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ABSTRACT

In this thesis a class of adaptive coding schemes for speech
and image compression which make use of previously coded data, is

proposed, analysed and experimentally investigated.

The first and second chapters of this thesis are an

introduction and a review of block coding techniques respectively.

The third chapter describes the basic coding scheme, whose
concept is the cement for this thesis. This involves the
representation of variable length blocks of data by previously coded
and transmitted source symbols. The coordinate of the previously
transmitted symbols and the block size 1in question form the
information sent down the communication channel. Several variatioms
on this scheme are presented and experimentally studied with
artificially generaﬁed data, speech data and image data. Results
show the algorithm to be capable of achieving good compression,
requiring no prior knowledge of the statistics of the source to be

coded.

The use of some of the particular properties of image and
speech data, allow more efficient compression of these types of
source, using variations on the above method. This avenue 1is

extensively studied for speech data.

Chapter four develops the theory associated with the limits of
the performance of the class of adaptive coding schemes proposed.
It is shown that as some block size parameter is allowed to approach
infinity, for the case of =zero distortion, the coding rate

approaches the Shannon entropy, plus a small factor associated with



adaptation. The theoretical properties are also discussed, but not

quite as conclusively, in the case of coding with a fidelity

criterion.

Chapter five is a review of scalar coding schemes, examples

being PCM, DPCM, ADPCM and Multipath-search-coding.

Chapter six gives the results of studies in adaptive multipath

search coding, where the adaptation information is derived from

previously coded data.
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STATEMENT OF ORTIGIMALITY

The following is a brief list of the contributions which are,

to the best of my knowledge, original to this thesis.

Chapter 3

1) The use of blocks of previously coded data, to approximate
blocks of data to be coded, in the case of grey scale images and

speech coding [Section 3.2 to 3.4].

2) The method ‘b” of section 3.2 for sampling the set of
previously coded symbols to find an approximation to a block of

symbols being coded.

3) The Fourier transform coding of a baseband residual signal, for

residual excited LPC [Section 3.6.3.1]

4) The concept of variable bit rates for the transmission of the
excitation and the model parameters for residual excited LPC

coding [Section 3.6.3].

Chapter 4

1) A discussion of the theoretical performance of the concept of
coding source symbols by approximating these with blocks of

previously coded data [Sections 4.3 to 4.4 and 4.5].

2) The proof of the theorem of section 4.5.1, on the probability
of observing an outcome, within distance d , of any block of N
symbols each belonging to the sample space of an ergodic source, as

N is approaches infinity.



Chapter 6

1) The presentation of results for step size adaptation for the
scalar coding of images where a small default step size is employed,
except in a region of slope overload (where an edge is observed)
otherwise a immediate switch to the default step size is

effected [Section 6.3.1]

2) The concept of adaptive multipath search coding in blocks, with
a linear prediction based graph (tree or trellis) weighting, where
the prediction parameters are derived from previously coded

symbols [Section 6 .4]

3) The presentation of results for image coding employing a very
simple codebook based convolutional coder as originally described by

Stewart, Gray and Linde-(1982)]

4) The proposal and the presentation of results for an adaptive

version of the convolutional coder described Stewart et al.[Section

6.6]
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This chapter is a short and rather unconventional
introduction. The style of the chapter has been directed, not
altogether regrettably, by the diverseness of the topics covered in
this thesis. The thesis investigates the use of a. technique for
solving a <class of problems. This is appreciably different from
most theses, which deal with a problem and where the conventionally
adopted approach 1is the following. Granted a certain problem,
several ways of tackling this are investigated, some proposed. The
research culminates in the advocation of a ‘good’ technique for
solving this problem. An example of a conventional thesis 1is one
which 1is concerned with say image transmission over a certain class
of channel for a certain restriction on rate, a particular one being
coding for Qideo conferencing, to find for this particular
application, a technique that best achieves the aim, bearing in mind
the particular conditions 1in which it is to be used. A thesis of
this sort might be introduced with the background to

video-conferencing, images and in particular, sequences of images.

Because the glue for this thesis is a technique for tackling
some data compression problems and thus diverse applications are
dealt with, the relevant chapters deal with the background to these
problems. This deprives the thesis introduction of half its
traditional content. Well then, it might be asked, what does this
chapter contain? It concerns itself with firstly, why data
might be compressed and secondly describes, briefly the structure

and approach to this thesis,



1.1 Why data compression?

At being presented with yet another thesis on data
compression, the reader justifiably expects some sort of reason from
the author for the choice of this topic for research. So the
question to be answered is, why do we want to do data (speech, image
etc.) compression? It should be stated, to start with, that data
compression should be avoided, whenever possible. 1If applicable,
research effort should be directed to other studies which would
render compression unnecessary, The following paragraphs are an
effort to Jjustify this opinion and why, considering this, another

thesis on data compression has been written.

Data compression has been used for the following types of
data: Speech, images and abstract data symbols, an example being
ASCL1 characters. Depending on which type of data is being
compressed, particular algorithms had been developed by various
research workers. Almost all compression schemes have one or more

of the following drawbacks.

1) In the case of compression with zero distortion ‘entropic
coding’, all the known schemes result in a variable transmission
rate. The result is that very large buffers are usually required,
in order to transmit the resulting code over a fixed rate channel.
If the source statistics are not well known, the code could be very
inefficient, much more so than if a straightforward, non-committal
assumption on the statistiecs (uniform distribution) is used for
coding. Adaptive methods tend to be wasteful of transmission
bandwidth and result in poor performance when the source is of low

redundancy.

2) Fixed rate systems always result in
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distortion or noise. It ought to be mentioned that research workers
tend to be remarkably tolerant of distortion and noise, especially
when they have seen their test images or heard their test sentences

a few hundred times.

3) The compression (coding and/or decoding) processes often require
unrealistic quantities of processing power to implement. This 1is

especially so for image compression.

4) When schemes are presented, which do not exhibit any of the above

drawbacks, they almost invariably do not achieve much compression.

5) All compression schemes worsen the effects of channel errors on
the source data. In some cases channel errors could be
catastrophic, requiring some form of error detection and/or

correction.

Having said all this though, there are some instances where
these drawbacks, damning as they seem, may be ignored. On some
occasions, there is just no choice and compression has to be
employed. On other occasions 1large quantities of distortion are
tolerable, this 1is especially so for speech data and moving
pictures. And in some situations coding complexity, variable rate
output and large coding delays are of no consequence, for example,
when rate reduction is for storage and not transmission. Therefore
research in data compression continues. When all is said and done
though, for the research worker there is a highly important point to
be made and this is that the work is interesting. There is a lot
which may be done, and fruitfully, in the three areas of theory,
computer simulation and practical construction; and this with finite

resources in all senses., It is this last property of the subject
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which justifies another thesis on data compression.

1.2 Summary of thesis contents

Chapters 2 and 5 contain reviews of the better known methods
for respectively, block coding and scalar coding. These are
included, as usual in a thesis to give some perspective to the main
body of the work reported here. The reviews are written as two
separate chapters for consistency with the fact that the thesis 1is
largely devided into two portions. The first part of the thesis is
concerned with data compression, using previously coded data, for
"block" coding. The second half is concerned with "scalar" (Tree

and Trellis) coding.

Chapter 3 contains the bulk of the experimental work for this
thesis. It is rathe% large chapter, which perhaps might have gained
from being broken up into several smaller ones. The principle of
coding data using other previously coded samples is presented.It 1is
given the name MPPCD (the Matching of Patterns in Previously Coded
Data). A discussion of some of the ways that coding may practicall&
be achieved, using the above principle, is wundertaken. 1In the
remainder of the chapter, we present diverse applications of the
coding scheme and discuss the results obtained. Below is a brief

list of the coding applications.

1) Source coding with zero distortion: This is done wusing a
variety of artificially generated data. It is shown that the method
has some promise, although in each case particular, other well
tailored coding schemes may be employed for the given source. The

MPPCD scheme works reasonably well with all types of sources.
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2) Source coding with a fidelity criterion: The MPPCD scheme
is next wused to code artificially generated first order
auto-regressive data. The results are compared with those obtained

by coding the same data via the Discrete Cosine Transform.

3) Image coding: The MPPCD scheme is used for image coding.
Three methods are investigated. The first is a straightforward
application of the MPPCD scheme on the one-dimensional signal
obtained by the 1line by line scanning of an image. Secondly, the
application of edge weighting to the above scheme, is 1investigated.
Next, the results of an extension of the MPPCD scheme for coding

two-dimensional data, is presented.

4) Speech coding: The MPPCD scheme is applied to speech
coding. 1Initially, the speech waveform is directly coded using the
MPPCD scheme. No attempt is made to employ some of the features of
the speech signal. The results were judged using a signal to noise
ratio achievement. The MPPCD scheme is next employed for speech
coding, wusing the framework of Linear Predictive Coding (LPC). A
variable rate transmission and a fixed rate transmission scheme are
presented. All the speech coding methods are subjectively tested,

using independent listeners.

At this point it is worth indicating that both the material on
speech and image coding, which generally make up the contents of an
introduction, (for example the physics of speech generation, sight
and hearing) are presented when the MPPCD scheme is applied to image

and speech coding.

Chapter 4 contains some theoretical results on the asymptotic

performance of the MPPCD scheme. It is first shown, with the aid of
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the Shannon-McMillan-Brieman asymptotic equipartition theorem, that
in the limit as some quantity, to be defined later, tends to
infinity, the MPPCD scheme yeilds a coding rate which tends to the
Shannon entropy for the source, plus some €. This factor €, is
equivalent to the overhead information required when doing adaptive
coding and may be made very small. Next we consider the theoretical
properties of the MPPCD scheme when used for coding with a fidelity
criterion. 1In that section, although we are unable to obtain a
formal proof that the coding rate tends towards the rate-distortion
function for a source, under some considerations, several
interesting tieoretical properties of the MPPCD scheme and in fact

ergodic sources in general are discussed.

In chapter 6, some results on tree and trellis coding for
speech and image signals, are presented. 1In that chaper, we
concentrate on methods of ‘colouring’ trees or trellisses given some
source statistics. Some ideas are presented for the adaptive tree
or trellis coding of speech and image signals. These are based on

deriving source statistics from previously coded data.

Chapter 7 1is the concluding chapter of the thesis. As usual
this chapter begins with a brief description of the thesis contents.
A discussion of the results obtained in the wuse of the various
methods presented in this thesis, is undertaken. Also as usual, a
section entitled suggestions for further research is included. In
this section, the flashes of inspiration, which could not be

followed up for various reasons, are detailed.
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CHAPTER 2 A REVIEW AND DISCUSSION OF BLOCK CODING
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2.1 Introduction

In this chapter, a survey is presented of a class of schemes

for achieving data compression, refered to as “block coding’.

The aim of data compression is to find a transformation so
that the following actions are effected. A sequence of source
symbols are transformed into another sequence of symbols. The rate
at which this resulting sequence may be transmitted should be as
small as possible. 1In addition it is required that the sequence
obtained after transformation may be wused to generate an
approximation sequence for the original data. This approximation
sequence should be close to the original to within some prespecified
error. When the transformation described above processes a sequence
or block of data at a time, this process is refered to as block
coding. The alternative to block coding is scalar coding, where the

input symbols are taken, effectively, one at a time.

Two main block coding schemes have been reported in the
literature. These are transform coding and recently vector
quantisation. In this chapter, a review of the current transform
coding techniques used in both image and speech coding is presented.
First the question of which transformation to use is discussed. A
very simple Fourier transform coding scheme is then described.
Following this, the shortcomings of this method is discussed. We
then present some of the improvements which have been reported in

the literature.

An interpretation of the functioning of transform coding

serves to introduce some related coding schemes., These are;
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Sub-band coding, Linear predictive coding (LPC) and Vector
quantisation. The performance of these methods when applied to
speech have been the subject of several papers. As yet however,
they have not yet been extensively applied to image coding. The
bulk of this chapter contains general descriptions of the ideas
behind the well known block coding schemes, without extensive
reference to publications. The chapter however, ends with a
detailed bibliography, where the references associated with the

different methods are given.

2 .2 Transform coding

2.2 .1 Choice of transform

Interpreted most generally, transform coding is the following
process. A transformation Ap,,, operates on a sequence of source

symbols

X, = {$u6p -8}

such that the result of the transformation is the sequence

y = A{w,w,...,0,}

Ym is quantised and approximated by zm . The zm values have
channel symbols associated with them, these symbols are transmitted
and it is presumed that there are no channel errors. At the
receiver, the transformation B,, is used to generate an

approximation X, of x, from the j  sequence.
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The following properties should hold for the transformation pair Ay,
and B,
a) dy(Xq,%,) should monotonically increase with d,(y,,%,),
where d,(.,.) and d,(,.,) are the distortion measures used
in the original and transform domains respectively.
b) If dy(yp,¥m)=0 then dy(x,,%,)=0
Normally A,, and B,p, are linear transformation and may be

represented by the nxn matrices A;,, and By, .

A good transformation kernel A, should enable ¥ to be
represented by a small number of channel symbols and still allow ¥

to be close to y, .

It is known that the best encoding scheme for y_  achieves
distortion and rate values specified by the source’s rate-distortion
function [Shannon-(1959)]. 1In general, it is difficult to find a
good sequence of channel symbols to assign to each possible value of
¥m « Were the members of y, independent, this sequence may be
efficiently coded by coding each symbol separately. This is because
there exist several efficient scalar coding schemes (Lloyd-Max
quantisation and Huffman coding [Max-(1960) and Lloyd-(1982)1]). We
know that the minimum coding rate possible is defined by the
infinite block size rate-distortion function for a source. We also
know that for a source with independent outcomes, the infinite block
size rate-distortion function is equal to the single 1letter
rate-distortion function for this source [Gallagher-(1968),
Berger(1971)1. Independence-inducing transforms therefore allow

efficient coding since each of the resulting independent outcomes



-2l

may be coded at close to the single letter rate-distortion function,

by efficient scalar coding methods.

Our discussion will now be restricted to linear
transformations. In choosing a linear transformation, we try to
find one which will give a transformed sequence as near independent
as possible, The best that can be done using linear
transfprmations, is to require that the resulting sequence be
uncorrelated. The transformation which achieves this 1is the
Karhunen-Loeve transformation (KLT). (This is sometimes refered to
as the Hotelling transform for sampled data systems [Ahmed and

Rao-(1975)])

The KLT is the transformation K that satisfies the equation

2.1. D is a purely diagonal matrix with positive entries.

l

Y

KX 2.1

where E(Y.Y')=D 2.2

Referring to E(X.KT) as R, it is easily shown that a transformation
K which satisfies the condition 2.2, is the matrix of eigenvectors
of R, where D is the diagonal matrix of eigenvalues of R. The
optimum linear transformation, the KLT requires the knowledge of the
covariance function for the source and its evaluation involves the

computation of the eigenvectors of a matrix.

In practice the KLT is not often used for transform coding.
The main drawbacks are, the unreliability of the covariance function
estimation and the lack of fast algorithms for evaluating the
eigenvectors of the transform and for calculating the transform of a

data sequence. The alternative, but nomoptimum, transforms have



fast implementation algorithms which make them convenient to use.
In fact it has been shown practically that there is 1little to be
gained from wusing the KLT compared with the Discrete Cosine
Transform for some sources with high inter-symbol correlation

[Zelinski and Noll-(1977) and Wintz (1972)].

2.2 .2 A Fourier transform coding example

Figure 2.1 shows a block diagram of the transform coder to be
described. Non-overlapping blocks of symbols from a source are fed
to a Fourier transformer. Let us refer to a block of input data of
length I, as X. The Fourier transformer generates a sequence of L
complex numbers, (L/2)+1 (L is even say) of which are to be encoded
and transmitted. Of these, two are purely real. Refer to the
sequence of complex numbers to be coded as Y. The coding scheme may

be one of the following.

1) Choose beforehand which of the Y are to be transmitted.
The choice is fixed and 1is made by considering the long term
spectral character of the source, in conjunction with a weighting
function to colour the noise resulting from quantisation. For each
of the frequency components to be coded, a fixed number of bits is
assigned. Which frequency components to code and the number of bits
to assign is decided in this way. For each frequency component "w"
we assign 1U°8zl%ll bits. Here II_(u)_] is the smallest
integer greater than u and zero if u<0. A(w) is the source’s

power spectral density and c(w ) is some weighting function used to

colour the coding noise. D* 1is the distortion limit such that one
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expects average distortion less than D¥. When c(w) 1is unity the
assignment of bits in this way results in a noise spectrum which is
approximately flat [Huang and Shulthiess-(1963)]., For each
frequency component, non-linear quantisation may be used. Some
workers have employed A-law or u-law quantisation

[Frangoulis-(1978)] and others have employed Lloyd-Max quantizers,

2) The frequency components to be coded are not chosen
beforehand. For each block a different but fixed number N of
frequency components are chosen for coding and transmission. The N
chosen are dependent upon the instantaneous magnitude of the
frequency components. This 1is referred to as adaptive transform
coding. The advantage of this is that no apriori source statistics
are required. A shortcoming however, is the neccessity to send
extra symbols to inform the receiver of which frequency components

are coded and the number of bits assigned to each of the frequency

components coded. [Wintz (1972)]

At the receiver, the received spectral signal is simply
inverse transformed to obtain an approximation to the coded source
symbols. Alternatively some sort of interpolation may be done to
approximate the frequency components not transmitted, before inverse

Fourier transforming

A mnyriad of schemes have been reported in the literature,
which are variations and improvements to the above method. [Tasto
and Wintz (1972) and Wintz-(1972)]. For image coding, the variations
on the above method are not outstanding, with the exception of using
overlappping blocks. For speech coding however several methods have

been proposed which are significantly different from the above. The
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foregoing is a discussion of some of the inadequacies of transform

coding as described in section 2.2.2.

2.2.3 Improvements to the basic scheme

For the scheme just described and the improved methods to be
described, transforms other than the Fourier transform may be used.
The improvements gained when using alternative transforms are in

these directions.

a) ,A further decrease in correlation between the random
variables obtained after doing the transform. This enables more
efficient coding of the data, since the greater the decorrelation
the transformation achieves, the larger the compaction of the data
in the transform domain. The excellent review paper by Wintz (1972)
gives a comparison of the results of the performance of discrete
Fourier transform (DFT), discrete cosine transform (DCT) and

Karhunen-Loeve transform (KLT) coding schemes.

b) A decrease in the computational time for the implementation
of the transformation. To this end, the results of the use of the
Walsh-Hadamard, Haar and other easily implementable transforms have
been reported in the literature. Frangoulis-(1978), Ahmadi-(1980),
Zelinski and Noll-(1977 and 1979) give a figure comparing the
performance of the KLT, the DCT, the DFT, the discrete sine

transform (DST) and the Walsh-Hadamard transforms.

In order to improve the transform coding results, we may use

overlapping blocks. This, in conjuction with the windowing of
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blocks to be transformed enables the performance of a more reliable
short term spectral analysis of the block to be coded. We may also
improve the efficiency of ,the methods used to code frequency
components, These two approaches are not mutually exclusive. To

explain and justify the use of windowing we have to redefine what it

is that we want to achieve.

The transformation procedure, using a transform defined by the

kernel K, is shown by equation 2.4.

x

V(@) = z h(n— m)x(n)K (w, n) 2 .4

n=-<=co
h(n-m) is some window function centered at m. x(n) is the doubly
infinite sequence which is generated by the source and y,(®) is the

frequency component at frequency w, observed at time instant m.

For the basic transform coding scheme, h(nm) is a rectangular
window centered at time instant m. If the transform size is M, the
window is of length M. The window centres, the various values of m,
are integer multiples of M, so that non-overlapping blocks are
transformed. It may be seen from equation 2.4 that for every value
of w=w, say, y (@) 1is a sequence with m, whose members are
estimates of the amplitude value for that particular frequency
component w,. The periodicity of the sampling of that particular
frequency w,, for the case of the simple transform coding scheme
described is 1/M. Obviously the best scheme as far as resolving the
various frequency components is that which would take the whole time
infinite sequence and transform this. The values of the frequency
components would only. need to be sampled and ﬁransmitted once.

Since in reality this cannot be done, we window the data sequence
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with some windowing function of duration T, where T is finite. The
problem of the best window shape to use was solved by Kaiser for the

Fourier frequency domain. Consider the equation

(2]

ym(‘-"o) = Z h(n - M)X(’l)K (woy ”) 2.5

n=-=oo

‘For the single frequency w,, with value yh(wu) at a time instant
"m", it may be seen that y (w,) is the convolution of the time
sequence {x(n)K(w,,n)} by the function h(.). It 1is required that
for each i, yi@uu) has as few contributions from other frequencies
as possible. The best window for this, given any block length is
the Kaiser window. [Rabiner and Gold-(1975) sections 3.83.16] The
necessary sampling rate (frequency at which the magnitude of
frequency component w, should be sampled) is determined by the
bandwidth of the filter whose impulse response is h(.). The greater
the duration of the window, the sharper the cutoff of the filter

whose impulse response is h(.). This is therationale for the use of

overlapping blocks and a window.

Now we shall consider the improvements which may be made in
quantising the members of the transformed sequence Y. In the simple
transform coding scheme described in section 2.2.2, one non-adaptive
and one adaptive method were described. It should be recalled that
the adaptive scheme had the advantage of following the changing
spectral patterns better since for each block, the frequencies coded
are chosen according to the 1local spectral characteristics. We
shall now describe 1in detail schemes reported by Zelinski and
Noll-(1977) and Tribolet and Crochiere-(1979). Figure 2.2 shows a

block diagram for these two schemes.
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Zelinski and Noll chose a set of nonuniformly spaced
frequencies f,,f,,... The average power at frequencies around each
chosen frequency value £;, is evaluated. These values of -average
power are quantised and transmitted. These values for average power
are also used to evaluate an estimate of the power spectral density
over the whole of the frequency range at both the receiver and the
transmitter. This estimate of the power spectral density is then
used to design a bit allocation scheme, This bit allocation scheme
is then wused for quantising and coding the whole of the frequency
band. Tribolet and Crochiere reported a scheme in which they do the
spectral density function estimation by LPC analysis. The LPC
analysis 1is done using an auto-correlation function derived via an
inverse DCT of the square magnitude of the cosine tranformed
sequence. For speech coding applications in particular, Tribolet
and Crochiere weight the DCT spectral signal with a comblike
frequency response which is supposed to represent the effects of the
pseudo-periodic characteristic of voiced speech. They call this a
vocoder driven adaptive transform coder. It was reported by
Zelinski and Noll-(1979) and Tribolet and Crochiere that
quantisation of the frequency components, using Lloyd-Max quantisers

made no significant improvement over doing linear quantisation.

Other improvements to the transform coder are in the direction
of finding frequency domain weighting functions which are supposed

to improve the perceptive quality of the speech or image signal.

The ’short-term’ Fourier transform is an alternative to the
windowed and overlapped Fourier or cosine transforms. This involves

the Fourier transformation of a reflectively doubled version of each
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input data block. The Fourier components are consequently purely
real, and are coded as the cosine transform components were
described as being coded in the previous section. 1t has been
reported that this procedure results in less edge effects, which

effect is especially important for image coding.

2.3 Methods that follow from transform coding

The wunderlying effect of wusing a transformation will be
discussed by considering the Fourier transform. Consider the
sequence of source symbols {x,,xz,...,xN }. These are transformed
so that we have {yI,yz,...,yN}. For the Fourier transform kernel,
each of y, 1is the output of a lowpass filter preceded by a
modulator, which does frequency shifting. The folidﬁing shows this.

Consider the equation describing the transform

[ee]

Yp(w) = Z h(n = m)x(n)e”" 2.6

n=-=o0

Then for each frequency w , one obtains the sequence vy, say, if
exp(- jwn) is replaced by z(n) where

20

Ylw) = Z h(n —m)x(n)z(n) 2.7

n=—oo

The function x(n)z(n) is therefore convolved with the function h(.),
to obtain the value y at instant m. Now it should be noticed that
the multiplication of x(n) with z(n) is a modulation which effects a
frequency shift by w rads/sec. The h(.) is a low pass filter

impulse response. (Note that with no windowing, that is with a
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rectangular window, the low pass filter is just an averaging
process.) Thus each spectral component is the result of a modulation
followed by a low-pass filter. Transform coding restricts one to
using Finite impulse response (FIR) filters for the low-pass filter

operation.

2.3.1 Sub-band coding

In sub-band coding, very long length filters may be wused to
effect the band-pass £filtering operation. The use of IIR filters
effectively means the use of 1longer analysis windows and the
possibility of sharper frequency discrimination. Usually a small
number of frequency bands is used, for example four or eight. A
class of filters particularly suited to the job of band-pass
analysis are the quadrature mirror filters. The basic building
block is a "half-band coder'. This divides an incoming sequence into
a lower frequency band of half the original bandwidth and a higher
frequency band of half the original bandwidth, The high frequency
band is then modulated to the base-band. Figure 2.3 shows a tree of
filters with half-band coders at each node. The individual signal
from each of the channels 1is coded using any of the well known
scalar quantisation schemes. Like the transform coder, a different
number of bits are allocated to each of the bands. This is done
according to the energy of the signal component in this band. The
assignment scheme 1is the same as in transform coding. Alternative
subband coders are ones which wuse frequency bands of different

bandwidths.
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2 .3.2 Linear predictive coding (LPC)

The transform coding approach to frequency analysis wuses FIR
filters to do spectrum analysis. The short term spectrum is then
represented by the transformed sequence. The members of this
sequence are quantised and transmitted. An alternative is to find
parameters which describe a smooth function in the frequency domain.
This smooth function is an approximation to the short term spectrum
of the data. This 1is what LPC attempts to do. Parameters to
indicate a smooth function which approximates the power spectral
density are obtained, quantised and have channel symbols assigned to
these. The channel symbols are then transmitted. In addition, the
residual or error signal associated with this approximation is coded
and transmitted. In LPC, the source symbols are approximated as the
output of a time varying infinite impulse response (IIR) filter.
The coefficients of this filter are parameters which define the

spectrum of the input signal. Suppose

x(1),x(2),....x(n)

is a block of the input signal. This is modelled to be the output

of the filter H(z). Let
e(1),€2), ....e(n)

be the input sequence to this filter. The filter coefficients are
calculated so that for each block  the residual signal

{ ), 2)yeau,e(m} has the smallest variance. The following is a

description of the general formulation.

A source may modelled in the most general case as an

"auto-regressive moving average'" (ARMA) process. Let the source



-37-

sequence be x(n), then the model is described thus:

L

k
x(n) = Zafx(n —-i)+ Zb,.e(n —i) + e(n) 2.8

i=| i=1

The source is '"identified" by the parameters {a;,a;,...,a,} and
{bysbyseeesb} such that the variance of the error sequence

{«(1),€(2), ..., e(n)} is minimised. If the a; are all zero the source is

said to be a "moving-average" process. Alternatively if the b; are

k

x(n) = Zaix(n — i)+ e(n)

i=1

zero, then

k

- Zaiz_i)x(n) =¢(n) 2.9
i=1
where z-i is a time shift of i positions. Then
e(n)
x(n) =————
(1- Zl{c‘—‘laiz_’)
TN
=H (z)e(n) 2.10

Appendix 1 shows the procedure for evaluating the filter
coefficients for the case when the b; are zero. The model is
termed an "auto-regressive" or "all-pole" model in this case. When
an estimate is made of the auto-correlation or covariance function
for the source beforehand, then an algorithm named after Levinson
and Durbin may be used. An alternative is the Burg maximum entropy
method which does not require a prior estimate of the
auto-correlation or covariance functions. Both these methods of
evaluating the all-pole filter coefficients are recursive. The
filter coefficients for an N-th order autoregressive source are
evaluated by first working out the best coefficient for the case
when the source is modelled as a first order system. Next we use
this to evaluate some of the coefficients for the case where we

model the system as a second order auto~regressive source. We then
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use the coefficients obtained by doing this to work out the
coefficients for the case where we use a third order model and so
on. To evaluate the m coefficients for the case where we model a
source as being of order m, we first evaluate the mth coefficient.
This in conjunction with the m~1 coefficients obtained by wusing a
model of order m1 is used to calculate the m coefficients of the
m-th order model. In this stage by stage process, the mth filter
coefficient evaluated at the m-th stage, isreferred to as the mth
reflection coefficient or partial correlation coefficient. To
ensure the stability of the resulting all-pole filter all the

reflection coefficients have to be of magnitude less than unity.

It has been observed that the frequency response of the
all-pole filter model 1is very sensitive to the variation of its
filter coefficients. For coding, it has been found that the
quantisation and transmission of the reflection coefficients or some
function of the reflection coefficients has resulted in less
distortion of the spectrum. Non-linear quantisation of the
reflection coefficients 1is generally done. This is because it has
been observed that the filter response is sensitive to reflection
coefficient error when these are near unity. Quantisation is done
so that there is less error when a reflection coefficient is close
to unity. Non-linear quantisation 1is generally done by linearly
quantising some non-linear one-to-one function of the reflection
coefficients. Two such functious which have been found to work well
are given below. [Gray and Markel-(1976)]

1+ k;

& =log y—¢

i

h; =sin_'(k-l-- 1)

k; are the reflection coefficients and
g, are called the log-area-ratios



To recapitulate, LPC involves the use of an all all-pole filter to
model a source. (ARMA models have seen little use because of the
difficulty of evaluating their parameters) The filter gives the
parameters of a smooth frequency function which approximates the
spectrum of the source. The error associated with this spectral
representation has an associated time domain sequence which is
referredto as the residual signal. The residual signal, in addition
to parameters describing the model for the source are quantised and
transmitted. These are wused by the receiver to generate an

approximation to the input sequence,

The LPC Vocoder

A vocoder is a coder which does low bit rate speech coding by
extracting, coding and transmitting parameters which describe the
speech generation process. The linear prediction vocoder is one of
several types of vocoder. The LPC vocoder does linear prediction
analysis on a block of speech data, generally of duration 10 to 30
msecs. The Log-Area-Ratios as shown 1in equation 2.11 or the

arcsines of the reflection coefficients are evaluated and quantised.

There are several ways of solving the problem of evaluating
the filter parameters. To solve the problem by the use of the
Levinson-Durbin algorithm, requires the evaluation of the
auto-correlation or covariance function for the source. The
approaches for doing this are:

1. Windowing the data and directly finding the auto-correlation
function by presuming that the signal is zero outside the span of
the window.

2. Performing a FFT of the input sequence, evaluating the square
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magnitude of the transformed signal for each frequency component,
and computing the inverse transform of this., One then obtains an
approximation to the auto-correlation fﬁnction. This implies that
the signal is periodic. The covariance function obtained is that of
a periodic sequence, where outside the duration of the signal
available, this sequence is repeated.

3. The use of a pitch synchronous system has been reported by
Barnwell-(1980). Here use is made of the pseudo-periodic character
of speech when an utterance 1is made. A pitch period’s worth of
signal is used to evaluate the covariance function by the FFT method
described in 2. This is a reasonable course of action since the
speech signal, on these occasions is semi-periodic.

4. The use of the Burgb maximum entropy method. This avoids a
direct evaluation of the auto-correlation or covariance functions.
It has been reported to give better spectral estimation than any of

the other methods.

Figure 2.4 shows a basic LPC vocoder. This requires a
decision to be made concerning whether the block being considered is
the result of a voiced or unvbiced utterance. If it is ascertained
that the block is that of a voiced sound the pitch associated that
utterance has to be evaluated. At the receiver, the residual or
excitation for feeding the filter representing the all-pole process
is derived as follows. When the block is unvoiced a pseudo-random
sequence of an appropriate variance is used to excite the filter.
When the block is voiced, a sequence of pulses of the appropriate
frequency and variance is used to feed the all-pole filter wused to
model the source. This type of vocoder allows data transmission at

between 2kbit/sec and 12kbit/sec. Several LPC vocoders with more
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efficient coding of the Log-area parameters, the pitch and gain have
been reported in the 1literature. Using these method allow the

transmission of digital speech at rates as low as 800 bits/sec.

The residual waveform may be encoded in a manner other than by
modelling this as a pulse train or pseudo-random noise., Vocoders
excited by alternative methods are referredto as residual excited

vocoders (RELP vocoders) or voice excited vocoders (VELP vocoders)

RELP vocoders have in addition to the filter parameters (or
reflection coefficients) a low pass filtered version of the residual

signal coded and transmitted.

VELP vocoders are similar except that a low pass filtered

version of the input data sequence is sent to the receiver.

In both these cases the signal transmitted in addition to the
filter parameters 1is low pass filtered to between 500Hz and 1lkHz.
At the receiver this signal is processed to generate a full band

signal which is then used to excite the modelling filter,

2 .4 Vector quantisation

Vector quantisation is another name for block quantisation.
This name is however by recent tradition used solely for block
quantisation schemes which do not depend on the prior application of

some independence inducing transformation.

Vector quantisation may be described as follows. Presume that

a source generates a sequence = {X_g,.e0,X ) ;XX 5000,%0}0
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Suppose that nom-overlapping blocks are considered and the block
{Xny1s+eesXge} is refered to as X, . To any values that the block
Xh takes, we want to assign an approximation, Xk . We constrain
the alphabet of the set of possible approximation vectors to have
only 1024 members say. Thus if Xk has say, L=8 members each of

8 possible

which may take one of 256 values, we have a total of 256
values for gﬁ . Using vector quantisation, the compression ratio

achieved for this example is 1:64 .

A major task in vector quantisation is choosing the members of
the approximation set. These must be chosen such that the average
distortion obtained by approximating the possible outcomes by
members of the approximation set, is minimised. The minimisation is
over all possible approximation sets of a given size. There is no
known optimisation scheme; (except of course a complete search)
which will solve the general problem for any source. A solution is
generally evaluated by clustering. Some axioms proposed by Lloyd
which help us to do reasonable clustering are given below. We shall

then descibe a practical vector quantisation scheme.

Axiom 1.
Given a set of partitioms, S;,S;,.... 53y
an optimal quantizer should have for each cluster i, a centroid m;,
so that the following 1is true. The distortion associated with
representing the members of cluster i by -the centroid m; is
minimised. This gives us a criterion for choosing the centraids of

clusters given a certain partitioning scheme.

Axiom 2.

An optimal quantiser should have for a given set of centroids
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M, ={m1,...,mn}, a partitioning scheme S such that the distortions

{dy,...,dn} associated with representing the members of a cluster

(defined by the partitioning scheme §S) by their centroids M,is
minimised. This gives us a criterion for choosing a partitioning
scheme, granted that a set of centroids has been defined already.
The set of partitions may be found by evaluating the boundary
between every pair of centraads m; and mj . The boundary is defined
as the locus such that the following holds. All points to one side
of the boundary will be approximated by one centroid m; say, and all
points to the other side of the boundary will be represented by the
other centroid m; . The boundary chosen is the one which gives the
least average distortion. We shall refer to this boundary as B .
Granted a set of centrgads M, we define for each particular
centroid, the quantity B; defined as follows.

B}=vﬂ B, 2.12

j#i

This is a VORONOI cell associated with the particular centreéid mj «
The set of all these Voronoi cells, one each for the centroids,
My 3My yees define the best partitioning scheme S given a set Mj

of centroids.

These two axioms together define an optimum partitioning

scheme.

The clustering scheme most employed for coding purposes is
detailed briefly below. 1t was first applied to scalar quantities
by Lloyd-(1982) and to vector quantities by Forgy-(1965). A set of
cluster centroids M, is arbitrarily chosen, then a set of optimum

boundaries {Bj ,B; ,+..,By} defining a partitioning scheme S, is
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chosen 1in accordance with axiom2 above. Denote the resulting
average distortion by the quantity  D(Sp ). Granted these
partitions, we find the best centroids in accordance with the
axiom-1 above. Refer to the resulting set of centroids as M;3.
Using M,» find the best set of partitions, say S,2. Continuation of
this procedure will 1lead to at least a local minimum as far as

distortion associated with partitioning is concerned.

An image coder based upon vector quantisation

A vector quantisation scheme based almost exactly on the
method of clustering just described, has recently been reported by

Gersho and Ramamurthi- (1982).

A large training sequence is used to define a set of cluster
centres in the following manner. This approach was first suggested
by Linde, Buzo and Gray-(1980). Suppose it is decided that there
should be K groups or clusters. Each member is an N point sequence.
A set of K cluster centres is arbitrarily chosen. The training
sequence is then used to define new centroids and partitions as
described in the above. The whole training sequence is used at
every stage to define new centroids and then partition schemes.
When it 1is observed that this recursive scheme has converged, the
centroids form the set M, . This set is referred to as either a

library, codebook or a set of templates.

In the method of Gersho and Ramamurthi, each training sequence
vector 1is first classified as containing an edge or is a 'shade",

that is a region with no edge. Two different codebooks are designed
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for the two different data types.

The encoding procedure is simply that of finding the nearest
member of the codebook to a block under consideration. The channel
symbols or coordinate associated with this particular member is
transmitted. At the receiver the coded block is approximated by
this member of the codebook. Various block sizes were tried by
Gersho and Ramamurthi and bit rates of 0.5 to 1.5 bits/pixel were

achieved with reasonable quality.

A speech coder based upon vector quantisation.

The first use of a vector quantiser for speech coding was reported
by Smith in an abstract in 1963. The idea is remarkably like that
followed today. A vector quantisation scheme for speech coding
scheme was investigated by Ahmadi-(1980), this used a rather ad-hoc
quantisation scheme. Intelligible speech was reported to have been
obtained for very 1low data rates (around lkbit/sec) using this
method. The vector quantisation scheme described here was reported
by Linde, Buzo, Gray Gray and Robodello-(1980). The following is a
detailed description of how the codebook is designed. Of particular

note is the way in which the codebook is initialised.

Set a stage counter M to 1 initially., Suppose it is decided
that the codebook will contain K members. Set an initial centroid
Ay, of dimension L. (the blocks considered are each of dimension L).
Choose A;; to be the mean block of length L, by going through the

whole - training sequence. From A;y derive two centroids defined as

follows,
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A=A, te Ay =4, "¢ 2.13

€ 1is an arbitrary perturbation vector of dimension L. These two
vector are used as initial vectors for clustering. From these two,
a partition scheme is derived., This partition scheme is then wused
to define a optimum pair of centroids for this partition scheme. M
is replaced by 2M and the optimum pair of centroids are refered to

as A,, and A,, respectively.

From these two centroids we. obtain 4 new centroids by
perturbation by the vector ¢ of dimension L. These four
are used to define a new partitioning scheme. This partitioning
scheme, is then used to define a new set of 4 centroids by going
through the training scheme., Refer to this new set of centroids as
A,; + From these four define a new set of partitions then centroids

and so on. This is done until we obtain K centroids.

This set of centroids form the initial members of the
codebook, We are now ready to apply the clustering algorithm as

desribed in the previous sectiomn.

It has to be pointed out that for speech coding, vector
quantisation has not been applied directly to the speech samples but
upon the Log-Area-Ratios. Some frequency domain distortion function

is used.

Linde, Buzo and Gray reported on the wuse of 10 filter
coefficients for the all-pole filter derived after LPC analysis.
They employed a codebook of 256 members, to approximate the LPC

filter parameters. This resulted in a coding scheme with a reduced
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bit rate, from 6kbits/sec to l.4kbits/sec. They claim the reduction

in quality was small.



2.5 A bibliography of block quantisation schemes

Reviews
Flanagan et al.~(1979) give a thorough review of the accepted speech
coding schemes. Holmes-(1982) gives a briefer but nevertheless very
good review of current speech coding techniques. Jain-(1981) and
Netravali and Limb-(1980) give very thorough reviews of image codiﬁg
systems, which should be enough to give a strong grounding in the
field of picture coding. Wintz-(1972) gives a more detailed
description of transform coding schemes. Despite the age of this
paper, few fundamentally new schemes for transform coding have been
reported since this was written. Habibi~(1977) is also helpful in
the area of transform coding. A very thorough book dealing with the
whole field of speech and image compression is that by Jayant and
Noll-(1984). 1t covers most of the topics described in this and

chapter 5.

The following 1is a list of references dealing in more detail

with particular block coding schemes.

Transform coding.
Huang and Shulthies-(1963) first reported the use of transform
coding techniques for image compression. The papers by Andrews,
Kane and Pratt-(1969), Anderson and Huang-(1971), Landau and
Slepian-(1971), Pratt,Chen and Welch-(1974), Rao, Narashima and
Revuluri~(1975), and by Bisherurwa and Coakly-(1981) describe
transform coding schemes wusing the various orthogonal transforms;
DFT, DCT, DST, Haar, Hadamard and Slant transforms. For image

coding methods which include some classification, in order to better
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adapt the coding scheme to the short term statistics of the source,
see the papers by Gimlett-(1975) and Wen~-Hsuing Chen and
Harrison-Smith-(1977). These wuse an activity index to classify
blocks. Tasto and Wintz-(1971) use.a more subjective classification
scheme, with three classes. These are;

1) Blocks with a lot of detail.

2) Low intensity blocks with low detail and

3) High intensity blocks with low detail., The KLT is used to do the
coding, the basis functions differ with each class. Ngan-(1982)
paper 1is gives a comprehensive comparison of the WHT and DCT and
uses a human visual characteristic for adaptive bit allocation. 1In
addition classification according to activity is made. A hybrid
technique using transform coding of the rows of a picture and
differential pulse code modulation on the columns of the resulting

after transfomation of the rows.,

For speech coding the following papers by the following are
worth reading: Campanella and Robinson~(1971), Shum, Elliot and
Brown-(1973), Zelinski and Noll-(1977 and 1979) and Tribolet and
Crochiere-(1979). The latter paper deals with transform coding and
subband coding in a wunified manner and makes very interesting
reading. A further reference is the thesis by Frangoulis-(1978).
This details a very thorough investigation of various methods for
doing Walsh-Hadamard transform coding. A good presentation of

subjective results is given in this work.

Subband coding
This was introduced by Crochiere in 1976. The concept though is

very similar to that behind the channel vocoder. [Shroeder-(1966)]
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Other references are the papers by Crochiere-(1977), Esteban and

Galland-(1978) and Grauel-(1980).

Vocoders
The background for modelling the speech generation process is given
in the definitive book by Fant-(1961). The vocoder works by making
use of the speech model in deciding the important features to code.
The excellent review paper by Shroeder-(1966) descibes the different
types of vocoder. Other references are papers by Higgins-(1954) and
Shroeder-(1962) which describe an auto-correlation vocoder. The
concept of the voice excited vocoder is covered by the following
authors: Shroeder and David-(1960) David, Shroeder, Logan and

Prestigiacomo-(1972).

Linear predictive coding
For speech coding the references for this overlap with those for the
vocoder, The most definitive work on this is the paper by Atal and
Hanauer-(1971). Further work has been reported by Atal, in one of
these papers he details the effects of applying linear predictive
coding to the residual waveform [Atal-(1982)]. Viswanathan,
Makhoul, Shwartz and Huggins-(1982) have reported a scheme for
further bit rate reduction in a vocoder which does the following.
Only filter coefficients which are observed to be significantly
different from the previous filter coefficients are transmitted.
Atal and Shroeder-(1978) have reported the effects of doing
pole- zero analysis (using an ARMA model) of the speech waveform.

Yegananarayana(1981) also describes a method of finding the ARMA
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model parameters for speech segments.

In image coding, relatively little work has been reported,
concerning the use of a "space" varying filter model for the image
data generation process. The papers by Jain and Ranganath-(1980)
and Jain-(1981) report on the use of an auto-regressive model. The
thesis by D Mitrakos-(1983) detail some interesting coding
techniques which wuse a space varying auto-regressive model for
modelling an image. Maragos, Schafer and Mersereau-(1984) recently
published a thorough investigation of the use of an adaptive

two- dimensional predictor for image coding which is very noteworthy.

Vector quantisation
The first mention of this in a coding context was in the abstract by
Smith-(1963). Other work has been done at Stanford, and has been
reported 1in the papers by Linde, Buzo and Gray-(1980), Buzo, Gray,
Gray and Markel-(1980a and 1980b), Gray, Gray, Robodello and
Shore—(19815 and Abut, Gray and Robodello(1980). The theory and
some results on vector quantisation have also been presented by
Gersho-(1982), Gersho and Ramamurthi-(1982) and Fischer and
Dicharry-(1984). Ahmadi- (1980) and Wilson-(1983) have also
investigated the application of vector quantisation to speech
coding, They have investigated the clustering of speech according to

a spectral distance measure, defined in a transform domain.

Comparison of various methods
Some useful papers, assessing the relative merits of some coding

schemes have been reported by the following: Tribolet, Noll,
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McDermott and Crochiere-(1979) have published the results of the
comparison of adaptive transform coding, adaptive differential pulse
code modulation and subband coding. Matsuyama and Gray-(1982) have
reported the results of a comparison of vector quantisation based on

LPC and tree coding using adaptive prediction coefficients.
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CHAPTER 3 ADAPTIVE DATA COMPRESSION WITH MEMORY,

THE BLOCK CODING APPROACH
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3.1 Introduction

In this chapter we describe and investigate a class of coding
schemes which relies upon the representation of data blocks by

previously encoded blocks.

Most source coding schemes, to achieve good compression, need
to be designed with due regard to the statistics of the source to be
coded. Coding theorems have been proved for block coding, tree and
trellis coding. These theorems show that as some parameter is
allowed to go to infinity, these coding schemes may be designed to
work arbitrarily close to the rate-distortion function of a source.
[Shannon-(1959), Jelinek-(1969), Viterbi and Omura-(1974)] For these
schemes to achieve their promise however, they need to be well
designed and this requires a knowledge of the statistics of the
source to be coded. For most of the sources of interest the design
of a good coding scheme is not easy. This is because the statistics
of these are generally unknown apriori. Alternatively, the 1local
statistics of long sequences from the source may be observed to vary
from a block of data to the next. A source that exhibits this
property is referred to as one with time varying statistics.
Knowledge of the overall statistics of a source with time varying
statistics and coding according to these statistics does not
necessarily result in the lowest bit rate that may be achieved for
such a source [Viterbi and Omura-(1979) p526]. For such a source if
the statistics are varying slowly enough, it may be profitable to
employ a different coding scheme for each of the different
statistical classes which this source may exhibit from block to

block. To code such a source, apriori analysis 1is required;
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parameters describing the different statistical classes which may
occur, should be extracted. This is often impracticable. The
solution is to employ a coding algorithm which will enable the
reasonable compression of data and which will make few assumptions
about the character of the statistics of the source to be coded.
The common approach 1is to encode the data in blocks as follows.
[For example Zelinski and Noll- (1977 and 1979) in adaptive transform
coding] For each block the local statistics are evaluated. An
appropriate coding strategy is employed for this block, bearing
those statistics in mind. The receiver is sent symbols, identifying
either the statistics of each block or symbols indicating the coding
strategy used. In addition, the transmitter sends the symbols

associated with the coding of the source in the manner chosen.

In this chapter an alternative scheme to that described above
is studied. It shall be refered to as the MPPCD scheme. This
stands for ‘the Matching of Patterns in Previously Coded Data’. The
scheme 1is described in section 3.2. This method of coding is not
new. It has received however, very 1little attention and its
application has been until now been limited to the compression of
facsimile data. The results, for facsimile coding, have been
reported by Arena and Zarone-(1978) and Pratt, Capitant, Chen,
Hamilton and Wallis-(1980). It is our intention to generalise 1its
field of application and report on its performance. The MPPCD
scheme is thus applied to the coding of multilevel image data and
speech data. We propose several new variations to the scheme and
investigate their data compression abilities., This is done 1in the
situation where no assumﬁtions are made concerning the data to be

coded. A comparison of the performance is made between, in the case
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of noiseless coding, this scheme, the Shannon entropy and Huffman
coding. In the case of coding with error, a comparison is made
between this scheme the rate-distortion bound for the source and

Discrete Cosine Transform(DCT) coding.

The MPPCD scheme 1is then used in situations where we allow
ourselves some knowledge of the type of source being coded. For
image data this allows the consideration of alternative sampling
schemes and two dimensional blocks 1instead of one dimensional
sequences, In addition the effects of the use of distortion

measures other than the simple mean square error is studied.

For speech coding, the scheme 1is used to improve the

performance of the Linear Predictive Vocoder (LPC Vocoder).

The chapter concludes with a discussion of the merits and the

shortcomings of the MPPCD scheme.
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3.2 The basic coding scheme

The wunderlying principle of this scheme is as follows. A
block is coded by matching the patterns of this block with those of
previously coded data. It is referredto as the MPPCD scheme, where
MPPCD stands for the Matching of Patterns in Previously Coded Data.
In order to describe the operation of the scheme the following items
have to be defined.

1. A distortion measure is chosen and a distortion limit
d* is set. d* is a distortion value which should not be
exceeded as the coding scheme proceeds.

2. Sequences of lengths L;, L,,...Ly, are chosen where
Ly <Ly<...<Ly. ]

3. Choose a quantity C, where C is the number of 1levels
that may be chosen so that the distortion which results from
uniform quantisation to C levels is less than d¥.

4. The quantity N, the number of possible lengths is

chosen so that logzN is much smaller than logZC. An example

is C=256, N=4 and L;=1, L,=2, La=4, L,=8.

The coding scheme will be explained wusing the particular
values of C, N and L given above. The general case is an easy

extension. A flow chart for the scheme is given in figure 3.1.

Suppose that a pointer is set to i so that all data symbols
x;:j<i have already been coded and hence both the receiver and
transmitter know that these have been approximated by the symbols,
Xj:j<i. We consider a block of data {X; ,Xj,q,esesXi,7 }=§8 say. We
attempt to encode this sequence by sampling the set of previously

coded data % :j<i for a sequence of symbols which are similar to



-59-

XB . This sampling is done in an orderly and predefined manner and
we have exactly C tries. Associated with each of the C tries is a
coordinate value. It should be noted that the set of approximations
are known to both the receiver and the transmitter., If an
approximation Xa is found in one of the C sampling experiments on
the set of previously coded outcomes, such that d()_(8 ,28 )<d*
(d(x8 ,gs ) is the distortion between the two sequences 38 and
XB ), then the coordinate of this event in the set of previously
coded symbols is transmitted using log2C bits. An additional logzN
(in this case log24) bits are used to indicate the length of the
block coded. At the receiver, the sequence 38 is approximated by
28 . The counter is advanced by 8 positions and the coding scheme
proceeds exactly as described so far, In addition, at the

transmitter, the fact that the receiver will approximate Ka by 28

is noted.

If an approximation Ze which satisfies the distortion
conditions is not found, we attempt to code a block of smaller size.
Consider the block ({x; ,XFH,XHQ,XH3}=X4 say. We attempt to code
this sequence by sampling the set of previously coded data ¥;:j<i
for 4 symbols X* say, so that d(X* ,X* )<d¥. Exactly C sampling
experiments are conducted. If an approximation 1is found which
satisfies the distortion constraint, the coordinate of the
particular event is transmitted, using log2C bits. An additional
logzN bits are wused to indicate the block size. At the receiver,
X* is approximated by %* . The algorithm counter is advanced by 4.

The coding scheme as described so far, is continued.

Failure to find a sequence ¥* which satisfies the distortion



-60-

constraint, leads to an attempt to code {X; ,xLﬂ}=§2 say, employing
the previously coded data. Success at this, means the receiver
approximates Xz by gz and the counter 1is increased by 2, the
coding scheme proceeds as described so far. We next proceed by

trying to code a block of length 8.

Upon failure to code a block of length 2, the symbol x; is
quantized to the closest of C levels and transmitted using log,C
bits plus log,N bits to indicate the block size. The receiver
approximates x; by %; , the nearest quantization 1level. The

transmitter notes that the receiver has done this, The algorithm

counter is advanced by 1 and coding continues as described before.

At this point it is useful to indicate the way in which the
sequence of previously coded data is sampled in search of an
approximation to a sequence of interest. Two examples of how this

may be done are as follows.

a) Consider the sequence of approximations X;:j<i. If one
tries to code the block of data XV , of length N the following are
the blocks of previously coded data which are candidates for
approximating g” H
(X seeesRigts{Xigs e oo s Xiygqt 5 {Kigs e e eXiongd s e oo s {Kjpy o o o Kjgyat}

These are overlapping blocks. Alternatively non-overlapping blocks

may be considered?

{il"l gsee ’iI‘N} ,{ii_N_], e ,i|-2N} ,{)-{I_zu_p LI ’il-3N } gees ,{il_(c_”N_] geee ,iI_CN }
In the above two methods we almost inevitably have C sequences which

are not all distinct. To get over this the following may be dome.
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b) We construct N 1libraries, each contains sequences of
previously coded symbols, possibly distorted versioms of x;:i{j.
The different libraries contain sequences of different Ilengths,
LisLypsese,Ly. Sampling of the set of previously coded data C times,
for a block of length L, actually means searching the m-th library.
Suppose the counter for the algorithm is at position i. If the
search of the m-th library (library containing sequences of 1length
L, ) for a suitable approximation Z““ proves unsuccessful, then for
this library, the pointer value p=i is stored in memory. When the
pointer value goes beyond i+L, , then the sequence of approximations
{x; ,...,ihlm} is included in this library. This sequence goes to
the top of that library. The earliest in that library is removed.
If the search of the m~th library is successful, this library is
kept wunaltered. 1In the receiver, the following happens. Upon the
receipt of a symbol, m say, indicating the length of the block just
coded, the pointer value gq=i is stored, Note that the fact that a
block of length L, was coded implies that the coding of a block of
longer length was not possible. This in turn means that the
libraries containing sequences of length Lpg,,e..,Ly should be
altered. As the pointer value q goes past i+L,, where m+1<k<N, the
sequence {ii’iiﬂ""’ii+u} is 1included in the set of sequences
belonging to the k-th library. This sequence goes to the top of the
k-th 1library and the earliest member of this library is removed.

All members of this library are moved down one position.

To recapitulate then, there are N 1libraries of different
lengths maintained at the transmitter. Replicas of these are
available at the receiver. Each library is like a stack, whenever a

sequence of a given length is not codable, using the 1library of
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sequences of this 1length, a subsequent approximation for this
sequence, goes to the top of this stack, in both the transmitter and

receiver. The earliest member of this library is removed.

The scheme for sampling the sequence of previously coded data
as described in "a", is obviously inferior, as far as permitting
efficient compression is concerned. The scheme as described in "b",
is more complicated and requires more effort in implementation in
addition to requiring large quantities of memory for the storage of

the members of the N libraries. Most of the investigation

undertaken in this chapter employ the scheme described in "a".

At this stage the concept of an elementary block size should
be introduced. The coding process as described so far, may be
implemented with each of the original source symbolsl replaced by
blocks of these., The elementary block size is N if sequences of N
original source symbols are used in place of one symbol in the

scheme as described so far.

To conclude the description of the basic MPPCD scheme, we
consider how the algorithm is initialised. This is actually rather
obvious. There are two ways. The first is to have stored in memory
a set of randomly generated data, duplicates of which are kept at
both the receiver and transmitter. This sequence acts initially as
the set of previously coded data. Alternatively, initially almost
all generated data is transmitted. Sampling of previously coded

data is done only as far as previously generated data exists.
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previously coded data.

Update code counter i=i+Lj

Flow chart for basic MPPCD schenme




3.3 Performance with artificially generated data

3.3.1 Noiseless coding

The minimum coding rate achievable, in effecting the noiseless
coding of a stationary statistical source is the Shannon entropy of
the source [Shannon 1948a, theorem 3]. Suppose a source has a
sample space Q with C members w;,wjy,...,w;. Let the probability of

occurrence of w; be p; . Then the Shannon entropy for this source is

H@Q) = —Z pilogyp; 3.1

i

The unit of the coding rate is "bits per symbol" if the base of the
log is 2. Huffman coding, [Huffman-(1953)] is a scheme which, for

any given block size, achieves the minimum possible coding rate.

The results achieved when using the MPPCD scheme are compared
with the Shannon entropy and the Huffman coding rate for a variety

of situations.

1) Independent letter source. An artificially generated
sequence of random numbers are coded. The source sample space is
the set of integers 1 to 16. The histogram and the coding results
for this source are given in figure 3.2 and table 3.1l. The MPPCD
scheme as expected, is inferior to the Huffman coding 'scheme. It
nevertheless achieves reasonable compression considering that no

prior information about source statistics is used.

The compression efficiency of the scheme, for both the methods

"a" and "b" of sampling the set of previous outcomes, improves as

the elementary block size is increased.
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HISTQCRAM OF OCCURRENCES FOR ARTIFICIALLY GENERATED
INDEPENDENT LETTER SOURCE

PLRAM=2Q

0.35F

0.20F

NORMALISED FREQUENCY

OUTCOME VALVE

HISTQGRAM OF OCCURRENCES FOR ARTIFICIALLY GENERATED
INDEPENDENT LETTER SOQURCE

PARAM=40Q

B35

0.30F

NORMALISED FREQUENCY

OUTCOME VALUE

Figure 3.2. Histograms for independent letter sources
coded by MPPCD scheme
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Histogram parameter=20.0

Shannon Entropy: 2.2294 bits/symbol
Huffman Coding Rate: 2 3426 bits/symbol

MPPCD: (Sampling Scheme="a'')

L1=1, L2=2, L3=4, L4=6; Elementary block size=1, Rate= 3.6633 bits/symbol
Elementary block size=2, Rate= 3.3431 bits/symbol

Elementary block size=3, Rate= 3.1908 bits/symbol

L1=1, L,=2, L,=3, L4=4; Elementary block size=1, Rate= 3.4671 bits/symbol
Elementary block size=2, Rate= 3.2308 bits/symbol

Elementary block size=3, Rate= 3.1908 bits/symbol

2 3

Same source as above but more data samples.

Shannnon Entropy: 2 .1365 bits/symbol
Huffman Coding rate: 2.2422 bits/symbol.

MPPCD: (sampling Scheme="b")

Ll=1, L2=2, L3=4, L4=6; Elementary block size=1, Rate= 3.2546 bits/symbol
Elementary block size=2, Rate= 3.0679 bits/symbol

L.=1, L

1 =2, L3=3, L

=4; Elementary block size=1, Rate= 2.9897 bits/symbol

2 Elementary block size=2, Rate= 2.9435 bits/symbol

4

Table 3.1 Results of coding independent letter source using the
MPPCD scheme.
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Table 3.1 (continued)

Histogram parameter=40 .0

Shannon Entropy: 1.7758 bits/symbol
Huf fman Coding Rate: 1.9151 bits/symbol

MPPCD: (Sampling Scheme="a')

L1=1, L,=2, L,=4, L,=6; Elementary block size=1,
Elementary block size=2,
=4; Elementary block size=1l,

Elementary block size=2,

4
=3, L

2
L1=1, L2=2, L

3

3 4

Rate= =2.9868 bits/symbol
Rate= =2 .6989 bits/symbol
Rate= =2,7350 bits/symbol
Rate= =2 .4451 bits/symbol

Same source as above but more data samples.

Shannnon Entropy: 1.7607 bits/symbol
Huffman Coding rate: 1.8977 bits/symbol.

MPPCD: (sampling Scheme='"b")

=6; Elementary block size=1,

Elementary block size=2,
L,=1, L,=2, L,=3, L,=4; Elementary block size=1,
Elementary block size=2,

Rate= 2.,5603 bits/symbol
Rate= 2.5680 bits/symbol
Rate= 2.3325 bits/symbol
Rate= 2.3329 bits/symbol
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2) Norindependent source. An artificially generated sequence
of non-independent random numbers are coded. The source is 1l-st
order Markov, where each outcome x;=a4 is dependent only upon the
value of the immediately preceding outcome, X =@ . The sample
space of this source 1is the set of integers from 1 to 16. The
symbols of the 1-st order Markov source are generated by picking as
the k-th outcome a symbol from the i-th of C subsources, if x;, =w;.
The transition matrices with entries p(xk=aulxk4=aﬁ) ((i,i)th
entry ) for all i and j for two particular examples are shown in

tables 3.2a and 3.2b. The overall outcome frequency histograms are

shown in figure 3.3.

The coding rates for the MPPCD scheme, the single letter
Shannon entropy values and the rate achieved when doing single
letter Huffman coding are shown in table 3.3. It may be observed
that the MPPCD scheme achieves better compression than the single
letter Shannon entropy and the single letter Huffman coding rates.
It should be noted, however that this is an easy source to code.
With prior knowledge of the character of the source, we know that we
can code these sources at under 2 and 3 bits respectively, for the

two sources using differential encoding.

3) Sources with time varying statistics. An artificially
generated source with the following characteristics is coded. The
source 1s 1-st order Markov but where the transition probability
matrix values are occasionally altered. The overall transition
probability matrix is shown in table 3.4. The occasional variation
of the transition matrix makes the design of a coder that exploits

the basically Markov nature of the source, difficult.
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Figure 3.3. Histograms for two examples of Markov source
’ used in MPPCD coding.
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Single letter Shannon entropy: 3.9242 bits/symbol
Single letter Huffman coding rate: 3.959 bits/symbol

MPPCD: (Sampling Scheme="a'"')

L1=1, L2=2, L3=4, L4=6; Elementary block size=1, Rate= =3.6535 bits/symbol
Elementary block size=2, Rate= =3.3432 bits/symbol
Elementary block size=3, Rate= =2.7255 bits/symbol
L1=1, L2=2, L3=3, L4=4; Elementary block size=1, Rate= =3.4479 bits/symbol

Elementary block size=2, Rate= =3,1798 bits/symbol
Elementary block size=3, Rate= =2 .6486 bits/symbol

Same source as above but more data samples.

Single letter Shannnon Entropy: 3.9401 bits/symbol
Single letter Huffman Coding rate: 3.98 bits/symbol.

MPPCD: (sampling Scheme="b"j

L1=1, L,=2, L,=4, L,=6; Elementary block size=1, Rate= 3.438 bits/symbol

3 4 Elementary block size=2, Rate= 3,2083 bits/symbol
=2, L3=3, L4=4; Elementary block size=1, Rate= 3.2427 bits/symbol
Elementary block size=2, Rate= 3.0739 bits/symbol

2

L1=1, L2

Table 3.3. Results of coding non independent (lst order Markov)
source using MPPCD scheme.
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The results of the performance of the MPPCD scheme are given
in table 3.5; along with these are the single letter Shannon entropy

and the single letter Huffman coding rate.

It may be observed that the MPPCD scheme achieves a
significantly lower coding rate than that obtained by single letter
Huffman coding. Furthermore considering the complexity of the
mechanism for generating the data it is unlikely that the underlying
Markov character of the source could be discovered and advantage

taken of this, in a normal coding environment.

The method has the following disadvantage though; 1if the
period between instances when the local statistics change, is too
short, its compression ability is greatly reduced. By too short, it
is meant that this period is of a similar order of magnitude to the
memory of the MPPCD coding scheme. For example, take the scheme
whose results have been given in table 3.5. I1f the "elementary
block size" is one, the size of the codebook and hence the memory of
the coding system is 16. The period between instances of changes in
statistics should be much greater than 16. This accounts for the

poorer result when an elementary block size of 2 is used.

3.3.2 Coding with a fidelity criterion

The MPPCD scheme is used to code an artificially generated
source, where we allow distortion. A distortion limit, or fidelity
criterion, is set. We attempt to code a source at the smallest bit

rate manageable and still make sure that the resulting distortion is



4606
0376
0012
.0000
0315
0412
0158
0667
0509
0461
.0558
0521
0582
.0582
0133
0109

Table

0681
3912
0725
0110
.0000
0176
0703
.0703
0769
.0505
0220
.0308
.0000
0154
.0308
0725

4.

.0000
0664
3763
.1710
.0000
0604
0121
0443
.1630
.0523
0121
0423
.0000
.0000
.0000
.0000

.0000
0122
.2068
3431
.0000
0292
.0000
.0000
.0973
.0535
0925
0292
.0000
.0900
.0000
0462

.1012
.0000
.0000
0000
3852
.0233
.0817
.0700
.0039
.1556
.0000
.0000
.0389
.0000
.0350
.1051

.0653
0158
.06 14
.0257
0119
.4099
0416
.0000
.0000
0554
.0297
.0000
.1267
.0455
.0000
.1109

0374
0966
0165
.0000
.0685
0654
.3209
.0000
.0000
0779
0592
0623
.1184
0343
.0156
.0280

Transition probability matrix
varying statistics.
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0875
0519
0357
.0000
0276
.0000
.0000
4619
.0178
.0269
.0502
.Q713
.0227
0729
.0000
.1005

for

.0518
0422
.1024
0493
.0000
0000
.0000
0139
4058
0265
.0240
0455
0759
.0885
0164
0556

source

.0729
0430
.0486
0411
0766
0542
0449
.0000
.0393
3701
0598
0374
0654
.0093
0122
0262

with

.0883
.0188
.0094
0714
+0000
.0282
.0338
0545
.0338
.0583
3327
0226
.0019
0620
.0883
{0959

time

0739
0246
.03450
0197
.0000
0000
0328
0722
0575
40345
0181
4959
.0000
.0000
.0296
.1067

.1002
.0000
.0000
0000
0235
.1343
.0832
0320
.1301
0746
.0000
0021
.3049
0405
0469
0277

0974
0139
.0000
0736
.0000
0477
.0219
.0875
1392
0099
.0616
.0000
0398
.3559
0497
.0020

0423
.0500
.0000
.0000
.0385
0000
0192
0000
.0462
0269
.1769
0731
.0846
0962
3462
.0000

0182
0564
.0000
0315
0415
.0929
.0133
.1028
.06 97
0249
0846
.1078
0232
0017
.0000
3317
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Single letter Shannnon Entropy: 3.9327 bits/symbol
Single letter Huffman Coding rate: 3.9557 bits/symbol.

MPPCD: (sampling Scheme="b")

L1=1, L2=2, L3=3, L4=4;; Elementary block size=1, Rate= 2.9853 bits/symbol
Elementary block size=2, Rate= 3.8350 bits/symbol

Table 3.5. Results of coding pseudo-Markov source (Markov source

with time varying transition probability matrix) with
MPPCD scheme.
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less than the limit set.

To compare the performance of the scheme with the
theoretically attainable limits, the rate-distortion (r-d) function
is introduced. The minimum rate (in nats) theoretically attainable,
for a given source with probability measure function q(x), so that
distortion is less than some value d¥, for different values of ax,
defines the rate distortion function. Its formal definition is

given thus,

R@" = pgllg)l‘q(x) J: Pﬁle)lnm(xp)(:% dydx 3.2
such that
d’ < ;[q(x)l p(y|x)d (x,y)d yd x 3.3
and
1= J pOIxdy  Vx 3.4
®

d(x,y) is a distortion measure which is chosen beforehand. For the
tests conducted in this section the mean square error distortion
measure is employed. The rate distortion function and the source
coding theorem serve as the formal basis for the subject of data
compreséion. Details of these may be found in the publications by
Shannon-(1959), Gallagher-(1968), Berger-(1971), Viterbi and

Omura- (1979).

A source whose rate-distortion function is easily bounded from
above is used to test the MPPCD scheme. This 1is a 1l-st order
auto-regressive source, with a variance 02 and correlation

coefficient p.
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The upper bound on the rate-distortion function for this
source is given by the rate-distortion function of the Gaussian with

similar statistics. This upper bound is given below.

. 1 1—p?
R ,p) = Jmax[0,21n<d.(1 —2pcosw+p2)):| dw 3.5

The results of coding are presented in table 3.6. These results are
compared to the results obtained by doing discrete cosine transform
coding, in addition to the theoretically attainable rate. Discrete
cosine transform coding is chosen as a good example of a practical
source coding scheme for the following reason. This has been shown
empirically to give good results, especially in the case where the
source being coded may be modelled as a first order auto-regressive
source. The papers by Ahmed, Natarajan and Rao-(1974) and Kitajima,
Saito and Kuroba-(1977) show the closeness of the results of
discrete cosine transform (DCT) coding to the theoretical results
(obtained by doing finite length Karhunen-Loeve or Hotelling
transform coding) for finite length blocks. It may be observed that
the results of doing MPPCD coding are worse than those for DCT
coding. This is to be expected since DCT transform coding is close
to optimal for the source class considered. It is also to be noted
that as the elementary block size is increased, the coding rate is

reduced.

Most of the coding inefficiency of the MPPCD scheme may be
attributed to the fact that extra bits are sent to indicate the
block size. This is one of the reason for an increase in coding

efficiency when the elementary block size is increased, this being
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Autoregressive source generated as y(n)= y(n-1)+e(n). e(n) is a
sequence of outcomes from an independent, Laplacian distributed
random variable. o’=variance of y(n) sequence.,

ol= 0.956

p= 0.8

d = 0.1, (-10db); R(d)< 0.923
MPPCD: (sampling Scheme='"b")

L1=1, L2=2, L3=4, L4=6; Elementary block size=1, Rate= 2.6483 bits/symbol
Elementary block size=2, Rate= 2.2979 bits/symbol
L1=1, L2=2, L3=3, L4=4; Elementary block size=1, Rate= 2.5417 bits/symbol

Elementary block size=2, Rate= 2.1117 bits/symbol

Coding results, not including the 2 bits for block size representation:

L1=1, L,=2, L3=3, L,=4; Elementary block size=1, Rate= 1.6945 bits/symbol

2 4 Elementary block size=2, Rate= 1.6894 bits/symbol
ol= 0.9562
p= 0.8

d = 0.02 (-=17db); R(d )< 2.084
MPPCD: (sampling scheme="b")

L1=1, L,=2, L3=3, L4=4; Elementary block size=1, Rate= =4 .4475 bits/symbol

2 Elementary block size=2, Rate= =4.0729 bits/symbol

ol= 0.9562
p= 008
d = 0.04 (-14db); R(d )< 1.584

MPPCD: (sampling scheme="b")

L1=l, L2=2, L3=3, L4=4; Elementary block size=1, Rate= =3.,5463 bits/symbol
Elementary block size=2, Rate= =3.1669 bits/symbol

Table 3.6. Results for coding a 1-st order auto-regressive
source with a fidelity criterion. Method is MPPCD
scheme.
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Rate in bits/symbol Distortion
4.0 6 .53383E-03 21.8485dB
3.5 9.70505E-03 20.1300dB
3.0 2 .02 198E-02 16 .9422dB
2.5 3.10698E-02 15.0767dB
2.0 6 .38411E-02 11.9489dB
1.75 7 .48229E-02 11.2596dB
1.5 9.73681E-02 10.11584dB
1.0 1.91715E-01 07.1734dB

Table 3.7. Results for coding a l-st order auto-regressive

source with a fidelity  —criterion. Method is

Discrete-Cosine-Transform coding. Correlation
coeff=0.8



because proportionately fewer bits are used to encode the block size
coded. It is expected therefore that better compression may be
achieved if. more efficient methods are used to code the block

lengths.
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3.4 Application to speech coding

We shall now leave the artificially generated sources and
consider the application of the MPPCD scheme to real data, in this
case speech. For the results presented in this section three speech

sentences are employed. The speech files are these:

1) A male speaker saying AN APPLE A DAY KEEPS THE DOCTOR
AWAY (SR8KK).

2) A second male speaker saying A BIRD IN THE HAND IS WORTH TWO IN
THE BUSH (KABITH).

3) A female speaker saying A BIRD IN THE HAND IS WORTH TWO IN THE

BUSH (TABITH).

For all the above files the speech was low-pass filtered to
3.4kHz. and sampled at 8kHz. The first file was digitised to an
accuracy of 12 bits per sample and the second and third to an
accuracy of 10 bits per sample. Portions of these files are plotted

in figures 3.4a, 3.4b and 3 .4c.

For all investigation presented from here onwards, the set of
previously coded symbols is sampled, as explained in method "a" of
section 3.2. 1In this section no prior knowledge of the speech file
to be coded is presumed. No attempt is made to take advantage of

some of the known characteristics of speech.

The coding scheme used, is almost identical to that described
in section 3.3.2. There is some difference though, therefore the

scheme will be described again.,

Presume that the coding pointer is at i, and all samples
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% :j<i have been coded. The sequence of approximations Xj:j<i to
the previous symbols is known to both the transmitter and receiver.
We shall consider coding sequences {xi,xi+1,...,xH¢M4}=xW of
length Ly . Two examples of what is done here, which show the
differences between these and the scheme described in section 3.3.2

are as follows:

a) Normalisation with respect to the mean. Block lengths
Lysee.,Lg are considered, with Lg=64, L;=32, L,=16, L;=8, Ly=4 and
L,=2. Any block considered, XLk , has its mean value extracted,
quantised and coded separately using 6 bits. The quantised mean
Mk , is subtracted from . Let ytk =xk -MLk . Then the job of
coding the sequence g“ is undertaken. This 1is effected by
searching the set of previously coded outcomes for an approximation,
g“ ; any candidate for the purpose of approximation has its mean
subtracted, giving Tl =XW -mhe Coding is a success if
d(y 4t 7% qute ) < a*

If there is no success in coding gh , after having searched through
a portion of the set of previous outcomes, the sequence gh is
quantised using 7 bits each for the two source symbols. On every
occasion that a block is coded 17 bits are transmitted. The first
three bits indicate the block length, If the block length 1is 64,
32, 16, 8 or 4, the next eight bits indicate the coordinate in the
set of previous outcomes, where an approximation is to be found and
the last six bits indicates the mean of the block in question. If
the block length is two, the 1last fourteen bits indicate the

quantised values of the symbols K“

b) Normalisation with respect to both mean and variance. The
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only difference between this and the strategy just descibed is that
the blocks to be compared are normalised to have zero mean and unity
variance., In addition L;=3. On every occasion that a block is
coded, 24 bits are transmitted. For blocks greater than L, in
length, the first three bits indicates the block length. The next
six bits 1indicate the block standard deviation, the next seven the
block mean and the eight following these, the coordinate in the set
of previous outcomes, where an approximation is to be found. If the
block size is L,;, the next 21 bits are allocated, with seven bits

each to the three symbols gL‘ .

A flow chart for the schemes is given in figure 3.5. The
distortion measure considered is the mean square error. The results
for coding the speech files mentioned above are given in table 3.7.
Figure 3.6 shows an example of the waveform distortion obtained by
using the MPPCD scheme. The mean square error measure is possibly
not the best error measure for speech coding. For this coding
scheme, as described so far a single letter distortion measure is
necessary and the mean square error measure is a convenient one to
use., (It should be pointed out that the absolute error criterion,
is also a convenient error measure to use. This 1is because for
implementing the MPPCD scheme, with normalisation with respect to
the mean, the whole coding scheme may be implemented without having

to do any multiplications)

For comparison purposes, the same speech files are coded using
the discrete cosine transform (DCT). The scheme used is an adaptive
scheme similar to that described by Zelinski and Noll-(1977). The

contents of this paper were explained in chapter 2, section 2.2.3.
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Set code counter i to 0

Set block size counter j to N

Y

Consider block X of length L,.
Normalise this wrt mean only
or wrt mean and variance.
Code mean with m bits and
standard deviation with v

Decide distortion

d(.,.)

Decide distortion limit d

neasure

Choose set of L 'Lz""'Ln
where L1<L2<... LN

Refer to input data .o x(.)
and previously coded input
data as x

Refer to x(i+l),...,x(i+Lj) as
X

Let j=i1 bits. The normalised block is
refered to as Y. Sample set
of previously coded symbols C
times to find normalised block
g . of length L. such that
&«¥,1)<d” J
N
NO 1s it
. Possible to find
) NO ¥ such that d(¥,¥)<d"
Is j=27 after C samples of the
set of previously
coded data?
YES
Code x(1+1),...,x(i+Ll) with The coordinate of block Y may

log,C bits.

be coded with log ~ bits. At
the receiver, this“information
is used to obtain a block for
approximating Y from
previously coded data.

Figure 3.5

Transmit log, N bits to
indicate block size, in
addition to the 1log,C bits
alluded to before.In dddition

transmit m bits for mean of X
(possibly also v bits for
standard deviation)

Keep a store in both
transmitter and reveiver of
previously coded data.

\

Update code counter i-i+Lj

Flow
speech

chart for
coding with mean

MPPCD scheme

mean and variance normalisation

applied tc
normalisation or
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Speech
File

SR8KK
SR8KK
SR8KK
SR8KK
SR8KK
SR8KK
SR8KK
KABLTH
KABLTH

TABLTH

SR8KK
SR8KK

SR8KK

RABLTH
KABITH

KABLTH

TABLTH
TABLTH

TABLTH

Table 3.8

tl)tz ’{"3 ’L4’
5767

32,16,12,8,
6,4,2
32,16,12,8,
6.4 2
32,16,12,8,
6.4.2
32,16,12,8,
6‘4.2
/s /,48,24,
12,6,3
/> /,48,24,
12 ,6,3
/, /,48,24,
12,6,3
/, /,68,24,
12,6,3
/!, /,48,24,
12,6,3
/, /,48,24,
12,6 ,3

48,32 ,24,16,
12,6,3
48,32,24,16,
12,6,3
48,32,24,16,
12,6,3

48,32,24,16,
12,6,3
48,32 ,24,16,
12,6 ,3
48,32,24,16,
12,6 ,3

48,32 ,24,16,
12 ,6,3
48,32 ,24,16,
12,6,3
48,32,24,16,
12,6,3

Results

Memory Mean Variance
bits

size
1024
1024
1024
1024
1024
1024
1024
1024
1024

1024

512
512

512

512
512

512

512
512
512

6

6
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bits
0

0

19

19

19

19

27

27

27

27

27

27

24

24

24

24
24

24

24

24

24

Bits/ Error
block limit

0.2

0.1

0.05

10.025

of coding speech by the MPPCD scheme.

Rate
11.0867kb/s
12 .6016kb/s
14 .464kb/s
15 .984kb/s
9.058kb/s
11.257kb/s
13.876kb/s
8.509kb/s
11.686kb/s

9.353kb/s

8.143kb/s
11.343kb/s

13.0227kb/s

8.06kb/s
11.1917kb/s

12 .976kb/s

8.5056kb/s
11.024kb/s

13.21kb/s

S/N ratio
10 .28dB
12 .613dB
15 .405dB
17 .56dB
10 .57dB
13.228dB
15 .65dB
10 .4105dB
13.737dB

10 .4342dB

10 .64dB
14 .57dB

16 .6dB

10 .644dB
14 .588dB

16 .394dB

10.628dB
14 .52dB

16 .41dB



Speech file

SR8KK
SR8KK
SR8KK

KABITH
KABITH
KABITH

TABLITH

TABITH
TABLITH

SR8KK
SR8KK
SR8KK

KABITH
KABITH
KABITH

TABITH
TABITH
TABITH

SR8KK
SR8KK
SR8KK

KABITH
KABITH
KABITH

TABITH

TABITH
TABITH

Table 3.9
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Block

Block size period Window Rate S/N ratio
128 non-overlapped 128 None 8kb/s 9.953dB
128 nomoverlapped 128 None 12kb/s 12 .946dB
128 non~overlapped 128 None l6kb/s 15.265dB
128 nomoverlapped 128 None 8kb/s 11.6618dB
128 non—-overlapped 128 None 12kb/s 11.6618dB
128 non-overlapped 128 None 16kb/s 16.16dB
128 non-overlapped 128 None 8kb/s 11.58dB
128 non-overlapped 128 None 12kb/s 14.06dB
128 non-overlapped 128 None 16kb/s 16 .09dB
128 overlapping 96 Trapezoidal 8kb/s 9.556dB
128 overlapping 96 Trapezoidal 12kb/s 11.89dB
128 overlapping 96 Trapezoidal 16kb/s 14.35dB
128 overlapping 96 Trapezoidal 8kb/s 10.865dB
128 overlapping 96 Trapezoidal 12kb/s 13.11dB
128 overlapping 96 Trapezoidal 16kb/s 14.625dB
128 overlapping 96 Trapezoidal 8kb/s 10.45dB
128 overlapping 96 Trapezoidal 12kb/s 12.98dB
128 overlapping 96 Trapezoidal 16kb/s 14.78dB
128 overlapping 96 Tukey 8kb/s 9.166dB
128 overlapping 9 Tukey 12kb/s 11.65dB
128 overlapping 9 Tukey 16kb/s 13 .84dB
128 overlapping 96 Tukey 8kb/s 10.51dB
128 overlapping 96 Tukey 12kb/s 12 .76dB
128 overlapping 96 Tukey 16kb/s 14.1dB
128 overlapping 96 Tukey 8kb/s 10.134dB
128 overlapping 9% Tukey 12kb/s 12 .3486dB
128 overlapping 96 Tukey 16kb/s 14.055dB

Results of speech coding, employing adaptive Discrete
Cosine Transform (Adaptation method by Zelinzki and
Noll-(1977))

Decription of the windows:

Trapezoidal: The data 1is multiplied by a weighting
function w(n) where

w(n)=1; 33 { n £ 9%

w(n)=(n-0.5)/32; 1 < n £ 32

w(n)=(128.5-n)/32; 97 < n £ 128

Tukey: The data is multiplied by function w(n) where
w(n)=1; 33 < n £ 9%

w(n)=0.5[1-cos{(n-0.5)7/32}]; 1 < n £ 32
w(n)=0.5[1-cos{(128.5~n)7/32}]; 97 < n £ 128

Windowed blocks of 128 data symbols are overlapped so
that the last 32 symbols of a block overlap with the
first 32 points of the next block.
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We believe that this scheme is one of the best in terms of signal to
noise ratio, of the well known waveform coding schemes (also noted
by Fehn and Noll-(1982) section VII). It is therefore instructive
to compare the MPPCD scheme’s results with those attained by this.

The transform coding results are given in table 3.8.

3.4 .1 Discussion.

The results of the coding scheme in terms of signal to noise
ratio are encouraging, showing lower distortion for the same rate
compared with the DCT transform coding results. This is contrary to

the findings of section 3.3.2 for the following reasons.

1) The normalisation with respect to the mean and variance
allows previous blocks to be employed which would have been
considered otherwise unsuitable for coding a present block., This
consequently allows larger blocks to be coded using previous blocks

with the drawback that some extra bits are required to code the mean

and variance.

2) Some aspects in the character of speech, particularly its
semi-periodic nature for voiced segments, means that the chances of
finding a block with a similar shape, located one pitch period in
the past, is large. This property is not exploited by the method of

Zelinski and Noll for the transform coding of speech.

3) During silent blocks, due to the distortion measure used,

the coding of large blocks is facilitated.

Listening tests showed the following properties of the coding
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scheme.

At all rates, the resulting speech was clearly noisy. The noise is
easily perceived as a roughness of the coded speech. Comparison
with transform coded speech indicates the following preferences.

For rates greater than 12kb/s the transform coded speech is
prefered, although transform coding achieved worse signal to noise
ratio values. The results of the MPPCD scheme were distinctly
noisier, although as expected the higher frequencies are better
preserved. The transform coding results for nom-overlapping blocks

were considerably less preferable to those with overlapping blocks.

Interestingly the transform coding scheme performs poorly at
8kb/s, the speech has a burbly character, at times reminding one of
birdsong. This is also noticable at 12kb/s, but whereas at this
rate the result is acceptable, it is not so at 8kb/s. For the MPPCD
scheme, despite the large improvements in signal to noise ratio with
increasing bit rate there 1is surprisingly 1little reduction in

perceived noise.

For lower bit rates, that is below 12kb/s, the MPPCD scheme is
preferable to transform coding by the method of Zelinski and Noll.
At high bit rates the MPPCD scheme as described thus far is not

preferable.,
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3.5 Application to Image coding

In this section we present the results obtained when coding
images using the MPPCD scheme. Two 128 by 128 images are wused for
all tests conducted. These are a portrait image and a picture of a
telephone box; they are refered to as AFTAB and TELEBOX. These two
images are shown in figure 3.7. They represent two types of image.
AFTAB is an easy image to code, it contains relatively few features
and edges. TELEBOX is a more difficult image to code, having more

features and a lot of edges.

The coding scheme employed is exactly the same as that wused
for speech coding as described in section 3.4. No use is made of
the 2-dimensional nature of the data. The input sequence considered
is a ]-dimensional stream of symbols as would be generated by the
line by line scanning of an image. Each line is scanned from left
to right. Coded blocks are normalized with respect to the mean as
described in section 3.4, with block lengths L;=2, L,=4, Ly=6, L4=8,

Lg=12, Lg=16 and L,=32.

The coding results are shown in figure 3.8. For comparison
purposes, these images are also coded using a non-adaptive discrete
cosine transform coding algorithm. The bit allocation scheme for
each frequency component is similar to that described in section

2.2.3. The results are shown in figure 3.9.

3.5.1 Discussion

Very satisfactory coding results are obtained using the MPPCD

scheme with the image AFTAB. Although the signal to mean square
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128x128 AFTAB

128x128 TELEBOX

Figure 3.7 Original pictures:- uncoded.
Displayed with 30 level grey scale resolution.
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Rate = 1,327 bits/pix. Rate = 1.203 bits/pix.
S/N = 29.002 dB S/N = 26.203 dB
mem sz = 1024 mem sz = 1024
(@) )
Rate = 1.07 bits/pix.
S/N = 23.232 dB
mem sz = 1024
(¢)
Rate = 1.69 bits/pix. ' Rate = 1.465 bits/pix.
S/N = 25.33 dB S/N = 22.859 dB
mem sz = 1024 mem sz = 1024
) e )
Figure 3.8 Results of image coding via straightforward MPPCD
scheme. Blocks are normalised with respect to the mean.
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Rate = 2.00 bits/pix. Rate = 2.00 bits/pix.
S/N = 30.88 dB S/N = 29.61 dB
total = 32768 bits total = 32768 bits
(Q) (b)
Rate = 1.50 bits/pix. Rate = 1.50 bits/pix.
S/N = 29,48 4B S/N = 27.97 dB
total = 24576 bits total = 24576 bits
<) (J>
Rate = 1.00 bits/pix. Rate = 1.00 bits/pix.
S/N = 27 .83 dB S/N = 25,70 dB
total = 16384 bits total = 16384 bits
) &)

Figure 3.9 Results for DCT transform coding of images. Block sizes
are 16x16. The scheme is non-adaptive and 6x16x16 bits
are sent initially, to indicate the standard deviation
for each frequency pixel. This is used at the receiver
to evaluate bits allocated to each frequency pixel.
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noise ratio achieved is not as impressive as that obtained using the
Discrete Cosine Transform, the results are subjectively just as
good. The drawback of the method, in contrast to DCT coding, 1is
that it produces images with jagged edges, where the transform
method smoothes these. Detail however, is reasonably well
preserved, as may noticed with the fencing at the middle

right-hand-side of the picture TELEBOX.
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3.5.2 Consideration of Image properties.

3.5.2.1 A description of images

Images are coded for broadly speaking two purposes, these are
the following:
a) The storage or transmission of images for informal human use.
For example, the transmission or storage of pictures for
entertainment or the transmisson of images for conferencing.
b) The storage or transmission of images for formal use. By this,
it is meant that some rather important information is to be derived
from the image, either by humans or by machines. For example the
storage or transmission of % ray images or remotely sensed data. An
example, of an occasion when a machine will use coded data 1is the
storage of templates for the automatic interpretation of pictures by

robots.

For each application, the distortion measure employed in
coding an image should be different, being designed so as to
introduce 1little or no distortion of the features which are to be

extracted and employed by the user of the image.

All the work presented here presume that coding is for
application "a" above, distortion is undesirable, but may be
tolerated. All we are concerned with is that the picture '"looks"
reasonable, not terribly different from the original. 1In this case
a knowledge of the human visual system may be useful when choosing
an error measure. We shall therefore briefly review some of the
important properties of the visual system. Firstly, however the

description of an image in language appropriate for our purposes

will be given.
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A digitised image is represented by a 2-dimensional block of
numbers, {Xﬁ }. There is no obvious way in which this block of
numbers {x” } may be sequenced for serial transmission, serial
processing or serial storage., A process that represents the
2-dimensional block of numbers as a 1-dimensional sequence of
numbers, 1is called a I'scanning" scheme. The user of image data

chooses a scanning scheme to suit his needs.

An image is composed of features. For example an object or
objects and a background (the background may also.be considered as
just another one of the objects of an image). The features are
distinguished from each other, in a manner of speaking, by a
uniformity of texture within the body of a feature. The objects are
separated by boundaries. A boundary is characterised by a rapid

change in average pixel value or area texture.

When looking at an image, the pixels are not seen as
individual entities with different intensities. The tendency is to
interpret the image as a set of objects separated by boundaries. A
coding scheme, therefore should preserve the boundaries of an object
and within this object, the texture should not be altered, changes
in pixel wvalues are allowed except that these changes should not
destroy the visibility of the boundaries. In addition pixel values
within the boundaries of an object, may be altered, provided that

the texture as it is perceived, is unchanged.

The variation in intensity, which may be perceived, is
dependent on the brightness of the region. This is tested by the
ability to notice a spot of brightness I+ Al in a background region

of intensity I. It has been noticed that the value AI at which the



-097-

spot 1is just noticable is proportional to I so that AI/I is almost
constant for a region of I near the middle of the range of
intensities perceived. The response is shown in figure 3.11. The
constancy of AI/I is called Weber’s law|[Gonzalez and Wintz-(1977)].
At each end of the range of intensities, the value AI/I is larger.
Thus when coding, one may allow more distortion in regions where the
average intensity 1is high and also in regions where the average
intensity is very low. 1In the middle of the range of intensities,

less distortion or noise should be allowed.

The spatial frequencies which may be percieved are dependent
upon the contrast of the signal (see Rozenfeld and Kac-(1982) p56).
A distortion measure may be wused which allows more low and high
frequency noise, when the contrast associated with thé tekture

within a region falls below a given threshold.-

Some of the properties of the visual system have been used to
design a distortion measure to be wused with the MPPCD scheme.
Before describing - this, the following point about the MPPCD scheme

ought to be discussed.

The scheme is based upon coding blocks of data of sizes 1L,,
Loseee,Lye Until now it has been presumed that these blocks were
- dimensional. There is some difficulty with extending the concept
to 2-dimensional blocks. Suppose one is at coordinate (i,j) in an
image and one considers the largest 2-dimensional block size 1L,.
The block of this size is coded by finding a block of similar size
in the set of previously coded data, such that these two blocks are
similar to within some distortion constraint. The problem is that

the 2-dimensional block sizes which may be considered should be
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I +A1

(a)

A1/t

10-2 100 102 104

I (Ft. Lamberts)

(b)

Figure 3.11 Weber’s law
Contrast sensitivity with a constant background.
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chosen so that the image may be thoroughly filled by these blocks of

varying sizes.

The problem of defining a scheme and appropriate block sizes
so as to be able to code 2-dimensional blocks, is deferred wuntil
later. In the mean time, the image is coded as if it is a one

dimensional sequence. Previously, the scanning scheme had been that
shown in figure 3.12a. This is the standard scanning scheme used
for TV and was used because it was supposed to be the scanning
scheme most likely to have been used if one is presented with a
l-dimensional sequence representing an image. There are better
scanning schemes, these avoid the sharp discontinuities that result
from going from the right side of a line to the left side of the

next line.

The trajectory obtained in wusing a scanning scheme to
represent the points of a larger dimensional space by a
1~ dimensional sequence is called a '"space filling curve". Two
examples are given in figures 3.12b and 3.12c. The PEANO or HILBERT
scan of figure 3.12c produces a l-dimensional sequence with the
following distinction. For any length of resulting onee dimensional
sequence, the points of this sequence represent an N-dimensional
space with the smallest maximum span in any direction. This scan in
effect generates 1long l-dimensional sequences associated with
compact MN-dimensional spaces. The advantage of this, as far as the
MPPCD scheme is concerned, is this. A long 1-dimensional sequence
to be coded, most likely corresponds to a 2-dimensional region as
square as may be attained with any scanning scheme. The texture is

thus more 1likely to be uniform over this sequence. The scan of
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figure 3.12b however, was employed in the work reported hereinafter.

Next we consider error measures which may allow the allocation
of different quantities of error to "edge" and "plane'" regions of an
image. To do this a gradient operator 1is applied to the one
dimensional block of length L, to be coded. The gradient at

position i, g; is approximated thus,
8 = Clx;4 = x| 3.6

The error at i is then weighted by a function f(gi) at each point i.
The results of an example where white noise is added to a row of an
image are shown in figures 3.l4a and 3.14b. To add more noise to
edges, the noise added to the image signal is enﬁ;-. To add more
noiSe to plane areas, the noise added to the image signal 1is
ei.lﬁqg;:fl . In each case e; is a Gaussian noise source of zero
mean. 1t was concluded that it is more desirable to have more noise
in the region of edges. The effect is to distort the edge, however
the edge appears to be observed as a region of fast variation in
intensity and it seems to be relatively irrelevant how this fast
variation in signal intensity is achieved. Thus distortion is more

tolerable in edge regions,

The results of coding an image with the points just discussed
considered, are shown in figure 3.15. When comparing a block x?m
and a previously coded block X%m:j<i, the gradient sequence g& for
the sequence g%m is computed. In ascertaining the error between the
two sequences Z}m and X%m, the actual error at each point k is

multiplied by

V& 1
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Figure 3.14 Results of adding noise to row of image.
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Original (Low contrast)

@)
Rate = 1,728 bits/pix. Rate = 1.18 bits/pix.
S/N = 26.433 dB S/N = 22.59 dB
Y «)

Figure 3.15 Results of image coding using 1-D processing (scanning
scheme of figure 3.12)). Edge weighting is applied
to force more noise at edges.
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This ensures that the error observed at edge regions are weighted

lower so that this is in effect tolerated.

In addition it should be mentioned that an attempt is made to
incorporate Weber’s law in designing the error measure, by dividing
the error signal by the observed mean of the region before comparing

this with the set distortion limit. At high overall values of

intensity, more error is allowed.

3.5.3 Discussion of the results

A reduction in coding rate has been achieved, for a signal to
noise ratio of about 23db when noise weighting is applied, for the
image TELEBOX. (Compare figures 3.8e and 3.15c). Comparing the
above two figures, it may be 6bserved that edges have fewer
instances of great distortion., This may be seen in the improvement
of the bottom left hand edge of the telephone box in figure 3.15c.
As a result of allowing more noise at edges however, all edges show
some jaggedness. While figures 3.8d and 3.15b are about the same
subjectively, figure 3.15c appears subjectively preferable to figure

3.8e.
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3.5.4 Consideration of 2-dimensional blocks.

The MPPCD 1is implemented using 2-dimensional blocks of sizes
8 by 8, 8 by 4, 8 by2, 8 by 1, 4 byl and 4 by 1 considered in
order as shown in figure 3.16. This 1is in fact, almost like
implementing the MPPCD scheme using ]-dimensional blocks. The
difference is that now a single outcome is equivalent to a column of
length 8. Thus we try effectively to code blocks of length 8, then
4, then 2, then 1. At "e" of figure 3.16 the situation changes
somewhat; in order to consider smaller blocks we require a column of
length smaller than 8. In this case we next try to code a 4 by 1
block in the top left hand corner. When coding of this block is
unsuccessful, these 4 symbols are transmitted using 34 bits. 7 bit
each for the 4 symbols and 6 bits to indicate the block size. These
34 bits are transmitted in 2 groups of 17 bits each. Each group has
14 bits to represent two pixels and 3 bits to represent the block
size. If the top left hand side block of four are representable by
previousiy coded symbols, then 17 bits are transmitted. 8 bits are
used to indicate the coordinate of the approximate previous outcome,
6 bits are used to code the mean of the present block and 3 bits are
used to code the block size. Whatever the outcome of trying to
represent the top left hand 4 by 1 block, the next set of symbols to
be transmitted is the bottom left hand 4 by 1 block. If the attempt
to represent this by previously coded symbols 1is unsuccessful, 34
bits are sent, directly coding the set of 4 symbol described before.
If approximation by previously coded symbols is possible, 17 bits
are sent. The coding scheme proceeds in all other ways as described

in previous sections,
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Original (Low contrast)

(a)
Rate = 1.037 bits/pix.
S/N = 24 .977 dB
mem sz = 512
c

Figure 3.17 1Image coding using MPPCD scheme.

Rate
S/N
mem Sz

Rate
S/N
mem Sz

Blocks are

(a-d) rectangular. No edge weighting is employed.

1.255 bits/pix
28.127dB
512

b

0.807 bits/pix.
22.712 dB
512

)






Original (Low contrast)

()
Rate = 1.75 bits/pix.
S/N = 25.25 dB
(3)

Figure 3.17 1Image coding using MPPCD scheme.
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Rate
S/N

Rate
S/N

(e-h) No edge weighting is applied.

2.056 bits/pix.

[}

29.347 dB
¢3)

1.383 bits/pix.
21.46 dB

(h)

Blocks are rectangular
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Rate = 1.144 bits/pix. Rate = 0,977 bits/pix.
S/N = 30.085 dB S/N = 27.734 dB

. P

) j

Figure 3.17i,j Results of image coding with MPPCD scheme.
Rectangular blocks are used. When checking the set
of previously coded data, the best block is found,
and if the associated error satisfies the distortion

constraint, this is used to approximate the present
block. v
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The error signal between blocks is weighted so that different
quantities of error are tolerated at edges and plane areas. This
requires the implementation of anvedge detector. An edge detector
is an operator which returns a large output signal when it is
centered on an edge or boundary. There are numerous papers on the
topic of the design of edge detectors; we shall not attempt to add
to this field. In the following a very brief review of the types of
edge detectors available is presented and the one which we elected

to use and the reasons for this, given.

Well known simple edge detectors are the Roberts, Zobel and
Prewitt operators, These are difference edge detectors which have
two components Ax and Ay. These components return high outputs
for edges in orthogonal directions. The signal presented by the

overall operator is then
‘/sz +4y* or |Ax|+|ay| or max(|Ax|,|Ay|)

A detector is termed "isotropic" if its output is invariant with the
angle of orientation of an edge. The two components of the edge

detectors for the Roberts operator are

0 17 1 0
J and
-1 0 0 -1
For the Prewitt operator these are
1 1 1 1 0 -1

0 0 0 and 1 0 -1

and for the Zobel



-111-

Other operators, '"template match operators' have been reported in
the literature. These are designed to detect edges in one compass
direction only. The combination of these template match operators,
each of which is designed for one of several directions, allows one

to effect isotropic edge detection.

Another type of edge detector is the Laplacian. This 1is an
approximation to the 2nd diferential of a signal. The impulse

response of the Laplacian is

0 -1 0
-1 -4 -1
0 -1 0

This operator gives a zero output when the signal is a ramp. These
edge detectors are described by Rozenberg and Kac in section 10.2.1
of their book [Rozenfeld and RKac-(1980)], by Gonzalez and
Wintz-(1977) in section 4.4 and 7.1.2.1. A thorough comparison of
these edge detectors was reported by Abdou and Pratt-(1977). The
last reference shows that the 3 by 3 operators perform better than
the 2 by 2 (Roberts) operator and there is very 1little to choose

between the Prewitt and Zobel operators.

The detectors mentioned are only able to detect boundaries
characterised by abrupt changes in pixel intensity. Complex
detectors are required if general boundaries between two areas of
different texture are to be detected and if the operation of the
edge detector 1is to be reliable when the 1image region under
consideration is noisy. Examples of these are the Heuckel and
Rozenfeld edge detectors. These were compared thoroughly by Fram

and Deutsch-(1973).
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The latter operators are not simple to implement, and since
the main thrust of the work reported here is concerned with coding,

it was decided use the Zobel operator.

The MPPCD scheme was tried using 2D blocks and Zobel filtering
to detect edges. A block xh to be coded, has a gradient block gh

constructed for this. In comparing gh with a previously coded

block, the error at each pixel value is multiplied by
1

VT +eu
Where g, ~is a member of the block gh . Thus edge points (k,l)
with large gradient values g, have their errors weighted so that

errors at these points are tolerated. The results are shown in

figure 3.18.

3.5.4.1 Discussion

With the consideration of 2-dimensional blocks, similar
results to those obtained using one dimensional blocks, have been
obtained using a smaller memory size. It is difficult to say that
the wuse of edge weighting results in a subjectively improved image.
The edges appear more ragged, although looking at the plane area, at
the top right-hand-side of the picture TELEBOX, one observes a
smoother region, compared with the non-edge weighted coding result.
It is expected that a thorough study of which mapping between the
edge Dbusiness factof returned by the Zobel filter and the error

weighting factor will yield useful results.

Improvements in signal to noise ratio may be made if, in

sampling the set of previously coded data, the first block to
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Original (Low contrast)

@)

Rate = 1.239 bits/pix. Rate
S/N 24 .99 dB S/N

1))

Figure 3.18 1Image coding via MPPCD scheme with 2-D blocks.
Edges are weighted.

= 0.989 bits/pix.
22 .88 dB

(c)
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satisfy the distortion constraint is mnot chosen automatically.
Instead, the best of the previous blocks is chosen, if it satisfies
the distortion constraint. The results of doing this are shown in -

figures 3,171 and 3.17j, where improved S/N values were obtained.
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3.6 Consideration of speech properties.

The task of coding speech may be approached in two ways. The
first relies upon trying to approximate the speech waveforﬁ as
closely as possible. The second relies upon extracting the
important features of speech, coding and sending these. In either
case it is useful to understand the particular properties of speech,
so that we may take advantage of these. For the second approach, it
is necessary that the speech generation and perception processes are
studied 1in great detail. 1In appendix 2 therefore, the rudiments of
speech production and hearing are described. In this section,
vocoders, speech coders which make use of the properties of speech,
are described. The results of experiments concerning the

application of the MPPCD scheme in the LPC vocoder, are presented.

3.6.1 The vocoder

A vocoder is a speech coder which relies wupon the
parameterisation of the short term spectrum of speech., The vocoder
was first implemented by Dudly [Dudly-(1940)]. It is supposed that
for the comprehension of speech, the character of the phase spectrum
was unimportant, The power spectral characteristics of blocks of
speech are ascertained, the parameters representing these are then
coded for transmission. These parameters are used at the receiver
to reconstruct a version of the original speech. The following

details the different types of vocoder.
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3.6.1.1 The channel vocoder

This employs a bank of bandpass filters for spectrum analysis.,
Envelope detection is done to evaluate the magnitude of each
frequency component. The magnitude values are sent to the receiver
periodically. In addition, information indicating the short term
signal variance and whether the block in question is voiced or

unvoiced, is transmitted.

3.6.1.2 The formant vocoder

This relies wupon modelling the wvocal tract as an
inductor-capacitor (LC) filter network., The component values for
this network are evaluated regularly, the pole frequencies of the
resulting transfer function are approximated and transmitted.
Generally the first 3 or 4 formant frequencies or pole frequencies
are sufficient to characterise the phoneme. [Ainsworth-(1976),
Chapters 6 and 7] The Q factor or bandwidth associated with each

pole is also transmitted.

3.6.1.3 The LPC vocoder,

Spectrum analysis, in this vocoder, is done by modelling the
vocal tract by a filter network. The filter coefficients (or
alternative parameters) for this filter are extracted periodically.

These are coded and transmitted.

For all the above vocoders, the speech is analysed to

ascertain whether or not it is voiced. When it is voiced, the
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speech synthesiser, be it filter bank or just one filter, is excited
with a sequence of pulses. The pitch 1is extracted at the
transmitter and is wused at the receiver to generate a sequence of

pulses with an appropriate period.

The LPC vocoder will be described in more detail because the
remainder of this chapter deals with the use of the MPPCD scheme

with an LPC vocoder.

For LPC analysis, the vocal tract 1is modelled as several
coupled tubes of different 1lengths and crossectional areas. The
speech perceived at the mouth is modelled as the sound observed at
the open end of this set of tubes, when a point source generates some
excitation at some position in the set of tubes. When a non-nasal
phoneme is spoken the speech generation process may be modeled as
simply a sequence of tubes with the excitation end closed. The
vocal tract then has an electrical analogue which is a 1lossy LC
ladder network, whose transfer function is all-pole [Fant-(1960)]
When the vowel is nasal, the resulting electrical analogue for the
vocal tract is a filter whose transfer function is no longer
all-pole. Similarly transfer functions for the electrical analogue
associated with fricative consonants have =zeros in addition to
poles [Heinz and Stevens-(1961)]. The LPC vocoder however, models
the transfer function of the vocal tract as simply an all-pole

filter. This is done for the following reasons,

1) Voiced sounds are well modelled by all pole transfer functioms.
2) A large quantity of zeros are required to make any improvement in
the sound quality achieved by the all-pole model.

3) Most importantly, the parameters of the all-pole filter model may
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be evaluated in a straight-forward manner.

Improvements to the LPC vocoder have been in two directioms,
1) Reduction in coding rate by assigning as few bits to the coding
of the filter parameters, pitch and gain as possible.

2) Efforts to increase the subjective quality of the coded speech.

We shall first discuss the former. A typical LPC vocoder will
analyse speech blocks of duration l0msecs to 30msecs (for a sampling
rate of .SkHz, this means blocks of length 80 to 240 samples). A
twelfth order filter might be used for the frequency analysis of the
block under consideration. Each of the Log-Area-Ratios might be
quantised for representation with 8 bits. 8 bits might be used to
code the pitch, 7 bits to code the gain and 1 bit the voice/unvoiced
decision. Thus 112 bits might be sent per block. The coding rate
is between 1l.2kbits/sec and 3.73£gi£57;eé- The following is a list
of the reported methods used to reduce the rate.

a) Reduction in the number of filter coefficients: The effects of
doing this were reported by Atal and Hanauer-(1971).

b) Coarser quantisation of the Log-Area-Ratios (or some other
parameters eg. reflection coefficients or inverse sine of
reflection coefficients), A.H. Gray and J.D. Markel-(1976) discuss
in great detail, the spectral variation due to the quantisation of
the various reflection coefficients. Their work allows a cookbook
type design procedure for bit allocation for the LPC parameters.

¢) The linear predictive or DPCM coding of the LPC parameters, from
block to block was studied by Sumbar-(1975)

d) The linear transformation of the LPC filter parameters, allows

the transform coding of these parameters. Sumbar-(1975) and
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Fussel-(1980) studied the effects of bit rate reduction by the use
of the Karhunen-Loeve transform.

e) Vector quantisation of the~filter parameters (or the spectral
envelope associated with these parameters). Vector quantisation
involves finding a small number of spectral shapes which are deemed
representative of the set of spectral patterns generated in speech,
Vector quantisation has been studied by Ahmadi-(1980), Linde, Buzo
and Gray-(1980), Buzo, A.H. Gray, R.M. Gray and Markel-(1980a)
and- (1980b), Gray, Gray, Robodello and Shore-(1981), Abut, Gray and
Robodello-(1982) and Wilson-(1983). Briefly, the following is done
for vector quantisation. A long sequence of typical speech, refered
to as a training sequence is analysed. Blocks are clustered into a
relatively small number of spectral patterns. These are stored in
identical libraries, at both the transmitter and receiver. 1In
implementing the coder, a block 1is analysed and the LPC f£filter
parameters extracted. The spectrum is then evaluated from these
filter coefficients. The spectrum is compared with the members of
the 1library of filter coefficients or spectral patterns. The
library member whose spectrum is closest to the spectrum of the
block being considered has its coordinate transmitted. This allows
very considerable rate reduction; for a library of 256 members, only
8 bits are used to represent the spectrum of a block instead of the
96 that might be needed in a conventional LPC scheme.

f) The wvariable rate transmission of the parameters for the coding
allows some bit rate reduction. This is contrived by not
transmitting the £filter parameters for every block of speech. The
MPPCD scheme may be used to achieve bit rate reduction in this

manner., The idea of effecting some bit rate reduction by not
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transmitting a set of parameters for each block of speech, was
introduced by Magill-(1973). This method of increasing the
efficiency of the LPC vocoder has received little attention, some of
the few papers on this are by Magill-(1973), Viswanathan, Makhoul,
Shwartz and Higgins-(1982). These authors reported schemes where,
for each block LPC analysis is undertaken. The spectrum resulting
from the evaluated LPC filter is compared with the spectrum of the
previous block of speech. If these two spectra, the filter
coefficients, the Log-Area-Ratios or some other characterisation
parameters are close to within some distortion criterion, the
parameters of the present block are not sent. At the receiver,
these are approximated by those of the previous block. This 1is very
much like the run length encoding of the block parameters or
spectra. Papamichalis and Barnwell-III-(1980 and 1983) have
expanded this to include the alternative of sending only some of the
parameters per block, in addition to sending of all or nomne of
these. The decision concerning what to send is likened to a branch
in a tree and a dynamic programming algorithm was proposed to search

for the best path in this tree.

3.6.2 The MPPCD scheme and the LPC vocoder

The MPPCD scheme is applied in this manner. Decide on a
memory size, M=128 or 256 say. For every block, LPC analysis is
undertaken, 12 filter coefficients are evaluated. The spectrum
assocaited with this block is then evaluated at 64 frequency points
from 0 to n rads/s. (64 1is chosen because this results in a

spectral resolution of 62.5Hz. A coqrser resolution is inadvisable
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since it is known experimentally that people are able to identify
the effects of a 60Hz variation and a 120Hz variation in the first
and second formant positions respectively.
([Ainsworth-(1976)] chapter 6) This spectral pattern is compared

with the spectral patterns of some of the previously encoded blocks.

The comparison is conducted in this manner. It 1is presumed
that each of the 128 or 256 memory locations contains a set of
filter coefficients. Alternativelty, if memory is easily available,
128 or 256 sets of frequency patterns may also be stored in the
memory locations. The contents of the memory locations are
associated with previously encoded blocks. We shall refer to these
memory locations as a library. If the spectral pattern of a block
is sufficiently close to that of a member of this 1library, the
coordinates of this member 1is transmitted. At the receiver, the
parameters of this block are approximated by those of the relevant
library member. If no library member is similar to the block under
test, to within a preset distortion limit, a member of the 1library
is removed. The spectral pattern for the block under test or its
filter parameters are included 1in the 1library; these are also
transmitted to the receiver. The choice of the library member
removed when a new addition is made to this, is a subject for
further research. For the results presented here, the earliest
library member is removed. The members of the library are numbered

according to their "age".
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3.6.2.1 What distortion measure?

Several distortion measures for the matching of parameters
between different blocks, have been proposed in the literature for
speech processing. Most are spectral distortion measures or derived
from spectral distance measures. This 1is because the human ear
appears to do some spectral analysis, and thus a frequency deviation
measure would seem a good one. Below is a list of the well known
spectral measures feported in the literature, their advantages and

their disadvantages.

1) Log spectral measures:

D = (z |ln§§‘:;;|p)}’ 3.7

These require log computations. The normalised versions of the

D = mgn(Z|ln ){;83)|P)% 3.8

For p=1, ln(A)=median of sequence 1ln( f(aq)/f(wi) )=u(w;) say. For

above are;

p=2, ln(A)= mean of sequence u(w;)
The latter 1is easier to calculate, making it more attractive,

despite the fact that the square of the quantity u(w;) is computed.

2) Itakura-Saito distortion(I-T) measure

_ S () f(w)
D = mm Z{Af( 3~ >\f( )| 3.9

This measure is non-symmetric.

3) The Cosh measure: This is derived from the Itakura-Saito measure,

and is a symmetrical version of that.

1 Jlw) | J@) | fle) O
g Z(f(“’) If(“’" f() lf( )I l)

i

1 Slw) | flw)
§Z<f(w +m 2) 3.10
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It 1is refered to as the cosh measure because of its character, with

respect to the quantity u(w;).

LN (fw) | @)
2 Z(f(wi)+ f(w,) 2)

@

Z(exp u(w;) + exp—u(w,) — 2)

Wi

= coshu(w;) — 1 3.11

D

N —

Figure 3.19 shows the relative effects of a  spectral
component’s deviation, in ratio, from its actual value, for several
distortion measures. It may be seen that the Itakura-Saito measure
is non-symmetric, being rather lenient if the approximating spectral
component is too small. The Itakura-Saito and the class of
log-spectral-ratio measures all require a log operation, which is
computationally quite expensive. This Seing the case there is no
obvious advantage of the I-T measure over the Log-spectral-ratio
measures., The I-T measure over half of its domain, has a character
similar to the "Cosh" measure, which is in actual fact derived from
it. This character being very lenient when the spectral ratio is
small but very strict when this is large., The '"Cosh" measure has
the advantage though that it does not involve any log computation.
By doing some subjective testing it was decided that the mean square
log-spectral-ratio performed marginally better than the I-T measure
and was employed in all the tests. (Refer to R.M Gray, Buzo, A.H.
Gray and Matsuyama—-(1980) for a discussion of the properties of some

of the spectral distance measures)
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3.6.2.1 Implementation, results and discussion.

The coding approach descibed was implemented, initially with
the standard white noise/pulse train excitation for synthesis of the
speech waveform at the receiver. The voice/unvoiced decision and
pitch extraction were accomplished wusing the auto-correlation
method. (For a review of the pitch extraction schemes available,
the reader is advised to refer to Rabiner, Cheng, Rosenberg and

McGonegal- (1976))

Due to the size of the library being used, a combination of
error measures is employed. Thus an initial error condition has to
to be satisfied. The computation, in doing this, requires very much
less effort than checking the mean square log spectral ratio for
each of the library members. The formant positions for each member
of the 1library are computed and stored along with the filter
coefficients and the spectral response, each time an addition is
made to the 1library. A 1library member 1is considered a viable
candidate for approximating the parameters of a block in question,
if the formant -positions of the block in consideration and those
associated with this library member are close. Closeness 1in this
case means the following: Let the n-th formants be at positions P,
and q_ for the two parameters being compared, then the conditions

below should hold.

p,— 4,

minG.,q,) < 0.25 3.12

|Pa—a, <1 or

When the conditions above are met, the mean square

log-spectral-ratio is evaluted.
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The learning characteristics of the scheme are indicated in
table 3.10, for different error limits. As expected more blocks
have their parameters approximated by members of the library as more
speech is coded and the 1library fills up. Table 3.11 shows the
rates obtained for various speech files and error limits. Listening
tests indicate that an error limit so that about a third to half of
the LPC parameters are new, is suitable for transmission without
great deterioration in speech quality. Relaxation of the error
limit beyond this, results in an impairment of intelligibility, for
example some listeners thought, AN APPLE A DAY KEEPS THE BUTCHER

AWAY instead of .....THE DOCTOR AWAY, was being uttered.



l-st
2-nd
3-rd
4-th
5-th
6-th
7-th
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9-th
last

1-st
2-nd
3-rd
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5-th
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7-th
& th
9-th
last
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50
50
50
50
50
50
50
50
25

50
50
50
50

50
50
50
50
25

blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks

blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks

Table 3.10 Learning
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number of
new blocks

31
35
17
28
21
20
13
12
22
9

36
38
26
39
31
31
29
25
31
15

characteristics
measure is squared log-spectral-~ratio

number of

ratio

1ib. blocks new/ub

19
15
33
22
29
30
37
38
28
16

14
12
24
11
19
19
21
25
19
10

for MPPCD

1.6316

2.1875

0.4857

1.2727

0.7241 \ Error limit
0.6667 [=50.0
0.3513

0.3157

0.7857

0.5625

2.5714

3.1667

1.083

3 .5454

1.6316 \ Error limit
1.6313 { =30.0
1.3809

1.0

1.6316

1.5

scheme. Error

The formants are checked, for l-st formant 250Hz and

upwards,’

for 2-nd formant 750Hz and upwards.

Block size=192.
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3.6.3 The excitation problem

3.6.3.1 The FFT approach

The vocoders as described before, despite thier great
compression capabilities, have one fault. This is their tendency to
sound electrical. This 1is attributable to the inadequacy of the
excitation signal. The judgement of whether an utterance is voiced
or unvoiced 1is often wrong. Some of the phonemes are best excited
by a signal which is periodic in addition to having some noise
superimposed on it. Examples are the voiced fricatives {p as in

van; d as in this; gzas in zoo; gas in azure}

The evaluation of the correct pitch when a block being
analysed is voiced, 1is not easy. Another point to note is that,
there is rapid pitch variation when an utterance 1is being made,
noted by Pierce and David-(1961). This gives some character to the
speech. Although the pitch period is transmitted every 10-30msec (ie
the average duration of about 2 pitch periods), the pitch period is
evaluated over every 2 or 3 blocks. Thus about 5 pitch periods are

averaged and transmitted,

Experiments conducted here have indicated that a contributant
to the electrical characteristic of vocoder speech is the loss of
phase information at frequencies below lkHz. The following are the

details of these experiments.

1) The FFT of blocks of speech was computed, for each block
the phase signal was set to zero over the whole of the frequency

band. The result was that the speech sounded electrical (robot
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like)

2) The phase signal was set to zero for frequency points below
an eigth of the sampling frequency. The other frequency points were

left unaltered. The speech still sounded electrical.

3) The phase signal was set to zero for all frequency points
greater than an eigth of the sampling frequency. The values at all
other frequency points were left wunaltered. The speech was now

considerably improved. It now sounded slightly electrical.

4) The phase signal was set to zero for all frequency points
above a quarter of the sampling frequency, for all frequencies below
this, the phase was left untouched. The resulting speech sounded

perfect.

The conclusion is that some phase information is important at

frequencies below lkHz.

The first departure from the vocoder excitation apprpach
described thus far was reported by Schroeder and David-(1960). They
related the experiments conducged in the development of what they
described as a "high fidelity vocoder". 1In this paper they give a
detailed yet simple account of the problems they encountered in
trying to design a vocoder for transmitting 10kHz speech over a 3kHz
channel. They eventually decided to excite their vocoder with a
whitened signal derived from a low pass filtered version of their
speech. This was called the "voice excited vocoder". The low pass
filtered speech actually contained all the neccesary information
for an excitation waveform. It contains the fundamental pitch

signal and with some nonm-linear or possibly linear processing to
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extend the frequency range of this signal, we obtain the following.
A pseudo excitation waveform, in synchronism with the actual
excitation when the signal is voiced and a noise like signal when it
is wunvoiced. The use of this in a normal vocoder was subsequently
reported by David, Schroeder, Logan and Prestigiacomo-(1962). Here
the low pass filtered speech employed to generate an excitation
waveform had a bandwidth of 700Hz. The art of designing voice

excited vocoders has flourished since.

The voice excited vocoders achieve less compression than the
voice/unvoiced excition based vocoders, with the advantage that the
speech sounds more mnatural and speaker identification is easier.
Voice excited LPC vocoders have been designed which operate from

4 .8kb/sec to 12kb/sec

An alternative is to excite the LPC filter by a low pass
filtered and coded version of the residual signal after applying the
LPC inverse filter. The vocoder is then refered to as a '"residual

excited vocoder".

A residual excited LPC vocoder was implemented for use with
the MPPCD scheme. The residual excitation was obtained in the
following manner. The residual signal was obtained in the time
domain for each block of speech. This signal was Fourier
transformed so that we obtain the frequency domain representation of
the residual. Blocks of size 192 are used. The values of the first
16 or 32 frequency components are quantised and transmitted. This
represents low-pass filteration of the residual to 667Hz or 1.33kHz

respectively. At the receiver the N residual (N=16 or 32)
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components are inverse Fourier transformed. A full band excitation

signal 1is generated by inserting an appropriate number of zeros

between the residual samples available.

For the coding of the frequency domain residual, the real and
imaginary parts may be modelled as being Gaussian or the magnitude
and phase parts may be modelled as being respectively Raleigh and
evenly distributed. This may be confirmed by studying figure 3.20.
The models allow the use Lloyd-Max quantisers for these. The
alternative of quantising the magnitude and phase signals was chosen
because it allows the study of the relative importance of these. By
listening tests it was decided to accord more bits to the phase
signal. For each frequency component, 6 bits were allocated for
coding. 4 bits were used to code the phase and 2 bits to code the

magnitude.

When 16 frequency components were used for coding, that 1is a
bandwidth of,667Hz for the residual, 96 bits are required to be sent
per block to code the excitation. This represents a large increase
over the say 16 bits which would need to be sent in the
voiced/unvoiced based vocoder. For the case where 32 frequency
components of the residual are transmitted, 192 bits are sent per
block. The latter case results in a transmission rate of 12kb/sec
if we allocate 4kb/sec for transmitting the LPC parameters. The
speech obtained in doing this is of very good quality., 1t is better
than that obtained using transform coding for the same rate and
better than that obtained using the straigtforward MPPCD scheme of

section 3.4 for approximately the same rate.

The former case results 1in a coding rate of 8kb/sec if we
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allocate 4kb/sec for the transmission of the LPC parameters. The
speech obtained is of good quality. An electrical character is
beginning to encroach and it does not sound as good as the results
of the 12kb/sec scheme. It 1is however of considerably better
quality than the simple LPC vocoder with the voiced/unvoiced type
excitation, transform coded speech or the MPPCD scheme at the same

rate.

O0f course we may use the MPPCD scheme as described before,
choosing a rate for the excitation signal, 8kb/sec or 4kb/sec,
transmit the excitation at this rate and use the LPC parameters to
create a 1library. The occasion of observing a block whose LPC
parameters are sufficiently "different" from all the members of this
library means the transmission of these parameters and the inclusion

of these in the library.

Instead a scheme, which results in transmission at a wuniform
rate, is opted for. For each block we decide whether the LPC
parameters should be transmitted and included in the library. 1If so
these parameters are transmitted with 104 bits/block and the lower
rate for the transmission of thé excitation information is chosen.
90 bits are transmitted for this, Another m bits are wused to

indicate that a block of LPC parameters is being sent.

If we find that the transmission of the LPC parameters for the
block in question, is unneccessary, we opt for the higher rate for
transmitting the residual information. 186 bits/block are used for
this. Another 6 bits are transmitted, to indicate which member of
the library of LPC parameters to use to approximate those of the

present block.



Frequency points coded and
number of bits/harmonic

Standard deviation of

residual harmonics

Filter parameters

Fact that filter
parameters are from
or not library.

TOTAL

Table 3.11
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1f filter parameters
are from library

2nd to 32nd harmonics
at 6 bits/harmonic
total=186 bits

6 bits

Library coordinate
coded with 8 bits

m bits

200+m bits
if m=4 rate=8.5kb/s

I1f filter parameters
are new.

2nd to 16th harmonics
at 6 bits/harmonic
total=90 bits

6 bits
Reflection coeffs quantised
& coded with 104 bits.
10 bits for the 1lst four
8 bits for the 5th to 12th

m bits

2004+m bits
if m=4 rate=8.5kb/s

Bit allocation strategy for FFT based residual

excited LPC, for case where block size is 192
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The advantage of this scheme, is that we have the choice of
using a better residual signal for the cases where we distort the
LPC model’s spectral estimate, This results in an improvement since

we go some way to correcting this distortion.

3.6.3.2 The TDRIA scheme [Wilson-(1983) and Atal and Remde-(1982)]

This involves the wuse of several impulses, of various
magnitudes and of non-uniform spacing to excite the LPC filter.
This may be envisaged to be an advancement upon the residual excited
scheme described above, since another degree of freedom has been
included in the coding process. The drawback of this is that some
bits have to be employed to define the positions of the residual
impulses. For the two alternative schemes which use 96 and 192 bits
for the transmission of the residual information, we use 12 and 24
residual impulses respectively, per block. The impulse allocation
scheme may be implemented wusing a multipath search, that 1is a
dynamic programming approach. Let the total block size be N (192)
and the total numbér of residual impulses required be L. Suppose a
block with AM samples has to have k impulses allocated. Then a

possible dynamic programming equation is,

CM)= < min { Cy— (M — z) — t(z| previous allocation ) } 3.13

where C,(M) is the cost associated with the "optimal" way of
allocating k impulses over the first M samples of the block in
question. t(z|previous allocations) is the magnitude of the
reduction in cost associated with allocating another impulse at
position M-z, given previous allocations. Thus at stage k, Ck(M)

has to be evaluated for Me{k,...,N} ie for k<<N, approximately N
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cost computations. For each value of M, the best z may be one of
M-k+1 possible values. Thus the number of operations is of the

order N’k.

Alternatively a single path search may be wused, but with
several passes. Initially a reasonable allocation of impulses is
established. (eg find the best way of allocating one impulse, given
this, find the best way of allocating a second impulse, and so on.
This is the scheme advocated by Wilson and Atal and Remde.)
Subsequently, several passes may be made. In each pass, all impulse
positions but one are fixed. The best position for this one impulse
is then evaluated. This 1is similar to the non-hierarchical
clustering schemes. The system advocated here however, is dictated

by simplicity.

A suboptimal scheme is used to ascertain the positions of the
residual impulses. The space of possible impulse positions is
partitioned into L non-overlapping regions (L 1is the number of
residual impulses transmitted per block). One residual impulse is
permitted to lie within each‘region. A single pass, single path
search 1is wundertaken in order to determine where to place the
impulses. This saves on the number of bits required to code the
impulse positions, this being the smallest integer not less than

log L[N/L] .



- 140-

Residual impulse values:

Let y(n) be the signal being coded. Suppose k-1 impulses had
already been placed at positions P seesP with magnitudes
Vi seeesV_;s Also suppose

w(n) = Z aw(n—1i) 3.14
i

where w(0)=1, w(n)=0 vn<0. w(n) is the impulse response of the LPC

filter A. Let ekq(n) be the resulting error signal, where
k-1

€,—1(n) = y(n) — Z v;w(n—p,) 3.15

i

Then upon the emplacement of a new residual impulse at P, > the total

mean squared error is

Z (ek(”)z) = Z (ex—i(n) — vw(n—p,) )2 3.16

The value of v, resulting in a minmum value for mean square error is

L T Wi —py)
=
,,N=,,‘ w(n—p,)?

3.17

For the k-th region, the position where an impulse may be placed
such that the error in minimised is computed., The best values of P,

and v, are noted and the ek(n) sequence evaluated. This process is

k

continued until the positions of all the impulses are decided.
During this process, no quantisation of the impulse amplitudes is
undertaken. Upon deciding the positions of all the impulses, the

amplitudes are recalculated as follows. Let
L

e (n) = y(n) - Z viw(n—p;) ‘ 3.18

i=]
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Then the solution of the linear equations resulting from setting

4y, e(n)?

to zero for all k gives the v, values.
av, k

2
A2yelr)” e(") z{y(n) vaw(n—p,)}w(n-pk) 3.19

Setting this to zero gives.

Z (n)W(n pk)-—ZV,ZW(n =pw(n—p,) 3.20

i=]

We require therefore to solve the matrix equation

[ R 1y=[g 3.21

where each member T of R is

r;j =zw(n_pi)w(n_pj) 3 22

n

and each member s; of § is

5; = z y(myw(n—p,) 323

n

After the solution of equation 3.20 to evaluate this set v, to
v, s these are quantised. Unfortunately R is not a matrix which
allows the fast solution of equation 3.20. The above matrix

equation may therefore only be solved with On3 operationms.

It ought to be mentioned that the quantisation of the v
values, after the solution of the matrix equation 3.21 implies that
those values obtained are not neccessarily the optimum quantised
values. For cases where a small number of levels are used to

approximate the v, values, that 1is, 8 or less, the following
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be used, in. the

appropriate. A

same manner

tree or

as

difference that symbols are transmitted at irregular intervals,

multiple

Recently, there has been some interest in the use of
excitation signal for the recomputation of
parameters for speech coding. Essentially, an attempt is made

optimise

amplitudes.

in the normal manner, leaving these unaltered whilst pulse positions

and amplitudes are evaluated [Jain and Hangartner-(1984) and Parker,

both the

LPC parameters

This is instead of just evaluating the LPC parameters

Alexander and Trussel-(1984)].

Two

examples,

with block

allocation scheme is as follows:

BL SIZE=96:

BL SIZE=192:

LPC coeffs new

4 impulses/block

5 bits/impulse for pos

3 bits/impulse for ampl
60 bits/10 LPC paramters

92+6+m bits total.

LPC coeffs new

12 impulses/block

4 bits/impulse for pos

4 bits/impulse for ampl
104 bits/12 LPC paramters

200+6+m bits total.

and the

sizes

pulse

of 96 and 192,

LPC coeffs from lib.

12 impulses/block
3 bits/impulse for pos
4 bits/impulse for ampl
8 bits for library

92+6+m bits total.

LPC coeffs from lib.

24 impulses/block
3 bits/impulse for pos
5 bits/impulse for ampl
8 bits for library

200+6+m bits total.

trellis

in DPCM, with the

the LPC

positions and

the bit



Number of impulses used
and bits allocated/block

Standard deviation of
residual impulses

Filter parameters
Fact that filter
parameters are from

or not library.

TOTAL

Table 3.12
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1f filter parameters
are from library

12 impulses, 3 bits
code position and

4 bits code amplitude
total=84 bits

6 bits

Library coordinate
coded with 8 bits

m bits

98+m bits
if m=4 rate=8.5kb/s

1f filter parameters
are new.

4 impulses, 5 bits
code position and

3 bits code amplitude
total=32 bits

6 bits

Reflection coeffs quantised
& coded with 60 bits.

m bits

98+m bits
if m=4 rate=8.5kb/s

Bit allocation strategy for TDRIA based residual

excited LPC, for case where block size is 96
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The impulse amplitudes are quantised using a two sided Raleigh
model. The histogram of figure 3.20 attempts to justify the use of
this model. Figure 3.21 shows a typical speech waveform and the

allocated residual impulses.,

For all the above excitation alternatives, an indication of
the standard deviation for the speech block, 1is coded wusing
logarithmic quantisation and employs 6 bits for transmission. Table
%3.12 shows the bit allocation schemes. m bits are used to indicate
whether or not the LPC parameters are to be represented by a member
of the library. 1t is suggested that a value greater than 1 is used

such that some degree of error correction may be undertaken.

In the concepts described above, block sizes of 192 and 96
have been used. For cases where large coding delays are undesirale
and therefore shorter block lengths have to be employed, this coding
concept becomes even more attractive. Thus for block sizes of say
96 samples, (maximum delay of 36msecs+transmission delay) it should
be expected that adjacent blocks have very similar LPC parameter
sets. Hence the transmission of new parameters per block would not

occur very often.
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3.7 Listening Tests

The coding systems described here, were simulated omn "a
computer. Several speech sentences were used. In each case the
speech was sampled at 8kHz and digitised with 12 bits/sample
accuracy. Below is a list of the types of coding schemes compared.
Included are the results of coding, wusing Pulse Code Modulation
(PCM), these PCM coded sentences set easily recognisable standards

against which the methods may be compared.

1) SR8KK, original

2) SRBKK, PCM 4-bit linear

3) SR8KK, PCM 4-bit mu-law

4) SR8KK, coded via MPPCD scheme, error factor=0.l, rate=8.l4kb/s,
sn=10.64db

5) SR8KK, «coded via MPPCD scheme, error factor=0.04,
rate=11.34kb/s, sn=14.5fdb

6) SR8KK, coded via  MPPCD scheme, error factor=0.025,
rate=13.023kb/s, sn=16 .6db

D) SR8KK, Straightforward LPC vocoder with voiced/unvoiced
excitation block size=192, rate=4.67kb/s

8) SR8KK, LPC vocoder with MPPCD and voiced/unvoiced excitation
error limit=10.0, block size=192, rate=4.67kb/s

9) SR8KK, LPC vocoder with MPPCD and voiced/unvoiced excitation
error 1limit=20.0, block size=192, rate=3.lkb/s

10) SR8KK, LPC vocoder with MPPCD and voiced/unvoiced excitation
error limit=30.0, block size=192, rate=2.5kb/s

11) KABITH, LPC vocoder with voiced/unvoiced excitation, block

size=192, rate=4 .67kb/s



12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)
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KABITH, LPC vocoder with MPPCD and voiced/unvoiced excitation
error limit=20.0, block size=192, rate=3.016kb/s

KABITH, LPC vocoder with MPPCD and voiced/unvoiced excitation
error 1imit=30.0, block size=192, rate=2.é9kb/s

TABITH, LPC vocoder and voiced/unvoiced excitation, block
size=192, rate=4.67kb/s

TABITH, LPC vocoder with MPPCD and voiced/unvoiced excitation
error limit=20.0, block size=192, rate=2 .8kb/s

TABITH, LPC vocoder with MPPCD and voiced/unvoiced excitation
error limit=30.0, block size=192, rate=2.3kb/s

SR8KK, LPC vocoder with residual excitation(FFT coded) block
size=192, rate=6.0kb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded)
block size=192, rate=8.0kb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded)
block size=192, rate=12 .0kb/s

LONG-FILE, LPC vocoder with residual excitation(FFT coded)
formant positions used. Error 1limit=40.0, block size=192,
rate=8.5kb/s

IONG-FILE, LPC vocoder with residual excitation(FFT coded)
formant positions wused. Error 1limit=65.0, block size=192,
rate=8.5kb/s

SR8KK, DCT transform coded speech (Zelinski and Noll adaptation
strategy), rate=8.,0kb/s, sn=9.166db

SR8KK, DCT transform coded speech (Zelinski and Noll adaptation
strategy), rate=12 .0kb/s, sn=11.65db

SR8KK, DCT transform coded speech (Zelinski and Noll adaptation

strategy), rate=16.0kb/s, sn=13.84db
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25) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
block size=96, rate=8.0kb/s

26) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
block size=96, rate=12 .0kb/s

27) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
formant positions wused. Error 1limit=40.0, block size=96,
rate=8.5kb/s

28) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
formant positions used. Error 1limit=50.0, block size=9,
rate=8.5kb/s

29) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
block size=48, rate=8.0kb/s

30) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
block size=48, rate=12.0kb/s

31) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
formant positions wused. Error 1imit=30.0, block size=48,
rate=8.5kb/s

32) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
formant positions used. Error 1limit=40.0, block size=48,
rate=8.5kb/s

33) LONG-FILE, LPC vocoder with residual excitation(TDRIA coded)
formant positions wused. Error 1limit=50.0, block size=48,

rate=8.5kb/s

In the tests several 1listeners were asked to 1indicate
preference, by assigning a mark out of 10, for each sentence

listened to. The sentences were presented a pair at a time.

The general outcome of the tests is indicated by the list of
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File no Scores File no  Scores Comment
1 1,1,1,1,1,1,1,1 17 0,0,0,0,0,0,0,0
1 1,1,1,1,1,1,1,1 2 0,0,0,0,0,0,0,0
2 0,0,0,0,0,0,0,0 3 1,1,1,1,1,1,1,1
17 1,1,1,1,1,.5,0,0 22 0,0,0,0,0,.5,1,1
17 0,0,0,0,0,0,0,0 3 1,1,1,1,1,1,1,1
18 0,0,.5,.5,0 19 1,1,.5,.5,1
18 0,0,1,1,0 20 1,1,0,0,1 Close result
18 1,1,0,0,1 21 0,0,1,1,0 Close result
29 0,0,0,0,0 18 1,1,1,1,1 Definite pref
18 1,.5,0,1,1 30 0,.5,1,0,0
29 0,0,0,0,0 31 1,1,1,1,1
29 0,0,0,.5,.5 30 1,1,1.5,.5
29 0,.5,0,0,1 32 1,.5,1,1,0 Close results
29 0,.5,0,0,1 33 1,.5,1,1,0 Close result
4 0,1,1,1,0 22 1,0,0,0,1
23 1,0,0,1,1 5 0,1,1,0,0
6 0,0,0,0,0 24 1,1,1,1,1

Table 3.14 Preference chart for the speech coding schemes
compared. 0 or 1 indicate a positive preference, 1

indicates actual preference. 0.5 indicates no
preference.
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table 3.14 which gives the numbers of listeners who prefered which
sentences of each of the pairs presented.

A complete check of subjective quality was not undertaken for all
possible pairs of coded sentence s listed. This is because of the
pointlessness of doing this for most pairs. For example, test
sentences 7 to 16 were not compared subjectively with the results of
other methods. This is because the voiced/unvoiced excitation
scheme used resulted in artificial sounding speech which is always
not preferable. These sentences are included in the 1list, to
indicate the coding rates achieved for a not considerable reduction
in quality compared to straighfforward vocoder schemes (sentences 7,

11 and 14).

Results are given for pairs of sentences so that with these,
the relative subjective quality of the methods presented in this

chapter, may be established.

The following is a summary of the results obtained.
Tests 4 and 5 show the preference of 4 bit mu-law PCM over residual
excited- LPC at 6kb/s and preference of the latter over 8kb/s DCT
coding.
The 7th and 8th tests are very important and indicate that there is
very little difference between the residual excited schemes with and
without the updated memory of LPC parameters, when the coding block
size is large.
Preferences are more defined for small block sizes (tests 11, 13 and
14). Here the method with an updated library is prefered. In all
cases, as the error 1limit is increased, beyond a point, allowing
greater spectral distortion, the listeners dislike the result.
Tests 15, 16 and 17, show that the basic MPPCD result is 1less less
preferable to DCT coding at high bit rates, but is preferable at low

bit rates.
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3.8 Conclusions and discussion

In this chapter a methodology for data compression has been
presented and investigated. For‘ each  application, we have
endevoured to compare this with alternative schemes. In most
applications the scheme has worked reasonably well. In some cases
however, coding methods particularly suited to the data to be coded

have performed better.

The scheme has the following disadvantages.
a) The basic scheme has been shown to be incapable of achieving very
efficient compression compared with other methods particularly well
suited to the data to be compressed. For example, it achieves worse
compression ratios than Huffman coding, for independent letter
sources of known statistics, as expected. It achieves worse
compression for a given mean square error than Discrete Cosine
Transform coding for sources which are well modelled as 1-st order
auto-regressive. It 1is difficult to extend the method to two
dimensional data because of the neccessity of some ‘time’ axis. The
two dimensional nature of image element correlation 1is thus more

difficult to take advantage of.

b) The basic MPPCD scheme results in a variable transmission
rate, Whilst this is unavoidable in zero distortion coding for any
efficient data compression scheme anyway, it is inconvenient in the
case of coding with a fidelity criterion. Thus, in implementation
for transmission over a fixed rate channel, one requires the use of
a buffer and feedback in the following manner.

The status of an output buffer is continually monitored. When this

buffer is close to being overfilled, the distortion limit is relaxed
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so that the coder output rate is reduced. When the buffer is close
to being emptied, the distortion criterion_is tightened such that

the coding rate is increased.

c) The MPPCD scheme, though simple in realisation, requires a
lot of computational effort at the encoder. A lot of comparisons of

data blocks are required, this may be very time consuming.

The MPPCD scheme has the following advantage over most
schemes. a) The system is very flexible. The user can choose at
will, any distortion measure. The flexibility of the scheme is
demonstated by its ability to code both speech and image data and
also be applicable for zero distortion coding. Thus the system may
be configured to code anything with minimal alteration of the

receiver.

b) The system 1is a viable alternative to transform and
adaptive multipath coding, in a situation where considerable
computation is tolerable at the encoder but intolerable at the
receiver. This situation may occur when information 1is being
broadcast to several receivers, where because there 1is only one
broadcast point, considerable capital may be expended in equipping
this with powerful processors. Transform coding, for example 1in
contrast requires an almost as much computational capability at the
receiver as at the transmitter, in order to implement the inverse
transformation. Another example of the type of situation being
refered to, is the case of compression for data storage. Here the
data 1s stored once but may be retrieved several times. It is
acceptable to employ considerable computation in the job of storage,

whereas it is undesirable to require considerable processing ‘power
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in retrieval if this is to be done several times.

In this chapter, results have been presented for the
application of the MPPCD scheme to efficient LPC speech coding. Two
broad approaches have been investigated. The first results in a
variable transmission rate and relies wupon the wuse of a
voiced/unvoiced model of speech generation for excitation. In that
section it 1is shown that it 1is possible to achieve greater
compression for little loss in subjective quality, by 1learning a

library of LPC parameters.

The second, a more satisfactory approach, involves the use of
a more sophisticated excitation scheme. Two excitation methods were
investigated. Encouraging results were obtained for speech coding
at around 8.5kb/s, which unlike residual excited LPC in conjunction

with vector quantisation requires no extensive prior processing.

1t is significant to say that the approach to data compression
where use is made of previously coded data, is a new and encouraging
field for data compression. There are a few salutory comments to be
made though. Most studies in data compression, presume that there
are no transmission errors. Now although by good channel coding,
the probability of error may be made vanishingly small, these errors
still occur. For block coding where no use is made of previously
coded data, the effects of channel errors in the duration of a block
are confined solely to this block of data. This is not so for a
coding method 1like the MPPCD scheme, where errors in the
transmission of. a block will have an effect on all subsequent blocks

of data.
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The only way in which this may be countered is to define
superblocks, such that the following is done. At the beginning of
each new superblock, coding is started anew. No infofmation from
previously coded superblocks are employed. In this way errors are
confined to the individual superblocks. Provided these superblocks
are sufficiently 1large, the resulting compression inefficiency

should be negligible.
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CHAPTER 4 ADAPTIVE DATA CODING WITH MEMORY,

A THEORETICAL DISCUSSION
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4.1 Introduction

In this chapter a theoretical discussion of the performance of
the coding scheme described in the previous chapter is given. We
shall refer to this as, the Matching of Patterns in Previously Coded
Data or "MPPCD" scheme. It is shown that in the limit as the block
lengths tend to infinity, the MPPCD scheme becomes efficient, for

sources with large redundancy.

We begin the chapter with a brief discussion of the concept of
the information associated with a source. The information content
or the Shannon entropy of a source is then linked to the minimum
rate at which this source may be coded for transmission. Following
this, the MPPCD method is described and in mathematical notation,
the rate at which it will code a source is given. At this juncture
sources considered will have a discrete outcome set and coding will
be noiseless. In the limit as the block sizes considered tend to
infinity, it is shown that the coding rate is close to the Shannon
entropy of the source, for signals of large redundancy. In showing
this we employ the Shannon-McMillan-Brieman asymptotic equipartition
theorem "AEP". This 1is a very interesting and important theorem
associated with the probability distributions of long sequences from

ergodic sources.,

A discussion of the coding performance of the MPPCD scheme 1is
undertaken for the situation when we allow distortion (coding with a
fidelity criterion). Treatment of this case is considerably more
difficult compared with the zero distortion situation.
Consideration of this case is necessary however, because in general

the sources we deal with are of continuous amplitude, where coding
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is only feasible with distortion or else the data rates that are
permitted do not allow zero distortion coding. Several assumptions
are made so that the analysis is tractable. In the course of this
discussion, rate-distortion theory is introduced. Rate-distortion
theory allows the generalisation of information theory and more
specifically source coding, to encompass the class of sources with a
countable or uncountably infinite outcome space. Rate-distortion
theory deals with the problem of having to transmit data from a
source whose rate of information generation 1is greater than the
capacity of the channel over which the data is required to be
transmitted. In addition, a theorem is developed that is similar to
the Shannon-McMillan-Brieman AEP theorem, but relates to sources
with a continuous in addition to discrete outcome space. With the
assumptions made, it is shown that as the block lengths become very
large, the coding scheme becomes very efficient for situations of

large distortion.

In this chapter we offer complete proofs for most theorems
considered, even though some tedious proofs of known results may be
found elsewhere. Two very important theorems wused herein, the
Ergodic theorem and the theorem concerning the convergence of

conditional expectation are proved in the appendices.
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4.2 Information

In the transmission of information we are concerned with the
rate at which information is generated by a statistical source.
Knowledge of this tells us how much "effort" needs to be devoted to
the business of communicating the outcomes from this source. Thus
the need arises for a quantitative measure of "information".
Intuitively, information may be related to uncertainty. That is, it
may be said that the more uncertain we are about the outcome of an
experiment, the more knowledge or information we gain after the
event of observing this outcome. A measure of information, in that
case, should be related to the statistics of a random source so that
the more uncertain we are about, or the more random the source’s

outcomes, the higher the information value we attach to the source.

To this end three axioms which a measure of information should
satisfy, were proposed by communications workers of the 1940°s.
Consider a statistical source defined by its probability mass
funetion P, Vi, a measure of information I(pl,pz,...) should
satisfy the following:

1 I(g ,pz,...) should be continuous in P, for all i

2) I(g ,pz,...) should be maximum when all possible events
are equally likely. The information, when all events are
equally likely should be a monotonically increasing function
of the cardinality of the set of possible events.

3) Additivity; the total information obtained from several
independent sources should be a weighted sum of the
individual information associated with each source plus

additional information indicating the uncertainty as to
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which source is being observed at each instant.
Shannon’s second theorem says that a function I(p1,p2,...)
that satisfies those axioms is

1(py,py,-.) =H (p,py,...)

=—ZP.~1°&P.~ 4.1

i

This is refered to as the Shannon entropy function. The base of the
log is generally set to 2. This information measure was first
introduced by Shannon in his classic paper of 1948 [Shannon-(1948a].
Good textbooks which go through the foundations of information
theory and the philosophy that led to the Shannon entropy function

are very many, examples of which are; [Brillouin-(1956), Reza-(1961)

and Cherry-(1978) .

4 .3 The MPPCD scheme

Consider a source which is required to be coded and which has
an outcome set ! with a finite number of members. A block of

symbols of length M from this source is defined on the product set

M
oM =axax...x0= XQ
i=1

From this set of possible outcomes may be generated a Borel-Z field

¥ and on this field a probability measure P is défined. The
source whose outcomes are sequences of length M is called
(Q",3,Pp). Let the set Q have cardinality C say. QM has
cardinality cM. Choose a number N so that logzN is small compared
with logZCM. Decide on a sequence of lengths L,,L,,...,Ly So that

In the simplest form, the coding procedure is as follows:
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Consider a sequence of source symbols of length Ly. Perform cM
experiments on the set of previously coded outcomes to see if these
symbols had occured before, note that these are known to both the
transmitter and receiver. If this Ly length sequence had occured
before, send the coordinate of the instant in the past when it was
transmitted. This will be represented with logZC bits; in addition
logzN bits are sent to indicate the length of the data block being
coded. Then go to the next block of length L, and try again. If
the Ly sequence is not found after cM experiments on the set of
previously coded symbols, consider coding a sequence of length Ly,,
see if this may be observed in cM experiments on the set of
previously coded symbols. I1If so send the coordinate of the point in
the previously coded sequence where this was observed. This is done
with logZCM bits and an additional logzN symbols. Failure to find
an L, sequence in cM experiments on the previously encoded sequence
results in an attempt with a smaller length Ly of data. The
coding procedure as outlined above is continued until the event of a
failure to code a block of length L,. The actual data of 1length
L, =M 1is then transmitted, with log2CM bits, with an additional
logzN bits to indicate the length of the block encoded. After this
one goes on to the next block of length L, and continues in the same

manner.

4 .4 Performance bounds for noiseless coding

The coding rate of the scheme is:

(log, N + log,[C¥])
average length
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By average length the following is meant; we will encode varying
lengths of data with cM experiments associated with previous
outcomes, the average length L is the average length of an encoded
block. To ascertain bounds on the rate, we find bounds on the
average length. As usual with most coding methods, it is impossible
to ascertain the theoretical performance under practical conditioms.
We do the next best thing and content ourselves with performance as
some parameter 1is pushed to some extreme. In this case, we
ascertain what happens as an "elementary" block size tends towards
infinity. What is done 1is to 1increase the cardinality of the
outcome set by considering a block of size "k" source symbols as the
elementary source symbol. The following example shows what is
meant.

i) Let ¥L;=1, L,=2,........,Ly=N. In coding, consider firstly
whether one can encode N symbols with C experiments on the set of
previous outcomes. Upon failure, try to code N-1 symbols on C
experiments on the set of previous outcomes, and so on. Upon
successive failures to code, block sizes are reduced until we have a
block of size one, then this symbol is sent using log2C symbols.

ii) Let k=3. Once again let M=L;=1, L,=2, «..,Ly=N. In coding,
consider £firstly whether a block of N elementary symbols or 3N
symbols may be observed during c3 experiments on the set of
previous outcomes, Upon failure, try to code 3N-3 symbols or N-1
elementary symbols in c3 experiments on the set of previous
outcomes, and so on. When one gets to six symbols and is unable to
code this, the first three symbols are the sent, wusing log203

symbols.

What 1is done is to find the asymptotic performance of the
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scheme as k—>»» . It will be demonstrated that as k—= , the
average length I, is the largest integer such that the inequality 4.3

holds.

— _log,C
L<—p

[oe]

C is the cardinality of the source symbol outcome set and H, is the
Shannon per symbol entropy of the source in the limit as the block
size tends to infinity. Suppose Y'N is to be coded. The
probability  that Y'N  is encodable using R = ck independent

observations from the previous outcomes is:

{1-(1=prty*}

The average length is written as follows.

L =Expectation over all ¥*¥ sequences[[{1—(1 —p(Ytn Ry x Ly
F{1==p¥ )Ry = (1= =p(r =N} X Ly,
F{(1=Q=pr )R} — {1 -1 =p¥ )R} X Ly,

+
+{1=Q=-pYr) R}y - {1-Q-p¥" N} xL,
+[{ U-p¥=n*yxL] 4.4

Where L, is the number of "k length" elementary symbols being
encoded. It will be assumed from now on that L, = J. The above
equation is obtained by this reasoning: The sequence of length 1L,
is coded if it is possible to find this sequence in R experiments

but impossible to find a longer sequence in R experiments. Thus the
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probability of coding an L, length sequence, Y\ , 1is the
probability of observing the outcome YLJ in R experiments minus the
probability of observing its subset outcome YLJ+1 in R experiments.

The average length may be written as:

L=E{1-Q-p¥")RIWNV -V -1))
+0-Q-p@" RV - 1) -V -2)
+ .. +0-0-p¥HRIe-1)+1)

=E{[1-(1-p(¥"N R+ [1-0-pr" )R]
+.. . +[1-0-p¥)HF1+1) 4.5

It will be shown that all the terms in the equation 4.5 tend to zero
or unity in the limit as k—>»=, thereby giving some bounds on the

length L. Consider the function F= 1--(1--p(YJ))R . For R=C* we have
ch i
F=1-(1-p¥”")) 4.6

where

J . Coe e
Yo =, cis Xp 3 Xppgaeees Xop b S X pgonk s oo Xokd 44T

Each of the x; 1is an original source symbol.
F =1-explln((1 - p(¥”)) "]
=1-exp[C¥In(1 - p(¥’))]

4.8
Let u(k)=é and  wk)=I(-p¥’) .
This gives
k
F = l—exp{%} 4.9
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It will be seen that as k — o, v(k) —0 and u(k) —0.
L‘Hopital’s rule gives:

tim £ = 1 - exp(ZE, _ /(&0 )

k —»

= 1 —exp(+C* P(Y ) /(1 - p(r/ NInC )y oo 4.10

Now
J -— . . . .
p(Y ) _p{xly-"’xk, xk+|,--.,X2k, ey x1+(_,_l)k,...,x_,k}

may be shown, by the Shannom-McMillan-Brieman AEP theorem, to tend
towards the value 2Y*M= as k — =, for a set S; of Y space and

zero for all Y'€§,. Thus vY'€ s,

. d s
lim F = 1—exp{CF—27"%=/(1 = p(¥'NInC } |4 _ o
k=0 dk

and ¥V Y’ eSS,
lim F ~ 1 —exp(C* =7 (0)/(1 PY'NINC )i e

k-

d -sku ~JkH ~JH
But — 2 o) = ) o)
P ( )=2 In(2 )

. _ — -JkH, In2
Thus kll_{l'oloF 1 exp( cka JH — ) 4.11

®InC

The exponent goes to —-o as k = for 279"=C > 1 and goes to zero
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as k — o for 27M=C ¢ 1. Thus for

log, C

log,C
J> Hw N F —’0 4.13

The expectation

E(lim F)=1 or 0 for
k-0

log,C log, C )
J < A and J > A respectively 4.14
Thus
limL=J
k-
. log,C
where J is the largest integer smaller than - or
<
- _ log,C
L>—p—-1 4.15

Now it should be pointed out L is the average number of k
length sequences per block that is coded. Thus the actual average
length is given by

— log,C
Lyy=kL>k(———1) 4.16

™)

The coding rate is;

_ log,N +log,C* < log, N + log,(C*)
LAV k(log.C 1)

]

R
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and for k—wo we have.

H

[ee]
R<1_H,, 4.17

log, C

For a source with large redundancy, that is Hg << logZC, the
coding scheme is efficient. We can make the performance tighter by
not restricting lengths to be integer multiples of k. The
disadvantage of this is that we have to devote more bits to the
coding of the block sizes as the number N of possible block sizes

increase.

4.4 .1 The Shannonm-McMillan-Brieman

Asymptotic Equipartition theorem

This 4is a fundamental theorem associated with the probability
distributions of long sequences from an ergodic source. The AEP is
a direct consequence of the ergodic theorem. The theorem says that
the probability of occurrence of a block of symbols XN of length N,
as N tends to infinity, behaves as follows: Every N length sequence
XV is a point in the N dimensional product set ig19 . Then the
product set may be partitioned into two disjoint subsets S; and §1
as N tends to infinity. All xV sequences that belong to S; occur

Mo  and a11.xV sequences that

with almost constant probability 2
belong to §1 occur with almost =zero probability. The physical
interpretation is that for long sequences we observe that some

particular options almost never occurj; the others which occur, do so

with almost constant probability. This theorem is rather useful and
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is often used as a justification for the use of block source codes
of fixed length and rate. Before going on to the theorem proper, we
should state the ergodic theorem, the foundation upon which the AEP
is built. Consider a source with a countable outcome space , a
Borel-Z field contructed from this space, and a probability measure
p(.), defined on this field. Consider a bounded u-measurable
function g(w) defined on the space £, with mean defined as

follows;

g= J glw)du(w) 4,18

vV we

Then if the source ( @, ¥ ,u) is ergodic and T' is a coordinate shift

of i positions, T'(@j) = w3

o ; e

That is, the time average of the function g(w) tends towards the

mean g as the block length is increased.

Now we shall give a proof for the AEP theorem. Suppose the

sequence of functions g,(x;) are defines thus;

8i(x;) = =108y p(X;|X; s %3y - -+ Xiog)

and gy(x;) = —log, p(x,)

du(w) = p(w)d(w) where this exists 4.20

The Kolmogorov-Sanai[Billingsley-(1966)] theorem says that

H, = lim H(xp|x_y, .00 X,) 421
where
11(x0[x_|,...,x_")==i[log2p(x0|x_,,....x_gdp(xo,x_,,...,x_g

4 .22
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and H, is by defintion the Shannon per symbol entropy associated

with a source. Where

. 1
H, = "lergo[—n;1 flogzp(xo, X_py oo X )du(xg, x_py ooy x2)] 4.23

The theorem is then as follows

1f fnx™y == Z&(T (x9)) = ——logzp(xN XN =20 -+ %) 4.24

Then XN s H

Now we may write

N-1 N-1

g/(T" (xp) = % Z 8ol T (x0)) | du(X )

2|~
D1

J vy - H | dux™) < J |

vX=® X =0 =0
N-l
1 @
+ j |5 ) 8l T (x0)) = Hop | du(X )
VX® =0
N-1
1 ©
< f | 8(T" (x0)) = g(T" (x9)) | du(X ™))
=0 VX»
N-l
1 1
+ J | ¥ ) 8dTxo) = Hop | du(X ) 4 .25
VX® =0

The fact that we have an invariant function gw(.) in the second
integral of the right hand side allows the ergodic theorem to be
used here, thus it may be observed that this term tends to =zero.
This follows from the fact that the mean of the function gm(.) is

the conditional entropy defined in equation 4.22 and is equal to Hey.
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The first term is described in McMillan’s paper as the Cesaro mean,
this is the mean in time of a generally decreasing sequence whose

limit is zero. The limit of the sequence

J | 8/(T" (x0)) = 8o(T" (%)) | dr(X ™) 4.26
VX®

being zero follows from the fact of the convergence of conditional

probabilities. The theorem on the convergence of conditional

probabilities is proved in an appendix. Therefore the first term on

the right hand side also converges to zero, proving the theorem.

The following corollary of the above statement is actually

what is known as the AEP theorem.

Corollary. Given any 6>0 there exists an integer N such
that sequences of length greater than N fall into two classes, 54
and §;. Class S; has a total probability mass greater than 1-6 and

class §; a total probability mass less than 4, that is

du(¥) 2 1-6 and f du(r¥) <5 4.27
YMeS, M>N YMeS,, M>N

Every sequence YM that belongs to class S; has almost the same
probability of occurrence, this falls between the limits defined

below.

2‘M(Hm+5) < p(YM) < Z—M(Hw—ts) 4.28

Proof. By the Chebychev inequality
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Prob{|-—MLlogzp(YM)—Hm| > 5)

1 1 My _
< EE{l_EIOgZP(Y ) Hool} 4,29

By the statements preceeding this corollary it had been shown that

1
SuXM) = === logp(v™) ~ H, _ 4.30

Thus for any &2, 3N such that VM > N

[ I_A_iflogzp(YM)_Hoold#(Ym) =E{l-ﬁlogzP(Y ") -Hgl} < &

VY

4.31
Therefore
Prob{|—;l{— log,p(Y¥)—H_| >3} <&
But that set S; is the set such
==L tog, (¥ ) = | > 5

This has total probability mass 1less than Se Thus §; has

probability mass greater than 1-8and vYME S,

1
-5 < -—— My _
7 08 P(Y )~ H, < +5 4 .32

This concludes the proof.

This theoren was first noted by Shannon

[Shannon-(1948a) theorem 3] where it was offered with a rather
sketchy proof. The first thorough proof was given by McMillan

[MeMillan-(1953)], whose proof is followed here. The expansion of
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this to cover joint sources is described very thoroughly by
Dobrushin [Dobrushin-(1963)]. For a treatment of the theorem in the

context of ergodic theory see Billingsley [Billingsley-(1965))

pp 129-136.
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4.5 Performance bounds for coding

with a fidelity criterion.

The coding scheme for the situation where distortion is
allowed is almost the same as that described in section 4.3. The
difference here 1is that in searching the set of previous or
previously coded outcomes Ay, we allow ourselves to code a block
Y'N, if we find a ¥'N € Ag » such that d(Y'N ,¥'N) < d*; we declare
coding a success and approximate YLN by N, d*is a distortion
limit set beforehand. Let

Prob(3 P :d(ri, 7 < d} )

be the probability of finding, for a given sequence YLN, an
approximation within distortion a* , in AR. The probability of
coding a particular sequence YLM of 1length Ly, M <N is the
probability of observing YLM, but not a longer sequence Y'M+i within

distortion d¥, in Ag. 1In briefer notation, this is

~ Ly L ~ Ly . ~L, L ~ L, .
Prgb[{BY d(Y™yYy y<d, } (Y{(BY :d(¥hy )<d,,VJ>M}]

As before we attempt to bound the coding rate by £finding

bounds on the average length. This is given below.

L= E (Prob[3 P :d(r' 7™ < d} 1Ly
vyLy ‘
+Pr§)b[{ 3Pl d(yh-, f’L‘H) = dL_,,_,} ﬂ
(3P dy™ 7™ <d) Ly,
+Prob{ {3 phedrbe Py s d) ) N

(2 a ;d(YL’,f’L') < d;-/’ some [ >N —2}].L,_,

+Prob (3 Pliart Yty <d ) N
(3 vhoaort vty < d;-,’ some [ > 2}].L,
oL L oL .
+Prob[{A ¥ :d(Y",¥™) < d,, somel > 1}1.L,)

4.33
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The evaluation of these probabilities 1is difficult, if not
impossible, therefore an assumption has to be made in order that we

may proceed. Now

Prgb({ﬂ PUrart Py <dy ) (AP drh P < dy, somel > T})
=Prob( 377 :d (v, PY) <d} )~
Prgb({a Phdrt vty sd) )y M (3P drt ) < d), some > T })

4.34

Assumption. The quantity to the right hand side of the minus sign
above, is to be simplified by the following assumption: If a block
of 1length vl may be found, within some distortion d*, in AR , then
a block Y of smaller length may be found to within distortion d¥,

in Aj. In mathematical notation we replace

Pm%{ﬂ?h-d}ﬂ,}h <d: oL L, oL . '
¢ :d(Y™, )_dLj}ﬂ{HY :d(Y Y )SdL,,someI>J})

by

AL p “LJH .
Prob(3 ¥ d (v YT < d; )

We may therefore write the average length as

L= E (Prob(3 P drt, vy < d) Ly =Ly o)
VYN ! .
+Prob|3 Pl d(ybs- P < d) 1Ly~ Ly—)

+Pr€b[3 Phidh, vh) < d;_:].(LZ— L)+ Ll) 4.35

We shall consider the particular case when Ly=1, L,=2,...,Ly=N.

Then the average length may be rewritten as
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L =E(Prob[3 P":d(r™,7") s d}]

i
&NV =1 AN -1

+Prob(3 PV (VTP < d )

.2. 2 a2 ]
+Prob[3 17 d(Y2 1) < dj] + 1) Ay

Now we shall concentrate on the evaluation of the terms

Al -
Prob(3 ¥ d(Y', Y < d;)

It may be shown that as an '"elementary" block size tends to
infinity, for a given distortion value d*, some of these probability
values tend to one and others to zero. As was done in section 4.4
where noiseless coding was considered, we define an '"elementary"
source symbol as a sequence of k original source symbols. v!

therefore refers to kI original source symbols or 1 elementary

source symbols. Now

-1 ~ 1 .
Prob(31Y :d(Y',Y) < d,] =1-(1— Probability of observing a se-
quence within a region d; of Y/
in one experiment conducted in the
space of previously coded symbols. )R

4.37

Let the probability of observing a sequence within a region d? of Y!

in any one experiment be p(YJ,d') . Let d?=d* for all I. We
are concerned therefore with evaluating 1—-U‘—p(YJ,d'HR. We may
write

1= [1-p(r",d"" = I—exp{ R In[1-p(¥',d")]} 4.38

We shall now tie R to k in the following manner. Let C*¥ = R. Thus
in implementation of the coding scheme, if one is unable to find a
block of length greater than the "elementary" source symbol, ie. k
original source symbols, then just one elementary source symbol is

coded. This is done by quantising it to the nearest of ck levels.



-176-

The number of quantisation levels is chosen so that, presuming a
maximum  ignorance or flat distribution between the amplitude

extrema, the quantisation introduces less distortion than d¥. Thus
l—exp{R In[1 —p(Y',d")]} = 1 —exp{C*In[1 — p(¥’,d )]} 4.39

As was done in section 4.4 we look at what happens as k—>m,

d I q°*
. —P(Y vd)
1—exp{C*In[1 =p(Y',d N} |}ueo = l—exp{Ck(l_;lzy,,d.))lnc Hiwco

4 .40

by L‘Hopital’s rule. At this point we need to make wuse of the
theorem of section 4.5.1. This says that the probability of
observing any symbol, within the horizon of N defined by
acxN, ¢V < d*, is almost a constant for some YN, this constant being
Z—NRM.’ and almost zero elsewhere, as N goes to infinity. R(d¥) is
the rate-distortion (r-d) function of the source xN sequences,
calculated as defined in section 4.5.1 part i. 1In keeping with
custom the r-d function of section 4.5.1.15 defined using napierian
logarithms. The r-d value given here refers to that which would

have been obtained if the log is to base 2. This is done here

because it allows our results to be given in bits (instead of nats).

Thus
d I d -rkRW@") _ _-TkR(") .
= =—7 = =2 J.R(d )In2 4.
P4 =g 41
. _ k~~TkR(d") IR(@%)In2
1—exp{c"1r_1[1—p(Y’,d N}iww =1-exp{-C"2 (1=p(¥1,d")InC Hicsoo
4 .42
log,C log, C
-0 VI>R—(dT) and —» 1 VI<—‘—R(d-) 4 .43
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The average length is thus

~2 - o - - N
E {1+ Prob(3 ¥ d(YLy) <dj)+ Prob[3 Y d(rY) <d)+ ... etc)

all uncoded
vl sequences

We know that for every J, pr(aYJ:d(YJ,YJ) < d¥) is very close to
either unity or zero, depending on the value of J and the actual v,
There are some Y! values of almost 2zero probability of being
observed in Ay, to within distortion d¥*, even though others of the
same length are observable within distortion d* . The average

length may thus be written as

~2 a2 . ~ 1 Al .
E {1+ Prob[3Y :d(YLY) <d;]+--- +Prob[3Y :d(Y',Y) <d]]}
all uncoded R R

ri sequences

Where I is the largest integer smaller than logZC/R(d*). Let the
region (Y.€) be the set of all I length sequences within distortion
e of Y'. Let pu(YJ,e) be the probability of observing, in one
experiment, an uncoded sequence within distortion € of Y. Now,
let us concentrate on the expectation-  of observing a particular

length.

Suppose A, = E  {Prob[3 ¥’ :d(¥’,?’) < d)]}
all uncoded R
v/ sequences

=0

=1imZPrgb[3 v d ¥y < dl 1Py e
all disjoint ’

(Y",¢) regions

=3in52PrRob[a va’ ¥y < dlip e

all members of a

set Sy of disjoint J J R
(. €) regions. +Iin(1)ZProb[3 Y dy’,v7) <djIP(Y’,¢
€ R
all members of the_
complementary set S; 4
of disjoint (YF, e¢) 44
regions.

The set of (YJ,e) regions 1is divided into ‘two subsets for this
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Som&€,
reason: It may be envisaged that for/z’particular (YJ,G) region, the

probability of finding in Az, a Y’ such that d(Y’',¥') ¢ 4* for
every YJ€(YJ,6) is almost zero. It should be recalled that in the
space of the coded signal, there are d* spheres, with almost
constant probability and other d* spheres of almost zero probability
mass. These two classes are represented by S, and §1. Then

1

all disjoint
(YL, ¢) regions

S is an arbitrarily small quantity representing the total
contribution from the space §1. The above equation follows from the
fact that for all (Y',e) regions which form the centres of
observable d* spheres in the space of the coded signal,

pr(3¥':d(y!,¥') < d) ~1.

The next point to Be established is the total mass of the set
Sqe This may be observed to be arbitrarily close to unity, since
any (Y',e) region that occurs with any frequency, is coded within
distortion d* and included in the space of coded symbols. Therefore
any (Y',e) region of nonzero probability mass (measured according
to the probability distribution function defined on the wuncoded
signal space), will be observed within distortion d*, in the set of
previously coded symbols with finite probability. Therefore A; =~ 1.

It may be concluded that

_ I
L=1+ZA_,§Z 8C _, b 46

The coding rate is

log, R + log, N < R4 ")log, N R(d")
3 == - . : 4 .47
kL k(log,C — R(d")) 1._Ro;az'c)
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As k becomes very large, the first term on the right hand side goes

to zero, giving

Rate = < R—(i—)-.- 4.48
1-—- d")
Tog,C

It should be noted that the R(d") value refered to here, is
not that for the original source but that for the signal of
previously coded symbols.

The following 1is a non-rigorous discussion of the relationship
between the r-d value of the coded and original signals. The 1r-d
values for the original and coded signals are refered to as R,(d")
and Rc(d') respectively. The coding scheme described may be looked
at in the following manner: Consider N separate spaces, each
containing ck points strategically positioned7 the spaces of
smallest and largest dimensions being respectively k and kN
dimensional. The C* points are the members of the set Ay of
previously encoded symbols. In implementing the coding scheme, one
observes blocks of length kL, 1 { L { N. These blocks are samples
from a space of dimension kL. We try to encode a block with one of
the ck points. Always trying the largest dimension first. The
foregoing has indicated that for long sequences, blocks of one
particular length are almost always encoded. In other words coding
is done in almost exclusively one particular dimension. This is the

ki-th dimension where

log,C
1>W3—1 4 .49
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It is only on very few occasions that the length of a coded block is
less than KkI. We may consider the occasion of coding a shorter
block as replacing a member of the space of ck points with a new
point. Since this is done a very small proportion of the time, the
ck points may be considered to span the space of kI 1length blocks
that occur and kI is the 1largest dimension space which will be

spanned by ck symbols.

Next we look at the meaning of the rate-distortion wvalue at
distortion d*, for a source. Each of the N dimensional regions of
distortion radius d4* (d* spheres), have almost a constant

probability mass of o NR@*)

or almost zero probability mass as N — o,
In other words, it is possible to span the N dimensional space of
all occurrences to within a distortion d* by packing this space
with spheres, each of distortion radius arbitrarily close to d* and
of probability arbitrarily close to ZWRMﬂ . Indeed 2NR@ spheres
are sufficient. An alternative way of looking at the r-d function

oWRE) gpheres and is allowed to choose a

is this: Suppose one has
dimension so that these d" spheres will span the space of all
possible outcomes, then N is the maximum dimension that one could
pick. This is because if one could pick the dimension N+J, and span
this space, then the coding rate in bits per source symbol would be

7£%T R(d"), which would mean that R(d*) is not the infimum per

symbol rate. This contradicts the definition of the r-d function.

It is known that the space of previously coded sequences of
block length kI, has a rate, for zero distortion of a very small
quantity greater than logZCk . This is because almost all sequences

in the set of previously coded symbols of length kI are obtained
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originally from other previously encoded symbols. These may be
transmitted with logzck' symbols, The small number € represents
the additional rate associated with new additions to the set of C¥

points of previously coded data, so that the following statement

holds:

kIR (d=0) = log,(C*) + ¢ 4 .50

Also

kIRc(d=d")=kIR.(d") S Rc(d=0) = log,(C*) + ¢ 4.51

1t is known that ck points almost totally span the space of all kI
length blocks that may be observed in the uncoded signal space. The
fact that a longer block length may not be found that enables the
space of blocks of this length ta be spanned by ck points allows wus

to presume that

oKIRW@) ok and kI R(d =~ log, C g

1 4.52
Thus using 4 .51,
kIR-(d") < log,(C*) +e
~SkIR(d)) +e
Y=~<R(@d)+ L
Re@)=~<R(d) T« 4.53

€, arbitrarily small. This allows us to say that the coding rate is

approximately as given below:

rate =~ < —W 4 .54

This concludes the discussion.
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The next section gives the details of the theorem for the

convergence of the probability mass of d* spheres.
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4.5.1 A partition theorem for sequences

observed with finite precision

Theorem. Consider a source with an outcome space Q, a
Borel-2 field F constructed from this space and a probability
measure q(.) defined on this field. The product space %ﬁ? is
partitioned into two disjoint regions S and § as N tends towards
infinity. The probability of observing any sequence xV , emitted
from this source, that is close to some YN, within distortion d*,
tends towards the constant exp(-NR(d")) for all N belonging to S
and zero for all YV belonging to S as N tends to infinity. The
distortion class considered, consists of the absolute and square
error, single 1letter distortion measures. That is the distortion
d(xV,Y") between the two sequences X" and YV is %E:lxi-yi| or

%2:(xf-yi)2. The theorem also holds for any other single letter
distortion measures with a difference distortion measure d(|x-y|)
such that the Fourier transform of the function exp{-d(.)} exists
everywhere and is strictly non-zero for all frequencies. R(d") 1is

the rate-distortion value of the source at the distortion d*.

Proof. The proof of this theorem is rather long and involves
several intermediate theorems. The proof 1is similar to that
employed for the Shannon-McMillan-Brieman Asymptotic Equipartition
theorem. Shannon [Shannon 1959] proved a similar theorem as lemma 1
in the referenced paper. In that paper however, he considers only
the single letter r-d function. Here, the limiting r-d function is
considered and it is shown that the joint density functions that
solve the r-d optimisation problem, converge for a class of

distortion functions.
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The proof given here relies greatly upon the ergodic theorem and the
convergence theorem for conditional probability. The proof will be
given in the following order.

i) The definition of the rate-distortion function

ii) A sketch of the proof

iii) A proof of the convergence of the probability functions

which give the rate-distortion function for a given d".

i) The rate-distortion function R(d") for a given distortion

value d*, is the minimum rate at which a source may be coded so that

the distortion is less than d*. In mathematical notation,

et e
R(d) pai)J.q(x)jp(ylx)ln[]q(u);p(ylu)du Jdydx 4 .56
such that
d’ 2 jq(x)J‘p(ylx)d(x,y)dydx 4.57
and
1= fp(y]x)dy Vx 4.58

x is an outcome of the source random variable and y is an outcome of
the approximation or reproduction random variable. q(x) 1is the
source probability density function and p(y|x) is the conditional
density function governing the approximation of the outcome x of the
source by the value y. The x and y may be vectors in which case the
integral signs represent multiple integrals. The solution of this
optimisation problem involves rewriting the objective function to
include the constraints, with a Lagrange multiplier p for the

constraint of equation 4.57 and a Lagrange multiplier function £(x)
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for the multiple constraints of equation 4.58. Let

. p(y|x) f(x)
R(p,p.f) = f , XML + pd(x,y) +1 ———ﬁ
(p:.S) pol.:fpﬂx){ J. jp@ x)(n wiy) Ay ) ydx}
4.59
be the new objective function, where w(y) is defined as below
w(y) = fp@lx)q(x)u 4 .60

On differentiating with respect to p(y|x) and setting the result to

zero, we obtain the following equations.

0= [ln%)+ pd (x,y)] and thus

= [ rer(-pax ) 461
) _
o = | wO)exp{—pd (x,y)}dy b .62

After solving equations 4.61 and 4.62, the p(y|x) which yeilds the

minimum is defined as.

_ fw0G)

p(y|x) 209

exp{—pd(x,y)} 4 .63

These results were first obtained by Shannon [Shannon-(1948b)
section 27]. For a more complete discussion see the following;

[Gallager-(1968) p457 or [Berger-(1971)] pp29-32 and pp88 90

ii) A sketch of the proof. It will be shown that as N tends

to infinity,
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PN(XNlYN)

1
S P o\ Al LA .y,
N n( X7 ] tends to Ry(d*®)

Where Rg(d®) is the rate-distortion function value at distortion d*
when block sizes considered tend towards infinity. pN(XNIYN) is the
conditional density function associated with minimising the rate for

a given distortion, when the block size considered is N.

It will also be shown that the distortion d(XN,YN) between any
pair of sequences xV and YV tends towards d* as the block size N
goes to infinity Both these proofs presume that the joint source

(XN,YN) is ergodic.

We shall proceed by assuming that the above two statements are
correct. This will be demonstrated later. With these assumptions
we develop the proof that the space of the x¥ random variable, for a
given YN divides into two regions as defined before. Now for a

given YN,

XN|yN .
Pl‘Ob{XN : Ij_i'-ln[qu(N_(-X_l-"T)] —Rw(d )I > 6}
1 1, pnXN[YN) .
< ;E{lﬁln[W]—Rw((I )|} 4 .64

by the Chebyshev inequality. But by the fact that

NiyN
l_hHEﬁEE_JEZ_ll may be made as close to Rg(d") as wanted by
N gn(XN) 1, py(XN|YN)
taki 1 h Pl P P Akl LT N .
aking N large enough, E{|N1n[ &) 1-R_ )|}
may be made smaller than 52. The following statement may be

claimed: For a given YN, there exists an N such that

py(XN|YN)

1
P M=
rob{X |N In[ 2 X

1-R, @) >5} <3 4 .65
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There are therefore for a given YV and N large enough, two disjoint

regions §; and §1 in the space spanned by xV where this is true:

J- PN YN )XY >1-5

S|(Yv)
f v YMdxY <o 4 .66
S/(¥™)
In the region S,
1 PN(XleN) .
iy B £ L Aal S BN

and in the region §1(YN)

1., pnXY|YY) .
Ipln[—”mx—l,v)]—Rm(d )| > ' 4.68

In the region S1(YN) we have

IvXV)exp{N(R(d)=8)} < py(X™|YY) < gy (XV)exp{N(R(d") + 8)}
4 .69

Now integration of p(XN|YN) over the region S1(YN) gives 1-8 . Thus

(X ") exp{N(Rd ) =8)}dx™ < 1-6 < f anX ") exp{N(R(d") + 8)}ax™
S,(¥~) Sy(YnN)

and

(1-8)exp{-N(R(d) +8)} < j gy(X™M)dx " < (1-8)exp{~N(R(d")-6)}
S(YN)
4.70

What has been shown so far is that for any &6 > 0, we may find an N
large enough so that the next few statements are true:
Statement 1. A given YV is to be approximated by xV. Governing the

set of possible x" that may be wused to approximate YV is the



-188-

conditional density function p(XN|YN) .

Statement 2. The space of all xV used to approximate this gV may be
partitioned into two regions S1(YN) and §1(YN)._ The total mass of
the conditional density function in the region S1(YN) is greater
;:han =5 .

Statement 3. The probability of observing an outcome from the

region S1(YN) is J. qN(XN)dXN
S\(Yy)

which is almost constant for all YN and equal to exp{N(Rm(d.)ié)} .

Next we have to show that the region S1(YN) corresponds to the
region where distortion d(XV,YN) < d + €, where ¢ is an arbitrarily
small value greater than zero.

Given a YN, we have;

oo
. 1
Prob{X" : |d(x",¥")-d*| > 6} < 3 fpN(Xle“’)|d(X”,Y”)—d‘|dX”
e 4.71

Now by the ergodic theorem, it is known that d(XN,YN)—-d' and

j XM YNld(x N, YY) -a"|ax

may be made less than &2 by the choice of an N adequately large.

Thus 3N such that

Prob{X" :|d(x",Y")-d"|>5} <5 4.72

This implies that for a given YN, there exists in the space of xN
values a region Sz(YN) of probability mass greater than 1-§ , that
is

XN YMydxY =2 1-5 4.73

Sy(¥Y)



-189-

where within this region,

ld(x",y")—d’| <5 .74

Thus importantly for us within this region d(XN,YN) < d*+§ .

Combining this and the set of previous statements, we have the
fact that for any 8 > 0 and € > 0, we can find an N large enough
so that for any YN, we can find regions of conditional probability
mass

NiyNysyN
j py(XT|Y)dx ", J pnX N YMydx N 4.75
S(Y) Sy¥Y)
respectively greater than 1l-€¢ and 1-6§ . For region S1(Y~)
{;qNLXN)iXN is almost constant and VvY almost equal to
exp(-NR(d*)). For region §,, d(XN,YN) < d°+ §. From these it may

be said that region S1F\Sz is of mass almost 1. This is because

J‘ pN(XNIYN)dXN = '[pN(XNIYN)dXN - J‘ pN(XNIYN)dXN

$SM) S Sy 55N S 4.76
Now
j pv(x Y M)dx Y < f Py YMydx" <5 4.77
SSAS, s,
Thus
J XYY Mydx " > JpN(XNIY‘V)dXN—é 2 1-¢—b 4.78
S, m S, S

This concludes our proof.

To recapitulate therefore the theorem may be summarised thus:
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For a given YN, the xV space may be partitioned into two regions S
and §, S=S1(YN)f\SZ(YN), which has almost unity probability mass,
that is, almost XN which are used to approximate vV fall into this
region. These regions S for any YV have the dual property that all
x" in a region S differs from ‘e by at most d"+ & , and any regions S
may be have a member observed with almost constant probability,
exp(-NR(d"))

iii) Now we proceed to the formal proofs of the convergence of

pn(XN|YY) .
1 —_
= mm ]t R@)
First we shall give some definitions. Let
@y=_inf [—jq(x (| pu(r¥1x™)in [—M——]d}"v)dz\"v]
Ry Pyryxyy N N (¥~
wy(Y™) = J Py (Y'Y [XM)gx Y ydx 4.79

q(X”) is the probability density function associated with the xN
random variable., The minimisation is subject to the following
conditions:

L4

Jq(x”)(jp',v(yﬂx”)d(x"’,y”)dy”)dx’v <d
J‘p;v(YN,XN)dYN =1, vx" 4 .80
It will be assumed that the conditional density function p;(YN|XN)

that solves the minimisation problem is pN(YleN). Let

R(d") = kim RN(d'). Next we define a function
=00

P Vi | Xamys o5 X4 yk—l""’yk-l)]

4.81
wN(yk |yk—] "'9yk—[)q(xk 'xk_], ....,xk_,)

gm(xk,yk) = In[
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This function will be abbreviated as

pN(xk’ykIXi—l’ Y1)
Wy O Y h-Dg(x, [ X)) 4.82

gN,(xk,yk) = In[

The superscripts £ indicate the lengths of the blocks X,f_, and Y,f_, on
which the random variables x, and y, are conditioned. The
coordinates of the first random variables of the blocks X,'Hand Y:q

are indicated by their subscripts. It may be noted that,

pN(YNaXN)
ln[W—NM(/-Y—’-V—)] =gy n-1(XnsIN) Tt By vl X oY) e gy ()
N-1
= ZgNi(Ti(x[,yl)) 4.83
i=0

where Ti(.) is a time shift operation and

N-1
. l ;
Ryd)=F {17 ZgNi(T (x;, ¥} 4 .84
i=0
Thus
R(@) = fim Ry(d) 4 .85
and
N-1
. 1 i .
,\}T]w{ﬁ ZgNi(T (x,y)} —= RW)
i=0

What we shall show is that as N grows larger and larger, the
apparently time averaged quantity gNi(x1,y1) tends towards its

actual average
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In which case we may write that

1 pN(XN’YN)

N M rmgam) k@)

Thus the quantity inside the log tends towards a constant as N — o,

Formally we shall show that

N-=1

. 1 ;
R@)= 2 ) el = 0
i=0
almost everywhere or

N-1

. hd 1 i o© [o-]

lim JIR(d ) - — Zg,v,-(T (xpy AP (X, Y®) =0 4 .86

N - N
i=0

We rely greatly on the ergodic theorem, thus the joint process

(XN,YN) must be ergodic.

We know that

N-1 N-1
o 1 ; ([ o 1 ;
JIR(d )_N ng(T (xpy))|dP < | |R(d )—17 Zgwm(T (x,,y,))|dP
i=0 * i=0
N-l N-1
1 i 1 i
Iy ) gl Ty = ng(r (x7,))]dP
i=0 i=0
N-1
r . 1 ;
< ||IRd )—17 ng,(T (x,y))|dP
* i=0
N-1
Ty Z flgwm(T (1)) = gn (T (x,3))|dP
i=0 4 .87

gmaﬂTi(x1,y1)) is an invariant function with N. The probability
density function associated with this is Rm(X“,Y“), corresponding to
the case that solves the minimisation problem for an infinitely long

sequence. This defines the first subscipt of the function
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gmqﬁx1,y1). The second subscipt means that the conditioning on the
random variables Ti(x1,y1) is the infinite X® and Y® sequences that
happened prior to Ti(x1,y1). Unlike gNi(.,.), the function ggf.,.)
is N invariant and i invariant. Therefore there follows immediately
from the ergodic theorem the fact that

N-—1

1 ,
J.lE{gocoo(xl’yl)} _N Zgoooo(T‘(xlvyl)”dP -0

i=0

provided the joint sequences (X%,Y®) are ergodic. Concerning the

term

E{goooo(xl’yl)}

all that is required is that we show that

R(d") = E{g o(x¥)} 4.88

After this we concentrate on the second term of the right hand side

of equation 4 .87 and show that this goes to zero.
Lemma. Let

Py (X Yo IX_,, Xy Ve Vv )
wy (¥ | ]
LC2% BT VI I/ 6 74 [ S SV

g/v/v_l(xpyl) = In[ 4 .89

then lim E{gy, {x,,¥,)} = R(A®).

N—

Proof. The proof is simillar to Fano’s proof of the convergence of
conditional entropy [Fano-(1961)] pp86-88. We will first show that
E(gyy(X1,¥1)) £ R,(d*). We then show that for any & > 0, however
small we  may find an N large enough so that
E(gu (X15¥1)) 2 Ry(d") -8 . Making & tend to zero and hence N

tend toward infinity, we conclude thatN{igm E{gNw4x1,y1)} = R(d")
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Now

pN(xvaNlX%Z{’YﬁID )} + E{ln( PN(Yx:{va:: >}

NRyd) = E{l"(wN(yNle:})q(xNIX%-l) wy (YZDX ]

4.90

Next we note that the joint density function pN(YN|XN) satisfies the

distortion constraint, That is
N
1 .
Jq(xx) J'p,,,(yx]x;‘v’)[ﬁ Z d(x,y)ldx"dy" <d
i=1
1 [ .
or J J‘pN(x,-,y,.)d (x;,y)dx;dy; <d o 4.91

By measure invariance with time shifts

N-I
l .
N —1 ZJ.J.pN(xny.)d(X,,y,)dxldy‘ S d 4092
i=1

hence the marginal density function pN(XquYNq) also satisfies the
distortion constraint. It is known that of all the joint density
functions of 1length N~1, the one which gives the smallest rate, in
addition to satisfying the distortion constraint is gw1(XN4,YN4).

Thus

_ (yN—l,XN—l) . Pn - (YN—l,XN—I)
E{ln(wp,vN_lin-l)q(XN—l))} =(N - l)R/V--l(d ) s E{ln(wI;(IYN—I)q(XN—l))}

4 .93
Then
. P; (YN—I’XN—I)
NR(d) =E{gyy-i(x,y)} +E{ln WNV(YN—l)q(XN—I)}
2 E{gy y1(xpy)} TV - DRy _,(d") 4 .94

also we know that

Ry_(d") = Ry(d") 4 .95
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and hence
NRy(d") = E{gy y—(xpy)} + (N = DRy(d) 4.96
Therefore
E{gyn-1(xpy)} < Ry(d") 4.97

Now we show that there exists an N such that

Pn (XN, Yy |Xx::’ Y%-_—Il
wy O | YN ZDaeey [ X N -p)

E{ln( )} P RN(d')—e foranye >0 4 .98

This will be done by considering the numerator and denominators

separately. Consider the numerator
E(Inpy (s Yy [ XN Y NZD) = =By Oy, xy | XYL YT 4.99

Now hN(x(,xlekq,qu) forms a non-increasing sequence with k V¥V k<N

(see Berger [Berger-(1971)] problem 4.1 page 140). Thus

Ay, YY) =E(-tnpy(x”¥,¥"))
=E(=Inpy (xy oy [ XN LY NID)
N=-2 N-=2
+E(=Inpy(xy_ 1yl X823 Y3 )
+ E(—=Inpy(xp,p,|%).9,) ) + E(—=Inpy(x,.y,) 4.100
But since

E(=Inpy (xy.yn|X N2 YAZD) < E(—lnpy(xuy | X2 YD) YE<N

- hyXN, YY) = E(—lnpy (X", ¥™) = NhyGey,yy | XV LYY
4.101
Thus

- - 1
~Enpy(ey oy [XRZLYRTD) < Sy (XY, YY)

— — l 4
E{Inlpy (xyoyy XN YR 2 5 E{lnpy (X ™, YY)} 4,102
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The next thing to prove is that the numerator function will obey

this; for any € > 0 an M may be found such that for all N > M

1 L () + hy(XY)

E{In[ € 4.103
wy Oy | Y HzDatey [ X 2] N
Where
N

hy(YY) = —E{lnwy(Y"V)} = - Z E{lnwy (7| Y2} 4.104

k=1

N
hy (YY) = —E{lngy(x™)} = —ZE{lnq(xk|X:::)} 4.105

k=1

For a given N, -E{ln[wN(yleb‘)]} is a non-increasing function with

k, VYk ¢ N. Thus the following inequality is true.

hy(¥") S —E{lnwy G| FDIV =) + D+ G = DE(In—=}, j<N
WN(,Vl)
4 .106
Similarly
hy(X™) < —E{In g0, [X,5) JWV —k + 1) + (e~ DE{In q(lx) b=
' 4.107
Hence
) . hy(YY) + hy (XY
=~ E{In(q0x, [ X T)wy 04 YD} 2 {(H— ”( )N—11i+1
k-1 1
- E{l .
N—k+1 {n(I(xl)WN(yl)} +-108

Qur next statement relies on the convergence of conditional entropy.

Consider a ratio M to k, let a= % say. For any finite a however
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large, an M may be found that makes k large enough so that for any

d > 0 we have

~E{In{wy, 0y | ¥ 3 -DqCxp JX 4 D1} = — E{Inlwy, (x| ¥ 21} — E{Inlqleu| X E2D1}

4.109

What we are saying 1is that due to the convergence of conditional

entropy, for M sufficiently large, the value k= g will be 1large

enough such that
M M_
—E{In{w,, (vx|Y £Z)).qCxu|X &7)]}

is very nearly equal to

—E{In[wy, 0y | ¥ ¥ gt | X ¥ -H1)
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Going back to 4.109 then we have,

— E{In[wy 0y | Y% D0y X4 TD1} 2 ~E{In(wy, (ru| ¥ E-D1} ~ E{InlgCex| X E1D)} =5

4,110
Using 4.108
_ _ by (XM) + hy (YM
—E{In[wy, (v, | ¥ 3 -Dq(xp | X 3D} 21 u )M ! )][ _IZ+1
(-1 l
- E{ln[——]} -
M -2+ {n[q(x.)wutvn)]} ’
h (YM)y+ XMy (1-2) 1
> M - M E{l
7 @ZE- E oy
-8 4.111

Allowing a to go as large as we want and M to go to infinity gives

1 o by X + hy (YY)

1} = ) 4.112
Wae War | Y ¥ 2Dy | X} 21 M

E{In[

for any € ,8 > 0. Considering this in addition to the statement

arising from 4.102 that is

- - 1
E{Inlpyy ¥y 0 [ X 3y T Y TD1} 2 5 E{lnlp, (Y, X)) 4.113
gives

Parps Vg | X ML Y M
War e | Y Y ZDaxy | X 4 20)

M M ]} ‘51
wy (Y M)g(X M)

E{gy 4 (x,»)} =E{In]

]

1
>
i E{In[

=R, (d") -5, 4114
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for some M, for any 4&; > O.

This concludes the proof}

Thus refering back to inequality 4.87, by the ergodic theorem, the
first integral of the right hand side tends towards zero as N-om,

Next we consider the second term, the summed integrals of equation

4.87.

In this section it is shown that most of the members of the
k-varying sequence of functions guq("’)’guq("’)""‘ tend towards
the invariant function g, (,.,). This, in conjunction with the fact
that the expectation of g__(,.,) is R(d*) allows us to prove the
theorem. In fact all we require is that for any' € >0, an N may be

found such that for all k > N, the following equation 1is true.

k
Jl%Z{gk,-(T'(xl,y,))—gm(T"(x,,yl))}IdP Se 4.115

i=]
As usual P is a probability measure defined on the field ¥
constructed on the product outcome space for (X®,Y®). Firstly a
sketch of the proof will be given and details filled in later. A
very important theorem concerning the convergence of conditional
probabilities is of great importance to this proof. This theorem
says that the sequence of probability distribution  functions
p(y|Ay), P(ylA;,A5), p(y |Ay,Az,A3) etc. converge. The convergence

is in this sense.

f|p(y|A,,A2,...,AN)—p(y|A,,A2,...,Aw)|dp - 0
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P is a probability measure over the infinite sequence of outcomes
AysAg,e00An. This tells us that for large enough g, (Ti(x,y)) will
be close to g, (Ti(x,y)) for most of the i so that

k

k
. 1 i
ngi(T'(x,,yl)) ~Z ngk(T xLy)) 4.116
i=1

& | —

i=1
1t is required to be shown that the sequence g, (Ti(x,y)) converges
with k, for every X",Yk pair of random variables. This is different
from what was shown in the previous section where the expectation of
Bkk (,.,) as k—»mowas shown to converge to the rate-distortion value
for a given distortion. In this case, it is important that for
almost each  point X ,Yk of non-zero measure 8k (Ti(x1 »¥1))

converges,

Now

P (XEYE) PR(XETL YA
8k ()= Gkrrh+1(-) = l“[m] —In[wk,ZY’il-l‘)q(X‘;TI)]

_(ln pk+l(XS+‘,Y’(§+I) ]_ln[ pk+l(XIipY,.(.l) ])
Wi+ (Y §TNg(X§HY) Wi +1(Y5 )g(X %))
4.117
We know that
P(X5, Y'§) _fk(Xg) k 1k
w (YE)a(XE) — q(Xk) exp{—pd(Xy,Y5)}  and 4118
pk+](X’6+l,Y{;+|) _fk+!(Xg+l) et
W (P TNGOXET) — quxk+ny SXP{=and(Xo 7L Y ™)
4.119

(fom 4.62)

Now

p X T YEY = f J P (XE, Y Eydx,dy,

=wk(Y’:,")exp{—("; Lyoed (X5, YA

f J w0 | YTV (X §) exp{=Ed (x50 o dyg
4.120
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where
k-1
1
d(X§.Ye) = sz(xi’yi) 4.121
i=0
Therefore
k-1
P TS - gy e~ e LY E)
k5= 4.122
where
(x*! = vk k P :
fk -1 ) Wk()’ol )fk(xo)exP{ kd(xoa.}’o)}dxod}"o
4.123
also
P (Xk,rk) _ k k k vk
W _§k+1(X-vY—|)°xP{‘k T lpx+1d(X—1’ D}
4,124
where
p
g‘H](Xf_,,Y'iI) = Jj.wk+,00| Y'i,)ka(XgH)exp{———k _;: ld(xo.yo)}dxod}’o
4,125
Thus
Six% GXETLY R
8k ) = 8rrru+1(-) ={In a(X%) —In ()ka D) }
St XEP) G (XA
—{1 -1
=gy " qxEy )
k-1 -
+¢ k )pkd(x’:,',y Y=pd (Xt YEY+ o, d(XEF YETY

k

k k
T Pend (X2 YY)

4.126

Now we can concentrate on establishing the convergence of the term

LXH | RXSLYEY
e XA T L (XELYE)

In
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At this point we have to forego the luxury of generality.
This is because the general distortion measure does not allow us to
describe the character of the functions fJ(xg) or ﬁHq(Xﬁﬂ). We
shall therefore restrain ourselves to the absolute difference and

square difference distortion measures defined as follows.:

N
dx¥ v = %quxn—ynl), where d (z) = z* or |2 4.127

n=0
These distortion measures are chosen because they define kernels
exp(—%d(XN,YN)) which are convolutional. They allow the solution of

the integral equations

ff;,(x”)exp{—de(X”,Y”)}dx” =1 4.128
JfN+,(X”'+‘)exp{—p,,,+,d(x”+',Y”*')}dXN"‘ =1 4.129
(see 4.01)

in a straigthforward manner.

Theorem. The eigenfunctions of the kernel

KN, ¥")=exp{—pyd (X", Y")} 4.130
where
N-1
d(X”,Y")=1—:,-zd(lx,,—y,,I), d(x) = x*or |x| 4.131
N =1

N

are exp{-j . .%‘”i x;}
=

The eigenfunctions form a continuous spectrum, are real and

non- zero.

Proof. Let
N

exp(—j Z w,.,x,.)K(XN, YN)dXN

[

Ay, vV =

N

N
exp(—j z “-’,‘»x,') X(Ni Z d'(lx,' ‘)’,-l)) dXN
i=1

i=1

4.132
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Then
co N N
Ay, YY) = J exp(—j Z +y; ) M~ Zd‘(lxil)))d‘XN
- =1 i=1 4 .133
© N
Also let Moy = JCXP("JZ‘%X)X( Z (]x,|))dXN 4.134
- i= =1
1 N
be the Fourier transform of the function K{ ﬁ X d(x;)}.
Then
- N
A@", Yy = exp(-jzw,., PARYCAS I 4.135

i=1

By the symmetry of the kernel we may write

A" = ZJ.cos(Z )X(NL Zd'(lx,.l))dXN 4.136

i=1 i=1
thus showing that A(wM) is real. We write the homogeneous Fredholm

integral of the second kind as,

N

® N :
j exp(—j Zw,.x,.)x(xN,yN)de = Mw"). exp(—j Z“"‘y” 4.137
) i=1

i=
Thus proving that the eigenvalues are real and form a continuous
spectrum and the eigenfunctions are the exponential functions
exp{-j ~i§.'1 w; X; }. That the eigenvalues A(w") are strictly non-zero

is shown as follows. It is known that
N

A’ = f exp(—j Z @;X;) X(Z d'(|x])dx?
- i=1
o N
N 1 .-
= igl J‘ exp(—J Zw,.x,.) J((Nd (|x; ) dx; 4,138
—oo i=1 ‘ ’

For the square distortion measure, K{ lW’d’(xi)} = exp{- %xf }
It 1is known that the Fourier transform of exp{-ax? } is

T 2
J% exp{- g—’—é }« Thus A(V) = HJ ZN exp{- } This function is
iz
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always strictly positive.

For the absolute difference distortion measure
X(Ld'(lx D) = eXP{-E’lIx-I} 4.139
N i N i .

We know that the Fourier transform of the function exp{-a|x|} 1is

2a N 2Np
Ny — N
at+er - Thus M) = I iy

This is also strictly positive for all N. This concludes the

proof.
Now 1 =J.f(XN)exp{-de(XN»YN)}dXN 4.140

1
fexp{—pyd(UN,YN)}dUN

Thus 0= J{f(X”)— yexp{—pyd (X", v™)} dx "

1
jexp{—R IV d(|ly;])} dUV

f{f(x ) - Yexp{—ppd (X", YY)} dx"

4,141

But if all the eigenvalues of the kernel are non-zero, the above can
only be true if the function being transformed by the kernel is
zero. Therefore for the two distortion measures we can say that the

only function fN(XN) that solves the equation

ffN(XN)exp{—de(XN,YN)}dXN =1 4 .142
is the constant
oo N
1/ jexp{—ﬁz (xi) ax™
— =|

For the square difference distortion measure,

, N
j exp{~yrd (X"} dx™ = I j exp{~ 70} dx,

=(\/%)N 4.143
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Thus
N oy \Y
Sn(X )=( W) 4,144
Similarly
p; N+1
fN+|(XN+I)=(\/;N_V:L]_I—1) 4 .145

Now we are in a position to investigate the character of the

functions . {y(.,.) and $ye(.y.)

P
v riy = IIWN+IUOI Yfl)fNH(X{)VH)eXP{-NN-:ll (x0,70)"} dxg dyg

=( Py +) )N
(N +1) 4.146
Also
-l uN- Py \N-
LN yd ')=(\/#)” ! 4147
Therefore

_ Py (Y, XT) Py (YELXN
lavw — 8v+1n+1] —l{ln[q(zl\i{)");,v()g{)")] - ln[q(Xg]—l)le(y/]_vl-n)]}
—{In[ Py (Yo HLXTTY Py (VY. XY) 1}
qX G+ Wy (V) (X Y)wy (YY)

] =In{

< [{Inlfy XM =[N YY1 = (Il o (XY O] = Inley o (XYL YD1

+|ln[q(x0|Xf,)] - In{q(x, [Xﬁ',—')]| + |%,’i - -]S—N_-E-'l'—ld(xo,yo)

1, (N +1Dp - P p
ﬂmpwa:fﬂ+qmwudxﬁn—mwudxﬂ5n+y§—hﬁj|a%ya

4.148
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Thus

"hN—h+w+mfith—&HWHNP

) *
_| p”l + nlgCo | X 23] — InlgCrg | X YOI, + |30 — R4 |d

4.149
The third term may instantly be recognised as going to =zero as N
goes to infinity. By the convergence of conditional probability the
second term may also be observed to tend to zero. Next we need to

show that the first term tends to zero. This is done by showing

that R and Rt tend towards each other as N becomes bigger
: (N+DR )
thereby sending ___7$L to one and the first term to zero. Before
N+

the theorem for the convergence of the sequence Prsfy seeee is
given, we shall look at the case where an absolute difference

distortion measure is used.

For the absolute difference distortion measure,

‘ N+1

Sv(Xo )_(2 ) Sy X3 (2(1\‘/\/:-‘1)) 4.150
and

XYYy = (YT and gy (X YY) = )
4.151
Then
N+

levy —&v+im+1ll; < |in ‘N—ﬂl + llnfg(xe| X 7)) = In[gCxo [ X X7H11, + 'N ICN++1l |

4.152
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Lemma ., The sequence of numbers e ,%.,% yoeee for a given

distortion converges.

Proof. The value -e is the gradient of the rate-distortion
function obtained by considering i 1length sequences, at the
distortion value d*. Obviously the sequence of r-d functions
obtained by considering successively larger blocks, converges. To
prove this lemma therefore, we have to prove two lemmas the first is
that the P are the gradients of the r-d functions at the
distortion value d'; the second is that the convergence of the rate
distortion functions imply the convergence of their gradient
functions almost everywhere.

Lemma. Suppose that the joint density function p;(YN“XN) that

enables one to achieve the minimum rate for a given distortion d* ,

is given by

Yy ly(X"
Yy, Xy) = %—)em{—mw”,}’”)} 4.153

Then the number -% is the gradient of the r-d function at this
distortion.

Proof. (From [Gallager 1968] p457 section 9.4; [Berger 1971]
theorem 2.5.1 p33)

We need the fact that the rate distortion function is a convex
non-increasing function and almost everywhere differentiable. The
argument then goes as follows. We know that at distortion d*, the

minimum rate is defined as Ry(d") where

Ryd")+ppyd” = inf {il(x”,Y"’)+>\J} 4 .154

py(YN|XY) & \:d <d° N
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A 1is a Lagrange multiplier to take care of the distortion
constraint. d and I are the distortion and the mutual information
respectively, obtained when the conditional density function is
PNT)”VLXN) . We repeat that RN(d') is the infimum rate that may be
obtained for all distortion values less than d*. For any p&(YN|XN)
a pair of values I and d for mutual information and distortion are

obtained, where by definition, vd < d*,

Ry@d") +ppd” < }lVI(XN.YN) +ond 4.155
We can draw a line with slope —% between the points (d',RN(d')) and
(0,{RN(d')+«'d’}) as shown in figure 4.1. This represents for all
values d < d*, a lower bound on the r-d function. This is because
for any value of distortion, say d , that is less than d* and has an

associated infimum rate RN(a'), we have by equation 4.154

Ry(d")+pyd < Ry(d)+pyd 4.156

Therefore RN(d’) always lies above that line. The next thing is to
ascertain what happens for distortion values greater than d*. Here
the objective of the optimisation problem is changéd. We try to
find the minimum distortion that may be attained for a rate

Ry(d®). Consequently the Lagrange multiplier operates upon RN(d').

L

rRy@d)+ 4= inf (;\{N

1™, vy + d’)
P(Y¥IXN) & Al SRy(d")

4.157

By definition, the minimisation problem done this way will lead to

the same value of distortion, that is A=d"., Hence

»* . . 1 N N -
Ry(d)+d =inf(N— Y’ .
rRy(d") inf(M 1 (XYY"} +4) 4.158

less tham
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But this may be rewritten as
Ry(@") +3d" = inf( 1", ¥") + 17) 4.159
d O\N A
The minimisation of the right hand side will give

d 4.160

| —

Ry(@d") +1d" < Ry@) +
for all values of rate and distortion such that Ry (d”) = Ry(d®).

The inclusion of the value d"=d* gives the equality and hence

r=14h . It may therefore be said that for all wvalues of rate
RN(E") less than Ry(d"), the rate distortion function is greater
than the line of slope A, going from (d*,R(d"*)) to ({d‘+?%R(d')},0)
as shown in figure 4.2. Therefore the rate distortion function is
greater than the 1line of slope'—% which touches it a (d*,R(d*)).
By the convexity of the r-d function (see [Berger 1971] theorem
2.4.1, p27; [Gallager 1968]; [Shannon 1959]) this line should be a
tandent and hence the gradient of the r-d function at distortion d*
is -%.

Lemma. By the convexity and monotonicity of the sequence of
rate distortion functions, the sequence of r-d functions obtained by

considering successively larger block sizes, have gradient functions

that converge almost everywhere.

Proof. To prove this we‘need the following two facts:
1) The sequence of r-d functions converge almost everywhere,
that is for all d*: 0 < d" < dpy - For any subregion,
"x < d* < xt§ , and for any € > 0, an N may be found such

that for all n > N, |Ry(d*)-Ry,(d")| < €
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2) The r-d function must have a continuous slope, for all
values of distortion except d*= 0 or dp, .
The two conditions are proved to be true in [Gallager-1968] pp 491
and 492 and p463 and [Berger 1971] p463. Armed with these two we
proceed as follows: Consider an X, €, &8 and n so that
|[Ry(d) =Ry \(d))| < €. oOver this region an upper bound on the
absolute value for the difference between the gradient functions

Ry(d ) and Ry, (d ) will be established

Since the gradient functions are continu ous, for any n the numbers

Ryd)—Ryd’ +9) Ry, (@d@)—Ry,d +9

Ryd’) = 7 . Ry = 7
exist and are bounded for any (> 0. Now Let
Zd")=Ryd") =Ry, @) 4.161

Then since the function z(d)= Ry(d - Ry.,d) is bounded by

te , within the region in question,
-d*
2d’) = Iz'(v)dv e 4.162

X

is bounded by *e. Let the maximum |RE(d’)—RﬁH(d')| be z7 (over

all ¢ and d°) maximum instantaneous value of z, may be observed

to be JZa; . Now since 2 1is finite, € may be made as small
as possible by increasing N thus making 2z° as small as one wants.

This concludes the proof.
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4.6 Conclusion and Discussion

In this chapter a theoretical discussion of the performance of
the MPPCD scheme was presented. As usual, analysis of this scheme
as it might be practically implemented is not feasible. The
operation of the scheme as some particular parameter, in this case
the block size 1is pushed towards infinity, was studied. This is
instructive as far as understanding the capabilities of the scheme

are concerned.

Analysis was relatively straigthforward for the noiseless
coding situation. It was shown that for sources with large
redundancy (the entropy is much less than 1og2C, C being the source
alphabet size), the coding rate for "this scheme approaches the
Shannon entropy value. For sources with little redundancy, at the
expense of trying to code with very many possible block sizes, the
scheme could be made to perform at close to the Shannon entropy

value of the source.

Analysis was wundertaken for the case of coding with
distortion. This was considerably less straigthforward, éompared
with the noiseless coding case. A few assumptions were made
concerning the source. These, in addition to the development of»a
theorem concerning the probability mass functions of long sequences
from ergodic sources observed with finite precision, allowed
analysis to continue. At that point the discussion had to be
conducted along more heuristic lines, it was then argued that the
coding scheme performs in a similar manner to its performance in
noiseless coding. For sources with a rate distortion value, at

distortion d , which is much less than logZC (C is the number of
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levels in a uniform quantisation scheme that achieves a distortion
of less than d ), the system is efficient. For sources where this
is otherwise, performance may be made tighter by using more

alternative block sizes.

In the analysis of the situation where coding is with respect
to a distortion measure, a theorem was developed which said the
following. For ergodic sources, the probability mass associated
with the N dimensional regions of distortion less than d 1is almost

NRU) for some regions and almost zero for all

of constant value 2
other regions. The theorem was first noted by Shannon. The proof
offered for this however, involved only the use of the joint density
function which solved the variational problem for the single
dimensional rate distortion function. The proof offered here is

more general, although applicable to single letter square and

absolute distortion measures only.

The following 1is a discussion of the connection between this
scheme and universal coding. The minimum rate at which a source may
be encoded is determined by the statistics of this source. The
design of a coding scheme that is efficient for a particular source
relies on the knowledge of the statistics of the source being coded.
For a significant proportion of the sources whose compression is
considered, the statistics are not known. Some sources, behave as
if they are composite, that is, from one relatively long period to
another, the source statistics may be observed to change. For these
two types of source, it is important to use a coding scheme that
works reasonably efficiently for all sources whose statistics belong

to a certain superclass. A family of coding schemes which work well
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for sources of unknown statistics or varying statistics is the
family of wuniversal codes. The essentials of universal coding are
described in a comprehensive paper by Davisson [Davisson 1973].
Most of the present universal coding algorithms rely upon a certain
degree of statistical analysis of a particular block to be encoded.
The code symbols sent to the receiver are; 1) a sequence indicating
the statistics of the block in question and 2) a sequence
representing the code symbols associated with the "optimal" coding
of the source, bearing in mind the information about the statistics.
The aim of the MPPCD scheme was to effect the coding of sources
whose statistics were unknown, 1in a reasonably efficient manner.
This scheme differs from universal coding methods in the following
two ways:
1) No direct assessment of the source statistics for a block is
done.
2) In the MPPCD scheme the coding of a block involves the use
of previously coded blocks of data. TUniversal coding
methods however, take nom-overlapping blocks, establish the
statistics and encode these blocks accordingly. No account
is taken of other blocks in the past or future, for the
coding of a particlar block.
The MPPCD scheme may be considered as viable for the coding of
sources with slowly varying statistics and similar to universal
coding by reasoning thus:
The scheme codes blocks on a basis set of C members which are
previously encoded blocks. The coding of a block therefore depends
on previous blocks. If we consider superblocks consisting of the

block to be coded and the previously coded C blocks, then the
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following may be said: Part of a superblock is coded at a time. The
coding of this segment of a superblock is independent of other
superblocks. The superblocks are shifted in such a manner as to
overlap with their previous superblocks., If the period between the
instants when the statistics vary is much longer than the size of a
superblock, then the system adapts well to variations in source
statistics.

It is in this way that the MPPCD scheme resembles a universal coding

scheme and justifies its investigation.
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CHAPTER 5 THE ENCODING OF SCALARS
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5 The encoding of scalars

5.1 Introduction

Scalar encoding 1is an alternative to block coding which can
offer improvements in these ways; the coding schemes may be made
less complex and coding may be implemented with little time delay.
The former is of special importance in image compression where the
data generation rate 1is so large that complex compression schemes
are impracticable in real time. It should be pointed out that these
advantages may be only be obtained at the expense of compression
capability. In the cases where scalar schemes are used to obtain
compression rates comparable to those attainable using block coding,
comparable complexity result and just as much delay is suffered.
Thus scalar schemes are only really advantageous in cases where

large compression is not required.

The encoding of scalars involves the allocation of channel
digits to represent each individual source symbol generated. For
most schemes, the value of each individual source symbol may be
retrieved, with some distortion, without waiting for a whole block
of data. The exception is the class of schemes where a multipath
search 1is conducted. 1In most scalar coding schemes, the decoding
process entails simply the evaluation of the appropriate
approximation symbol given the channel symbol received and the

previously received channel symbols.

In this chapter some examples of scalar encoding are given,
Following this a brief description of the theory used for the design

of "optimal" scalar encoders as reported in the literature will be
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given. This chapter serves as a preamble to work reported in

chapter 6 on scalar encoding.
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5.2 Pulse Code Modulation (PCM)

This 1is the simplest and most basic of all the digital
encoding techniques. It was first reported and patented in 1939 by
A.H. Reeves. Early descriptions of practical PCM schemes are given
by Goodall-(1947) and-(1951) and a good general desciption is given
by Oliver, Pierce and Shannon-(1948). A time continuous signal is
sampled so that the sampling frequency is greater than twice the
highest frequency component in the input signal. The lowest rate
that a signal may be sampled at is termed the Shannon-Nyquist rate
[Shannon- (1948)1]. The resulting samples are then coded for
transmission. A number of quantisation 1levels is chosen. The
choice 1involves making a compromise between excessive noise and
transmission rate. To each of the "N" values that a source symbol
may take after quantisation (each member of the resulting source
alphabet), logzN bits are assigned. N is chosen, in general, to be
a power of 2. A PCM system with a uniform transmission rate
attempts no redundancy reduction, by the allocation of a wvariable
number of bits to a source alphabet member. The simplest PCM
schemes "linearly" quantise the sample space of the source symbols
into N levels. The source symbol, when observed to have a value
within a given quantisation region, causes a certain sequence of
bits to be transmitted. At the receiver, this source symbol is
approximated by the centroid or mean of the appropriate quantisation

region.

Various improvements to the basic PCM scheme have been
reported. The most common is non-linear quantisation. A-Law and

pu-Law quantisation schemes are the accepted standards for speech
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transmission. These employ a fine quantisation grid for low values
of the source signal and a coarser grid for high values of the
source symbol. The A and u-—-law characteristics are shown in figure
5.1. A more systematic approach to non-linear quantisation is
offered by the methods of Lloyd-(1982) and Max(1961). For a source
with a known probability distribution, these methods try to achieve
minimum distortion granted a certain number N of quantisation

levels,

An optimum quantisation scheme as far as the mean square error
is concerned, should have the following properties.
1) Granted a set of partitions Xy,Xgy5eeeXyy an optimum set of

centroids m,,m,,...,my should satisfy the following.

. Iz_lup(u)du
m; = gt ————
© Y p(u)du

p(.) is the probability density function for the source.
2) Granted a set of centroids m;,my,...,my an optimum set of
partitions X;,X;,e«e«,Xy s should satisfy the following.

m; +m,,

xi=—2—' 5:2

The schemes by Lloyd and Max try to define an optimum quantisation

scheme by the successive invocation of equations 5.1 and 5.2.

For applications where a variable transmission rate is
allowed, more efficient ways of bit allocation may be used. For

each channel symbol possible after quantisation, a different number
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Figure 5.1 A-law and (/-1law characteristics.
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of bits may be assigned for transmission. The bit assignment rule
is decided according to the relative frequency of occurrence of each
channel symbol. In general, the larger the probability of
occurrence of a symbol, the fewer the number of bits assigned to
this symbol. The optimum bit assignment scheme was discovered by

Huffman in 1952.

To date, most of the digital communication links employ

uniform rate PCM with some non~linear quantisation scheme.

5.3 Delta modulation (DM)

Delta modulation 1is an advancement on PCM which attempts to
use inter-symbol dependence to obtain some data compression. In DM
the effective sampling rate is very much 1larger than the
Shannon-Nyquist lower limit. For example, 40kHz is used to obtain
coding of a reasonable quality for 4kHz bandwidth speech. Figure
5.2 shows a delta modulation transmitter and receiver pair. A brief
explanation of how this works is as follows:
The source waveform is clocked in at the rate w say, which is much
greater than the Nyquist lower bound. At the instant n say, let the
clocked source symbol be x(n) and suppose the previously generated
symbol has been decoded as X(m~1). The delta modulator then sends a
channel symbol, "1" or "0", to indicate the polarity of the error or
difference between =x(n) and ax(n-1) (a 1is refered to as the
integrator multiplier). 1If a "1" is sent the error is presumed to
be +e and if "0" is sent the error is presumed to be -e . This
quantised error value, e or -e , is added to ax(m-1) and used to

approximate x(n). This value, X(n) is used to help encode =x(n+l)
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Figure 5.2 A delta modulator transmitter and receiver pair.
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Figure 5.3 Phenomena of slope overload and granularity.
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and so on. The delta modulator effects a feedback process, the fact
that it uses previous estimates of a signal gives it its advantage

over PCM.

An alternative way of interpreting the functioning of the
delta modulator is this, Presume a first order auto-regressive
model for the source. The model is defined by the following

equations,

x(n) =ax(n—1) + e(n)
x(n) =ax(n—1) + eq(n) 5.3

The error signal e(n) is then quantised to one of two levels te (n).

Several adaptive methods for delta modulation have been
reported. These generally work by changing the quantisation levels
for the error signal e(n), depending on the short term magnitude of
this., These fall into two classes, instantaneous adaptation schemes
and syllabic adaptation schemes. The latter are descibed by
Tomozowa and Kaneko-(1968) and Bolin and Brown-(1968). In general
these detect periods when the signal magnitude is too large for the
step size, by monitoring the sequence of ones and zeros generated by
the encoder. The mean number of ones and zeros is used to increase
or reduce the step size. The instantaneous schemes work by changing
the step size based on a decision using a few of the omes and =zeros
released from the encoder., The most common method is that reported
by Jayant-(1970), Cumminsky, Jayant and Flanagan-(1973) and Goodman

and Gersho-(1974).

The use of a second integrator in the feedback loop, acts as a
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means of ensuring that there is little slope overload. The effect
of a sequence of ones at the encoder output(indicating slope
overload), is to force a ramp at the input to the second integrator,
whose output then rises in the manner'of a 2-nd order functiom to
match the input. This has the disadvantage that it is 1liable to

overshoot.,

The third variation on the theme of delta modulation is that
concerning the use of a variable sampling rate. Work in this
direction has been reported by Vanlandingham and Bogdanski- (1980)
and Un and Cho-(1982). These adapt the delta modulation sampling
rate according to the degree of the local activity of the input
waveform. For example, in the paper of Vanlandingham and Bogdanski,
an estimate is made of the local second differential. The larger
this is, the smaller the sampling period used. This 1is the
philosophy of run-length coding which 1s considered in the .next
section. Steel-(1975) gives a very thorough presentation of the
various DM systems available. A comparison of delta modulation

systems, is given in the paper by Un and Lee-(1980).

5.4 Run length coding

This 1is a differential coding scheme, where a non-uniform
transmission rate is obtained. It has been applied mostly to

picture coding and in particular to facsimile pictures.

Briefly, a typical run 1length coding scheme does the
following: An error criterion is set apriori, an estimate x(n) of a

source symbol =x(n) is made based upon the values of the decoded
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approximations to the previous source symbols. If the difference
between x(n) and x(n) is above the error threshold, x(n) is sent as
it is or the error signal x(n)-x(n) is sent. If otherwise, nothing
is transmitted. At the receiver, the symbol x(n) is approximated by
x(n). When a symbol is transmitted, the period between this and the
latest of the previous symbols transmitted, is also transmitted.
Generally, the estimate of a symbol x(n) is simply the estimate for
the previous symbol, =x(n-1). Thus the decoded output of a run
length coder consists of straight line approximations to the source
waveform. Run 1length coding 1is very similar to delta modulation
with "a'", the integrator gain set to unity. The difference is that
the line segments used in delta modulation are always one
inter-symbol period 1long. Run length coding is particularly

suitable for the coding of data where long sequences of data are of

approximately the same value.

A block diagram showing a simple run length coder is given in
figure 5.4. The following references indicate the types of run
length coder reported in the literature. Gonzalez and Wintz-(1977)
section 6.3.3, Pratt-(1978) section 22.3, Gouriet-(1957), Cherry,

Kubba, Pearson and Barton-(1963) and Robinson and Cherry-(1967).

5.5 Tree and Trellis coding

The basic idea underlying both these methods are explained in
the foregoing. Consider a sequence of random variables, each with a
sample set ‘7={W1’wz’---:am}’ so that a typical sequence of
outcomes is x(1),x(2),...,x(n),.. where each x(n) belongs to Q .

Tree and Trellis coding techniques try to find an optimum set of
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Switch selects input if
arror is gr=ater than
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output otherwise

—

4 Channel

Source of continuous
amplitude
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A block diagram of a Run-length encoder.

!
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Figure 5.4b Example of the input waveform and its approximation ,

obtained with a simple runlength-encoder. The short
vertical lines against rhe horizontal axis show the
transmission instants.
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channel symbols b(1),b(2),...,b(n) to represent the sequence of
source outcomes x(1),x(2),...,x(n). The representation is such that
a set of approximating x(1),%(2),...,%X(n) may be decoded from
b(1),b(2),e44,b(n) so that the distortion
d(x(1),x(2) 5,000 3 x(1),%(2)y¢+.) 1is minimised. Tree and Trellis
coding schemes differ from block coding scheﬁes in that the former
schemes choose the set b(1),b(2),ec.,b(n) and hence

X(1),%(2),ee0,%(n) sequentially.

5.5.1 Tree coding

A study of figure 5.5 and the following explanation shows in
detail how a typical tree coding scheme works. The whole of the
sample space for the sequence of bits which may be used to transmit
approximations to the outcomes {a(-n),...,a(-1),a(0),a(l),...,a(n)}
may be represented by an infinite sized tree. The actual sequence
of bits {b(-n),...,b(~-1),b(0),b(1),...,b(n)} employed to code a
source sequence may be likened to a particular path in the tree. A
finite length of data {x(1),...,x(n)}, has a sub-tree associated
with the sample space of bits which may be used to represent these.
Tree coding is the business of assigning approximation sequences to
paths in a tree and given these, to find good paths to traverse when

coding actual source sequences.

Figure 5.6 shows a sub-tree where the darker branches describe
a path representing the sequence b(l),...,b(n). In the following

sections two examples of tree encoders are given,
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Figure 5.5 A tree, symbolising the options that the channel
symbols may take, in the process of scalar coding.
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01
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Figure 5.6 A subtree, with an example path and path map.



-231-

5.5.1.1 Example 1. Differential Pulse Code Modulation (DPCM)

Suppose a source generates a sequence of symbols x(n),.... In
implementing a differential pulse code modulator, an estimate x(n)
of the outcome x(n) is made, employing a linear combination of the

previous approximations.

P

*(n) = z a;x(n—1) 5.4

i=1
The vglues of a,,a;, ..-.,a, which lead to estimates x(n) of

least deviation from the correct values, are computed.

In DPCM, an outcome x(n) 1is coded and represented by a
quantised version of the difference between itself and its estimate.
Refering back to figure 5.6, it may be seen that DPCM effects tree
encoding in the following way. At the previous instant "i-1" the
DPCM coder may be envisaged to have been at some node in the tree.
The symbol x(n-1) has been approximated by x(n-1). The coder is
said to be at stage i-1l. Next the coder decides which of the
alternative branches in the tree it may take, given that the symbol
x(n) has just been observed. The destination node represents the
symbol to be wused to approximate the observed source symbol.
Associated with each branch that may be chosen are some channel
symbols or binary digits. In this particular case, the alternative

destination nodes represent the values
P

x(n) = Z a;(n—i) + gq,(e(n))
i=]

P

or z a;x(n—1i) + g,(e(n))

OF . iitiinennnn 5.5
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P
or Z ax(n—1i) + q,(e(n))
i=1

The quantities
q1(e(n)),qz(e(n)),...,q4(e(n)) are alternative approximations to the
estimation error. To each of these possible approximations is

assigned a sequence of bits.

Adaptive differential PCM (ADPCM) and linear predictive coding
(LPC) are advancements on DPCM. ADPCM is DPCM where an adaptive
quantisation scheme is used to encode the error associated with the
linear prediction of a sample or where the coefficients for linear
prediction are adapted regularly. Linear predictive coding is a
term used in speech coding for ADPCM where the prediction
coefficients are adapted regularly. More emphasis is placed on the
coding the prediction coefficients than on the linear estimation

error.

The following is some of the literature on DPCM and ADPCM.
This is nowhere near a comprehensive list, but these ought to give a
good impression of the work done in the area and more significantly
the combined references of these papers should indicate where to
look for more information. Harrison-(1952), Elias-(1955),
Jayant-(1974), Flanagan et al-(1979) may be consulted for general
work on DPCM. Methods which rely on the particular properties of
speech and images are:
1) For spéech coding, pitch synchronous prediction, where estimation
is made using previous outcomes which are a pitch period in the past
[Atal-(1982)].
2) For images Candy and Bosworth-(1972) and Maragos, Schafer and

Mersereau-(1984) do 2-dimensional spatial prediction. Limb and
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Rubenstein- (1978), Netravali~(1977) and Zschunke-(1977) make use of

the detection of edges and plane areas for coding.

5.5.1.2 Example 2. General tree coding

DPCM as described earlier is a particular case of tree coding.
A general tree coding scheme may vary from DPCM or ADPCM in the
following ways.
1) The schemes described so far assign "reproduction'" symbols to the
branches of the code tree by means of a linear predictive mechanism.
A reproduction symbol 1s the approximation symbol obtained when a
particular 1link in a tree 1is chosen at any stage in the coding
process. In the use of a linear prediction model, the reproduction
symbol for each node in the tree 1is determined by these two
quantities: A linearly predicted quantity obtained by wusing the
reproduction symbols associated with the nodes traversed in going to
the node in question and an error signal associated with the branch
which joins the node in question with the previous node visited.
This need not be so, the values assigned to each node of the tree
may be determined by another process. The process of determining
which reproduction values to associate with going to a particular

node via a particular sequence of nodes is called '"colouring".

2) In DPCM a multipath search is not conducted to ascertain
the best path to use in coding a block of data. In multipath search
schemes, a decision is not made concerning which path to employ at
each sample instant. A number of possible paths are considered as
candidates and a choice is made only after a whole block of data has

been considered.
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A particular tree coding scheme will be explained in the
following section. The results of using this scheme were reported
by Anderson and Bodie in 1977. A flow diagram for this scheme is
presented in figure 5.7. The colouring of the tree 1is based wupon
linear prediction. When the i-th source symbol is under
consideration, the coder is said to be at the i-th stage in the
tree. Initially, a number of possible paths to be considered is
decided, for example let this be 6. At each stage of the tree 6
paths to this stage are considered. Associated with each path, is a
bit stream and a sequénce of reproduction symbols. For each of the
6 possible paths, the following is done. The nodes traversed till
the {i~1}-th stage (the reproduction sequence defined by these
nodes) are used to estimate the i-th outcome. The ’estimation is
effected by 1linear prediction. From each of the 6 nodes at the
{i-1}-th stage terminating each of the 6 paths under consideration,
emanate '"m" possible branches. m is refered to as the generation
exponent. Each of the m possible branches has a sequence of bits

assigned.

There are therefore 6m possible values which may be assumed by
the approximation to the i-th outcome. These outcomes are the
estimates associated with each of the 6 alternative paths to nodes
at the {i-1}-th stage and associated with each, m possible values
for the error. Of these 6m possible reproduction symbols at the
i-~th stage, 6 are chosen. The coder then advances to the {i+l}-th

stage and proceeds as explained before.

After the consideration of a block of say N source symbols,

one of the 6 alternative paths is selected as the best. The bit
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Figure 5.7 Flow diagram of the tree coding scheme by Anderson

and Bodie
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The
sequence defining this path is released for transmission. A process
restarts, using initially only one node, that terminating the best

path just chosen.

In addition to the procedure described above, Anderson and
Bodie chose to smooth the quantised error sequence by sending this
sequence through a short, 2 or 3 length, FIR filter. This filter
was chosen to have zero transmission at the input sampling rate.
The operation of this filter was as follows. Suppose the sequence
x(1),x(2) 500 is the undistorted input sequence and §(1),§(2),...
is the sequence of linear estimates obtained using coded previous
outcomes. The error sequence is e(n),e(n),..., where these are

defined thus;

P P

x(n) = z ax(n—1i) ‘ and x(n) = Z a;x(n—1i) + e(n) 5.6
i=1 i=1

Each e(n) is approximated by a quantised version, q(e(n)). 1In
normal DPCM or linear predictive coding, the receiver will use the
quantities q(e(n)),q(e(n+1)),... in conjuction with the linear
prediction model parameters to estimate the input signal. In this
case, a linear combination of the previous quantised error values is
added to the 1linear estimate obtained wusing the reproduction
sequence defined by the coded previous outcomes. This is the
estimate for the i-th input symbol. Of the 6m paths defined by the
6 estimates and the m alternative quantised error values the best
six are retained. These 6 are used to define the approximations for
the next stage. The process model is thus an auto-regressive moving

average system defined by the following relationship.
P o

x(n) = Z a;x(n—1i) + Z b;q(e(n —i)) + q(e(n)) + {(n) 5.7

i=| i=1



=237~

and
P Q

X(n) = Z a;x(n—1i) + z biq(e(n — 1)) + qle(n)) 5.8
i=1 i=1

where e(n) are the error values

In the paper of Anderson and Bodie, the quantities a,,...,ap
are estimated by using an auto-regressive model for the source. The
quantities b;,...,by are chosen in an ad-hoc manner. In fact, we
have been unable, by experiment to observe an improvement in the
signal to noise ratio resulting from the use of the quantised error

signal.

Wilson and Hussain-(1977) reported an adaptive scheme based on
the method of Anderson and Bodie. In this scheme, a set of
estimation parameters were evaluated at regular intervals and

transmitted with a side channel to the receiver,

5.5.2 Trellis coding

Trellis coding is essentially the same as tree coding.,. The
difference is the graph structure used to represent the possible bit

assignment schemes for coding a sequence of data.

A trellis 1s a structure which unlike the tree structure has
branches which remerge. A tree with branches 1labelled such that
sections of this are repeated over and over again, may be
represented by a less redundant structure, a trellis. Figures 5.8a,

. 5.8b and 5.8c show a tree and two possible trellis representations.
It is to be observed that the trellis is adequate to indicate all

the possible paths associated with the uniform rate coding of a
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Figure 5.8 A tree and alternative trellis representations.
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source, (By uniform it 1is meant that a fixed number of bits is
assigned for coding each source symbol), Tree and trellis coding
are fundamentally the same. Both methods try to find a good path
through a graph representing the possible ways of assigning bits for
coding sequences. The only difference is that the rather compact
structure of the trellis indicates one particular scheme for finding
a- path through this graph. The fact that vertices which would be
distinct in a tree are merged in a trellis, directs one to do a path
search using the following principle. If there are m paths which
lead to a given node, the choice of the best path to this node is
made once and for all. For subsequent processing no consideration
is given to how this particular vertex was reached. This is the
underlying principle for a well known algorithm for decoding
convolutional codes, the Viterbi algorithm. (see Viterbi and

Omura- (1979) section 7.4, Forney-(1973)).

5.5.2.1 Algorithms for trellis coding

Firstly a few definitions will be given. A trellis encoder is
shown in figure 5.9a and a decoder in figure 5.9b. The encoder is a
convolutional coder. That shown in figure 5.9a has a constraint
length of K. K is the number of input symbols which are employed to
generate the channel sequence {...,b(n),...} using some function
£x(+) such that b(n)=f,(x(n),x(n~1) ,.c.,x(n-K+1 ). The =x(n) are

the source symbols.

The essentials of a trellis coding scheme are summarised by

these statements
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Figure 5.9 A convolutional (possibly trellis) coder and decoder.
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1) A codebook or decoding scheme is designed, either apriori
or adaptively,

2) Granted this decoding scheme, a good encoding scheme,
like the Viterbi algorithm, is chosen. This is used to
assign bits to the input symbols.

3) At the receiver, the channel bit stream are wused to

generate an approximation sequence to the source symbols.

The field associated with the design of good multipath search
schemes, has been exceedingly well researched. The challenge in the
field of both tree and trellis coding is the design of good decoding
schemes (alternatively refered to as colouring schemes). To see why
the term "decoding scheme" is applied here, consider the following.
A decoding scheme is that which decides which "reproduction" symbols
should be associated with a sequence of channel bits. The job of
generating a set of reproduction symbols for a sequence of channel
bits 1is performed at the decoder and thus this assiénment scheme is
termed a decoding scheme. Really therefore, it is not difficult to
assign a set of bits to represent a sequence of input symbols, given
a scheme for going from these bits to reproduction symbols. It is
however difficult to choose a good scheme for deciding a set of
reproduction symbols given a sequence of bits. Most methods
reported in the literature use a decoding or colouring scheme based
upon linear prediction. A few of the methods which specifically use
a multi-path search, as apart from DPCM, ADPCM and LPC are the
schemes reported by Anderson and Bodie-(1975), Linde and
Gray-(1978), Jayant and Christensen-(1978), Wilson and
Hussain-(1979), Fehn and Noll-(1980), Matsuyama-(1981), Fehn and

Noll-(1982) and and Modestino and Bhaskaran-(1981) for image coding.
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The literature provide theoretical results concerning the
feasiblilty of designing tree and trellis coders which achieve
compression close to the rate-distortion bounds for various types of
sources. (Jelinek-(1969) and Viterbi and Omura-(1974) for
memoryless sources. R. M. Gray-(1977) for ergodic sources). They
provide as yet very few methods for the design of tree and trellis

coders.

5.5.2.2 Trellis compression

A scheme in which the design of a trellis decoder is attempted
in an optimal manner, has recently been reported by Stewart, Gray
and Linde-(1982). The following is an explanation of the scheme. A
code-book 1is arbitrarily chosen, this 1is éuch that for every
feasible path map of length k, (k is the constraint length of the
decoder) a reproduction symbol is assigned. Refer to this code-book

as C¥. It has members {b(1),..0,b(k)=u, ; 5, },

{b(1),0esb(R)=u; 5 ¥olyeeeee,{b(1),u0e,b(K)=uy ; vy}

Each b(n) is a channel symbol or a sequence of bits and each Y; is

the reproduction symbol associated with the channel symbol uj .

A training sequence of source symbols {x(1),x(2),....} is fed
to the encoder. This encoder implements the Viterbi glgorithm to
find the best bit map given the trellis representation and the
codebook Ck. With the output of the encoder, a decoder with a
codebook C* is driven. A set of approximations to the training

sequence {x(1),x(2),...} is obtained.

The following information is therefore available.
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1) A set of k length input symbols from the training sequence and
corresponding to each k length sequence the associated k length
sequence of reproduction symbols.

2) Also available is the sequence of bits transmitted to obtain a

k length sequence of reproduction symbols.

This information is used to alter the codebook CK in this
manner. For the codebook value y, € c* an update, defined as follows

is employed.

! ZV mx(n)=y; 1 *

This 1s done for all samples in the training sequence. A new
codebook C¥ is thus designed. The new codebook is then used to code
the training sequence and using the method described above, an
update of ‘the new codebook obtained. This is done over and over
again till there is little noticable difference in the codebook as a
result of a repeat of this., This codebook is then considered to be

"optimal".

To provide greater insight an example is given. Consider a
trellis encoder with a constraint length k=3, which may transmit a
zero or one at each input sample instant. The trellis diagram of an
encoder is given in figures 5.10. Table 5.lagives the beginning of
a training sequence and table 5.l1bi. gives an initial codebook
employed to design a decoder for this trellis coding system.
Following the trellis diagrams of figure 5.11 to 5.16 and the

associated tables 5.2 to 5.7 should show the precise working of the
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10 14 9 16 13 1 16 10

Table 5.la Beginning of training sequence.

Channel symbols Reproduction symbols
b(n=2) b(n1) b(n) y(n)
0 0 0 1
0 0 1 4
0 1 0 7
0 1 1 9
1 0 0 10
1 0 1l 12
1 1 0 14
1 1 1 18
Table 5.1b Initial codebook used to illustrate the

Stewart-Linde-Gray method for establishing codebook
values for convolutional coding.
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Figure 5.10 Example of trellis contruction used to 1illustrate
Stewart-Linde-Gray method for establishing codebook
values.

ss=10 ~
cs=000 -
rs=1

ss=10
cs=001
rs=4

ss=14
cs=011
rs=9
d=6+5

ss = source symbol

cs = channel symbol

rs = reproduction symbol

d = distortion or distance

the above associated with the latest node of the path in
consideration.

The full and dotted 1lines indicate the alternmative paths in
consideration.

Figure 5.lla~g Example of trellis coding procedure.
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ss=9
cs=100
rs=10
d=6+7+1

ss=9

cs=101

rs=12

d=6+7+3
ss=16
cs=010
rs=7
d=6+7+3+9

ss=16

cs=011

rs=9
=6+74+3+7

ss=13
cs=110
rs=14
d=6+7+3+7+1

ss=13
cs=101

rs=1
d=6+7+3+9+1

Figure 5.lla-g Example of trellis coding procedure.
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ss=1

cs=010

rs=7
d=6+7+3+9%+1+6

ss=1

cs=011

rs=9
d=6+74+3+9+1+8

ss=16

cs=110

rs=14
d=6+7+3+%H1+8+2

ss=16
¢cs=111

rs=18
d=6+7+3+9%+1+8+2

ss=10
cs=100
rs=10
d=6+7+3+%H 1+8+2+0

ss=10

cs=101

rs=12
d=6+7+3+0+1+8+2+2

Figure 5.lla-g Example of trellis coding procedure.
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system. The dark lines and the dotted lines show the two possible

paths to each stage.

5.6 Conclusion

No new results were presented in this chapter. Data
compression methods refered to as scalar encoding schemes have been
discussed. It had been presumed that the reader is well aquainted
with the more popular schemes; PCM, DM, DPCM and run length coding.
Therefore the desciption of these has been brief. The not so well
known methods, tree and trellis coding, especially the latter have
received more attention in this chapter. It is hoped that the
contents of this chapter will enable the reader to appreciate more

fully, what is presented in the next chapter.
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Source sequence = 10 14 9 6 13 1 16 10
Reproduction
sequence =1 7 12 7 12 9 14 10
Channel sequence = 1 0 1 0 1 1 0 0
Table 5.2a Source, reproduction and channel sequences

Channel symbols Reproduction symbols

b(n-2) b(n-1) b(n) y(n)

0 0 0 1 =1

0 0 1 (4+10)/2 =7

0 1 0 (7+14+16)/3 = 12.33

0 1 1 (% 1)/2 =5

1 0 0 (10+10)/2 =10

1 0 1 (12+9%+13)/3 = 11.33

1 1 0 (14+16)/2 =15

1 1 1 18 = 18

Table 5.2b New codebook after a single
sequence.

pass of the

input
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CHAPTER 6 ADAPTIVE DATA COMPRESSION WITH MEMORY,

THE SCAIAR CODING APPROACH
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6.1 Introduction

In this chapter some results of investigation into methods of
scalar encoding are presented. As discussed in the previous
chapter, scalar encoding techniques, offer some potential advantages
over block coding; mostly in the direction of reduced complexity.
In addition, scalar coding techniques are often used when coding

delays are intolerable.

Most research in the subject of scalar encoding has resulted
in suggestions for the improvement and analysis of muitipath search
coding (MSC) schemes. For the efficient operation of tree and
trellis coding schemes (examples of MSC) a good ‘colouring’ or
‘decoding’ scheme 1is required. To design a good colouring scheme
requires a knowledge of the sta;istics of the source to be coded.
More often than not, the precise source statistics are unknown

apriori.

An adaptive scheme is then called for. The 1local statistics
for the signal being coded are ascertained and using these, varying

‘colouring’ or ‘decoding’ schemes are used for compression.

In this chapter some results on adaptive tree and trellis
coding are presented. Some of the results presented are from
schemes which work in a similar manner to the MPPCD methods first
described in chapter 3. MPPCD stands for "the Matching of Patterns
in Previously Coded Data". Coding is done on a block by block
basis; for each block to be coded, the statistics of a previously
coded source with similar statistics to the present block,.are used
to design a ‘colouring’ scheme. The system uses a very small

quantity of extra bandwidth to code the 1local statistics, as
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compared to other adaptive tree and trellis coding schemes.

The chapter 1is organised as follows: The results of tree
coding by the methods of Anderson and Bodie-~(1975) are presented and
compared with those obtained by using, firstly an adaptive quantiser
and secondly, an adaptive ‘colouring’ scheme. The latter is similar
to the experiments of Wilson and Hussain-(1977). These results are

then compared with those obtained by the approach presented here,

Adaptive trellis coding 1is proposed for the case when the
“colouring’ or ’‘decoding’ scheme is based on a codebook as reported
by Steward, Linde and Gray-(1982). Due to the magnitude of the
transmission rate ordinarily neccessary to specify the colouring
strategy, adaptive methods had not been previously reported in the

literature.

In the same spirit as the rest of this work, a ‘colouring’
scheme which 1is specified using the statistics of previously coded

blocks of data, is presented
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6.2 Tree coding
The binary digits which code the outcomes of a source, may be
supposed to represent paths in a tree. Figure 6.1 shows a tree, a
path through this tree and the binary digits representing this path.

Tree coding involves two jobs.

The first is finding a means of ‘colouring’ a tree. That is,
choosing ‘reproduction’ sequences or symbols to associate with paths

or branches in the tree.

The second task is that of finding, given a ‘colouring’ rule,
a strategy for choosing a path in a tree such that the resulting

reproduction sequence matches the input sequence reasonably well.

An example of a colouring scheme is that defined by linear

predictive analysis and of a path search strategy is the M-algorithm

[Jelinek and Andersomn-(1971)].

6 .3 The colouring problem

Suppose a search scheme has been established for doing tree or
trellis coding. The job to be tackled 1is that of appropriately
colouring the tree or trellis. There are two reported approaches to

the problem.

The first and the most commonly adopted approach is founded on
linear prediction. Reproduction symbols used to colour the tree or
trellis are derived using a linear combination of previously coded
symbols, in conjunction with quantised versions of the error between

an actually observed symbol and its estimate.
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Figure 6.1 A tree, showing a possible path and the bit
sequence which code a block of data.
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Other methods, rarely reported upon, are based on “vector

quantisation’ [Stewart, Linde and Gray-(1982)]

In this section we discuss some problems associated with
multipath coding based on linear prediction and the attempts to

solve these problems. The equations governing 1linear predictive

coding are; P
x(n) = z ax(n—1i) + e«(n) 6.1
i=1
P
= z a;%(n— i) + q(n) + {(n) 6.2
i=1
P
and  X(n) = Z a;x(n—1i) + q(n) 6.3

i=1

where x(n) is the n-th input symbol. X(n) is the n-th reproduction
symbol. At the receiver, x(n) will be approximated by X(n). The
{a;} are the linear predictive filter coefficients. These will be
refered to as the ’‘linear prediction parameters’. e(n) 1is the

difference between the linearly predicted value for x(n), that is
P

x(n) = Zaii(n—i) 6.4

i=1

and x(n). qg(n) 1is a quantised version of e€(n). In linear
predictive based multipath coding, several values of q(n) are
considered at each stage of coding. (In single path coding only one
value of q(n) is chosen) ¢(n) is the actual coding error for symbol
x(n). In summary, the coding methodology is defined by the

following equation;
P
x(n).= {zai}(n— i)+ q(n)} + {n) 6.5
i=1

The problem in optimum linear predictive coding is to evaluate the
coefficients {a;} so as to minimise the average mean-square-error;

E({(n)z). The following approximate model is used to determine the
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{a;} in practice.
P

x(n) = Z a%(n—i) + q(n) 6.6

i=1

where the a; are evaluated in order to minimise E(q(n)z) and there

is no restriction on the values q(n) may take,

If X(n) is sufficiently close to x(n), the model of equation
6.6 suffices. It is a simple matter to find a; to minimise the
mean-square value for q(n). With the supposition that the X(n) and
x(n) sequences had similar statistics, this set of a; values should
result in a small E(e(n)z) and hence E({(n)z). In this section a
less imprecise model for linear predictive coding is presented. The

model described by equation 6.1 is used.
P

x(n) = 2 a;x(n— i) + e(n) 6.7
i=1 :
To find the values {a;} which give the least mean square €(n)

sequence, we differentiate E(e(n)z) with respect to each a;. This

yeilds a Wiener-Hopf matrix equation

[Y][a] = [2] 6.8

where Y is the auto-correlation matrix for the x(n) sequence. a is
the vector of filter coefficients and z is the cross-correlation

between the x(n) and X(n) sequences.

5' = {E (x(mx(n — 1)), E (x(m)x(n = 2)), .... E (x(m)x(n— P))}
6.9

The following assumptions are made; the error sequence
{(n)=x(n)-X(n) is uncorrelated with X(n-k), for all k and
E({(n) {(n-j))=0, for all j#0. This results in a matrix equation
identical to the "Normal equations'" except for a positive factor A

which contributes to the diagonal., That is,
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(o T A r . [ \ (al\ {"l\
r retN o . a, r
= : 6.10
{ Foi rp2 . R )\) \aP} \"p J

where N is the variance of the error signal {(n).

The problem then, is that of estim;ting the variance of the
error signal. This 1is not straightforward because a set of a
values are required for estimating the variance of the coding error
{(n) and yet, the value of A is required in order to evaluate the
set {a;}. Of course, the evaluation of this, may be attempted
recursively, it is however thought that this would involve a lot of

computation, and for real time application, is impractical.

The next approach is to make a direct estimate of the coding
error., This may be done by estimating the rate-distortion function
of the source. Alternatively, the filter coefficients, assuming
zero error, may be used to make an estimate of the variance of the
error signal {(n). The second scheme, being simpler was followed.
It 1is quite straightforward, to estimate the coding error variance,
given a set of coefficients b;, (b; are the coefficients represented

by the model of equation 6 .6)
P 2
)\=ciI=II(1—k,-) 6.11

where the k; are the reflection coefficients generated as
intermediate products in the filter coefficient computation
process.(appendix 1) ¢ 1is a constant dependent upon the

statistical model used to describe the €(n) sequence and the number
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of quantisation levels used to represent q(n)

E ((n)?)
¢~ Ed 6.12

For the work reported here, the signal is coded in blocks and the
prediction coefficients adapted per block. A set of coefficients
are calculated using the Burg method[Burg-1968], initially on the
original data. The block of data to be coded, then has noise of
the appropriate variance A added to it. Each new reflection
coefficient ‘calculated, in the Burg algorithm, when calculated is

quantised for transmission.

6 3.1 Results and discussion

In implementing the above scheme, the estimation error signal
is modelled as being of either a Gaussian or Laplacian distribution.
Depending on which 1is used, one of a set of values u(l),...,u(L)
obtained using a Lloyd-Max quantiser are used to approximate the
error signal. When the Gaussian model is used for the prediction
error signal,

L=4 implies u(l)=-1.51M and L=2 implies u(1)=-0.798M
u(2)=-0.4528M u(2)=0.798M
u(3)=0.4528M
u(4)=1.51M
c =0.1175 c = 0.3634

When the Laplacian model is used for the prediction error signal,

L=4 implies u(l)=1.81M and L=2 implies u(1l)=-0.707M
u(2)=-0.39M u(2)=0.707M
u(3)=0.39M
u(4)=1.81M

c = 0.1765 c= 0.5
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M is an estimate of the standard deviation of the prediction error
signal. The results are shown in table 6.1. Very satisfactory
signal to noise ratio values are obtained, in comparison to say
transform coding, especially where the step sizes are adapted
regularly. As expected, the signal to noise ratio achievement

improves with increasing the number of paths.

The results of adaptive tree coding of images are shown in
figures 6.2 and 6.3. It may be observed that on some occasions the
system is unable to cope with the very rapid variation in amplitude
which occurs at feature edges. The computed step size is inadequate
and a whole line sometimes, is badly coded. Were the step size
larger, coding error would be poor in plane areas. This is a
problem not observed in speech coding, where an average ''good" step
size enables reasonable coding of the whole of a block. What is
therefore required 1is an adaptive step size computation, this
appears to be very important for image coding. A stép size
adaptation algorithm as reported by Jayant-(1970), Cumminsky, Jayant
and Flanagan-(1973) and Goodman and Gersho-(1974) was used. As
before, the quantised error signal is one of L values if the
transmission rate is logzL bits/symbol, where these values are
chosen with a assumption that the error 1is of a Gaussian or
Laplacian distribution. As mentioned before a multiplying constant
M, , 1s applied to each of a set of numbers determined by the model
for the predicted error, to generate the set of possible quantised
error values. M, 1s a function of the estimated prediction error
standard deviation., This multiplier M, is now allowed to vary at
each sample instant. The step size variation logic is shown in the

equation below.
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EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 8 BUFFER LENGTH= 128 S/N=
EXPONENT= 8 BUFFER LENGTH= 128 S/N=
EXPONENT= 8 BUFFER LENGTH= 128 S/N=
Results of multipath tree coding of speech. A 4th

order predictor is used and the coefficients are kept
fixed. Syllabic companding is used for coding the
step size. For each block of 256, a new variance
estimate is made of the prediction error and use to
evaluate new quantisation levels. A Gaussian model
is used for the prediction error signal.

EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= &4 BUFFER LENGTH= 128 S/N=
Results for multipath tree coding of speech,

as those of table 6.1b except
used for the prediction error
levels chosen accordingly.

conditions are the same
that Laplacian model is
signal and quantisation

8.52888
11.28734
11.55060
13.59127
16 .48544
16 .77807
17 .62343
19.27146
19.67548

7.99171
10.18226
10 .62 836
14 .67488
17 .20935
17 .41278
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4th order predictor is used.
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BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=
BUFFER LENGTH=

AP 00oo NN S

non-adaptive

32

32

32

64
128
128
128
128
128
128
128
128
128
128

multipath
quantising

S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=
S/N=

tree
residual.

coding,

A

10.31530
12 .28051
12 .79777
12 .27789
12 .35737
5.88364
7.81316
8.06916
12 .52345
14 .08971
14 .56803
10.31580
12 .35737
12 .75397
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tree coding.
those for

The coding curcumstances are

the

EXPONENT= 2 BUFFER LENGTH= 128 S/N= 8.44675
EXPONENT= 2 BUFFER LENGTH= 128 S/N= 11.91222
EXPONENT= 2 BUFFER LENGTH= 128 S/N= 12 .28032
EXPONENT= 4 BUFFER LENGTH= 128 S/N= 15.22299
EXPONENT= 4 BUFFER LENGTH= 128 S/N= 19.22484
EXPONENT= 4 BUFFER LENGTH= 128 S/N= 19.93847
EXPONENT= 8 BUFFER LENGTH= 128 S/N= 21.41381
EXPONENT= 8 BUFFER LENGTH= 128 S/N= 24.71616
EXPONENT= 8 BUFFER LENGTH= 128 S/N= 25.46754
of adaptive multipath tree coding of speech.
A 4th order predictor is employed. The 1st two
reflection coefficients quantised and coded with §
bits/coefficients and the 3rd and 4th with 4
bits/coefficient. The prediction coefficients and
prediction error estimates are updated every 256
sample periods. A Gaussian model is employed for the
prediction error signal for exponent=2, otherwise a
Laplacian model 1is wused. Adaptation information
rate=30bits/block
EXPONENT= 2 BUFFER LENGTH= 128 S/N= 7.92061
EXPONENT= 2 BUFFER LENGTH= 128 S/N= 10.77414
EXPONENT= 2 BUFFER LENGTH= 128 S/N= 11.18465
EXPONENT= 4 BUFFER LENGTH= 128 S/N= 13.59804
EXPONENT= 4 BUFFER LENGTH= 128 S/N= 17 .47357
EXPONENT= 4 BUFFER LENGTH= 128 S/N= 18.15260
EXPONENT= 8 BUFFER LENGTH= 128 S/N= 20.23861
EXPONENT= 8 BUFFER LENGTH= 128 S/N= 23.14097
EXPONENT= 8 BUFFER LENGTH= 128 S/N= 23 .86367
Results of speech coding using adaptive multipath

same

table 6.1d except that the prediction
coefficients and prediction error variance values are
updated every 512 sample periods.
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AFTAB original.

Step size adaptive tree coding of image AFTAB.
Fixed 4-th order predictor wused. Number of

paths=1, Block size=128, S/N=20.69dB.

Step size adaptive tree coding of image AFTAB.
Fixed 4-th order predictor used. Number of

paths=4, Block size=128, S/N=22.71dB.

Adaptive tree coding of image AFTAB.
4—th order predictor wused. Number of
Block size=128, S/N=20.99dB.

Adaptive tree coding of image AFTAB.
4-th order predictor used. Number of
Block size=128, S/N=22.65dB.

Adaptive
paths=]1,

Adaptive
paths=4,
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6.3e

6.3f

6.3g

6.3h

=264~

TELEBOX original.

Step size adaptive tree coding of image TELEBOX.
Fixed 4-th order predictor used. Number of
paths=1, Block size=128, S/N=17.71dB.

Step size adaptive tree coding of image TELEBOX.
Fixed 4~th order predictor wused. Number  of
paths=4, Block size=128, S/N=19.64dB.

Adaptive tree coding of image TELEBOX. Adaptive
4-th order predictor wused. Number of paths=1,
Block size=128, S/N=16.30dB.

Adaptive tree coding of image TELEBOX. Adaptive
4-th order predictor wused. Number of paths=4,
Block size=128, S/N=17.81dB.

GEORGE original.

Adaptive tree coding of image GEORGE. Adaptive
4-th order predictor used. Number of paths=1,
Block size=128, S/N=13.51dB.

Adaptive tree coding of image GEORGE. Adaptive
4-th order predictor wused. Number of paths=4,
Block size=128, S/N=13.68dB.
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M, =aM,_, if(q(n—1),q(n—2)) e {(u(1),u(1)), (u(L),u(L))}
1 .
=M, otherwise

a=1.4 6-13
In addition to the above scheme, at the beginning of each

coded block, a new estimate of an average M is computed; this is
denoted as M; and used to initiate the step size adaptation scheme.
This is because it was observed that the above adaptation scheme was
liable to become unstable if left unattended. A further variation
on the above adaptation scheme was employed. This 1is particularly
suited to image coding, where a large step size is only required in
éhe region of an edge. This step size adaptation algorithm is shown
below.

M,=aM, | if(q(n—1),q(n—2)) e {(u(1),u(1)), (u(L),u(L))}

=M, otherwise

a=14 ' . 6.14

This results in an increase in step size at an edge when the

step sizes being employed are too small, presumably when an edge is
observed. When the stép size is too 1arge; presumably when one is
no longer in a busy region, the step size is immediately returned to
the average step size estimated for that block, instead of the
gentle reduction implied by the above scheme. The results are shown

in figure 6.4.

6 .4 Adaptive tree coding by parameter matching

In this section, the results of an adaptive multipath tree
coding scheme are presented. The scheme relies upon a library of

filter coefficients evaluated from the previously coded blocks of
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-266-

AFTAB original.

Adaptive tree coding of image AFTAB Adaptive 4-th
order predictor wused. Instantaneous step size
adaptation used, step size 1increases by factor
1.4, on slope overload, and drops instantaneously
to default otherwise. Number of paths=1, Block
size=128, S/N=21.82dB.

Adaptive tree coding of image AFTAB Adaptive 4-th
order predictor wused. 1Instantaneous step size
adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously
to default otherwise. Number of paths=4, Block
size=128, S/N=23.57dB.

TELEBOX original.

Adaptive tree coding of image TELEBOX Adaptive
4~ th order predictor used. Instantaneous step
size adaptation wused, step size 1increases by
factor 1.4, on slope overload, and drops
instantaneously to default otherwise. Number of
paths=1, Block size=128, S/N=17.25dB.

Adaptive tree coding of 1image TELEBOX Adaptive
4~th order predictor used. Instantaneous step
size adaptation wused, step size 1increases by
factor 1.4, on slope overload, and drops
instantaneously to default otherwise. Number of
paths=4, Block size=128, S/N=18.86dB.

GEORGE original.

Adaptive tree coding of image GEORGE Adaptive 4~th
order predictor wused. Instantaneous step size



Figure 6 .41

adaptation used, step size 1increases by factor
l.4, on slope overload, and drops instantaneously
to default otherwise, Number of paths=1, Block
size=128, S/N=19.93dB.

Adaptive tree coding of image GEORGE Adaptive 4~th
order predictor wused. Instantaneous step size
adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously
to default otherwise. Number of paths=4, Block
size=128, S/N=21.94dB.






-267-

data. Firstly, a description of the coding system:

For a block of length N samples, P reflection coefficients are
extracted using the Burg-Maximum Entropy method. This set of
reflection coefficients are compared with the members of a library
of reflection coefficients, 1In the computer simulation of the
scheme, 64 sets of reflection coefficients are employed. The coding
scheme is based upon the M-path search as described by Anderson and
Bodie- (1975) and Wilson and Hussain-(1977) and later by Matsuyama

and Gray-(1980).

The points requiring discussion are; the way in which the
library is formed and the way in which a library member is chosen as

the basis of a linear predictive system.

For a 1library of K parameter sets, K2 sets are the LPC
parameters associated with previously coded blocks. One parameter
set consists of P zeros (reflection or prediction coefficients) and
another, a set which represents the long term statistics of the
source reasonably well. Each time a block, represented by a vector
X is coded, so that an approximation vector X is obtained, the LPC
parameters are extracted for the block X. Note that the ¥ sequence
is known at both the receiver and transmitter. This set of LPC
parameters are included in the duplicate libraries maintained at
bogh the transmitter and receiver. Before coding a block, the LPC
parameters of this block are evaluated. Refer to the filter
coefficients thus obtained as A={a;,...,ap}. Now of the K (64 say)
library LPC parameter sets, we require to find that which allows the
least mean square error coding of the block under consideration.
This is undertaken by comparing the coefficients A with those B say,

of each member of the library. The next section shows how the
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coding error is estimated.

6.4.1 The variance of the error signal

in linear estimation based tree coding.

In this section we shall consider the options posed in the

approximation of the variance of the coding error signal.

P P
Let eq(n) =x(n) — z bx(n— i) e,(n) =x(n) — 2 b;x(n—1i) 6 .15
i=1 i=1
P
where  X(n) = z b;x(n—i) + q(n) 6.16

i=1

q(n) is some quantised signal which may take only one of L values.
We attempt to 1identify the magnitude of the error signal {(n)
defined as follows.

{(n) = x(n) — x(n) 6.17

Now by the coding mechanism, q(n) is some function of e, (n). For
single path coding, this function Q say, defined below, 1is

deterministic,

q(n) = Q(e\(n) 6.18

For multipath coding, Q is a stochastic function.

now {(n) =e,(n) —q(n) from 6.15, 6.16 and 6.17

=Q|(el(”)) 6.19
(Ql shown in *‘3 6.5)
Where Q, represents the possibly stochastic function L—Q.h Thus

E({(n)z) is dependent upon E(e1(n)2) and the variance magnification
or reduction effect of Q,.
E (§(n)?)

Let K=F {—_E (e](n)z) 6 .20

Then we have two tasks to tackle. The first is to ascertain some

constant K, a function of
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=X“qi: IX‘qil=m}nIX‘QJ(

Figure 6.5 Plot of function Q, relating e‘(n) to ;(n) that
is, the quantisation function.
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1) the source statistical model,
2) the number of quantisation levels of the error signal and
3) the number of paths considered in the tree coding algorithm.

The second 1is the estimation of,E(e1(n)2). We shall consider this

first.

P

Suppose 91(”)2 = {x(n)— Z bx(n—i )}?
i=1

P

= {x(n)— Zb,-(x(n—z') ~fn—i)}?
i=1

P P

= {x(n) - Zb,.x(n—i) + Zb,y(n— i)}

i=1 i=1

P P P
then  E(e,(n)?) =E (eg(n)®) + 2 Z b,E (e(n)s(n—i)) + z Z b;b,E ({(n—i)(n~j))
i=1

A ==l 6.21
By the use of the fact that eyn) =e/(n)— Z bf(n—1i) we write an
alternative form of E(e1(n)2) =t
P bi bJ
E(em)=E (f-’o(n)z) +2 z b,E (e,(n){(n—1i)) — z 2\5 §(n=)5(n—j))
i= i=1j=1
l Y 6 .22

Let us write A, the ratio between E(e1(n)2) and E(eo(n)z). That is

— E (el(n)z)

E(ednf) 6.23

Two methods of approximating A were tried, this because of the
difficulty of evaluating the quantities
P P P
2 z b,E (eo(n)$(n—1i)) + 2 Z b;b;E (§(n—i)§(n—j))
i=1 i=1 j=1

P P P
or 2 Z b,E (e,(n)§(n—i)) — b;b;E (§(n—i)§(n —j))
1

i=1 i=1j=

The first relied on the expectation that this ratio would change
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slowly, as one went from block to block. The value of the previous

block’s A is used in a present block.

The second relied upon the following assumption

P
EbE(eo(n)é‘(n—t)) + 2 zbb E@n—i)(n—j)) =~k E(((n)z)
= =S 6 .24

where k; is the first reflection coefficient associated with the
sequence  b,y,...,bp of prediction filter coefficients. This
assumption is dictated by a combination of what might be reasonably
approximated, k, and E({(n)2) and by the assumption that the error

signals are uncorrelated in the following ways.

E(eo(n)gf(n—z)) ~0 Vi Vi#0

E@n—in—j) =0 Vi#j 6 .25
and the effect on A of the use of a model of order greater than 1,

may be neglected. Thus

E(e, () ~ BTRB + k1E({(n)) 6 .26

R has members r;; -E(x(n—i)x(n-J)) and B ={1,-by,.0e,~bp}

2
In the alternative assumption, where the ratio A= %%&%%

resulting from the previous block is used for the present block, we

obtain the approximation

E (e,(n))
E (e)(n)’) = E (eg(n)") E (el(f,)z) |from previous block 6.27

The next task 1is to estimate E({(n)z), given E(e1(n)2). By the
assumption that the signal e;(n) 1is of a Gaussian or Laplacian
distribution and that the signal is simply quantised such that the

error signal {(n) is the resulting quantisation error, we estimate

E({(n)z). For a Gaussian source, the quantisation error variances



=272~
are v=0.3634 and 0.1175 for 1 and 2bits/symbol coding. For the
Laplacian source, the quantisation errors are v=0.,5 and 0.1765
respectively for 1 and 2bits/symbol coding. Thus for the assumption

of equation 6.27

E 2
E@M%wE%@ﬁf%%%MMwm®MMWk 6.28

and for the assumption of equation 6.26

T
E @) ~vIBTRE + KIE G = T 6.29

6 .4 .2 Results and discussion

The scheme described above was implemented with wvarious
library sizes and used to code both speecﬁ and image data.
Adaptation with various block sizes was investigated. For each
block the following side information was sent. 6 bits to code the
step size information and 6 bits to code the library coordinate in

use, The results are given in table 6.2 and figure 6.6.

Coding with a block size of 96 in the above scheme results in
the same bit rate as the adaptive tree coding scheme of section 6.3
with a block size of 256. (For the method of section 6.3, 24 bits
are transmitted per block to represent the prediction filter
coefficients) Comparing the results of the two schemes, we observe
that the adaptive predictor of section 6.4 gives superior results
when single path coding is being undertaken. On other occasions the
simpler scheme of section 6.3 performed better. This 1is probably

because the values of v employed are too large for multipath coding.

When the estimation scheme of equation 6.28 is employed,

rather dis apointing results were obtained.
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PATHS= 1 EXPONENT= 2 BUFFER LENGTH= 128 S/N= 9.78233
PATHS= 4 EXPONENT= 2 BUFFER LENGTH= 128 S/N= 11.16974
PATHS= 8 EXPONENT= 2 BUFFER LENGTH= 128 S/N= 10.96774
PATHS= 1 EXPONENT= 4 BUFFER LENGTH= 128 S/N= 16 67945
PATHS= 4 EXPONENT= 4 BUFFER LENGTH= 128 S/N= 18.28475
PATHS= 8 EXPONENT= 4 BUFFER LENGTH= 128 S/N= 18.33772
PATHS= 1 EXPONENT= 8 BUFFER LENGTH= 128 S/N= 19.18630
PATHS= 4 EXPONENT= 8 BUFFER LENGTH= 128 S/N= 21.33475
PATHS= 8 EXPONENT= 8 BUFFER LENGTH= 128 S/N= 21.87574
Table 6.2a Results of adaptive multipath tree coding of speech.
A 8th order predictor is employed. The prediction
parameters are extracted from the previously coded
symbols. 64 sets of parameters extracted from the
previously coded block are stored and sampled to find
the best approximate set for a target block. 6 bits
to indicate prediction coeffs and 6 bits for
prediction error estimates are transmitted every 128
sample periods. A Gaussian model is employed for the
prediction error signal for exponent=2, otherwise a
Laplacian model 1is wused. Adaptation information
coded with 12bits/block.
PATHS= 1 EXPONENT= 2 BUFFER LENGTH= 96 S/N= 00368
PATHS= 4 EXPONENT= 2 BUFFER LENGTH= 96 S/N= 12 .45977
PATHS= 8 EXPONENT= 2 BUFFER LENGTH= 96 S/N= 13 .08969
PATHS= 1 EXPONENT= 4 BUFFER LENGTH= 96 S/N= 16 .936 18
PATHS= 4 EXPONENT= 4 BUFFER LENGTH= 96 S/N= 19.04717
PATHS= 8 EXPONENT= 4 BUFFER LENGTH= 96 S/N= 19.92685
Table 6.2b Results of speech coding using adaptive multipath
tree coding. The scheme is identical to that which
generated the results of table 6.2a except that the
filter coefficient and prediction error variance

information 1is transmitted every 96 sample instants.
Adaptation information coded with with 12bits/block
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Table 6.2c
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Table 6.2d
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EXPONENT= 4 BUFFER LENGTH= 96 S/N=
EXPONENT= 4 BUFFER LENGTH= 96 S/N=
EXPONENT= 4 BUFFER LENGTH= 96 S/N=
EXPONENT= 2 BUFFER LENGTH= 96 S/N=
EXPONENT= 2 BUFFER LENGTH= 96 S/N=
EXPONENT= 2 BUFFER LENGTH= 96 S/N=

Results of adaptive multipath tree coding of speech.
A 8th order predictor is employed. The prediction
parameters are extracted from the previously coded
symbols. 64 sets of parameters extracted from the
previously coded block are stored and sampled to find
the best approximate set for a target block. 6 bits
to indicate prediction coeffs and 6 bits for
prediction error estimates are transmitted every 96
sample periods. A Gaussian model is employed for the
prediction error signal for exponent=2, otherwise a
Laplacian model is wused. Adaptation information
coded with 12bits/block., In estimating the variance
of the prediction error signal, the actual prediction
error for the previously coded block, is employed.

EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 4 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=
EXPONENT= 2 BUFFER LENGTH= 128 S/N=

Results of adaptive multipath tree coding of speech.
A variable order predictor is employed. The
prediction parameters are extracted from the
previously coded symbols. 64 sets of parameters
extracted from the previously coded block are stored
and sampled to £find the best approximate set for a
target block. In addition, for each set of
prediction or reflection coefficients, the best order
to use for prediction 1is ascertained. For the
example above, orders of 1 to &4 are allowed. The
order 1is coded with 2 Dbits. 6 bits to indicate
prediction coeffs and 6 bits for prediction error
estimates are transmitted every 128 sample periods.

14 .92796
16 .00607
16 .67022
- 24332
5.71741
6.10713

15.77090
18.39192
18.60713
8.21394
11.97855 -
12 .46636



A Gaussian model is employed for the prediction error
signal for exponent=2, otherwise a Laplacian model is

used. Adaptation information coded with
14bits/block.
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AFTAB original

Adaptive tree coding of image AFTAB Adaptive 4~th
order predictor used. Coefficients derived from
previously coded data. Instantaneous step size
adaptation used, step size increases by factor
1.4, on slope overload, and drops instantaneously
to default otherwise. Number of paths=1, Block
size=064, S/N=22.18dB.

Adaptive tree coding of image AFTAB Adaptive 4-th
order predictor used. Coefficients derived from
previously coded data. TInstantaneous step size
adaptation used, step size increases by £factor
1.4, on slope overload, and drops instantaneously
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