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ABSTRACT

In this thesis a class of adaptive coding schemes for speech 

and image compression which make use of previously coded data, is 

proposed, analysed and experimentally investigated.

The first and second chapters of this thesis are an 

introduction and a review of block coding techniques respectively.

The third chapter describes the basic coding scheme, whose 

concept is the cement for this thesis. This involves the

representation of variable length blocks of data by previously coded 

and transmitted source symbols. The coordinate of the previously 

transmitted symbols and the block size in question form the

information sent down the communication channel. Several variations 

on this scheme are presented and experimentally studied with

artificially generated data, speech data and image data. Results

show the algorithm to be capable of achieving good compression, 

requiring no prior knowledge of the statistics of the source to be 

coded.

The use of some of the particular properties of image and 

speech data, allow more efficient compression of these types of 

source, using variations on the above method. This avenue is 

extensively studied for speech data.

Chapter four develops the theory associated with the limits of 

the performance of the class of adaptive coding schemes proposed. 

It is shown that as some block size parameter is allowed to approach 

infinity, for the case of zero distortion, the coding rate 

approaches the Shannon entropy, plus a small factor associated with



adaptation. The theoretical properties are also discussed, but not 

quite as conclusively, in the case of coding with a fidelity 

criterion.

Chapter five is a review of scalar coding schemes, examples 

being PCM, DPCM, ADPCM and Multipath-search-coding.

Chapter six gives the results of studies in adaptive multipath 

search coding, where the adaptation information is derived from 

previously coded data.
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STATEMENT OF ORIGINALITY

The following is a brief list of the contributions which are, 

to the best of my knowledge, original to this thesis.

Chapter 3

1) The use of blocks of previously coded data, to approximate 

blocks of data to be coded, in the case of grey scale images and 

speech coding [Section 3.2 to 3.4].

2) The method 'b' of section 3.2 for sampling the set of 

previously coded symbols to find an approximation to a block of 

symbols being coded.

3) The Fourier transform coding of a baseband residual signal, for 

residual excited LPC [Section 3.6 .3.1]

4) The concept of variable bit rates for the transmission of the 

excitation and the model parameters for residual excited LPC 

coding [Section 3.6.3].

Chapter 4

1) A discussion of the theoretical performance of the concept of 

coding source symbols by approximating these with blocks of 

previously coded data [Sections 4.3 to 4.4 and 4.5].

2) The proof of the theorem of section 4.5.1, on the probability 

of observing an outcome, within distance d , of any block of N 

symbols each belonging to the sample space of an ergodic source, as 

N is approaches infinity.
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Chapter 6

1) The presentation of results for step size adaptation for the 

scalar coding of images where a small default step size is employed, 

except in a region of slope overload (where an edge is observed) 

otherwise a immediate switch to the default step size is 

effected [Section 6.3.1]

2) The concept of adaptive multipath search coding in blocks, with 

a linear prediction based graph (tree or trellis) weighting, where 

the prediction parameters are derived from previously coded 

symbols [Section 6.4]

3) The presentation of results for image coding employing a very 

simple codebook based convolutional coder as originally described by 

Stewart, Gray and Linde-(1982)]

4) The proposal and the presentation of results for an adaptive 

version of the convolutional coder described Stewart et al.[Section 

6 .6 ]
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This chapter is a short and rather unconventional 

introduction. The style of the chapter has been directed, not 

altogether regrettably, by the diverseness of the topics covered in 

this thesis. The thesis investigates the use of a technique for 

solving a class of problems. This is appreciably different from 

most theses, which deal with a problem and where the conventionally 

adopted approach is the following. Granted a certain problem, 

several ways of tackling this are investigated, some proposed. The 

research culminates in the advocation of a 'good' technique for 

solving this problem. An example of a conventional thesis is one 

which is concerned with say image transmission over a certain class 

of channel for a certain restriction on rate, a particular one being 

coding for video conferencing, to find for this particular 

application, a technique that best achieves the aim, bearing in mind 

the particular conditions in which it is to be used. A thesis of 

this sort might be introduced with the background to

video-conferencing, images and in particular, sequences of images.

Because the glue for this thesis is a technique for tackling 

some data compression problems and thus diverse applications are 

dealt with, the relevant chapters deal with the background to these 

problems. This deprives the thesis introduction of half its 

traditional content. Well then, it might be asked, what does this 

chapter contain? It concerns itself with firstly, why data 

might be compressed and secondly describes, briefly the structure 

and approach to this thesis.
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1.1 Why data compression?

At being presented with yet another thesis on data 

compression, the reader justifiably expects some sort of reason from 

the author for the choice of this topic for research. So the 

question to be answered is, why do we want to do data (speech, image 

etc.) compression? It should be stated, to start with, that data 

compression should be avoided, whenever possible. If applicable, 

research effort should be directed to other studies which would 

render compression unnecessary. The following paragraphs are an 

effort to justify this opinion and why, considering this, another 

thesis on data compression has been written.

Data compression has been used for the following types of 

data: Speech, images and abstract data symbols, an example being

ASCII characters. Depending on which type of data is being 

compressed, particular algorithms had been developed by various 

research workers. Almost all compression schemes have one or more 

of the following drawbacks.

1) In the case of compression with zero distortion 'entropic 

coding', all the known schemes result in a variable transmission 

rate. The result is that very large buffers are usually required, 

in order to transmit the resulting code over a fixed rate channel. 

If the source statistics are not well known, the code could be very 

inefficient, much more so than if a straightforward, non-committal 

assumption on the statistics (uniform distribution) is used for 

coding. Adaptive methods tend to be wasteful of transmission 

bandwidth and result in poor performance when the source is of low 

redundancy.

2) Fixed rate systems always result in
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distortion or noise. It ought to be mentioned that research workers 

tend to be remarkably tolerant of distortion and noise, especially 

when they have seen their test images or heard their test sentences 

a few hundred times.

3) The compression (coding and/or decoding) processes often require 

unrealistic quantities of processing power to implement. This is 

especially so for image compression.

4) When schemes are presented, which do not exhibit any of the above 

drawbacks, they almost invariably do not achieve much compression.

5) All compression schemes worsen the effects of channel errors on 

the source data. In some cases channel errors could be 

catastrophic, requiring some form of error detection and/or 

correction.

Having said all this though, there are some instances where 

these drawbacks, damning as they seem, may be ignored. On some 

occasions, there is just no choice and compression has to be

employed. On other occasions large quantities of distortion are

tolerable, this is especially so for speech data and moving

pictures. And in some situations coding complexity, variable rate

output and large coding delays are of no consequence, for example, 

when rate reduction is for storage and not transmission. Therefore 

research in data compression continues. When all is said and done 

though, for the research worker there is a highly important point to 

be made and this is that the work is interesting. There is a lot 

which may be done, and fruitfully, in the three areas of theory, 

computer simulation and practical construction; and this with finite 

resources in all senses. It is this last property of the subject
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which justifies another thesis on data compression.

1.2 Summary of thesis contents

Chapters 2 and 5 contain reviews of the better known methods 

for respectively, block coding and scalar coding. These are 

included, as usual in a thesis to give some perspective to the main 

body of the work reported here. The reviews are written as two 

separate chapters for consistency with the fact that the thesis is 

largely devided into two portions. The first part of the thesis is 

concerned with data compression, using previously coded data, for 

"block" coding. The second half is concerned with "scalar" (Tree 

and Trellis) coding.

Chapter 3 contains the bulk of the experimental work for this 

thesis. It is rather large chapter, which perhaps might have gained 

from being broken up into several smaller ones. The principle of 

coding data using other previously coded samples is presented.lt is 

given the name MPPCD (the Matching of Patterns in Previously Coded 

Data) . A discussion of some of the ways that coding may practically 

be achieved, using the above principle, is undertaken. In the 

remainder of the chapter, we present diverse applications of the 

coding scheme and discuss the results obtained. Below is a brief 

list of the coding applications.

1) Source coding with zero distortion: This is done using a 

variety of artificially generated data. It is shown that the method 

has some promise, although in each case particular, other well 

tailored coding schemes may be employed for the given source. The 

MPPCD scheme works reasonably well with all types of sources.
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2) Source coding with a fidelity criterion: The MPPCD scheme 

is next used to code artificially generated first order 

auto-regressive data. The results are compared with those obtained 

by coding the same data via the Discrete Cosine Transform.

3) Image coding: The HPPCD scheme is used for image coding. 

Three methods are investigated. The first is a straightforward 

application of the MPPCD scheme on the one-dimensional signal 

obtained by the line by line scanning of an image. Secondly, the 

application of edge weighting to the above scheme, is investigated. 

Next, the results of an extension of the MPPCD scheme for coding 

two-dimensional data, is presented.

4) Speech coding: The MPPCD scheme is applied to speech 

coding. Initially, the speech waveform is directly coded using the 

MPPCD scheme. No attempt is made to employ some of the features of 

the speech signal. The results were judged using a signal to noise 

ratio achievement. The MPPCD scheme is next employed for speech 

coding, using the framework of Linear Predictive Coding (LPC). A 

variable rate transmission and a fixed rate transmission scheme are 

presented. All the speech coding methods are subjectively tested, 

using independent listeners.

At this point it is worth indicating that both the material on 

speech and image coding, which generally make up the contents of an 

introduction, (for example the physics of speech generation, sight 

and hearing) are presented when the MPPCD scheme is applied to image 

and speech coding.

Chapter 4 contains some theoretical results on the asymptotic 

performance of the MPPCD scheme. It is first shown, with the aid of
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the Shannon-McMillan-Brieman asymptotic equipartition theorem, that 

in the limit as some quantity, to be defined later, tends to 

infinity, the MPPCD scheme yeilds a coding rate which tends to the 

Shannon entropy for the source, plus some e. This factor e, is 

equivalent to the overhead information required when doing adaptive 

coding and may be made very small. Next we consider the theoretical 

properties of the MPPCD scheme when used for coding with a fidelity 

criterion. In that section, although we are unable to obtain a 

formal proof that the coding rate tends towards the rate-distortion 

function for a source, under some considerations, several 

interesting theoretical properties of the MPPCD scheme and in fact 

ergodic sources in general are discussed.

In chapter 6, some results on tree and trellis coding for 

speech and image signals, are presented. In that chaper, we 

concentrate on methods of 'colouring' trees or trellisses given some 

source statistics. Some ideas are presented for the adaptive tree 

or trellis coding of speech and image signals. These are based on 

deriving source statistics from previously coded data.

Chapter 7 is the concluding chapter of the thesis. As usual 

this chapter begins with a brief description of the thesis contents. 

A discussion of the results obtained in the use of the various 

methods presented in this thesis, is undertaken. Also as usual, a 

section entitled suggestions for further research is included. In 

this section, the flashes of inspiration, which could not be 

followed up for various reasons, are detailed.
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CHAPTER 2 A REVIEW AND DISCUSSION OF BLOCK CODING
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2.1 Introduction

In this chapter, a survey is presented of a class of schemes 

for achieving data compression, refered to as 'block coding' .

The aim of data compression is to find a transformation so 

that the following actions are effected. A sequence of source 

symbols are transformed into another sequence of symbols. The rate 

at which this resulting sequence may be transmitted should be as 

small as possible. In addition it is required that the sequence 

obtained after transformation may be used to generate an 

approximation sequence for the original data. This approximation 

sequence should be close to the original to within some prespecified 

error. When the transformation described above processes a sequence 

or block of data at a time, this process is refered to as block 

coding. The alternative to block coding is scalar coding, where the 

input symbols are taken, effectively, one at a time.

Two main block coding schemes have been reported in the 

literature. These are transform coding and recently vector

quantisation. In this chapter, a review of the current transform 

coding techniques used in both image and speech coding is presented. 

First the question of which transformation to use is discussed. A 

very simple Fourier transform coding scheme is then described. 

Following this, the shortcomings of this method is discussed. We 

then present some of the improvements which have been reported in 

the literature.

An interpretation of the functioning of transform coding 

serves to introduce some related coding schemes. These are;
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Sub-band coding, Linear predictive coding (LPC) and Vector 

quantisation. The performance of these methods when applied to 

speech have been the subject of several papers. As yet however, 

they have not yet been extensively applied to image coding. The 

bulk of this chapter contains general descriptions of the ideas 

behind the well known block coding schemes, without extensive 

reference to publications. The chapter however, ends with a 

detailed bibliography, where the references associated with the 

different methods are given.

2.2 Transform coding

2.2.1 Choice of transform

Interpreted most generally, transform coding is the following 

process. A transformation Amn, operates on a sequence of source 

symbols

— n ~  ( f  1 > $*2’ • - )

such that the result of the transformation is the sequence

lm = {w,,0>2,

ym is quantised and approximated by ym . The ym values have 

channel symbols associated with them, these symbols are transmitted

and it is presumed that there are no channel errors. At the

receiver, the transformation Bnm is used to generate an

approximation xn of xn from the ym sequence.

B .ynm'Lm
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The following properties should hold for the transformation pair Amn 

and B nm:

a) d^(xn,xn) should monotonically increase with d2(ym ,ym), 

where d^.,.) and d2(,.,) are the distortion measures used 

in the original and transform domains respectively.

b) If d,(ym,ym)=0 then d2(xn,xn)=0

Normally Amn and B nm are linear transformation and may be 

represented by the nxn matrices Ann and Bnn .

A good transformation kernel A mn should enable ym to be 

represented by a small number of channel symbols and still allow ym 

to be close to ym .

It is known that the best encoding scheme for ym achieves 

distortion and rate values specified by the source's rate-distortion 

function [Shannon-(1959)]. In general, it is difficult to find a 

good sequence of channel symbols to assign to each possible value of 

ym . Were the members of ym independent, this sequence may be 

efficiently coded by coding each symbol separately. This is because 

there exist several efficient scalar coding schemes (Lloyd-Max 

quantisation and Huffman coding [Max-(1960) and Lloyd-(1982)]) . We 

know that the minimum coding rate possible is defined by the 

infinite block size rate-distortion function for a source. We also 

know that for a source with independent outcomes, the infinite block 

size rate-distortion function is equal to the single letter

rate-distortion function for this source [Gallagher- (1968) ,

Berger(1971)] . Independence-inducing transforms therefore allow 

efficient coding since each of the resulting independent outcomes
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may be coded at close to the single letter rate-distortion function, 

by efficient scalar coding methods.

Our discussion will now be restricted to linear 

transformations. In choosing a linear transformation, we try to 

find one which will give a transformed sequence as near independent 

as possible. The best that can be done using linear

transformations, is to require that the resulting sequence be 

uncorrelated. The transformation which achieves this is the 

Karhunen-Loeve transformation (KLT). (This is sometimes refered to 

as the Hotelling transform for sampled data systems [Ahmed and 

Rao-(1975)])

The KLT is the transformation K that satisfies the equation

2.1. D is a purely diagonal matrix with positive entries.

Y = KX 2.1

where E(Y.YT) = D 2.2

Referring to E(X.XT) as R, it is easily shown that a transformation 

K which satisfies the condition 2 .2, is the matrix of eigenvectors 

of R, where D is the diagonal matrix of eigenvalues of R. The 

optimum linear transformation, the KLT requires the knowledge of the 

covariance function for the source and its evaluation involves the 

computation of the eigenvectors of a matrix.

In practice the KLT is not often used for transform coding. 

The main drawbacks are, the unreliability of the covariance function 

estimation and the lack of fast algorithms for evaluating the 

eigenvectors of the transform and for calculating the transform of a

data sequence. The alternative, but non-optimum, transforms have
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fast implementation algorithms which make them convenient to use. 

In fact it has been shown practically that there is little to be 

gained from using the KLT compared with the Discrete Cosine 

Transform for some sources with high inter-symbol correlation 

[Zelinski and Noll-(1977) and Wintz- (1972)].

2.2 .2 A Fourier transform coding example

Figure 2.1 shows a block diagram of the transform coder to be 

described. Non-overlapping blocks of symbols from a source are fed 

to a Fourier transformer. Let us refer to a block of input data of 

length L as X. The Fourier transformer generates a sequence of L 

complex numbers, (L/2)+l (L is even say) of which are to be encoded 

and transmitted. Of these, two are purely real. Refer to the 

sequence of complex numbers to be coded as Y. The coding scheme may 

be one of the following.

1) Choose beforehand which of the Y are to be transmitted. 

The choice is fixed and is made by considering the long term 

spectral character of the source, in conjunction with a weighting 

function to colour the noise resulting from quantisation. For each 

of the frequency components to be coded, a fixed number of bits is 

assigned. Which frequency components to code and the number of bits 

to assign is decided in this way. For each frequency component " to" 
we assign /|_log21 | J  bits. Here /L(«)J is the smallest 

integer greater than u and zero if u<0. X(co) is the source's 

power spectral density and c(co) is some weighting function used to 

colour the coding noise. D* is the distortion limit such that one
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expects average distortion less than D*. When c(w ) is unity the 

assignment of bits in this way results in a noise spectrum which is 

approximately flat [Huang and Shulthiess-(1963)]. For each 

frequency component, non-linear quantisation may be used. Some 

workers have employed A - law or M-law quantisation 

[Frangoulis-(1978)] and others have employed Lloyd-Max quantizers.

2) The frequency components to be coded are not chosen 

beforehand. For each block a different but fixed number N of 

frequency components are chosen for coding and transmission. The N 
chosen are dependent upon the instantaneous magnitude of the 

frequency components. This is referred to as adaptive transform 

coding. The advantage of this is that no apriori source statistics 

are required. A shortcoming however, is the neccessity to send 

extra symbols to inform the receiver of which frequency components 

are coded and the number of bits assigned to each of the frequency 
components coded. [Wintz (1972)]

At the receiver, the received spectral signal is simply 

inverse transformed to obtain an approximation to the coded source 

symbols. Alternatively some sort of interpolation may be done to 

approximate the frequency components not transmitted, before inverse 

Fourier transforming

A myriad of schemes have been reported in the literature, 

which are variations and improvements to the above method. [Tasto 

and Wintz-(1972) and Wintz-( 1972)]. For image coding, the variations 

on the above method are not outstanding, with the exception of using 

overlappping blocks. For speech coding however several methods have 

been proposed which are significantly different from the above. The
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foregoing is a discussion of some of the inadequacies of transform 

coding as described in section 2 .2 .2 .

2 .2.3 Improvements to the basic scheme

For the scheme just described and the improved methods to be 

described, transforms other than the Fourier transform may be used. 

The improvements gained when using alternative transforms are in 

these directions.

a) tA further decrease in correlation between the random 

variables obtained after doing the transform. This enables more 

efficient coding of the data, since the greater the decorrelation 

the transformation achieves, the larger the compaction of the data 

in the transform domain. The excellent review paper by Wintz-(1972) 

gives a comparison of the results of the performance of discrete 

Fourier transform (DFT), discrete cosine transform (DCT) and 

Karhunen-Loeve transform (KLT) coding schemes.

b) A decrease in the computational time for the implementation 

of the transformation. To this end, the results of the use of the 

Walsh-Hadamard, Haar and other easily implementable transforms have 

been reported in the literature. Frangoulis- (1978), Ahmadi-(1980), 

Zelinski and Noll-(1977 and 1979) give a figure comparing the 

performance of the KLT, the DCT, the DFT, the discrete sine 

transform (DST) and the Walsh-Hadamard transforms.

In order to improve the transform coding results, we may use 

overlapping blocks. This, in conjuction with the windowing of
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blocks to be transformed enables the performance of a more reliable 

short term spectral analysis of the block to be coded. We may also 

improve the efficiency of the methods used to code frequency 

components. These two approaches are not mutually exclusive. To 

explain and justify the use of windowing we have to redefine what it 

is that we want to achieve.

The transformation procedure, using a transform defined by the 

kernel K, is shown by equation 2.4.

h(n-m) is some window function centered at m. x(n) is the doubly 

infinite sequence which is generated by the source and ym(0) ) is the 

frequency component at frequency c*>, observed at time instant m.

For the basic transform coding scheme, h(n-m) is a rectangular 

window centered at time instant m. If the transform size is M, the 

window is of length M. The window centres, the various values of m, 

are integer multiples of M, so that non-overlapping blocks are 

transformed. It may be seen from equation 2.4 that for every value 

of 03 =a)0 say, ym(co0) is a sequence with m, whose members are 

estimates of the amplitude value for that particular frequency 

component co0. The periodicity of the sampling of that particular 

frequency w 0, for the case of the simple transform coding scheme 

described is l/M. Obviously the best scheme as far as resolving the 

various frequency components is that which would take the whole time 

infinite sequence and transform this. The values of the frequency 

components would only* need to be sampled and transmitted once. 

Since in reality this cannot be done, we window the data sequence

00

2.4
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wit h some windowing function of duration T, where T is finite. The 

problem of the best window shape to use was solved by Kaiser for the 

Fourier frequency domain. Consider the equation

For the single frequency o»0, with value ym(cv0) at a time instant 

"m", it may be seen that ym (cu0) is the convolution of the time 

sequence {x(n)K(a>0 ,n)} by the function h(.). It is required that 

for each i, y.(o>0) has as few contributions from other frequencies 

as possible. The best window for this, given any block length is 

the Kaiser window. [Rabiner and Gold-(1975) sections 3 .8-3 .16] The 
necessary sampling rate (frequency at which the magnitude of 

frequency component 6l>0 should be sampled) is determined by the 

bandwidth of the filter whose impulse response is h(.). The greater 

the duration of the window, the sharper the cutoff of the filter 

whose impulse response is h(.). This is the rationale for the use of 

overlapping blocks and a window.

Now we shall consider the improvements which may be made in 

quantising the members of the transformed sequence Y. In the simple 

transform coding scheme described in section 2 .2 .2 , one non-adaptive 

and one adaptive method were described. It should be recalled that 

the adaptive scheme had the advantage of following the changing 

spectral patterns better since for each block, the frequencies coded 

are chosen according to the local spectral characteristics. We 

shall now describe in detail schemes reported by Zelinski and 

Noll-(1977) and Tribolet and Crochiere-(1979). Figure 2.2 shows a 

block diagram for these two schemes.

00

2 .5
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Zelinski and Noll chose a set of non-uniformly spaced 

frequencies f1,f2,... The average power at frequencies around each 

chosen frequency value fj , is evaluated. These values of average 

power are quantised and transmitted. These values for average power 

are also used to evaluate an estimate of the power spectral density 

over the whole of the frequency range at both the receiver and the 

transmitter. This estimate of the power spectral density is then 

used to design a bit allocation scheme. This bit allocation scheme 

is then used for quantising and coding the whole of the frequency 

band. Tribolet and Crochiere reported a scheme in which they do the 

spectral density function estimation by LPC analysis. The LPC 

analysis is done using an auto-correlation function derived via an 

inverse DCT of the square magnitude of the cosine tranformed 

sequence. For speech coding applications in particular, Tribolet 

and Crochiere weight the DCT spectral signal with a comblike 

frequency response which is supposed to represent the effects of the 

pseudo-periodic characteristic of voiced speech. They call this a 

vocoder driven adaptive transform coder. It was reported by 

Zelinski and Noll-(1979) and Tribolet and Crochiere that 

quantisation of the frequency components, using Lloyd-Max quantisers 

made no significant improvement over doing linear quantisation.

Other improvements to the transform coder are in the direction 

of finding frequency domain weighting functions which are supposed 

to improve the perceptive quality of the speech or image signal.

The 'short-term' Fourier transform is an alternative to the 

windowed and overlapped Fourier or cosine transforms. This involves 

the Fourier transformation of a reflectively doubled version of each
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input data block. The Fourier components are consequently purely 

real, and are coded as the cosine transform components were 

described as being coded in the previous section. It has been 

reported that this procedure results in less edge effects, which 

effect is especially important for image coding.

2.3 Methods that follow from transform coding

The underlying effect of using a transformation will be 

discussed by considering the Fourier transform. Consider the 

sequence of source symbols {x1,x2,...,xN }. These are transformed 

so that we have {y1 ,y2»«»*»yN}* For the Fourier transform kernel, 

each of ym is the output of a low-pass filter preceded by a 

modulator, which does frequency shifting. The following shows this. 

Consider the equation describing the transform
CO

= ^ h(n~ m)xin)e~JniJ> 2 .6
,1= -00

Then for each frequency w , one obtains the sequence ym say, if 

exp(-jwn) is replaced by z(n) where
00
yT h(n — m)x{n)z(n)

n =  -oo
2.7

The function x(n)z(n) is therefore convolved with the function h(.), 

to obtain the value y at instant m. Now it should be noticed that 

the multiplication of x(n) with z(n) is a modulation which effects a 

frequency shift by u> rads/sec. The h(.) is a low pass filter 

impulse response. (Note that with no windowing, that is with a
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rectangular window, the low pass filter is just an averaging 

process.) Thus each spectral component is the result of a modulation 

followed by a low-pass filter. Transform coding restricts one to 

using Finite impulse response (FIR) filters for the low-pass filter 

operation.

2.3.1 Sub-band coding

In sub-band coding, very long length filters may be used to 

effect the band-pass filtering operation. The use of H R  filters 

effectively means the use of longer analysis windows and the 

possibility of sharper frequency discrimination. Usually a small 

number of frequency bands is used, for example four or eight. A 

class of filters particularly suited to the job of band-pass 

analysis are the quadrature mirror filters. The basic building 

block is a "half-band coder". This divides an incoming sequence into 

a lower frequency band of half the original bandwidth and a higher 

frequency band of half the original bandwidth. The high frequency 

band is then modulated to the base-band. Figure 2.3 shows a tree of 

filters with half-band coders at each node. The individual signal 

from each of the channels is coded using any of the well known 

scalar quantisation schemes. Like the transform coder, a different 

number of bits are allocated to each of the bands. This is done 

according to the energy of the signal component in this band. The 

assignment scheme is the same as in transform coding. Alternative 

subband coders are ones which use frequency bands of different

bandwidths.
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2 .3.2 Linear predictive coding (LPC)

The transform coding approach to frequency analysis uses FIR 

filters to do spectrum analysis. The short term spectrum is then 

represented by the transformed sequence. The members of this 

sequence are quantised and transmitted. An alternative is to find 

parameters which describe a smooth function in the frequency domain. 
This smooth function is an approximation to the short term spectrum 

of the data. This is what LPC attempts to do. Parameters to 

indicate a smooth function which approximates the power spectral 

density are obtained, quantised and have channel symbols assigned to 

these. The channel symbols are then transmitted. In addition, the 

residual or error signal associated with this approximation is coded 

and transmitted. In LPC, the source symbols are approximated as the 

output of a time varying infinite impulse response (HR) filter. 

The coefficients of this filter are parameters which define the 

spectrum of the input signal. Suppose

-v(i),.v(2)...x{n)

is a block of the input signal. This is modelled to be the output 

of the filter H(z). Let

e ( l ) , e ( 2 ) ............ e(/i)

be the input sequence to this filter. The filter coefficients are 

calculated so that for each block the residual signal 

{  6( 1 ) ,  e(2), ...,€(«)} has the smallest variance. The following is a 

description of the general formulation.

A source may modelled in the most general case as an 

"auto-regressive moving average" (ARMA) process. Let the source
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sequence be x(n), then the model is described thus:
k L

2 .8

The source is "identified" by the parameters {a1 ,a2 ,...,ak} and 

{b1 ,b2 ,... ,bL} such that the variance of the error sequence 

{e(l),e(2), ...,€(«)} is minimised. If the aj are all zero the source is 
said to be a "moving-average" process. Alternatively if the b- are

, kzero, then

Appendix 1 shows the procedure for evaluating the filter 

coefficients for the case when the bj are zero. The model is 

termed an "auto-regressive" or "all-pole" model in this case. When 

an estimate is made of the auto-correlation or covariance function 

for the source beforehand, then an algorithm named after Levinson 

and Durbin may be used. An alternative is the Burg maximum entropy 

method which does not require a prior estimate of the 

auto-correlation or covariance functions. Both these methods of 

evaluating the all-pole filter coefficients are recursive. The 

filter coefficients for an N-th order autoregressive source are 

evaluated by first working out the best coefficient for the case 

when the source is modelled as a first order system. Next we use 

this to evaluate some of the coefficients for the case where we

(1 - ')x(n) =e(n) 2.9

where z-i is a time shift of i positions. Then

= H(z)e(n) 2 .10

model the system as a second order auto-regressive source. We then
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use the coefficients obtained by doing this to work out the 

coefficients for the case where we use a third order model and so 

on. To evaluate the m coefficients for the case where we model a 

source as being of order m, we first evaluate the m-th coefficient. 

This in conjunction with the m-1 coefficients obtained by using a 

model of order m-1 is used to calculate the m coefficients of the 

m-th order model. In this stage by stage process, the m-th filter 

coefficient evaluated at the m-th stage, is referred to as the m-th 

reflection coefficient or partial correlation coefficient. To 

ensure the stability of the resulting all-pole filter all the 

reflection coefficients have to be of magnitude less than unity.

It has been observed that the frequency response of the

all-pole filter model is very sensitive to the variation of its

filter coefficients. For coding, it has been found that the

quantisation and transmission of the reflection coefficients or some

function of the reflection coefficients has resulted in less

distortion of the spectrum. Non-linear quantisation of the

reflection coefficients is generally done. This is because it has

been observed that the filter response is sensitive to reflection

coefficient error when these are near unity. Quantisation is done

so that there is less error when a reflection coefficient is close

to unity. Non-linear quantisation is generally done by linearly

quantising some non-linear one-to-one function of the reflection

coefficients. Two such functions which have been found to work well

are given below. [Gray and Markel-(1976)]
1 + At,.

0gT^t7
hj = s irT 1(/:i-  1)

k t are the reflection coefficients and 
gj are called the log-area-ratios
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To recapitulate, LPC involves the use of an all all-pole filter to 

model a source. (ARMA models have seen little use because of the 

difficulty of evaluating their parameters) The filter gives the 

parameters of a smooth frequency function which approximates the 

spectrum of the source. The error associated with this spectral 

representation has an associated time domain sequence which is 

referred to as the residual signal. The residual signal, in addition 

to parameters describing the model for the source are quantised and 

transmitted. These are used by the receiver to generate an 

approximation to the input sequence.

The LPC Vocoder

A vocoder is a coder which does low bit rate speech coding by 

extracting, coding and transmitting parameters which describe the 

speech generation process. The linear prediction vocoder is one of 

several types of vocoder. The LPC vocoder does linear prediction 

analysis on a block of speech data, generally of duration 10 to 30 

msecs. The Log-Area-Ratios as shown in equation 2.11 or the 

arcsines of the reflection coefficients are evaluated and quantised.

There are several ways of solving the problem of evaluating 

the filter parameters. To solve the problem by the use of the 

Levinson-Durbin algorithm, requires the evaluation of the 

auto-correlation or covariance function for the source. The 

approaches for doing this are:

1. Windowing the data and directly finding the auto-correlation 

function by presuming that the signal is zero outside the span of 

the window.

2. Performing a FFT of the input sequence, evaluating the square
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magnitude of the transformed signal for each frequency component, 

and computing the inverse transform of this. One then obtains an 

approximation to the auto-correlation function. This implies that 

the signal is periodic. The covariance function obtained is that of 

a periodic sequence, where outside the duration of the signal 

available, this sequence is repeated.

3 . The use of a pitch synchronous system has been reported by 

Barnwell-(1980). Here use is made of the pseudo-periodic character 

of speech when an utterance is made. A pitch period's worth of 

signal is used to evaluate the covariance function by the FFT method 

described in 2. This is a reasonable course of action since the 

speech signal, on these occasions is semi-periodic.

4. The use of the Burg maximum entropy method. This avoids a 

direct evaluation of the auto-correlation or covariance functions. 

It has been reported to give better spectral estimation than any of 

the other methods.

Figure 2.4 shows a basic LPC vocoder. This requires a 
decision to be made concerning whether the block being considered is 

the result of a voiced or unvoiced utterance. If it is ascertained 

that the block is that of a voiced sound the pitch associated that 

utterance has to be evaluated. At the receiver, the residual or 

excitation for feeding the filter representing the all-pole process 

is derived as follows. When the block is unvoiced a pseudo-random 

sequence of an appropriate variance is used to excite the filter. 

When the block is voiced, a sequence of pulses of the appropriate 

frequency and variance is used to feed the all-pole filter used to 

model the source. This type of vocoder allows data transmission at 

between 2kbit/sec and 12kbit/sec. Several LPC vocoders with more
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efficient coding of the Log-area parameters, the pitch and gain have 

been reported in the literature. Using these method allow the 

transmission of digital speech at rates as low as 800 bits/sec.

The residual waveform may be encoded in a manner other than by 

modelling this as a pulse train or pseudo-random noise. Vocoders 

excited by alternative methods are referred to as residual excited 

vocoders (RELP vocoders) or voice excited vocoders (VELP vocoders)

RELP vocoders have in addition to the filter parameters (or 

reflection coefficients) a low pass filtered version of the residual 

signal coded and transmitted.

VELP vocoders are similar except that a low pass filtered 

version of the input data sequence is sent to the receiver.

In both these cases the signal transmitted in addition to the 

filter parameters is low pass filtered to between 500Hz and 1kHz. 

At the receiver this signal is processed to generate a full band 

signal which is then used to excite the modelling filter.

2 .4 Vector quantisation

Vector quantisation is another name for block quantisation. 

This name is however by recent tradition used solely for block 

quantisation schemes which do not depend on the prior application of 

some independence inducing transformation.

Vector quantisation may be described as follows. Presume that 

a source generates a sequence Q = {x.03,...,x_| )x(),x1,...,x0o}.
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Suppose that non-overlapping blocks are considered and the block

(xn+1 > • •. ,xn+L} is refered to as Xn • To any values that the block
X„ takes, we want to assign an approximation, X„ . We constrain 

the alphabet of the set of possible approximation vectors to have 

only 1024 members say. Thus if X„ has say, L=8 members each of
Owhich may take one of 256 values, we have a total of 256 possible 

values for X„ . Using vector quantisation, the compression ratio 

achieved for this example is 1:64 .

A major task in vector quantisation is choosing the members of 

the approximation set. These must be chosen such that the average 

distortion obtained by approximating the possible outcomes by 

members of the approximation set, is minimised. The minimisation is 

over all possible approximation sets of a given size. There is no 

known optimisation scheme, (except of course a complete search) 

which will solve the general problem for any source. A solution is 

generally evaluated by clustering. Some axioms proposed by Lloyd 

which help us to do reasonable clustering are given below. We shall 

then descibe a practical vector quantisation scheme.

Axiom 1.

Given a set of partitions, S  ̂,S2 ,.... say

an optimal quantizer should have for each cluster i, a centroid m,, 

so that the following is true. The distortion associated with 

representing the members of cluster i by the centroid m, is 

minimised. This gives us a criterion for choosing the centroids of 

clusters given a certain partitioning scheme.

Axiom 2 •

An optimal quantiser should have for a given set of centroids
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M n ={m1,...,mn}, a partitioning scheme S such that the distortions 
{d, ,...,dn} associated with representing the members of a cluster 
(defined by the partitioning scheme S) by their centroids Mnis 

minimised. This gives us a criterion for choosing a partitioning 

scheme, granted that a set of centroids has been defined already. 
The set of partitions may be found by evaluating the boundary 

between every pair of centroids m; and mj . The boundary is defined 

as the locus such that the following holds. All points to one side 
of the boundary will be approximated by one centroid mj say, and all 
points to the other side of the boundary will be represented by the 
other centroid mj . The boundary chosen is the one which gives the 
least average distortion. We shall refer to this boundary as Bjj . 
Granted a set of centroids M n we define for each particular 

centroid, the quantity Bj defined as follows.

B i =  P i B i j  2.12
Y j ^ i

This is a VORONOI cell associated with the particular centroid m;. 
The set of all these Voronoi cells, one each for the centroids, 

m1 ,m2,... define the best partitioning scheme S given a set M n 
of centroids.

These two axioms together define an optimum partitioning 

scheme.

The clustering scheme most employed for coding purposes is 

detailed briefly below. It was first applied to scalar quantities 

by Lloyd-(1982) and to vector quantities by Forgy-(1965) . A set of 

cluster centroids M n1 is arbitrarily chosen, then a set of optimum 

boundaries {B̂  ,B2 ,...,B*n} defining a partitioning scheme Sni is
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chosen in accordance with axiom-2 above. Denote the resulting 

average distortion by the quantity D(Sni ). Granted these 

partitions, we find the best centroids in accordance with the 

axiom-1 above. Refer to the resulting set of centroids as M„2 . 

Using M n2 find the best set of partitions, say Sn2 • Continuation of 

this procedure will lead to at least a local minimum as far as 

distortion associated with partitioning is concerned.

An image coder based upon vector quantisation

A vector quantisation scheme based almost exactly on the 
method of clustering just described, has recently been reported by 
Gersho and Ramamurthi-(1982) .

A large training sequence is used to define a set of cluster 

centres in the following manner. This approach was first suggested 

by Linde, Buzo and Gray-(1980). Suppose it is decided that there 

should be K groups or clusters. Each member is an N point sequence. 

A set of K cluster centres is arbitrarily chosen. The training 

sequence is then used to define new centroids and partitions as 

described in the above. The whole training sequence is used at 

every stage to define new centroids and then partition schemes. 

When it is observed that this recursive scheme has converged, the 

centroids form the set M n . This set is referred to as either a 

library, codebook or a set of templates.

In the method of Gersho and Ramamurthi, each training sequence 
vector is first classified as containing an edge or is a "shade", 
that is a region with no edge. Two different codebooks are designed
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for the two different data types.

The encoding procedure is simply that of finding the nearest 

member of the codebook to a block under consideration. The channel 

symbols or coordinate associated with this particular member is 

transmitted. At the receiver the coded block is approximated by 

this member of the codebook. Various block sizes were tried by 

Gersho and Ramamurthi and bit rates of 0.5 to 1.5 bits/pixel were 

achieved with reasonable quality.

A speech coder based upon vector quantisation.

The first use of a vector quantiser for speech coding was reported 

by Smith in an abstract in 1963 . The idea is remarkably like that 

followed today. A vector quantisation scheme for speech coding 

scheme was investigated by Ahmadi-(1980), this used a rather ad-hoc 

quantisation scheme. Intelligible speech was reported to have been 

obtained for very low data rates (around lkbit/sec) using this 

method. The vector quantisation scheme described here was reported 

by Linde, Buzo, Gray Gray and Robodello-(1980). The following is a 

detailed description of how the codebook is designed. Of particular 

note is the way in which the codebook is initialised.

Set a stage counter M to 1 initially. Suppose it is decided 

that the codebook will contain K members. Set an initial centroid 

A n of dimension L (the blocks considered are each of dimension L). 

Choose A^ to be the mean block of length L, by going through the 

whole training sequence. From A^ derive two centroids defined as
follows,
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A\=AX i+ c, A]-Au-e 2.13

e is an arbitrary perturbation vector of dimension L. These two 

vector are used as initial vectors for clustering. From these two, 

a partition scheme is derived. This partition scheme is then used 

to define a optimum pair of centroids for this partition scheme. M 

is replaced by 2M and the optimum pair of centroids are refered to 

as A21 and A 2 2 respectively.

From these two centroids we obtain 4 new centroids by 

perturbation by the vector e of dimension L. These four 

are used to define a new partitioning scheme. This partitioning 

scheme, is then used to define a new set of 4 centroids by going 

through the training scheme. Refer to this new set of centroids as 

A4j . From these four define a new set of partitions then centroids 

and so on. This is done until we obtain K centroids.

This set of centroids form the initial members of the 

codebook. We are now ready to apply the clustering algorithm as 

desribed in the previous section.

It has to be pointed out that for speech coding, vector 

quantisation has not been applied directly to the speech samples but 

upon the Log-Area-Ratios. Some frequency domain distortion function 

is used.

Linde, Buzo and Gray reported on the use of 10 filter 

coefficients for the all-pole filter derived after LPC analysis. 

They employed a codebook of 256 members, to approximate the LPC

filter parameters. This resulted in a coding scheme with a reduced
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bit rate, from 6kbits/sec to 1.4kbits/sec. They claim the reduction 

in quality was small.
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2.5 A bibliography of block quantisation schemes

Reviews
Flanagan et al.-(1979) give a thorough review of the accepted speech 

coding schemes. Holmes-(1982) gives a briefer but nevertheless very 

good review of current speech coding techniques. Jain-(1981) and 

Netravali and Limb-(1980) give very thorough reviews of image coding 

systems, which should be enough to give a strong grounding in the 

field of picture coding. Wintz-(1972) gives a more detailed 

description of transform coding schemes. Despite the age of this 

paper, few fundamentally new schemes for transform coding have been 

reported since this was written. Habibi-(1977) is also helpful in 

the area of transform coding. A very thorough book dealing with the 

whole field of speech and image compression is that by Jayant and 

Noll-(1984). It covers most of the topics described in this and 

chapter 5.

The following is a list of references dealing in more detail 

with particular block coding schemes.

Transform coding.

Huang and Shulthies-(1963) first reported the use of transform 

coding techniques for image compression. The papers by Andrews, 

Kane and Pratt-(1969), Anderson and Huang-(1971), Landau and 

Slepian-(1971), Pratt,Chen and Welch-(1974), Rao, Narashima and 

Revuluri-(1975), and by Bisherurwa and Coakly-(1981) describe 

transform coding schemes using the various orthogonal transforms; 

DFT, DCT, DST, Haar, Hadamard and Slant transforms. For image 

coding methods which include some classification, in order to better
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adapt the coding scheme to the short term statistics of the source, 

see the papers by Gimlett-(1975) and Wen-Hsuing Chen and 

Harrison-Smith- (1977). These use an activity index to classify 

blocks. Tasto and Wintz-(1971) use a more subjective classification 

scheme, with three classes. These are;

1) Blocks with a lot of detail.

2) Low intensity blocks with low detail and

3) High intensity blocks with low detail. The KLT is used to do the 

coding, the basis functions differ with each class. Ngan-(1982) 

paper is gives a comprehensive comparison of the WHT and DCT and 

uses a human visual characteristic for adaptive bit allocation. In 

addition classification according to activity is made. A hybrid 

technique using transform coding of the rows of a picture and 

differential pulse code modulation on the columns of the resulting 

after transfomation of the rows.

For speech coding the following papers by the following are 

worth reading: Campanella and Robinson-(1971), Shum, Elliot and

Brown-(1973), Zelinski and Noll-(1977 and 1979) and Tribolet and 

Crochiere-(1979). The latter paper deals with transform coding and 

subband coding in a unified manner and makes very interesting 

reading. A further reference is the thesis by Frangoulis-(1978). 

This details a very thorough investigation of various methods for 

doing Walsh-Hadamard transform coding. A good presentation of 

subjective results is given in this work.

Subband coding

This was introduced by Crochiere in 1976. The concept though is 

very similar to that behind the channel vocoder. [Shroeder-(1966)]
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Other references are the papers by Crochiere-( 1977) , Esteban and 

Galland-(1978) and Grauel- (1980).

Vocoders

The background for modelling the speech generation process is given 

in the definitive book by Fant-(1961). The vocoder works by making 

use of the speech model in deciding the important features to code. 

The excellent review paper by Shroeder-(1966) descibes the different 

types of vocoder. Other references are papers by Higgins-(1954) and 

Shroeder-(1962) which describe an auto-correlation vocoder. The 

concept of the voice excited vocoder is covered by the following 

authors: Shroeder and David-(1960) David, Shroeder, Logan and

Prestigiacomo-(1972).

Linear predictive coding

For speech coding the references for this overlap with those for the 

vocoder. The most definitive work on this is the paper by Atal and 

Hanauer-(1971). Further work has been reported by Atal, in one of 

these papers he details the effects of applying linear predictive 

coding to the residual waveform [Atal-(1982)]. Viswanathan, 

Makhoul, Shwartz and Huggins-(1982) have reported a scheme for 

further bit rate reduction in a vocoder which does the following. 

Only filter coefficients which are observed to be significantly 

different from the previous filter coefficients are transmitted. 

Atal and Shroeder-(1978) have reported the effects of doing 

pole-zero analysis (using an ARMA model) of the speech waveform. 

Yegananarayana(1981) also describes a method of finding the ARMA
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model parameters for speech segments.

In image coding, relatively little work has been reported, 

concerning the use of a "space" varying filter model for the image 

data generation process. The papers by Jain and Ranganath-(1980) 

and Jain-(1981) report on the use of an auto-regressive model. The 

thesis by D Mitrakos-(1983) detail some interesting coding 

techniques which use a space varying auto-regressive model for 

modelling an image. Maragos, Schafer and Mersereau-(1984) recently 

published a thorough investigation of the use of an adaptive 

two-dimensional predictor for image coding which is very noteworthy.

Vector quantisation

The first mention of this in a coding context was in the abstract by 

Smith-(1963). Other work has been done at Stanford, and has been 

reported in the papers by Linde, Buzo and Gray-(1980), Buzo, Gray, 

Gray and Markel- (1980a and 1980b), Gray, Gray, Robodello and 

Shore-(1981) and Abut, Gray and Robodello(1980). The theory and 

some results on vector quantisation have also been presented by 

Gersho-(1982), Gersho and Ramamurthi- (1982) and Fischer and 

Dicharry-(1984). Ahmadi-(1980) and Wilson-(1983) have also

investigated the application of vector quantisation to speech 

coding, They have investigated the clustering of speech according to 

a spectral distance measure, defined in a transform domain.

Comparison of various methods

Some useful papers, assessing the relative merits of some coding 

schemes have been reported by the following: Tribolet, Noll,
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McDennott and Crochiere-(1979) have published the results of the 

comparison of adaptive transform coding, adaptive differential pulse 

code modulation and subband coding. Matsuyama and Gray-(1982) have 

reported the results of a comparison of vector quantisation based on 

LPC and tree coding using adaptive prediction coefficients.
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CHAPTER 3 ADAPTIVE D M A  COMPRESSION WITH MEMORY, 

THE BLOCK CODING APPROACH
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3.1 Introduction

In this chapter we describe and investigate a class of coding 

schemes which relies upon the representation of data blocks by 

previously encoded blocks.

Most source coding schemes, to achieve good compression, need 

to be designed with due regard to the statistics of the source to be 

coded. Coding theorems have been proved for block coding, tree and 

trellis coding. These theorems show that as some parameter is 

allowed to go to infinity, these coding schemes may be designed to 

work arbitrarily close to the rate-distortion function of a source. 

[Shannon-(1959), Jelinek-(1969), Viterbi and Omura^ (1974)] For these 

schemes to achieve their promise however, they need to be well 

designed and this requires a knowledge of the statistics of the 

source to be coded. For most of the sources of interest the design 

of a good coding scheme is not easy. This is because the statistics 

of these are generally unknown apriori. Alternatively, the local 

statistics of long sequences from the source may be observed to vary 

from a block of data to the next. A source that exhibits this 

property is referred to as one with time varying statistics. 

Knowledge of the overall statistics of a source with time varying 

statistics and coding according to these statistics does not 

necessarily result in the lowest bit rate that may be achieved for 

such a source [Viterbi and Omura-(1979) p526] . For such a source if 

the statistics are varying slowly enough, it may be profitable to

employ a different coding scheme for each of the different

statistical classes which this source may exhibit from block to

block. To code such a source, apriori analysis is required;
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parameters describing the different statistical classes which may 

occur, should be extracted. This is often impracticable. The 

solution is to employ a coding algorithm which will enable the 

reasonable compression of data and which will make few assumptions 

about the character of the statistics of the source to be coded. 

The common approach is to encode the data in blocks as follows. 

[For example Zelinski and Noll-(1977 and 1979) in adaptive transform 

coding] For each block the local statistics are evaluated. An 

appropriate coding strategy is employed for this block, bearing 

those statistics in mind. The receiver is sent symbols, identifying 

either the statistics of each block or symbols indicating the coding 

strategy used. In addition, the transmitter sends the symbols 

associated with the coding of the source in the manner chosen.

In this chapter an alternative scheme to that described above 

is studied. It shall be refered to as the MPPCD scheme. This 

stands for 'the Matching of Patterns in Previously Coded Data'. The 

scheme is described in section 3.2. This method of coding is not 

new. It has received however, very little attention and its 

application has been until now been limited to the compression of 

facsimile data. The results, for facsimile coding, have been 

reported by Arena and Zarone-(1978) and Pratt, Capitant, Chen, 

Hamilton and Wallis-(1980). It is our intention to generalise its 

field of application and report on its performance. The MPPCD 

scheme is thus applied to the coding of multilevel image data and 

speech data. We propose several new variations to the scheme and 

investigate their data compression abilities. This is done in the 

situation where no assumptions are made concerning the data to be 

coded. A comparison of the performance is made between, in the case
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of noiseless coding, this scheme, the Shannon entropy and Huffman 

coding. In the case of coding with error, a comparison is made 

between this scheme the rate-distortion bound for the source and 

Discrete Cosine Transform(DCT) coding.

The MPPCD scheme is then used in situations where we allow 

ourselves some knowledge of the type of source being coded. For 

image data this allows the consideration of alternative sampling 

schemes and two dimensional blocks instead of one dimensional 

sequences. In addition the effects of the use of distortion 

measures other than the simple mean square error is studied.

For speech coding, the scheme is used to improve the 

performance of the Linear Predictive Vocoder (LPC Vocoder).

The chapter concludes with a discussion of the merits and the

shortcomings of the MPPCD scheme.
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3.2 The basic coding scheme

The underlying principle of this scheme is as follows. A 

block is coded by matching the patterns of this block with those of 

previously coded data. It is referred to as the MPPCD scheme, where 

MPPCD stands for the Matching of Patterns in Previously Coded Data. 

In order to describe the operation of the scheme the following items 

have to be defined.

1. A distortion measure is chosen and a distortion limit 

d* is set. d* is a distortion value which should not be 

exceeded as the coding scheme proceeds.

2. Sequences of lengths , L2,...LN, are chosen where 

lî ^ L2<. • • ̂ I*n *
3. Choose a quantity C, where C is the number of levels 

that may be chosen so that the distortion which results from 

uniform quantisation to C levels is less than d*.

4. The quantity N, the number of possible lengths is 

chosen so that log2N is much smaller than log2C . An example 

is C=256, N=4 and 1^ = 1, L2=2 , L3=4, L4=8.

The coding scheme will be explained using the particular 

values of C, N and L given above. The general case is an easy 

extension. A flow chart for the scheme is given in figure 3.1.

Suppose that a pointer is set to i so that all data symbols 

Xjjj<i have already been coded and hence both the receiver and 

transmitter know that these have been approximated by the symbols, 

Xjij<i. We consider a block of data {Xj ,xi+-|,... ,xj+7 } = X8 say. We 

attempt to encode this sequence by sampling the set of previously 

coded data Xj :j<i for a sequence of symbols which are similar to
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X8 . This sampling is done in an orderly and predefined manner and 

we have exactly C tries. Associated with each of the C tries is a 

coordinate value. It should be noted that the set of approximations 

are known to both the receiver and the transmitter. If an 

approximation X8 is found in one of the C sampling experiments on 

the set of previously coded outcomes, such that d(X8 , X8 )£d*

(d(X8 ,X8 ) is the distortion between the two sequences X8 and

X8 ), then the coordinate of this event in the set of previously 

coded symbols is transmitted using log2C bits. An additional log2N 

(in this case log^) bits are used to indicate the length of the 

block coded. At the receiver, the sequence X8 is approximated by 

X8 . The counter is advanced by 8 positions and the coding scheme 

proceeds exactly as described so far. In addition, at the

transmitter, the fact that the receiver will approximate X8 by X8 

is noted.

If an approximation X8 which satisfies the distortion 

conditions is not found, we attempt to code a block of smaller size. 

Consider the block (Xj ,xj+1,Xj+2,xj+3}=X4 say. We attempt to code 

this sequence by sampling the set of previously coded data Xj :j<i 

for 4 symbols X4 say, so that d(X4 ,X4 )<d*. Exactly C sampling 

experiments are conducted. If an approximation is found which 

satisfies the distortion constraint, the coordinate of the

particular event is transmitted, using log2C bits. An additional 

log2N bits are used to indicate the block size. At the receiver, 

X4 is approximated by X4 . The algorithm counter is advanced by 4 . 

The coding scheme as described so far, is continued.

Failure to find a sequence X4 which satisfies the distortion
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Aconstraint, leads to an attempt to code {Xj ,xj+1}=X say, employing 

the previously coded data. Success at this, means the receiver 

approximates X2 by X2 and the counter is increased by 2, the 

coding scheme proceeds as described so far. We next proceed by 

trying to code a block of length 8.

Upon failure to code a block of length 2, the symbol Xj is 

quantized to the closest of C levels and transmitted using log2C 

bits plus log2N bits to indicate the block size. The receiver 

approximates Xj by Xj , the nearest quantization level. The 

transmitter notes that the receiver has done this. The algorithm 

counter is advanced by 1 and coding continues as described before.

At this point it is useful to indicate the way in which the 

sequence of previously coded data is sampled in search of an 

approximation to a sequence of interest. Two examples of how this 

may be done are as follows.

a) Consider the sequence of approximations Xjtj<i. If one 

tries to code the block of data XN , of length N the following are 

the blocks of previously coded data which are candidates for 

approximating XN :

{ * i - 1  , . • • ,Xj_|y}  , {X j_2  , . • . , X j _N_1}  , { X j _ 3 , . . »Xj_fj_2} , . . .  , {X j_ Q ,  . . .  >Xj_Q_Nv|}

These are overlapping blocks. Alternatively non-overlapping blocks 

may be considered:

{ X j _ 1 , . . . , X j _ N}  , {Xj_|y_j ,  . . .  >Xj_2fj  }  , { X j . j i ^ , . . .  >Xj_3|Y } , . . . , {Xj_(c_i )N- i  , . . . , X j _ Q f j  }

In the above two methods we almost inevitably have C sequences which 

are not all distinct. To get over this the following may be done.
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b) We construct N libraries, each contains sequences of 

previously coded symbols, possibly distorted versions of Xj:i<j. 

The different libraries contain sequences of different lengths, 

L-| ,L2 »*««»Ln . Sampling of the set of previously coded data C times, 

for a block of length Lm , actually means searching the m-th library. 

Suppose the counter for the algorithm is at position i. If the 

search of the m-th library (library containing sequences of length 

Lm ) for a suitable approximation XLfn proves unsuccessful, then for 

this library, the pointer value p=i is stored in memory. When the 

pointer value goes beyond i+Lm , then the sequence of approximations 

{Xj ,... ,Xj+[_ } is included in this library. This sequence goes to 

the top of that library. The earliest in that library is removed. 

If the search of the m-th library is successful, this library is 

kept unaltered. In the receiver, the following happens. Upon the 

receipt of a symbol, m say, indicating the length of the block just 

coded, the pointer value q=i is stored, Note that the fact that a 

block of length Lm was coded implies that the coding of a block of 

longer length was not possible. This in turn means that the 

libraries containing sequences of length Lm+i,...,LN should be 

altered. As the pointer value q goes past i+Lk, where m+l<k<N, the 

sequence {Xj ,xj+1,. .. ,xj+Lk} is included in the set of sequences 

belonging to the k-th library. This sequence goes to the top of the 

k-th library and the earliest member of this library is removed. 

All members of this library are moved down one position.

To recapitulate then, there are N libraries of different 

lengths maintained at the transmitter. Replicas of these are 

available at the receiver. Each library is like a stack, whenever a 

sequence of a given length is not codable, using the library of
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sequences of this length, a subsequent approximation for this 

sequence, goes to the top of this stack, in both the transmitter and 

receiver. The earliest member of this library is removed.

The scheme for sampling the sequence of previously coded data 

as described in "a", is obviously inferior, as far as permitting 

• efficient compression is concerned. The scheme as described in "b",

is more complicated and requires more effort in implementation in 

addition to requiring large quantities of memory for the storage of 

the members of the N libraries. Most of the investigation 

undertaken in this chapter employ the scheme described in "a".

At this stage the concept of an elementary block size should 

be introduced. The coding process as described so far, may be 

implemented with each of the original source symbols replaced by 

blocks of these. The elementary block size is N if sequences of N 

original source symbols are used in place of one symbol in the 

scheme as described so far.

To conclude the description of the basic MPPCD scheme, we 

consider how the algorithm is initialised. This is actually rather 

obvious. There are two ways. The first is to have stored in memory 

a set of randomly generated data, duplicates of which are kept at 

both the receiver and transmitter. This sequence acts initially as 

the set of previously coded data. Alternatively, initially almost 

all generated data is transmitted. Sampling of previously coded 

data is done only as far as previously generated data exists.
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Decide d i s t o r t i o n  
d ( . ,

measure

Decide d i s t o r t i o n  l i m it d*

Choose s e t  of  
where L j< L ,  < . .

,LJ;

Refer  to  input data as x ( .)
and p reviou sly  coded 
data as x

input

Refer  to  x ( i + l ) , . . .  , x ( i + L .) as
X J

Figure 3.1. Flow chart for basic MPPCD scheme
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3.3 Performance with artificially generated data

3.3.1 Noiseless coding

The minimum coding rate achievable, in effecting the noiseless 
coding of a stationary statistical source is the Shannon entropy of 

the source [Shannon 1948a, theorem 3]. Suppose a source has a 

sample space Q with C members cô t o>2, • • • ,&>c. Let the probability of 

occurrence of a)t be Pj . Then the Shannon entropy for this source is

The unit of the coding rate is "bits per symbol" if the base of the 

log is 2. Huffman coding, [Huffman-(1953)] is a scheme which, for 

any given block size, achieves the minimum possible coding rate.

The results achieved when using the MPPCD scheme are compared 

with the Shannon entropy and the Huffman coding rate for a variety 

of situations.

1) Independent letter source. An artificially generated 

sequence of random numbers are coded. The source sample space is 

the set of integers 1 to 16. The histogram and the coding results 

for this source are given in figure 3.2 and table 3.1. The MPPCD 

scheme as expected, is inferior to the Huffman coding ‘scheme. It 

nevertheless achieves reasonable compression considering that no 

prior information about source statistics is used.

The compression efficiency of the scheme, for both the methods 

"a" and "b" of sampling the set of previous outcomes, improves as

3 .1

the elementary block size is increased.
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Histogram parameter=20.0

Shannon Entropy: 2.2294 bits/symbol
Huffman Coding Rate: 2.3426 bits/symbol

MPPCD: (Sampling Scheme=uaM)

h i 1 j l>2  ̂* ^3 ^ ^ ;

L j = l, L2=2 , L^=3, L^=4;

Elementary
Elementary
Elementary

Elementary
Elementary
Elementary

block size=l, Rate=
block size=2, Rate=
block size=3, Rate=

block size=l, Rate=
block II<UN•HCO Rate=
block size=3, Rate=

Same source as above but more data samples.

Shannnon Entropy: 2.1365 bits/symbol
Huffman Coding rate: 2.2422 bits/symbol.

HPPCD: (sampling Scheme="bn)

1^=1, 1^=2 L^-4, L^-6; Elementary block 
Elementary block

size=l, Rate= 
size=2, Rate=

L^— 1, L^-2 , L^-3 , L^—4; Elementary
Elementary

block size=l, Rate= 
block size=2, Rate=

Table 3.1 Results of coding independent letter source 
MPPCD scheme.

3.6633 bits/symbol 
3.3431 bits/symbol
3.1908 bits/symbol

3 .4671 bits/symbol 
3 .2308 bits/symbol
3.1908 bits/symbol

3.2546 bits/symbol 
3.0679 bits/symbol

2 .9897 bits/symbol 
2.9435 bits/symbol

using the
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Table 3.1 (continued) 

Histogram parameter=40 .0

Shannon Entropy: 1.7758 bits/symbol
Huffman Coding Rate: 1.9151 bits/symbol

MPPCD: (Sampling Scheme=,,a")

L j-1, L^-2 , L^—4 , 

L X=1, L2=2, L3=3,

L^=6; Elementary 
Elementary 

L^=4; Elementary 
Elementary

block size=l, Rate= 
block size=2, Rate= 
block size=l, Rate= 
block size=2, Rate=

Same source as above but more data samples.

Shannnon Entropy: 1.7607 bits/symbol
Huffman Coding rate: 1.8977 bits/symbol.

MPPCD: (sampling Scheme=nb")

Lj=l, L2=2, L =4, L^=6; Elementary block size=l, Rate=
Elementary block size=2, Rate= 

L =1, L„=2 , L =3, L,=4; Elementary block size=l, Rate=
Elementary block size=2, Rate=

=2.9868 bits/symbol 
=2.6989 bits/symbol 
=2 .7350 bits/symbol 
=2.4451 bits/symbol

2.5603 bits/symbol 
2 .5680 bits/symbol 
2 .3325 bits/symbol 
2.3329 bits/symbol
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2) Non-independent source. An artificially generated sequence 

of non-independent random numbers are coded. The source is 1-st 

order Markov, where each outcome xk=o>j is dependent only upon the 

value of the immediately preceding outcome, xk1=CL>j . The sample 

space of this source is the set of integers from 1 to 16. The 

symbols of the 1-st order Markov source are generated by picking as 

the k-th outcome a symbol from the i-th of C subsources, if xk-1 =a>j. 

The transition matrices with entries p(xk=coj | xk1=<»>j) ((i,j)th 

entry ) for all i and j for two particular examples are shown in 

tables 3.2a and 3.2b. The overall outcome frequency histograms are 

shown in figure 3.3.

The coding rates for the MPPCD scheme, the single letter 

Shannon entropy values and the rate achieved when doing single 

letter Huffman coding are shown in table 3.3. It may be observed 

that the MPPCD scheme achieves better compression than the single 

letter Shannon entropy and the single letter Huffman coding rates. 

It should be noted, however that this is an easy source to code. 

With prior knowledge of the character of the source, we know that we 

can code these sources at under 2 and 3 bits respectively, for the 

two sources using differential encoding.

3) Sources with time varying statistics. An artificially 

generated source with the following characteristics is coded. The 

source is 1-st order Markov but where the transition probability 

matrix values are occasionally altered. The overall transition 

probability matrix is shown in table 3 .4 . The occasional variation 

of the transition matrix makes the design of a coder that exploits 

the basically Markov nature of the source, difficult.



.5818 

.4128 

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000  

.0000

.5000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

Table'

Table

.35 94 .0000 .0000 

.2969 .3438 .0000 

.3438 .2500 .2301 

.0000 .4063 .4425 

.0000 .0000 .3274 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.3033 .0000 .0000 

.3033 .3000 .0000 

.3934 .3188 .3742 

.0000 .3813 .3558 

.0000 .0000 .2699 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000

,0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 ,0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
,2953 .0000 .0000 
.3758 .2934 .0000 
.3289 .3054 .3526 
.0000 .4012 .3368 
.0000 .0000 .3105 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000

,0000 .0000 .0000 
,0000 .0000 .0000 
,0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
,0000 .0000 .0000 
,0000 .0000 .0000 
.0000 .0000 .0000 
,0000 .0000 .0000 
.3734 .0000 .0000 
.3101 .3247 .0000 
.3165 .3766 .3286 
.0000 .2 987 .3357 
.0000 .0000 .3357 
.0000 .0000 .0000 
.0000 .0000 .0000

,0000 .0000 .0000 
,0000 .0000 .0000 
,0000 .0000 .0000 
,0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000 
.0000 .0000 .0000  
.3507 .0000 .0000 
.2910 .36 92 .0000 
.3 5 82 .2 846 . 52 3 3 
.0000 .3462 .4767

.3203 .0000 .0000 

.3359 .3402 .0000 

.3438 .3222 .3531 

.0000 .3376 .3531 

.0000 .0000 .2938 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000  

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000

.0000 .0000 .0000 

.0000 .0000 .0000  

.0000 .0000 .0000 

.3407 .0000 .0000 

.3565 .3430 .0000 

.3028 .2996 .3498 

.0000 \3574 .3004 

.0000 .0000 .3498 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.0000 .0000 .0000  

.3414 .0000 .0000 

.3690 .3784 .0000 

.2897 .3739 .3125 

.0000 .2477 .3409 

.0000 .0000 .3466 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.3653 .0000 .0000 

.3353 .2941 .0000 

.2994 .3588 .3089 

.0000 .3471 .3770 

.0000 .0000 .3141 

.0000 .0000 .0000 

.0000 .0000 .0000

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

.2947 .0000 .0000 

.3892 .3290 .0000 

.3161 .2987 .4971 

.0000 .3723 .502 9

3.2a Example of Markov source. This source Is coded using 
the MPPCD scheme with sampling method "a".

3.2b Example of Markov source. This source is coded using 
the MPPCD scheme with sampling method "b".
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Figure 3.3. Histograms for two examples of Markov source 
used in MPPCD coding.



-71-

Single letter Shannon entropy: 3.9242 bits/symbol
Single letter Huffman coding rate: 3.959 bits/symbol

MPPCD: (Sampling Scheme=na")

L 1, L2 -2 y 4 ) 6 j

L^=l, L^=2 , L^=3 , L^=4;

Elementary block 
Elementary block 
Elementary block 
Elementary block 
Elementary block 
Elementary block

size=l, Rate=
size=2 , Rate=
size=3 , Rate= t
size=l, Rate=
size=2 , Rate=
size=3 , Rate=

Same source as above but more data samples.

Single letter Shannnon Entropy: 3.9401 bits/symbol
Single letter Huffman Coding rate: 3.98 bits/symbol.

MPPCD: (sampling Scheme="b")

L 1, L2 2) 4 j 6 ;

L 1 i L2=2 , L^=3, L^=4;

Elementary block size=l, 
Elementary block size=2, 
Elementary block size=l, 
Elementary block size=2,

Rate= 3 
Rate= 3 
Rate= 3 
Rate= 3

Table 3.3. Results of coding non-independent (1st order 
source using MPPCD scheme.

.6535 bits/symbol 

.3432 bits/symbol 

.7255 bits/symbol 

.4479 bits/symbol 

.1798 bits/symbol 

.6486 bits/symbol

438 bits/symbol 
,2083 bits/symbol 
.2427 bits/symbol 
,0739 bits/symbol

Markov)
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The results of the performance of the MPPCD scheme are given 

in table 3.5; along with these are the single letter Shannon entropy 

and the single letter Huffman coding rate.

It may be observed that the MPPCD scheme achieves a 
significantly lower coding rate than that obtained by single letter 

Huffman coding. Furthermore considering the complexity of the 

mechanism for generating the data it is unlikely that the underlying 

Markov character of the source could be discovered and advantage 

taken of this, in a normal coding environment.

The method has the following disadvantage though; if the 

period between instances when the local statistics change, is too 

short, its compression ability is greatly reduced. By too short, it 

is meant that this period is of a similar order of magnitude to the 

memory of the MPPCD coding scheme. For example, take the scheme 

whose results have been given in table 3.5. If the "elementary 

block size" is one, the size of the codebook and hence the memory of 

the coding system is 16. The period between instances of changes in 

statistics should be much greater than 16. This accounts for the 

poorer result when an elementary block size of 2 is used.

3.3 .2 Coding with a fidelity criterion

The MPPCD scheme is used to code an artificially generated 

source, where we allow distortion. A distortion limit, or fidelity 

criterion, is set. We attempt to code a source at the smallest bit 

rate manageable and still make sure that the resulting distortion is
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.4606 .0681 .0000  

.0376 .3912 .0664 

.0012 .0725 .3763 

.0000 .0110 .1710 

.0315 .0000 .0000 

.0412 .0176 .0604 

.0158 .0703 .0121 

.0667 .0703 .0443 

.0509 .0769 .1630 
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.0000 .1012 .0653 
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.3431 .0000 .0257 
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.0535 .1556 .0554 
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.0000 .0389 .1267 

.0900 .0000 .0455 

.0000 .0350 .0000 

.0462 .1051 .1109

.0374 .0875 .0518 

.0966 .05 19 .0422 

.0165 .0357 .1024 

.0000 .0000 .0493 

.0685 .0276 .0000 

.0654 .0000 .0000 

.3209 .0000 .0000 

.0000 .4619 .0139 

.0000 .0178 .4058 

.0779 .0269 .0265 

.05 92 .0 5 02 .02 40 

.0623 .0713 .0455 

.1184 .0227 .0759 

.0343 .0729 .0885 

.0156 .0000 .0164 

.0280 .1005 .0556

.0729 .0883 .0739 

.0430 .0188 .0246 

.0486 .0094 .03450 

.0411 .0714 .0197 

.0766 .0000 .0000 

.0542 .02 82 .0000 

.0449 .0338 .0328 

.0000 .0545 .0722 

.0393 .0338 .0575 

.3701 .0583 .0345 

.0598 .3327 .0181 

.0374 .0226 .4959 

.0654 .0019 .0000 

.0093 .0620 .0000 

.0122 .0883 .0296 

.0262 .0959 .1067

.1002 .0974 .0423 

.0000 .0139 .0500 

.0000 .0000 .0000 

.0000 .0736 .0000 

.0235 .0000 .0385 

.1343 .0477 .0000 

.0832 .0219 .0192 

.0320 .0875 .0000 

.1301 .1392 .0462 

.0746 .0099 .026 9 

.0000 .0616 .1769 

.0021 .0000 .0731 

.3049 .0398 .0846 

.0405 .355 9 .0962 

.0469 .0497 .3462 

.0277 .0020 .0000

Table 3.4 Transition probability matrix for source with time 
varying statistics.

.0 182 

.0564 

.0000 

.0315 

.0415 

.0929 

.0133 

.1028 

.0697 

.0249 

.0846 

.1078 

.0232 

.0017 

.0000 

.3317
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Single letter Shannnon Entropy: 3.9327 bits/symbol
Single letter Huffman Coding rate: 3.9557 bits/symbol.

MPPCD: (sampling Scheme="bn)

• L =1, 55 Elementary block size=l, Rate= 2.9853 bits/symbol
Elementary block size=2, Rate= 3.8350 bits/symbol

Table 3.5. Results of coding pseudo-Harkov source (Markov source 
with time varying transition probability matrix) with 
MPPCD scheme.
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less than the limit set.

To compare the performance of the scheme with the 

theoretically attainable limits, the rate-distortion (r-d) function 
is introduced. The minimum rate (in nats) theoretically attainable, 

for a given source with probability measure function q(x), so that 

distortion is less than some value d*, for different values of d*, 

defines the rate distortion function. Its formal definition is 

given thus,

R(d ) = inf
p(y\x)

g(x) P(y\x)
q(x)p(y\x)dx dydx 3.2

such that

d' <; p(y\x)d(x,y)dydx 3 .3

and

l=̂ P{y\x)dy V* 3#4
R

d(x,y) is a distortion measure which is chosen beforehand. For the 

tests conducted in this section the mean square error distortion 

measure is employed. The rate distortion function and the source 

coding theorem serve as the formal basis for the subject of data 

compression. Details of these may be found in the publications by 

Shannon-(195 9), Gallagher-(1968) , Berger-(1971), Viterbi and 

Omura- (1979).

A source whose rate-distortion function is easily bounded from 

above is used to test the MPPCD scheme. This is a 1-st order 

auto-regressive source, with a variance a2 and correlation 

coefficient p.
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The upper bound on the rate-distortion function for this 

source is given by the rate-distortion function of the Gaussian with 

similar statistics. This upper bound is given below.

The results of coding are presented in table 3.6. These results are 

compared to the results obtained by doing discrete cosine transform 

coding, in addition to the theoretically attainable rate. Discrete 

cosine transform coding is chosen as a good example of a practical 

source coding scheme for the following reason. This has been shown 

empirically to give good results, especially in the case where the 

source being coded may be modelled as a first order auto-regressive 

source. The papers by Ahmed, Natarajan and Rao-(1974) and Kitajima, 

Saito and Kuroba-(1977) show the closeness of the results of 

discrete cosine transform (DCT) coding to the theoretical results 

(obtained by doing finite length Karhunen-Loeve or Hotelling 

transform coding) for finite length blocks. It may be observed that 

the results of doing MPPCD coding are worse than those for DCT 

coding. This is to be expected since DCT transform coding is close 

to optimal for the source class considered. It is also to be noted 

that as the elementary block size is increased, the coding rate is 

reduced.

Most of the coding inefficiency of the MPPCD scheme may be 

attributed to the fact that extra bits are sent to indicate the

3.5

block size. This is one of the reason for an increase in coding 

efficiency when the elementary block size is increased, this being
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Autoregress ive source generated as y(n)= y(n-l)+e(n). e(n) is a 
sequence of outcomes from an independent, Laplacian distributed 
random variable, a 2=variance of y(n) sequence.

*

a2= 0.956
p= 0 . 8
d = 0.1, (- lOdb) ; R(d)< 0.923

MPPCD: (sampling Scheme=Mbn)

L^—1, L<2-2 , L^—4 , L^-6 ; 

L ̂ =1, L>2=2 , =3 , L^=4 j

Elementary
Elementary
Elementary
Elementary

block size=l, 
block size=2 , 
block size=l, 
block size=2 ,

Rate= 2.6483 
Rate= 2 .2979 
Rate= 2.5417 
Rate= 2.1117

bits/symbol 
bits/symbol 
bits/symbol 
bits/symbol

Coding results, not including the 2 bits for block size representation:

Lj = l, L2=2 , L~=3 , L =4; Elementary block size=l, Rate= 1.6945 bits/symbol
Elementary block size=2 , Rate= 1.6894 bits/symbol

• a1 = 0.9562
P= 0 . 8
d = 0.02 (-17db) ; R(d )< 2.084

MPPCD: (sampling scheme="b")

L =1, 1*2=2 , 1^=3, L^=4; Elementary block size=l, Rate= =4 .4475 bits/symbol
Elementary block size=2, Rate= =4.0729 bits/symbol

a1 = 0.9562
p= 0.8
d = 0.04 (- 14db) ; R(d )< 1.584

MPPCD: (sampling scheme="bM)

L^=l, 1,2=2 , 1 3 =3 , L^=4; Elementary block size=l, Rate= =3 .5463 bits/symbol
Elementary block size=2, Rate= =3.1669 bits/symbol

Table 3.6. Results for coding a 1-st order auto-regressive 
source with a fidelity criterion. Method is MPPCD 
scheme.



Rate in bits/symbol Distortion

4.0 6 .53383E-03 21.8485dB
3.5 9.70505E-03 20.1300 dB
3.0 2 .02 198E-02 16 .9422 dB
2 .5 3.10698B-02 15 .0767dB
2 .0 6 .3841 IE-02 11.9489dB
1.75 7 .48229E-02 11.2596dB
1.5 9.73681E-02 10.1158dB
1.0 1.917 15E-01 07.1734dB

Table 3.7. Results for coding a 1-st order auto-regressive 
source with a fidelity criterion. Method is 
Discrete-Cosine-Transform coding. Correlation 
coeff=0.8
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because proportionately fewer bits are used to encode the block size 

coded. It is expected therefore that better compression may be 

achieved if more efficient methods are used to code the block 

lengths.
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3 .4 Application to speech coding

We shall now leave the artificially generated sources and 

consider the application of the MPPCD scheme to real data, in this 

case speech. For the results presented in this section three speech 

sentences are employed. The speech files are these:

1) A male speaker saying AN APPLE A DAY KEEPS THE DOCTOR 

AWAY (SR8KK) .

2) A second male speaker saying A BIRD IN THE HAND IS WORTH TWO IN 

THE BUSH (KABITH).

3) A female speaker saying A BIRD IN THE HAND IS WORTH TWO IN THE 

BUSH (TABITH).

For all the above files the speech was low-pass filtered to 

3.4kHz. and sampled at 8kHz. The first file was digitised to an 

accuracy of 12 bits per sample and the second and third to an 

accuracy of 10 bits per sample. Portions of these files are plotted 

in figures 3.4a, 3.4b and 3.4c.

For all investigation presented from here onwards, the set of 

previously coded symbols is sampled, as explained in method "a" of 

section 3.2. In this section no prior knowledge of the speech file 

to be coded is presumed. No attempt is made to take advantage of 

some of the known characteristics of speech.

The coding scheme used, is almost identical to that described 

in section 3 .3 .2 . There is some difference though, therefore the 

scheme will be described again.

Presume that the coding pointer is at i, and all samples
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Figure 3 .4a Portion 
of speech file:- SR8KK

Portion 
:- KABITH

Figure 3 .4c Portion 
of speech file:- TABITH
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Xj:j<i have been coded. The sequence of approximations Xj :j<i to

the previous symbols is known to both the transmitter and receiver.

We shall consider coding sequences {Xj ,xj + 1 ,... ,Xj + L -i}=XLn ofN
length L n . Two examples of what is done here, which show the 
differences between these and the scheme described in section 3.3.2 

are as follows:

a) Normalisation with respect to the mean. Block lengths 

are considered, withL6=64, L5=32 , L4=16, L3=8, L2=4 and

L.|=2. Any block considered, XLk , has its mean value extracted, 

quantised and coded separately using 6 bits. The quantised mean 

MLk , is subtracted from XLk . Let YLk =XLk -MLk . Then the job of 

coding the sequence YLk is undertaken. This is effected by 

searching the set of previously coded outcomes for an approximation, 

XLk ; any candidate for the purpose of approximation has its mean 

subtracted, giving YLk =XLk -MLk . Coding is a success if 

d(YLk +MLk ,YLk +MLk ) < d*

If there is no success in coding X1"2 , after having searched through

a portion of the set of previous outcomes, the sequence X1"2 is 

quantised using 7 bits each for the two source symbols. On every

occasion that a block is coded 17 bits are transmitted. The first 

three bits indicate the block length. If the block length is 64, 

32, 16, 8 or 4, the next eight bits indicate the coordinate in the

set of previous outcomes, where an approximation is to be found and 

the last six bits indicates the mean of the block in question. If 

the block length is two, the last fourteen bits indicate the 

quantised values of the symbols XLl

b) Normalisation with respect to both mean and variance. The
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only difference between this and the strategy just descibed is that 

the blocks to be compared are normalised to have zero mean and unity 

variance. In addition 1^=3. On every occasion that a block is 

coded, 24 bits are transmitted. For blocks greater than L 1 in 

length, the first three bits indicates the block length. The next 

six bits indicate the block standard deviation, the next seven the 

block mean and the eight following these, the coordinate in the set 

of previous outcomes, where an approximation is to be found. If the 

block size is L 1, the next 21 bits are allocated, with seven bits 

each to the three symbols X Ll .

A flow chart for the schemes is given in figure 3 .5. The 

distortion measure considered is the mean square error. The results 

for coding the speech files mentioned above are given in table 3 .7 . 

Figure 3.6 shows an example of the waveform distortion obtained by 

using the MPPCD scheme. The mean square error measure is possibly 

not the best error measure for speech coding. For this coding 

scheme, as described so far a single letter distortion measure is 

necessary and the mean square error measure is a convenient one to 

use. (It should be pointed out that the absolute error criterion, 

is also a convenient error measure to use. This is because for 

implementing the MPPCD scheme, with normalisation with respect to 

the mean, the whole coding scheme may be implemented without having 

to do any multiplications)

For comparison purposes, the same speech files are coded using 

the discrete cosine transform (DCT). The scheme used is an adaptive 

scheme similar to that described by Zelinski and Noll-(1977). The 

contents of this paper were explained in chapter 2, section 2 .2 .3 .



Decide distortion measure 
d(.,.)
Decide distortion limit d
Choose set of L.,L7 ,...,L„ 
where L ^ l ^ <.. .£1̂ .“

Refer to input data ...» x(.)
and previously coded input 
data as x
Refer to x(i+l),... ,x(i-*-L .) as 
X J

Flow chart for MPPCD scheme applied tc 
speech coding with mean normalisation or 
mean and variance normalisation

Figure 3.5



. Plot of distorted waveform obtained by 
coding with MPPCD scheme.

Figure 3.6
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Speech L L ,L. ,L, , 
File L 5 ,Lg ,Ly

Memory
size

Mean
bits

Variance
bits

Bits/
block

Error
limit Rate S/N ratio

SR8KK 32,16,12,8, 1024 6 0 19 0 .2 11.0867kb/s 10 .28dB
6,4 ,2

SR8KK 32,16,12,8, 1024 6 0 19 0 .1 12 .6016kb/s 12 .613 dB
6 .4 a.

SR8KK 32,16,12,8, 1024 6 0 19 0.05 14 .464kb/s 15 .405dB
6.4.2

SR8KK 32,16,12,8, 1024 6 0 19 0.025 15.984kb/s 17 .56 dB
6.4 .2

SR8KK /, / ,48,24 , 1024 7 7 27 0 .1 9.058kb/s 10 .57 dB
12 ,6 ,3

SR8 KK /, / ,48,24 , 1024 7 7 27 0.05 11.257kb/s 13 .228dB
12 ,6 ,3

SR8KK /, / ,48,24 , 1024 7 7 27 0.025 13 .876kb/s 15 .65 dB
12 ,6 ,3

KABITH /, / ,48 ,24 , 1024 7 7 27 0 .1 8.509kb/s 10.4105 dB
12 ,6 ,3

KABITH /, / ,48,24 , 1024 7 7 27 0.05 1 1.6 8 6kb/s 13 .737dB
12,6 ,3

TABITH /, /,48,24, 1024 7 7 27 0 .1 9.353kb/s 10.4342 dB
12 ,6 ,3

SR8KK 48,32 ,24,16, 512 6 6 24 0.1 8.143kb/s 10.64dB
12,6 ,3

SR8 KK 48,32,24,16, 512 6 6 24 0.04 11.343kb/s 14 .57dB
12,6 ,3

SR8 KK 48,32,24,16, 512 6 6 24 0.025 13 .0227kb/s 16 .6 dB
12,6,3

KABITH 48,32,24,16 , 512 6 6 24 0.1 8.06kb/s 10 .64dB
12 ,6 ,3

KABITH 48,32 ,24,16 , 512 6 6 24 0.04 11.1917kb/s 14 ,588dB
12 ,6,3

KABITH 48,32,24,16, 512 6 6 24 0.025 12 .976kb/s 16 .394dB
12 ,6 ,3

TABITH 48,32 ,24,16, 512 6 6 24 0.1 8.5056kb/s 10.628dB
12 ,6 ,3

TABITH 48,32,24,16 , 512 6 6 24 0.04 11.024kb/s 14 .52 dB
12 ,6 ,3

TABITH 48,32,24,16, 512 6 6 24 0.025 13 .2 lkb/s 16 .41dB
12 ,6 ,3

Table 3 .8 Results of coding speech by the MPPCD scheme
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Speech file Block size
Block
period Window Rate S/N ratio

SR8KK 12 8 non-overlapped 128 None 8kb/ s 9.953dB
SR8KK 128 non-overlapped 128 None 12kb/s 12 .946'dB
SR8KK 12 8 non-overlapped 128 None 16kb/s 15 .265 dB

KABITH 128 non-overlapped 128 None 8kb/s 11.66 18dB
KABITH 128 non-overlapped 128 None 12kb/s 11.6618dB
KABITH 128 non- overlapped 128 None 16 kb/s 16.16 dB

TABITH 128 non- overlapped 128 None 8kb/s 11.58dB
TABITH 128 non- overlapped 128 None 12 kb/s 14 .06dB
TABITH 128 non-overlapped 128 None 16 kb/s 16 .09dB

SR8KK 128 overlapping 96 Trapezoidal 8kb/s 9.556dB
SR8KK 128 overlapping 96 Trapezoidal 12 kb/s 11.89dB
SR8KK 128 overlapping 96 Trapezoidal 16kb/s 14 .35dB

KABITH 128 overlapping 96 Trapezoidal 8kb/s 10.865dB
KABITH 128 overlapping 96 Trapezoidal 12 kb/s 13 .lldB
KABITH 128 overlapping 96 Trapezoidal 16kb/s 14 ,625dB

TABITH 128 overlapping 96 Trapezoidal 8kb/s 10 .45dB
TABITH 12 8 overlapping 96 Trapezoidal 12 kb/s 12 .98dB
TABITH 12 8 overlapping 96 Trapezoidal 16kb/s 14.78dB

SR8KK 128 overlapping 96 Tukey 8kb/s 9.166 dB
SR8KK 128 overlapping 96 Tukey 12 kb/s 11.65dB
SR8KK 128 overlapping 96 Tukey 16 kb/ s 13 .84dB

KABITH 12 8 overlapping 96 Tukey 8kb/s 10 .5 ldB
KABITH 128 overlapping 96 Tukey 12 kb/s 12 .76 dB
KABITH 128 overlapping 96 Tukey 16kb/s 14 .ldB

TABITH 128 overlapping 96 Tukey 8kb/s 10.134dB
TABITH 128 overlapping 96 Tukey 12 kb/s 12 .3486dB
TABITH 128 overlapping 96 Tukey 16 kb/s 14 .055dB

Table 3.9 Results of speech coding, employing adaptive Discrete 
Cosine Transform (Adaptation method by Zelinzki and 
Noll-(1977))
Decription of the windows:
Trapezoidal: The data is multiplied by a weighting
function w(n) where
w(n)=l; 33 < n < 96
w(n)=(n-0.5)/32; 1 < n < 32
w(n)=( 128.5-n)/32 ; 97 ^ n < 128
Tukey: The data is multiplied by function w(n) where 
w(n)=l; 33 < n < 96
w(n)=0.5[l-cos{(n-0.5)7r/32}]; 1 < n < 32 
w(n)=0.5[l-cos{(128.5-nW32}]; 97 < n < 128

Windowed blocks of 128 data symbols are overlapped so 
that the last 32 symbols of a block overlap with the 
first 32 points of the next block.
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We believe that this scheme is one of the best in terms of signal to 

noise ratio, of the well known waveform coding schemes (also noted 

by Fehn and Noll-(1982) section VII). It is therefore instructive 

to compare the MPPCD scheme's results with those attained by this. 

The transform coding results are given in table 3.8.

3.4.1 Discussion.

The results of the coding scheme in terms of signal to noise 

ratio are encouraging, showing lower distortion for the same rate 

compared with the DCT transform coding results. This is contrary to 

the findings of section 3.3.2 for the following reasons.

1) The normalisation with respect to the mean and variance 

allows previous blocks to be employed which would have been 

considered otherwise unsuitable for coding a present block. This 

consequently allows larger blocks to be coded using previous blocks 

with the drawback that some extra bits are required to code the mean 

and variance.

2) Some aspects in the character of speech, particularly its 

semi-periodic nature for voiced segments, means that the chances of 

finding a block with a similar shape, located one pitch period in 

the past, is large. This property is not exploited by the method of 

Zelinski and Noll for the transform coding of speech.

3) During silent blocks, due to the distortion measure used, 

the coding of large blocks is facilitated.

Listening tests showed the following properties of the coding



scheme.

At all rates, the resulting speech was clearly noisy. The noise is 

easily perceived as a roughness of the coded speech. Comparison 

with transform coded speech indicates the following preferences.

For rates greater than 12kb/s the transform coded speech is 

prefered, although transform coding achieved worse signal to noise 

ratio values. The results of the MPPCD scheme were distinctly 

noisier, although as expected the higher frequencies are better 

preserved. The transform coding results for non-overlapping blocks 

were considerably less preferable to those with overlapping blocks.

Interestingly the transform coding scheme performs poorly at 

8kb/s, the speech has a burbly character, at times reminding one of 

birdsong. This is also noticable at 12kb/s, but whereas at this 

rate the result is acceptable, it is not so at 8kb/s. For the MPPCD 

scheme, despite the large improvements in signal to noise ratio with 

increasing bit rate there is surprisingly little reduction in 

perceived noise.

For lower bit rates, that is below 12kb/s, the MPPCD scheme is 

preferable to transform coding by the method of Zelinski and Noll. 

At high bit rates the MPPCD scheme as described thus far is not 

preferable.



3 .5 Application to Image coding

In this section we present the results obtained when coding 

images using the MPPCD scheme. Two 128 by 128 images are used for 

all tests conducted. These are a portrait image and a picture of a 
telephone box; they are refered to as AFTAB and TELEBOX. These two 

images are shown in figure 3.7. They represent two types of image. 

AFTAB is an easy image to code, it contains relatively few features 

and edges. TELEBOX is a more difficult image to code, having more 

features and a lot of edges.

The coding scheme employed is exactly the same as that used 

for speech coding as described in section 3.4. No use is made of 

the 2-dimensional nature of the data. The input sequence considered 

is a 1- dimensional stream of symbols as would be generated by the 

line by line scanning of an image. Each line is scanned from left 

to right. Coded blocks are normalized with respect to the mean as 

described in section 3.4, with block lengths L-j=2, L2=4 , L3=6 , L4=8, 

Lg=12, Lg=16 and L7=32.

The coding results are shown in figure 3.8. For comparison 

purposes, these images are also coded using a non-adaptive discrete 

cosine transform coding algorithm. The bit allocation scheme for 

each frequency component is similar to that described in section 

2.2.3. The results are shown in figure 3.9.

3.5.1 Discussion

Very satisfactory coding results are obtained using the MPPCD 

scheme with the image AFTAB. Although the signal to mean square
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128x128 AFTAB

12 8x128 TELEBOX

Figure 3.7 Original pictures:- uncoded.
Displayed with 30 level grey scale resolution.
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#

Rate = 1.327 bits/pix. Rate = 1.203 bits/pix
S/N = 2 9.002 dB S/N = 26.203 dB
mem sz = 1024 mem sz = 1024

(A) <»

Rate = 1.07 bits/pix.
S/N = 23 .232 dB
mem sz = 1024

C*)

Rate = 1.69 bits/pix. Rate = 1.465 bits/pix
S/N = 25 .33 dB S/N = 22 .859 dB
mem sz = 1024 mem sz = 1024

& )

Figure 3.8 Results of image coding via straightforward MPPCD
scheme. Blocks are normalised with respect to the mean.
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*

Rate = 2.00 bits/pix.
S/N = 30 .88 dB
total = 32768 bits

Cfl)

Rate = 2.00 bits/pix.
S/N = 2 9.61 dB
total = 32768 bits

(k>

Rate = 1.50 bits/pix.
S/N = 29.48 dB
total = 24576 bits

Rate = 1.50 bits/pix.
S/N = 27 .97 dB
total = 24576 bits

Rate = 1.00 bits/pix.
S/N = 27 .83 dB
total = 16384 bits

Rate = 1.00 bits/pix.
S/N = 25.70 dB
total = 16384 bits

Figure 3.9 Results for DCT transform coding of images. Block sizes 
are 16x16. The scheme is non-adaptive and 6x16x16 bits 
are sent initially, to indicate the standard deviation 
for each frequency pixel. This is used at the receiver 
to evaluate bits allocated to each frequency pixel.
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noise ratio achieved is not as impressive as that obtained using the 

Discrete Cosine Transform, the results are subjectively just as 

good. The drawback of the method, in contrast to DCT coding, is 

that it produces images with jagged edges, where the transform 

method smoothes these. Detail however, is reasonably well 

preserved, as may noticed with the fencing at the middle
t right-hand-side of the picture TELEBOX.
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3.5.2 Consideration of Image properties.

3.5.2.1 A description of images

Images are coded for broadly speaking two purposes, these are 

the following:

a) The storage or transmission of images for informal human use. 

For example, the transmission or storage of pictures for 

entertainment or the transmisson of images for conferencing.

b) The storage or transmission of images for formal use. By this, 

it is meant that some rather important information is to be derived 

from the image, either by humans or by machines. For example the 

storage or transmission of X-ray images or remotely sensed data. An 

example, of an occasion when a machine will use coded data is the 

storage of templates for the automatic interpretation of pictures by 

robots.

For each application, the distortion measure employed in 

coding an image should be different, being designed so as to 

introduce little or no distortion of the features which are to be 

extracted and employed by the user of the image.

All the work presented here presume that coding is for 

application "a" above, distortion is undesirable, but may be 

tolerated. All we are concerned with is that the picture "looks" 

reasonable, not terribly different from the original. In this case 

a knowledge of the human visual system may be useful when choosing 

an error measure. We shall therefore briefly review some of the 

important properties of the visual system. Firstly, however the 

description of an image in language appropriate for our purposes

will be given.



A digitised image is represented by a 2-dimensional block of 

numbers, {x- }. There is no obvious way in which this block of 

numbers {Xjj } may be sequenced for serial transmission, serial 

processing or serial storage. A process that represents the 
2-dimensional block of numbers as a 1-dimensional sequence of 

numbers, is called a "scanning" scheme. The user of image data 

chooses a scanning scheme to suit his needs.

An image is composed of features. For example an object or 

objects and a background (the background may also be considered as 

just another one of the objects of an image). The features are 

distinguished from each other, in a manner of speaking, by a 

uniformity of texture within the body of a feature. The objects are 

separated by boundaries. A boundary is characterised by a rapid 

change in average pixel value or area texture.

When looking at an image, the pixels are not seen as 

individual entities with different intensities. The tendency is to 

interpret the image as a set of objects separated by boundaries. A 

coding scheme, therefore should preserve the boundaries of an object 

and within this object, the texture should not be altered, changes 

in pixel values are allowed except that these changes should not 

destroy the visibility of the boundaries. In addition pixel values 

within the boundaries of an object, may be altered, provided that 

the texture as it is perceived, is unchanged.

The variation in intensity, which may be perceived, is 

dependent on the brightness of the region. This is tested by the 

ability to notice a spot of brightness 1+ Al in a background region 

of intensity I. It has been noticed that the value AI at which the
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spot is just noticable is proportional to I so that Al/l is almost 

constant for a region of I near the middle of the range of 

intensities perceived. The response is shown in figure 3.11. The 

constancy of Al/l is called Weber's law[Gonzalez and Wintz-(1977)]. 
At each end of the range of intensities, the value Al/l is larger. 

Thus when coding, one may allow more distortion in regions where the 

average intensity is high and also in regions where the average 

intensity is very low. In the middle of the range of intensities, 

less distortion or noise should be allowed.

The spatial frequencies which may be percieved are dependent 

upon the contrast of the signal (see Rozenfeld and Kac-(1982) p56). 

A distortion measure may be used which allows more low and high 

frequency noise, when the contrast associated with the texture 

within a region falls below a given threshold.-

Some of the properties of the visual system have been used to 

design a distortion measure to be used with the MPPCD scheme. 

Before describing this, the following point about the MPPCD scheme 

ought to be discussed.

The scheme is based upon coding blocks of data of sizes L 1 , 

L2».««,Ln . Until now it has been presumed that these blocks were 

1- dimensional. There is some difficulty with extending the concept 

to 2-dimensional blocks. Suppose one is at coordinate (i,j) in an 

image and one considers the largest 2-dimensional block size L k. 

The block of this size is coded by finding a block of similar size 

in the set of previously coded data, such that these two blocks are 

similar to within some distortion constraint. The problem is that 

the 2-dimensional block sizes which may be considered should be
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Figure 3.11 Weber's law
Contrast sensitivity with a constant background
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chosen so that the image may be thoroughly filled by these blocks of 

varying sizes.

The problem of defining a scheme and appropriate block sizes 

so as to be able to code 2-dimensional blocks, is deferred until 

later. In the mean time, the image is coded as if it is a one

dimensional sequence. Previously, the scanning scheme had been that 

shown in figure 3.12a. This is the standard scanning scheme used 

for TV and was used because it was supposed to be the scanning 

scheme most likely to have been used if one is presented with a

1-dimensional sequence representing an image. There are better 

scanning schemes, these avoid the sharp discontinuities that result

from going from the right side of a line to the left side of the

next line.

♦ The trajectory obtained in using a scanning scheme to

represent the points of a larger dimensional space by a

1-dimensional sequence is called a "space filling curve". Two 

examples are given in figures 3.12b and 3.12c. The PEANO or HILBERT 

scan of figure 3.12c produces a 1-dimensional sequence with the 

following distinction. For any length of resulting one—  dimensional 

sequence, the points of this sequence represent an N-dimensional 

space with the smallest maximum span in any direction. This scan in 

effect generates long 1-dimensional sequences associated with 

compact N-dimensional spaces. The advantage of this, as far as the 

MPPCD scheme is concerned, is this. A long 1-dimensional sequence 

to be coded, most likely corresponds to a 2-dimensional region as 

square as may be attained with any scanning scheme. The texture is 

thus more likely to be uniform over this sequence. The scan of



- 100-

Figure 3.12 a

Figure 3.12b

Figure 3.12c

Figure 3.12 Scanning schemes
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figure 3.12b however, was employed in the work reported hereinafter.

Next we consider error measures which may allow the allocation 

of different quantities of error to "edge" and "plane" regions of an 
image. To do this a gradient operator is applied to the one 

dimensional block of length Lk to be coded. The gradient at 

position i, g. is approximated thus,

gj — C .\x i+x — *t.| 3

The error at i is then weighted by a function f(gj) at each point i. 

The results of an example where white noise is added to a row of an 

image are shown in figures 3.14a and 3.14b. To add more noise to 

edges, the noise added to the image signal is ej^g7 • T° a<*d more

noise to plane areas, the noise added to the image signal is 

ej•1/^gj +ll • In each case ej is a Gaussian noise source of zero 

* mean. It was concluded that it is more desirable to have more noise

in the region of edges. The effect is to distort the edge, however 

the edge appears to be observed as a region of fast variation in 

intensity and it seems to be relatively irrelevant how this fast 

variation in signal intensity is achieved. Thus distortion is more 

tolerable in edge regions.

The results of coding an image with the points just discussed 

considered, are shown in figure 3.15. When comparing a block x|"m 
and a previously coded block x[m :j<i, the gradient sequence ĝ k for 

the sequence xj"m is computed. In ascertaining the error between the 

two sequences X,Lm and xj-"1 , the actual error at each point k is 

multiplied by

1
Vs* +1
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Figure 3.14 Results of adding noise to row of image



Original (Low contrast)

CA">

Rate = 1.728 bits/pix.
S/N = 26 .433 dB

<>>

Rate = 1.18 bits/pix.
S/N = 22 .59 dB

Figure 3.15 Results of image coding using 1-D processing (scanning 
scheme of figure 3.12b). Edge weighting is applied 
to force more noise at edges.
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This ensures that the error observed at edge regions are weighted 

lower so that this is in effect tolerated.

In addition it should be mentioned that an attempt is made to 

incorporate Weber's law in designing the error measure, by dividing 

the error signal by the observed mean of the region before comparing 

this with the set distortion limit. At high overall values of 

intensity, more error is allowed.

3 .5.3 Discussion of the results

A reduction in coding rate has been achieved, for a signal to 

noise ratio of about 23db when noise weighting is applied, for the 

image TELEBOX. (Compare figures 3 .8e and 3.15c). Comparing the 

above two figures, it may be observed that edges have fewer 

instances of great distortion. This may be seen in the improvement 

of the bottom left hand edge of the telephone box in figure 3.15c. 

As a result of allowing more noise at edges however, all edges show 

some jaggedness. While figures 3 .8d and 3.15b are about the same 

subjectively, figure 3.15c appears subjectively preferable to figure

3 .8e



3.5.4 Consideration of 2-dimensional blocks.

The MPPCD is implemented using 2-dimensional blocks of sizes 

8 by 8, 8 by 4, 8 by 2, 8 by 1, 4 by 1 and 4 by 1 considered in 

order as shown in figure 3.16. This is in fact, almost like 

implementing the MPPCD scheme using 1-dimensional blocks. The 

difference is that now a single outcome is equivalent to a column of 

length 8. Thus we try effectively to code blocks of length 8, then 

4, then 2, then 1. At "e" of figure 3.16 the situation changes 

somewhat; in order to consider smaller blocks we require a column of 

length smaller than 8. In this case we next try to code a 4 by 1 

block in the top left hand corner. When coding of this block is 

unsuccessful, these 4 symbols are transmitted using 34 bits. 7 bit 

each for the 4 symbols and 6 bits to indicate the block size. These 

34 bits are transmitted in 2 groups of 17 bits each. Each group has 

14 bits to represent two pixels and 3 bits to represent the block 

size. If the top left hand side block of four are representable by 

previously coded symbols, then 17 bits are transmitted. 8 bits are 

used to indicate the coordinate of the approximate previous outcome, 

6 bits are used to code the mean of the present block and 3 bits are 

used to code the block size. Whatever the outcome of trying to 

represent the top left hand 4 by 1 block, the next set of symbols to 

be transmitted is the bottom left hand 4 by 1 block. If the attempt 

to represent this by previously coded symbols is unsuccessful, 34 

bits are sent, directly coding the set of 4 symbol described before. 

If approximation by previously coded symbols is possible, 17 bits 

are sent. The coding scheme proceeds in all other ways as described 

in previous sections.
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C CL)

■ v
(fc)

(C)

*

8
1

id)
:

¥ (e)

1
4 ‘ f)

Figure 3.16 Block types for pseudo-2-D coding 
using MPPCD scheme.
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Original (Low contrast) Rate
S/N
mem sz

(a)

Rate = 1.037 bits/pix. Rate
S/N = 24.977 dB S/N
mem sz =512 mem sz

Figure 3.17 
(a-d)

Image coding using MPPCD scheme. Blocks are 
rectangular. No edge weighting is employed.

= 1.255 bits/pix 
= 2 8.12 7 dB 
= 512

(b>

= 0 .807 bits/pix. 
= 22 .7 12 dB 
= 512

id)
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Original (Low contrast)

ce)

Rate = 2.056 bits/pix
S/N = 29.347 dB

(h

Rate = 1.75 bits/pix.
S/N = 25 .25 dB

Rate = 1.383 bits/pix
S/N = 21.46 dB

c<p (H )

Figure 3.17 Image coding using MPPCD scheme. Blocks are rectangular 
(e-h) No edge weighting is applied.
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Rate = 1.144 bits/pix
S/N = 30 .085 dB

Rate = 0.977 bits/pix.
S/N = 27.734 dB

ti)

Figure 3.17i,j Results of image coding with MPPCD scheme.
Rectangular blocks are used. When checking the set 
of previously coded data, the best block is found, 
and if the associated error satisfies the distortion 
constraint, this is used to approximate the present 
block.
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t

The error signal between blocks is weighted so that different 

quantities of error are tolerated at edges and plane areas. This 
requires the implementation of an edge detector. An edge detector 
is an operator which returns a large output signal when it is 
centered on an edge or boundary. There are numerous papers on the 
topic of the design of edge detectors; we shall not attempt to add 
to this field. In the following a very brief review of the types of 

edge detectors available is presented and the one which we elected 
to use and the reasons for this, given.

Well known simple edge detectors are the Roberts, Zobel and 

Prewitt operators. These are difference edge detectors which have 
two components Ax and Ay. These components return high outputs 

for edges in orthogonal directions. The signal presented by the 1 

overall operator is then

J ax2 + Ay2 or |Ax| + |Ay| or max(|Ax|,|A.y|)

A detector is termed "isotropic" if its output is invariant with the 
angle of orientation of an edge. The two components of the edge 
detectors for the Roberts operator are

[ : : ]  -  [ :  : j

For the Prewitt operator these are
1 1 1 1 0 - 1

0 0 0 and 1 0 - 1

- 1 - 1 -1_ _1 0 -1_

and for the Zobel -
1 2 1 1 0 - 1

0 0 0 and 2 0 - 2

- l  - 2 - 1. _1 0 - 1



Other operators, "template match operators" have been reported in 

the literature. These are designed to detect edges in one compass 

direction only. The combination of these template match operators, 

each of which is designed for one of several directions, allows one 

to effect isotropic edge detection.

Another type of edge detector is the Laplacian. This is an 

approximation to the 2nd diferential of a signal. The impulse 

response of the Laplacian is
0 -1 0
-1 -4 -1
0 -1 0

This operator gives a zero output when the signal is a ramp. These 

edge detectors are described by Rozenberg and Kac in section 10.2.1 

of their book [Rozenfeld and Kac-(1980)], by Gonzalez and 

Wintz-(1977) in section 4.4 and 7.1.2.1. A thorough comparison of 

these edge detectors was reported by Abdou and Pratt-(1977) . The 

last reference shows that the 3 by 3 operators perform better than 

the 2 by 2 (Roberts) operator and there is very little to choose 

between the Prewitt and Zobel operators.

The detectors mentioned are only able to detect boundaries 

characterised by abrupt changes in pixel intensity. Complex 

detectors are required if general boundaries between two areas of 

different texture are to be detected and if the operation of the 

edge detector is to be reliable when the image region under 

consideration is noisy. Examples of these are the Heuckel and 

Rozenfeld edge detectors. These were compared thoroughly by Fram 

and Deutsch- (1973).
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The latter operators are not simple to implement, and since 

the main thrust of the work reported here is concerned with coding, 

it was decided use the Zobel operator.

The MPPCD scheme was tried using 2D blocks and Zobel filtering

to detect edges. A block xjj to be coded, has a gradient block g [|

constructed for this. In comparing X- with a previously coded

block, the error at each pixel value is multiplied by
1

V 1 + Ski

Where gk| is a member of the block . Thus edge points (k,l) 

with large gradient values gk| have their errors weighted so that

errors at these points are tolerated. The results are shown in 

figure 3.18.

3.5 .4.1 Discussion

With the consideration of 2-dimensional blocks, similar 

results to those obtained using one dimensional blocks, have been 

obtained using a smaller memory size. It is difficult to say that 

the use of edge weighting results in a subjectively improved image. 

The edges appear more ragged, although looking at the plane area, at 

the top right-hand-side of the picture TELEBOX, one observes a 

smoother region, compared with the non-edge weighted coding result. 

It is expected that a thorough study of which mapping between the 

edge business factor returned by the Zobel filter and the error 

weighting factor will yield useful results.

Improvements in signal to noise ratio may be made if, in 

sampling the set of previously coded data, the first block to
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Original (Low contrast)
ca)

Rate = 1.239 bits/pix.
S/N = 24.99 dB

Rate = 0.989 bits/pix.
S/N = 22 .88 dB

cb) (c)

Figure 3.18 Image coding via MPPCD scheme with 2-D blocks. 
Edges are weighted.
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satisfy the distortion constraint is not chosen automatically. 

Instead, the best of the previous blocks is chosen, if it satisfies 

the distortion constraint. The results of doing this are shown in 

figures 3.17i and 3.17j, where improved S/N values were obtained.
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3.6 Consideration of speech properties.

The task of coding speech may be approached in two ways. The 

first relies upon trying to approximate the speech waveform as 

closely as possible. The second relies upon extracting the 

important features of speech, coding and sending these. In either 

case it is useful to understand the particular properties of speech, 

so that we may take advantage of these. For the second approach, it 

is necessary that the speech generation and perception processes are 

studied in great detail. In appendix 2 therefore, the rudiments of 

speech production and hearing are described. In this section,

vocoders, speech coders which make use of the properties of speech,

are described. The results of experiments concerning the

application of the MPPCD scheme in the LPC vocoder, are presented.

3.6.1 The vocoder

A vocoder is a speech coder which relies upon the

parameterisation of the short term spectrum of speech. The vocoder 

was first implemented by Dudly [Dudly-(1940)]. It is supposed that 

for the comprehension of speech, the character of the phase spectrum 

was unimportant. The power spectral characteristics of blocks of 

speech are ascertained, the parameters representing these are then 

coded for transmission. These parameters are used at the receiver 

to reconstruct a version of the original speech. The following 

details the different types of vocoder.
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3.6.1.1 The channel vocoder

This employs a bank of bandpass filters for spectrum analysis. 

Envelope detection is done to evaluate the magnitude of each 

frequency component. The magnitude values are sent to the receiver 

periodically. In addition, information indicating the short term 

signal variance and whether the block in question is voiced or 

unvoiced, is transmitted.

3.6.1.2 The formant vocoder

This relies upon modelling the vocal tract as an 

inductor-capacitor (LC) filter network. The component values for 

this network are evaluated regularly, the pole frequencies of the 

resulting transfer function are approximated and transmitted. 

Generally the first 3 or 4 formant frequencies or pole frequencies 

are sufficient to characterise the phoneme. [Ainsworth-(1976), 

Chapters 6 and 7] The Q factor or bandwidth associated with each 

pole is also transmitted.

3.6.1.3 The LPC vocoder,

Spectrum analysis, in this vocoder, is done by modelling the 

vocal tract by a filter network. The filter coefficients (or 

alternative parameters) for this filter are extracted periodically. 

These are coded and transmitted.

For all the above vocoders, the speech is analysed to 

ascertain whether or not it is voiced. When it is voiced, the
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speech synthesiser, be it filter bank or just one filter, is excited 

with a sequence of pulses. The pitch is extracted at the 

transmitter and is used at the receiver to generate a sequence of 

pulses with an appropriate period.

The LPC vocoder will be described in more detail because the 

remainder of this chapter deals with the use of the MPPCD scheme 

with an LPC vocoder.

For LPC analysis, the vocal tract is modelled as several 

coupled tubes of different lengths and crossectional areas. The 

speech perceived at the mouth is modelled as the sound observed at 

the open end of this set of tubes, when a point source generates some 

excitation at some position in the set of tubes. When a non-nasal 

phoneme is spoken the speech generation process may be modeled as 

simply a sequence of tubes with the excitation end closed. The 

vocal tract then has an electrical analogue which is a lossy LC 

ladder network, whose transfer function is all-pole [Fant-(1960)] 

When the vowel is nasal, the resulting electrical analogue for the 

vocal tract is a filter whose transfer function is no longer 

all-pole. Similarly transfer functions for the electrical analogue 

associated with fricative consonants have zeros in addition to 

poles [Heinz and Stevens-(1961)]. The LPC vocoder however, models 

the transfer function of the vocal tract as simply an all-pole 

filter. This is done for the following reasons.

1) Voiced sounds are well modelled by all pole transfer functions.

2) A large quantity of zeros are required to make any improvement in 

the sound quality achieved by the all-pole model.

3) Most importantly, the parameters of the all-pole filter model may
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be evaluated in a straight-forward manner.

Improvements to the LPC vocoder have been in two directions,

1) Reduction in coding rate by assigning as few bits to the coding 

of the filter parameters, pitch and gain as possible.

2) Efforts to increase the subjective quality of the coded speech.

We shall first discuss the former. A typical LPC vocoder will 

analyse speech blocks of duration lOmsecs to 30msecs (for a sampling 

rate of 8kHz, this means blocks of length 80 to 240 samples). A 

twelfth order filter might be used for the frequency analysis of the 

block under consideration. Each of the Log-Area-Ratios might be 

quantised for representation with 8 bits. 8 bits might be used to 

code the pitch, 7 bits to code the gain and 1 bit the voice/unvoiced 

decision. Thus 112 bits might be sent per block. The coding rate 

is between 11,2kbits/sec and 3 .73kbits/sec• The following is a list 

of the reported methods used to reduce the rate.

a) Reduction in the number of filter coefficients: The effects of 

doing this were reported by Atal and Hanauer-(1971).

b) Coarser quantisation of the Log-Area-Ratios (or some other 

parameters eg. reflection coefficients or inverse sine of 

reflection coefficients). A.H. Gray and J.D. Markel-(1976) discuss 

in great detail, the spectral variation due to the quantisation of 

the various reflection coefficients. Their work allows a cookbook 

type design procedure for bit allocation for the LPC parameters.

c) The linear predictive or DPCM coding of the LPC parameters, from 

block to block was studied by Sumbar-(1975)

d) The linear transformation of the LPC filter parameters, allows 

the transform coding of these parameters. Sumbar-(1975) and
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Fussel-(1980) studied the effects of bit rate reduction by the use 

of the Karhunen-Loeve transform.

e) Vector quantisation of the filter parameters (or the spectral 

envelope associated with these parameters). Vector quantisation 

involves finding a small number of spectral shapes which are deemed 

representative of the set of spectral patterns generated in speech. 

Vector quantisation has been studied by Ahmadi- (1980) , Linde, Buzo 

and Gray-(1980), Buzo, A.H. Gray, R.M. Gray and Markel- (1980a) 

and-(1980b), Gray, Gray, Robodello and Shore-(1981) , Abut, Gray and 

Robodello-(1982) and Wilson-(1983). Briefly, the following is done 

for vector quantisation. A long sequence of typical speech, refered 

to as a training sequence is analysed. Blocks are clustered into a 

relatively small number of spectral patterns. These are stored in 

identical libraries, at both the transmitter and receiver. In 

implementing the coder, a block is analysed and the LPC filter 

parameters extracted. The spectrum is then evaluated from these 

filter coefficients. The spectrum is compared with the members of 

the library of filter coefficients or spectral patterns. The 

library member whose spectrum is closest to the spectrum of the 

block being considered has its coordinate transmitted. This allows 

very considerable rate reduction; for a library of 256 members, only 

8 bits are used to represent the spectrum of a block instead of the 

96 that might be needed in a conventional LPC scheme.

f) The variable rate transmission of the parameters for the coding 

allows some bit rate reduction. This is contrived by not 

transmitting the filter parameters for every block of speech. The 

MPPCD scheme may be used to achieve bit rate reduction in this 

manner. The idea of effecting some bit rate reduction by not
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transmitting a set of parameters for each block of speech, was 

introduced by Magill-(1973). This method of increasing the 

efficiency of the LPC vocoder has received little attention, some of 

the few papers on this are by Magill-(1973), Viswanathan, Makhoul, 

Shwartz and Higgins-(1982). These authors reported schemes where, 

for each block LPC analysis is undertaken. The spectrum resulting 

from the evaluated LPC filter is compared with the spectrum of the 

previous block of speech. If these two spectra, the filter 

coefficients, the Log-Area-Ratios or some other characterisation 

parameters are close to within some distortion criterion, the 

parameters of the present block are not sent. At the receiver, 

these are approximated by those of the previous block. This is very 

much like the run length encoding of the block parameters or 

spectra. Papamichalis and Barnwell-III- (1980 and 1983) have 

expanded this to include the alternative of sending only some of the 

parameters per block, in addition to sending of all or none of 

these. The decision concerning what to send is likened to a branch 

in a tree and a dynamic programming algorithm was proposed to search 

for the best path in this tree.

3.6.2 The MPPCD scheme and the LPC vocoder

The MPPCD scheme is applied in this manner. Decide on a

memory size, M=128 or 256 say. For every block, LPC analysis is 

undertaken, 12 filter coefficients are evaluated. The spectrum 

assocaited with this block is then evaluated at 64 frequency points 

from 0 to n rads/s. (64 is chosen because this results in a 

spectral resolution of 62.5Hz. A coarser resolution is inadvisable
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since it is known experimentally that people are able to identify 

the effects of a 60Hz variation and a 120Hz variation in the first 

and second formant positions respectively. 

([Ainsworths(1976)] chapter 6) This spectral pattern is compared 

with the spectral patterns of some of the previously encoded blocks.

The comparison is conducted in this manner. It is presumed 

that each of the 128 or 256 memory locations contains a set of 

filter coefficients. Alternatively, if memory is easily available, 

128 or 256 sets of frequency patterns may also be stored in the 

memory locations. The contents of the memory locations are 

associated with previously encoded blocks. We shall refer to these 

memory locations as a library. If the spectral pattern of a block 

is sufficiently close to that of a member of this library, the 

coordinates of this member is transmitted. At the receiver, the 

parameters of this block are approximated by those of the relevant 

library member. If no library member is similar to the block under 

test, to within a preset distortion limit, a member of the library 

is removed. The spectral pattern for the block under test or its 

filter parameters are included in the library; these are also 

transmitted to the receiver. The choice of the library member 

removed when a new addition is made to this, is a subject for 

further research. For the results presented here, the earliest 

library member is removed. The members of the library are numbered 

according to their "age".
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3 .6 .2.1 What distortion, measure?

Several distortion measures for the matching of parameters 

between different blocks, have been proposed in the literature for 

speech processing. Most are spectral distortion measures or derived 

from spectral distance measures. This is because the human ear 

appears to do some spectral analysis, and thus a frequency deviation 

measure would seem a good one. Below is a list of the well known 

spectral measures reported in the literature, their advantages and 

their disadvantages.

1) Log spectral measures:

These require log computations. The normalised versions of the 

above are;

<*>/
For p=l, ln(A)=median of sequence ln( f(o>j)/f (cuj) )=u(o;j) say. For 

p=2 , ln(A)= mean of sequence u ( a > j )

The latter is easier to calculate, making it more attractive, 

despite the fact that the square of the quantity u(o>j ) is computed.

2) Itakura-Saito distortion(I-T) measure

D -i} 3 .9

This measure is non-symmetric.

3) The Cosh measure: This is derived from the Itakura-Saito measure, 
and is a symmetrical version of that.

_ i V //(<■»,) . /(<■»<) -A
2 /(«,) ) 3 .10
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It is refered to as the cosh measure because of its character, with 

respect to the quantity u(a>j) .

Figure 3.19 shows the relative effects of a spectral 

component's deviation, in ratio, from its actual value, for several 

distortion measures. It may be seen that the Itakura-Saito measure 

is non-symmetric, being rather lenient if the approximating spectral 

component is too small. The Itakura-Saito and the class of 

log-spectral-ratio measures all require a log operation, which is 

computationally quite expensive. This be.ing the case there is no 

obvious advantage of the I-T measure over the Log-spectral-ratio 

measures. The I-T measure over half of its domain, has a character 

similar to the "Cosh" measure, which is in actual fact derived from 

it. This character being very lenient when the spectral ratio is 

small but very strict when this is large. The "Cosh" measure has 

the advantage though that it does not involve any log computation. 

By doing some subjective testing it was decided that the mean square 

log-spectral-ratio performed marginally better than the I-T measure 

and was employed in all the tests. (Refer to R.M Gray, Buzo, A.H. 

Gray and Matsuyama^ (1980) for a discussion of the properties of some

= cosh mCoj,) — 1 3.11

of the spectral distance measures)



Figure 3.19 Relative effects of spectral deviation for
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3 .6 .2 .1 Implementation, results and discussion.

The coding approach descibed was implemented, initially with 

the standard white noise/pulse train excitation for synthesis of the 

speech waveform at the receiver. The voice/unvoiced decision and 

pitch extraction were accomplished using the auto-correlation 

• method. (For a review of the pitch extraction schemes available,

the reader is advised to refer to Rabiner, Cheng, Rosenberg and 

McGonegal-(1976))

Due to the size of the library being used, a combination of 

error measures is employed. Thus an initial error condition has to 

to be satisfied. The computation, in doing this, requires very much 

less effort than checking the mean square log spectral ratio for 

each of the library members. The formant positions for each member 

of the library are computed and stored along with the filter 

coefficients and the spectral response, each time an addition is 

made to the library. A library member is considered a viable 

candidate for approximating the parameters of a block in question, 

if the formant positions of the block in consideration and those 

associated with this library member are close. Closeness in this 

case means the following: Let the n-th formants be at positions pn 

and qn for the two parameters being compared, then the conditions 

below should hold.

\ P .~ 9 .\  ^  1 or \Pn( < 0.25 3 .12

When the conditions above are met, the mean square 

log-spectral-ratio is evaluted.
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The learning characteristics of the scheme are indicated in 

table 3.10, for different error limits. As expected more blocks 

have their parameters approximated by members of the library as more 

speech is coded and the library fills up. Table 3.11 shows the 

rates obtained for various speech files and error limits. Listening 

tests indicate that an error limit so that about a third to half of 

the LPC parameters are new, is suitable for transmission without 

great deterioration in speech quality. Relaxation of the error 

limit beyond this, results in an impairment of intelligibility, for 

example some listeners thought, AN APPLE A DAY KEEPS THE BUTCHER

A W A Y  i n s t e a d  of ■THE DOCTOR AWAY, was being uttered.
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number of number of ratio 
new blocks lib. blocks nto/tib

1- St 50 blocks 31 19 1.63 16
2-nd 50 blocks 35 15 2.1875
3-rd 50 blocks 17 33 0 .4857
4-th 50 blocks 28 22 1.2727
5-th 50 blocks 21 29 0 .7241 Error limit
6- th 50 blocks 20 30 0 .6667 =50 .0
7-th 50 blocks 13 37 0.3513
8-th 50 blocks 12 38 0.3157
9-th 50 blocks 22 28 0 .7857
last 25 blocks 9 16 0.5625

1-st 50 blocks 36 14 2.5714
2-nd 50 blocks 38 12 3.1667
3-rd 50 blocks 26 24 1.083
4- th 50 blocks 39 11 3 .5454
5-th 50 blocks 31 19 1.63 16 Error limit
6-th 50 blocks 31 19 1.63 13 =30.0
7-th 50 blocks 29 21 1.3809
8-th 50 blocks 25 25 1.0
9-th 50 blocks 31 19 1.6316
last 25 blocks 15 10 1.5

Table 3.10 Learning characteristics for MPPCD scheme. Error 
measure is squared log-spectral-ratio

The formants are checked, for 1-st formant 250Hz and 
upwards ,•
for 2-nd formant 750Hz and upwards. Block size=192 .
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3.6.3 The excitation problem 

3 .6 .3 .1 The FFT approach

The vocoders as described before, despite thier great 

compression capabilities, have one fault. This is their tendency to 

sound electrical. This is attributable to the inadequacy of the 

excitation signal. The judgement of whether an utterance is voiced 

or unvoiced is often wrong. Some of the phonemes are best excited

by a signal which is periodic in addition to having some noise

superimposed on it. Examples are the voiced fricatives {y as in 
van; 3 as in this; j as in zoo; j as in azure}

The evaluation of the correct pitch when a block being

analysed is voiced, is not easy. Another point to note is that,

there is rapid pitch variation when an utterance is being made, 

noted by Pierce and David-(1961) . This gives some character to the 

speech. Although the pitch period is transmitted every 10-30msec (ie 

the average duration of about 2 pitch periods), the pitch period is 

evaluated over every 2 or 3 blocks. Thus about 5 pitch periods are 

averaged and transmitted,

Experiments conducted here have indicated that a contributant 

to the electrical characteristic of vocoder speech is the loss of 

phase information at frequencies below 1kHz. The following are the 

details of these experiments.

1) The FFT of blocks of speech was computed, for each block 

the phase signal was set to zero over the whole of the frequency 

band. The result was that the speech sounded electrical (robot
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like)

2) The phase signal was set to zero for frequency points below 

an eigth of the sampling frequency. The other frequency points were 

left unaltered. The speech still sounded electrical.

3) The phase signal was set to zero for all frequency points 

greater than an eigth of the sampling frequency. The values at all 

other frequency points were left unaltered. The speech was now 

considerably improved. It now sounded slightly electrical.

4) The phase signal was set to zero for all frequency points 

above a quarter of the sampling frequency, for all frequencies below 

this, the phase was left untouched. The resulting speech sounded 

perfect.

The conclusion is that some phase information is important at 

frequencies below 1kHz.

The first departure from the vocoder excitation approach 

described thus far was reported by Schroeder and David-(1960) . They 

related the experiments conducted in the development of what they 

described as a "high fidelity vocoder". In this paper they give a 

detailed yet simple account of the problems they encountered in 

trying to design a vocoder for transmitting 10kHz speech over a 3kHz 

channel. They eventually decided to excite their vocoder with a 

whitened signal derived from a low pass filtered version of their 

speech. This was called the "voice excited vocoder". The low pass 

filtered speech actually_ contained all the neccesary information 

for an excitation waveform. It contains the fundamental pitch 

signal and with some non-linear or possibly linear processing to
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extendi the frequency range of this signal, we obtain the following. 

A pseudo excitation waveform, in synchronism with the actual 

excitation when the signal is voiced and a noise like signal when it 

is unvoiced. The use of this in a normal vocoder was subsequently 

reported by David, Schroeder , Logan and Prestigiacomo-(1962). Here 

the low pass filtered speech employed to generate an excitation 

waveform had a bandwidth of 700Hz. The art of designing voice 

excited vocoders has flourished since.

The voice excited vocoders achieve less compression than the 

voice/unvoiced excition based vocoders, with the advantage that the 

speech sounds more natural and speaker identification is easier. 

Voice excited LPC vocoders have been designed which operate from 

4.8kb/sec to 12kb/sec

An alternative is to excite the LPC filter by a low pass 

filtered and coded version of the residual signal after applying the 

LPC inverse filter. The vocoder is then refered to as a "residual 

excited vocoder".

A residual excited LPC vocoder was implemented for use with 

the MPPCD scheme. The residual excitation was obtained in the 

following manner. The residual signal was obtained in the time 

domain for each block of speech. This signal was Fourier 

transformed so that we obtain the frequency domain representation of 

the residual. Blocks of size 192 are used. The values of the first 

16 or 32 frequency components are quantised and transmitted. This 

represents low-pass filteration of the residual to 667Hz or 1.33kHz 
respectively. At the receiver the N residual (N=16 or 32)
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components are inverse Fourier transformed. A full band excitation 

signal is generated by inserting an appropriate number of zeros 

between the residual samples available.

For the coding of the frequency domain residual, the real and 

imaginary parts may be modelled as being Gaussian or the magnitude 

and phase parts may be modelled as being respectively Raleigh and 

evenly distributed. This may be confirmed by studying figure 3.20. 

The models allow the use Lloyd-Max quantisers for these. The 

alternative of quantising the magnitude and phase signals was chosen 

because it allows the study of the relative importance of these. By 

listening tests it was decided to accord more bits to the phase 

signal. For each frequency component, 6 bits were allocated for 

coding. 4 bits were used to code the phase and 2 bits to code the 

magnitude.

When 16 frequency components were used for coding, that is a 

bandwidth of 667Hz for the residual, 96 bits are required to be sent 

per block to code the excitation. This represents a large increase 

over the say 16 bits which would need to be sent in the 

voiced/unvoiced based vocoder. For the case where 32 frequency 

components of the residual are transmitted, 192 bits are sent per 

block. The latter case results in a transmission rate of 12kb/sec 

if we allocate 4kb/sec for transmitting the LPC parameters. The 

speech obtained in doing this is of very good quality. It is better 

than that obtained using transform coding for the same rate and 

better than that obtained using the straigtforward MPPCD scheme of 

section 3.4 for approximately the same rate.

The former case results in a coding rate of 8kb/sec if we
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Figure 3.20 (continued)
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Figure 3.20 (continued)

* *
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Figure 3.20 (continued)
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allocate 4kb/sec for the transmission of the LPC parameters. The 

speech obtained is of good quality. An electrical character is 

beginning to encroach and it does not sound as good as the results 

of the 12kb/sec scheme. It is however of considerably better 

quality than the simple LPC vocoder with the voiced/unvoiced type 

excitation, transform coded speech or the MPPCD scheme at the same 

rate.

Of course we may use the MPPCD scheme as described before, 

choosing a rate for the excitation signal, 8kb/sec or 4kb/sec, 

transmit the excitation at this rate and use the LPC parameters to 

create a library. The occasion of observing a block whose LPC 

parameters are sufficiently "different" from all the members of this 

library means the transmission of these parameters and the inclusion 

of these in the library.

Instead a scheme, which results in transmission at a uniform 

rate, is opted for. For each block we decide whether the LPC 

parameters should be transmitted and included in the library. If so 

these parameters are transmitted with 104 bits/block and the lower 

rate for the transmission of the excitation information is chosen. 

90 bits are transmitted for this. Another m bits are used to 

indicate that a block of LPC parameters is being sent.

If we find that the transmission of the LPC parameters for the 

block in question, is unneccessary, we opt for the higher rate for 

transmitting the residual information. 186 bits/block are used for 

this. Another 6 bits are transmitted, to indicate which member of 

the library of LPC parameters to use to approximate those of the 

present block.



If filter parameters If filter parameters
are from library are new.

Frequency points coded and 2nd to 32nd harmonics 
number of bits/harmonic at 6 bits/harmonic

total=186 bits

2nd to 16th harmonics 
at 6 bits/harmonic 
total=90 bits

Standard deviation of 
residual harmonics

Filter parameters

Fact that filter 
parameters are from 
or not library.

TOTAL

6 bits
Library coordinate 
coded with 8 bits

m bits

6 bits

Reflection coeffs quantised 
& coded with 104 bits.
10 bits for the 1st four 
8 bits for the 5th to 12th

m bits

200+m bits 
if m=4 rate=8.5kb/s

200+m bits 
if m=4 rate=8.5kb/s

Table 3.11 Bit allocation strategy for FFT based residual 
excited LPC, for case where block size is 192
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The advantage of this scheme, is that we have the choice of 

using a better residual signal for the cases where we distort the 

LPC model's spectral estimate. This results in an improvement since 

we go some way to correcting this distortion.

3 .6 .3 .2 The TDRIA scheme [Wilson-(1983) and Atal and Remde- (1982)]

This involves the use of several impulses, of various 

magnitudes and of non-uniform spacing to excite the LPC filter. 

This may be envisaged to be an advancement upon the residual excited 

scheme described above, since another degree of freedom has been 

included in the coding process. The drawback of this is that some 

bits have to be employed to define the positions of the residual 

impulses. For the two alternative schemes which use 96 and 192 bits 

for the transmission of the residual information, we use 12 and 24 

residual impulses respectively, per block. The impulse allocation 

scheme may be implemented using a multipath search, that is a 

dynamic programming approach. Let the total block size be N (192) 

and the total number of residual impulses required be L . Suppose a 

block with M samples has to have k impulses allocated. Then a 

possible dynamic programming equation is,

C J M )  =  min { C k . ( M  — z) — t(z\ previous allocation)} 3 .13lSrSA/Hfc + l K 1 1

where (^(M) is the cost associated with the "optimal" way of 

allocating k impulses over the first M samples of the block in 

question. t(z|previous allocations) is the magnitude of the 

reduction in cost associated with allocating another impulse at 

position M-z, given previous allocations. Thus at stage k, Ck(M) 

has to be evaluated for Me{k,...,N} ie for k«N, approximately N
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cost computations. For each value of M, the best z may be one of 

M-k+1 possible values. Thus the number of operations is of the 

order N 2k.

Alternatively a single path search may be used, but with 

several passes. Initially a reasonable allocation of impulses is 

* established, (eg find the best way of allocating one impulse, given

this, find the best way of allocating a second impulse, and so on. 

This is the scheme advocated by Wilson and Atal and Remde.) 

Subsequently, several passes may be made. In each pass, all impulse 

positions but one are fixed. The best position for this one impulse 

is then evaluated. This is similar to the non-hierarchical 

clustering schemes. The system advocated here however, is dictated 

by simplicity.

A suboptimal scheme is used to ascertain the positions of the 

residual impulses. The space of possible impulse positions is

partitioned into L non-overlapping regions (L is the number of 

residual impulses transmitted per block). One residual impulse is 

permitted to lie within each region. A single pass, single path 

search is undertaken in order to determine where to place the 

impulses. This saves on the number of bits required to code the 

impulse positions, this being the smallest integer not less than 

logjN/L] .



Residual impulse values:

Let y(n) be the signal being coded. Suppose k-1 impulses had 

already been placed at positions p , . ..,p with magnitudes1 k 1
v1 ,... ,vk_1. Also suppose

w(n) =
/
QjŴn — i) 3.14

where w(0)=l, w(n)=0 Vn<0. w(n) is the impulse response of the LPC 

filter A. Let ek_1(n) be the resulting error signal, where

ek-M) = y(n) -
k-1

Z 3.15

Then upon the emplacement of a new residual impulse at p̂  

mean squared error is

'Yj<ek_x{n)-vk\v{n- pk))2

the total

3.16

The value of vk resulting in a minmum value for mean square error is

Ẑ p̂ k-iinMn-Pk) 
l"=Pk w(n-pk)2 3.17

For the k-th region, the position where an impulse may be placed 

such that the error in minimised is computed. The best values of pfc 

and vk are noted and the ek(n) sequence evaluated. This process is 

continued until the positions of all the impulses are decided. 

During this process, no quantisation of the impulse amplitudes is 

undertaken. Upon deciding the positions of all the impulses, the 

amplitudes are recalculated as follows. Let



Then the
dl„e(n)2

dvk

solution of the linear equations resulting from setting 

to zero for all k gives the vk values.

dl„g(”)2
dvk

L

§ > (n)- z
n / - i

v tw ( n - p l ) } M . n - p k ) 3.19

Setting this to zero gives.

~pk) -  ^  v, ̂  Mn-pk)w(n -Pi) 3 .20
/ - I  n

We require therefore to solve the matrix equation

t R I W - W 3.21

where each member r^ of R is

and each member Sj

rU ^  w(rt — Pj)Mn—pj)

of S is

SJ ŷ(n)w(n- pt)
n

3.22

3.23

After the solution of equation 3.20 to evaluate this set v1 to 

vk , these are quantised. Unfortunately R is not a matrix which 

allows the fast solution of equation 3.20. The above matrix 

equation may therefore only be solved with On3 operations.

It ought to be mentioned that the quantisation of the v; 

values, after the solution of the matrix equation 3.21 implies that 

those values obtained are not neccessarily the optimum quantised 

values. For cases where a small number of levels are used to 

approximate the Vj values, that is, 8 or less, the following
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Figure 3.21 Histogram of residual magnitude in TDRIA 
coding.



alternative method may be more appropriate. A tree or trellis
search may be used, in the same manner as in DPCM, with the

difference that symbols are transmitted at irregular intervals.

Recently, there has been some interest in the use of the 

multiple excitation signal for the recomputation of the LPC 

parameters for speech coding. Essentially, an attempt is made to 

optimise both the LPC parameters and the pulse positions and 

amplitudes. This is instead of just evaluating the LPC parameters 

in the normal manner, leaving these unaltered whilst pulse positions 

and amplitudes are evaluated [Jain and Hangartne r-(1984) and Parker, 

Alexander and Trussel-(1984)] .

Two examples, with block sizes of 96 and 192, the bit 

allocation scheme is as follows:

BL SIZE=96: LPC coeffs new

4 impulses/block

5 bits/impulse for pos 

3 bits/impulse for ampl 

60 bits/10 LPC paramters 

92+6+m bits total.

LPC coeffs from lib.

12 impulses/block

3 bits/impulse for pos

4 bits/impulse for ampl 

8 bits for library 

92+6+m bits total.

BL SIZE=192: LPC coeffs new

12 impulses/block 

4 bits/impulse for pos 

4 bits/impulse for ampl 

104 bits/12 LPC paramters

LPC coeffs from lib,

24 impulses/block 

3 bits/impulse for pos 

5 bits/impulse for ampl 

8 bits for library

200+6+m bits total. 200+6+m bits total.
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Number of impulses used 
and bits allocated/block

Standard deviation of 
residual impulses
Filter parameters

Fact that filter 
parameters are from 
or not library.

TOTAL

If filter parameters 
are from library
12 impulses, 3 bits 
code position and 
4 bits code amplitude 
total=84 bits

6 bits
Library coordinate 
coded with 8 bits

m bits

98+m bits
if m=4 rate=8.5kb/s

If filter parameters 
are new.
4 impulses, 5 bits 
code position and 
3 bits code amplitude 
total=32 bits

6 bits

Reflection coeffs quantised 
& coded with 60 bits.

m bits

98+m bits
if m=4 rate=8.5kb/s

Table 3. 12 Bit allocation strategy for TDRIA based residual 
excited LPC, for case where block size is 96
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The impulse amplitudes are quantised using a two sided Raleigh 

model. The histogram of figure 3.20 attempts to justify the use of 

this model. Figure 3.21 shows a typical speech waveform and the 

allocated residual impulses.

For all the above excitation alternatives, an indication of 

the standard deviation for the speech block, is coded using 

logarithmic quantisation and employs 6 bits for transmission. Table

3.12 shows the bit allocation schemes, m bits are used to indicate 

whether or not the LPC parameters are to be represented by a member 

of the library. It is suggested that a value greater than 1 is used 

such that some degree of error correction may be undertaken.

In the concepts described above, block sizes of 192 and 96 

have been used. For cases where large coding delays are undesirale 

and therefore shorter block lengths have to be employed, this coding 

concept becomes even more attractive. Thus for block sizes of say 

96 samples, (maximum delay of 36msecs+transmission delay) it should 

be expected that adjacent blocks have very similar LPC parameter 

sets. Hence the transmission of new parameters per block would not

occur very often
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3.7 Listening Tests

The coding systems described here, were simulated on a 

computer. Several speech sentences were used. In each case the 

speech was sampled at 8kHz and digitised with 12 bits/sample

accuracy. Below is a list of the types of coding schemes compared. 

Included are the results of coding, using Pulse Code Modulation 

(PCM), these PCM coded sentences set easily recognisable standards 

against which the methods may be compared.

1) SR8KK, original

2) SR8KK, PCM 4-bit linear

3) SR8KK, PCM 4-bit mu-law

4) SR8KK, coded via MPPCD scheme, error factor=0.1, rate=8.14kb/s,

sn=10.64db

5) SR8KK, coded via MPPCD scheme, error factor=0.04,

rate=ll.34kb/s, sn=14.57db

6) SR8KK, coded via MPPCD scheme, error factor=0.025, 

rate=13 .023kb/s, sn=16 .6db

7) SR8KK, Straightforward LPC vocoder with voiced/unvoiced

excitation block size=192, rate=4.67kb/s

8) SR8KK, LPC vocoder with MPPCD and voiced/unvoiced excitation 

error limit=10.0, block size=192, rate=4.67kb/s

9) SR8KK, LPC vocoder with MPPCD and voiced/unvoiced excitation

error limit=20.0, block size=192, rate=3.1kb/s

10) SR8KK, LPC vocoder with MPPCD and voiced/unvoiced excitation 

error limit=30 .0, block size=192, rate=2.5kb/s

11) K&BITH, LPC vocoder with voiced/unvoiced excitation, block 

size=192, rate=4 .67kb/s
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12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

KkBITH, LPC vocoder with MPPCD and voiced/unvoiced excitation

error limit=20.0, block size=192, rate=3.016kb/s

K\BITH, LPC vocoder with MPPCD and voiced/unvoiced excitation

error limit=30 .0, block size=192, rate=2.59kb/s

TA.BITH, LPC vocoder and voiced/unvoiced excitation, block

size=192, rate=4.67kb/s

TABITH, LPC vocoder with MPPCD and voiced/unvoiced excitation

error limit=20.0, block size=192, rate=2.8kb/s

TA.BITH, LPC vocoder with MPPCD and voiced/unvoiced excitation

error limit=30.0, block size=192, rate=2.3kb/s

SR8KK, LPC vocoder with residual excitation(FFT coded) block

size=192, rate=6 .Okb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded)

block size=192, rate=8.Okb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded) 

block size=192, rate=12 .Okb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded)

formant positions used. Error limit=40.0, block size=192, 

rate=8.5kb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded) 

formant positions used. Error limit=65.0, block size=192, 

rate=8.5kb/s

SR8KK, DCT transform coded speech (Zelinski and Noll adaptation 

strategy), rate=8.Okb/s, sn=9.166db

SR8KK, DCT transform coded speech (Zelinski and Noll adaptation 

strategy), rate=12.Okb/s, sn=11.65db

SR8KK, DCT transform coded speech (Zelinski and Noll adaptation 

strategy), rate=16.Okb/s, sn=13.84db
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25) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

block size=96, rate=8.0kb/s

26) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded) 

block size=96, rate=12.Okb/s

27) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

formant positions used. Error limit=40.0, block size=96,

rate=8.5kb/s

28) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

formant positions used. Error limit=50.0, block size=96,

rate=8.5kb/s

29) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

block size=48, rate=8.Okb/s

30) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded) 

block size=48, rate=12.Okb/s

31) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

formant positions used. Error limit=30.0, block size=48,

rate=8.5kb/s

32) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

formant positions used. Error limit=40.0, block size=48,

rate=8.5kb/s

33) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)

formant positions used. Error limit=50.0, block size=48,

rate=8.5kb/s

In the tests several listeners were asked to indicate

preference, by assigning a mark out of 10, for each sentence

listened to. The sentences were presented a pair at a time.

The general outcome of the tests is indicated by the list of
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File no Scores File no Scores Comment

1 1,1,1,1,1,1,1,1 17 0 ,0 ,0 ,0 ,0,0 ,0 ,0

1 1,1,1,1,1,1,1,1 2 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

2 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 3 1,1,1,1,1,1,1,1

17 1,1,1,1,1,.5 ,0 ,0 22 0 ,0 ,0 ,0 ,0 , .5,1,1

17 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 3 1,1,1,1,1,1,1,1

18 0 ,0 , .5 , .5 ,0 19 1,1,.5,.5,1

18 0,0,1,1,0 20 1,1,0 ,0,1 Close result

18 1,1,0,0,1 21 0,0,1,1,0 Close result

29 0 ,0 ,0 ,0 ,0 18 1,1,1,1,1 Definite pref

18 1,-5 ,0,1,1 30 0,.5,1,0,0

29 0 ,0 ,0 ,0 ,0 31 1,1,1,1,1

29 0,0 ,0 , .5 , .5 30 1,1,1.5,.5

29 0,.5 ,0,0,1 32 1,.5,1,1,0 Close results

29 0,.5 ,0,0,1 33 1,.5,1,1,0 Close result

4 0,1,1,1,0 22 1,0 ,0 ,0,1

23 1,0 ,0,1,1 5 0,1,1,0 ,0

6 0 ,0 ,0 ,0 ,0 24 1,1,1,1,1

Table 3 .14 Preference chart for the speech coding schemes
compared. 0 or 1 indicate a positive preference, 1 
indicates actual preference. 0.5 indicates no 
preference.



-151-

table 3.14 which gives the numbers of listeners who prefered which 

sentences of each of the pairs presented.

A complete check of subjective quality was not undertaken for all 

possible pairs of coded sentence s listed. This is because of the 

pointlessness of doing this for most pairs. For example, test 

sentences 7 to 16 were not compared subjectively with the results of 

other methods. This is because the voiced/unvoiced excitation 

scheme used resulted in artificial sounding speech which is always 

not preferable. These sentences are included in the list, to 

indicate the coding rates achieved for a not considerable reduction 

in quality compared to straightforward vocoder schemes (sentences 7,

11 and 14).

Results are given for pairs of sentences so that with these, 

the relative subjective quality of the methods presented in this 

chapter, may be established.

The following is a summary of the results obtained.

Tests 4 and 5 show the preference of 4 "bit mu-law PCM over residual 

excited- LPC at 6kb/s and preference of the latter over 8kb/s DCT 

coding.

The 7th and 8th tests are very important and indicate that there is 

very little difference between the residual excited schemes with and 

without the updated memory of LPC parameters, when the coding block 

size is large.

Preferences are more defined for small block sizes (tests 11, 15 and 

14)* Here the method with an updated library is prefered. In all 

cases, as the error limit is increased, beyond a point, allowing 

greater spectral distortion, the listeners dislike the result.

Tests 15, 16 and 17, show that the basic MPPCD result is less less 

preferable to DCT coding at high bit rates, but is preferable at low

bit rates.
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3 .8 Conclusions and discussion

In this chapter a methodology for data compression has been 

presented and investigated. For each application, we have 

endevoured to compare this with alternative schemes. In most 

applications the scheme has worked reasonably well. In some cases 

however, coding methods particularly suited to the data to be coded 

have performed better.

The scheme has the following disadvantages. 

a) The basic scheme has been shown to be incapable of achieving very 

efficient compression compared with other methods particularly well 

suited to the data to be compressed. For example, it achieves worse 

compression ratios than Huffman coding, for independent letter 

sources of known statistics, as expected. It achieves worse 

compression for a given mean square error than Discrete Cosine 

Transform coding for sources which are well modelled as 1-st order 

auto-regressive. It is difficult to extend the method to two 

dimensional data because of the neccessity of some 'time' axis. The 

two dimensional nature of image element correlation is thus more 

difficult to take advantage of.

b) The basic MPPCD scheme results in a variable transmission 

rate. Whilst this is unavoidable in zero distortion coding for any 

efficient data compression scheme anyway, it is inconvenient in the 

case of coding with a fidelity criterion. Thus, in implementation 

for transmission over a fixed rate channel, one requires the use of 

a buffer and feedback in the following manner.

The status of an output buffer is continually monitored. When this 

buffer is close to being overfilled, the distortion limit is relaxed
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so that the coder output rate is reduced. When the buffer is close 

to being emptied, the distortion criterion is tightened such that 

the coding rate is increased.

c) The MPPCD scheme, though simple in realisation, requires a 

lot of computational effort at the encoder. A lot of comparisons of 

data blocks are required, this may be very time consuming.

The MPPCD scheme has the following advantage over most

schemes. a) The system is very flexible. The user can choose at 

will, any distortion measure. The flexibility of the scheme is

demonstated by its ability to code both speech and image data and 

also be applicable for zero distortion coding. Thus the system may 

be configured to code anything with minimal alteration of the 

receiver.

b) The system is a viable alternative to transform and

adaptive multipath coding, in a situation where considerable

computation is tolerable at the encoder but intolerable at the 

receiver. This situation may occur when information is being 

broadcast to several receivers, where because there is only one 

broadcast point, considerable capital may be expended in equipping 

this with powerful processors. Transform coding, for example in 

contrast requires an almost as much computational capability at the 

receiver as at the transmitter, in order to implement the inverse 

transformation. Another example of the type of situation being 

refered to, is the case of compression for data storage. Here the 

data is stored once but may be retrieved several times. It is 

acceptable to employ considerable computation in the job of storage, 

whereas it is undesirable to require considerable processing power
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in retrieval if this is to be done several times.

In this chapter, results have been presented for the 

application of the MPPCD scheme to efficient LPC speech coding. Two 

broad approaches have been investigated. The first results in a 

variable transmission rate and relies upon the use of a 

voiced/unvoiced model of speech generation for excitation. In that 

section it is shown that it is possible to achieve greater 

compression for little loss in subjective quality, by learning a 

library of LPC parameters.

The second, a more satisfactory approach, involves the use of 

a more sophisticated excitation scheme. Two excitation methods were 

investigated. Encouraging results were obtained for speech coding 

at around 8.5kb/s, which unlike residual excited LPC in conjunction 

with vector quantisation requires no extensive prior processing.

It is significant to say that the approach to data compression 

where use is made of previously coded data, is a new and encouraging 

field for data compression. There are a few salutory comments to be 

made though. Most studies in data compression, presume that there 

are no transmission errors. Now although by good channel coding, 

the probability of error may be made vanishingly small, these errors 

still occur. For block coding where no use is made of previously 

coded data, the effects of channel errors in the duration of a block 

are confined solely to this block of data. This is not so for a 

coding method like the MPPCD scheme, where errors in the 

transmission of. a block will have an effect on all subsequent blocks

of data
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The only way in which this may be countered is to define 

superblocks, such that the following is done. At the beginning of 

each new superblock, coding is started anew. No information from 

previously coded superblocks are employed. In this way errors are 

confined to the individual superblocks. Provided these superblocks 

are sufficiently large, the resulting compression inefficiency 

should be negligible.
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CHAPTER 4 ADAPTIVE EATA CODING WITH MEMORY, 

A THEORETICAL DISCUSSION

m
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4.1 Introduction

In this chapter a theoretical discussion of the performance of 

the coding scheme described in the previous chapter is given. We 

shall refer to this as, the Matching of Patterns in Previously Coded 

Data or "MPPCD" scheme. 11 is shown that in the limit as the block 

lengths tend to infinity, the MPPCD scheme becomes efficient, for 

sources with large redundancy.

We begin the chapter with a brief discussion of the concept of 

the information associated with a source. The information content 

or the Shannon entropy of a source is then linked to the minimum 

rate at which this source may be coded for transmission. Following 

this, the MPPCD method is described and in mathematical notation, 

the rate at which it will code a source is given. At this juncture 

sources considered will have a discrete outcome set and coding will 

be noiseless. In the limit as the block sizes considered tend to 

infinity, it is shown that the coding rate is close to the Shannon 

entropy of the source, for signals of large redundancy. In showing 

this we employ the Shannon-McMillan-Brieman asymptotic equipartition 

theorem "AEP". This is a very interesting and important theorem 

associated with the probability distributions of long sequences from 

ergodic sources.

A discussion of the coding performance of the MPPCD scheme is 

undertaken for the situation when we allow distortion (coding with a 

fidelity criterion). Treatment of this case is considerably more 

difficult compared with the zero distortion situation. 

Consideration of this case is necessary however, because in general 

the sources we deal with are of continuous amplitude, where coding
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is only feasible with distortion or else the data rates that are 

permitted do not allow zero distortion coding. Several assumptions 

are made so that the analysis is tractable. In the course of this 

discussion, rate-distortion theory is introduced. Rate-distortion 

theory allows the generalisation of information theory and more 

specifically source coding, to encompass the class of sources with a 

countable or uncountably infinite outcome space. Rate-distortion 

theory deals with the problem of having to transmit data from a 

source whose rate of information generation is greater than the 

capacity of the channel over which the data is required to be 

transmitted. In addition, a theorem is developed that is similar to 

the Shannon-McMillan-Brieman AEP theorem, but relates to sources 

with a continuous in addition to discrete outcome space. With the 

assumptions made, it is shown that as the block lengths become very 

large, the coding scheme becomes very efficient for situations of 

large distortion.

In this chapter we offer complete proofs for most theorems 

considered, even though some tedious proofs of known results may be 

found elsewhere. Two very important theorems used herein, the 

Ergodic theorem and the theorem concerning the convergence of 

conditional expectation are proved in the appendices.



4.2 Information

In the transmission of information we are concerned with the 

rate at which information is generated by a statistical source. 

Knowledge of this tells us how much "effort" needs to be devoted to 

the business of communicating the outcomes from this source. Thus 

• the need arises for a quantitative measure of "information".

Intuitively, information may be related to uncertainty. That is, it 

may be said that the more uncertain we are about the outcome of an 

experiment, the more knowledge or information we gain after the 

event of observing this outcome. A measure of information, in that 

case, should be related to the statistics of a random source so that 

the more uncertain we are about, or the more random the source's 

outcomes, the higher the information value we attach to the source.

To this end three axioms which a measure of information should 

satisfy, were proposed by communications workers of the 1940's. 

Consider a statistical source defined by its probability mass 

function p. Vi, a measure of information I(Pj >P2 ,...) should 

satisfy the following:

1) I(P1 >P2 >•••) should be continuous in p. for all i

2) I (p| ,P2 ,...) should be maximum when all possible events 

are equally likely. The information, when all events are 

equally likely should be a monotonically increasing function 

of the cardinality of the set of possible events.

3) Additivity; the total information obtained from several 

independent sources should be a weighted sum of the 

individual information associated with each source plus 

additional information indicating the uncertainty as to
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which source is being observed at each instant.
Shannon's second theorem says that function I(pl ,p ,...)

that satisfies those axioms is

/(Pi»P2’-) =H{px,p2,...)

=  -2 ]p , lo g ,P ,  4 .1
/

This is refered to as the Shannon entropy function. The base of the 

log is generally set to 2. This information measure was first 

introduced by Shannon in his classic paper of 1948 [Shannon-(1948a] . 

Good textbooks which go through the foundations of information 

theory and the philosophy that led to the Shannon entropy function 

are very many, examples of which are; [Brillouin-(1956), Rezar-(1961) 

and Cherry-( 1978)] .

4.3 The MPPCD scheme

Consider a source which is required to be coded and which has
an outcome set Q with a finite number of members. A block of

symbols of length M from this source is defined on the product set
M

aA/= f i x n x . . . x a =
i=1

From this set of possible outcomes may be generated a Borel-2 field 

'S and on this field a probability measure P is defined. The 

source whose outcomes are sequences of length M is called 

( , 2F ,P ). Let the set J2 have cardinality C say. has

cardinality CM. Choose a number N so that log2N is small compared 

with log2CM. Decide on a sequence of lengths L 1fL2 ,...,LN so that 

M = L < L2 < L 2 < • • • ̂ L|^ •

In the simplest form, the coding procedure is as follows:
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Consider a sequence of source symbols of length L N . Perform CM 

experiments on the set of previously coded outcomes to see if these 

symbols had occured before, note that these are known to both the 

transmitter and receiver. If this LN length sequence had occured 

before, send the coordinate of the instant in the past when it was 

transmitted. This will be represented with log2C bits; in addition 

* log2N bits are sent to indicate the length of the data block being

coded. Then go to the next block of length L N and try again. If 

the L n sequence is not found after CM experiments on the set of 

previously coded symbols, consider coding a sequence of length , 

see if this may be observed in CM experiments on the set of 

previously coded symbols. If so send the coordinate of the point in 

the previously coded sequence where this was observed. This is done 

with log2CM bits and an additional log2N symbols. Failure to find 

an Lj sequence in CM experiments on the previously encoded sequence 

results in an attempt with a smaller length of data. The

coding procedure as outlined above is continued until the event of a 

failure to code a block of length L2- The actual data of length 

L 1 = M is then transmitted, with log2CM bits, with an additional 

log2N bits to indicate the length of the block encoded. After this 

one goes on to the next block of length LN and continues in the same 

manner.

4.4 Performance bounds for noiseless coding 

The coding rate of the scheme is:

(log 2 N  +  l o g J C ^ ] )  
average length
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By average length the following is meant; we will encode varying 

lengths of data with CM experiments associated with previous 
outcomes, the average length L is the average length of an encoded 
block. To ascertain bounds on the rate, we find bounds on the 
average length. As usual with most coding methods, it is impossible 
to ascertain the theoretical performance under practical conditions.

• We do the next best thing and content ourselves with performance as
some parameter is pushed to some extreme. In this case, we 
ascertain what happens as an "elementary" block size tends towards 

infinity. What is done is to increase the cardinality of the 
outcome set by considering a block of size "k" source symbols as the
elementary source symbol. The following example shows what is

meant.
i) Let M=L-, = 1, L2=2 ,....... ,Ln=N. In coding, consider firstly

whether one can encode N symbols with C experiments on the set of 

previous outcomes. Upon failure, try to code N-1 symbols on C

experiments on the set of previous outcomes, and so on. Upon 

successive failures to code, block sizes are reduced until we have a 

block of size one, then this symbol is sent using log2C symbols.

ii) Let k=3. Once again let M^L^l, L2=2 , ...,Ln=N. In coding,

consider firstly whether a block of N elementary symbols or 3N 

symbols may be observed during C3 experiments on the set of 

previous outcomes. Upon failure, try to code 3N-3 symbols or N-1 

elementary symbols in C3 experiments on the set of previous 

outcomes, and so on. When one gets to six symbols and is unable to 

code this, the first three symbols are the sent, using log2C3

symbols.

What is done is to find the asymptotic performance of the
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scheme as k— ► « . It will be demonstrated that as k— ► <» , the 

average length L is the largest integer such that the inequality 4.3 

holds.

L  <
log2C
"co 4.3

C is the cardinality of the source symbol outcome set and Ha, is the 

Shannon per symbol entropy of the source in the limit as the block 

size tends to infinity. Suppose Y Ln is to be coded. The

probability that Y  N is encodable using R = C independent

observations from the previous outcomes is:

{1 - ( I }

The average length is written as follows.

L  =  Expectation over all Y L y  sequences[[{ 1 — (1 — p { Y L y ) ) R }]  X L N  

+  [ { I  - ( 1  - p ( r -  {1 - ( 1  — p ( y L y ) ) R  }1  x  

+  [ { ! - ( !  - p ( y Ly-’) ) R } -  {1 — (I -  R} ] x

+ ........................

+[ {i -  (i -  p(. y L'-))R} -  {i -  (i -  p( y 1L>))R} ] x

+  [{ ( l - p ( K t= ) ) * } ] X i 1] 4 . 4

Where Lj is the number of "k length" elementary symbols being 

encoded. It will be assumed from now on that Lj = J . The above 

equation is obtained by this reasoning: The sequence of length Lj 

is coded if it is possible to find this sequence in R experiments 

but impossible to find a longer sequence in R experiments. Thus the



-164-

probability of coding an Lj length sequence, Y Lj , is the 

probability of observing the outcome Y Lj in R experiments minus the 
probability of observing its subset outcome Y Lj+1 in R experiments. 
The average length may be written as:

r  = e  { [i -  ( i - p(y n)) r)(n —(n  — i))
+  [1 -(1 — "]((// - 1) — (iV-2))
+  ... +  [i-(i-p(r2))R](2-i) + 1 }

- E  {[1 -  (1 - p { Y N))R] +  [1 -  (1 -p ( l '" -1))*]
+.. + [ i - ( i - p ( r V l  +  i}

It will be shown that all the terms in the equation 4.5 tend to zero 

or unity in the limit as k— thereby giving some bounds on the 

length L. Consider the function F= l-(l-p(YJ))R . For R=Ck we have

F =  l-(l-p(r'))(C‘) 4.6

where

Y J  =  { *,  , x k lA: + l 1 • , a:2 k ’Xl+(/-l)A: ’ ‘ • • ’ X J k  } 4.7

Each of the Xj is an original source symbol.
F =1 -exp[ln((l-p(K y)) (c‘>)]

=  l-exp[C *ln(l-p(r-'))]
Let u(k) -  and v(k) =  ln(l - p ( Y J))

This gives

F =  1 — exp {u(k)i 4.9
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It will be seen that as k —► », v( k ) — *0 and u( k ) — 0 .

L'Hopital's rule gives:

Iim F
k —  oo

r , d v { k ) .  d u ( k ) ,
1 exp(( d k  l*=oo)/( w  l*-oo)j

1 - e x p ( + C * ^ p / ( I  —p ( Y J )) lnC)|t _ o0 4 . 1 0

Now

P(y ) P{X'\i y + p 'i+(y-i)jt- ! ) * »  — 'X Jk)

may be shown, by the Shannon-McMillanrBrieman AEP theorem, to tend 

towards the value 2~JkHo° as k —* «, for a set S1 of YJ space and 

zero for all YJC S 1. Thus VYJCS-j

lim F  =  l - e x p { C * - ^ - 2  J k H ° > / { \ - p ( V J ) ) \ n C  } ! * _ „
k — co dk

and V Y J  e 5  ,

lim F  »  1 - a p ( c ‘ ® / (  1 - p ( r ' ) ) l n C ) | * _ co.
k — co u / t

But A (  2~JkH°>) =  2~JkH*>\n(2~JH°>)
a k

Thus lim F  =  1 - e x p ( - C * 2  )) 4.11

for 2"jh°°C > 1 and goes to zeroThe exponent goes to -oo as k OO
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as k —» oo for 2 JH°°C <1. Thus for

J  <  

J  >

log2C

OO

log2C 
/ /  ’

F  1 

F  -> 0

4 . 1 2

4 . 1 3

The expectation

F (  lim F )  =  1 or 0 for
k ->co

log2 C log2 C
/  <  —j j —  and J  >  —  respectively 4 . 1 4

Thus
lim r  =  Jk-*co

where J is the largest integer smaller than log2 C or

—  C
L > -wr~l 4 . 1 5

Now it should be pointed out L is the average number of k 

length sequences per block that is coded. Thus the actual average 

length is given by

l av =  k L  >  k (
log 2C 

/ / -1) 4 . 1 6

The coding rate is;

o _  log2N  +  log2 C k ^  \og2 N  +  log2(C *)
A  —  -------------------T-------------------------  < ---------------------------------------------------

"A v 4 ( ^ - 1 )
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and for k—*oo we have.

R  <
//

1 - log, C
4.17

For a source with large redundancy, that is «  log C, the2
coding scheme is efficient. We can make the performance tighter by 

not restricting lengths to be integer multiples of k. The 

disadvantage of this is that we have to devote more bits to the 

coding of the block sizes as the number N of possible block sizes 

increase.

4.4.1 The Shannon- McMillan- Brieman

Asymptotic Equipartition theorem

This is a fundamental theorem associated with the probability 

distributions of long sequences from an ergodic source. The AEP is 

a direct consequence of the ergodic theorem. The theorem says that 

the probability of occurrence of a block of symbols X N of length N, 

as N tends to infinity, behaves as follows: Every N length sequence
N  NX is a point in the N dimensional product set .X 12 . Then the

product set may be partitioned into two disjoint subsets and S1

as N tends to infinity. All X N sequences that belong to S-j occur

with almost constant probability 2"NHco and all.XN sequences that

belong to S., occur with almost zero probability. The physical

interpretation is that for long sequences we observe that some

particular options almost never occur; the others which occur, do so

with almost constant probability. This theorem is rather useful and



-168-

is often used as a justification for the use of block source codes 

of fixed length and rate. Before going on to the theorem proper, we 

should state the ergodic theorem, the foundation upon which the AEP 

is built. Consider a source with a countable outcome space Q , a 

Borel-Z field contructed from this space, and a probability measure 

yu(.) , defined on this field. Consider a bounded /z-measurable 

function g(cu) defined on the space , with mean defined as 

follows;

That is, the time average of the function g(oj) tends towards the 
mean g as the block length is increased.

Now we shall give a proof for the AEP theorem. Suppose the 

sequence of functions gk(Xj) are defines thus;

£*(*/) = -log 2p(xi\xi_],xi_1....*/-*)

and g0(x,) = -log2p(x,.)

4.18

Then if the source ( Q, 2P ,/u) is ergodic and T 1 is a coordinate shift 

of i positions, T ' ( ^ j )  = c o - l + j  $

4.19

d/n(a>) =  p(a>)d(a>) where this exists 4.20
The Kolmogorov-Sanai[Billingsley-(1966)] theorem says that

#00 = Jl™,# I *-i • • • • • x-») 4 .2 1

where

4.22
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m

and Hq, is by defintion the Shannon per symbol entropy associated 
with a source. Where

H oo =  J i m , l o g 2P ( x 0, x _ , , . . . ,  x _ n) d [ i { x Q, *_„)] 4.23

The theorem is then as follows

If
/ V - |

/*(*") =  I  2 \ ( 7',(*o)) =  -^■log2p(Jt,v-,,A:,v.2, ... ,*„)
I =0 4.24

Then f N ( X N ) ^

Now we may write
/V — 1 /v-i

f IMx") -  //„ | < w v) <; [ 11 V ft(r'(^)) -  i  Y  fe(r'(*„)) | <m* “)
V.Y°° V,Y°° / =0 / -o

N - \

+ J I ^ U 7 ' ' ( % > ) - t f J d M ( A ' “ )
V-Y°° / =0

iV-1
| I fT,(r'(*o)> -gJT'(x0» I < W ” ))

/ =0 V A'co 
N - \

+ { 4.25
V /-0

The fact that we have an invariant function .) in the second 

integral of the right hand side allows the ergodic theorem to be 
used here, thus it may be observed that this term tends to zero. 

This follows from the fact that the mean of the function g^C.) is 
the conditional entropy defined in equation 4.22 and is equal to H^.
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The first term is described in McMillan's paper as the Cesaro mean, 

this is the mean in time of a generally decreasing sequence whose 

limit is zero. The limit of the sequence

probabilities. The theorem on the convergence of conditional 

probabilities is proved in an appendix. Therefore the first term on 

the right hand side also converges to zero, proving the theorem.

The following corollary of the above statement is actually 

what is known as the AEP theorem.

Corollary. Given any 5>0 there exists an integer N such 

that sequences of length greater than N fall into two classes, S1 

and S-|. Class S-j has a total probability mass greater than 1-5 and 

class a total probability mass less than 5, that is

probability of occurrence, this falls between the limits defined 

below.

4.26
V  A " 0 0

being zero follows from the fact of the convergence of conditional

and 4.27
Y m bS. M > N Y M e S M > N

Every sequence Y M that belongs to class S. has almost the same

2 - A f  ( / / . + « ) < p{YM) < 4.28

proof B y  the C h e b y c h e v  inequality
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P ro b {| --^ -lo g ! p ( r " ) - W 00| > 5 }

By the statements preceeding this corollary it had been shown that

/«(*") =  ~ \ ° 1 h P ( Y M) -*• 4 .30

Thus for any <$2, 3N such that VM > N

f | ~ l o g g e r " ) = E{|--jj-iog2p(r")-tfJ} s a2
M 4.31

Therefore

Prob{|~log 1p(YM)-Ha\ >  5} ^ {

But that set S-j is the set such

| ~ l o g 2/-(K")-tfJ>5

This has total probability mass less than S. Thus S1 has

probability mass greater than 1-5and V Y M€S-|

-^~'°S2P(Y")-H„<+6 4 ,32

This concludes the proof.

This theorem was first noted by Shannon

[Shannon-(1948a) theorem 3] where it was offered with a rather 

sketchy proof. The first thorough proof was given by McMillan 

[McMillan-(1953)], whose proof is followed here. The expansion of
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this to cover joint sources is described very thoroughly by 

Dobrushin [Dobrushirv- (1963)] . For a treatment of the theorem in the 

context of ergodic theory see Billingsley [Billingsley-(1965)] 

pp 12 9-136 .
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*

4.5 Performance bounds for coding

with a fidelity criterion.

The coding scheme for the situation where distortion is 

allowed is almost the same as that described in section 4,3 . The 

difference here is that in searching the set of previous or 

previously coded outcomes AR , we allow ourselves to code a block 

YLn , if we find a YLn €: AR , such that d(YLN ,YLn) < d*; we declare

coding a success and approximate YLn by YLN . d* is a distortion 

limit set beforehand. Let

Prob(3 Y L *  : d { Y L \ Y L y ) <  d ' L J

be the probability of finding, for a given sequence YLn , an 

approximation within distortion d* , in AR . The probability of 

coding a particular sequence YLm of length LM , M < N is the 

probability of observing YLm , but not a longer sequence YLM+i within 

distortion d*, in AR. In briefer notation, this is

Prob[{3  YLu :d(YL\YLu) < d 'L J  f |  { J  yL> ■,d(YL', Ŷ ) £ d\, V / >  M }]

As before we attempt to bound the coding rate by finding 

bounds on the average length. This is given below.

I  =  E (Prob[3 Yh :d(YL\YLy) < . d’].LN
V  Y ls  v R y

+  Prob({3  < d‘LyJ
YLy :d(YL\YLs) £ d’Ls}).LN.{

+  Prob[{ 3 Y L'-‘ : d ( Y L* \ Y L" 2) <, d'^ J  P|
Y1' :d(YL\YL') <  d\r some /  >N-2}].Ln_2

+ .......................

+  Prob[{ 3 YLl:d(YL\YLl) <  d[j p |
R

Y L ' : d { Y L ’ , Y  ' )  ^  d [ r  some /  > 2 } } . L 2 

+  Prob[{£  Y L ' : d ( Y L ' J Y L ' )  <  d \ r  some/ >  1 } ] . ! , )
R

4 .33
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*

The evaluation of these probabilities is difficult, if not 

impossible, therefore an assumption has to be made in order that we 

may proceed. Now

Prob( { 3  YLj : d { Y L j , Y L j ) <> d ' L j ) Q  Y L ' : d ( Y L ’ , Y L ' )  <  d \ r  some/ > / } )

=  Prob( 3 YLj : d ( Y L \ Y L j ) <  d * L j ) -

Prob({3 YLj :d(YL\YLj) < d\ } p| {3 YL':d{YL',YL') < d\, some/ > / } )

4.34

Assumption. The quantity to the right hand side of the minus sign 

above, is to be simplified by the following assumption: If a block 

of length Y 1 may be found, within some distortion d , in AR , then 

a block YLj of smaller length may be found to within distortion d*, 

in A R. In mathematical notation we replace

Prob({3 YL‘ -.d(Ŷ ,YLj) d[j} f| {3 y"' : d(YL', Y*’) £ d\, some/
' > )

by

Prob(3 YLj" :d{YLj + \YLj 
R v

')<d[ )lj+\>

We may therefore write the average length as

1 =  E ( Prob[3 YL" :d(YL\YL") Z d'].(LN-LN.,) v R
+Prob[3 ?L*-'-.d(YL*-\YL"-') ^ d'L ].(LN.X-LN.2)

R 'v_l
+ .......................

+Prob[3 Yh:d(YL\YL') < d'jX̂  - Lt) + Lt) 4 . 3 5
R

We shall consider the particular case when 1̂  = 1, L2=2,... ,Ln=N. 

Then the average length may be rewritten as
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L =  E( Prob[3 YN :d(VN,f'V)  ̂d„]
+  Prob[3 YN~l :d(Y‘w~\Y*~l) < d„_{]

R
+ ...............

+  Prob[3 Y2: d(Y2, Y2) <d\] + l) 4 ̂
Now we shall concentrate on the evaluation of the terms

Prob[3 Y :d(Y',Y') £ d.’]R
♦ It may be shown that as an "elementary" block size tends to 

infinity, for a given distortion value d*, some of these probability 

values tend to one and others to zero. As was done in section 4.4 

where noiseless coding was considered, we define an "elementary" 

source symbol as a sequence of k original source symbols. Y 1 

therefore refers to kl original source symbols or I elementary

source symbols. Now 
 ̂/ * /

Prob[3 Y :d(Yl,Y ) ^ dt] — 1 - ( 1  — Probability of observing a se- 
* quence within a region d] of Y1

in one experiment conducted in the 
space of previously coded symbols. )

4.37
TLet the probability of observing a sequence within a region dj of Y 

in any one experiment be p(Yf,d*) . Let d*-d* for all I. We 

are concerned therefore with evaluating 1 — [1 — p(Y ,d )] . We may 

write

1 - [1 -p(Y',d')]R = I-exp{ R \a[l-p(Y', d')]} 4 . 3 8

We shall now tie R to k in the following manner. Let C k = R. Thus 

in implementation of the coding scheme, if one is unable to find a 

block of length greater than the "elementary" source symbol, ie. k 

original source symbols, then just one elementary source symbol is 

coded. This is done by quantising it to the nearest of Ck levels.
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The number of quantisation levels is chosen so that, presuming a 

maximum ignorance or flat distribution between the amplitude 

extrema, the quantisation introduces less distortion than d*. Thus

1 - e x p { R  l n [ l - p i Y ^ d * ) ] }  =  1 - e x p { C * l n [ l - p { Y ! yd * ) ] }  4 .3 9

As was done in section 4.4 we look at what happens as k — >*00.

1 exp {C  ln[l p ( Y  , d  )]}|^_*00 1 e xp {C  { \ —p { y i t d * y ) \ a . C

4 .40

by L'Hopital's rule. At this point we need to make use of the 

theorem of section 4.5.1. This says that the probability of 

observing any symbol, within the horizon of YN defined by 

d(XN,YN) < d*, is almost a constant for some YN, this constant being 
2 ~ N R (d  ) an(j aimC)st zero elsewhere, as N goes to infinity. R(d*) is 

the rate-distortion (r-d) function of the source XN sequences, 

calculated as defined in section 4.5.1 part i. In keeping with 

custom the r-d function of section 4.5.1 is defined using napierian 

logarithms. The r-d value given here refers to that which would 

have been obtained if the log is to base 2. This is done here 

because it allows our results to be given in bits (instead of nats). 

Thus

A p(Y',d’) -  A 2-'t*<‘'‘> =  -2-,kR{d'\l.R(d ’)In2 4 .41

l - e x p { C ‘ l n [ l - p ( r ' , r f ‘ ) ] }| i - 0 o =  l - e x p { - C
k ^ - i k R ( d ’) I R ( d m) In 2

( l - p ( r ' , < T ) ) l n C

4 .42

-  0 V I > log2C
Rid*) and V/ <

log2 C

R i d * ) 4.43



The average length is thus

E jl +  Prob[3 y2:d(Y2,r2) < d\] +  Prob[3 Yi:d(Yi,Y3) < d\\ +  ...etc}
all uncoded R Ryi sequences

We know that for every J, pr(3YJ :d(YJ ,YJ) < d*) is very close to 

either unity or zero, depending on the value of J and the actual YJ . 

There are some YJ values of almost zero probability of being 

observed in A R , to within distortion d*, even though others of the 

same length are observable within distortion d* . The average 

length may thus be written as

E {1 + Prob[3 Y2:d{Y2,Y2) < d\\ + ■ - • +  Prob[3 Y :d(Yl,V) < d]] } all uncoded R Ry> sequences
Where I is the largest integer smaller than log2C/R(d*). Let the 

region (Y1, e) be the set of all I length sequences within distortion 

€ of Y1 . Let Pu(YJ ,e) be the probability of observing, in one 

experiment, an uncoded sequence within distortion e of YJ . Now, 

let us concentrate on the expectation - of observing a particular 

length.
Suppose A,= E {Prob[3 Y1 : d(YJ, YJ) <, d)]}

all uncoded R yj sequences
= lim Y  Prob[3 YJ :d{YJ,YJ) < dj]Pu(YJ,e)t-0 R

all disjoint 
regions

= lim Prob[3 YJ :d(YJ,YJ) <. dj]Pu(YJ,t)R
all members of a 
set Sj of disjoint

(T* () regions. +  lim Y<-+0 / iProb[3 YJ :d(Y\Y1) < d)\PJ,YJ,t) R
all members of the 
complementary set Sj
of disjoint 

regions.

4.44

The set of (YJ ,0 regions is divided into two subsets for this
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Sorne,
reason: It may be envisaged that f o r ^  particular (YJ ,e) region, the

probability of finding in A R, a YJ such that d(YJ ,YJ) < d* for

space of the coded signal, there are d* spheres, with almost 

constant probability and other d* spheres of almost zero probability 

mass. These two classes are represented by S1 and S1 . Then

contribution from the space S-j . The above equation follows from the 

fact that for all (Y1,e) regions which form the centres of 

observable d* spheres in the space of the coded signal, 

p r O Y 1 :d(Y* ,Y‘ ) < d) ^  1.

The next point to be established is the total mass of the set 

S-| • This may be observed to be arbitrarily close to unity, since 

any (Y1 ,e) region that occurs with any frequency, is coded within 

distortion d* and included in the space of coded symbols. Therefore 

any (Y1,e) region of non-zero probability mass (measured according 

to the probability distribution function defined on the uncoded 

signal space), will be observed within distortion d*, in the set of 

previously coded symbols with finite probability. Therefore Aj —  1. 

It may be concluded that

every YJ€(YJ ,0 is almost zero. It should be recalled that in the

all disjoint 

(Y1 , *) regions

S is an arbitrarily small quantity representing the total

/
4.46

The coding rate is

log2i? + \og2N R(d*)\og2N Rtf')
kl ~ ~ &(log2C -R(cT)) + i_*(0

log2C
4.47



-179-

As k becomes very large, the first term on the right hand side goes 

to zero, giving

Rate «  <1 R ( d m)
1 - *(<Q
1 lo g 2 C

4.48

It should be noted that the R(d*) value refered to here, is 

not that for the original source but that for the signal of 

previously coded symbols.

The following is a non-rigorous discussion of the relationship 

between the r-d value of the coded and original signals. The r-d 

values for the original and coded signals are refered to as R u(d*) 

and R c(d*) respectively. The coding scheme described may be looked 

at in the following manner: Consider N separate spaces, each 

containing Ck points strategically positioned^ t fc e  spaces of 

smallest and largest dimensions being respectively k and kN 

dimensional. The Ck points are the members of the set A R of 

previously encoded symbols. In implementing the coding scheme, one 

observes blocks of length kL, 1 £ L < N. These blocks are samples 

from a space of dimension kL. We try to encode a block with one of 

the Ck points. Always trying the largest dimension first. The 

foregoing has indicated that for long sequences, blocks of one 

particular length are almost always encoded. In other words coding 

is done in almost exclusively one particular dimension. This is the 

kl-th dimension where

/ >
log2C

* ( 0 4.49
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It is only on very few occasions that the length of a coded block is 

less than kl. We may consider the occasion of coding a shorter 

block as replacing a member of the space of Ck points with a new 

point. Since this is done a very small proportion of the time, the

C points may be considered to span the space of kl length blocks 

that occur and kl is the largest dimension space which will be
L

4  spanned by C symbols.

Next we look at the meaning of the rate-distortion value at 

distortion d*, for a source. Each of the N dimensional regions of 

distortion radius d* (d* spheres), have almost a constant 

probability mass of 2 NR(d * or almost zero probability mass as N —►<». 

In other words, it is possible to span the N dimensional space of 

all occurrences to within a distortion d* by packing this space 

with spheres, each of distortion radius arbitrarily close to d* and 

• of probability arbitrarily close to 2~NR(d * . Indeed 2NR(d 1 spheres

are sufficient. An alternative way of looking at the r-d function 

is this: Suppose one has 2NR*d * spheres and is allowed to choose a 

dimension so that these d * spheres will span the space of all 

possible outcomes, then N is the maximum dimension that one could 

pick. This is because if one could pick the dimension N+J, and span 

this space, then the coding rate in bits per source symbol would be 

R(d*), which would mean that R(d*) is not the infimum per 

symbol rate. This contradicts the definition of the r-d function.

It is known that the space of previously coded sequences of 

block length kl, has a rate, for zero distortion of a very small 

quantity greater than log^C1* . This is because almost all sequences 

in the set of previously coded symbols of length kl are obtained
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originally from other previously encoded symbols. These may be 

transmitted with log2Ck symbols. The small number e represents 

the additional rate associated with new additions to the set of Ck 

points of previously coded data, so that the following statement 

holds:

k I R c ( d  = 0 )  =  log2(C *)  +  e 4 .5 0

Also

k I R c { d = d ' )  =  k I R c ( d ' )  <,  R c ( d  = 0 )  =  log2(C *)  +  € 4 . 5 1

It is known that Ck points almost totally span the space of all kl 

length blocks that may be observed in the uncoded signal space. The 

fact that a longer block length may not be found that enables the 

space of blocks of this length to be spanned by Ck points allows us 

to presume that

2kIRu{d)̂ tCk and kIRu{d*)« log2C* , 4.52

Thus using 4.51,

k l  Rc (d') S Iog2(C*) +  <
* * Z k l R u(d') +  t

Rc (d’ ) « Z R u(d') + tt 4<53

e1 arbitrarily small. This allows us to say that the coding rate is 

approximately as given below:

rate «  ^ Ru{d )
1 - *„(0logjC

4.54

This concludes the discussion.
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The next section gives the details of the theorem for the 

convergence of the probability mass of d* spheres.
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4.5-1 A partition theorem for sequences 

observed with finite precision

Theorem. Consider a source with an outcome space £2 , a

Borel-,2 field constructed from this space and a probability
N

measure q(.) defined on this field. The product space X O  isi=1
partitioned into two disjoint regions S and S as N tends towards 

infinity. The probability of observing any sequence XN , emitted 

from this source, that is close to some Y , within distortion d , 

tends towards the constant exp(-NR(d*)) for all YN belonging to S 

and zero for all Y belonging to S as N tends to infinity. The 

distortion class considered, consists of the absolute and square 

error, single letter distortion measures. That is the distortion 

d(XN,YN) between the two sequences XN and YN is ^^|Xj-yj | or

l^CXj-yj )2 . The theorem also holds for any other single letter 

distortion measures with a difference distortion measure d(|x-y|) 

such that the Fourier transform of the function exp{-d(.)} exists 

everywhere and is strictly non-zero for all frequencies. R(d*) is 

the rate-distortion value of the source at the distortion d*.

Proof. The proof of this theorem is rather long and involves 

several intermediate theorems. The proof is similar to that 

employed for the Shannon-McMillan-Brieman Asymptotic Equipartition 

theorem. Shannon [Shannon 1959] proved a similar theorem as lemma 1 

in the referenced paper. In that paper however, he considers only 

the single letter r-d function. Here, the limiting r-d function is 

considered and it is shown that the joint density functions that 

solve the r-d optimisation problem, converge for a class of

distortion functions
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The proof given here relies greatly upon the ergodic theorem and the 
convergence theorem for conditional probability. The proof will be 
given in the following order.

i) The definition of the rate-distortion function

ii) A sketch of the proof
iii) A proof of the convergence of the probability functions 

which give the rate-distortion function for a given d*.

i) The rate-distortion function R(d*) for a given distortion 

value d*, is the minimum rate at which a source may be coded so that 
the distortion is less than d*. In mathematical notation,

R { “ ' ) =  l q<X) j  P (y]X) ' " [ 4 . 5 6

such that

d * ^ J q{x)

and -
l=\p{y\x)&y V* 4 >58

x is an outcome of the source random variable and y is an outcome of 

the approximation or reproduction random variable. q(x) is the 
source probability density function and p(y|x) is the conditional 
density function governing the approximation of the outcome x of the 
source by the value y. The x and y may be vectors in which case the 
integral signs represent multiple integrals. The solution of this 
optimisation problem involves rewriting the objective function to 

include the constraints, with a Lagrange multiplier p for the 
constraint of equation 4.57 and a Lagrange multiplier function f(x)

p(y\x)d(x,y)dydx 4.57
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for the multiple constraints of equation 4.58. Let

R ( p , p J )  =  inf { f
p(y\x).p/(x) J p(y ’ x) (l n i ^ 7 r + +

4.59

be the new objective function, where w(y) is defined as below

K y) =  J Piy\x)q{x)dx 4 .60

On differentiating with respect to p(y|x) and setting the result to 
zero, we obtain the following equations.

„ n Piy\x)q{x) t Je
0 =  n7 C * M ? j  +  pd and thus

1 = J  ̂  CXP ̂ ~pd y>i ̂  *** 4.61

| =  |  w(y) exp { -p d  (x, y )} dy 4.62

After solving equations 4.61 and 4.62, the p(y|x) which yeilds the 
minimum is defined as.

P ( y \ x )  =
f(x)w(y)

q { x )
exp {-p d {x ,y )} 4.63

These results were first obtained by Shannon [Shannon-(1948b) 
section 27]. For a more complete discussion see the following; 

[Gallager-( 1968)] p457 or [Berger-( 1971)] pp29-32 and pp88-90

ii) A sketch of the proof. It will be shown that as N tends
to infinity,
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Pn {X"\Yn )
qN(*N) J

tends to R^d*).

Where R^Cd*) is the rate-distortion function value at distortion d* 

when block sizes considered tend towards infinity. PN(XN|YN) is the 
conditional density function associated with minimising the rate for 
a given distortion, when the block size considered is N.

It will also be shown that the distortion d(XN,YN) between any 
pair of sequences XN and YN tends towards d* as the block size N 

goes to infinity Both these proofs presume that the joint source 
(XN,YN) is ergodic.

We shall proceed by assuming that the above two statements are 

correct. This will be demonstrated later. With these assumptions 
we develop the proof that the space of the XN random variable, for a 

given Yn divides into two regions as defined before. Now for a

4 . 64

by the Chebyshev inequality. But by the fact that

—  inr^t* — -1 may be made as close to R-Cd*) as wanted by 
N  <In (X ) ^
taking N large enough, E{|— W * qN(XN)

2may be made smaller than S . The following statement may be 
claimed: For a given YN, there exists an N such that

P ro b ( * w : - R J L d ' ) \ > S }  S  a 4 .6 5
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There are therefore for a given YN and N large enough, two disjoint 

regions S-, and S-j in the space spanned by XN where this is true:

J pN(X N\YN)dXN >  1 -5
S,(K'V)

PN{X"\Y")dX" < 8

S {(YN )

In the region S1

4.66

4.67

and in the region S.jCY;

4.68

In the region S1 (YN) we have

qN(XN) c x p { N { R J d ’) - S ) } £ pN(X N\YN) <, qN(XN)e x p { N (R J ,d ' ) + a)}
4.69

Now integration of p(XN|YN) over the region S1 (YN) gives 1-5 . Thus

j  qN(X N) e x p { N ( R J ,d ’ ) - S ) } i X N <, 1-6 £ J  qN(X N) t x p { N ( R J d " )  +  5)}dX N

say*) S}IYN)

and

(1 -5)exp{-Af(RJ.d") + 5)} < j  9w(*")<Uf'v < ( l - i ) e x p { - N ( R J d ' ) - 6 ) }
SAY*)

4.70
What has been shown so far is that for any S > 0, we may find an N 

large enough so that the next few statements are true:
Statement 1. A given YN is to be approximated by XN. Governing the 
set of possible XN that may be used to approximate YN is the
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conditional density function p(XN|YN).
Statement 2. The space of all XN used to approximate this YN may be 
partitioned into two regions S1 (YN) and S-|(YN). The total mass of 

the conditional density function in the region S1 (YN) is greater 
than 1- 8
Statement 3. The probability of observing an outcome from the 

region S1(YN) is
S,(K-V)

which is almost constant for all YN and equal to exp{N(Rm( d*) ±  5)}

J q„(XN)dXN

Next we have to show that the region S1 (YN) corresponds to the 

region where distortion d(XN,YN) < d + e , where € is an arbitrarily 
small value greater than zero.

NGiven a Y , we have;
CO

Probf*" -.\d(XN, Y N) - d ' \ > i }  <; \ \ pN(X N\Y” )\d(XN , Y N)-d '\A X N
-oo 4.71

Now by the ergodic theorem, it is known that d(XN,YN)— *d* and
00

[ pN(X N\YN)\d(XN, Y N) - d ' \ i X N
-00

2may be made less than 8 by the choice of an N adequately large. 
Thus 3N such that

Prob{A'iV : \d(XN, Y s ) —d* \ >  5} < 5  4.72

This implies that for a given YN, there exists in the space of XN 

values a region S2(YN) of probability mass greater than 1-5 , that 
is

| p„(X"\YN)&XN >  \ - b
S2(Yv)

4.73
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where within this region,

\d{XNt Y N) - d '| < 5 4.74

Thus importantly for us within this region d(XN,YN) < d*+5 .

Combining this and the set of previous statements, we have the 

fact that for any 5 > 0 and 6 > 0, we can find an N large enough 
so that for any YN, we can find regions of conditional probability 

mass

| pN(X N\YN)&XN, f pN(X N\YN) i X N 4.75
S,(Y») S,(Yy)

respectively greater than l-€ and 1-5 . For region S-j(YN) 

J^qN(X N)iIX N is almost constant and vY almost equal to
exp(-NR(d*)). For region S2 , d(XN,YN) < d*+ 5. From these it may 

be said that region S.̂ H  S2 is of mass almost 1. This is because

[ pN(X N \Yn )AXn = f pN(X y \YN)dXN — [ pN(X N\YN) i X N

5, s2 s\ s, p) J2 4 .76

Now

J pN(X N\YN) i X N <. [ p N(_XN\YN) i X N <, 6

Sl O  S2
4.77

5 ,

Thus

| Pn (X n \Yn )&Xn >  > 1 - 6 - 5

•5.

4.78

This concludes our proof.

To recapitulate therefore the theorem may be summarised thus:
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♦

For a given YN, the XN space may be partitioned into two regions S 

and S, S=S! (YN)H S2(YN) , which has almost unity probability mass, 
that is, almost XN which are used to approximate YN fall into this 
region. These regions S for any YN have the dual property that all 
XN in a region S differs from YN by at most d*+ S , and any regions S 
may be have a member observed with almost constant probability, 

exp(-NR(d*)).
iii) Now we proceed to the formal proofs of the convergence of

ln[pN{X N\YN) to R(d')

First we shall give some definitions. Let

RN( d ' ) =  inf [-J-/>;v(kv|a'v) N
p„(KiV|*'v)ln[.pN( Y N\XN)

Jd K ^ d A "

wNiYN) ' pN{ Y N\XN)q{XN)dXN 4.79

q(XN) is the probability density function associated with the XN 

random variable. The minimisation is subject to the following 
conditions:

g(Jfw)(j"pN(.YN\XN)d(XN, Y ri)dYN'jdXN Z d ’

[ p N{ Y N, X N) i Y N = 1, V X N 4.80

It will be assumed that the conditional density function p'(YN |XN) 

that solves the minimisation problem is p^(YN |XN). Let 
R(d*) = lim R w(d*). Next we define a function

W w * )  =  ln t
PN̂ k̂ yk I Xk-\' ' • • ’ Xk-l » Yk-l ’ 
w/vO'J yk-i • • • *yk-Mxk I xk-v •* * * * —/)

4.81
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*

This function will be abbreviated as

&Nl(Xk*y~
PN(Xk,yk\Xlk_ltYlk_,)

wN(yk\Yk-Mxk\x k-\)
4.82

The superscripts £  indicate the lengths of the blocks and on 

which the random variables xk and yk are conditioned. The 
coordinates of the first random variables of the blocks xj^and Yk.., 

are indicated by their subscripts. It may be noted that,

, r pN{ Y " , X » )
] ^ATJV-l^TV’^ )  Sn, N ---- +  S/v.otW i)

N-\

Y  gt„(T'(x,,y,)) 4.83
/-0

where T'(.) is a time shift operation and
/v—i

/?*(</')- £ { i 4.84
/'=o

Thus

R ( d  ) =  lim R N ( d  )
/V -*oo 4.85

/= 0

What we shall show is that as N grows larger and larger, the

apparently time averaged quantity g.,.(x1 ,y1) tends towards its
N i 1 1

actual average
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In which case we may write that

1 Pn { X " , Y " )
N [» N{V N)q(X"V

R(d )

Thus the quantity inside the log tends towards a constant as N 
Formally we shall show that

N- 1

i -  0

00.

almost everywhere or
N-\

lim > gNi( T ‘(xvy x))\iP(Xa , K°°) = 0
jV -00 J  Pi /  i 4.86

/-o

We rely greatly on the ergodic theorem, thus the joint process 

(XN,YN) must be ergodic.

We know that
N- 1 N-\

s; j l * W ’)

/=0 i=0
N — l

+

N- 1
i V

1=0 (=0
N~\

*  J W v ^  ^ ? „ „ ( r '( x „ ^ ) ) | d p

1=0

+ —

N-\
1 r
yy J l̂oooo(̂' (̂ 1̂ 1)) Sn&T U,,y,))|dP

' =0 4.87
ĝ ooC1 ' ( X 1 »Yi ) ) is an invariant function with N. The probability
density function associated with this is p^CX^Y®), corresponding to

the case that solves the minimisation problem for an infinitely long

sequence. This defines the first subscipt of the function
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g (xi>Yi )• The second subscipt means that the conditioning on the 
random variables T l(xl,y1 ) is the infinite X00 and Y00 sequences that 
happened prior to T'Cx-j^). Unlike SNi (•>•)> the function g^ooC.,.) 
is N invariant and i invariant. Therefore there follows immediately 
from the ergodic theorem the fact that

iV —1

j lE {&»oo(*|..>'|)} - j f  y  ?co<»(7'i(x,,y|))|di’ -  0
*  i-0

provided the joint sequences (X^Y00) are ergodic. Concerning the 

term
E U gĉ I ^ i)}

all that is required is that we show that

R(d*) = Elg^Xpy,)} 4.88

After this we concentrate on the second term of the right hand side 

0 of equation 4.87 and show that this goes to zero.

Lemma. Let

w . t w , )  =  lnC ' v(*°i ~.............. ............................ y - y +, ) j
ww(yo Iy~\ ’ • • • ’ y~N+i)*?(-*o I x- \»• • •»x~̂ +1)

4.89

then lim^ E{gNNJj(x1 ,y1 )} =R(d*).

Proof. The proof is simillar to Fano's proof of the convergence of 

conditional entropy [Fano-(196 1)] pp86- 8 8. We will first show that 

ECg^Cx! ,y1)) £ RN(d#) . We then show that for any S > 0, however 
small we may find an N large enough so that 
E(gNN1(x1 ,yi)) > R N(d*) -  S . Making S tend to zero and hence N 
tend toward infinity, we conclude that ̂ lim^ E{gNN_1(xl ,y1 )} = R(d*)
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Now
nj p  _  r f . _ /  P n ^ N ' P  N  l ^ j v - ! ’  ^ / V - j )  V  | r <xn( P n ^ N - \ ' A N - V  VPN{Y"N_\,x%_\)

4.90

Next we note that the joint density function pN(YN |XN) satisfies the 
distortion constraint. That is

N

i - l

j J P n (x , , y i ) d U,,j>,)d*(dy , < .d 'or

By measure invariance with time shifts
N  —  1

4.91

P N i x ^ d i x ^ d x f i y i  < d '
N  — 1 j  j

/ = i
4.92

hence the marginal density function PN(XN1| YN'1) also satisfies the
distortion constraint. It is known that of all the joint density

functions of length N-1 , the one which gives the smallest rate, in
addition to satisfying the distortion constraint is p (XN_1,YN~1).N~1
Thus

. fl ( ^  _  ix „  /J% ^

4.93
Then

• p  X N ~l )
N R (d  ) =  E{g/Viiv_1(-̂ p>,i)} +  ̂ {ln ‘v~')q(XN~') ̂

2: E{g/VJV- 1(*10'.)} + ( N -  1 )RN_,(d") 4.94

also we know that

RN- i id ')  *  RN{d*) 4.95



- 195-

and hence

N R „{d ')  > + (N -  \)RN(d') 4 .96

Therefore

E  { ̂ /v.yv — 1 C-̂ l *-̂ l) } ^ RN ) 4.97

Now we show that there exists an N such that

Etlnf !*%-!• -')} a: RN(d ’ ) - t  foranye>0 A.98

This will be done by considering the numerator and denominators 
separately. Consider the numerator

E(ln/v(xw, yN\X%l\,Y%Z\)) =  - h N(yN,xN I X N-\ K"-') 4.99

Now hN(yfc ,xk |Yk'1 ,Xk‘l) forms a non- increasing sequence with k V k<N 
(see Berger [Berger-(1971)] problem 4.1 page 140). Thus

hN(X N , V N) =  E(-\npN(XN , V N))

= E(—\np̂ (xN,yN \ X )

+ E(— lnp;v(x;v_1,y;v_I|A’Af_2 *YN_ 2 ))
+ ..........

+  E C - ln / ^ O c ^ I x p y ,) ) + E M n / ^ C * ,^ ,) 4.100
But since

Eein^^.^l^JJlj.KX:!)) ^ E(-lnpw(rt,yt|̂ J:!,Kj:!)) Vi < N

hN(X N, Y N) =  E(-\npN(X n ,Y " ) ) £ N hN(xN,yN \X" \ Y "  ')■ N viV N - 1 v - N - 1>

4.101
Thus

-E(lnPiV(^,yA,|̂ :̂|,KX;:])) 5 j - h N( x \ Y t<) 

E{ in [p „(xw. ^ i ^ i ; : ! . r i ; : ! ) ] }  a  ^ E { m P„ c r v , : r v )} 4.102
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The next thing to prove is that the numerator function will obey 
this; for any e > 0 an M may be found such that for all N > M

E{ln[ 1

I N̂-})9(*v M - D

^ hN{Y») + hN{XN) 
N

Where

4.103

N

kN(YN) =  —E{lniviv(K,v)} =  -  Y  E { In>vjV̂ | YkkZ\)} 4 .104
k~ 1

N

hN(YN) =  -E{!n<?„Uf'v)} =  -  V E i l n ^ l ^ J : ! ) }  4.105
k = 1

For a given N, -E{ln[wN(yk | Yk_1) ] } is a non-increasing function with 

k, Vk < N. Thus the following inequality is true.

hN(YN) <. -E{lniv;v0^|Kj:[)}(lV —j +  1) +  0  — 1)E { In— -— j < N
wnW0

4.106

Similarly

hN(XN) S - E l l n ? ( x t |jrJ : ! ) }( lV-fc+  l) +  (fc-l)E{ln —]— }, k < N
Q\X \)

4.107

Hence

— E{ln(<?(xt |A'*:J)wjV0't |K^:j)} a  {
kf/(YN) + hiV(XN) N

N N-k  +  1

k — 1 
N-k + 1

E{ln 1

q(xi)”N(y\)
} 4.108

Our next statement relies on the convergence of conditional entropy.

ratio M to k, let a = ̂  say. For any finite a howeverConsider a
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large, an M may be found that makes k large enough so that for any 
8 > 0 we have

- Z { W w u (yM\YMu -_\)q(xu \XuM-_\)]} > -E{In[H-M 0'a|K|:|)]} -E{.ln[,(*i|^|:;)J}- 6

4.109

What we are saying is that due to the convergence of conditional 

entropy, for M sufficiently large, the value k= ^ will be large 
enough such that

- E {ln[M/w (yz | Y |l| ).?(*£ \X |l|)]} 

is very nearly equal to

-E{ln[W„(yw |K":!)9(*„|*":!)]}
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Going back to 4.109 then we have,

-E{\n[wu{yu\Ŷ -_\)q(xM\XMM-.\)]} 2: - E { I n I } -  E{ln[g(xii|*i_!)]} - i

4 .110

Using 4.108

E{ln[«-„0„|Y“Z\)q(xu\XMM-;\)}

(—  - 1 )■n  . , E{ln[-

M

M  -¥r +  1
1

(M--S- +  0  <l{xx)wM{yx) 
hM{YM) + h{XM) ( l - £ )

M ( a ^ - i )  " q{xx)wN(y{)

}}-5

E{ln

- 5 4.111

Allowing a to go as large as we want and M to go to infinity gives

E{ln[
WM&M I YM-MXM \XM-\)

n  ^  hM{X“) +  hu{Y“) 
n ~ M — e — 5 4.112

for any e , «5 >0. Considering this in addition to the statement 

arising from 4 .102 that is

E { i n [ / v ( w J * « : ! . r 2 J : i ) ) }  ^ ^ W pu(ym<x u))} 4.113

gives

fr i’ ) 1 — Fflnf P ^ x m ^ m \X m - \ ^ m -\)  ^

M ”M(YM)q{XMy

4.114
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for some M, for any S-\ > 0.
This concludes the proof.
Thus refering back to inequality 4.87, by the ergodic theorem, the 
first integral of the right hand side tends towards zero as

In this section it is shown that most of the members of the 
k-varying sequence of functions gkk_1( ,.,) ,gkk_2( . tend towards 
the invariant function goo^C,.,). This, in conjunction with the fact 

that the expectation of g^C,.,) is R(d*) allows us to prove the 
theorem. In fact all we require is that for any e >0, an N may be 
found such that for all k > N, the following equation is true.

As usual P is a probability measure defined on the field 3  

constructed on the product outcome space for (X00̂ 00). Firstly a 

sketch of the proof will be given and details filled in later. A 

very important theorem concerning the convergence of conditional 
probabilities is of great importance to this proof. This theorem 

says that the sequence of probability distribution functions 
p(y|A-|), p(y|A1 ,A2) , p(y |A1 ,A2 ,A3) etc. converge. The convergence 
is in this sense.

N ext we c o n s id e r  th e  se co n d  te rm , th e  summed in t e g r a l s  o f  e q u a t io n

4.87.

k

4.115

\p{y\A{,A2, . . . ,A N) - p { y \ A x,A2, . . . ,A <X)\&P -  0
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P is a probability measure over the infinite sequence of outcomes 
At ,A2 ,...tAQ0. This tells us that for large enough gkj (T'(x,y)) will 

be close to gkk(T1(x,y)) for most of the i so that

k *

J  Y  ® 4 .1 1 6

l - l  '=1

It is required to be shown that the sequence gkk(T1(x,y)) converges 
with k, for every Xk,Yk pair of random variables. This is different 
from what was shown in the previous section where the expectation of 

gkk(,.,) as k—*oowas shown to converge to the rate-distortion value 
for a given distortion. In this case, it is important that for 
almost each point Xk ,Yk of non-zero measure gkk (T1 (x.j ,y^ )) 

converges.

Now

&kk̂  • ) &k+ U  + 1(• ) =  ln[
pk pk(xi-x' , Yi ? )  

wk( Y ^ ) q ( X ^  nlwt(r‘7')9(A-‘T')]

( , .  pk+, ( x k+\ Y k+ ') . , ,
v h>*+1( n +w « +,) J l»k+t r *,)***■ )

4.117

We know that

Now

pk( x k, Y k)

Pk+ l ( X k + ' ,Y k + ') 
»k + ,(n + ')q(X> + ')

‘j fcrjjjtxp {~Pkd ( X k, Y k)} and

/* + |(*0 + l) r H(Yk + x K Ar + ,'k
q(X§ + x) Pk + i“C^o .Ko )

4.118

4.119

pk( x i \ \ Y k~') - f f pk( x k, K 0‘)d*0dy0

=w k( Y k-')exV{ - ( ^ - ) p kd ( X k-\ Y k-')}  .

J J wk(y<iI ^ -i )fk(X0) e x p { - T d U 0,y0) }dx0dj>0
4.120
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where

k — 1

d ( X ka =
i -  0

4.121

Therefore

pt (A-l 7 ' , r l 7 ‘ )

n O ,t-7l)
=  ft(A-*1l. J ' - , l)exp{

& - 1

A
pt rf( jr i7 ',K t7 ')}

4.122

where

M X 'L- ' .Y i ; ' ) = J J n(y0| Y i- ' ) /k(X k0) ex p { - ^ d ( x 0,y0)}dx0dy0

4.123

also

pt+,(-Y*„Kl|)
w * + ,(K i1)

- f t + ,( J f i, .K i1)exp{
k + 1

Pk + \d(X
*

4.124

where

=  |  J » * +,0'»l J, *.iV*+.Wfo+l) “ P { - I T T <'(W o )} '> * b ^ o

4.125
Thus

, . r , ,h fk(x a) .j k(xiy,Yi-t')
?**(•) ft + l.* + |( ) ” n q(Xj[) " q(Xij ' ){'nW $ ~ ln Kxij') }

, inA +l( ^ +l) , J k+l(x^',Y^'),

i (  ̂ — 0  j  / isk-\
+  — j — P k d { X _ x , K*7h

Now we can concentrate on establishing the convergence of the term
A(A-*) ..ft(^i7',Kl7')
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At this point we have to forego the luxury of generality. 
This is because the general distortion measure does not allow us to 
describe the character of the functions fjCx^) or fJ+1C X^1). We
shall therefore restrain ourselves to the absolute difference and 
square difference distortion measures defined as follows.:

N

d (XN, Yn) = j f ^ d ( \ x n- y n\), where d (z) = z2or |z| 4.127
n=0

These distortion measures are chosen because they define kernels

exp(-p d(XN,YN)) which are convolutional. They allow the solution of 
N

the integral equations

J/„(* 'v)exp{-p„d(*'v,K''')}(LY'v = 1 4.128

|//v + i(^'V + ')«P{-P«+|rf( ,̂V + '.>''V + ')}<LV'V+l = 1 4.129

4  . c » )
in a straigthforward manner.

Theorem. The eigenfunctions of the kernel

K ( x "  , Y N) =  exp{-pNd(X" ,Y") }N 4.130

where
/v-i

|), d ( x ) - x or \x\ 4.131
N

<v = i

a r e  e x p { - j  . Z o > j X j }
i= 1

The eigenfunctions form a continuous spectrum, are real and 
non-zero.

proof. Let
oo y

An(o>n, Y n) =  | exp(-./ Vo>„x,)*(*", YN)dX‘
/-I

N

= J exp(—7 co,., x,) J T ( ^  d \ - y{ |)) dX ‘
-CO 1 = 1 /■ = l 4.132
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Then
/V N

aN(o,n,yn)= j  eIp H y , , , + , ) , , ( i y . « k i » ) « '

- G O  , =  | | =  |

oo N N

Also let \(aN) = J  exp(-y ̂  w,.*,.) J( { ^  d (|̂ /|))dLV;v
/ = i / = i

be the Fourier transform of the function K{ d(xj)}.
Then

4.133

4.134

N

A (<A Y n ) = exp { - j  ^  w., .̂

i-1

By the symmetry of the kernel we may write
oo N  N

).A(w'V) 4.135

*(<*") = 2 j coŝ a,,*,.) Jti ̂ rf (|jc,|))<LY/V 4.136
r- i / = i

thus showing that A(o>N) is real. We write the homogeneous Fredholm 

integral of the second kind as,

N N

j  e x p ( - j Y j Wlxl) K { X N, Y N) d X N = A (< A e x p ( - /Y  a,y,) 4.137
1 = 1 1 = 1

Thus proving that the eigenvalues are real and form a continuous
spectrum and the eigenfunctions are the exponential functions

N (Mexp{-j . I Wj Xj }. That the eigenvalues ACo*™) are strictly non-zero

is shown as follows. It is known that
oo /V

=  J  e x p ( ^ ) ^  (|*,|))cLr

/»]
oo jV

= .n J e x p ( - j^ u ix1. ) J i( ir f '( | ; t1.|))dx1. 4 .138
1 =  1
1 ,  p -For the square distortion measure, K{Tr d(x:)} = exp{-Jxf }
I* N

It is known that the Fourier transform of exp{-ax2 } is

J —  exp{- ~  }. Thus A(^n) = T J J tT  This function is
i=i 'n
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always strictly positive.
For the absolute difference distortion measure

4.139

We know that the Fourier transform of the function exp{-a|x|} is
——  , >, N\ _  n  2NpNThus A(o> ) — IIa2 + a>2 /“ i (pn + H 2*})

This is also strictly positive for all <oN. This concludes the 
proof.

Now 1 = [ f ( X N)txp {-pNd ( X N, Y fi) } d x " 4.140

Thus
° " J

{ / ( * " ) -  - } t x p { - p Nd ( X N, Y tl) } A X N
\e*V{-l)Nd (U "  ,Y » ) ) & U "

} txp{—pNd ( X N, Y n )} i X N
/ e x p f - ^ l f L ,  rf'(|«,|)} « / "

4.141

But if all the eigenvalues of the kernel are non-zero, the above can 

only be true if the function being transformed by the kernel is 

zero. Therefore for the two distortion measures we can say that the 
only function fN(XN) that solves the equation

If y ( X N)exp{—pNd ( X n , Y n )} AX* = 1yv j „ N

is the constant
o° yv

1/ J  exP { - ^ ^ r f (k/|)}dA’i

4.142

/ = i

For the square difference distortion measure,
OO • 00

J e x p { - ^ / ( | * A'|)}(LV/v -  (n  J e x p { -^ * ,2}d*,.

—00 —00-(Mr 4.143
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Thus

/-<*'>- u & r
Similarly

f „  +  ](X N + ') = Py +1 kyv +1

4.144

4.145+ ' \̂ l TN + 1

Now we are in a position to investigate the character of the

functions f/v(*’-)and f/v + i(-» •)

fyv + i(-^-- 1* ^ -1) j* J  /̂v + iCVo I ^-iVyv + i(^o ) exP{ ']

P n  + 1 \ n

tr(N  +  1) )' 4.146

Also

4 .147

Therefore

liTyV/V ĵV + lJV + ll

" u n l* W H )"'/v -i-r

+ |ln[?(A:01 A-!!,)] -ln[9(A:0 1 I + 1^ "  $ + ^ rf<Wo)

-  +  |In[9(*ol^ -i)]-ln[9(*o|A ’" r ,)]| +  1 ^  ”  V q ^ l ^ W o )

4.148
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Thus
£ / v  +  i ,jv  +  i II i J  l ^ i v  8 n  +  i.n  +  \ \ ^ P

+ ii'» [fl(* b i^ 1)]- in i« (* b | jf? r ,) ] i .  + i F - & i rf'

4.149
The third terra may instantly be recognised as going to zero as N 

goes to infinity. By the convergence of conditional probability the 

second term may also be observed to tend to zero. Next we need to 

show that the first term tends to zero. This is done by showing

that p 
rN

and p 
'n+i

tend towards each other as N becomes bigger
(N+D Pthereby sending .___ N_ to one and the first term to zero. Before

N ft+i
the theorem for the convergence of the sequence > P2 , 
given, we shall look at the case where 

distortion measure is used.

• • • • i  s
an absolute difference

For the absolute difference distortion measure,

/ M o )  -<g$ r • /v  + 1(^o+l)
N + 1

2 (N + IV 4.150

and

• N  — \ _  / P N  \N -1 an(j
r * u r : r . K " r ) - ( s P w *

N
-1’ r . , )  =  (

PN +1 \N
2(TV +  \)}

Then
4.151

'S n n  £/v + i ./v + i II i
S |ln ( ^ ± i K | +

Np N +1
Hln[pU0|A'_1)]-lnfa(x0|A’_1 ')] . | P n_ _  P n  + 1 i 1

I TV TV + 1 I®

4.152
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Lemma. The sequence of numbers . for a given
distortion converges.

Proof. The value -p is the gradient of the rate-distortion
i

function obtained by considering i length sequences, at the
distortion value d*. Obviously the sequence of r-d functions 

obtained by considering successively larger blocks, converges. To 
prove this lemma therefore, we have to prove two lemmas the first is 

that the -/? are the gradients of the r-d functions at the

distortion value d#; the second is that the convergence of the rate 
distortion functions imply the convergence of their gradient 
functions almost everywhere.
Lemma. Suppose that the joint density function p ^ ( Y N tX N) that 

enables one to achieve the minimum rate for a given distortion d* , 

is given by

Pn \*N'*n > q(XN) exP* Pn“ W  , Y  )} 4.153

Then the number -/j is the gradient of the r-d function at this 
distortion.

Proof. (From [Gallager 1968] p457 section 9.4; [Berger 1971]
theorem 2.5.1 p33)
We need the fact that the rate distortion function is a convex 
non-increasing function and almost everywhere differentiable. The 
argument then goes as follows. We know that at distortion d*, the 
minimum rate is defined as RN(d*) where

R N(d ') + pNd ' = inf { i / U 'v,K'v) + X,5}
ps (YK \ X y ) *  \:d <.d' &

4.154
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A is a Lagrange multiplier to take care of the distortion 

constraint. d and I are the distortion and the mutual information
respectively, obtained when the conditional density function is 
pN'(Y*\XN) . We repeat that R N(d*) is the infimum rate that may be 
obtained for all distortion values less than d*. For any p'(YN|XN) 

a pair of values I and d for mutual information and distortion are 
obtained, where by definition, Vd < d*,

RN(d ‘ ) +  pNd" <  j j I ( X N, Y N) +  pNd 4.155

We can draw a line with slope — p between the points (d*,RN(d*)) and
N N

(0,{RN(d*)+p d*}) as shown in figure 4.1. This represents for all 

values d < d*, a lower bound on the r-d function. This is because 

for any value of distortion, say d', that is less than d* and has an 
associated infimum rate RN(d'), we have by equation 4.1^<f

RN{d*) + pNd ’ ^ RN(d ) + pNd 4.156

Therefore RN(d#) always lies above that line. The next thing is to 

ascertain what happens for distortion values greater than d*. Here 

the objective of the optimisation problem is changed. We try to 
find the minimum distortion that may be attained for a rate less ihan

RN(d*). Consequently the Lagrange multiplier operates upon R N(d*).

r.RN(d ) + A -
P*IY‘

inf ( H ttH X
j * v) * X:£/ 2S/?v( J V  N

N
r N)} +  d

4.157

By definition, the minimisation problem done this way will lead to 
the same value of distortion, that is A=d*. Hence

r.RN(d') + d '~  inf(x{j j - I (X N, Y ")} + d ) 4 .158
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But this may be rewritten as

/?„(</') + \d ' =  inf(i/(X,v, Y N) + ij) 4.159

The minimisation of the right hand side will give

RN(d ‘) +  \ d ‘ S RN(d") +  \d" 4.160

for all values of rate and distortion such that RN(d" ) = RN(d#). 
The inclusion of the value d"=d* gives the equality and hence

r-^ N . It may therefore be said that for all values of rate
RN(d~ ) less than RN(d*), the rate distortion function is greater
than the line of slope -p going from (d*,R(d*)) to ({d*+4-R(d*)} ,0)

N ft

as shown in figure 4.2. Therefore the rate distortion function is
greater than the line of slope -p which touches it a (d*,R(d#)).

N

By the convexity of the r-d function (see [Berger 1971] theorem

2.4.1, p27; [Gallager 1968]; [Shannon 1959]) this line should be a
tangent and hence the gradient of the r-d function at distortion d* 

is -p .

Lemma. By the convexity and monotonicity of the sequence of 
rate distortion functions, the sequence of r-d functions obtained by 

considering successively larger block sizes, have gradient functions 
that converge almost everywhere.

Proof. To prove this we need the following two facts:
1) The sequence of r-d functions converge almost everywhere, 
that is for all d*: 0 < d* < dmax . For any subregion, 

x < d* < x+<S , and for any e > 0 , an N may be found such 
that for all n > N, |RN(d*)-RN+1(d*) | < €
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2) The r-d function must have a continuous slope, for all 
values of distortion except d*= 0 or dmax .

The two conditions are proved to be true in [Gallager-1968] pp 491

and 492 and p463 and [Berger 1971] p463 . Armed with these two we
proceed as follows: Consider an X ,  € , 8 and n so that
l K/v+ ,(</-)| — € . Over this region an upper bound on the
absolute value for the difference between the gradient functions 
RN(d ) and R^+1(d ) will be established

Since the gradient functions are continu ous, for any n the numbers

R M  ) =
_  r 'm ') - k 'M ' + t) R N + l( d ' ) - R N + l(d'  +  t)

y v > £ » JV/v + r

exist and are bounded for any £ > 0. Now Let

z {d ) R N{d ) R jy + \(d ) 4.161

Then since the function z{d ) = RN{d ) — RN + ](d ) is bounded by

ire , within the region in question,
d'

z{d') =  | z(v)dv + e° 4.162
X

is bounded by ±e . Let the maximum |R^(d*)-R^+1(d*) | be z" (over 

all f and d*) maximum instantaneous value of z rm may be observed 

to be • Now since z'̂ is finite, e may be made as small
as possible by increasing N thus making z' as small as one wants. 

This concludes the proof.



Conclusion and Discussion4 .6

In this chapter a theoretical discussion of the performance of 

the MPPCD scheme was presented. As usual, analysis of this scheme 
as it might be practically implemented is not feasible. The 

operation of the scheme as some particular parameter, in this case 

the block size is pushed towards infinity, was studied. This is 
instructive as far as understanding the capabilities of the scheme 
are concerned.

Analysis was relatively straigthforward for the noiseless 

coding situation. It was shown that for sources with large 
redundancy (the entropy is much less than log2C, C being the source 

alphabet size), the coding rate for this scheme approaches the 
Shannon entropy value. For sources with little redundancy, at the 
expense of trying to code with very many possible block sizes, the 

scheme could be made to perform at close to the Shannon entropy 
value of the source.

Analysis was undertaken for the case of coding with 

distortion. This was considerably less straigthforward, compared 
with the noiseless coding case. A few assumptions were made 

concerning the source. These, in addition to the development of a 
theorem concerning the probability mass functions of long sequences 
from ergodic sources observed with finite precision, allowed 

analysis to continue. At that point the discussion had to be 
conducted along more heuristic lines, it was then argued that the 
coding scheme performs in a similar manner to its performance in 

noiseless coding. For sources with a rate distortion value, at 
distortion d , which is much less than log2C (C is the number of
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levels in a uniform quantisation scheme that achieves a distortion 
of less than d ), the system is efficient. For sources where this 
is otherwise, performance may be made tighter by using more 

alternative block sizes.

In the analysis of the situation where coding is with respect 

to a distortion measure, a theorem was developed which said the 
following. For ergodic sources, the probability mass associated 
with the N dimensional regions of distortion less than d is almost

M D/i4# )of constant value 2 for some regions and almost zero for all 
other regions. The theorem was first noted by Shannon. The proof 
offered for this however, involved only the use of the joint density 

function which solved the variational problem for the single 
dimensional rate distortion function. The proof offered here is 
more general, although applicable to single letter square and 

absolute distortion measures only.

The following is a discussion of the connection between this 

scheme and universal coding. The minimum rate at which a source may 

be encoded is determined by the statistics of this source. The 
design of a coding scheme that is efficient for a particular source 
relies on the knowledge of the statistics of the source being coded. 

For a significant proportion of the sources whose compression is 
considered, the statistics are not known. Some sources, behave as 
if they are composite, that is, from one relatively long period to 

another, the source statistics may be observed to change. For these 
two types of source, it is important to use a coding scheme that 
works reasonably efficiently for all sources whose statistics belong 

to a certain superclass. A family of coding schemes which work well
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for sources of unknown statistics or varying statistics is the 
family of universal codes. The essentials of universal coding are 
described in a comprehensive paper by Davisson [Davisson 1973]. 

Most of the present universal coding algorithms rely upon a certain 
degree of statistical analysis of a particular block to be encoded. 
The code symbols sent to the receiver are; 1) a sequence indicating 

the statistics of the block in question and 2 ) a sequence 
representing the code symbols associated with the "optimal" coding 
of the source, bearing in mind the information about the statistics. 

The aim of the MPPCD scheme was to effect the coding of sources 
whose statistics were unknown, in a reasonably efficient manner. 
This scheme differs from universal coding methods in the following 
two ways:
1) No direct assessment of the source statistics for a block is 

done.

2) In the MPPCD scheme the coding of a block involves the use

of previously coded blocks of data. Universal coding
methods however, take nonroverlapping blocks, establish the 

statistics and encode these blocks accordingly. No account 
is taken of other blocks in the past or future, for the 
coding of a particlar block.

The MPPCD scheme may be considered as viable for the coding of
sources with slowly varying statistics and similar to universal 
coding by reasoning thus:

The scheme codes blocks on a basis set of C members which are

previously encoded blocks. The coding of a block therefore depends 
on previous blocks. If we consider superblocks consisting of the 

block to be coded and the previously coded C blocks, then the
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following may be said: Part of a superblock is coded at a time. The 
coding of this segment of a superblock is independent of other 
superblocks. The superblocks are shifted in such a manner as to 

overlap with their previous superblocks. If the period between the 
instants when the statistics vary is much longer than the size of a 
superblock, then the system adapts well to variations in source 
statistics.
It is in this way that the MPPCD scheme resembles a universal coding 
scheme and justifies its investigation.
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CHAPTER 5 THE ENCODING OF SCALARS
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5 The encoding of scalars

5.1 Introduction

Scalar encoding is an alternative to block coding which can 

offer improvements in these ways; the coding schemes may be made 

less complex and coding may be implemented with little time delay. 

The former is of special importance in image compression where the 

data generation rate is so large that complex compression schemes 

are impracticable in real time. It should be pointed out that these 

advantages may be only be obtained at the expense of compression 

capability. In the cases where scalar schemes are used to obtain 

compression rates comparable to those attainable using block coding, 

comparable complexity result and just as much delay is suffered. 

Thus scalar schemes are only really advantageous in cases where 

large compression is not required.

The encoding of scalars involves the allocation of channel 

digits to represent each individual source symbol generated. For 

most schemes, the value of each individual source symbol may be 

retrieved, with some distortion, without waiting for a whole block 

of data. The exception is the class of schemes where a multipath 

search is conducted. In most scalar coding schemes, the decoding 

process entails simply the evaluation of the appropriate 

approximation symbol given the channel symbol received and the 

previously received channel symbols.

In this chapter some examples of scalar encoding are given. 

Following this a brief description of the theory used for the design 

of "optimal" scalar encoders as reported in the literature will be
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given . This chapter serves as a preamble to work reported in 

chapter 6 on scalar encoding.

*

»



5.2 Pulse Code Modulation (PCM)

This is the simplest and most basic of all the digital 

encoding techniques. It was first reported and patented in 1939 by

A.H. Reeves. Early descriptions of practical PCM schemes are given 

by Goodall-(1947) and-(1951) and a good general desciption is given 

by Oliver, Pierce and Shannon-(1948). A time continuous signal is 

sampled so that the sampling frequency is greater than twice the 

highest frequency component in the input signal. The lowest rate 

that a signal may be sampled at is termed the Shannon-Nyquist rate 

[Shannon-(1948)]. The resulting samples are then coded for 

transmission. A number of quantisation levels is chosen. The 

choice involves making a compromise between excessive noise and 

transmission rate. To each of the "N" values that a source symbol 

may take after quantisation (each member of the resulting source 

alphabet), log2N bits are assigned. N is chosen, in general, to be 

a power of 2. A PCM system with a uniform transmission rate 

attempts no redundancy reduction, by the allocation of a variable 

number of bits to a source alphabet member. The simplest PCM 

schemes "linearly" quantise the sample space of the source symbols 

into N levels. The source symbol, when observed to have a value 

within a given quantisation region, causes a certain sequence of 

bits to be transmitted. At the receiver, this source symbol is 

approximated by the centroid or mean of the appropriate quantisation 

region.

Various improvements to the basic PCM scheme have been 

reported. The most common is non-linear quantisation. A-Law and 

fi-Law quantisation schemes are the accepted standards for speech
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transmission. These employ a fine quantisation grid for low values 

of the source signal and a coarser grid for high values of the 

source symbol. The A and /u-law characteristics are shown in figure

5.1. A more systematic approach to non-linear quantisation is 

offered by the methods of Lloyd-(1982) and Max-(1961). For a source 

with a known probability distribution, these methods try to achieve 

minimum distortion granted a certain number N of quantisation 

levels.

An optimum quantisation scheme as far as the mean square error 

is concerned, should have the following properties.

1) Granted a set of partitions x1,x2,..•xN_1 an optimum set of 

centroids m 1,m2,...,mN should satisfy the following.

up(u)du

m ‘~ 5 -1

p(.) is the probability density function for the source.

2) Granted a set of centroids m1 ,m2,...,mN an optimum set of 

partitions x1,x2,...,xN-1, should satisfy the following.

The schemes by Lloyd and Max try to define an optimum quantisation 

scheme by the successive invocation of equations 5.1 and 5.2.

For applications where a variable transmission rate is 

allowed, more efficient ways of bit allocation may be used. For 

each channel symbol possible after quantisation, a different number
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INPUT

INPUT

Figure 5.1 A-law and f j -  law characteristics.
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of bits may be assigned for transmission. The bit assignment rule 

is decided according to the relative frequency of occurrence of each 

channel symbol. In general, the larger the probability of 

occurrence of a symbol, the fewer the number of bits assigned to 

this symbol. The optimum bit assignment scheme was discovered by 

Huffman in 1952.

To date, most of the digital communication links employ 

uniform rate PCM with some non-linear quantisation scheme.

5 .3 Delta modulation (DM)

Delta modulation is an advancement on PCM which attempts to 

use inter-symbol dependence to obtain some data compression. In DM 

• the effective sampling rate is very much larger than the

Shannon-Nyquist lower limit. For example, 40kHz is used to obtain 

coding of a reasonable quality for 4kHz bandwidth speech. Figure

5.2 shows a delta modulation transmitter and receiver pair. A brief 

explanation of how this works is as follows:

The source waveform is clocked in at the rate w say, which is much 

greater than the Nyquist lower bound. At the instant n say, let the 

clocked source symbol be x(n) and suppose the previously generated 

symbol bias been decoded as x(n-1) . The delta modulator then sends a 

channel symbol, "1" or "0", to indicate the polarity of the error or 

difference between x(n) and ax(n-l) (a is refered to as the

integrator multiplier). If a "1" is sent the error is presumed to

be +e and if "0" is sent the error is presumed to be -e . This

quantised error value, e or -e , is added to ax(n-1) and used to

approximate x(n). This value, x(n) is used to help encode x(n+l)
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b(n) = l or - 1
°Z

Decoder

x(n)=a I b(n) n

Figure 5.2 A delta modulator transmitter and receiver pair.

GRANULARITY

Figure 5.3 Phenomena of slope overload and granularity.
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and so on. The delta modulator effects a feedback process, the fact 

that it uses previous estimates of a signal gives it its advantage 

over PCM.

An alternative way of interpreting the functioning of the 

delta modulator is this. Presume a first order auto-regressive 

model for the source. The model is defined by the following 

equations,

x{ri) = a x {n  — 1) + e(n)
x (n ) = a x (n  -  1) + eq(n) 5 #3

The error signal e(n) is then quantised to one of two levels ±eq(n).

Several adaptive methods for delta modulation have been 

reported. These generally work by changing the quantisation levels 

for the error signal e(n), depending on the short term magnitude of 

this. These fall into two classes, instantaneous adaptation schemes 

and syllabic adaptation schemes. The latter are descibed by 

Tomozowa and Kaneko-(1968) and Bolin and Browns(1968) • In general 

these detect periods when the signal magnitude is too large for the 

step size, by monitoring the sequence of ones and zeros generated by 

the encoder. The mean number of ones and zeros is used to increase 

or reduce the step size. The instantaneous schemes work by changing 

the step size based on a decision using a few of the ones and zeros 

released from the encoder. The most common method is that reported 

by Jayant-(1970), Cumminsky, Jayant and Flanagan-(1973) and Goodman 

and Gersho-(1974).

The use of a second integrator in the feedback loop, acts as a
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means of ensuring that there is little slope overload. The effect 

of a sequence of ones at the encoder output(indicating slope 

overload), is to force a ramp at the input to the second integrator, 

whose output then rises in the manner of a 2-nd order function to 

match the input. This has the disadvantage that it is liable to 

overshoot.

The third variation on the theme of delta modulation is that 

concerning the use of a variable sampling rate. Work in this 

direction has been reported by Vanlandingham and Bogdanski-(1980) 

and Un and Cho-(1982). These adapt the delta modulation sampling 

rate according to the degree of the local activity of the input 

waveform. For example, in the paper of Vanlandingham and Bogdanski, 

an estimate is made of the local second differential. The larger 

this is, the smaller the sampling period used. This is the 

philosophy of run-length coding which is considered in the next 

section. Steel-(1975) gives a very thorough presentation of the 

various DM systems available. A comparison of delta modulation 

systems, is given in the paper by Un and Lee-(1980).

5.4 Run length coding

This is a differential coding scheme, where a non-uniform 

transmission rate is obtained. It has been applied mostly to 

picture coding and in particular to facsimile pictures.

Briefly, a typical run length coding scheme does the 

following: An error criterion is set apriori, an estimate x(n) of a 

source symbol x(n) is made based upon the values of the decoded
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approximations to the previous source symbols. If the difference 

between x(n) and x(n) is above the error threshold, x(n) is sent as 

it is or the error signal x(n)-x(n) is sent. If otherwise, nothing 

is transmitted. At the receiver, the symbol x(n) is approximated by 

x(n). When a symbol is transmitted, the period between this and the 

latest of the previous symbols transmitted, is also transmitted. 

Generally, the estimate of a symbol x(n) is simply the estimate for 

the previous symbol, x(n-l). Thus the decoded output of a run 

length coder consists of straight line approximations to the source 

waveform. Run length coding is very similar to delta modulation 

with "a", the integrator gain set to unity. The difference is that 

the line segments used in delta modulation are always one 

inter-symbol period long. Run length coding is particularly 

suitable for the coding of data where long sequences of data are of 

approximately the same value.

A block diagram showing a simple run length coder is given in 

figure 5.4. The following references indicate the types of run 

length coder reported in the literature. Gonzalez and Wintz-(1977) 

section 6.3.3, Pratt-(1978) section 22 .3 , Gouriet-( 1957) , Cherry, 

Kubba, Pearson and Barton-(1963) and Robinson and Cherry-(1967).

5.5 Tree and Trellis coding

The basic idea underlying both these methods are explained in 

the foregoing. Consider a sequence of random variables, each with a 

sample set Q={cl>1 ,co2,... ,o»N}, so that a typical sequence of 

outcomes is x(1),x(2),...,x(n),.. where each x(n) belongs to Q . 

Tree and Trellis coding techniques try to find an optimum set of
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S w i tc h  s e le c t s  i n p u t  i f  
e r r o r  i s  g r e a t e r  th an

Figure 5.4a A block diagram of a Run-length encoder.

Figure 5 .4b Example of the input waveform and its approximation , 
obtained with a simple run-length encoder. The short 
vertical lines against the horizontal axis show the 
transmission instants.
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channel symbols b(1),b(2 ),...,b(n) to represent the 

source outcomes x(1),x(2),...,x(n). The representation 

a set of approximating x(1),x(2),...,x(n) may be 

b(1) ,b(2),...,b(n) so that the

d(x(l),x(2),... ; x(1),x(2),...) is minimised. Tree 
coding schemes differ from block coding schemes in that 

schemes choose the set b(l),b(2),...,b(n) 

x(1),x(2),...,x(n) sequentially.

sequence of 

is such that 

decoded from 

distortion 

and Trellis 

the former 

and hence

5.5.1 Tree coding

A study of figure 5.5 and the following explanation shows in 

detail how a typical tree coding scheme works. The whole of the 

sample space for the sequence of bits which may be used to transmit 

approximations to the outcomes (a(-n),...,a(- 1),a(0),a(1),...,a(n)} 

may be represented by an infinite sized tree. The actual sequence 

of bits (b(-n) ,... ,b(- 1) ,b(0) ,b( 1) ,... ,b(n)} employed to code a 

source sequence may be likened to a particular path in the tree. A 

finite length of data {x(1),...,x(n)}, has a sub-tree associated 

with the sample space of bits which may be used to represent these. 

Tree coding is the business of assigning approximation sequences to 

paths in a tree and given these, to find good paths to traverse when 

coding actual source sequences.

Figure 5.6 shows a sub-tree where the darker branches describe 

a path representing the sequence b(1),...,b(n). In the following 

sections two examples of tree encoders are given.
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Figure 5 .5 A tree, symbolising Che options chac Che channel 
symbols may take, in the process of scalar coding.
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♦

Figure 5.6 A subtree, with an example path and path map.
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5.5.1.1 Example 1. Differential Pulse Code Modulation (DPCM)

Suppose a source generates a sequence of symbols x(n),.... In 

implementing a differential pulse code modulator, an estimate x(n) 

of the outcome x(n) is made, employing a linear combination of the 

previous approximations.

p

= ̂  atx{n - / 5.4
/ = i

The values of a,, a,, which lead to estimates x(n) of

least deviation from the correct values, are computed.

In DPCM, an outcome x(n) is coded and represented by a

quantised version of the difference between itself and its estimate. 

Refering back to figure 5.6, it may be seen that DPCM effects tree 

encoding in the following way. At the previous instant "i-1" the 

DPCM coder may be envisaged to have been at some node in the tree. 

The symbol x(n-1) has been approximated by x(n-1) . The coder is 

said to be at stage i-1. Next the coder decides which of the

alternative branches in the tree it may take, given that the symbol 

x(n) has just been observed. The destination node represents the 

symbol to be used to approximate the observed source symbol.

Associated with each branch that may be chosen are some channel

symbols or binary digits. In this particular case, the alternative 

destination nodes represent the values
p

m

or

or

=  ̂  -  / ) +  <7,(<?(«))
/ = i 
p

^  a,.x(n -i) + q2(e (n ))
i = I

5.5
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p
or Z djXin -  i ) +  qL(e(n))

/ = 1
The quantities

q (e(n)),q (e(n)),...,q (e(n)) are alternative approximations to the 1 2  4
estimation error. To each of these possible approximations is 

assigned a sequence of bits.

Adaptive differential PCM (ADPCM) and linear predictive coding 

(LPC) are advancements on DPCM. ADPCM is DPCM where an adaptive 

quantisation scheme is used to encode the error associated with the 

linear prediction of a sample or where the coefficients for linear 

prediction are adapted regularly. Linear predictive coding is a 

term used in speech coding for ADPCM where the prediction 

coefficients are adapted regularly. More emphasis is placed on the 

coding the prediction coefficients than on the linear estimation 

error.

The following is some of the literature on DPCM and ADPCM. 

This is nowhere near a comprehensive list, but these ought to give a 

good impression of the work done in the area and more significantly 

the combined references of these papers should indicate where to 

look for more information. Harrison-(1952), Elias-(1955), 

Jayant-(1974), Flanagan et al-(1979) may be consulted for general 

work on DPCM. Methods which rely on the particular properties of 

speech and images are:

1) For speech coding, pitch synchronous prediction, where estimation 

is made using previous outcomes which are a pitch period in the past 

[Atal- (1982) ] •

2) For images Candy and Bosworth-(1972) and Maragos, Schafer and 

Mersereau-(1984) do 2-dimensional spatial prediction. Limb and



Rubenstein-(1978), Netravali- (1977) and Zschunke-(1977) make use of 

the detection of edges and plane areas for coding.

5.5.1.2 Example 2. General tree coding

DPCM as described earlier is a particular case of tree coding. 

A general tree coding scheme may vary from DPCM or ADPCM in the 

following ways.

1) The schemes described so far assign "reproduction" symbols to the 

branches of the code tree by means of a linear predictive mechanism. 

A reproduction symbol is the approximation symbol obtained when a 

particular link in a tree is chosen at any stage in the coding 

process. In the use of a linear prediction model, the reproduction 

symbol for each node in the tree is determined by these two 

quantities: A linearly predicted quantity obtained by using the 

reproduction symbols associated with the nodes traversed in going to 

the node in question and an error signal associated with the branch 

which joins the node in question with the previous node visited. 

This need not be so, the values assigned to each node of the tree 

may be determined by another process. The process of determining 

which reproduction values to associate with going to a particular 

node via a particular sequence of nodes is called "colouring".

2) In DPCM a multipath search is not conducted to ascertain 

the best path to use in coding a block of data. In multipath search 

schemes, a decision is not made concerning which path to employ at 

each sample instant. A number of possible paths are considered as 

candidates and a choice is made only after a whole block of data has

been considered
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A particular tree coding scheme will be explained in the 

following section. The results of using this scheme were reported 

by Anderson and Bodie in 1977. A flow diagram for this scheme is 

presented in figure 5.7• The colouring of the tree is based upon 

linear prediction. When the i-th source symbol is under 

• consideration, the coder is said to be at the i-th stage in the

tree. Initially, a number of possible paths to be considered is 

decided, for example let this be 6. At each stage of the tree 6 

paths to this stage are considered. Associated with each path, is a 

bit stream and a sequence of reproduction symbols. For each of the 

6 possible paths, the following is done. The nodes traversed till 

the {i-l}-th stage (the reproduction sequence defined by these 

nodes) are used to estimate the i-th outcome. The estimation is 

effected by linear prediction. From each of the 6 nodes at the 

{i-l}-th stage terminating each of the 6 paths under consideration, 

emanate "m" possible branches, m is refered to as the generation 

exponent. Each of the m possible branches has a sequence of bits 

assigned.

There are therefore 6m possible values which may be assumed by 

the approximation to the i-th outcome. These outcomes are the 

estimates associated with each of the 6 alternative paths to nodes 

at the (i-l}-th stage and associated with each, m possible values 

for the error. Of these 6m possible reproduction symbols at the 

i-th stage, 6 are chosen. The coder then advances to the (i+l}-th 

stage and proceeds as explained before.

After the consideration of a block of say N source symbols, 

one of the 6 alternative paths is selected as the best. The bit
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Figure 5 .7 Flow diagram of the tree coding scheme by Anderson 
and Bodie
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sequence defining this path is released for transmission, yy process 

restarts, using initially only one node, that terminating the best 

path just chosen.

In addition to the procedure described above, Anderson and 

Bodie chose to smooth the quantised error sequence by sending this 

sequence through a short, 2 or 3 length, FIR filter. This filter 

was chosen to have zero transmission at the input sampling rate. 

The operation of this filter was as follows. Suppose the sequence 

x(l),x(2),... is the undistorted input sequence and x(1),x(2),... 

is the sequence of linear estimates obtained using coded previous 

outcomes. The error sequence is e(n),e(n),..., where these are 

defined thus;
p p

m ^  a tx { n  —  i) and x{n) = a ^ i n  —  i) +  e{n) 5.6
i = i i = i

Each e(n) is approximated by a quantised version, q(e(n)). In

normal DPCM or linear predictive coding, the receiver will use the

quantities q(e(n)),q(e(n+l)),... in conjuction with the linear

prediction model parameters to estimate the input signal. In this

case, a linear combination of the previous quantised error values is

added to the linear estimate obtained using the reproduction

sequence defined by the coded previous outcomes. This is the

estimate for the i-th input symbol. Of the 6m paths defined by the

6 estimates and the m alternative quantised error values the best

six are retained. These 6 are used to define the approximations for

the next stage. The process model is thus an auto-regressive moving

average system defined by the following relationship.
p Q

*(«) = ̂  a,x(n - 0 +  ̂  b'.q(e(n - /)) + q(e(n)) + &n)
i  = I /'= 1

5.7
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p

^  a,x(n  - i )  +
/ = 1

where e(n) are the error values

Q
^  b tf ie in  -  0) +  q(e(n))
7 =  1

In the paper of Anderson and Bodie, the quantities a 1f...,ap 

are estimated by using an auto-regressive model for the source. The 

quantities b1 ,...,bQ are chosen in an ad-hoc manner. In fact, we 

have been unable, by experiment to observe an improvement in the 

signal to noise ratio resulting from the use of the quantised error 

signal.

Wilson and Hussain-(1977) reported an adaptive scheme based on 

the method of Anderson and Bodie. In this scheme, a set of 

estimation parameters were evaluated at regular intervals and 

transmitted with a side channel to the receiver.

5.5 .2 Trellis coding

Trellis coding is essentially the same as tree coding. The 

difference is the graph structure used to represent the possible bit 

assignment schemes for coding a sequence of data.

A trellis is a structure which unlike the tree structure has 

branches which remerge. A tree with branches labelled such that 

sections of this are repeated over and over again, may be 

represented by a less redundant structure, a trellis. Figures 5.8a, 

5.8b and 5.8c show a tree and two possible trellis representations. 

It is to be observed that the trellis is adequate to indicate all 

the possible paths associated with the uniform rate coding of a
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C<0

Figure 5 .8 A tree and alternative trellis representations.
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source. (By uniform it is meant that a fixed number of bits is 

assigned for coding each source symbol). Tree and trellis coding 

are fundamentally the same. Both methods try to find a good path 

through a graph representing the possible ways of assigning bits for 

coding sequences. The only difference is that the rather compact 

structure of the trellis indicates one particular scheme for finding 

a path through this graph. The fact that vertices which would be 

distinct in a tree are merged in a trellis, directs one to do a path 

search using the following principle. If there are m paths which 

lead to a given node, the choice of the best path to this node is 

made once and for all. For subsequent processing no consideration 

is given to how this particular vertex was reached. This is the 

underlying principle for a well known algorithm for decoding 

convolutional codes, the Viterbi algorithm. (see Viterbi and 

0mura-(1979) section 7.4, Forney-(1973)).

5 .5 .2 .1  A lg o r ith m s  f o r  t r e l l i s  c o d in g

Firstly a few definitions will be given. A trellis encoder is 

shown in figure 5.9a and a decoder in figure 5.9b. The encoder is a 

convolutional coder. That shown in figure 5.9a has a constraint 

length of K. K is the number of input symbols which are employed to 

generate the channel sequence {...,b(n),...} using some function 

fK(.) such that b(n)=fK(x(n),x(n-1) ,...,x(n-K+l ). The x(n) are 

the source symbols.

The essentials of a trellis coding scheme are summarised by

these statements
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7-1 __________!*?-i 1_____c 4

Source symbol to channel symbol mapping processor

z - l — i 1

Source symbol and previous channel symbol 
to channel symbol mapper

CO Encoder types

( to Decoder

Figure 5.9 A convolutional (possibly trellis) coder and decoder
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1) A codebook or decoding scheme is designed, either apriori 

or adaptively.

2) Granted this decoding scheme, a good encoding scheme, 

like the Viterbi algorithm, is chosen. This is used to 

assign bits to the input symbols.

^ 3) At the receiver, the channel bit stream are used to

generate an approximation sequence to the source symbols.

The field associated with the design of good multipath search 

schemes, has been exceedingly well researched. The challenge in the 

field of both tree and trellis coding is the design of good decoding 

schemes (alternatively refered to as colouring schemes). To see why 

the term "decoding scheme" is applied here, consider the following. 

A decoding scheme is that which decides which "reproduction" symbols 

• should be associated with a sequence of channel bits. The job of

generating a set of reproduction symbols for a sequence of channel 

bits is performed at the decoder and thus this assignment scheme is 

termed a decoding scheme. Really therefore, it is not difficult to 

assign a set of bits to represent a sequence of input symbols, given 

a scheme for going from these bits to reproduction symbols. It is 

however difficult to choose a good scheme for deciding a set of 

reproduction symbols given a sequence of bits. Most methods 

reported in the literature use a decoding or colouring scheme based 

upon linear prediction. A few of the methods which specifically use 

a multi-path search, as apart from DPCM, ADPCM and LPC are the 

schemes reported by Anderson and Bodie-(1975), Linde and

Gray-(1978), Jayant and Christensen-(1978), Wilson and 

Hussain-(1979) , Fehn and Noll-(1980), Matsuyama^- ( 1981) , Fehn and 

Noll-(1982) and and Modestino and Bhaskaran-(1981) for image coding.
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The literature provide theoretical results concerning the 

feasibility of designing tree and trellis coders which achieve 

compression close to the rate-distortion bounds for various types of 

sources. (Jelinek-(1969) and Viterbi and Omura-(1974) for 

memoryless sources. R. M. Gray-(1977) for ergodic sources). They 

provide as yet very few methods for the design of tree and trellis 

coders.

5 .5 .2 .2 Trellis compression

A scheme in which the design of a trellis decoder is attempted 

in an optimal manner, has recently been reported by Stewart, Gray 

and Linde-(1982). The following is an explanation of the scheme. A 

code-book is arbitrarily chosen, this is such that for every 

feasible path map of length k, (k is the constraint length of the 

decoder) a reproduction symbol is assigned. Refer to this code-book 

as Ck. It has members {b( 1) ,... ,b(k)=u1 ; y} } ,

{b(1),...,b(k)=u2 ; y2} ......,{b(1),...,b(k)=uM ; yM }

Each b(n) is a channel symbol or a sequence of bits and each y. is 

the reproduction symbol associated with the channel symbol Uj .

A training sequence of source symbols (x(1),x(2),....} is fed 

to the encoder. This encoder implements the Viterbi algorithm to 

find the best bit map given the trellis representation and the 

codebook Ck. With the output of the encoder, a decoder with a 

codebook Ck is driven. A set of approximations to the training 

sequence {x(1),x(2),...} is obtained.

The following information is therefore available
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1) A set of k length input symbols from the training sequence and 

corresponding to each k length sequence the associated k length 

sequence of reproduction symbols.

2) Also available is the sequence of bits transmitted to obtain a 

k length sequence of reproduction symbols.

This information is used to alter the codebook Ck in this 

manner. For the codebook value e Ck an update, defined as follows 

is employed.

2 V 1 5.9

This is done for all samples in the training sequence. A new 

codebook Ck is thus designed. The new codebook is then used to code 

the training sequence and using the method described above, an 

update of the new codebook obtained. This is done over and over 

again till there is little noticable difference in the codebook as a 

result of a repeat of this. This codebook is then considered to be 

"optimal".

To provide greater insight an example is given. Consider a 

trellis encoder with a constraint length k=3, which may transmit a 

zero or one at each input sample instant. The trellis diagram of an 

encoder is given in figures 5.10. Table 5. la  gives the beginning of 

a training sequence and table 5.1b1- gives an initial codebook 

employed to design a decoder for this trellis coding system. 

Following the trellis diagrams of figure 5.11 to 5.16 and the 

associated tables 5.2 to 5.7 should show the precise working of the
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10 14 9 16 13 1 16 10

Table 5.1a Beginning of training sequence.

Channel symbols 
b(n-2) b(n-1) b(n)

Reproduction symbols 
y(n)

0 0 0 1
0 0 1 4
0 1 0 7
0 1 1 9
1 0 0 10
1 0 1 12
1 1 0 14
1 1 1 IS

Table 5 .lb Initial codebook used to illustrate the 
Stewart-Linde-Gray method for establishing codebook 
values for convolutional coding.
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Figure 5.10 Example of trellis contruction used to illustrate 
Stewart-Linde-Gray method for establishing codebook 
values.

9

ss=10
cs=000
rs=l

ss= 10 
cs=001 
rs=4 
d=6

ss= 14 
cs=010 
rs=7

ss= 14 
cs=011 
rs=9 
d=6+5

ss = source symbol 
cs = channel symbol 
rs = reproduction symbol 
d = distortion or distance
the above associated with the latest node of the path in
consideration.

The full and dotted lines indicate the alternative paths in 
consideration.

Figure 5.11a-g Example of trellis coding procedure.
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ss=9
cs=100

ss=9 
cs= 10 1

+ rs=12
d=6+7+3

ss=16 
cs=0 10

ss= 16 
cs=0 11 
rs=9
d=6+7+3+7

ss=13 
cs=l 10

ss= 13 
cs= 10 1 
rs= 1
d=6+7+3+9+l

Figure 5.11a-g Example of trellis coding procedure.
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ss=l 
cs=010

ss= 1 
cs=011 
rs=9
d=6+7+3+9+1+8

ss= 16 
cs=l 10

ss= 16 
cs=l 11 
rs= 18
d=6+7+3+9+1+8+2

ss= 10 
cs=100 
rs= 10
d=6+7+3+9+1+8+2+0

ss= 10 
cs=10 1 
rs=12
d=6+7+3+9+1+8+2+2

Figure 5.11a-g Example of trellis coding procedure.



system. The dark lines and the dotted lines show the two possible 

paths to each stage.

5.6 Conclusion

No new results were presented in this chapter. Data 

compression methods refered to as scalar encoding schemes have been 

discussed. It had been presumed that the reader is well aquainted 

with the more popular schemes; PCM, DM, DPCM and run length coding. 

Therefore the desciption of these has been brief. The not so well 

known methods, tree and trellis coding, especially the latter have 

received more attention in this chapter. It is hoped that the 

contents of this chapter will enable the reader to appreciate more 

fully, what is presented in the next chapter.
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Source sequence = 10 14 9 16 13 1 16 10
Reproduction 
sequence = 1 7 12 7 12 9 14 10

Channel sequence = 1 0 1 0 1 1 0 0

Table 5.2a Source, reproduction and channel sequences

' Channel symbols 

b(n-2) b(n-l) b(n)

Reproduction

y(n)

symbols

0 0 0 1 = 1
0 0 1 (4+10)/2 = 7
0 1 0 (7+14+16 )/3 = 12 .33
0 1 1 . (9+D/2 = 5
1 0 0 (10+10 )/2 = 10
1 0 1 (12+9+13)/3 = 11.33
1 1 0 (14+16 ) /2 = 15
1 1 1 18 = 18

Table 5.2b New codebook, after a single pass of the 
sequence.

input
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CHAPTER 6 ADAPTIVE DATA COMPRESSION WITH MEMORY, 

THE SCALAR CODING APPROACH
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6 .1 Introduction

In this chapter some results of investigation into methods of 

scalar encoding are presented. As discussed in the previous 

chapter, scalar encoding techniques, offer some potential advantages 

over block coding; mostly in the direction of reduced complexity. 

In addition, scalar coding techniques are often used when coding 

delays are intolerable.

Host research in the subject of scalar encoding has resulted 

in suggestions for the improvement and analysis of multipath search 

coding (MSC) schemes. For the efficient operation of tree and

trellis coding schemes (examples of MSC) a good 'colouring' or 

'decoding' scheme is required. To design a good colouring scheme 

requires a knowledge of the statistics of the source to be coded. 

More often than not, the precise source statistics are unknown 

• apriori.

An adaptive scheme is then called for. The local statistics 

for the signal being coded are ascertained and using these, varying 

'colouring' or 'decoding' schemes are used for compression.

In this chapter some results on adaptive tree and trellis 

coding are presented. Some of the results presented are from

schemes which work in a similar manner to the MPPCD methods first 

described in chapter 3. MPPCD stands for "the Matching of Patterns 

in Previously Coded Data". Coding is done on a block by block 

basis; for each block to be coded, the statistics of a previously 

coded source with similar statistics to the present block, are used 

to design a 'colouring' scheme. The system uses a very small 

quantity of extra bandwidth to code the local statistics, as
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compared to other adaptive tree and trellis coding schemes.

The chapter is organised as follows: The results of tree 

coding by the methods of Anderson and Bodie-(1975) are presented and 

compared with those obtained by using, firstly an adaptive quantiser 

and secondly, an adaptive 'colouring' scheme. The latter is similar 

to the experiments of Wilson and Hussain-(1977). These results are 

then compared with those obtained by the approach presented here.

Adaptive trellis coding is proposed for the case when the 

'colouring' or 'decoding' scheme is based on a codebook as reported 

by Steward, Linde and Gray-(1982). Due to the magnitude of the 

transmission rate ordinarily neccessary to specify the colouring 

strategy, adaptive methods had not been previously reported in the 

literature.

In the same spirit as the rest of this work, a 'colouring' 

scheme which is specified using the statistics of previously coded 

blocks of data, is presented
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6.2 Tree coding

The binary digits which code the outcomes of a source, may be 

supposed to represent paths in a tree. Figure 6.1 shows a tree, a 

path through this tree and the binary digits representing this path. 

Tree coding involves two jobs.

The first is finding a means of 'colouring' a tree. That is, 

choosing 'reproduction' sequences or symbols to associate with paths 

or branches in the tree.

The second task is that of finding, given a 'colouring' rule, 

a strategy for choosing a path in a tree such that the resulting 

reproduction sequence matches the input sequence reasonably well.

An example of a colouring scheme is that defined by linear 

predictive analysis and of a path search strategy is the M-algorithm 

[Jelinek and Anderson-(1971)] .

6 .3 The colouring problem

Suppose a search scheme has been established for doing tree or 

trellis coding. The job to be tackled is that of appropriately 

colouring the tree or trellis. There are two reported approaches to 

the problem.

The first and the most commonly adopted approach is founded on 

linear prediction. Reproduction symbols used to colour the tree or 

trellis are derived using a linear combination of previously coded 

symbols, in conjunction with quantised versions of the error between 

an actually observed symbol and its estimate.
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Figure 6.1 A tree, showing a possible path and the bit 
sequence which code a block of data.
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Other methods, rarely reported upon, are based on 'vector 

quantisation' [Stewart, Linde and Gray-(1982)]

In this section we discuss some problems associated with 

multipath coding based on linear prediction and the attempts to 

solve these problems. The equations governing linear predictive 

coding are;
*(*) =

p

l
a{x(n — i) +  e(n) 6.1

a{x(n -i) + ?(") + &n) 6.2
i = i 
p

and m a(x(n - i) +  q(n) 6.3
i = i

where x(n) is the n-th input symbol. x(n) is the n-th reproduction 

symbol. At the receiver, x(n) will be approximated by x(n). The 

{aj } are the linear predictive filter coefficients. These will be 

refered to as the 'linear prediction parameters'. e(n) is the 

difference between the linearly predicted value for x(n), that is
p

x(n) ^  afx(/i -  Q 6.4
i = i

and x(n). q(n) is a quantised version of e(n). In linear 

predictive based multipath coding, several values of q(n) are 

considered at each stage of coding. (In single path coding only one 

value of q(n) is chosen) f(n) is the actual coding error for symbol 

x(n). In summary, the coding methodology is defined by the

following equation;
p

x(n). = { ̂  âxin - i) + q{n)} + ftw) 6 #5
/ = i

The problem in optimum linear predictive coding is to evaluate the 

coefficients {aj} so as to minimise the average mean-square-error;
AE( f(n) ). The following approximate model is used to determine the
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*

{aj} in practice.
p

*(«) = ^  atx{n -i) + q(n) 6 #6
/ = 1

where the aj are evaluated in order to minimise E(q(n)2 ) and there 

is no restriction on the values q(n) may take.

If x(n) is sufficiently close to x(n), the model of equation

6.6 suffices. It is a simple matter to find aj to minimise the 

mean-square value for q(n). With the supposition that the x(n) and 

x(n) sequences had similar statistics, this set of aj values should 

result in a small E(e(n)2) and hence E($*(n)2). In this section a 

less imprecise model for linear predictive coding is presented. The 

model described by equation 6.1 is used.
p

x(n) = ^  â in — i) -f- e(/i) 6 .7
/ = i

To find the values {aj } which give the least mean square e(n) 
sequence, we differentiate E(e(n)2 ) with respect to each aj . This 

yeilds a Wiener1-Hopf matrix equation

[ y][a] = [z] 6 .8

where Y is the auto-correlation matrix for the x(n) sequence, a is 

the vector of filter coefficients and z is the cross-correlation 

between the x(n) and x(n) sequences.

z= {E (x(n)x(n— \)),E (x(n)x(n — 2)), ...,E (x(n)x(n — P))}T
6.9

The following assumptions are made; the error sequence 

$*(n)=x(n)-x(n) is uncorrelated with x(n-k), for all k and 

E( f(n) f(n- j))=0, for all j^O. This results in a matrix equation 

identical to the "Normal equations" except for a positive factor X 

which contributes to the diagonal. That is,
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4

f o  +  x  r i  • • V 1 ' f°\ ̂ 'ri\

' i  ' • o +  x r\ • a2 r2

V 1 V  2  • • ' o  +  V \QP 1

where X is the variance of the error signal $*(n) .

6.10

The problem then, is that of estimating the variance of the 

error signal. This is not straightforward because a set of aj 

values are required for estimating the variance of the coding error 

f(n) and yet, the value of X is required in order to evaluate the 

set {aj }. Of course, the evaluation of this, may be attempted 

recursively, it is however thought that this would involve a lot of 

computation, and for real time application, is impractical.

The next approach is to make a direct estimate of the coding 

error. This may be done by estimating the rate-distortion function 

of the source. Alternatively, the filter coefficients, assuming 

zero error, may be used to make an estimate of the variance of the 

error signal f(n). The second scheme, being simpler was followed. 

It is quite straightforward, to estimate the coding error variance, 

given a set of coefficients bj , (bf are the coefficients represented 

by the model of equation 6.6)

X = cU(\-kj) / = ! 6 . 1 1

where the kj are the reflection coefficients generated as 

intermediate products in the filter coefficient computation 

process.(appendix 1) c is a constant dependent upon the 

statistical model used to describe the e(n) sequence and the number
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%

of quantisation levels used to represent q(n)
. £ « W 2)
C ~  £(<«)2) 6.12

For the work reported here, the signal is coded in blocks and the 

prediction coefficients adapted per block. A set of coefficients 

are calculated using the Burg method[Burg-1968], initially on the 

original data. The block of data to be coded, then has noise of 

the appropriate variance X added to it. Each new reflection 

coefficient calculated, in the Burg algorithm, when calculated is 

quantised for transmission.

6 .3 .1 Results and discussion

In implementing the above scheme, the estimation error signal 

is modelled as being of either a Gaussian or Laplacian distribution. 

Depending on which is used, one of a set of values u(1),...,u(L) 

obtained using a Lloyd-Max quantiser are used to approximate the 

error signal. When the Gaussian model is used for the prediction 

error signal,

L=4 implies u(l)=-1.51M and L=2 implies u(l)=-0 .798M

u(2 )=-0 .4528M u(2)=0 .798M

u(3)=0 .4528M 

u(4) = l .51M

c = 0.1175 c = 0.3634
When the Laplacian model is used for the prediction error signal,

L=4 implies u(l)=-1.81M and L=2 implies u(l)=-0 .707M

u(2 )=-0 .39M u(2)=0 .707M

u(3)=0 .39M 

u(4)=1.81M

c = 0.1765 c = 0.5
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M is an estimate of the standard deviation of the prediction error 

signal. The results are shown in table 6.1. Very satisfactory 

signal to noise ratio values are obtained, in comparison to say 

transform coding, especially where the step sizes are adapted 

regularly. As expected, the signal to noise ratio achievement 

improves with increasing the number of paths.

The results of adaptive tree coding of images are shown in 

figures 6.2 and 6.3. It may be observed that on some occasions the 

system is unable to cope with the very rapid variation in amplitude 

which occurs at feature edges. The computed step size is inadequate 

and a whole line sometimes, is badly coded. Were the step size 

larger, coding error would be poor in plane areas. This is a 

problem not observed in speech coding, where an average ’’good" step 

size enables reasonable coding of the whole of a block. What is 

therefore required is an adaptive step size computation, this 

appears to be very important for image coding. A step size 

adaptation algorithm as reported by Jayant-(1970), Cumminsky, Jayant 

and Flanagan-(1973) and Goodman and Gersho-(1974) was used. As 

before, the quantised error signal is one of L values if the 

transmission rate is log2L bits/symbol, where these values are 

chosen with a assumption that the error is of a Gaussian or 

Laplacian distribution. As mentioned before a multiplying constant 

M n , is applied to each of a set of numbers determined by the model 

for the predicted error, to generate the set of possible quantised 

error values. M n is a function of the estimated prediction error 

standard deviation. This multiplier M n is now allowed to vary at 

each sample instant. The step size variation logic is shown in the 

equation below.
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PATHS= 1 EXPONENTS 2 BUFFER LENGTH3 128 S/N= 8.52888
PATHS= 4 EXPONENT3 2 BUFFER LENGTH3 128 s/n= 11.28734
PATHS= 8 EXPONENT3 2 BUFFER LENGTH3 128 S/N= 11.55060
PATHS= 1 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 13 .59127
PATHS= 4 EXPONENT3 4 BUFFER LENGTH3 12 8 s/n= 16 .48544
PATHS= 8 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 16 .77807
PATHS= 1 EXPONENT3 8 BUFFER LENGTH3 12 8 S/N= 17 .62343
PATHS= 4 EXPONENT3 8 BUFFER LENGTH3 128 S/N= 19.27146
PATHS= 8 EXPONENT3 8 BUFFER LENGTH3 12 8 S/N= 19.67548

Table 6.1b Results of multipath tree coding of speech. A 4th 
order predictor is used and the coefficients are kept 
fixed. Syllabic companding is used for coding the 
step size. For each block of 256, a new variance 
estimate is made of the prediction error and use to 
evaluate new quantisation levels. A Gaussian model
is used for the prediction error signal.

PATHS3 1 EXPONENT3 2 BUFFER LENGTH3 12 8 S/N= 7.99171
PATHS3 4 EXPONENT3 2 BUFFER LENGTH3 128 S/N= 10.18226
PATHS3 8 EXPONENT3 2 BUFFER LENGTH3 12 8 s/n= 10 .62836
PATHS3 1 EXPONENT3 4 BUFFER LENGTH3 128 S/N= 14 .67488
PATHS3 4 EXPONENT3 4 BUFFER LENGTH3 128 S/N= 17 .20935
PATHS3 8 EXPONENT3 4 BUFFER LENGTH3 128 S/N= 17 .41278

Table 6.1c Results for multipath tree coding of speech, 
conditions are the same as those of table 6.1b except 
that Laplacian model is used for the prediction error 
signal and quantisation levels chosen accordingly.
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PATHS= 1 EXPONENT= 4 BUFFER LENGTH3 32 S/N= 10 .3 1530
PATHS= 4 EXPONENT= 4 BUFFER LENGTH3 32 s/n= 12 .28051
PATHS= 8 EXPONENT3 4 BUFFER LENGTH3 32 s/n= 12 .79777
PATHS3 4 EXPONENT3 4 BUFFER LENGTH3 64 s/n= 12 .27789
PATHS= 4 EXPONENT3 4 BUFFER LENGTH3 12 8 s/n= 12 .35737
PATHS= 1 EXPONENT3 2 BUFFER LENGTH3 128 S/N= 5 .88364
PATHS= 4 EXPONENT3 2 BUFFER LENGTH3 12 8 S/N= 7.813 16
PATHS= 8 EXPONENT3 2 BUFFER LENGTH3 128 S/N= 8.06916
PATHS= 1 EXPONENT3 8 BUFFER LENGTH3 128 s/n= 12 .52345
PATHS= 4 EXPONENT3 8 BUFFER LENGTH3 128 s/n= 14 .08971
PATHS= 8 EXPONENT3 8 BUFFER LENGTH3 12 8 s/n= 14 .56803
PATHS= 1 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 10 .31580
PATHS= 4 EXPONENT3 4 BUFFER LENGTH3 12 8 s/n= 12 .35737
PATHS= 8 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 12 .75397

Table 6.1a Results of non-adaptive multipath 
Gaussian model is used for quantising 
4th order predictor is used.

tree coding, 
residual. A
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PATHS= 1 EXPONENT3 2 BUFFER LENGTH3 12 8 S/N= 8.44675
PATHS= 4 EXPONENT3 2 BUFFER LENGTH3 128 S/N= 11.91222
PATHS= 8 EXPONENT3 2 BUFFER LENGTH3 12 8 s/n= 12 .2 8032
PATHS= 1 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 15 .222 99
PATHS= 4 EXPONENT3 4 BUFFER LENGTH3 12 8 s/n= 19.22484
PATHS= 8 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 19.93847
PATHS= 1 EXPONENT3 8 BUFFER LENGTH3 128 s/n= 21.41381
PATHS= 4 EXPONENT3 8 BUFFER LENGTH3 128 s/n= 24.716 16
PATHS= 8 EXPONENT3 8 BUFFER LENGTH3 12 8 s/n= 25.46754

Table 6.Id Results of adaptive multipath tree coding of speech.
A 4th order predictor is employed. The 1st two 
reflection coefficients quantised and coded with 8 
bits/coefficients and the 3rd and 4th with 4
bits/coefficient. The prediction coefficients and 
prediction error estimates are updated every 256 
sample periods. A Gaussian model is employed for the 
prediction error signal for exponent=2, otherwise a 
Laplacian model is used. Adaptation information 
rate=30bits/block

PATHS3 1 EXPONENT3 2 BUFFER LENGTH3 12 8 S/N= 7 .92061
PATHS3 4 EXPONENT3 2 BUFFER LENGTH3 128 S/N= 10 .77414
PATHS3 8 EXPONENT3 2 BUFFER LENGTH3 128 s/n= 11.18465
PATHS3 1 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 13 .59804
PATHS3 4 EXPONENT3 4 BUFFER LENGTH3 12 8 s/n= 17 .47357
PATHS3 8 EXPONENT3 4 BUFFER LENGTH3 128 s/n= 18.15260
PATHS3 1 EXPONENT3 8 BUFFER LENGTH3 128 s/n= 20 .23861
PATHS3 4 EXPONENT3 8 BUFFER LENGTH3 128 s/n= 23.14097
PATHS3 8 EXPONENT3 8 BUFFER LENGTH3 12 8 s/n= 23 .86367

Table 6.1e Results of speech coding using adaptive multipath 
tree coding. The coding curcumstances are the same 
as those for table 6.Id except that the prediction 
coefficients and prediction error variance values are 
updated every 512 sample periods.
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Figure

Figure

Figure

Figure

,2a AFTAB original.

.2b Step size adaptive tree coding of image AFTAB. 
Fixed 4-th order predictor used. Number of 
paths=l, Block size=128, S/N=20 .69dB.

.2c Step size adaptive tree coding of image AFTAB. 
Fixed 4-th order predictor used. Number of 
paths=4, Block size=128, S/N=22.71dB.

.2d Adaptive tree coding of image AFTAB. Adaptive 
4-th order predictor used. Number of paths=l, 
Block size=128, S/N=20 .99dB.

Adaptive tree coding of image AFTAB. Adaptive 
4-th order predictor used. Number of paths=4, 
Block size=128, S/N=22 .65dB.

Figure 6 .2e
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Figure 6.3a TELEBOX original.

Figure 6 .3b Step size adaptive tree coding of image TELEBOX.
Fixed 4-th order predictor used. Number of 
paths=l, Block size=128, S/N=17.71dB.

• Figure 6.3c Step size adaptive tree coding of image TELEBOX.
Fixed 4-th order predictor used. Number of 
paths=4, Block size=128, S/N=19.64dB.

Figure 6.3d Adaptive tree coding of image TELEBOX. Adaptive 
4-th order predictor used. Number of paths=l, 
Block size=128, S/N=16.30dB.

Figure 6.3e Adaptive tree coding of image TELEBOX. Adaptive 
4-th order predictor used. Number of paths=4, 
Block size=128, S/N=17.81dB.

Figure 6.3f GEORGE original.

Figure 6 .3g Adaptive tree coding of image GEORGE. Adaptive 
4-th order predictor used. Number of paths=l, 
Block size= 128 , S/N=13.51dB.

Figure 6 .3h Adaptive tree coding of image GEORGE. Adaptive 
4-th order predictor used. Number of paths=4, 
Block size=128, S/N=13.68dB.
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Mn=ocMn_ j  if (q(n- 1 ),q(n-2)) e {(u(l), w(l)), (m(L),h(I))}
=  ̂  Mn_ j otherwise

a =1.4 6.13
In addition to the above scheme, at the beginning of each

coded block, a new estimate of an average M is computed; this is

denoted as M 1 and used to initiate the step size adaptation scheme.

This is because it was observed that the above adaptation scheme was

liable to become unstable if left unattended. A further variation

on the above adaptation scheme was employed. This is particularly

suited to image coding, where a large step size is only required in

the region of an edge. This step size adaptation algorithm is shown

below.

Mn =<*Mn_x if (q(n- 1 \q(n -2)) e {(h(1), m(1)), (w(L),m(L))}
=  Mx otherwise

a =1.4 6.14

This results in an increase in step size at an edge when the 

step sizes being employed are too small, presumably when an edge is 

observed. When the step size is too large, presumably when one is 

no longer in a busy region, the step size is immediately returned to 

the average step size estimated for that block, instead of the 

gentle reduction implied by the above scheme. The results are shown 

in figure 6.4.

6.4 Adaptive tree coding by parameter matching

In this section, the results of an adaptive multipath tree 

coding scheme are presented. The scheme relies upon a library of 

filter coefficients evaluated from the previously coded blocks of



Figure 6 .4a AFTAB original.

Figure 6 .4b Adaptive tree coding of image AFTAB Adaptive 4-th 
order predictor used. Instantaneous step size 
adaptation used, step size increases by factor 
1.4, on slope overload, and drops instantaneously 
to default otherwise. Number of paths=l, Block 
size=128, S/N=21.82dB.

Figure 6 .5b Adaptive tree coding of image AFTAB Adaptive 4-th 
order predictor used. Instantaneous step size 
adaptation used, step size increases by factor 
1.4, on slope overload, and drops instantaneously 
to default otherwise. Number of paths=4, Block 
size=128, S/N=23 .57dB.

Figure 6 .4d TELEBOX original.

Figure 6 .4e Adaptive tree coding of image TELEBOX Adaptive 
4-th order predictor used. Instantaneous step 
size adaptation used, step size increases by 
factor 1.4, on slope overload, and drops 
instantaneously to default otherwise. Number of 
paths=l, Block size=128, S/N=17.25dB.

Figure 6 .4f Adaptive tree coding of image TELEBOX Adaptive 
4-th order predictor used. Instantaneous step 
size adaptation used, step size increases by 
factor 1.4, on slope overload, and drops 
instantaneously to default otherwise. Number of 
paths=4, Block size=128, S/N=18.86dB.

Figure 6 .4g GEORGE original.

Figure 6 .4h Adaptive tree coding of image GEORGE Adaptive 4-th 
order predictor used. Instantaneous step size



adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously 
to default otherwise. Number of paths=l, Block 
size=128, S/N=19.93dB.

Figure 6.4i Adaptive tree coding of image GEORGE Adaptive 4-th 
order predictor used. Instantaneous step size 
adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously 
to default otherwise. Number of paths=4, Block 
size=128, S/N=21.94dB.
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data. Firstly, a description of the coding system:

For a block of length N samples, P reflection coefficients are 

extracted using the Burg-Maximum Entropy method. This set of 

reflection coefficients are compared with the members of a library 

of reflection coefficients. In the computer simulation of the 

scheme, 64 sets of reflection coefficients are employed. The coding 

scheme is based upon the M-path search as described by Anderson and 

Bodie-(1975) and Wilson and Hussain-(1977) and later by Matsuyama 

and Gray- (1980).

The points requiring discussion are; the way in which the 

library is formed and the way in which a library member is chosen as 

the basis of a linear predictive system.

For a library of K parameter sets, K-2 sets are the LPC 

parameters associated with previously coded blocks. One parameter 

set consists of P zeros (reflection or prediction coefficients) and 

another, a set which represents the long term statistics of the 

source reasonably well. Each time a block, represented by a vector 

X is coded, so that an approximation vector X is obtained, the LPC 

parameters are extracted for the block X. Note that the X sequence 

is known at both the receiver and transmitter. This set of LPC 

parameters are included in the duplicate libraries maintained at 

both the transmitter and receiver. Before coding a block, the LPC 

parameters of this block are evaluated. Refer to the filter 

coefficients thus obtained as A={a1,...,ap}. Now of the K (64 say) 

library LPC parameter sets, we require to find that which allows the 

least mean square error coding of the block under consideration. 

This is undertaken by comparing the coefficients A with those B say, 

of each member of the library. The next section shows how the
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coding error is estimated.

6.4.1 The variance of the error signal 

in linear estimation based tree coding.

In this section we shall consider the options posed in the

approximation of the variance of the coding error signal.
p p

e0(n) =x(n) - ̂  b.tx(n -i) ê ri) =x(n) - ̂  btx{n - i)
i= 1 / = i

Let 0 6 . 1 5

p

where x ( n )  =

/=i
q(n) is some quantised signal which may take only one of L values. 

We attempt to identify the magnitude of the error signal f(n) 

defined as follows.

xb ^ i n  -  i )  +  q (n ) 6.16

ft/i) =  x ( n )  -  x ( n )  6 # 17

Now by the coding mechanism, q(n) is some function of e.,(n). For 

single path coding, this function Q say, defined below, is 

deterministic*

q{ri) =  Q ( e x(ri)) 6 > 1 8

For multipath coding, Q is a stochastic function.

now f(/z) =£ ,(/*) — q (n ) from 6.15, 6.16 and 6.17

=  Q i ( e l (n ))

Where Q 1 represents the possibly stochastic

6 . 1 9
(Q, $haan m ̂  (,.$) 

function 1-Q.. Thus

E( f(n)2 ) is dependent upon ECe^n)2) and the variance magnification

or reduction effect of Q r

Let K  =  E  { E(m2) ,E{e,{nY)] 6 .20

Then we have two tasks to tackle. The first is to ascertain some

constant K, a function of
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Figure 6 .5 Plot of function Q, relating e,(n) to £(n) that 
is, the quantisation function.
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m

1) the source statistical model,

2) the number of quantisation levels of the error signal and

3) the number of paths considered in the tree coding algorithm.

The second is the estimation of.E(e1(n)2). We shall consider this 

first.

r

Suppose ex(n)2 = {̂ («) - ̂  btx{n - i)}2
/-I
p

= (*(n) - ̂  b̂ xiji ~ i) -f(n- /))}2
i-i
p p

= {x(n) - ̂  btx(n - i) +  ̂  bfin -i)}2
i = i i = i

p p p

then E (ex(n)2) =E(e0(n)2) + 2 ̂  btE (eQ(n)&n - /)) + 2 j  ̂  ̂  ^  ~J))
i = i i = i j-1

By the use of the fact that e0(n) = ex(n) — ̂  bfiji — i
9  1 =  1alternative form of E(e.j(n)z)

6.21

) we write an

p p p b;bj
E (■ex(n)2) = E (■e0(n)2) +  2 ̂  btE (ex(n)ttn - /)) - ̂  “ *)K« “ 7))

i = i i=i;=i
6 .22

Let us write A, the ratio between E(e.,(n)2) and E(e0(n)2). That is

A ==  E (?i (”)2) E(e0(n)2) 6 . 2 3

Two methods of approximating A were tried, this because of the

difficulty of evaluating the quantities 
p p p

2 ^  b tE  (e0(/i)itfl -  0 )  +  ^  b f b j E  (itn -  *)it« ~ j ) )

i = i i =  l y' =  1

or 2

p

( (̂/Oit/i -  0 ) -

i = i zz
1 =  1 1 =  1

(it/i -  i)it»  - y ) )

The first relied on the expectation that this ratio would change
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slowly, as one went from block to block. The value of the previous 

block's A is used in a present block.

The second relied upon the following assumption 
p  p  p

b j E  (e 0( n ) R n  -  /)) +  ^  ^  b f i j E  (ftfl -  i ) R n  - j ) )  «  k * E  (ftn)2)

/=,'=1 6.24

where k-, is the first reflection coefficient associated with the 

sequence b1t...,bp of prediction filter coefficients. This

assumption is dictated by a combination of what might be reasonably 

approximated, k 1 and E(f(n)2 )and by the assumption that the error 

signals are uncorrelated in the following ways.

E(e0(n)ftn-i))~0 V/ V / * 0

E UXn ~ O&n ~ j )) ®  0 v ' 6 .2 5
and the effect on A of the use of a model of order greater than 1, 

may be neglected. Thus

£(e,(n)2) ~  B_TRB_ + k ^ E ^ n f  ) , , ,

R has members r4j =E(x(n-i)x(n-j) ) and B ={ 1 ,-b 1,... ,-bp }

In the alternative assumption, where the ratio A= 

resulting from the previous block is used for the present block, we 

obtain the approximation

£(e,(«)2) *  E(ea(nf)£(«i(«)2),E ( e 0( n ) 2) ’from previous block 6.27

The next task is to estimate E($*(n)2), given ECe^n)2 ). By the 

assumption that the signal e^n) is of a Gaussian or Laplacian 

distribution and that the signal is simply quantised such that the 

error signal f(n) is the resulting quantisation error, we estimate 

E(f(n)2 ). For a Gaussian source, the quantisation error variances
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♦

are v*=0 .3634 and 0.1175 for 1 and 2 bits/symbol coding. For the 

Laplacian source, the quantisation errors are v=0.5 and 0.1765 

respectively for 1 and 2bits/symbol coding. Thus for the assumption 

of equation 6 .27

E(it«)2)«  £(e„(»)2)E«V0Z) i£  (e 0( n ) 2) I from previous block 6 .28

and for the assumption of equation 6.26

£ ( itn ) 2) «  v[B_T R B _  +  k\E(m2)] = 6.29

6 .4 .2 Results and discussion

The scheme described above was implemented with various 

library sizes and used to code both speech and image data. 

Adaptation with various block sizes was investigated. For each 

block the following side information was sent. 6 bits to code the 

* step size information and 6 bits to code the library coordinate in

use. The results are given in table 6.2 and figure 6.6.

Coding with a block size of 96 in the above scheme results in 

the same bit rate as the adaptive tree coding scheme of section 6.3 

with a block size of 256. (For the method of section 6.3, 24 bits 

are transmitted per block to represent the prediction filter 

coefficients) Comparing the results of the two schemes, we observe 

that the adaptive predictor of section 6.4 gives superior results 

when single path coding is being undertaken. On other occasions the 

simpler scheme of section 6.3 performed better. This is probably 

because the values of v employed are too large for multipath coding.

When the estimation scheme of equation 6.28 is employed, 

rather dis apointing results were obtained.
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PATHS= 1 EXPONENTS 2 BUFFER LENGTH3 12 8 S/N= 9.78233
PATHS= 4 EXPONENTS 2 BUFFER LENGTH3 128 S/N= 11.16974
PATHS= 8 EXPONENT3 2 BUFFER LENGTH3 12 8 S/N= 10 .96774
PATHS= 1 EXPONENT3 4 BUFFER LENGTH3 128 S/N= 16 .67945
PATHS= 4 EXPONENT3 4 BUFFER LENGTH3 128 S/N= 18 .28475
PATHS3 8 EXPONENT3 4 BUFFER LENGTH3 128 S/N= 18.33772
PATHS= 1 EXPONENT3 8 BUFFER LENGTH3 12 8 S/N= 19.18630
PATHS3 4 EXPONENT3 8 BUFFER LENGTH3 128 S/N= 21.33475
PATHS= 8 EXPONENT3 8 BUFFER LENGTH3 128 S/N= 21.87574

Table 6.2a Results of adaptive multipath tree coding of speech.
A 8th order predictor is employed. The prediction 
parameters are extracted from the previously coded 
symbols. 64 sets of parameters extracted from the 
previously coded block are stored and sampled to find 
the best approximate set for a target block. 6 bits 
to indicate prediction coeffs and 6 bits for 
prediction error estimates are transmitted every 128 
sample periods• A Gaussian model is employed for the 
prediction error signal for exponent=2, otherwise a 
Laplacian model is used. Adaptation information 
coded with 12bits/block.

PATHS3 1 EXPONENT3 2 BUFFER LENGTH3 96 S/N= .00368
PATHS3 4 EXPONENT3 2 BUFFER LENGTH3 96 S/N= 12 .45977
PATHS3 8 EXPONENT3 2 BUFFER LENGTH3 96 S/N= 13 .08969
PATHS3 1 EXPONENT3 4 BUFFER LENGTH3 96 S/N= 16 .93618
PATHS3 4 EXPONENT3 4 BUFFER LENGTH3 96 s/n= 19.04717
PATHS3 8 EXPONENT3 4 BUFFER LENGTH3 96 S/N= 19.92685

Table 6 .2b Results of speech coding using adaptive multipath 
tree coding. The scheme is identical to that which 
generated the results of table 6.2a except that the 
filter coefficient and prediction error variance 
information is transmitted every 96 sample instants. 
Adaptation information coded with with 12bits/block
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PATHS= 1 EXPONENT* 4 BUFFER LENGTH* 96 S/N* 14 .92796
PATHS= 4 EXPONENT* 4 BUFFER LENGTH* 96 S/N* 16 .00607
PATHS= 8 EXPONENT* 4 BUFFER LENGTH* 96 S/N* 16 .67022
PATHS= 1 EXPONENT* 2 BUFFER LENGTH* 96 S/N* - .24332
PATHS= 4 EXPONENT* 2 BUFFER LENGTH* 96 S/N* 5.7 1741
PATHS= 8 EXPONENT* 2 BUFFER LENGTH* 96 S/N* 6.10713

Table 6.2c Results of adaptive multipath tree coding of speech.
A 8th order predictor is employed. The prediction 
parameters are extracted from the previously coded 
symbols. 64 sets of parameters extracted from the 
previously coded block are stored and sampled to find 
the best approximate set for a target block. 6 bits 
to indicate prediction coeffs and 6 bits for 
prediction error estimates are transmitted every 96 
sample periods. A Gaussian model is employed for the 
prediction error signal for exponent=2, otherwise a 
Laplacian model is used. Adaptation information 
coded with 12bits/block. In estimating the variance 
of the prediction error signal, the actual prediction 
error for the previously coded block, is employed.

PATHS* 1 EXPONENT* 4 BUFFER LENGTH* 12 8 S/N* 15 .77090
PATHS* 4 EXPONENT* 4 BUFFER LENGTH* 128 S/N* 18.39192
PATHS* 8 EXPONENT* 4 BUFFER LENGTH* 128 S/N* 18.60713
PATHS* 1 EXPONENT* 2 BUFFER LENGTH* 128 S/N* 8.2 1394
PATHS* 4 EXPONENT* 2 BUFFER LENGTH* 12 8 S/N* 11.97855
PATHS* 8 EXPONENT* 2 BUFFER LENGTH* 128 S/N* 12 .46636

Table 6.2d Results of adaptive multipath tree coding of speech.
A variable order predictor is employed. The
prediction parameters are extracted from the
previously coded symbols. 64 sets of parameters 
extracted from the previously coded block are stored 
and sampled to find the best approximate set for a 
target block. In addition, for each set of
prediction or reflection coefficients, the best order 
to use for prediction is ascertained. For the
example above, orders of 1 to 4 are allowed. The
order is coded with 2 bits. 6 bits to indicate 
prediction coeffs and 6 bits for prediction error 
estimates are transmitted every 128 sample periods.



A Gaussian model is employed for the prediction error 
signal for exponent=2, otherwise a Laplacian model is 
used. Adaptation information coded with 
14bits/block.



Figure 6.6a AFTAB original

Figure 6.6b Adaptive tree coding of image AFTAB Adaptive 4-th 
order predictor used. Coefficients derived from 
previously coded data. Instantaneous step size 
adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously 
to default otherwise. Number of paths=l, Block 
size=064, S/N=22.18dB.

Figure 6.6c Adaptive tree coding of image AFTAB Adaptive 4-th 
order predictor used. Coefficients derived from 
previously coded data. Instantaneous step size 
adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously 
to default otherwise. Number of paths=4, Block 
size=064, S/N=22.17dB.

Figure 6 .6d Adaptive tree coding of image AFTAB Adaptive 
variable order predictor used. Coefficients 
derived from previously coded data. Instantaneous 
step size adaptation used, step size increases by 
factor 1.4, on slope overload, and drops 
instantaneously to default otherwise. Number of 
paths=l, Block size=128, S/N=22 .52dB.

Figure 6 .6e Adaptive tree coding of image AFTAB Adaptive 
variable order predictor used. Coefficients 
derived from previously coded data. Instantaneous 
step size adaptation used, step size increases by 
factor 1.4, on slope overload, and drops 
instantaneously to default otherwise. Number of 
paths=4, Block size=128, S/N=24.41dB.

Figure 6.6f TELEBOX original.

Figure 6 .6g Adaptive tree coding of image TELEBOX. Adaptive 
variable order predictor used. Coefficients 
derived from previously coded data. Instantaneous 
set size adaptation used, step size increases by 
factor 1.4, on slope overload, and drops 
instantaneously to default otherwise. Number of 
paths=l, Block size=128, S/N=19.473dB.



Figure 6 .6h Adaptive tree coding of image TELEBOX Adaptive 
variable order predictor used. Coefficients 
derived from previously coded data. Instantaneous 
step size adaptation used, step size increases by 
factor 1 .4, on slope overload, and drops 
instantaneously to default otherwise. Number of 
paths=l, Block size=128, S/N=17.836dB.
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For the case where a variable predictor order is employed, 

signal to noise ratios very similar values to fixed order system 

were obtained, with a little improvement when a single path search 

is employed.

#

♦
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6.5 Trellis coding with a codebook

Trellis coding is an alternative to tree coding for multipath 

search coding. Most schemes for trellis coding have been very 

similar to those for tree coding and have been based on linear 

prediction. In fact, the M-path tree coding and trellis coding 

schemes are very similar, the only differences being how many paths 

are selected at each sample instant and the method by which these 

paths are selected. (The trellis structure, in general, is more 

restrictive in the paths which may be selected)

As has been stressed before, the focus of attention in this 

chapter is subject of 'colouring schemes' used in multipath search 

coding and not the way the trees or trellises are searched. In this 

direction, a relatively recent and interesting method for colouring 

will be discussed, and in this section, a method proposed for 

overcoming a disadvantage of this scheme.

This colouring scheme was proposed by R. M. Gray and results 

presented by Stewart, Gray and Linde-(1982). The basic algorithm 

was described in chapter 5, but for the purposes of a reminder, it 

will be described again very briefly.

Multipath search coding as described by the above authors 

requires a codebook described in the following manner. Suppose the 

coding rate to be used is 'm' channel symbols per source symbol. 

Also suppose the channel symbol space is of membership size C. The 

coding exponent is L=Cm. Then if a convolutional code with 

constraint length K is used, a library of CK members, results. 

A block diagram of the convolutional coder is shown in figure 6.7. 

Simply, a sequence of previous channel symbols indicates a section
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*

Encoder cypes

Decoder

Figure 6.7 Block diagram of convolutional coder
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of a codebook to search. In this portion of the codebook, there are 

only L possible values of reproduction symbol y which may be used to 

approximate y. Corresponding to each is a sequence of channel 

symbols which may be transmitted. The "best" reproduction sequence 

is selected and the corresponding channel sequence transmitted. At 

the next source sample instant, the set of channels symbols which 

had been transmitted will be employed to define which section of the 

codebook will be searched for a reproduction symbol. A positive 

feature of this coding scheme is that of low complexity in 

implementation. There are no multiplications, unlike linear 

prediction based multipath coding. The only operations are lookups 

and comparisons. The drawback of the system is the difficulty of 

defining a good codebook. This codebook is dependent upon source 

statistics and even when these are known, there is no obvious one 

pass scheme for determining the codebook values.

A practical scheme for codebook definition has been suggested 

by Linde, Stewart and Gray-(1982), which is based upon the 

quantisation axioms of Lloyd-(1982) and Max-(1962). This is a 

recursive, not a 'one pass' algorithm, with its attendant problems 

of stability and convergence. In the following paragraphs, the 

quantisation/codebook definition algorithm as suggested by the above 

authors is described and the problems encountered in the application 

of this scheme discussed. After this, a proposed adaptive version 

of the codebook based trellis coder is described.

6.5.1 Codebook definition

Suppose a codebook for a certain application were defined as 

shown in table 6.3. The constraint length k is 2, the channel
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b(n-l) b(n) c b(n) 
b(n- 1)

1 1 -1.30
2 1 .30
1 2 - .30
2 2 1.30

Table 6.3 Example of the codebook entries for a convolutional 
coder.



Figure 6.8 Positions of 2 and 3-dimensional centroids for the 
example codebook of table 6.3.
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symbol space has a cardinality of 2 and the number of channel 

symbols transmitted per source symbol is one. Then the

2-dimensional space for the source symbol pair {x(n),x(n-1)} would

have possible reproduction symbol pairs situated as shown in figure 

6.8. By considering the space formed by more source symbols, and 

the associated possible reproduction symbols, the diagram of figure 

6 .8 may be extended to higher dimensions. We may then observe that 

the coding scheme is similar to block quantisation, where we want to 

find for the large dimensional space, the set of reproduction 

vectors which will allow the coding of the source symbols with

"small" error. We may thus set about choosing this set of

reproduction vectors by the same techniques as are used in block or 

vector quantisation. The "colouring" task may therefore be tackled 

using the concepts of Max-Lloyd quantisers. Thus we present the two 

statements for quantisation; but first a few definitions

1) A centroid; granted a certain distortion measure d(x,x) such 

that for a region S ,

d?W«/(x,m)= min d?(x)rf(xj) 6.30J vyes J . .
s s

we have a centroid m, for that region.

A partition is the boundary between two disjoint regions which 

touch.

A Max-Lloyd quantiser is designed by successively finding the 

best partitions and centroids for a test signal. This procedure has 

been used to define codebooks for speech and image data. For each 

block of data, the signal was normalised with respect to its mean 

and variance. These were quantised and coded separately. The 

normalised data is then coded by the method described.
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The results are shown in table 6.4 for various coding rates, 

constraint lengths and block sizes.

A pair of codebooks were designed for image coding, using a 

data base of four images. Eight passes were employed, after which 

the codebook members had converged. The resulting codebooks shown 

in table 6 .5 were employed to code three of the images used in the 
database; AFTAB, TELEBOX and GEORGE, for a 2 bit/pixel rate. The results 

are shown in figure 6.9. As may be observed, there is significant 

improvement as the constraint length is increased. It must be 

concluded that for such a simple coding scheme, good results are 

obtained.

6 .5.2 Problems

There are two main difficulties associated with the scheme as 

it stands. The first is that the codebook construction procedure as 

described here has dubious convergence properties • Although a 

discussion of the possible reasons for nonconvergence is undertaken, 

we have felt unable to suggest a better solution. The second is 

that precise source statistics or very large quantities of typical 

source data are required for the design of this sort of

convolutional coder.

6 .6 An adaptive codebook based coder

It would seem obvious that an adaptive version of the codebook 

based coder would be suggested. The design of an adaptive coder is 

frought with problems however, the greatest of these being that of 

transmitting a new codebook or description of a new codebook. In
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Figure 6.9a AFTAB original

Figure 6.9b Trellis coding of image AFTAB with codebook.
Constraint length=2, rate=2bits/pixel, S/N=23 .42db

m
Figure 6.9c Trellis coding of image AFTAB with codebook.

Constraint length=4, rate=2bits/pixel, S/N=25.30db

Figure 6 .9d TELEBOX original

Figure 6 .9e Trellis coding of image TELEBOX with codebook.
Constraint length=2, rate=2bits/pixel, S/N=22 .92db

Figure 6.9f Trellis coding of image TELEBOX with codebook.
Constraint length=4, rate=2bits/pixel, S/N=23.99db 
Figure 6 .9g GEORGE original.

Figure 6.9g GEORGE original

Figure 6.9h Trellis coding of image GEORGE with codebook.
Constraint length=2, rate=2bits/pixel, S/N=26.46db

Figure 6.9i Trellis coding of image GEORGE with codebook.
Constraint length=4, rate=2bits/pixel, S/N=28.48db
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EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 9.31
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 s/n= 13 .43
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 13 .82
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 14 .35
EXPONENTS CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 13 .74
EXPONENTS CONSTRAINT LENGTH3 3 BLOCK SZ= 64 S/N= 14 .50
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .49
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .78
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .77
EXP0NENT=4 CONSTRAINT LENGTR= 3 BLOCK SZ= 64 S/N= 15 .54
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15.47
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N3 15 .44
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .25
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .40
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N3 15 .40
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .47
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .37
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .37
EXPONENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .54
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .42
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 s/n= 15 .54
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N3 15.57
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .42
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .42
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .61
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 s/n= 15 .51
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .41
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15.56
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .55
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ= 64 S/N= 15 .48
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ= 64 S/N= 15 .66
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ= 64 S/N= 15 .50
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ= 64 S/N= 15 .46

Table 6 .4a Results showing the learning characteristics of 
convolutional scheme as described by
Stewart-Linde-Gray, for a data file of 512 speech 
samples. Each of the S/N values above is the result 
of one pass over the data.
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EXPONENTS CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 9.56
EXPONENT-4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 14.48
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/.N- 14.70
EXPONENTS CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N* 13.76
EXPONENTS CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.03
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.55
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.26
EXPONENT-4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.36
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 14.92
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 15.90
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.94
EXPONENTS CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.40
EXPONENT-4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.11
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 16.17
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.84
EXPONENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 16.40
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.22
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.98
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.41
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.22
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.98
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.41
EXPONENT-4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 16.22
EXPONENT-4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.98
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 16.41
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.22
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 15.98
EXPONENT-4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.41
EXPONENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.22
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 15.98
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ- 64 S/N- 16.41
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 16.22
EXP0NENT=4 CONSTRAINT LENGTH- 3 BLOCK SZ= 64 S/N- 15.98

Table 6 .4b Results showing the learning characteristics of 
convolutional scheme as described by
Stewart-Linde-Gray, for a data file of 256 speech 
samples. Each of the S/N values above is the result 
of one pass over the data.
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EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 11.23
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 11.23
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 13.50
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 14.12
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 14.48
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 14.80
EXPONENTS CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 15.01
EXPONENTS CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15.10
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 15.19
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=256 S/N= 15.22
EXP0NENT=4 CONSTRAINT LENGTH= 3 BLOCK SZ=2 56 S/N= 15.30
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15.35
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15.39
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15.41
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15.45
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15.45
EXP0NENT=4 CONSTRAINT LENGTH3 3 BLOCK SZ=256 S/N= 15 .45

Table 6.4c Results showing the learning characteristics of 
convolutional scheme as described by
Stewart-Linde-Gray, for a data file of 14400 speech 
samples. Each of the S/N values above is the result 
of one pass over the data.
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*

b(n-l) b(n) c b(n) 
b(n- 1)

1 1 -2 .30
2 1 -1.-31
3 1 - .62
4 1 .24
1 2 -1.33
2 2 - .57
3 2 - .07
4 2 .47
1 3 -2 .49
2 3 - .09
3 3 .71
4 3 1.19
1 4 .21
2 4 .45
3 4 1.14
4 4 1.73

Table 6.5a Codebook used for image coding with exponent=4 and 
constraint length=2 . The codebook was learnt using a 
database of 4 images, with 8 passes of the total data 
base. The data was coded a block at a time with a 
block size of 128. Each block was normalised with 
respect to mean and variance before coding, (image 
sizes were 128 by 12 8)
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b(n-3) ,b(n-2) ,b(n-l) ,b(n) c B ( . ) ( n ) b(n-3) ,b(n-2) ,b(n-1) ,b(n) CB ( . ) ( n )

1 1 1 1 -2 .52 2 1 1 1 -2 .48
3 1 1 1 -2 .39 4 1 1 1 -2 .52
1 2 1 1 -2 .02 2 2 1 1 -2 .07
3 2 1 1 -2 .2 1 4 2 1 1 -2 .44
1 3 1 1 -2 .08 2 3 1 1 -2 .57
3 3 1 1 -2 .17 4 3 1 1 -2 .22
1 4 ' 1 1 -2 .44 2 4 1 1 -2 .60
3 4 1 1 -2 .11 4 4 1 1 -1.43
1 1 2 1 -2 .04 2 1 2 1 -1.80
3 1 2 1 -1.47 4 1 2 1 -1.50
1 2 2 1 -1.13 2 2 2 1 -1.02
3 2 2 1 -1.35 4 2 2 1 -1.28
1 3 2 1 -1.03 2 3 2 1 -1.31
3 3 2 1 -1.62 4 3 2 1 -2 .01
1 4 2 1 -1.68 2 4 2 1 -1.73
3 4 2 1 -1.33 4 4 2 1 -1.88
1 1 3 1 - 1.12 2 1 3 1 -1.33
3 1 3 1 - .45 4 1 3 1 - .45
1 2 3 1 - .23 2 2 3 1 - .48
3 2 3 1 - .30 4 2 3 1 - .29
1 3 3 1 -1.29 2 3 3 1 .06
3 3 3 1 - .51 4 3 3 1 - .18
1 4 3 1 - 1.12 2 4 3 1 - .44
3 4 3 1 - .07 4 4 3 1 .00
1 1 4 1 - .99 2 1 4 1 - .56
3 1 4 1 .12 4 1 4 1 .35
1 2 4 1 - .33 2 2 4 1 .05
3 2 4 1 .37 4 2 4 1 .80
1 3 4 1 .33 2 3 4 1 .68
3 3 4 1 .47 4 3 4 1 1.02
1 4 4 1 1.04 2 4 4 1 1.35
3 4 4 1 1.55 4 4 4 1 1.68
1 1 1 2 -2 .43 2 1 4 2 -1.98
3 1 1 2 -2.93 4 1 4 2 -2 .75
1 2 1 2 -1.79 1 2 4 2 - 1.24
3 2 1 2 -2.11 4 2 4 2 - 1.86
1 3 1 2 -1.33 2 3 4 2 -1.03
3 3 1 2 -3.03 4 3 4 2 -1.33
1 4 1 2 - .85 2 4 4 2 - .92
3 4 1 2 - .86 4 4 4 2 - .83
1 1 2 2 -1.20 2 1 2 2 -1.12
3 1 2 2 -1.12 4 1 2 2 -1.04
1 2 2 2 - .93 2 2 2 2 - .76
3 2 2 2 - .65 4 2 2 2 - .69
1 3 2 2 - .49 2 3 2 2 - .2 1
3 3 2 2 - .13 4 3 2 2 - .35
1 4 2 2 - .10 2 4 2 2 - .18
3 4 2 2 - .13 4 4 2 2 - .37
1 1 3 2 .18 2 1 3 2 - .38
3 1 3 2 - .35 4 1 3 2 - .18
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1 2 3 2
3 2 3 2
1 3 3 2
3 3 3 2
1 4 3 2
3 4 3 2
1 1 4 2
3 1 4 2
1 2 4 2
3 2 4 2
1 3 4 2
3 3 4 2
1 4 4 2
3 4 4 2
1 1 1 3
3 1 1 3
1 2 1 3
3 2 1 3
1 3 1 3
3 3 1 3
1 4 1 3
3 4 1 3
1 1 2 3
3 1 2 3
1 2 2 3
3 2 2 3
1 3 2 3
3 3 2 3
1 4 2 3
3 4 2 3
1 1 3 3
3 1 3 3
1 2 3 3
3 2 3 3
1 3 3 3
3 3 3 3
1 4 3 3
3 4 3 3
1 1 4 3
3 1 4 3
1 2 4 3
3 2 4 3
1 3 4 3
3 3 4 3
1 4 4 3
3 4 4 3
1 1 1 4
3 1 1 4
1 2 1 4
3 2 1 4
1 3 1 4
3 3 1 4
1 4 1 4
3 4 1 4
1 1 2 4

.18 2 2 3 2 • - .17

.02 4 2 3 2 .20

.14 2 3 3 2 .28

.59 4 3 3 2 .65

.39 2 4 3 2 .71

.90 4 4 3 2 .80

.26 2 1 4 2 .26

.32 4 1 4 2 .41

.48 2 2 4 2 .42

.50 4 2 4 2 1.24

.01 2 3 4 2 .99

.03 4 3 4 2 1.37

.30 2 4 4 2 1.35

.51 4 4 4 2 2 .01

.52 2 1 1 3 -2.21

.26 4 1 1 3 - .54

.44 2 2 1 3 -1.33

.41 4 2 1 3 - .31

.45 2 3 1 3 - .40

.61 4 3 1 3 - .36

.25 2 4 1 3 - .20

.37 4 4 1 3 - .32

.48 2 1 2 3 - .76

.60 4 1 2 3 - .89

.72 2 2 2 3 - .66

.21 4 2 2 3 - .15

.22 2 3 2 3 - .03

.09 4 3 2 3 .2 9

.34 2 4 2 3 .49

.44 4 4 2 3 .50

.21 2 1 3 3 .34

.07 4 1 3 3 .23

.26 2 2 3 3 .13

.21 4 2 3 3 .54

.65 2 3 3 3 .61

.77 4 3 3 3 .91

.89 2 4 3 3 .95

.25 4 4 3 3 1.37

.72 2 1 4 3 .59

.84 4 1 4 3 1.08

.16 2 2 4 3 .86

.94 4 2 4 3 1.09

.53 2 3 4 3 1.34

.33 4 3 4 3 1.66

.86 2 4 4 3 1.62

.82 4 4 4 3 2 .11

.53 2 1 1 4 .56

.5 9 4 1 1 4 .56

.65 2 2 1 4 .10

.57 4 2 1 4 .78

.13 2 3 1 4 .82

.22 4 3 1 4 .87

.36 2 4 1 4 .33

.32 4 4 1 4 .71

.33 2 1 2 4 - .2 1

1
1
1
1

-2
-2
- 1
-1

1

1

1

1
1
1
1
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3 1 2 4 1.09 4 1 2 4 1.12
1 2 2 4 - .25 2 2 2 4 - .2 8
3 2 2 4 - .07 4 2 2 4 1.19
1 3 2 4 1.16 2 3 2 4 .22
3 3 2 4 .54 4 3 2 4 1.31
1 4 2 4 1.08 2 4 2 4 1.23
3 4 2 4 1.16 4 4 2 4 1.36
1 1 3 4 1.51 2 1 3 4 1.52
3 1 3 4 .26 4 1 3 4 .49
1 2 3 4 .60 2 2 3 4 .61
3 2 3 4 .70 4 2 3 4 .75
1 3 3 4 .75 2 3 3 4 .74
3 3 3 4 .91 4 3 3 4 .98
1 4 3 4 1.45 2 4 3 4 1.57
3 4 3 4 1.63 4 4 3 4 1.77
1 1 4 4 2 .03 2 1 4 4 2 .06
3 1 4 4 1.60 4 1 4 4 1.56
1 2 4 4 1.48 2 2 4 4 1.25
3 2 4 4 1.40 4 2 4 4 1.52
1 3 4 4 1.60 2 3 4 4 1.78
3 3 4 4 1.80 4 3 4 4 1.80
1 4 4 4 2 .27 2 4 4 4 2 .31
3 4 4 4 2 .28 4 4 4 4 2 .37

t Table 6 .5b Codebook used for image coding with exponent=4 and
constraint length=4. The codebook was learnt using a 
database of 4 images, with 8 passes of the total data 
base. The data was coded a block at a time with a 
block size of 128. Each block was normalised with 
respect to mean and variance before coding, (image 
sizes were 128 by 128)



general, for efficient compression, the constraint length is large, 

resulting in a large codebook. To transmit a new codebook directly 

for each block period, would be prohibitively expensive in channel 

symbols•

What is required therefore, is an inexpensive method of 

transmitting an approximate codebook. It is proposed that this may 

be done by sending the coordinates of previously coded blocks of 

data. The members of a block of previously coded data would be 

employed to construct a codebook, which may be used to code 

subsequent blocks of data.

The coding procedure is as follows: Start with a codebook, 

designed in an ad-hoc manner. (Probably with some prior knowledge 

of the source to be coded.) This is used to code the first block of 

data. The coded data is used to construct a second codebook. For 

the second block to be coded, the better of these two codebooks is 

employed. This second block of coded data is then used to design a 

third codebook. In coding the third block of data, the better of 

the three codebooks available is employed. This process is 

continued; at each block period, the coordinate associated with a 

codebook is transmitted, along with the mean and standard-deviation 

of the block in question. A limit on the number of codebooks which 

may be maintained at any one time, is set, thus defining the number 

of bits transmitted per block period to indicate which codebook is 

to be used.

Straightforward though this scheme might be, it has two 

attendent problems. These are:

1) The Lloyd method for the construction of a codebook is 

inapplicable as it stands. This is because the previous block, from



which a codebook is to be derived had already been coded. (In a 

sense the members of this block have been quantised.) The method 

results in a sequence of codebooks which converge to the codebook 

used to code that previous block of data.

2) The problem of deciding which of the available codebooks to use. 

The first problem will be discussed first.

The codebook design task is tackled in the following manner. 

Instead of using the actual sequence of previously coded data to 

define the codebook, this is used to derive the parameters of a 

model for the source. These parameters are then employed to define 

the codebook centroids. Provided the model parameters are fairly 

insensitive to noise, the effect is to design a codebook which is 

similar to that which would have been obtained if there were no 

coding distortion. The following is a mathematical description of 

the mechanism of a codebook based convolutional coder. This 

description is required in order to pose the questions whose 

answering are required in the design of an approximate codebook, 

using previously coded data.

Suppose the coding exponent is L and the constraint length is 

k. Then there are sequences of symbols, which define the set 

of L reproduction symbols which may be used to approximate the n-th 

source outcome x(n). Let b(n-k+1),...,b(n-1) be the sequence of 

channel symbols which have just been transmitted. Refer to this as 

B(n-k+l, ,n-1) . For convenience we say B(.,,.) may take some 

(k-1)-tuple value i, say. Let p(x(n) |B(n-k+l, ,nr l)=i) be the 

probability density function for the source symbol x(n), given that 

the sequence of k-1 previous channel symbols B(n-k+l, ,n-1) is i. 

Then x(n) may take one of values [Cj(1),Cj(2),...,cj(L)]. Due to
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*

the fact that coding is done by a multipath search, it may not be 

assumed that non-overlapping regions of the x(n) space map into the 

Cj(.) values. This would have happened if simply the closest Cj(.) 

were chosen to approximate x(n), given that B(n-k+l,,n- l)=i. (This 

would happen with a single path search) Suppose we define the 

function w jm (z) such that w im(z)p(z|B(.,,.)=i) is the probability 

that the n-th source symbol x(n)=z, given that the n-th reproduction 

symbol, x(n) is Cj(m) and B(n-k+l,,n-l)=i. Properties worth 

noting are;

1) ^  */«(*) = 1 Vz, V/ 6-31
m

2) D = ̂ pUl(n-k+\,,n-l) = i) J (x(n) - cl(m))2wJ.m(̂ (n))p(x(n)|5(/z-/:+l,,//- i) =  /)
V/' m ±oo

6.32

%

where D is the total mean square coding error.

3) In single path coding, w jm(x(n))=l x(n)CSj(m), x(n)=Cj(m)

=0 elsewhere

The S j ( m )  are non-overlapping regions and U S \ ( m ) = ( - « > , « )
m

4) Dsp ~ ^  pUL(n - k + 1 ,,n- 1) = /) ^  J (x(«) - ct{m))2p{x{n)\B_{n - k +  \,,n- 1) = /) dx(«)
V/  m S(m\ r r\r\m ŝm) 6 .33

Dsp is the total mean square coding error with single path coding.

A good codebook is one which has a set of values {c j(•)} such 

that with the best choice of w j(n(x(n)), (defined by the path search) 

D is minimised. At the receipt of a set of channel symbols 

associated with the coding of a block of data, the first stage 

towards Improving the codebook, is to define a new and better set of 

centroids {Cj(m)}. The new set of centroids are

Cj(m) = J x(n)wlm(x(n)) p(x(n)\B_(n - k + \ ,n - l) = i)dx(n)
4-oo

6.34
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The problems tackled are the estimation of the probability functions 

p(x(n)|B(n-k+l,,n-l)=i) and w jm (x(n)) . p(x(n)|B(n-k+l,,n-l)=i) is 

modelled as being of a Gaussian distribution and parameterised by 

its mean and variance. The following are a list of assumptions used 

in the estimation of the c,(m) from the observed, coded data.

Assumption 1 Let {c?(m)} be a sequence of codebook entries which 

have been used to code a block of data. Let cqj (m) be new codebook 

entries, to be computed with information obtained from the 

previously coded block. If we abbreviate B(n-k+l,,n-l)=i to B=i,

E (*(n)|x(n) e U c?(m)) «  E (x(w)|*(n) e U c?(m)) = Agw say 6 .35

and E(x(/*)2|£(/i) e U c?(m)) «  E(x(n)21 x(n) e(J c?(m)) =  o-J=/ say 6 36
m  '  m  —  w

Where the left-hand-sides are the mean and variance of the 

distribution p(x(n)|B=i). Given the assumption of a certain 

distribution class, in this case Gaussian, for p(x(n)|B(.)=i), we 

may estimate cqj (m) values in the following way.

c?(m)
f+ax(n)wlm(x(n)).Tj=exp{a\ zir

1 (x(n)-jl)2 J1
S ± ^ i mtx)P(AB- =  Odx 6 .37

Assumption 2 The next task would be to estimate the function 

wjm(x(n)), we assume that a single path search had been used to code 

the blocks received. Then

x:
c?(m)

S , ( m )  x(n) j ^ exP  {  “ 5  }  d x ( n )

=  Od* 6 .38

The regions Sj(m) are estimated by insuring that the following 

holds.

J l£ =  ‘)dx =  f wlm(x)p(x\B_ = i)dA:
St(m) +oo

6.39
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6.6.1 Implementation details, results and discussion

Preliminary results have been obtained for the scheme 

described above, which shows that the use of an adaptive codebook is 

worthwhile. The following is a desciption of some implementation 

details.

To estimate a new set of centroids cqj (m), the following 

♦ integrals are required over various intervals

fS(m)xp{x\B_ =  /)d* fS{m)p{x\B_ =  i)dx

It would be prohibitively expensive computationaly to evaluate these 

during the coding process. Thus the quantities below are computed 

beforehand for several values of a(j)
<*(/) a ( j )

J xp(x\B_ = i)dx and j* p(x\B_ = i)dx
-o o  -o o

a(j) at intermediate values are determined by straight line 

interpolation.

A default or initial codebook is derived in the following 

manner. The initial codebook is based upon the Lloyd-Max quantiser 

controid values. Suppose the centroid values for a code scheme with 

exponent L, are y1 , •. •,y • Then when b(n)=j, the codebook

B(n-k+l,... ,n-l)=i and b(n)=j, are chosen to be purtabations on the 

value y. for all i. This is so for all values of i.

The purturbations are chosen in the following way: The 

reproduction symbol for the channel sequence b(n-k+1),...,b(n) is

^Kn) ^ L k~x
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where each b(n) may take a value In the set {1,. •. ,L} . These are 

equally spaced values centred at yb .

Table 6.6 shows the S/N results obtained using the initial 

codebook described above to code several blocks of speech and the 

S/N values obtained using the improved codebook computed with the 

previously coded block. In addition the S/N value obtained after 

coding the same block with an improved codebook derived using the 

method of Stewart-Linde-Gray, with one pass, are given.

The speech file SR8KK is coded with various values of codebook 

size, constraint length, exponent and adaptation block size. The 

results are shown in table 6.7, for the case when the default 

codebook is used initially and is the last member of the library of 

codebooks. These results are better than those obtained when the 

default codebook is used throughout. Table 6.8 shows the results 

obtained using an initial codebook which has been evaluated using 

the standard Stewart-Linde-Gray method on the speech file in 

question. In this case, since the default codebook is quite good 

any way, only a slight improvement is achieved by the use of an 

adaptive codebook.

6.6 Conclusion

In this chapter we present results for speech and image coding 

using multipath search techniques. The contribution of this chapter 

has been the demonstration that adaptive multipath search coding may 

be implemented with adaptation information is transmitted via 

already coded data.

In the class of coding schemes based upon linear prediction,



S/N-(l) 
12.1507 
10.82 99 
11.2953 
10 .902A 
11.5785 
11.1117 
11.1104 
11.5235 
11.3584 
11.0058 
11.7421 
11.3826 
11.6164 
11.8695 
11.02 17 
11.3755 
10 .8699 
10.9358 
11.0238 
6.1729 
11.2452 
10.7783 
11.6797 
11.8418 
11.4500

S/N-(2) 
13 .7391 
11.7936 
13 .0324 
12 .3282
12 .9307
13 .9562 
12.1001 
13 .4975 
13 .5620 
13 .6331 
13 .0570
12 .8817
13 .6870
13 .2776 
12 .86 15
14 .2512
12 .2685
13 .0643 
11.9094
6 .6601
12 .8387
13 .5197
13 .6647
14 .3443 
13 .5660

S/N-(3) 
16 .6202 
14 .5944 
16 .0910 
16 .4186 
14 .4925
14 .6887
15 .4123
16 .2536 
15 .0780
14 .6951
15 .46 16 
15 .2579 
15 .3361 
15 .0688
13 .7541 
15 .2309
14 .4546
13 .6038
14 .6060 
9.1275
15 .7679
14 .2311 
14.9442
15 .9491 
14 .7815

Table 6.6 Results of speech coding tests for adaptive trellis 
coding. The coding scheme is a convolutional coder. 
Exponent = 4
Constraint length = 3 
Coding delay = 12 8
Adaptation period = 128

Initial codebook is that described in section 6.6.1
1- st S/N value is actual S/N obtained using the 
'initial' (default) codebook.
2- nd S/N value is that obtained using the improved 
codebook derived employing the already coded data 
(distorted data)
3- rd S/N value is that obtained if improved codebook 
is obtained from already coded data (undistorted 
data) .
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Exponent Constraint length Block size Lib. size S/N
4 3 128 32 14.10
4 4 128 32 13.89
4 3 256 32 14.16
4 4 256 32 13 .67
4 3 256 16 14 .06
4 4 256 16 13 .63
2 4 256 32 8.90
2 8 256 32 7 .85

Table 6.8 S/N ratio values obtained using adaptive trellis
coding with initial codebook which is not learnt 
using speech data.

» 4 3 256 32
2 4 256 32

15 .61 
10 .32

Table 6.9 S/N ratio values obtained using adaptive trellis 
coding with initial codebook which is learnt using 
speech data.
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adaptation using previously coded data is compared with that 

described by Wilson and Hussain- (1977)• The latter proving slightly 

superior, when more than one path is employed.

For speech coding it was observed that "instantaneous" step 

size adaptation did not yield any improvements in signal to noise 

ratio. 1 For image coding however, "instantaneous" step size 

adaptation proved to be of vital importance, a simple adaptation 

scheme, an alternative to that of Jayant, Cumminsky et al., was 

introduced and proved to be more suitable.

Multipath search coding using a codebook, and not based upon 

linear prediction, was described and results presented for coding 

image and speech data using a non-adaptive version of this. An 

adaptive version of this is introduced and shown to work well, with 

adaptation providing a significant signal to noise ratio gains over 

the use of the data independent initial codebook.
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CHAPTER 7

♦

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH
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The concluding chapter is written in two broad sections. The 
first section is a summary of the contents of this thesis. It is 
however different from chapter one, in that here, a more detailed 
discussion of the results is presented.

In chapter three an approach to data compression was 
presented. As had been mentioned several times before, what was

* required was an adaptive coding strategy. The approach described in 

this thesis makes use of already coded data in its adaptation 
algorithm. This approach, although not entirely new, has been the 
focus of little research and in fact its application had been rather 

limited. In chapter three, several variations on the basic scheme 
are presented. In addition the results of the application of the 
general idea to several types of source are presented. It was shown 

that the approach yielded results which were, although inferior to
• some well known compression schemes particularly suited to some 

sources, worked well for a very wide range of data source, requiring 
very little prior knowledge of the source to be coded. It is also 

versatile in the fidelity measure which may be incorporated into the 
coding scheme.

Results were presented for the cases where some source 
properties were used to aid coding. For the case where coding of 

the speech waveform was undertaken, the approach suggested here 
yielded favourable signal to noise ratio values, compared with 
Adaptive DCT coding. It was noted though that due to fact that this 

is a waveform coding scheme, it gave subjectively inferior results 
to other more speech particular coding schemes. Thus, the idea of 
using previously coded data was used to improve the performance of
other well known speech coding schemes. These were the
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'Voiced-unvoiced' excited LPC vocoder and the 'residual' excited LPC 

vocoder. It was shown that a significant reduction in the coding 

rate for a small reduction in subjective quality may be obtained by 
transmitting LPC information at a variable rate. It was also shown 

that an improvement may be made, unfortunately not very large, by 
the exchange of excitation information bandwidth for LPC coefficient 
parameter transmission bandwidth, when appropriate.

Chapter four tackled the problem of providing some theoretical 
'bone' to the approach suggested in chapter three. Coding with the 
basic 'MPPCD' scheme is considered, which allows the rate which may 

be achieved to be written in terms of the probability of observing a 
sequence of symbols. In the case of coding with zero error, this 
may be precisely done, with no approximations. The idea of an 

elementary block size was introduced. This involved coding with 
# super letters, consisting of say n of the original source symbols; n

is the elementary block size. As n, the elementary block size, is 

allowed to tend to infinity, by the Shannon-McMillan-Brieman AEP 
theorem, the probability of observing a sequence of data, may be 
written in terms of the Shannon entropy for the source. Using the 

above information the theoretical capabilities of the basic MPPCD 
scheme for zero error coding were defined.

An interesting corollary obtained in this chapter, concerns 

the probability of observing very long sequences of symbols, from an 
ergodic source, within a certain number of outcomes of a source. It 

turns out that within a given number of outcomes of a source, L 
say, there is a critical length, k say, where for any m length 
sequence, there is almost zero probability of observing this in L 
outcomes if m>k, and almost unity probability of observing this in L
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outcomes if m<k.

A similar argument as used for the zero distortion case was 

used to obtain approximate results on the theoretical performance 

of the basic 'MPPCD' scheme for coding with a fidelity criterion. 

With the assumption of ergodicity, a theorem for the probability of 

observing a long sequence of data, with finite precision is 

presented. The use of theis in a manner similar to the use of the 

Shannon-McMillan-Brieman AEP theorem and some non-theoretical

discussion, allows the derivation of a similar result for coding 

with a fidelity criterion, as for coding with zero error.

Chapter four is an interesting chapter, for the extreme of 

thoery or lack of practical bearing in the results presented. It 

was felt nevertheless, important in that it gives a deeper 

understanding of the mechanism of the MPPCD scheme. For the author, 

working for this chapter was particularly enjoyable since it allowed 

a considerable broadening of the scope of the thesis and allowed a 

deeper understanding of the character of ergodic sources.

Chapter six dealt with adaptive 'Multipath Search Coding' as 

against block coding of data. A system for adaptive tree coding, 

based upon linear prediction was proposed. This relied upon coding 

the prediction parameters by approximating these by the parameters 

for previously coded data. Several results were presented for the 

performance of this scheme and it was shown that on some occasions, 

that is when a single path was used, this scheme performed better 

than the normal adaptive tree coding scheme.

Results were presented for speech and image coding by a 

multipath search scheme, where linear prediction is not employed. A
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codebook is used instead to colour the structure, in this case a 

trellis, which is searched to provide reproduction symbols coding a 

source. This rather simple scheme was shown to work well for both 

speech and image data. An adaptive version of this scheme was 

proposed and results presented which showed that this gave a better 

performance compared with using the default codebook. A drawback of 

the adaptive scheme however was that the attractiveness, the 

simplicity, of the original scheme was somewhat lost.

♦



Suggestions for further research

Ch3 1) A cause of inefficiency in the basic MPPCD scheme is 

the fact that a significant number of bits are wasted in coding the 

block sizes being employed. A method of reducing the transmission 

rate for this, is suggested below. It is hoped that further 

research along these lines might prove fruitful.

Recall that in the examples of section 3.3.1, where sources of 

alphabet size 4 were coded, block sizes 1,2,3&4 were considered. 2 

bits were employed to code the block size and at each 

'transmission block period' 6 bits were transmitted. (elementary 

block size=l) In striving to code the block sizes more efficiently, 

we shall consider coding in sequences of 

'transmission block periods*. For example consider the block of 64 

'transmission block periods! Separate the information indicating

the block sizes, from that indicating the coordinate in the

previously coded data where a similar block may be found. The

former forms another sequence of alphabet size 4, which may be coded 

separately. If the source is in a locally stationary mode, it is 

expected that the sequence of block size information will be highly 

redundant and thus lend itself favourably to further compression. 

By further application of the above scheme more and more redundancy 

might be removed, with the disadvantage of very large coding delay. 

Decoder complexity is also very slightly increased. It ought to be 

stressed that the effects of channel errors are likely to be more 

serious.

Ch3 2) In chapter 3, most of the proposed schemes required 

adaptive libraries. Especially important in section 3.6.2 where the
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MPPCD scheme is employed to improve the LPC vocoder performance, 

there is the problem of which library member to remove when a new 

addition is made to the library. In all the schemes implemented, 

the earliest library member was removed. It is suggested that an 

investigation into how the library may best loose an old member be 

conducted. An alternative to consider is the following. A tally is 

« kept at both the transmitter and receiver of how many times each

member of the library had been employed to code another block of 

data. The library member least used in this way is then removed 

upon the addition of a new member. A tie breaking rule, for example 

the age of a library member, may be employed in the case of equality 

in the number of times a member has been used.

Ch4 1) A very useful result to obtain with further research, 

would be bounds on the coding rate for the 'MPPCD' scheme, obtained 

* without resorting to the Asymptotic-Equipartition theorem and

without having to suppose block sizes to be infinite. This would 

give an indication of how poor or good, the scheme is when practical 

sized blocks are employed. This is still under the assumption that 

the source is ergodic.

An approach might be to evaluate the quantities

Expectation over all YL" sequences [{1 - (1 -p{YL»~')) *}-{! - (1 ~p(YL»)) * }] for each N

These being the weighting applied to the various elementary source 

symbol block lengths, in order to find the average length. The 

calculation of the above, for various values of N, would indicate 

how fast weighting converged to a delta function at some N, as the 

value 'k', the number of original source symbols which make up the 

elementary source symbol, is increased.

Ch4 2) Finding a more satisfactory proof for the theorem of
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section 4.5.1, without ergodic assumptions for the joint 

distribution between the source and the reproduction symbols, would 

be a further contribution to this research.

Ch6 1) It is suggested that further research be undertaken to 

improve the methods used to obtain prediction filter coefficients 

for linear prediction based multipath search coding.

* In section 6.4.1, attempts were made to estimate the coding error in 

linear prediction based multipath search coding, for any set of 

prediction filter coefficients B ={b1,... ,bp}. The assumption was 

made that the ratio of prediction error to the coding error, in 

variance, is the following. Since Max-Lloyd quantiser values were 

used to generate the quantised versions of the prediction error 

signal (to add to the predicted signal value to make the estimate), 

the ratio of the prediction to the coding error was taken to be the

• Max-Lloyd quantiser, quantisation error value. This is of course

dependent upon the model for the signal being quantised. In the 

cases considered, the prediction error signals were modelled as 

being Gaussian or Laplacian in distribution. The use of the

Max-Lloyd quantiser quantisation error value is perfectly valid for 

the case where a single path search is undertaken. This is because, 

the quantised prediction error values are chosen as one would choose 

the centroids in scalar coding, using centroids determined by the 

Max-Lloyd algorithms. For a multipath search however, the closest 

quantised prediction error value is not neccessarily chosen to 

approximate the quantisation error. The relation between, the 

prediction error and coding error variances are thus not those 

obtained assuming simple quantisation. It is therefore suggested 

that further research be untertaken to find the relationships 

between; the coding rate, the number of paths, the prediction filter
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order and the ratio of prediction error variance to coding error 

variance for multpath search coding.

Ch6 2) As discussed in section 6.3, the optimal prediction 

parameters for linear prediction based multi-path search coding, are 

dependent upon the coding error. An adaptive filter is suggested 

for the purpose of ascertaining the coefficients of the optimum 

prediction filter, as an alternative to directly estimating the 

coding error. The following is a description of the possible 

operation of the suggested system.

A block of data to be coded, is fed continually to an adaptive 

filter system as shown in figure 7.1. The coding process is 

simulated precisely in this system so as to generate the exact 

coding error sequence. This sequence is then fed back to alter the 

prediction filter parameters.

Ch6 3) Choosing the best of a set of codebooks for multipath 

search coding: In this section a measure of deviation between the 

best codebook for a source and a test codebook, is proposed for 

Gaussian sources. Given a certain codebook for trellis coding, the 

parameters of the Gaussian source for which this codebook is best 

suited may be estimated by feeding the decoder for this codebook 

with a long sequence of independently distributed channel symbols. 

This gives the typical sequence of reproduction symbols, {x(n)} say, 

associated with the source which would have been well coded with 

this codebook. The statistics for such a source are estimated from 

the sequence (x(n)}. Suppose the i-th codebook in the library of 

codebooks has a typical reproduction sequence with statistics set 

{Sj}, derived from its {x(n)} sequence. Then if the block to be 

coded has a statistics set {Strue}, then the best codebook of the
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stochastic)

Figure 7.1 Block diagram for linear prediction based multipath 
coder, where to establish the prediction parameters, 
adaptation of these is undertaken, using several 
passes over a given block of data. Feedback for 
adaptation is taken from the error signal e(n) .



library is that whose statistics {Sj} differ least from {Strue}. For

a Gaussian source, the statistics in question are the 

auto-correlation function values. A rate-distortion theory based 

measure of deviation is employed. We shall first evaluate for a 

given rate the distortion bound obtained as a result of the use of 

inappropriate statistics, for a one dimensional Gaussian random 

variable. The spectrum of the Gaussian source with non-independent 

letters is used to evaluate the weighted average distortion in the 

same manner as the rate-distortion function is evaluated for the 

Gaussian non-independent source. From appendix 6, it is shown that 

the resulting rate and distortion values resulting from modelling a 

Gaussian source of parameters (/itaz) by an inappropriate model of 

parameters (/t ,d2) are the following

It may be observed that when cr2= a 2 and /U=/t, the above simplify to 

the well known Gaussian rate-distortion function.

Note that <r2>d* and cr2>d*. For the case where fx=/u=01 this being of 

particular interest to us,

and R ( d ' )  <. — !•((!- —  HI- -1 + In — }

Suppose the source has non-independent outcomes so that the rate 

distortion bound may only be approached by coding separately, the 

sequence associated with each spectral component resulting from the
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*

KLT of large blocks of Che data, (see Gallagher-(1968) , p482) Then 

the coding scheme, assuming statistics (cr2(£u)), the variance for 

each frequency or eigenvalue (associated with each eigenfunction), 

will allocate R(cu) bits for each harmonic <u, such that

J  J?(«)dw =  J?total

t'i

Suppose we have a finite number of frequencies, so that

V <i>j
and R ’(wj) has been computed, given the power spectral density cr2(a>j), 

determined from the library codebook of interest. The parameter 

value d* which results in the appropriate rate R' (coj) is evaluated. 

This is substituted into equation 6.4, giving the distortion 

D(a>j,d*) . The summation of this quantity over all the frequencies 

gives an estimation of the total coding distortion and is a measure 

of the deviation between two Gaussian sources.

To evaluate d* such that R(d*) as defined in eq. 6.5 is 

R'(a>), the following iteration is used. A point to note beforehand, 

is that the function R(d*) is monotonically decreasing with d*/cr2, 

for all d*/o2<l, moreover it is convex. A Newton algorithm is 

consequently guaranteed to solve the equation

R  (w) +  ~  {(1 — x ) c  +  In x } = 0

where x  =  ^— and c =  1 — —«2 «■>cr <r
The following is the iteration algorithm,

=  .r„[l - c - 2 R  - l n . r j  
'X"+ 1 1 — c x n

An initial value for x should be as small as possible. (To reduce 

the computational requirement, the log function may be replaced by a
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piecewise approximation. For x taking values from 1/16384 to 1, in 

steps of 1/16384. This requires a 214 sized lookup table.)

9

»
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A 1•1 The Levinson-Durbin and the Burg Maximum entropy 

methods for system parameter estimation

The system identification problem is that of finding the 

parameters of a given model such that the parameters best suit a 

certain stochastic source. An often used model is the 

AUTOREGRESSIVE (AR) model. An AR source is characterised as 

follows. Suppose a source generates outcomes x(n) at some instant n 

then
*(*) =

/ = i

r

1
atx(n — i) +  e(n) APE 1.1

The model parameters {aj} are evaluated such that the variance of 

the error sequence (e(n)} is minimised.
p

Let E (e(n)2) =  E ({x(n) - ̂  - /)}2)
/-I

p p
=  E (x{n)2) - 2 OjE (x(rt)x(n - /)) +  ̂  ̂  a^E (x(n - i)x(n -j))

/ = i / = i j-\ APE 1.2

The coefficients {aj } are evaluated by differentiating the 

quantities of APE1.2 with respect to each ak and setting the result 

to zero.

dE(e(n)2)
da,. I -

—2E(x(n)x(n — k)) + 2 / a(E(x(n — i)x{n — k))
/ = i APE 1.3

lefering to E((n-i)(n-k)) as r(|i-k|) one obtains 
(A 0) .. r(p-\)\ /a\\ /KD\

/ p

APE 1.4

• ip 1) ••• K0)
The solution of the above gives the {ak} values. Solution of this 

normally takes 0(P3)operations. The Levinson-Durbin method employs

0(P2) operations and is as follows. Let
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m

the set of numbers {a^ ,... ,akk } solve the equation APE1.4 

k-th order case. Then
r r{ 0) '  a i . i '

---
---

---
---

---
--■

>
>i j

^ r ( k -  1)  . K  0) . ' ■ ( * > .
Thus neglecting the bottom row,
' *0)

f---
/■—N<Ni r ak,\ *  i) 'Kk-iy

; = akk

r̂ik-2) . . >i 0) . . °k,k-1 j .fik- 1) . * u  .

for the

APE 1.5

APE 1.6

Thus by multiplying both sides by the inverse of the above matrix,

r aJt.i'

r----
7<3v____
r nak-\.k-\

= akk

. ak.k~\ , w ak-\.k-\ ̂ < Gk-l.l -

APE 1.7

akk is called the k-th reflection coefficient and may refered to

here as R,. .

These reflection coefficients turn out to be important 

parameters for signal processing. APE1.4 may be expanded as 

follows.

APE 1.8

' r{0) • r----------

' -l '
ak. 1

=

r —F 7ck

0

w r{k) . . r{ 0) . °kk . e--
--

*-

A top row way be created such that APE1.8 is obtained, where E k is 

the variance of the prediction error signal e(n) for a k-th order 

model. Now from APE1.7 it may ascertained that

__
_J

f--TV____ --
>

O

__
__

>

ak,\ ak-l,\ ak-\,k-\
= akk

ak.k-\ iT ak-1,!
. akk ,

—
> 

o__
j w - 1  -

APE 1.9
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*

Also from APE1.8 it may be observed that by the multiplication of 

each side of APE1.9 by the k-th dimensional autocorrelation matrix, 

the following is obtained,

where

r----
i r ---T1v ___ r —RDk-1

0 = 0 akk 0

r \ __
_

 ̂~Bk-\ , t--
-- 1 *•

B k =  r ( k  +  1)

K

~Yjaki‘’k , vn- • / ukir(lc +  1 -/)
/ = i

APE 1.10

APE 1.11

Thus
B k_ ,

akk ~ Rk Ek_{ APE 1.12

and Ek =  (1 -a\k)Ek-\

This concludes the Levinson-Durbin algorithm.

APE 1.13
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A1.2 The Burg Maximum Entropy method

This employs the relationship of equation APE1.7 for 

evaluating the k-th order prediction coefficients from those of the 

(k-l)-th order coeficients. Unlike the Levinson-Durbin method 

however, no prior knowledge of the auto-correlation function is 

required. Processing is undertaken directly upon the outcomes of 

the source to parameterised.

Suppose f . ( r i \ = x ( r i \  — }  a .  x ( n  — i) APE 1.14fk(n) =x(n) - ̂  akix{n - i)
/ = i

k
bk(n) =x(n — k) — ̂  akjx(n — k + i) APE 1.15

/=i
where fk(n) and bk(n) are respectively the forward and backward 

prediction error for the k-th order model at instant n. Now using 

APE1.7 , it may be shown that

/*(») =fk-\(n)~akkbk-i(n- o
bk(n) = b k_l( n -  \)~ akJk-\(")

APE 1.16

In the Burg method, akk is evaluated so as to minimise 

J^(fk(n) +bk(n) ). The data- outside the block of concern is assumed
n=-«>
to be zero.

Now
dakk

CO

îfk(n)2 + bk(n)2) =  - ̂{{fk-iin)- akkbk_{(n- 1)
— OO + 0 0

+ {bk_x(n - 1) - akkfk_x(n) }/*_,(/*))
APE 1.17

Setting this to zero gives.

T  2/*-,(«)*>*-,<"- l)2 +/*-,W2} =  0
+ 00 + 00 APE 1.18

Thus

akk l̂±0Jk-M)bk-M)
S + oo{^-|(W _ 1 ) +A-|(") )

APE 1.19
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Hence for each order, akk =Rk is evaluated by passing over the data 

with the prediction filter, forward and backward, to obtain fk-1 (n) 

and bk 1 (n). These are then used to evaluate akk . Use of this in 

equation APE1.7 allows the algorithm to proceed.
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A brief description of the Human speech 

generation and hearing systems

The speech generator may be considered to be a very 

sophisticated wind instrument. The wind source is air from the 

lungs. The ingenuity of the speech generator is demonstrated by the 

variety of sounds which may be generated. The large variety of 

sounds achievable by the vocal generator, is attributable to the 

different ways in which the steady air flow from the lungs are 

converted into audible vibration. The conversion into audible 

vibration is done by the introduction of a constriction in the path 

of the steady flow of air from the lungs. Each sound which may be 

generated in the production of speech is called a phoneme. The 

phonemes are classified according to how the audible vibration is 

generated.

Voiced sounds. For the generation of these, the air flow from 

the lungs are converted into audible vibration in the vocal chords. 

The position of this is shown in figure APD2.1. The vocal chords 

are mascular tissue attached to the inside of the larynx. The 

larynx is a cartilageneous box open at the top and the bottom; the 

larynx is situated at the top of the trachea. The region between 

the vocal chords is called the glottis. In breathing the vocal 

chords are kept open allowing the free passage of air. During the 

generation of a voiced phoneme, the vocal chords vibrate. It is 

supposed that the vibration is not under direct nerve action, 

however the tension associated with the attachment of the chords to 

the larynx and the effective mass of these is under direct mascular 

control. This allows a large variation in the frequency at which 

the vocal chords may vibrate. For men the pitch or frequency of
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Figure APD2.1 Block diagram of the human speech generation apparatus.
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vibration during speech is around 150Hz and for women around 250Hz. 

For little children the pitch may be as high as 400 Hz. (For women 

and children, the vocal chords tend to be shorter and thinner) The 

operation of the vocal chords is excellently described in a 

non-technical manner by Pierce and David-(1958) in chapter 4 of 

their book.

Unvoiced fricatives. The excitation for these is generated 

as follows. The vocal chords are kept open, and a constriction is 

formed at some point in the vocal tract. This causes turbulence and 

a noise like sound is made. For example to produce the "f" sound, a 

constriction is created at the lips, to produce the sound "0", a 

constriction is created at the roof of the mouth, just behind the 

top front teeth, by the tongue.

Plosives, The vibration for these is generated by completely 
closing the vocal tract at some point for a short while. This 
allows air pressure to build up behind the point of closure. Upon 
the sudden release of this pressure, a plosive sound is made.

Combinations of the above three form the excitation for most 

of the phonemes. Other interesting sounds made are for example the 

vibration of the tongue in the manner of the vocal chords but at the 

rate of about 30Hz in the production of the rolled "r". The 

generation of the almost pure tone by whistling when producing an 

"s". An interesting point to note is that the vocal chords are not 

used when whispering. Whispering relies on the faint white noise 

generated when one allow the free passage of air from the lungs.

The second contributant to the sound generated in speech, is 

the colouring due to the vocal tract. Sections of the vocal tract
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may be modelled as concatenated tubes of different topologies, that 

is different lengths, cross-sectional areas etc. Depending on the 

shape and sizes of these tubes, resonances are induced which colour 

the primary auditory vibration generated by combinations of the 

methods mentioned above. Thus dependent upon how the bucal cavity 

is shaped, the nasal cavity is shaped and where the epiglottis and 

velum are positioned, in addition to the types of primary excitation 

used, a large ensemble of sounds may be produced. Table APT2.1 

shows the phonemes of the British English language and how these are 

classified.

The hearing apparatus is an even more complicated device. 

Figure APD2 .2a shows, in rough detail, the anatomy of the ear. The 

pinna, the ear drum and the oscicles combine to form a filter, a 

mechanical impedance matching device and a companding device. These 

serve to present sound in an appropriate manner for the inner ear. 

The inner ear contains the cochlea. This is the transducer for 

converting mechanical information to nervous information, as well as 

doing some preprocessing so that information is in an appropriate 

state for the brain to analyse. The cochlea is of great interest 

because it might allow us to say which information is lost in going 

from the mechanical signal to the signal which goes to the brain. 

We may thus neglect this information in coding.

A simplified drawing of a longitudinal section of an uncoiled 

cochlea is shown in figure APD2.2b. The cross-section is shown in 

figure APD2.2c. The important features of the cochlea are the

basilar membrane and the organ of corti. The basilar membrane

tapers as one goes from the basal end to the apical end of the

cochlea. It vibrates in response to excitation from the oval
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P h o n e m e C la s s E x a m p le

Ib l V o ic e d  p lo s iv e s bat
Id l dog

/g / g e t

Ip l V o ic e le s s  p lo s iv e s pig
/ t / fell
Ik l * ic k

Im l N a sa ls m an
Inf null

h i sin g

M G lides well
It 1 ran
m le t

HI you

Ih l V o ic e le s s  f r ic a tiv e s hat
1(1 f ix
lei th ick
1st sat

/ / / sh ip

Iv l V o ic e d  f r ic a tiv e s van
Ib l th is
Iz l zoo
h i a z u re

f d j f A ffrica te s yoke
/ t / / chew

IU F ro n t  v o w e ls seat
hi b it
I t l head
h i h a t

h i B a c k  v o w e ls c a rt
h i ro d
h i co rd
M w ou ld
h i ru d e

h i M iddle v o w e ls d irt
h i h u t
h i th e

Table APT2 .1 Phonemes of British English
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OUTER EAR MEDDLE EAR INNER EAR

Cochlear nerve

Cochlea

Oval window 
Round window 
Eardrum 
Ear cannal

Figure APD2.2a Block diagram of human hearing apparatus.

Scala vestibuli 
Cochlear partition

Helicotrema 
Scala tympani

Figure APD2 .2b Block diagram of unfolded cochlea.

Scala vestibuli Reissner's membrane

Tectorial membrane 
Outer hair cells

Arch of Corti 
Basilar membrane

Spiral ganglion

Figure APD2.2c Block diagram of cross-section of cochlea.
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window, so that depending upon the frequency of the oscillation, the 

position on the membrane where the maximum amplitude of vibration 

occurs, varies. The basilar membrane therefore, performs some 

spectral analysis. The signal observed at each point on the 

membrane is a band-pass filtered version of the signal supplied at 

the oval window with a roughly constant Q along the length of the 

membrane. A rough drawing of the characterisics is given in figure 

APT52.3. The oscillation at any particular point of the basilar 

membrane causes the hairs of the sensory cells of the organ of corti 

to bend. This causes nerve impulses to be sent by the nerve cells 

to which the particular hairs are attached. The frequency of the 

firing of the nerve cells is dependent upon the quantity of bending 

of the associated hairs. Limitations on the frequency at which 

nerve cells may fire (approximately 4kHz as reported by Rose et 

al.-(1968)) give an indication of the ability of the ear to 

distinguish phase at high frequencies. There is some dispute about 

the band pass characteristics at different points on the basilar 

membrane. There is also some suggestion that the hairs of the organ 

of corti aid the frequency discrimination abilities of the hearing 

process. Investigation of sensitivity to phase has shown that the 

human ear is sensitive to phase at low frequencies, probably up to 1 

or 2kHz. At higher frequencies, the ear is reportedly insensitive 

to phase. Recently it has been reported that sensitivity to phase 

at higher frequencies have been observed. The perception of phase 

occurred though only when the signal is noiselike and not of a 

simple harmonic structure. Thus these experiments were conducted 

using signals with a Gaussian spectrum with a centre frequency is 

the frequency of interest. It is not certain though, if this result 

was due to the perception of phase differences in lower frequency



» THE AUDITORY SYSTEM

Approximate distance from stapes (mm) 

30 28 26 23 18 m

Frequency (Hz)

Figure APD2.3 Relative response of various points along 
the basilar membrane as a function of 
stimulus frequency
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intermodulation products which result from non-linearities in the 

signal path in the ear.



APPENDIX 3



The Ergodic theorem

A3.1 Definition of ergodicity

Consider a set ft, with a measure P defined upon this. Let w 

be a member of the set ft. Consider a transformation T which

operates on members of the set ft eg

u2 =  T<*\ APE 3.1

where ojy , o>2 are members of the set ft . This transformation may

also be defined on a subset of ft as follows.

{co4,oj3} =  r{cDp«2} APE 3.2

This transformation must have the following properties:

1) C fl

2) If 7 is the Borel field of subsets of ft , with members B s , then 

if BjC.fi then T _1 Bs€ft

The transformation is called measure preserving if the measure of 

the set Bj is equal to the measure of the set T_1 Bj. That is

|  d/’Cw) =  |  d/Hw) V  B ,  APE 3.3
VveB, VweT-'fl,

Ergodicity is the study of one class of measure preserving

transformations or the study of the ordit of a class of measure

preserving transformations. The orbit of a transformation is:
2 »p 3 ip  4 co, / co, 1 co, T co, ....

We shall give an example of a non-measure preserving transformation 

and an example of a measure preserving transformation, then the 

definition of an ergodic transformation or an ergodic source.
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*

Example Let ft = [0,1]. Let T=l/2 so that for a> € ft , T =a>/2 . Let the 
measure P be the standard integral measure, then the measure for the 

set
b

APE 3.4

and the measure for the set T"1

V w T  we(a,b)

(a,b) is 
2b

= Jdo> =  2(b — a)
2a

APE 3.5

This is therefore not a measure preserving transformation. A 
portion of the orbit is

i 1 1  i’ 2’ 4’ 8...
(In statistical terms this is a sequence from a non-stationary 
source)

Example Let «=(0,1) and let T=2modl so that for all o>€ft,

Toj=2(*> mod 1. eg. 6l> = 1/4 implies Th>=l/2 , o>=3/4 implies

Tfct>=6/4 mod 1=1/2. Let the measure P be the standard integral

measure. Then the measure of the set (a,b) is
b

J
doo= b — a APE 3.6

The measure of the set T 1(a,b) is

u: Tue{a,b)

b-a , (£+l)-(fl+l) 
2 2

=b — a APE 3.7

This is a measure preserving transformation.

An ergodic source is a source whose output is the orbit of a 
measure preserving transformation with the following properties.
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*

Let ft be the outcome set of a source. Let S £ ft, then if S is 

invariant under transformation, then S has measure 0 or 1. That is

If S = TS then 1 d“
weS

or 0, where
V w eSl

APE 3.8

In other words all subsets of ft which will occur all the time, once 

an experiment has started, have measure 0 or 1. Measure 1 implies S 

is different from ft only on a set of zero measure. This concludes 

the definition.

A3.2 The ergodic theorem AT3.1

For any function f(a>) which is L1 measurable, so that

/(a>)d P (a>) = /  APE 3 .91-
the time average converges to f if the transformation T (coordinate 

shift for a statistical source) or source is ergodic
N -\

That is lim -J- > /(T'«) = /N —* oo N
/-0 N -\

We shall refer to —  \ /(r'w) as ANf{co) or ANfN  /  ii-0

The proof given here is due to G.D.Birhoff and F .Reisz in 1945. It 

is called the proof of the INDIVIDUAL ERGODIC THEOREM. An 

alternative way of stating the theorem is that
N - 1

^/(7',u)“7|dJ,(w) =  o APE 3.10
i-0

Proof This relies on showing that the following are true.

1) The quantities 

except for a set of

N - 1

J f Z / ( r '“ ')
i —0

to values of zero measure.
converge to g for all
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2 ) 1| S ll 1 <J\ f (w ) | dP (<*>)
then |g| is finite

meaning that if f ( i t  is L, measurable)

3) Jgd/>(w)=J/(w)dP(w) and hence 

g = J/(u)di>(a>) = / APE 3.11

The proof of the first point makes up the bulk of the proof of the 

ergodic theorem. The proof of this requires the statement and proof 

a distinguished theorem, entitled the Maximal Ergodic Theorem.

Point 1

♦

In going through the proof of point 1, we shall first state 

and apply the Maximal Ergodic theorem. The proof of which will be 

given later.

The maximal ergodic theorem:

ANf(»)  =  ^  X f ( T ‘a) APE 3.12
/- o

For every construct the sequence

f(<w), A 2f(«0, A3f(a>),....ANf(o>),....

Let the supremum of this sequence be

supM £ 1

for a given Find the subspace S(A) of £2 defined such that for 

all to which belong to S

sup > \M £ 1 APE 3.13

The Maximal Ergodic Theorem says that for each A

XP(S(X)) <, y(w)d P (oj) 
S (X)

APE 3.14
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*

Now we shall use this to show that

Jim ANf ( cu) = g APE 3.15
/V  - * 0 0

This is done by showing that the set of all co for which 

{lim sup/^/(u) > 6} and {liminfANf{u>) ^ a)
n — oo n — co

has zero measure for any b>a

Let Aab = {a>: lim sup A ̂/(w) > b p) lim inf/̂ /(co) <> a}
n — co  n — co APE 3.16

Next it is required to show that the set A ab is shift invariant. 

That is if <*>€ Aab then T6u£Aab . Suppose that M is finite and there 

exites an N>M such that

then

Thus as N —•*00

iV — 1
4v/(«) =  i  y  f ( T ‘a) > b

/- 0
N - \

i ( {y/(r'(rM))} + {/(o,)-/(r% } )  s b 
/- 0

APE 3.17

N - 1

i  Y / t n r u ) )  s b
/- 0

APE 3.18

Suppose that M is finite and there exits some k>M such that
k - \

A J ( o > ) 4 Y / ( r . ) a  

/- 0 
*-l

4 ( { / / < r '(r ">>) + !/M-/(r*u)}) s a ape 3 .1 9
/- 0

Thus as k 00

Thus

Jt-i
£ Y / X n r u ) )  <; a

1-1
APE 3.20

Now by the definition of ergodicity this set should have measure 0
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or 1 , since for an ergodic source any shift invariant set should 
have a measure 0 or 1. Next we show the conditions on a,b under 

which the measure P(Aab ) is zero or one. We make use of the Maximal 
Ergodic theorem. Recall that for S(A), the set of all such that

sup ANf(u>) ^ X
N

XP(S(\)) < j*/(w)dP («) APE 3.21

Now if the function f(co) is replaced by the function f (&>) .1B (o>) 
where IB(.) is the indicator function for any set B. That is IB (co) 

is one for all co£B and zero elsewhere.

Then XP(S(X) Q  *) ^ J f(u )d P (u ) APE 3.22
b n

Now let B be the set Aab just considered. We know that if o>£Aab‘, 

that is

oj: {lim sup/^/(w) >  b) O  {liminfANf(<o) <> a}, n — co n — co

then co belongs to the set such that
sup AMf ( oj) > i  or 5(6) 

m £ 1

Thus Aab C 5 (6) and 5 (X) Q  Aab =  Aab 

Hence bP(Aab) ^ j*/(w)d P (co)
âb

Consider now relpacing the function f(cu) by-f(cu) and define A ab as 
follows. Let g(o>)=-f(co)

Aab== I " 1 limsup^yy^oj) >  (-a )  lim inf/lvg(aj) ^  (-6 )}
n — oo n — co

APE 3.23
Thus Aab is axactly the same as before and

-aP (AJ  S
1

4
or aP(Aab) ^ /(w)d P (w)

Thus aP(Aab) > bP(Aab) APE 3 .24
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but of course b>a, thus the above statement is a contradiction, 

unless P(Aab )=0.
This concludes the proof that

;V-I

Z / ( r '“ ) - ?/- 0
and g is an invariant function of w. The next steps involve showing 
that g=f. These are quite straightforward.

*
Point 2

/v-i iV—i

111,1 = 2 /(r'“)"= J a-1™  1 2 /(r'“)ldp(“)o 1-0 APE 3.25
By interchanging the integral and the absolute operators, we get;

N - 1

!f||, 2 A  jl/(7-'«)|d/*(«) APE 3.26
/- o

By the measure invariance of the transformation we have,
N-l

\gh ^ ,im v  yn  —* o o  N l_j !!/(<■>) II, - ll/MII = J ll/(«) II d P (a>)
/•- 0 APE 3.27

By the L 1 measurability of the function f(o>) therefore, we conclude 
thatjlgl̂ is finite.

Point 3

It is required lastly that g =  /MdP(o,)/

Now
/V — 1

g =  lim i  >  / ( r '« )iV —* oo N l_ji-0
APE 3.28

Thus
N - 1

g = j*gdP(w) = ^  J/(7,,w)di> (o>)
i—O

- J/(«)d P { u )

=/ APE 3.29
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This concludes the proof

A3.3 The Maximal Ergodie theorem AT3.2
N —\

Let A„ f(a ) = j  Yrtr'u)
/- 0

For every io construct the sequence

/(<*>). A2f ( a ), Ayfip), Ajf(w), AJ{<a),

Let the maximum of this sequence be

sup AMf{a )
M ̂  1

for a given co. Find the subspace S(A) of Q such that for all 
o>€S(A)

sup AMf { 03) > X
m ̂  1

The Maximal Ergodic theorem says that for every A

\P{S(X)) <. j /(«)dP(«)
S(\)

APE 3.30

APE 3.31

Proof For any A we can rewrite,
M-\

as sup -y /  f ( T ko)) > X 
M £ 1 M

k - 0
M - \

APE 3.32

APE 3.34

or SUP TT / [/'(7’/cco) — X] > 0 APE 3.33
M £ i M

k - 0

replace f(o>)-A by g(a>). Then it suffices to show that for all 
functions g(a>)=(f (a>)-A), if S(A) is defined thus

M - \

S{\) = {w: sup - j  )  g{Tk(i)) ^ 0}

k ” 0
then the following is true.

XP(S(X)) < I /(«)d/>(«)
S(\)

XP(S(X)) £ [[*(«) + X]d/>(«)
S(X)

APE 3.35

APE 3.36
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thus 0 < J g(w)dP(co) APE 3.37
S(\)

Now we may set about proving this alternative restatement of the 
theorem.

At this point we have to introduce the idea of m-leaders. 
Suppose x1 ,x2 ,x3 ,.... ,xn is a sequence of real numbers and m<n, then 

the member x̂  is an m leader if either of these quantities is 

non-negative.

X k ’ x k ** +  l ’ x k x k  +  \ X k +  2 » • •' ’ X k X k +  \ X k + m - 1

That is if there exists a p<m such that
p- 1

2 ^*1+, ^ °
i-0

then x is an m-leader. Alternatively x. is an m-leader if

APE 3.38

p-i

sup
I <.P

xk+i ^  0 APE 3.39
/- 0

A3 .3 .1 Lemma AT3 .3

The sum of all m-leaders is non-negative.

Proof Consider a sequence xu+1 ,xu+2 ,... Let xa be the first

m-leader in this sequence. Let xa,xa+1 ,...,xa+p_1 be the shortest 
m-leader sequence such that xa+xa+1+.. .x^^ is non-negative. p<m. 
Then every member of xa+j_,,i=l to p of this sequence is an m-leader. 

This is because if xa+j+xa+j+1+.. .+xa+p_, is negative, then
xa+xa+, +.. .+xa+j_, would be positive and hence xa+xa+1+.. .-HXg+j., would 

be a shorter series which is non-negative. This contradicts the 

original premise. Thus x a+j +xa+j+1 + .. ,+xa+p_1 
hence xa+j is an m-leader.

is non-negative and
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Now what we have seen so far is that for xa, the first
m-leader, if we construct the shortest sequence xa »xa+l » • • • >xa + p-l
such that the sum of this is nonrnegative, then all the members of 
this sequence are m-leaders. This defines our first p m-leaders, 
note that their sum is non-negative. Now consider the sequence 
xp,xp+1 starting form p, once again, looking for the first 
m-leader and the shortest sequence that it leads, with a 

non-negative sum will define the next few m-leaders, once again the 

sum of all these will be non-negative and so on. This concludes the 
proof for the lemma.

Recall that we require to show that if

then

M- 1

S =  {co: sup / g (T kw) > 0} 
M > 1 Z-J

k ~  0

o <; J g(<*>)d p (w)

We shall consider initially, the subset
p~ i

Sm = (w: SUp V  g {T k(j}) > 0}I £p£M L u  
k —0

Now if cj is such that
p-\

sup y  g (T ko>) > 0
1 <.p^M L-J 

k —0

APE 3.40

APE 3.41

APE 3.42

APE 3.43

then oj is such that there exist at least one Apg(cu) which is 
non-zero, in other words g(o>) is an m-leader.

Thus Sm is the set of all u) such that g(co) are m-leaders. 

Note that the set Sm is an increasing set with m so that P(Sm), the 
measure of Sm increases monotonically with Sm • Thus

converges t0 J d̂ Ca;) APE 3.44
s

We shall use the fact that the sum of all m-leaders, for any m,
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*

♦

9

including im=co, is positive to show that

J gMdP (co) > 0

Let be the sum of the m- leaders in a sequence
f(a>) ,f (To>) ,f (T1 co)  , . . . ,f (Tn_1 c o )  .  Let I,, ( co)  be the indicator
function for SM .  That is Is (cu)=1 for

TV —1

co SM and zero otherwise

Tu ~ )  g (T kw)IS" (T l‘a) APE 3.46
k-0

Now we know that Tm is positive. Integrating both sides of the
above equation takes us close to the conclusion of the proof

N-1

f T u d P ( a ) = ̂  |/(T‘a,)/s>((r*a))dP(a,)
k-0

APE 3.47

This gives
iV — 1

k ” 0

Let the set SM be the set of all co for which f(cu) is
N - \then II Y j/(«)d/>(«)
*-0 5m

APE 3 .48 

an Mr leader

APE 3.49

Now 1 M
N

N - 1

■ - Z J  /(«)dP(«) £ 0
*-05u

and j* /(w)dP(oj) > 0

This concludes the proof, since we can allow M to go to co .

APE 3.50

The proof given here is a combination of the proofs as given 

by Billingsley and Halmos (Billingsley- (1965) pp 24-2 9 and 
Halmos- (1956) pp 18-21)
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APPENDIX 4

♦

♦



A4.1 The theorem for the convergence of
conditional expectation or probability

First we shall give the underlying definitions

A statistical source is defined by the following three items.
1) The sample set or space. This set £2 is the set of all
possible values that a single random variable may take. £2

need not be a finite or countable set.

2) The sigma field of unions of subsets of Q. For example
if a set has a cardinality 3 say, with members a)2 and
o>3, the sigma field 2P has the following members;

0; o>,; w2 ; u>3; w, cu2 ; w, |J u3 ; w2 |J u3; w, (J «2 (J w3

This field contains the null set <t>, the whole set £2 and all

possible unions of all subsets of Q. In general for a

finite countable set £2 of cardinality C, the sigma field has 
2c members.

The sigma field is called a Borel-Sigma field if the 
field contains an infinite number of sets.

3) Associated with every member of the field cF is a
probability measure P. This is an additive set function 
such that if A, and A2 are disjoint sets which belong to cf, 

then P(A,UA2) is PCA^+PCAz). P(4>)=0 and P(fl) = l.

These three quantities (£2,2F,P) define a statistical source. Next we 
define subfields for a source. Suppose a source has a sample space 

or set £2. Then (A, ,A2 ,A3 ,... ,An ,...) is a E decomposition of £2 if 
the Aj are disjoint and UA,=£2. Then a sigma field E of unions of 
the members of the decomposition may be constructed. The members of 
the E decomposition are called the ATOMS of the field E.



-343-

For example if fi={ n?1, ,nr4} and the following atoms

{ Wy um2> w2u are chosen as the E decomposition, then the field E is

constructed thus;

0  ; T37t U  ®2  ’ ^ 3  U  a 4 I W| U  ® 2  U  ^ 3  U  W A

A subfield E of a field 2P both constructed on the sample space £2 is 

defined as follows. The E decomposition has atoms {B, ,B2, . . . }  with 
these properties: For any atom Bj , there exist an Aj which is an

atom of the field 7 such that AjSBj . The E decomposition is a 

courser decomposition of the set or space £2 than the 7  decomposition 
is.

The books by Kolmogorov-(1933), Doob-(1953) and 
Billingsley-(1965) together give complete definitions of the terms 

used in axiomatic probability.

The Conditional expectation of a function x(<t>) with respect to 

the subfield Q is written as E(x(o>)||(}) . e (x (o>)II<7) is defined thus:
1) E(x (cl>)||<7) is an integrable or measurable function defined 
on (o, that is

J*IE (•*(«) II (j) \ d P (cj) <  oo APE 4 .1

2 )

J£(*(«) II 0 dP(«) =
WfzBj

j* x(oj)d P (o>) APE 4.2

for all Bj which are atoms of Q .
E(x(cu)||̂ ) is generally a 'smooth' approximation to x(o>)

Two examples are; If <7=7, the largest sigma field associated 
with £2 , then for the second property above to be satisfied 
for all atoms of g means E(x(o>)|| £)=x(ct>)
Suppose Q has atoms {2 , fl-2Hfl}, where 2 is a member of £2.
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Then a 'version' of E(x(cu)|| Q') is

£(x(w) \\(J)=x{2) for w - 2

for
1 lv„*2d P (“) APE 4 .3

In fact for cu=2

JVw 2̂

, E(x(cu)|| ) may take any value provided that

E (x(w) || £)d P (w) =  J jr(w)dP(aj) APE 4 .4
'i <tî 2

The various allowable functions which may be used for 
E(x(cu)||(7) are called 'versions' of E(x(cu)|| Q'). If we chose 

the 'smoothest' , then there is a direct link between the 

conditional expectation as defined above and the usual 
conditional expectation.

The conditional expectation E(x(w)| A ) where A is a subset of 

£2 is defined below;

£ W « ) M )  = !\mA x(a)dP(a)
W.4 APE 4.5

This is defined only where cueA over which region it is a 
constant.
Then if we define Q such that A is one of its atoms, then a 

version of E(x(cu)||<7) is some function defined when cue A so

that
j E W«) II S)d p («) = * M d p («)
u)6/l meA

Letting E(x(cu)||£7) be a constant over this region gives:

APE 4.6

£<*(«) ii 0  = ^  x<df(a;()~ = APE 4.7

Conditional probability If we allow x(cu)=î (cu) , where 
I (cu)=l when co=fi and zero elsewhere, then for the case when
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Q is discrete,

where P(̂ ll̂ ) is the conditional probability.
For £2 continuous,

+  e) -
Let *(&>) = lim i APE 4.9

where H^(^) is a step function and Ĥ (<0 = 1 when cos/j. and 0 

when co->fx

E (/M(«) || 0  = P(n || 0  APE 4 .8

Then
+  *)-#>) ]  f

Jim* [--------- 1--------- K j  = Hm [
(̂{M + 6} II 0 - F O l  110

J APE 4.10
where F is the probability distribution function. Of course 
the right hand side of the last equation is f(/u||£) which is 
the conditional density function. Thus theorems proved for 

the convergence of conditional expectations apply to 
conditional probability functions as well.

properties to conditional expectation

1) If x(co)=a everywhere, then E(x(o>)|| £)=a everwhere.

2) If x(tL>)<y(cu) everywhere, then E(x(a>)||̂ )<E(y(t̂ )|| 0  everywhere.
3) If a and b are constant then

E  ({ax(u) +  by(w)} || 0  =  'aE(x(o>) || 0  +  b E(y(ai) || 0  APE 4.11

4) |£W«) II 0| * £(|*(«)| II 0
5) If lim xn(co)=x(cu) and |x(to)|<y almost everywhere and y isn-»oo
integrable, then lim £(x_(w) || 0  = £(^(w) || 0

n ~ * oo n

Proof Let zn{a>) = sup |*m(a>)-*(w)|
rrt̂ n
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Theii

|£(jc»  || G )-E{x{w ) || 0| <> £(|x»-*(<o)| || 0  <S £ ( z »  || g)
APE 4.12

Now E(zn(to)||£) be property 2, is non- increasing and therefore must 
converge to something. Since E(zn (to)|| is non-negative, if its 

expectation goes to zero, then E(zn(w)ll^)-*0 .
Then J £(z„(o>) || £)d£(a>) = J zn(oj)d P (<o), B, are atoms of Q

ueBj we B,

But

This concludes the proof.

6 ) If x(o>) is integrable and the sigma fields ^ and are such that 
= $v then £(£(*(a) || &) || £,) =  E (x(a) || £,)

Proof We note that every atom Bj of ^ is a subset of some atom Aj 

of . Recall that

for all Aj which are atoms of

Now consider a particular atom Bj of Q , and suppose that the 
atoms Aj, ,Ai2 , •. • ,Ajn make up Bj

APE 4.13

Then APE 4.14

But for any Ajj € Bj ,

APE 4.15

Thus

APE 4.16



-347-

Hence £(£(x(a>) || <72) II G \ )  is a version of E(x(u>) ||

A4 .2 The convergence theorem AT4.1

Suppose that
oo

£ , £ & £ £ £  ...C£ and £ =  I J & APE 4.17/-I
Then lim £ (z(to) || Q ) =  £ (z(w) ||

n-»oo

for any function z(co) which is measurable

Proof

Define xn(co) =£(z(co) || (jn)

=£(*„+,(a>) || £)

by property 6 . Then the process (xn(o>),^n) for nX) forms a 
semi-martingale. The martingale convergence theorems therefore
apply. That is lim xn(6>)=Xoo(w)

n — » o o

The proof for this is very similar to that used for the individual 

ergodic theorem. The proof makes use of a theorem that serves the 
same purpose as the maximal ergodic theorem for the ergodic theorem. 
This theorem will be stated and used, and the proof given later.

Theorem A4.2 Let Xj (u>), l^j^n be a sequence of funtions, which 

form a semi-martingale. Let A be any real number. In addition, let 

the set Sn(A) be the set of all w values, so that max {*•(«)} ^ XI J

Then

APE 4.18
S „ (X )

Construct, for a given u>, the following sequence

xn(“>) >xn+1 («0 >x n + 2 (“0 y • • • •
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Let
fis ( co) =  limsupx^aj)

n - * oo
Hi (to) = lim inf*„(a>) APE 4.19

Then define the set Aab as

{a;: /*,(«) <  a <  b <  /x5(co)}

It will be shown that Aab is a set of zero measure. Now it should 

be noted that A-u C lim S n{b) =  S'_(6)

Let us return to theorem A4 .2 Suppose Sm(b) =  {w: lim max xf(<o) ^ b)
00 1 * - < » l  Z j Z n  1

Then bP (sa m  *  j x ju )d P (u ) APE 4.20
SJb)

for any measurable Xj (u>) . Suppose yj (co)=Xj (cL»)XAab (<o) , where IAgb is 

an indicator function for the set Aab . Then

/ ^ = l  W A .

= 0  V u M
ab

ab

Thus b P (S Jb ) P| A J  <; j x J ^ d P ^ )

SJM f| A->
But since Aab ^ S^b) we have

APE 4.21

APE 4.22

IbP(Aab) <; x f u) d ? H APE 4.23

Now construct the sequence 

-x,(w) ,-x2(o>) ,-x3(o>) ,... Let

%(<*>) — lim s u p - ^ ( oj) and f ij  (<*>) =  lim in f-x n(w) APE 4 .2 4

Then define the set Aab as {w: **,(«) <i —b <  —a <> Hsi03)}

Lab is the same set as defined before. Then

-aPiŜ-a) p| AJ £ J
fl Aab

APE 4.25
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*

But

Hence

and

Thus

Aab C S m(-a) and S ^ - a ) P| Aab =■ Aab

-aP (A ab) <> J-j:00(aj)dP(a})
Aab

aP{Aab) £ J x00(w)dP(co)
âb

bP (Aab) <. j x J u )d P (u ) £ a P (A J

Aab

APE 4.26

APE 4.27

APE 4.28

APE 4.2 9

Thus P(Aab)=0 .
Therefore for each to the superior and inferior limits have the same 
value for the sequence (a>) .

Theorem A4.3

Let {Xj (a>) , l<j£n} be a semi-martingale and let A be a real 
number not neccessarily positive. Let S(\) =  {to: max x(oo) ^ A}l£j£n J

Then \P(S(X)) ^ | rn(to)d P (to)
S ( X )

proof

Recall that the set S(A) is the set of all to where there
exists at least one Xj (to) , l<j^n, such that x, (co)>5. Let the set Ak

be the set of to values so that there exists an Xj(a>), l<j<n, which 
is greater than A and the first one that is greater than A is Xj (to) .

A* =  (to : xk(u) ^ A and X/iu) <  A, V 1 ^ / <  k } APE 4 .30

n

Then = S (A) and the Ak are disjoint.
k “  1

Then
P (S ( A)) =

k- 1 A*
V  f e n . ) APE 4.31
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and n

XP{S(X)) = El \d P («)
k -1 A*

APE 4 .32

Now for each set Ak, xk(o>)>A, therefore for each A k

jxdP(a>) < JxJk(a;)d/>(w)

Thus

\P{S(\)) <; y  j
J f e - l  A*

APE 4.33

APE 4.34

The functions
x, (a>)=E(z(aOII ft ) , x2 (<o)=E(z(o>)|| ft) , ...xn(a>)=E(z(a>)|| ft ) are all only 
as fine as the number of atoms in the respective ft allow. The 
consequence for the sets Aj is that each Aj contains an integer 
number of atoms of G. . This is because of the courseness of the 
functions E(z(̂ )ll ft ). if there exists some u> such that 

Xj (cl»)=E(z («u)II ft )>A then these u) will by definition be an integer 

quantity of atoms of ft. Let the atoms of ft which belong to Ak be
Bl

Then J ̂t(“)d/,(w) = J( « ) d / > ( « ) - j £ ( z ( u )  | | f t ) d P ( a )

A*

=  J  £ (£ (* (« )  | | f t )  ||ft)d/> («)

A*

- I
0J€Bl

£(z(<o) || ft)d />(«) APE 4.35
for every atom Bkj of Q that belongs to Ak. Thus

n
Y  f * (a>)di>(w) =  j £(z(o>) II gn)AP{u) APE 4.36
Ac — 1 A l Vfi,

Bj are the atoms of ft. Also since ft is a subfield of ft we may 

integrate over the atoms of Aj of the ft decomposition of C2 instead. 

Thus XP(S(\)) =  j £(z(u) II g„)dP(w)
*A,

\P(S(X))
■ h

(«)d £(«) APE 4.37
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These theorems and their proofs may be found 
Billingsley-(1965) pp106-122 and in Doob-(1953)7s chapter 

Martingales.

in
on

«•
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APPENDIX 5
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The rate and distortion bounds for Gaussian sources 
with imprecisely specified distribution parameters

A5.1 The transition probability function for coding a Gaussian 
source to attain the rate-distortion bound

Let the distortion measure be the square difference measure
d(x,y) = ( x - y ) 2 APE 5.1

where x is the source symbol and y is the reproduction symbol. The

following equations solve the constrained optimisation problem of 

finding the conditional density function which achieves the minimum 
rate for a distortion bound.

= J f ( x ) exp { -pd  (x,y)} dx 
±00

J $ ) ~  J ^00 exp { —pd (*, j>)} dy

APE 5.2

APE 5 .3
±00

P(y\x) = q^p(xY {-p d (x ,y )}

f(x) is a Lagrange multiplier function and 
governing respectively conditions APE5.6 and APE5 .7 •

Rate = R (d ‘) = J p(x) J
=  ^ p{ x ) ^ piy \ x)\ n [^^-]dy d x  

where \=^p(y\x)dy Vx 

and d >  ^p {x) ^p{y\x)d(x,y)dydx

APE 5.4

a Lagrange multiplier

APE 5 .5 

APE 5.6 

APE 5.7

Let
, , 1 (x ~ p x)2p(x) = -- —  exp — 1qiy) = --—  exp —

<Tyy/ 2t

(y - tty)2
2a2y APE 5.8I T  ‘ 2a2 ’axy]2 ir x

The derivations for equations APE5.2 and APE5.3 may be obtained from 
Berger-(1970) pages 88 to 90. in Gallagher-(1968) it is shown that
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the supposition that f(x) is a constant is consistent with the 

equations APE5 .2, APE5.3, APE5.6 and APE5.7. In fact f(x) should be 
'Jp/n . supposing that q(y) is Gaussian with distribution as follows

40) = — 7 =exp{- 
cvs!2 tc

(y-Hy)2
2 o-?. APE 5 .9

Inserting this into APE5 .3 allows the evaluation of /ay and <ry in 
terms of the /ux, ax and p .

Thus 2p<j\-\
2 P APE 5.10

—Mx APE 5.11

q(y) -  N/ ^ 4 - o CTP{~ ^ r 70'~Mj)2} APE 5.12

now P = 2 d* APE 5.13

(Gallagher-(1968) page 476)

P{y\x) yj 2 * d \ o \ -d ')6Xp{ 2 d \ J - d ' ) (y A ^  APE 5.14

where A =  u +  (1 -  — ) APE 5.15



A5 .2 The rate if the source statistics are (p>o) and the
transition density function presumes statistics (/i,<7)

The rate bound is

where

Thus

R ( d ' )  - JPCX) J

= [ PM | p(y\x)\n[̂ ^ ]iyix

p ( y\*)_/(*), ..loo" _

') =  j p i x ) j p ( y l x ) l n j ^ i y d x - p [ p ( x ) h x - y ) 2p{y\x)dydx 

~  j " j i ( y ) e* p { - H x - y ) 2}iy<ix-f> J j ( x - y ) ‘

For the Gaussian source

*(<0 = N / l M f § I ^ ){ln̂ ~ (* ~ ')2}CTP{- 2 d *

By substituting the following into the above equation;

P(x) =

P(x)

1 f {x - mx)2
—  « p (— u T

(*-Ax)2

2x
1

5vV 2?r
=  c x p { -

2 5 l

}

}

q(y) = l
2ir(&% — d * )

exp{ Cv - » x)2
2 t f - d ' ) }

exP { ~H x ~  y)1} dj> dx

}d.ydjc

one obtains
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A5.3 The distortion if the source statistics are (fi,(r) and the 
transition density function presumes statistics (ju,a)

The distortion Dtot resulting from the use of inappropriate 
statistics and hence the conditional density function p(y|x) is

#tot =  |  P(*) J P(y\x)d (*,y)dydx

where -/ % _ / 1 f O'“ A,)2 ,
? w - V i ^ F ^ exp{-

P(X)----2g2j) }
<TxyJ2ir 1

, 1 f l ( x - i i x)2

M  1
With some algebraic manipulation the above reduces to

d ’ + (^)2 {(4-^) + (»*x-Ax)2 }
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