. We define

the "Emperical Bootstrap Bias" of the cdf as

_£  ̂  ̂ __£
EBB ,(x ) = max IF (x ) - F , (x )I (4.3.34)N 1 N N 1

_*EBB^.fx ) gives an indication of the measure of the "error" in using 

F , as an estimate of F^. Figure 4 gives the plot of EBB of the 

cdf's versus the corresponding discrepancies for various values of N'.
_"k

The general trend, is that the larger the EBBN ,(x ) of the approximating

density function, the larger the discrepancy of the approximating

restricted set S'. Thus there is a rough linear relationship between 
—*

EBB^.tx ) and discrepancy. Again the Balanced Array 5-method provides
_*the least values of EBB„, (x ) which gives another clear indicationN

of its good performance as a reasonable resampling design.



T a b le  7

Com puted D is c r e p a n c y  f o r  C o n f i g u r a t i o n s  i n  1 0 -D im e n s io n a l Space

Number of 
Simulations 
(Configurations) 

(N)

6
Number of 
Selected 
Configurations 

N'

D I S C
T(S')

Randomized

R E P A N  
x 1 02 

Balanced

C Y

/E(T2(S')

N 'T2(S 

Randomized

) x 1 02 

Balanced N' (T2(S')
1 2000 N 

Randomized Balanced

2 0 0 0 0 2 0 0 0 0.1097 0.1069 0.1109 0.2407 0.2285 0.2461 0 . 0 0 0 0

\]500 0 * 1500 0.1184 0.1182 0.1281 0 . 2 1 0 2 0.2095 0.2461 0.0108
1 u O ■ 0 1 0 0 0 0.1392 0.1422 0.1569 0.1938 0 . 2 0 2 2 0.2461 0.0155 0.0280
900 0 900 0.1470 0.1498 0.1654 0.1945 0 . 2 0 2 0 0.2461 0.0146 0.0301
800 0 800 0.1576 0.1557 0.1754 0.1987 0.1939 0.2461 0.0230 0.0275
700 0 700 0.1728 0.1686 0.1875 0.2090 0.1989 0.2461 0.0229 0.0300
600 0 600 0.1838 0.1876 0.2025 0.2027 0 . 2 1 1 2 0.2461 0 . 0 2 2 2 0.0323
500 0 500 0.1941 0.2078 0.2219 0.1883 0.2159 0.2461 0 . 0 2 0 0 0.0370
400 0 400 0.2253 0.2359 0.2481 0.2030 0.2226 0.2461 0.0250 0.0390
300 0 300 0.2637 0.2565 0.2864 0.2086 0.1974 0.2461 0.0382 0.0565
2 0 0 0 2 0 0 0.3185 0.3171 0.3508 0.2029 0 . 2 0 1 1 0.2461 0.0580 0.0505

2 0 0 0 44 2 00
(204)

0.3568 II 0.2546 It 0.052

20 2 00 0.3053 II 0.1864 II 0.0355
1 0 0 0 1 0 0 0.4399 0.4482 0.4961 0.1935 0.2009 0.2461 0.0770 0.0630

2 0 0 0 52 1 0 0
(109)

0.4725 II 0.2232 II 0.0940



T a b le  7 ( c o n t ' d . . )

Com puted D is c r e p a n c y  f o r  C o n f i g u r a t i o n s  i n  1 0 -D im e n s io n a l Space

Number of Number of D I S C R E P A N C Y N' T 2(S') x 1 02
Simulations
(Configurations)

6 Selected
Configurations

oXini— MaX|F0^-FM'1 2000 N 1
(N) N' Randomized Balanced /e(t2(s') Randomized Balanced N' CT2( S') Randomized Balanced

25 1 0 0 0.3963 0.1570 II 0.0510
90 0 90 0.4451 0.4077 0.5230 0.1783 0.1496 0.2461 0.0903 0.0708

2 0 0 0 53 90 0.4727 II 0 . 2 0 1 1 II 0.1047
(99)

35 90 0.4027 II 0.1459 It 0.0614
80 0 80 0.4658 0.4420 0.5547 0.1736 0.1563 0.2461 0.1025 0.0695

2 0 0 0 55 80 0.5220 II 0.2180 fl 0.0870
(81 )

36 80 0.4194 II 0.1407 II 0.0670
70 0 70 0.4926 0.4615 0.5930 0.1699 0.1491 0.2461 0.1364 0.0741

2 0 0 0 57 70 0.5602 II 0.2197 l l 0.0799
38 70 0.4644 II 0.1510 II 0.0741

60 0 60 0.5396 0.5109 0.6405 0.1747 0.1566 0.2461 0.1317 0.0787

2 0 0 0 58 60 0.5828 II 0.2038 II 0.1338
(62)

38 60 0.4848 II 0.1410 II 0.0845
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Com puted D is c r e p a n c y  f o r  C o n f i g u r a t i o n s  i n  1 0 -D im e n s io n a l Space

Number o f
S im u la t io n s
(C o n f ig u r a t io n s )

6

(N)

Number o f  
S e le c te d  
C o n f ig u r a t io n s  

N '

D I S C R E P A N C Y  
T ( S ' )  x 102

Random ized B a la nced  / E ( T 2( S ' )

N'T2(S') x 102

Random ized Ba lanced

50 50 0 . 6 0 0 5  0 . 5 7 3 2  0 . 7 0 1 6 0 . 1 8 0 3 0 . 1 6 4 3

Max F2000
N'(T2(S') Randomized B a lanced

0 . 2 4 6 1  0 . 0 8 5 0  0 . 0 9 2 0

2000

40

59

38

0

50
( 5 4 )

50

40

0 . 6 3 0 9

0 . 7 1 3 4

0 . 5 4 3 2

0 . 6 0 1 4 0 . 7 8 4 4

0 . 1 9 9 0

0 . 2 0 3 6

0 . 1 4 7 5

0 . 1 4 4 6

II

II

0 . 2 4 6 1

0 . 1 7 0 5

0 . 1 1 5 0

0 . 0 9 4 5

0 . 1 120

2000

30

63

38

0

40

40

30

0 . 6 6 0 8

0 . 7 7 5 4

0 . 5 7 8 9

0 . 7 1 7 7

II
II

0 . 9 0 5 8

0 . 1 7 4 7

0 . 1 8 0 4

0 . 1 3 4 1

0 . 1 5 4 5

II

II

0 . 2 4 6 1

0 . 1 3 2 5

0 . 1 6 5 0

0 . 0 9 1 0

0 . 1 012

2000

20

200 0

68

38

0

76

45

30
( 31  ) 
30  
20

20 
(21 )

20

0 . 7 8 6 5

0 . 9 7 7 3

0 . 9 6 3 6

0 . 6 7 5 3

0 . 8 5 8 8

0 . 8 5 8 8

1 . 1 0 9 4

II

0 . 1 9 0 3

0 . 1 9 1 0

0 . 1 8 5 7

0 . 1 3 6 8

0 . 1 4 7 5

0 . 1 4 7 5

II

II

0 . 2 4 6 1

II

II

0 . 0 9 4 3

0 . 1 5 0 5  

0 . 0 7 6 0

0 . 0 9 1 0

0 . 1 1 7 0

0 . 1 1 7 0

M7EE: The numbers in parenthesis are the actual numbers selected.
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Figure 3: N'T (S') versus number of configurations in 10-dimensions. 
(T(S')) = Discrepancy)

Randomized, 5=0; Balanced Array, 5=0, Balanced Array,5^20
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Figure 4: Graph of the emperical bootstrap bias of cdf versus the corres­
ponding discrepancy for the same number of configurations

Note: A A A A A A  Randomized, 6=0; O O O O O O  Balanced Array, 6=0;
****** Balanced Array with 6^20
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C H A P T ER  F I V E

G E N E R A T IN G  L IK E L IH O O D

5. 1 Introduction

In this chapter, we discuss a new application of the 

bootstrap procedure for the construction of a likelihood, L(8-), 

of a parameter 8-. Essentially, we try to combine the resampling 

ideas of Chapter 2, especially the bootstrapping ideas to create 

likelihoods with which to do statistical inference. The likeli­

hoods can be used to construct confidence intervals in situations where 

the underlying density function of the population from which the 

observed data set is taken is unknown. The method provides an 

alternative to the exact methods of inverting permutation tests 

such as the methods of Hartigan (1969), Tritchier (1984) and others.

The ideas of our technique has connection with the work of Diggle & 

Gratton (1984), who used Monte Carlo methods to generate likelihood 

where the underlying probability density function f(x, 80 is unknown 

but where the random variable X can be generated using a well 

specified random mechanism. We shall use the observed data itself

to generate the likelihood. The detailed descriptions of the steps

of our method shall be given shortly and the theoretical justifications 

are given in §5.2. The smoothing step is discussed in §5.4. Our 

smoothing step is a mixture of parametric and nonparametric statistical 

procedures. In this step, a knowledge of the underlying distribution 

of the statistic T, is assumed. Examples are considered in §5.7.

The example on regression demands much repeated bootstrapping for 

various values of "8-" to generate the normalized likelihood, l (8 0 .

For such complex situations, the proposed ART should serve as a ready
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tool. The work of Diggle & Gratton (1984) on curve smoothing in 

density estimation combined with the work of Tritchler (1984) on 

inverting permutation tests provides some theoretical justification 

for this section of the work. Diggle & Gratton's (1984) approach is 

to estimate the log-likelihood function from simulated realization for 

an implicit model. It is worth recalling the basic steps taken in 

their approach:-

(i) Generate data y , i = 1,2,...,n as an independent 

random sample from a distribution with probability density function, 

f(y) - exponential in their case.

(ii) For each chosen &, simulate an independent random 

sample x , k = 1 ,2 ,...,n from an appropriate distribution.

(iii) Use a kernel method to estimate each f(y,$) from

the simulated x, and construct an estimated log-likelihood: k

n
L*($) = £  I n  f(y.,&) (5.1.1)

i= 1

We list below the main steps of our proposed data based 

methodology for the generation of likelihood.

(1) The Data: The data will usually consist of a realized

sample X^,X^,...,X . The X^'s , i = 1,2,...,n may be vectors but 

for the moment let us consider them to be real numbers. The under­

lying distribution, F, of the random variable X from which the 

random sample X^, i = 1 ,2 ,...,n is taken is unknown.
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(2) The Statistic: For any set of values x„,x„,...,x , we— ------------- 1 2  n
consider a function (statistic) possibly vector-valued, T(x.,x_,...,x )

1 2 n
(= T(x)). The choice of the statistic T will be problematical but 

crucial to the development of the entire technique.

(3) The Transformation: We shall assume that we have a family

of transformations of the realized data set indexed by a parameter.

Thus if,

x (x ,x, ' V
T (5.1.2)

then we can write

y (y, >y1 ' 1 2' = v*: (5.1.3)

In such a situation, y would usually be an  n x 1 vector. An example 

could be

y . = x . —9- i i (5.1.4)

where 9- is a real valued number. This could be the special case 

of shift parameter problem and it will usually be convenient if 9- = 0 

that

= ? (5.1.5)

namely the identity transformation.

(4) The Resampling Step: This will be the point where a random

component is introduced. The resampling procedure we adopt is the 

bootstrap. The ART, could also be adopted. By putting mass 1/n at each

point y^ , i = 1 ,2 ,...,n do a bootstrap of the y , i = 1 ,2 ,...,n values
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and for each bootstrap sample compute T(y^ ,y , ...,y ) where *

signifies bootstrap values.

(5) The Smoothing Step: This step involves the smoothing of

a discrete set of values to produce a histogram or a smoothed histo­

gram. By the kernel density estimation procedure, calculate an 

estimator f(11*9-) from the T values in step (4).

(6 ) Evaluate f (11 -9) at t = T(y) to obtain L(-9-) = f (t _ I -9-) .
1 o O'

Thus, f (tQ | -9-) is our likelihood. From it we estimate the normalized 

likelihood version (by a numerical integration approach) for each 

value of -9- and finally get the distribution of the normalized likelihood. 

More details showing the connection of Steps 5 and 6 in our proposed 

technique with the general kernel density estimation are given in 

§§ 5.4 and 5.6.

We explain the method in more detail.

Suppose that the data sample consists of the values 

X ,X , ...,X . Let ga(x) be a family of transformations where we 

suppose for simplicity that 9- is a real number. We shall choose -9- 

and generate

g (X) = Y = (Y ,Y ,...,Y ) (5.1.6)v ~ 1 Z n

From the transformed random sample, Y_,Y_,...,Y , we can
\ z n

construct the emperical cumulative distribution function, for the 

discrete distribution which attaches probability 1 /n to each of

Y , Y , . . . , Y .
1 Z n Call this
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VY) = n # 1 V  Y (5.1.7)

Since x^,x ,...,x^ are the observed (realized) data set 

and •9- is chosen deliberately, F^(y) is therefore known, that is 

V Y) can be computed.
■k

Let T(x.,x_,...,x ) be a univariate statistic. Let Y be 
1 2  n

★
a random variable with distribution Fg.(y) and consider T(Y ).

~ * Since F^(y) depends on so does the distribution of T(Y )

and we can then write

T(Y ) ~ f (t,$) (5.1.8)

Now f will invariably be discrete and we shall simply replace it 

by the smoothed version, namely . At this stage any of a

variety of smoothing methods might be used. The kernel density 

estimator is our choice of smoothing procedure and we use it through­

out in this work. Notice that although f (t,9-) is well defined,

it may be difficult to compute if n is large. So for such large n,

we shall resort to the use of the bootstrap approximation obtained 

by repeated Monte Carlo sampling from F^(y).

Now f (t,^) is our density from which we may obtain a likelihood 

in the following way:

Let t = T(y) be the value of t for the transformed observed 

data set Yi'***'Yn*

The likelihood for -9- is

l W  = fT(t0,&) (5.1.9)

A simplified method of constructing a likelihood, L(&) without smoothing
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*
all of f (t,&) is to merely do a count of the number of T(Y ) from 

the bootstrap (Monte Carlo) or complete enumeration lying in an 

interval [t^—E,t +€] around t^ and put

L($) = ^ • Nc (5.1.10)B t

where B is the number of Monte Carlo (bootstrap) samples. L(-9-) is
*

thus the proportion of T(Y ) that lie in [t^+6 ]. Note that

B = nn (5.1.11)

for a complete enumeration.

For this work, we shall simply call the above method, the

bootstrap version. If the resampling from F^(y) is replaced by
*

other distribution for Y based on Y, we shall get other versions.

For example, if y runs over all 2° values (±y^,±y ,±...,±y ) we can
:ktake the distribution for Y to be uniform in y. withl

ProblY =y . ) = _L (5.1.12)
2 "

This will be the case when the distribution of Y is assumed to be 

symmetric about the origin.

In general, the sketch diagram of our proposed method is as

follows

* *
X~F --- y g^(X)=Y --- y T(Y ) -- y f ( ̂  | &)-»-L(-9‘)

t =T(Y)
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5.2 The Two Sample Problem

We shall now consider the two sample problem as a test case 

for our discussion. Suppose we have two data sets (original data 

sets) of

X ,X_,...,X and Y ,Y ,...,Y
1 2 m 1 2 n

which when combined yields

Z = (X ,X ,...,X ;Y ,Y_,...,Y )
1 2  m 1 2 n

Calculate the statistic of interest. For example, let us consider 

the statistic

t =
m

L V ™
i=1

l  V"
j= 1

(5.2.1)

t is simply the difference of means of the two samples X„,X_,...,X
1 2 m

and Y ,Y , , Y .
1 2 n

Choose a real-valued quantity & which is assumed to be the 

true difference of means t. Generate the transformed data set

Z($) = (X ,X ...,X , Y ,Y -&)
1 2  m 1 2 n

which we can simply write as

z = (W Z3...........V N = m + n .

Bootstrap the transformed data set Z(-9d and for each bootstrap

Ẑ  , i = 1 ,2 ,...,B calculate
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L
*
Z. /m - i

V  *
1  y n

i= 1 j=m+ 1

The basic assumption here is that the two samples 1 2 m
and Y -9-, Y -9,...,Y —9- are from the same population or that infact i 2 n
they have the same distribution. This would imply that the distribution 

of the differences of the bootstrap values will be centred around 

zero if 9 is the actual true difference. By a kernel density 

estimation method we get the estimator f(t|9) for the probability 

density function f (for the difference of mean of the two samples 

considered) for the chosen value of -9-.

Evaluate f (11 -9*) at

t
L  n

Z (y . —9-) 
3

namely the "true" transformed "unbootstrapped" value of t. Subsequently, 

the normalized likelihood, L(9) is estimated by a numerical integration 

approach. The simplified method of getting the likelihood given 

in (5.1.10) could also be adopted to simply get the proportion that 

lies in the interval (t^+e) where t is the value of t at 0 = 0. The 

above procedure is repeated for various values of -9-. Finally, we do 

a plot of the distribution of the normalized likelihood.

5.3 Theoretical Background: The Likelihood

Let X be a random variable with distribution P (x|9), whereX
■9 is any parameter. Then we can define the likelihood as,

= px (xol*) (5.3.1)



where x0 is the observed value of the data.

Suppose we consider a 8- dependent 1-1 transformation of x

say,

t = g(8-,x) (5.3.2)

then, assuming the usual conditions hold,

Pv(x|8 ) = P (t |8 ) • J(8 ,x) 2\ 1 (5.3.3)

where J(*) is the Jacobian of the transformation from X T

Then the "true" likelihood is the quantity ?T(t^ | ■8-) • J(-8 ,x^ ) , 

where t = g(8 ,x ) and x is the observed value of x. If ga(X) is 

linear in -8- (as for example Y = X—8* ) then the Jacobian, J(8 ,x) 

becomes functionally independent of 8“ and therefore

most typical situation is when g^(X) is a many-one transformation. 

Suppose for example that

L (8-) oc (5.3.4)

When g^( • ) is not 1-1, then P^ft^^) has to be reinterpreted. The

T = g^(x) (5.3.5)

u  =  \ { x ) (5.3.6)

are such that T and U are independent (for all values of 8-), then,
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where J is the Jacobian of the f u l l  t r s n s f O T I T l d t i o n . Then whether 

or not P (1 1 -9-) merely reflects the shape of the likelihood depends 

on the functional dependence of P̂ (u|-9-) and J on &. It may be 

(for example) that U does not even depend on 9- at all. That is,

U is a pivotal quantity.

In situations where X has an unknown distribution it may 

still be natural to assume that given 9-, T = g^(X) has a known 

distribution. Our procedure then is to take £̂ (9-) = (t | ) as

the likelihood for inference purposes. For the resampling situation, 

we generate (t |-9*) by a resampling procedure. Thus in effect 

(together with smoothing) we use (t |-Q*) . We simply perturb a complex 

system over some selected reference set and look at the behaviour 

of a selected numerical quantity. We need to investigate the 

system under different parameter configurations. Thus, the reference 

set is essentially parameter dependent. All our interest in the 

outcomes are summarised by T = g^(X). The method can be considered 

as a sensitivity or perturbation method which needs no distributional 

assumptions but only;

(i) a parameter structure

(ii) a (parameter dependent) reference set.

Item (ii) is taken from the observed data itself. The data eventually 

serves two purposes:

(a) Construction of the reference sets as well as the 

evaluation of

(b) Production of an observed value t .
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5.4 Connection with Inversion of Permutation Test

"The procedure of significance testing reaches its 

full utility only when the significance test can be 

inverted to obtain sets of values of the parameter 

under test which give the possible significance 

levels".

Kempthorne and Doerfler (1969,p.246)

Let X ,X_, . . . ,X ; Y„,Y-,...,Y be independently distributed 
1 2  m 1 2 n

according to continuous distribution F(x) and G(y) = F(y—&) 

respectively.

Consider the combined set,

( Z , Z , . . . , Z ) = (X ,X , . . . ,X ;Y -&,Y -•&, . . . ,Y -%■)
1 2 m+n 1 2  m 1 2 n

and the (m+n) permutations i „ < i ^ < . . . < i ; i  < . . . < i ofm 1 2  m m+1 m+n
the integers 1 ,2 ,3,...,m+n.

Without further assumptions concerning F, Lehmann (1959) 

obtained confidence intervals for -9- from a permutation test of the 

hypothesis:

H($0):$ = •&0 (5.4.1)

where the null hypothesis H(-90 is accepted for k of the permutations

which lead to the smallest values,
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m+n
I <T1 L
j=m+1

Z . /n 
1  .

:

m

I  zi / ml and

k (1 ~ot) (m+n̂
m (5.4.2)

Hartigan (1969) used balanced sets of subsamples as typical 

values to form coverage probabilities for a constant, $ (a parameter). 

Hartigan (1969) defines a set of random variables X ,X ,...,X^ to 

be a set of values for &, if each of the intervals between the ordered 

random variables (-°° X ) (X, „ . ,X. _ .),..., (X,„. ,°°) includes -8- with

equal probability of 1/N+1. Essentially, Hartigan (1969) showed 

that for a real valued statistic t(X ,X^,...,X^), the recomputed 

values of t (•) for the subsamples of a balanced set provide 

appropriate confidence intervals for the true value of t where the true 

value of t is the value of t given as

t = lim t(Y ,Y ,...,Y )
1 2 nn-*=°

Tritchler (1984) presents polynomial time algorithms for 

the inversion of permutation test for the one- and two-sample problems. 

In line with Tritchler's (1984) approach for the permutation confidence 

interval for shift in the two sample problem, let us consider two 

realized samples x ,x , ...xm and y.j ,y2 f • • •'Yn which when combined may 

be written as Z ,Z ,...,ZN (N = m+n) where,

Z. = x. ( i = 1 , 2,...,m)l l
(j = m+1,m+2,...,N

(5.4.3)
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Define the statistic (for the bootstrap case)

N
S = S' Z . 1 . (5.4.4)

L  3 3
j=1

where I is a function representing the number of times Z_. appears 

in the bootstrap.

In effect,

S
m * N
r
L XkIk + L
k=1 t=r

V t (5.4.5)

such that

* *

By keeping the Z 's fixed we let I = (I^ , • • . t 1̂ ) vary over each 

of the B equally likely bootstrap samples of fixed size N.

Consider the probability distributions

P(X <x) = F(x) i = 1,2,...,m (5.4.6)

and

P(Y ŷ) = F(y-$) j = 1,2,...,n (5.4.7)

where O- is the shift parameter.

We shall be interested in testing the null hypothesis

Hq: $ = 0 (5.4.8)

that is, that X is distributed as Y.

This could be generalized by considering the hypothesis,

H : $ = -9- 0 0 (5.4.9)
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and using the significance probability of the observed values,

S(V
N
r  z
L zi
i= 1

(5.4.10

of the random variable

N
s(&.) = Y z .(O-)i.o L  3 3

j  = 1

(5.4.11)

where,

Z . ($) = Z . = x . ,
3 3 3

= Z . —9- = y . —9- 
3 3

3 = 1 ,2 ,...,m 

j = m+1,m+2,...,N
(5.4.12)

We shall now derive an expression for the resampling 

likelihood.
* * *

For a given bootstrap sample, Ẑ  ,Ẑ  ,...,Z^ , let us consider,

B-&J&) = Y  6 (S*m-s($) ) (5.4.13)

Now, let

t = S*($)
Zz. i.1 i i Z_Z. I.2 i i

m 5.4.14)

and let,

s(-9d = t = "true value" =

m
Z x . 

i=i 1
m

N
Z (y.-9d 

j=m+1 ^ 5.4.15)

We shall examine what happens when t = t , where,

Z z. I. = £ a.x. + Zb.(y.~9-)1 i i  i i  i i
5.4.16)

Z z. I. = Z c.x. + Zd.(y.—9-)2 i i i i  i i (5.4.17)



1 0 4

Note that,

Za. + Zb.
1 1

Zc. + Zd.i  i

= m

Let us write,

Zb. = ml
iand Zd. = nl

Then, t = t0

Za.x. + Zb.y. Zc.x. + Zd.y.
i i  i i  i i  i i

m
r * * \m n

m n
Zx. Zy.

$  = — -------- - +  &m n

«  » = (1+ s i  .  s l , - 1 ^ *  ) a n  ^m n 0

* *where S and are the values of S (■$■) and s ( $ )  when 0- = 0

& = q (S -sQ)

where
*  *  -1m n .q = (1 + ---m n

Hence the rerandomization likelihood is proportional to

£  <5($-q (Sn -sn) )0 0

and we can therefore state the following

THEOREM 4:

(5.4.18)

(5.4.19)

(5.4.20)

(5.4.21)

(5.4.22)

(5.4.23)

(5.4.24)

(5.4.25)

Let the rerandomization likelihood of S be



£*(9) = Prob*(S*(9-)=s(9)|9) . (5.4.26)

Then

B.£+(9) = ^6(9-9) (5.4.27)

where the summation is over all the B bootstrap configurations, 5(x) = 1 

for x = 0 and 6 (x) = 0 otherwise.

This has an important connection with confidence levels for 

inversion of permutation test. Suppose the hypothesis is about -9-.
■kThe Oi-level test using S (-9-) > s(9) is

1 0 5

Prob(S*(9) > s(9-) 19)  ̂a . (5.4.28)

Now, the set of "9"-values for which we will reject the data set at 

level a is

U(9|Prob(S(9) > s(9*) 19-)  ̂a 

i.e. U(9|Prob(q (S^ -s )  ̂9|9)  ̂a .

Thus we take the tail of all the points

* *
 ̂q (Sq -sq ) (which themselves do not depend on 9-).

We note the subtle difference from our simplified (likelihood) method 

in (5.1.10). We simply consider the proportion of times that

( S * ( 9 )  G [ s ( 9 ) - e , s ( 9 ) + e ] | 9 )  . ( 5 . 4 . 2 9 )

We can compare this rerandomization likelihood with the 

application of the simplified method. (5.4.29) is just an application 

of the method for the two sample problem in which case
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* *t = S (•9-) and = S(-9-) giving the proportion of times

( t  € [ t Q - e , t 0+ e ]  | & ) .

But the statement

S (O') E [ S (-S') —£ , S( O')+£ ]

•k ie
<=> q 0 -  £  ̂ So“ s o  ̂ q 0- + £

»  0 - < ° v-° ^ 0  + 4 :

Thus we need the proportion of times

- 4 “  ̂ e [ $ -  4  & + 4
q  L  q  q

The interval which occurs here which is simply a random interval
*due to the values of q , whereas the permutation case would count the 

S -s
number of — r—  values in a "fixed" interval.

q *
We believe that this subtle difference between the rerandomization 

likelihood approach and our semi-parametric likelihood approach is 

critical. Inversion of permutation tests is essentially a hard 

problem and does not lead to sensible intervals in many cases. We 

believe that our approach allows an understanding of how to simulate 

complex parametric problem where there are few distributional

assumptions.
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5.5 The Smoothing Step: Kernel Density Estimation

The kernel density estimator introduced by Rosenblatt (1956) 

is one of the nonparametric density estimators of a probability density 

function f(*). Others are (i) the orthogonal series estimators 

(Kronmal and Tarter, 1968), (ii) the penalized maximum likelihood 

estimators (Good & Gaskins, 1971), and (iii) the k-nearest neighbour 

estimators (Loftsgaarden & Queensberry, 1965). The monograph of 

Tapia & Thompson (1978) and a book by Wertz (1978) give excellent 

discussions and reviews on the above topics. Quite recently, 

Titterington (1985) draws together a variety of smoothing techniques 

from several areas of statistics and gives a listing of references 

covering most of the statistical smoothing techniques. The kernel 

density estimator has in particular attracted a considerable attention 

to date. For this work, we require it in the context of smoothing.

Our method of approach for the univariate case is close in form to the 

works of Rudemo (1982) and Sheather (1983) and for the multivariate 

case (bivariate) the works of Silverman (1978b) and Wertz (1978) 

form a close guide as regards the choice of the window width.

Suppose that the observed data set ,X ,...,X^ are i.i.d. 

real-valued random variables with probability density function f 

(unknown). Our interest is to find estimators f of f.

Let I = (I, ) be the kth partition of the real line subdivided k
into disjoint intervals.

Let h denote the length of I and let
iC K

N = # {i:X. 6 I, , 1 < i < n } (5.5.1)
K  1 K.

be the number of observations in I, .k
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Let us put X = (X.,X_,...,X ) such that, c 1 2 n

f(x) = f (x,X) = N /nh , x € 1^ (5.5.2

Then f = f is the histogram corresponding to I and X.

Suppose all the intervals I , k = 1,2,..., have equal length.K

Definition:

The non-negative real valued function K is a kernel if

K(x)dx = 1 (5.5.3)

Suppose h > 0, then the kernel density estimator (Rosenblatt, 1956) 
for the unknown probability density function, f, is defined as

f (x) = -L Ynh Z_,
x-X.l 5.5.4)

i=1

Relating the above definition to the problem of likelihood, we have 

that the kernel density estimator of f(x) is

B
f(xl$) = i  [  K Bh L

i=1

x-Y.l (5.5.5)

where, K
r x-Y. i is the kernel function, Y^ are the bootstrap

statistics obtained using the transformed data set (Y„,Y.,...,Y ), x
1 2 n

is the computed statistic based on the original data set (X.,X ,...,X ),
1 2  n

B is the number of bootstrap configurations, h is the window width 

which determines the degree of smoothness and -8- is the quantity chosen for 

the transformation of the original data set.
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The implementation of (5.4.4) and (5.4.5) depends on the

choice of the kernel function K(*) and the smoothing parameter h.

The choice of the kernel function K(*) does not pose a problem.

Sacks & Ylvisaker (1981) have shown that when x^ is an interior point

of the support of f, then the asymptotically optimal kernel does not

usually give substantial improvement over many standard kernels.

This statement is supported by many authors as well; viz.:

Silverman (1978a), Scott & Factor (1981), Diggle & Gratton (1984)

and Epanechnikov (1969) who showed that any kernel gives optimal

results. The behaviour therefore, of the density estimators in (5.5.4)

and (5.5.5) rests on the choice of optimal smoothing parameter h.

Several data based algorithms have been offered for the choice of

h. Tapia and Thompson (1978) gave an interative procedure for

estimating an asymptotically optimal h. The h value h after i
f 2iterations is used to estimate the density f(x) and (f"(x)) dx

from which h. .is obtained byi  + 1

h. , = A ( K) • B ( f .)*n1 + 1 l
-1/5 (5.5.6)

where,

A (K) |" /K2 (y)dy 
|_ 2 (/y2K(y )dy) 2

(5.5.7)

and

B (f. l r n u 1
f " (y) 'dy

1 “1 /5
J (5.5.8)

A data based algorithm which chooses the window width h for a
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kernel estimator of the density at a point is described in Sheather 

(1983). Usually, the general procedure is to obtain an optimal 

window width h by minimizing the Mean Integrated Square Error (MISE). 

For this case, let

a _ r 
~ j

(K(x)) dx (5.5.9)

and

b _ r
■  j

x K(x)dx (5.5.10)

For the MISE risk function, an explicit formule for the asymptotically 

optimal h is given (Rudemo, 1982) as

h = (a/b2 )1 /5 [/(f"(x))2dx]"1/5. n" 1 / 5  (5.5.11)opt

provided f"(*) is bounded, continuous and square integrable and that 

K (•) is symmetric and bounded with a finite second moment.

A similar result of

h (x) =a(K)*6 (f(x),f"(x))«n opt
-1/5 (5.5.12)

was obtained by Sheather (1983) where

a(K) = r f 2J K (y)dy
- 1/5 r r 2*

L J
y K(y )dy (5.5.13)

and

8(f(y ),f"(y )) = (f(y))1/5#(f"(y)) 2/5 ( 5 . 5 . 1 4 )



The determination of 8 (f(x), f"(x)) in (5.5.13) depends 

on the knowledge of f(x) and f"(x).

In practice, f(x) and f"(x) would be replaced by their 

respective estimators f(x) and f"(x) and so (5.5.12) would become

h (x)=a(K)»8 (f(x),f"(x))*n^//̂  (5.5.15)opt

where a(•) and B(*,*) retain their usual definitions in (5.5.13) 

and (5.5.14) respectively.

For the histogram estimator, Scott (1979) obtained an explicit

formula

hs 6/ (f'(x)) dx
1/3 1/3 (5.5.16)

for the MISE risk function. Again to realize the h^ value given in

(5.5.16) one has to assume the knowledge of f(*).

For h known, the estimation of our f(x) (or f(x|&)) given in

(5.5.4) (or (5.5.5)) becomes feasible. The problem therefore is

finding a suitable choice of values for h to be used in constructing

estimates for the unknown probability density f. A general result

for kernel density estimators of probability density functions is that
-1 /5as n (or B) increases h should decrease essentially as n (or

-1 /5B ) - see Rudemo (1982), Rosenblatt (1971) and Silverman (1978b).
-1/3 -1/3For the histogram estimator h decreases as n (or B ) - see 

Scott (1979).

For our work here, which is bootstrap procedure based, we 

require a smoothing parameter h that could be self up-dating whenever 

the size of the bootstrap, B, changes. Suppose, we choose the 

kernel fucntion K(x) in (5.5.4) to be the Gaussian distribution.
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That is, we take,

K(x) 1
/  2TT

(5.5.17)

From (5.5.17), we get

| (K(x) )2dx = | ^  e ~X dx (5.5.18)

which simplifies (5.5.9) to

a = | (K(x))2dx = 2 ^ (5.5.19)

and (5.5.10) simplifies to

f 2b = j xK(x)dx= 1 (5.5.20)

Let us now consider the normal probability density function, f(x) 

given as

■K
f  ( X ) =

x-M) 2
O

a/ 2tt (5.5.21 )

That is, we assume that the unknown probability density function, f(x) 

is normal with mean, y and variance .

From (5.5.21), we get

f ' ( x )
- u )
3/ F ( 5 . 5 . 2 2 )

and
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f" (x) (x-u) 2

oV 2i

1 ,x~U
2 ae

2

1
aV̂ TT

x-p
a

2

(5.5.23)

from which we get,

r
j (f"(x))'dx

3
sA a5

(5.5.24)

Similarly, by making use of (5.5.22), we get

f 2 1
( f  ' ( X)  ) dx = ---r

J 4/F 0 3
(5.5.25)

Substituting (5.5.19), (5.5.20) and (5.5.24) in (5.5.11), we get

h  ̂- (a/b2 ),/5 [/(f(x>)2 f 1 /5 .n- 1 / 5  (4/3) 1/V 1/5C opt
(5.5.26)

which is formula (5.10) of Rudemo (1982). Simplifications of formula 

(4.2) of Sheather & Maritz (1983), formula (2.10) of Sheather (1983) 

and formula (2.4) of Scott & Factor (1981) yield the same result as 

our (5.5.26) .

Substituting (5.5.25) in (5.5.16), we get

h = [6/J(f' (x) )2dx ] 1 / 3  n 1 / 3  = ( 2 4 / n ) ] / 3  n 1/3a (5.5.27)s

(5.5.27) is simply formula (5.9) of Rudemo (1982) which is also given 

in another form as

*hs
n 1/3 1/6 1/3
2 x 3 7T • n ( 5 . 5 . 2 8 )

by Scott ( 1 979 ) .
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For the bootstrap case, n in (5.5.26) and (5.5.27) is 

replaced by B.

A slight draw-back of the above objective theoretical 

approach for estimating the smoothing parameter h is that the estimates 

derived depend on the knowledge of the unknown probability density 

fucntion f(x). A suggested approach is to replace f(x) by its 

nonparametric iterative estimate f(*).

The multivariate form of density estimator is

f (X.,X_,...,X ) = — —  ---- —n 1 2 p nh ,h ,...h
1 2  p .5 >n '  Xr x u X - - X  N 2 2 i

i=1

f * • • F
x —X . P Pi 5.5.29)

where K(.,.,...,.) is the multivariate kernel function and h , 

i = 1 ,2 ,...,p are the respective window widths.

Hence, the bivariate kernel density estimator for a bivariate 

probability density function f(x,y) is

f(x,y) [ nh h ] x y l  ‘
/ x-X .l
v hx

x-X.
hy

(5.5.30)

and in particular, for the bootstrap case, we have the bivariate 

kernel density estimator to be

f(x,y) 1
Bh h x y

B
V
L
i= 1

c
K

~ ★ 
y-Y. \ i
hy /

(5.5.31 )

* *
where X. , Y. and B are bootstrap characteristics. i i

Suppose we take the bivariate kernel function K(*,*) in 

(5.5.30) to be the bivariate Gaussian distribution, then we shall 

have for X and Y independent that
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K(x,y)
i/2 2.

1 -i(x +y ) 
2 IT S (5.5.32)

Hence in our bootstrap case we shall have (5.5.31) to be

f(x,y) 1
Bh h x y

B

L 2 tt

i=1

x-X.* 2 y-Y.*

(5.5.33)

where we take h and h to be the respective window widths for the x y
marginal kernel density estimators f(x) and f(y).

2 2Thus, for X _ N(y ,Q ) and Y~ N(y ,Q ) we have x x  y y

h = (4/3)1 /5B_1/5Q (5.5.34)x x

h = (4/3)1 /5B_1/5Q 2 (5.5.35)Y Y

In certain cases, the kernel density estimators for both the

univariate and multivariate cases discussed above can change quickly

under very small variations in the smoothing parameters h or h^,

i = 1,2,...,p. A subjective method of using test graphs has been

developed by Silverman (1978b). Silverman (1978b) considers the

problem of choosing the smoothing parameter that is appropriate for any

given sample. The approach involves the consideration of test

graphs of the second derivative f" of the density estimate for various

values of h . Then choose the window width which gives fluctuations n
of the right size in the test graph and use this chosen window 

width to construct the estimate of the original density. The 

subjectivity of the method is in the sense of judgement of the right

size of fluctuations observed in the test graphs. Silverman (1978b)
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obtained the theoretical justification of the above subjective 

method for both the univariate and multivariate cases. Gratton (1979) 

generalized Silverman's (1978b) subjective test graph method for 

choosing the optimal window widths when estimating an unknown 

probability density function by a kernel method.

5 . 6 Confidence Intervals

Now that we are in possession of the likelihood L(-9-) , all 

the usual statistical techniques may be applied. For example, if 

7T(-8-) is a prior distribution for -9-, then we can obtain a posterior 

in the usual Bayesian approach of

TT($| t) a L($) TT (-8 ) (5.6.1)

If it is thought natural to take tt(-9-) locally uniform, then 

the normalized likelihood itself maybe used as a posterior 

distribution and appropriate Bayes confidence intervals could be 

constructed.

Following our discussion of the two sample problem in 

§5.2 above, we could set an appropriate level a confidence interval for 

the two sample problem by simply calculating the 100(1 — Ot)% confidence 

interval for the "true" difference of mean t. However for the purposes 

of comparison, we recall that the 1 0 0 ( 1 — ot)% confidence interval for 

the difference of two means of samples taken from the normal

distribution is given as
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x  - x _  ± t  _ ( a / 2 )  • s • / —  + —  
1 2 n +n - 2  p n2

_ _ 1 1
5.6.2)

where s
(n ̂  — 1 ) 2 + (n2- 1) s22

W 2
(5.6.3)

2 2and are the respective sample variances and n̂  and n^ are

the respective sample sizes of the samples taken from the random

variables X and X t 0 (a/2 ) is the ot/2 -level variate of1 2 n ^ + n ^ - 2

the t- distribution with n^+n^ - 2  degrees of freedom.

Let us also consider the t-distribution confidence curve.

We recall that the t-distribution probability density function is given

as

V+1 -(^±1) 2 2
f (t) = = 4 = • ---—  ( 1 + —  )T 7 v n  r v / 2  v

where V is the number of degrees of freedom.

Let

- oo < t < 00

5.6.4)

Y = s /J + — n1 2
t , _(a/2 )

ni +V 2
(5.6.5)

and put c = s (5.6.6)

and t = t ( c t / 2 )
ni+n2-2

(5.6.7)

such that

Y = ct (5.6.8)
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After the usual transformation, we get

V y) = c ‘ Am (5.6.9)

Furthermore, let

(5.6.10)
r v/2

substituting in (5.5.14) we get

(5.6.11)

Hence for a practical problem, we do the plot of f (y) versus 

0- and calculate the 1 0 0 (1 -a)% confidence interval for y(=x).

Efron (1982) gives a percentile method for finding confidence 

intervals.

Suppose,

(5.6.12)

is the cdf of the bootstrap distribution of & .

CDF(t) as given above could be approximated by

CDF(t) = # 1 < t}/B (5.6.13)

For a level of significance a, let us define

8- (a) = CDF 1 (a/2) Li ( 5 . 6 . 1 4 )

and
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~ ~ _i-8- (Ot) = CDF ( 1-a/2u ( 5 . 6 . 1 5 )

Then [-8- (a),-9- (a)l is the 1-a central confidence interval for theL u
parameter $.

Examples of these various forms of confidence intervals discussed 

above are given in the next section.

5.7 Examples

E1 An Example of the Two Sample Problem

We shall now consider a practical problem for our discussion 

on the two sample problem given previously in §5.2. For this work, 

we consider X and Y given as

X = 37.50, 34.80, 38.90, 38.60, 37.00, 37.40, 36.50, 38.40, 

38.00, 30.70

Y = 37.70, 36.30, 38.00, 37.00, 37.60, 33.20, 36.70, 27.40, 

37.10, 37.40

which when combined, could be written as

37.50, 34.80, 38.90, 38.60, 37.00, 37.40, 36.50, 38.40

38.00, 30.70, 37.70, 36.30, 38.00, 37.00, 37.60, 33.20

36.70, 27.40, 37.10, 37.40.

X and Y are samples from a laboratory experiment concerning the 

life times in hours of certain batteries at EPV levels 1.1 and 1.0 

respectively. Our interest is to set a 100(1-00% confidence interval 

for the true difference of mean life times of the two grades of Duracell
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batteries.

The difference of means t of the original data set is 

calculated to be -0.94. Following the procedure described in 

§§5.1 and 5.2, various assumed •9- were chosen for the "true" difference of 

means. Subsequently, with each chosen -9-, the original data set 

Z was transformed and the transformed data set Z(O-) was bootstrapped 

and eventually the normalized likelihood L(-9) was calculated using 

the kernel density estimation. Both the pure Monte Carlo (standard 

bootstrap, 5 = 0 )  and the balanced array 6-method as well as the t- 

distribution confidence fit were adopted. In the pure Monte Carlo 

and the balanced array 5-method adopted, the standard normal kernel 

fucntion was used and the unknown distribution of the difference of 

mean was also assumed to be normal. Also Efron's (1982) percentile 

method for confidence interval described in §5.6 was adopted. In all 

the procedures adopted, the 95% confidence intervals for the "true" 

difference of mean. The results got are presented in Table 8 below.

Table 8
Summary of the results for the 95% confidence interval for the

"true" difference of mean

Procedure Interval

The standard t-test [-3.6486, 1.7686]

Efron (1982) 
percentile method

[-3.2908, 1.4675]

Proposed method
(i) Pure Monte Carlo,
N = 1900

[-3.9437, 2.1918]

(ii) Balanced Array 
6 = 600, N = 200

[-3.7358, 1.8221]
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Figure 5 gives the plot of the distribution of the normalized 

likelihood. In the balanced array approach, we used only N' = 200 

configurations obtained for 6 = 600, while for the pure Monte Carlo 

(standard bootstrap) and for Efron's method N = 1000 configurations 

were used.

The balanced array method seems to give excellent results 

especially at the tails where the values are close to the t- 

distribution confidence curve. It seems quite satisfactory that 

after two major steps bootstrapping and smoothing this should be the 

case. The pure (unbalanced) Monte Carlo method gives slightly 

longer intervals. Using this as a benchmark there is not much 

difference with the balanced array. Efron's method gives a 

considerably shorter interval a result which seems to be typical.

The Efron method, of course, is based on a s in g le  bootstrap. The 

difference can be explained by the observation that our method 

carries the information that if 9- is indeed  the true value of the 

parameter the spreed  of the transformed data set may depend on 9-.

E2 Simple Linear Regression

We illustrate the approach adopted in more general regression 

problems through simple linear regression.

Let the observed data set be

x (x,...,x )
1 n

y= (yi ... .. V  •

We consider an underlying regression model of the form 

y . = a + B x .i l
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Proceeding as for other examples choose quantities a and 8 and generate 

the transformed data set consisting of

x and y(a,B) = (y - (0t+8x . ) r , y -(Oi+Bx ))
1 i n n

write y.(a,8 ) = y. -(a+Bx.) (i = 1 ,...,n)l i i

We consider the extended reference consisting of all vectors 

(±y^(a,B),...,±yn(a,8 ))

If we sample from this set according to the simple bootstrap we
★will generate B vectors Y for each such vector we perform a simple

least squares regression on the observations X. This leads to a
~ ~ *

pair (one for each bootstrap) ( a , 8 ). Writing

t = (a ,B )

k
we have B values of t . From these values form a bivariate kernel 

density estimator f(t|ot,B). The likelihood is then

L(a,8 ) = f(t |a,B)

where t^ = the values obtained by regressing the y^(a,8 )

against the x^ values.

We considered as an example

X = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,

2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0).
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Y = (1.8045, 2.9393, 3.3701, 0.9602, 3.2751, 0.3534,

-0.1554, 1.3517, 1.3065, -1.1758, 1.0900, 3.3202, 5.1261, 1.9094

0.1159, 0.7619, 3.0938, -0.2918, 1.6116, 1.4945).

Table 9 contains the estimated normalised  likelihood L(Ot,B)-

The contours and relief plots are given in Figure 6 . The usual 

standardized versions of a and 6 were used which is why the plots 

are roughly circular. Note that {ot ,8 Q) = ( 1 .9094, -0.1647 ).

both cases the unbalanced cases are presented.

The results in Figure 6 which here are close to the standard 

normal theory confidence ellipse were obtained using the present 

technique, with no d i s t r ib u t io n a l  assumptions,  but very many simulations. 

We hope that the methods point the way to more widespread use of 

simulation techniques with parameter dependent reference sets.

E3 Other Problems

E3.1 The Sign Test with Bootstrap

Let x = (x„,x_,. . . ,x ) be a realized data set, and let the 
1 2  n

statistics of interest be 

n

The pure Monte Carlo (standardized bootstrap, 5 = 0 on the

extended configurations) was used and the randomized 6-method. In

i=1

Generate the vector

Y = g (x) = (x —9-,x ~0, . . . ,x -8-) -9- 1 2  n



1 2 4

*Let Y have the following distribution namely,

y = (±y1,...,±yn)

and
*  1Prob(Y =y) = —

„ n

then
*T (Y r

L
j=i

Y .
1

Hence by analogy, we define the likelihood as

L(-fr) = —  # {t (y .) G[t -e,t +£]}^n l 0 0

where t
l

(x . —3-) i l
x .-n$.i

i= 1

■ k

We can repeat the analysis described above by sampling Y 

independently from all the y-values.

E3.2 The k-Sample Problem

We shall list below the procedures to be followed for the k- 

sample problem.

(1) Consider the data set

XT X 2
x 3 .  .• • XK

X 1 1 X 21 X31 Xk 1

X 1 2 X 2 2 X32 Xk2

ro>TinX

X23 X33 Xk3

X -1 1 n
1

X2 n
2

X3n3 Xknk

X
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( 2 ) Calculate the mean of each sample and subsequently calculate

the differences of means for the ( ) pairs of samples. We shall

denote these as t .., i * j = That is t.. is the differencei j  id

of the means of i and j samples. One could also consider the 

absolute differences of the means.

(3) Consider a set of transformation parameters 8- , t = 2,3,...,k

and transform the original data set to get

1 V * 2 W - 44
<3?144
X

1 1 X2 1 ~ a'2 x3 r a3 x -8- k 1 k

1 2 X2 2 ^ 2 X33^3 x —81 k2 k

1 3 X23^2 X33^3 x -8' k3 k

,ni
x 8- 

2 n - „ 
2 2

x -8- 
3 n 3 3 x -8', kn, i k

(4) Bootstrap the transformed data set Y. For each bootstrap

configuration, calculate the (absolute) differences of the
}cmeans for all pairs ( ) of samples. That is calculate

*

t . .
i l i 4 j = 1 ,2 , . . . ,k

Then treat {t. .} and {t. .} as t and t in the two sample problem i l  i l
discussed in §5.2.

A method of considering all the k-samples together once could 

be to calculate the maximum of the (absolute) differences of means 

for each of the bootstrap samples. That is, calculate
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*

T y. .) 13
max (t . .) 

1 <i,j<k 1D

The basic assumption here is that the pairs of samples in 

the transformed data set are from the same population or indeed that 

the samples of the transformed data set have the same distribution.



Figure 5: The Distribution of Normalized Likelihood, L(&), for 
a Two-Sample Problem

1 2 7

Randomized, 6=0, balanced Array, 6 = 200,...t-Dist. fit.
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Figure 6 : Contour Maps for
the Regression

the Normalized Likelihood, L(-9-.j ,$ ) for 
Problem
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.0002 .0005 .0011 .0028 .0067 .0127 .0181 .0195 .0153 .0087 .0038 .0014 .0005 .0002 .0001

- 0 * £ P ♦ 0004 .0008 .0018 .0048 , 011? .0227 .0327 .0345 .0267 .0150 .0060 .0020 .0007 .0003 .0002

-  o o f ♦ 0006 ♦ 0010 .0022 .0060 .0151 .0301 .0434 .0448 .0335 .0183 .0076 .0025 .0008 .0004 .0002

0-oo ♦ 0006 .0010 .0021 .0056 .0142 .0282 .0409 .0416 .0299 .0158 .0065 .0023 .0008 .0003 .0002

0)5 .0005 .0008 .0017 .0042 .0102 .0195 .0277 .0278 .0196 .0101 .0041 .0014 .0006 .0003 .0001

0 '5 °
.0003 .0006 ♦ 0011 .0026 .0057 .0101 .0138 .0138 .0099 .0052 .0021 .0007 .0003 .0002 .0001

♦ 0002 .0004 ♦ 0007 .0013 .0024 ♦ 0041 .0054 .0055 .0042 .0023 .0010 .0003 .0001 .0001 .0000

] . CO .0001 .0002 .0003 .0005 .0009 .0014 .0019 .0020 .0017 .0010 .0004 ♦ 0002 ♦ 0001 ♦ 0000 .0000

i - > r .0001 .0001 .0001 .0002 .0003 .0005 .0007 .0008 .0007 .0004 .0002 .0001 .0000 .0000 .0000

1-50 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0003 .0003 .0002 .0001 .0000 .0000 .0000 ♦ 0000

i - V
.0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000

i . .  oV .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000
r

Table 9 continued.... ART ( 2 0 0 ) ,  6 = 600
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C H A P T E R  S I X

G EN ER A L D IS C U S S IO N

The main purpose of this thesis was to introduce methods 

to cut down on computational workload in resampling and rerandomization 

problem. The non-parametric multi-sample test statistic 

was introduced as an analytic method of cutting down computation 

(over Sen's 1966 test). Exact distributions are obtained for 

such problems by considering the correct reference set of permutation 

configurations.

It is difficult to extend any given non-parametric testing 

procedure to a confidence interval procedure, that is to give a 

semi-parametric development. It may be necessary to restructure 

the simulation design if the number of configurations is large.

The ART method proposed works well in the balanced case 

for Bootstrapping as measured by "discrepancy". Some theoretical 

results justify the use of balancing. Direct computational methods 

leading to balanced low discrepancy codes seems a natural and 

exciting research direction and would be a pleasing development from 

this work.

Resampling codes are seen to go hand-in-hand with new methods 

of semi-parametric inference and one such method is proposed here.

In situations where the corresponding permutation test can 

easily be inverted the results are similar though subtly different.

The "likelihood" method proposed seems to be a reasonable procedure 

at least as a cheap method of obtaining inferences in situations with 

few distributional assumptions. It is hoped that the method will 

provide a framework for "sensitivity analysis" in complex situations.
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C H A P T ER  S E V E N

A P P E N D IX

We first give a proof of formula (4.3.15). This proceeds

by induction on the dimension n. The case n = 1 is elementary.

Select one coordinate say 03̂ , without loss of generality. Write

03' for 03 with 0) removed. Then n

y  U(03)A V (03) = y  U(03)A 1~A y n-1)_V(03)03 03 03
o ) E s  o jE s  n

We can expand the right hand side as

y  U (03) A y n-1)"v(03) - y  U(03)A / n_1)_V(03)
03 03

0 3 E S  ooE s

where the first summation is with the lost coordinate as 03 the secondn
with 03-1. Now apply the induction hypothesis to each term to 

obtain

I
0)ES T(h) 03ES(T(h)) 03ES T(h) 03ES(T(h))

where in both cases the T(h) refer to 03" not 03. We may now collect 

terms in V(03) and extend the T(h) to 03. In doing so we capture the 

right hand side of (4.3.15).

The proof of Theorem 2 follows a standard route in the 

discrepancy literature. In (4.3.15) put U = t(x(03) ) and V = g(03) . 

The left hand side of (4.3.15) becomes e. Thus taking modulii and

l
h+ U(03)V(03)

- I  l  l
Ah+U(03)V(03)
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using (4.3.15) we obtain

e = £  t(x(w) )An g(oj) |
GOES
n
I  ("1)h I  I  Ah+t(x(Q3) )g(w) | 

t (h) goEs (T (h) )h= 1

E '  v^  ^  | Ah+t ( x ( oj) )g(GQ) |
h=1 T(h) GoES(T(h) )

Apply the Cauchy-Schwartz inequality to each interior summation to 

continue

n
(g(G0))2

n=1 T (h) o£S(T(h))
L L

r
L X

r
L L <C ) t ( x ( “ , ) ) 2

OljG S  ( T  ( h ) )

1
2

which from the definition of W(T(h)) gives the result.
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CORRIGENDA

Page Line/
Equation

Incorrect Correct

10 20
12 14
1 3 8
17 (2.3.4)
17 12
21 6
21 6
25 14
33 1 1
35 23
37 10
39 2
45 (3.4.2)
46 1 2
46 16
47 -2 on right
49 13 & 14
50 8
51 6
65 19
65 20
71 (4.3.2)
71 (4.3.3)
73 5
74 14
74 16
75 (4.3.21)

(4.3.19)
(4.3.20)

detail
evaluations
sample
F > >ni
EN1P
max h(Xi)N
min h (Xi)N
aid
have
imperical
density
metric
P or P .1
balance
balanced
(0, 1/3),2/3) nr*L
?n actual 
(1,2,3,4,} 
at R
is measured

“k
<
3o3.3oo. i 1
balance 
W (t (h ) )

“k
n
I
i=1

detailed
evaluation
samples

n
EN1N
max h T(Xi)N
min h (Xi)N
aided
has (both times) 
empirical 
distribution 
metrics 
P or pi 
balanced 
a balanced 
(0, 1/3, 2/3)
I
sThe actual 
{1,2,3,4}
R
are measured 
0)n
>
3oj . 3w. . . . .  

i D
balanced 
W(T(h))
03n
k
I (in both case
i=1
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77
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1 1 

12

Minor

(4.3.

(4.3.
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distribution 

permutation 
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then y +- (y - 1 - K

l _  k ( k + i )  ( n - 1  )  n

k 2 2

1 2 2 rr (k +k-n +n) 2*

Hence we nave,

- 2

.< <
• i 'jJ . H f - \ u

00 =  1 OJ = 1 -Ti= 1 i  =

= - 2
-n+ 1 —  n 1 2n(-(k“*k-n -n)

-n-1- i _ n
,  r i d

m= ■ r= 1
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1 >■ 2 • — • N ; • • • ,. n
'jj = 1 w. = ’ m= 1 : = 11 .<

i -x). H ' u - y

_ - n +  1•2 • N
n r k“v Y • h mi

-n + 1 mi I
k  j

= - 2
-n-
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Y . + 1mi
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