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ABSTRACT

Scalar and gauge Quantum Field Theories are 

investigated in the framework of lattice r e g u l a r i s a t i o n . 

Their equivalence to Statistical Mechanical systems 

allows the implementation of well known Solid State 

techniques for their study.

In Part A of this thesis, we study the lattice 

regularised scale covariant X 4>̂  scalar field theory. It 

had been sugested that scale covariant XcJ)1*, as opposed to 

canonical X 4)̂ , may be non-trivial in four dimensions. In 

order to resolve this question, at least numerically, we 

investigate the behaviour of the renormalised coupling. 

With the aid of high temperature series and Pade 

a p p r o x i m a n t s , we measure the critical index of the 

renormalised coupling and locate a region of the real 

parameter space for which its value suggests 

non-triviality. We then use Monte Carlo simulations to 

determine the t h e o r y ’s phase diagram. We find that, in 

the region of the real parameter space where the theory 

is potentially non-trivial, the transition is first 

order. The region for which the phase transition is 

second order, and so the theory possesses a continuum 

limit is characterised by values of the critical exponent
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which imply its triviality . A confluent singularity 

analysis results in increased numerical accuracy but does 

not alter the conclusions. We also find that the theory 

is not incompatible with the notion of universality, 

although our results are not accurate enough to be 

conclusive.

Part B is shorter and deals with gauge theories on 

the lattice. In particular, SU(2) gauge theory is used 

for a comparative study of the behaviour of Monte Carlo 

simulations with and without gauge fixing. The axial and 

the random tree gauge are used. In both cases, and 

contrary to naive expectations, it turns out that it is 

advantageous to use Monte Carlo simulations without gauge 

fixing, because once the gauge is fixed: (a) the system

takes longer to thermalise to equilibrium and (b) the 

error analysis is marginally worse.
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PROLEGOMENA

Lattice spin systems are familiar to most 

physicists because they model solids which are studied in 

the laboratory. More recently, such systems have aquired 

a great importance in a branch of physics which is 

related to more abstract questions, that of Quantum Field 

Theory. In particular, space-time lattices are used as a 

technical device to define cutoff field theories.
t

Eventually, the goal is to define cutoff theories so that 

field theories defined in real continuum Minkowski 

space-time can be understood. The lattice is then a mere 

intermediate regulator used to analyse a difficult 

non-linear system - a field theory. Thus, once a lattice 

field theory has been formulated, the original field 

theory problem becomes one of Statistical Mechanics.

This thesis involves a study of certain aspects of the 

connection of Quantum Field Theories to Statistical 

Physics. In particular, we observe how the similarity of 

certain generalised statistical systems to field theory 

models allows the implementation of well understood solid 

state techniques in the realm of non-perturbative field 

theories.

More specifically, the thesis consists of two 

unequal parts. Part A involves a study of a modified
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version of scalar field theories, namely scale covariant 

X 4> ̂ . This modification was first proposed by Klauder 

about ten years ago. Essentially it involves a change of 

measure in the path integral formulation of the theory; 

whereas conventionally the measure is translationally 

invariant, Klauder's alternative measure is scale 

covariant. The motivation and the anticipated 

consequences of such a change are discussed in Chapter I. 

It was hoped that this model would give rise to 

non-trivial Xcj)1* theories in d=4 dimensions.

The lattice version of the problem turns out to be a 

continuous spin Ising model. This enables us to probe 

the field theoretic behaviour of the system by examining 

the critical behaviour of the Ising model. It turns out 

that we are justified in assuming that the renormalised 

coupling constant of the model has a critical behaviour 

which is characterised by a critical exponent k . The 

sign of k determines whether the theory's coupling 

constant approaches a non zero value, vanishes, or 

diverges near the theory's continuum limit. Thus the 

sign of k is a criterion of triviality. This point, 

together with an exposition of early attempts to 

investigate the theory, are discussed in Chapter II.

Well understood Solid State techniques such as high 

temperature series and Pade approximants can be used to 

obtain values for the critical indices. In this way, it 

is possible to define regions in the theory's real 

parameter space for which scale covariant may be a
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non trivial-theory. Exploring such a possibility is the 

first aim of this thesis and is the content of Chapter 

I I I .

Such an analysis and the validity of its results, 

however, presupposes the occurence of a second order 

phase transition over the whole parameter space. In 

order to investigate whether this is true, the phase 

diagram of the theory must be obtained with the use of 

Monte Carlo simulations. If it turns out that what was 

an apparent region of non-triviality in the high 

temperature analysis, lies within a first order phase 

transition (and thus does not correspond to a continuum 

field theory) scale covariant XcJ)1* will be a.trivial 

theory. Otherwise, non-triviality may arise. This is 

the second question that this thesis investigates. 

Chapter IV deals with it.

Also, a more refined study of the theory's 

subdominant critical behaviour is essential in order to 

investigate the effect of confluent singularities on the 

values of the dominant critical exponents. These 

refinements are neccessary not only for reinforcement of 

the conclusions on triviality, but also in order to 

explore whether the theory falls into the same 

universality class as the values of its real parameters 

vary. The confluent singularity analysis is the third 

objective of this thesis. It is carried out in Chapter 

V.

Part B of the thesis involves another aspect of the
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relationship of Quantum Field Theory to Statistical 

Mechanics; namely that of lattice gauge theories and non­

equilibrium statistical behaviour. In particular, gauge 

fixing in Monte Carlo simulations is expected to alter 

both the statistical and non-equilibrium properties of 

the system. A comparative Monte Carlo study of pure 

SU(2) gauge theory, with and without gauge fixing, is 

performed in order to see whether gauge fixing is 

advantageous in aspects of: (a) speed of thermalisation

and (b) correlations between measurements which are 

related to the quality of the statistics. Chapter VI 

settles such questions. A possible phenomenological 

explanation for the thermalisation properties is being 

sought. It is based on the study of the non-equilibrium 

properties of Monte Carlo simulations in the framework of 

Stochastic Quantisation.
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INTRODUCTION

1. Generalities on scalar field theories.

4Scalar \<J> ^ theory (i.e. a field theory with one 

scalar field ^ in d spacetime dimensions.which has a 

quartic interaction) has been under intensive study 

recently. Its study is of interest because according to 

conventional practice, it has always been regarded as the 

standard prototype model field theory which shares many 

extremely essential characteristics with other more 

physical field theories while remaining considerably 

simpler than the physical theories. Thus, when
4considered as a prototype model field theory, \<{> serves

as testing ground for more physical theories. It is in
4the framework of \<j> ^ that our strengths in solving field 

theories are realised. Similarly, it is in the study of
4\<|> ^ that our weakness of a deeper (usually non

perturbative ) understanding of such theories becomes

strikingly apparent.
4Moreover, X<t> plays an essential part in the 

spontaneous symmetry breaking mechanism which generates 

the mass of the gauge particles predicted by unified 

theories. In particular, the inclusion in the 

electroweak model's action of a massive scalar particle
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4with a quartic X<t> interaction is essential for the
+prediction of the correct W and Z masses. Thus, a 

thorough understanding of a quartic interaction has 

paramount importance. It is now speculated that there is 

a radical difference in the properties of a quartic self 

interaction, depending on whether it is considered on its

own or as a sector of a more general unifying theory
r 1 4[ 1 , 2 J. According to the spirit of this thesis, X<j>

theories are studied on their own, as a model which,

however simple, demonstrates painfully our present lack

of profound understanding of field theories. In order to

surpass the difficulties, we will attempt to utilise

fully its similarity to certain spin systems, the

behaviour of which is better understood and for the study

of which a rich variety of techniques are already

d e v e l o p e d .

At present, the problems related to a coherent
4understanding of X<j> ^ are numerous. P e r t u r b a t i v e l y , it 

is a solvable theory which is superrenormalisable for 

d=2 and 3, renormalisable in d=4 and nonrenormalisable in 

d > 5 [3]. However, the standard lattice regularisation 

yields the theory trivial in d>5 [4,5,6] , non-trivial in 

d=2 and 3 [4,5,7,8] and ’almost certainly' trivial in d=4 

[6 ]. This view is supported both by numerical evidence 

(such as straightforward Monte Carlo computations 

[9,10,ll] and Monte Carlo Renormalisation Group analyses

[12,13] ) and by series extrapolation techniques based on
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high temperature [14,15] and strong coupling expansions 

(see [16 ] and references therein). However, this view 

has been challenged recently from different viewpoints. 

Non triviality in d=4 arises by using both rigorous [17 ] 

and variational [18 ] techniques which enforce a negative 

bare coupling constant or, more recently, by an 

unconventional lattice regularisation and the 

introduction of ’phantom f i e l d s ’ [19].

However, these last two approaches were not the only

ones to render the theory non-trivial in d=4. A more

radical approach was based on the idea that the
4pathologies of \<fr might arise at a very early stage, 

namely from the conventional (canonical or path integral) 

quantisation of field theories. The situation could be 

remedied by adopting an alternative quantisation scheme 

which is known as Scale Covariant Quantisation. The 

resulting scale covariant theories are considerably 

different from the canonical ones and can be thought of 

as their generalisation. It may be noted at this early 

stage that earlier work on scale covariant field theories 

was also pointing in the non-triviality direction. 

Clearly, such a controversial situation cries out for a 

careful analysis and a thorough testing of the validity 

of any underlying assumptions on which the final results 

depend. Since scale covariance is a fundamentally 

different approach to canonical quantum field theories, 

we will devote the first chapter to its motivation.
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CHAPTER I

INTRODUCING SCALE COVARIANCE

1. Generalities on scale covarince

Scale covariant field theories have been proposed by 

Klauder [10 ] as a formal quantisation scheme (alternative 

to conventional field theories) which has two ambitions:

(a) give a physical interpretation to theories which 

perturbatively are non-superrenormalisable and (b) cure 

certain field theories from their triviality. Given the 

problematic condition of the present day status of field 

theories as presented in the introduction, one is clearly 

tempted to consider alternative quantisation schemes that 

might not have these problems.

Motivating Scale Covariance field theories can be 

tedious. The scheme does not arise naturally. The main 

ideas can be more clearly presented through examples of 

both quantum mechanical and field theoretic models. This 

is in accordance with the the spirit of the whole history 

of its development: Scale Covariance has arisen as an

alternative scenario to canonical quantisation based on 

plausibility arguments rather than rigourous results.

What follows is a description of the most important steps 

of the whole motivation ; no proofs will be given.
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2. Discontinuous perturbations in Quantum Mechanics

The first crucial observation in what might be wrong 

in conventional approaches is the discovery of a class of 

quantum mechanical models which do not satisfy the most 

fundamental assumption of perturbation theory which 

states that if a Hamiltonian H can be decomposed into a 

free part HQ and an interaction XV like :

H = H + XV (1.1)o '

then as X -* 0+ , H -► H q . The eigenfunctions and 

eigenvalues of H pass continuously to those of H q  in the 

same limit. This is the conventional picture and we 

shall refer to it as continuous perturbation.

Although such continuity seems obvious enough, 

counterexamples exist for certain impenetrable 

interactions V. In such cases, as X -► 0+ ,

H + * H o (1.2)

If this is the case, then the eigenfunctions and
t

eigenvalues of H pass continuously to those of H but not
o

to those of H q  ; they remain disconnected from the
i

solutions of the free theory. We shall call H q  the
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pseudofree Hamiltonian. H is continously connected to H q 

but not to H q . Thus, standard perturbations are expected 

to fail, because they attempt to solve the problem by 

developing their solutions around H , which is 

disconnected from the fully interacting Hamiltonian H. 

This situation has been termed discontinuous perturbation 

by Klauder [20 ] who proposed it as a conceivable parallel 

to n o n r e n o r m a l i s a b i l i t y . On the contrary, continuous 

perturbations around the pseudofree theory ought to 

produce meaningful calculations.

Klauder [21 ] has demonstrated his point by 

.considering the following specific Hamiltonian in one 

dimension (d=l) :

H
2

1 d
2

2 dx
(1.3.a)

This model can be tackled directly [21,22]. It
' +turns out that for any a < 1 , H -► H as X -► 0 and theo

potential is a continuous perturbation of H q . For 1 < a 

< 2 , one must first regularise V and then remove the 

regularisation with the use of counterterms [23] before 

arriving to the same conclusion. When a > 2 however, and 

when the potential becomes impenetrable, such a 

regularisation does not exist. The limit X + 0+ , 

enforces H to a pseudofree Hamiltonian
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H o
1 d

2

2 d x 2

1 2 
+ —  x

DBC 2
(1.3.b)

where DBC stands for Dirichlet boundary conditions. This 

means that cj>(0) = 0  ; i.e. the impenetrability of V at 

x=0 enforces the Hamiltonian and its solutions 4> to 

"remember" the interaction even after its presence has 

been removed. The first four eigenfunctions and
t

eigenvalues of both H q  and H q  are shown in Figure (l.l). 

Upon reintroduction of the perturbation we find that the
i

energy levels of H depart continuously from those of H q .
i

More specifically, if En are the energy l e v e l s tof the 

pseudofree Hamiltonian, the energy levels of H are (for 

small X)

E + 0 ( X ) for 2 < a < 3 (1.4.a)n

E n + l n X ) for a =3 (1 .4.b)

En + 0(X 1//(a~ 2 ) ) for a >3 (1.4.c)

3. Discontinuous perturbations and path integrals

The previous picture has a corresponding description 

in the path integral formalism. As is well known, the 

transition amplitudes of any theory defined by its action
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Free n
Pseudofree

3/2

2 7/2

3 7/2

First four vavefunctions and 
energy levels for the harmonic 
oscillator and the oseudofree 
oscillator H' o



S can be obtained from a path integral which can be 

formally written as.

23

Z = E exp(-iS) (1.5)
paths

where the summation is over all paths between the initial 

and final points in phase space. Now the action splits 

up into two parts analogous to those of eq. (1.1)

S = SQ + Sj (1.6)

The free theory is then described by

Z = E exp(-iS ) (1.7)o o v 'paths

However, Klauder has pointed out that the paths involved 

in the summation of (1.5) may be different to those of 

(1.7) [20]. The presence of a singular interaction Sj in

(1.5) may act as a partial hard core, projecting out from 

the summation those paths that are suppressed by it. For 

example, for the model defined by (1.1), equation (1.5) 

becomes the standard Feynman path integral

Z = N  / D x ( t )  exp{-i / dt [1 x +1 x +— -—  ]} (1.8)
2 2 | x | a

and the presence of the interaction suppresses all paths 

which for any time t can be x(t)=0. If now \ ■*> 0 + these
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paths remain projected out and the resulting ZQ is 

different from that of the free t h e o r y ’s, Zq , which 

includes contributions from the suppressed paths. It may 

be noted that the above is only a plausibility argument. 

In Section 4 of this chapter, a slightly more accurate 

analogue will be exposed in terms of a field theory. The 

message however, is already quite clear : Once an 

impenetrable interaction is switched on, it cannot be 

turned off by diminishing its coupling strength.

Before proceeding from Quantum Mechanics to Field 

Theory, we believe that a crucial observation is in 

place. We see that eqn. (1.8) gives for the dimension of 

X

dim X = dim (length)a ^ (1.9)

—veThus, for dim X = dim(length) ( a < 2) the free theory
+veis connected to H, whereas for dim X = dim(length)

(a > 2), H is disconnected from H Q . The coupling X is 

dimensionless for the critical case a =2. It may be 

noted that the dimensionality of the coupling constant 

serves as a criterion for the renormalisability of field 

theories, since for, say, scalar X<})P we have

dim X = d i m ( l e n g t h 4 (1.10)

Although coupling constant dimensionality is not



invariably a correct guide to such behaviour, the 

connection is of obvious interest.

4. The Independent Value Model (IVM)

So far the discussion was limited to Q uantum 

Mechanics. We will now expose the same ideas for field 

theories. The style of presentation will not be altered: 

The main ideas will be exposed through a specific example 

and the results will be stated without proof. The 

example in question is a toy model developed by Klauder 

[24] called the Independent Value Model (IVM). In 

Euclidean space it is formally defined by the path 

integral

2 5

Z(h) = N J d$ exp { / dx ( ih<|> - —  m <j>
2

\<fp ) }

Two basic characteristics of the model can be readily 

read off from (1.11) : (a) The lack of gradients of the 

field implies no propagation ; thus the IVM is of 

mathematical rather than of physical interest, (b) The 

IVM is severely n o n r e n o r m a l i s a b l e , as can be seen by 

naive power counting (we shall examine here the p=4 

c a s e ).

The independent behaviour of each space-time point 

enabled Klauder [21] to show that (1.11) can be written 

in the canonical form (for p=4)
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J1
N r , r , f ri -1/2 bm u -Xb u iZ(h) = exp {-b j dx J ---- [l-cos(hu) ] e ' }

M  ( 1 . 1 2 )

with b an arbitrary positive constant. The limit X ■> 0+ 

gives rise to the solution

2 2 3 4

Z (h) o '
2 2

exp {-b J dx / [l-cos(hu)] e - ^ ^  ^ra u
u

•}

(1.13)

which is a pseudofree theory, since it is distinct from 

the free theory. The free theory can be obtained from 

equation (1.11) by putting X = 0 and has the form

ZQ (h) = exp { -B / dx h(x) (1.14)

(B > 0 an arbitrary constant). The zeroth order term in 

a perturbative expansion of (1.12) is (1.13) and not 

(1.14).

Moreover, Klauder has shown that from (1.12), it can 

be derived that the connected part of all even order 

correlation functions are non-negative

< 4>(x1 ) <|>(x2 ) 4>(x 3 ) <Kx 4 ) >c > 0  (1.15)

This is a very important result, as we shall see in the 

following section.
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5. The IVM on the lattie

An interesting situation arises if we regularise the 

IVM by defining it on a lattice. Given any continuum 

field theory, we can assume it has an equivalent 

Euclidean lattice space form. The conventional way of 

approximating the continuum with a d-dimensional, 

hypercubic, isotropic lattice with lattice spacing a, is 

to introduce the following changes :

in terms of which , the lattice regularised IVM becomes:

x ■* ak (k integer) (1.16.a)

/ dx -► l ad (l.ie.b)
d

<Kx) -► <t>k (1.16.C)

Z(hs ) = N / g d<j>s exp{-S[<J>,h]} (1.17.a)

where S is the lattice action

(1.17.b)

This formulation, however, has the disadvantage that it
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belongs to a class of models which satisfy the Lebowitz 

inequality [25 ]

< ^s h  ♦t >c < 0 d - 1 8 )

This is true even in the limit au ■* 0 , so the only way it 

will not contradict (1.15) is for the four point function 

to vanish. Thus, the continuum renormalised theory which 

can be recovered from the lattice IVM of (1.17) is the 

free theory ZQ of (1.14).

The pseudofree theory can only be recovered if we 

define the following lattice version for the IVM :

Z(h) = N /  n
l-2bad

exp { -S [ <J>, h ]}

(1.19)

with the action as in (1.17.b). As has been shown by 

Klauder [20 ], when a u * 0 , the interacting continuum 

theory (1.12) is obtained.

The important observation from such manipulations is 

the fact that in order to recover the exact solutions of 

the IVM, we were forced to introduce a new measure

D B t n
t

d *t
(1 .20.a)

(B = l-2ba ) which is radically different from the
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D *-t n  <et
t x

(1 .20.b)

The new measure is scale covariant, i.e. under a field 

scaling

-► A. (1 .2 1 .a)

with

A. > 0 t (1 .2 1 .b)

it transforms covariantly

D B d> + F(A) Dg<|> (1 .22)

i i —B(F(A) = n I <j)̂ I is a scaling factor) as opposed to the 

conventional measure which under field translations

- ♦ t + At (1.23.a)

remains invariant :

D ft * D “’t (1.23.b)

In the continuum limit, B ■*» 1 and the measure <t> becomes
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scale invariant, i.e. it remains invariant under scaling 

of the form (1.21.a)

In conclusion, we argue that a common characteristic 

which is shared by the IVM and the previously examined 

quantum mechanical example is not only a pseudofree 

theory which is disconnected from the free one, but also, 

to a certain extent, the scale covariance property. In 

the following section, we shall examine how it is 

possible for such considerations to affect properly 

propagating scalar field theories.

6. Discontinuous perturbations and scalar field

theories

Having examined two simple models for which the main 

ideas work out exactly, we shall speculate on how the 

same principles can be applied to the more interesting 

\<{>P field theory (with special attention to the p=4 

case). The action of the theory in Euclidean space-time 

is (in d dimensions)

$ ■* D^ 4> (1.24)

S(<D,h)
(1.25)

and its canonical path integral quantisation is provided
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by the generating functional

Z(h) = N J D<j> exp(-S) (1.26)

where the functional measure is conventionally thought to 

be

D(J) = n  d<J>(x) (1.27)

The action has a free part

S  ( 6 > h )  =  J  d d x ( 1 / 2  ( 5 , 6 )  +  1 / 2  m *  6 *  +  -  i h 6 }
°   ̂ o  ( 1 . 2 8 . a )

and an interacting part

S T (<1>) = / d d x \<j>P (1 .28.b )

Thus, the generating functional can be written as

Z(h) = N / D<t> exp(-SQ Sj) (1.29)

and the free generating functional as

Zo (h) = N / D6 exp(-So ) (1.30)

The requirement of perturbative analyses is that is

controllably small for small \ ; i.e. when \ + 0+ , S
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reduces to S . For this to be true we must ensure that o
|Sj| is bounded when S Q is bounded so that the path 

integral (1.29) can be regarded as a summation over all 

paths for which SQ (and S) are finite. This being true,

Z can be solved as a perturbation of ZQ . If, however, 

there are paths for which |Sj| is unbounded while SQ is 

not, canonical perturbation series are expected to fail.

In order to get sensible perturbation series for an Sj 

which can be unbounded, we need to excise those paths for 

which Sj is uncontrollable and thus impose a path 

integral summation over this subset of the paths that 

keep SQ finite, for which also stays finite.

One can formalise this situation by the following 

argument [26]. The relevant measures of the theory are 

postulated to be

d p.( cj>) = exp(-S) D <j) x (1.31.a)

for the interacting, and

cii-Lp( 4>) = exp(-SQ ) D<j> (1.31.b)

for the free case. We have introduced an indicator 

function x( <t>) such that

X( <t>) = 1 when SQ ( 4>) < °° and S^f})) < ® (1.32.a)
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X(<J>) = 0 when S ( $) < « and S-j- ( <J>) = ® (1.32.b)

The generating functional is now defined to be

Z(h) = / dp.( cj>) exp(i f h<j> d dx) (1.33)

+It is suggestive that, as X •* 0 ,

dn(<t>) + X(<t>) d ^ F (<j>) = d^pF ( <j>) (1.34)

with dM-pF ( <t>) the measure of the pseudofree theory. 

According to (1.32), (1.34) means that for certain 

interactions the relative supports of the free and 

interacting theory can be dissimilar, so as X -* 0 + , the 

interacting theory passes to a pseudofree one. This 

discussion demonstrates the necessity for a change of 

measure that will explicitly generate the above "path 

suppression" mechanism.

Although the above argument may sound convincing, it 

has only rudimentary value, since paths for which the 

action is finite, give zero contribution to the 

generating functional. Only configurations of infinite 

action have non-zero measure. Given this, Klauder 

[21,26] has sressed that the above must be thought of as 

a kind of "zeroth order" formalism and can only be a good 

guide to the relative supports of the measures.
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The formal change of measure involving the 

introduction of the indicator function x( 40 is not 

arbitrary. It must be compatible with some kind of equal 

time commutation relationships (ETCR), just like the 

canonical measure is equivalent to the canonical ETCR's. 

The argument is heuristic and can be described in broad 

lines as follows: Recall that for the canonical case,

postulating the classical equation of motion and tha 

ETCR's gives rise to the Swinger-Dyson (S-D) equation 

(for p=4)

6 63
(h(x) + (dIq -V^) --- L  - 4\0 ------ - } Z (h) = 0 (1.35)

6h(x) 6h(x)

This equation can also be obtained as a result of the 

principle of translational invariance of the theory. If 

we want both the measure and the action to be invariant 

under field translations

4>(x ) -*■ <t>’(x) = <|>(x) + A(x) (1.36)

then we must ensure that

A=0 = 0 (1.37)

where Z(h)^=Z(h) is the generating functional expressed 

in terms of translated fields 4>'(x). Written explicitly,

6A(x 'i
Z(h)
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eqn. (1.37) in no other but eqn. (1.35).

In trying to determine the pseudofree measure of 

equation (1.34) in a fashion which is consistent with 

some E T C R ’s, we have very litle to build upon. In 

particular, we can only rely on the only tangible results 

we have concerning the IVM and on the analogies to the 

previous arguments governing canonical field theories.

If, guided by our results for the IVM, we impose 

covariance under field scaling

<J>(x) + <t>'(x) = A(x)<j)(x) (1.38)

the scale covariant measure must satisfy

DgC <J>' (x) = F( A) D g c <Kx) (1.39)

Since the same must be true of the path integral, the 

analogous relationship to (1.37) is

6

6A(x)
Z (h)s c v ' a A=1 0 (1.40)

with Zg£,(h)^ the generating functional with scaled 

fields. This gives rise to the modified S-D equation

6 6 2 2 ^
(h(x) ------  + :-------  (m + V ) ------

6 h ( x )  6 h ( x )  u x 6 h ( x )

64

6h(x)
Z
SC

0 ( 1 . 4 1 )
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with

It turns out [29] that the simplest choice of measure 

that satisfies (1.39) is

d<Kx)
B < 1 (1.43)

Having argued that our choice of measure (1.43) gives 

rise to a modified S-D equation, we must also check that 

eqn. (1.41) can also be obtained [20] from a modified 

version of ETCR's. These are the affine commutation 

relationships. They read

At this point, it is interesting to state briefly 

that Klauder pointed out the existence of a Sobolev-type 

inequality [20,21 ]

for d<4 (K is a finite constant). This is obviously

[Jfe{n(x), <Kx) } , K y ) ]  = -i <Kx) S(x-y) (1.44)

-V* 4> (1.45)
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equivalent to saying that |Sj|<® when S0 |<®« Thus, for 

d<4 there is no motivation for a change of measure 

from this viewpoint. Thus, we see that 

superrenormalisability is somehow related to the 

Sobolev-type topological equivalence of the interacting 

and free theories. It is in d>4 (and d=4 as a borderline 

case) that the motivation for a change of measure may be 

connected to the problematic state of the 

renormalisability and triviality of the canonical 

theories.

Thus, by an amalgam of exact results and analogies 

to canonical field theories, Klauder has managed to 

propose an alternative quantisation scheme. It 

essentially involves the introduction of the scale 

parameter B in the new measure of the path integral, as 

defined by equation (1.43). Note that we must ensure 

that B < 1 , for the path integral to converge. When B 

= 1, the theory becomes scale invariant. In the B = 0 

case, the canonical theory is retrieved as a special case 

of scale covariance, and when \ -* 0+ (with B * 0) a 

pseudofree theory, distinctly different from the free one 

is recovered. This modification of the measure gives 

rise to an alternative quantisation scheme which involves 

new ETCR's and S-D equations.

Since all these ideas have worked for the IVM, it is 

worthwile to try them out for more physical theories. It 

is possible that in asymptotically free
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superrenormalisable theories the free and pseudofree 

solutions coincide and perturbative evaluations around 

the free solution are in place. However 

non-asymptotically f r e e ,nonrenormalisable and (as a 

limiting case) renormalisable theories have pseudofree 

solutions that are disconnected from the free case and 

perturbative expansions ought to be carried out around 

the pseudofree solution. These ideas have been 

successfully applied to the 0(N) symmetric \<J> model and 

they appear to work in the large N limit 

[30,31,32,33,34].

However this is not the end of the story. If 

non-asymptotically free, non-renormalisable and 

renormalisable theories are to be rectified by scale 

covariance, their lattice regularisation should better 

not render them trivial. That scale covariant theories 

should have non-trivial solutions is the most important 

consequence of the previous arguments. This is the most 

investigated aspect in recent research on scale covariant 

theories. The rest of Part A of this thesis deals 

precisely with this problem. Early work in this 

direction was encouraging. 'It has been shown that for 

certain fine 'tunings’ of B in the large N limit, the 

0(N) symmetric \<J> theory becomes non trivial [35,36 ]. 

Also, a numerical study of the lattice pseudofree theory 

showed evidence of non triviality [29]. We shall refer 

to this last work in detail.

Having motivated the concept of scale covariance, we
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will now proceed to. a detailed discussion of the 

properties it has once it is expressed in the framework 

of lattice r e g u l a r i s a t i o n .
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CHAPTER II

LATTICE FORMULATION OF SCALE COVARIANT FIELD THEORY

1. Definition of the theory on the lattice

In the previous Chapter, we have shown that scale

covariance, an alternative quantisation scheme, may

rectify certain problems that appear in canonically

quantised field theories. The continuum scale covariant 
4version of \<J> is defined by the generating functional 

[29]

Z [J] = N / [Db *] exp(i Jdd x 1  9

(- (a *>
2 ^

2

- XQ *4 - J ♦ } ) ( 2 . 1)

with measure

V
n d <Kx) 
x I <|>(x)

5£ x (2.2)

In the previous Chapter, the lattice approximation 

of field theories was introduced as an essential step for 

a complete understanding of the basic properties of the
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IVM. Although the solution of the model could be 

obtained while remaining in the realm of continuum 

physics, its aspects related to the triviality question 

could only be studied through the lattice approach. This 

is hardly surprising since the triviality aspects for 

canonical field theory were always apparent in the

framework of lattice r e g u l a r i s a t i o n . It is therefore 

natural to consider the lattice formulation of scale 

covariant X<t> . As we pointed out in Chapter I, the 

lattice regularisation may be introduced through the 

changes expressed in (1.16) together with the 

introduction of a lattice equivalent for derivatives, 

namely

a ^ C x )  -  I  (  (Di  -  <|>1 + i ;  )  ( 2 . 3 )

where ji is a vector of length a in the \x direction. In 

terms of (1.16) and (2.3), we may now express the lattice 

analogue of the model in d Euclidean dimensions. It is 

generated by

z [j ] = n  / [ n
k

d

k̂
] e x p ( - S [ <t>] - E ad Jk ak ) (2.4)

with action
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2 k p.=l

+ -  E ad m 2 <t>̂ + T. a d \ £
2 k ° k k ° k

(2.5)

Note that apart from the new measure, expressions (2.1), 

(2.4) and (2.5) ) are identical to those of canonical

X<f> ^ . The effect of the new measure is expressed by the 

introduction of the scaling parameter B. This increases 

the real parameter space by an extra dimension. Whereas 

the canonical t h e o r y ’s real parameter space as defined by 

the pairs of bare parameter values (mQ , \ ) is two 

dimensional, we now have a three dimensional parameter
4space spanned by (mo ,XQ ,B). Now, standard \<t> ^ will be 

recovered as a special case of scale covariance by 

setting B=0.
4We use the standard equivalence of X<j> to a spin 

ferromagnet [18 ] by reparametrising the model. In 

particular, we may redefine : (i) a new dimensionless 

field (which will be shortly shown to be like a 

continuous classical spin degree of freedom of a 

statistical mechanical Ising-like spin system) in terms 

of the old field $ and a dimensionless scaling parameter 

K

a (d-2)/2
crk k (2 .6 .a)

/K
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(ii) a new "mass" parameter A in terms of the old bare 

mass m Q and K

2 2 m a
A = (d + — ---- ) K (2.6.b)

2

(iii) a new bare coupling constant U Q in terms of the old

one X and K o

0 = a 4-d K 2 \ (2.6.o)o o v '

and (iv) a new external source h in terms of the old one 

J and K

h k  = / K  a ( 2  d ) / 2  J k  ( 2 . 6 . d )

This change of variables maps the three parameters (B, 

m 0 ,X ) into four ( B , A, U , K). In order to remove the 

one extra parameter, we may impose a normalisation 

condition similar to mass renormalisation [15]•

r dx 2 , . 2 TT 4 NJ -— -g- x exp ( - A x  - U Q x )

-------------------------------------------  = 1 (2.7)
r dx , . 2 __ 4J ---ro- exp ( - A x  - U q x )

x



4 4

This equation can in principle be solved to give A as a 

function of B and U Q . In practice this is done 

numerically ; i.e. given the values of B and U , one can 

solve (2.7) numerically for A, by using existing software 

library packages for finding zeroes of functions and for 

numerical integration. Thus, A can be plotted as a 

function of UQ for different values of B (see Figure

(2.1), which is reproduced from Ref. [37] ). We have 

used the NaG 8 Fortran Library for these numerical 

m a n i p u l a t i o n s .

The partition function is now given by

Z [h ] = N / n dii(ck) exp ( - S[a] ) (2.8)
k

with action

d
S[<j ] — — K E E cĵ  ^k+Li + ^ (2*9)

k \i-l p k

and single site spin distribution

d a,k
TJ exP< “ A ak 2 ~ U o °k4 } (2.10)

a,k

Note that the integrals of (9) are well defined only for 

B < 1. Obviously, the action is now that of a continuous 

spin Ising model with inverse temperature K and external
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FIG. 2.1 : The normalised mass parameter A(B,U0 )
as a function of U0 for B=0 (upper 
curve) , B=0.5 (middle curve) and 
B=0.9 (lower curve). Insert : magni­
fied view of the behaviour near UQ=0 .
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m a g n e t i c  f i e l d  h .  G i v e n  t h i s ,  we w i l l  f r o m  now on a d h e r e  

t o  a  s t a t i s t i c a l  m e c h a n i c s  r a t h e r  t h a n  a  f i e l d  th e o r y -  

l a n g u a g e  a n d  d e f i n e  s p i n  c o r r e l a t i o n s  by

< no . > 5 z O T 1 /  [ n d | i (  c .  ) ] [ n o  ] e x p (  -  s [ o ]  )
k i  k ( 2 . 1 1 )

U s i n g  t h i s  d e f i n i t i o n ,  we now i n t r o d u c e  t h o s e  

c o r r e l a t i o n  f u n c t i o n s  w h i c h  we w i l l  s u b s e q u e n t l y  u s e  i n  

o u r  s t u d y .  T h e y  a r e  : t h e  s u s c e p t i b i l i t y

X = E < cr o > ( 2 . 1 2 . a )
k  o k  c

t h e  f o u r t h  c u m u l a n t

x(2) E < 
k lm

a a, a., a o k 1 m >c ( 2 .1 2 .b)

a n d  t h e  s e c o n d  moment o f  t h e  s p i n - s p i n  c o r r e l a t i o n  

f u n c t i o n

^2 5 - ^ T  < ao ° k  ( 2 . 1 2 . 0
k a

w h e r e  c  d e n o t e s  t h e  c o n n e c t e d  p a r t .  I n  t e r m s  o f  t h e s e  

t h e r m o -  d y n a m i c a l  q u a n t i t i e s  we c a n  now d e f i n e  t h e  

d i m e n s i o n l e s s  c o r r e l a t i o n  l e n g t h
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1/2
l = ( —  ) (2.13.a)

2d x

and the dimensionless scale invariant renormalised 

coupling constant

gR
( 2 )
I T
l x

( 2 .13.b)

2. Continuum limit and critical behaviour

We have expressed the original lattice regularised 

field theory as an equivalent continuous spin Ising 

model. However, since it is the continuum field theory 

that we are ultimately interested in, the continuum limit 

of the statistical system must be carefully considered.

Since the model is regularised by a lattice of 

spacing a, one must take the a 0 limit in order to 

arrive to continuum physics. This is a highly 

non-trivial limit as it must be taken while keeping 

certain physical quantities fixed. In particular, one 

must renormalise the bare parameters and thus express the 

dressed physical parameters as functions of the bare 

ones. For example, in the canonical theory one must in 

principle have the dependences [3,38]

mR  =  mR K ’ g o ’ a
( 2 . 1 4 . a )
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gR = gR K >  go -  a ) ( 2 . 1 4 . b )

and whenever the limit a •* 0 is taken, m R must be held 

fixed to the value of some physical mass. Recall that m_, 

is given by the exponential behaviour of the two point 

G r e e n ’ s function at large physical distances x = ak , 

where k is the distance in lattice units, i.e. [38,39]

G(0,x) ~ exp(-mR x) = exp(-mR ak) (2.15.a)

From the theory of spin systems we know that the 

spin-spin correlation function for largely separated 

spins is given by [39]

G(0,k) ~ exp(-k/£) (2.15.b)

Thus, we obtain the all important relationship

m R £a = 1 (2.16)

where £ is measured in lattice units a.

Clearly, the only way this relationship can be true 

in the continuum limit (a -* 0) while m R is kept at a 

fixed physical value is for the correlation length £ to 

diverge. However, £-*■« is the conventional signal for a 

second order phase transition [40 ]. Thus, when the 

statitistical mechanical system displays a second order 

phase transition, the equivalent lattice field theory
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approaches its continuum limit. This is why we are 

primarily interested in the critical region of the

system, characterised by the divergence of £. Assuming 

the existence of a second order phase transition at a 

critical inverse temperature K c , the dominant critical 

behaviour of the quantities of interest is given by :

x = f x (K) (Kc - K ) " Y (2.17.a)

*(2) = V K > (Kc - K ) " Y- 2A (2.17.b)

(i2 = fg(K) (Kc - K ) " y - 2 v (2.17.C)

5 = f4 (K) (Kc - K ) " v (2.17.d )

%  = f5<K > ( V K >,C (2.17.d )

with

( c = d v + y - 2 A (2.18)

Here the f^(K) (i=l,...,5) are assumed to be analytic

functions in the region of K , neglecting £n(K - K) termsc c
and confluent power singularities. So, as K * K ” , the

dominant divergence is that of the critical exponent of

the K - K term, c
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For our study,, the value of k is most important. If 

k  > 0, 0 as K > K c and the theory is trivial. If k

< 0 , gR diverges at and this is considered a signal 

for the non existence of a continuum field theory [41 ].

So for the theory to be non trivial in the continuum 

limit, g^ must assume a non- zero value, which is only 

possible if k — 0• In order to investigate the problem 

of triviality, we first need a method of evaluating the 

quantities of eqns. (2.17) as functions of K and then a 

method of estimating their critical exponents.

Before exposing the techniques used for the 

numerical study of the m o d e l ’s critical properties, and 

in order to obtain some idea of the basic characteristics 

of our model, we shall now discuss earlier predictions 

concerning the critical behaviour of the lattice version 

of scale covariant \<t> theory.

3. Scale Covariance and Lebowitz violation

As has been stated in the introduction, canonical 

lattice \<j> theory has been rigorously proved to be 

trivial in d=5 and is almost certainly trivial in d=4 

[6 ]. An essential part of the rigorous proof consists of 

finding upper and lower bounds for the renormalised 

coupling g^. One such bound is obtained by using the 

Lebowitz inequality [25]. This inequality was proved 

useful in the study of the IVM, but it is also valid for
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the class of systems described by the lattice canonical 
4

\<J> formulation (B=0). It is

< a. cj. a, a, > < 0  (2.19)i j k 1 c v '

This implies gD > 0 and with minor assumptions ri
[42,43,44], y > 1 and k > 0. Frohlich [6 ] has shown that 

the connected four point function Gi+ obeys

0 > G 4 > -a^-^ x constant (2 .20)

from which triviality follows in the a -* 0 limit for d >

5. The left-hand-side inequality of (2.20) can be

readily recognised as a consequence of (2.19). If

however, the Lebowitz inequality is violated, it

immediately follows that (2 .20) is no longer true and

triviality is not necessarily enforced.

Klauder [29] has given a very simple counterexample

for which Lebowitz violation occurs. This is the case of

a single site lattice on which we have defined a
4

pseudofree (U =0) scale covariant (B*0) \<j> theory. The 

realy simple argument [41] is as follows :

We define the moments of the single site spin 

distribution dp.(a) of (2 .10) by

In(h) = / dn( a) an exp(-ha) ( 2 . 2 1 )



52

and the normalised moments by

In (h) = V h) 7 V h) (2 .22)

Thus, it follows directly that for our single site 

pseudofree toy model

W 0 ’
A-n

r [ n + ^ ( l - B ) ] 

r[^.(i-B) ]
(2.23)

But the normalisation condition (2.7), which can now be 

written as

I2<0) = 1 (2.24)

imposes that

1
A = _  (1-B) (2.25)

2

and thus

I2n
1-B 
[— ]

2

-n r[n+(l-B)/2 ] 

r[(l-B)/2]
(2.26)

In particular
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I4 (°) = U - B )  1 (3-B) (2.27)

For a single site lattice, the analogue of the connected 

normalised four-point function is

< CJ4 >C = I4 (0) - 3 I2 (0 ) 2 = 2 B (1 - B ) - 1  (2.28)

Obviously, this means that for any positive value of B in 

the allowed interval (0,1), Lebowitz violation occurs.

The inequality becomes maximally untrue as B ■* 1-. This 

argument, although valid for the simplistic case of an 

one site lattice, may well be true for the general case 

of multisite lattices which are the ones of interest. 

Lebowitz violation would then result for some values of B 

and subsequently for these regions of B, k < 0 is a 

possibility. Thus, a fine tuning of B can result in k 

having positive, negative or zero values. The last case 

is obviously the one sought. In [29] the possibility of 

this scenario was demonstrated.

4. Mean Field and Landau approximations

It is important to pay attention to the predictions 

which can be obtained analytically with the aid of 

certain approximations. The virtue of such an excercise 

is twofold : Firstly, it provides a general idea of the

coarse characteristics of the model, and gives a first
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rough estimate of the values of the critical quantities 

of interest. Secondly, by exposing the limitations of 

such methods, it motivates the numerical approach which 

is the one that will give the more accurate answers.

This is the reason we will give a few short proofs of 

results in full detail.

The first approximation is the well known Mean Field 

Theory (MFT). The starting point [45] is that each spin 

is in a local magnetic field h ’, which consists of the 

external field h plus the field provided by the 

neighbouring spins. The average value of a spin in the 

field h* should be proportional to h' and inversely 

proportional to the temperature T (Curie Law) :

ch ’
M = ---  (2.29)

1 T

where c is a positive constant (M^ and h ’ must not be 

opposite). Now MFT assumes that the field due to the 

neighbouring spins is a function of the average of all 

spins M^. For small M ^ , this field is linear in M^; thus 

we have

h' = h + slM 1 (2.30)

Combining (2.29) and (2.30) we obtain
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with

he
= (2.31) 

T-T c

T = ca (2.32) c

Note that (2.31) is the solution to (2.29) and (2.30)

provided that T > T c (otherwise (2.31) states that

points opposite to h). Thus, for T > T , we have that J c

bl&i 1
X = « (2.33) 

5h T-T c

which gives the MFT prediction

y = 1 (2.34.a)

Other MFT critical exponents are

and

v = 0.5 ( 2 .34.b)

A = 1.5 (2.34.C)

These, with (2.18) give
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ic = d /2 - 2 ( 2 . 3 4 . d )

In the canonical theory, MFT is known to be exact for d > 

5, yielding k > 0 and the theory trivial. This is 

intuitively explained by the argument that the higher the 

dimensionality of the lattice, the more the nearest 

neighbours and the better the basic MFT assumption is 

expected to apply.

Still within the MFT framework, we assert that the 

average zero-external field magnetisation of a particular 

site a (with all other spins "frozen" to their mean value

Obviously, since dp. is even in a, this equation is

trivialy satisfied by M^=0, which labels the unmagnetised

phase of the system (K>K ). This is the graphicalc
solution of Figure (2.2.a). However, as is depicted in

Figure (2.2.b), there may be another, non-zero solution,

which for K < K labels the magnetised phase. At K ,c c
provided that the phase transition is second order, the

zero and non-zero solutions coincide. This is expressed

by (2.35) for K=K and moreover, it implies that the zeroc

M ^ ) is

< a >
MFT / d\i(a) a exp(K 2 d M 1 a)

M x (2.35)
/ dn(tf) e x p ( K 2 d M 1 a)

m 1 M ^ O
of the left-hand and right-hand
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FIG. 2.2 : G r a p h i c a l  solution of equation 
(2.35) for M - . In case (a) we 
have M ^ =0 , while in case (b) we 
have a non-trivial solution M ^ #0 . 
(Reproduced from reference [50] )
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side of (2.35) remain equal : Thus

5

dM1
M

and, using (2.21) and (2.22)

(2.36)

5 < a >

5M M 1 =0

K c 2d I2 (0) IQ (0) + K c 2d Ix (0)
( 2 .3 7 )

Mi =0

Using (2.24) and the zero magnetisation property (i.e. 

IQ (0)=0) we have

5<a>

5MX M =0 
1

2dKc (2.38)

From (2.36) and (2.38) we obtain the MFT prediction of 

the critical inverse temperature

K = l/2d (2.39)c

The reason we have given these proofs in such great 

detail is to demonstrate the following very important 

point : Nowhere in these proofs was the scale covariant 

property (i.e. the presence of B ) used. The same value 

for y is obtained for any spin theory whatsoever and the 

same value for Kc results for any continuous spin Ising
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model irrespective of the form of the single site spin 

distribution. The conclusion is therefore that M F T , 

although a useful tool for a qualitative analysis, is not 

powerful enough to give accurate predictions. It fails 

to "see" the "details" of the theory ; and the scaling 

parameter B is exactly the all important "detail" we are 

i n v e s t i g a t i n g .

The next analytical approach of interest is the 

Landau semiclassical approximation. According to this 

theory, given a statistical mechanical system such as the 

one defined through (2.4) and (2.5), we may define a 

thermodynamical potential which is a functional of the 

magnetisation per site [37]. Expanded in powers of 

magnetisation it reads :

rtM^T] d
ro (T) + / d x ( -  (VM )*+ _  oc(T) + 

2 1 2 1

—  P(T) M 4 + —  y ( T ) M -6 + ... ) (2.40)
4! 1 6\ 1

where p is given by

46 MlP = ---
4

6Ml J=0
(2.41)

(Note that a,p and y are coefficients of the power 

expansion and not critical exponents).
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Let us consider the effective potential V ^ up to 

sixth order :

V 1 2 ^ 4 1 q= -  <x(T) M Z + —  0(T) M * + —  y (T) M ° (2.42)
2 4! 6 !

The stability requirement implies that V must be

bounded below, which in turn imposes that y > 0. Then

V ff can display different behaviour according to the

signs of a and 0. As shown in Figure (2.3.a) ,for 0 > 0,

when a(T) < 0 the global minimum is non-zero (magnetised

phase) whereas when a(T) > 0, the global minimum is zero.

Thus, there is a critical temperature T q (defined through

a(T ) = 0) at which the "magnetised" curve deforms into c
the "unmagnetised" one and its corresponding global

non-zero minimum passes smoothly to a zero value.

Clearly, the transition is continuous (second order).

When, however, 0 < 0 the situation is different, as shown

in Figure (2.3.b). For a < 0, we again have a magnetised

phase (non-zero global minimum) which persists for

certain positive values of a (a > 0) provided that 02 >

4ay. At a critical temperature T c (defined through

02(T ) = 4 a(T )y(T ) ) there coexist two global minima, c c c
one zero and one non-zero. As the system is heated 

further, we get 02 < 4 ay and the global minimum is the 

zero one (unmagnetised phase). The jump from one phase 

to the other has been discontinuous, and the transition

first order.
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FIG. 2.3 : The effective potential as a function 
of the magnetisation when (a) and
(b) 0*0. The dashed line shews the 
movement of the global m inimum as T 
(and o<(T)) is increased.
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We have shown that the sign of p (and, through 

(2.42), that of X(2 )) determines the order of the 

transition. Therefore, < 0 implies a second order

phase transition and, since it is synonymous to the 

Lebowitz inequality, it also implies k > 0. Conversely, 

X(2 ) > 0 implies a first order phase transition, a 

violation of Lebowitz inequality, and thus the 

possibility of negative k . This situation is illustrated 

in Figure (2.4).

From it, we derive the final prediction of the 

Landau semiclassical approximation : There is a region in 

the B-U q  plane for which the transition is second o r d e ^  

and the Lebowitz inequality is valid; i.e. k > 0. This 

is separated by a line of tricritical points from a 

region of first order transistions in which Lebowitz is 

violated; i.e. k is permitted to have negative values.

If we assume smooth variations and changes of sign for tc 

with B and U , there is a line in the B - U plane for 

which k = 0. This line must be entirely in the 

discontinuous transition region (otherwise, k < 0 values 

would be allowed in places where Lebowitz is valid) but 

is permitted to touch the tricritical line. Thus, Landau 

type arguments suggest that although the possibility of a 

non trivial lattice theory which has a

"tricritical-boundary-type" continuum limit cannot be in 

principle excluded, trying to locate it on a single point 

of the B - U Q plane with numerical techniques appears 

unrealistic. However, the Landau theory is just a
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U0

F I G . 2.4 : Schematic representation on the
plane of the predictions of 

the Landau approximation.



64

semiclassical approximation and the full quantum effects 

can alter the picture.

The Landau approximation has been useful in two 

ways. Firstly, it has signaled the possibility of a 

first order phase transition ; a case which has been 

neglected in earlier analyses [29,41 ]. Secondly, it 

again gave results which are independent of the scaling 

parameter B. Consequently, if we want to see the 

influence of B, we must turn our attention away from 

approximation techniques. The natural alternative is 

series expansions.

5. Early results from series analysis

Having experienced the limitations of approximation 

techniques, we now turn our attention to series 

expansions. Since series expansions and series 

extrapolations are amongst the main techniques that this 

thesis relies on, we shall not refer to them extensively 

in this section ; they will be properly presented in the 

next chapter. For the moment we shall only state that 

the thermodynamical quantities defined by (2.12) and

(2.13) can be evaluated as series in powers of the 

inverse temperature K with coefficients which depend on 

the model's parameters B and U Q . One can then use Pade 

approximants (which will also be presented in the next 

chapter) to evaluate the critical exponents.

Klauder [29 ] has used these techniques in order to
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analyse the pseudofree (U =0) scale covariant (B*0) 

theory in four dimensions. His results for k and for 

different values of B are plotted in Figure (2.5). The 

encouraging result from this plot is that, like for the 

example of the one site lattice theory, there seems to be 

a value of B in the interval (0,1) for which k can be 

zero. Thus, as in the large N analysis of Rivers [35] 

and Gent [36] , a fine tuning of B can result in a 

pseudofree theory which is non-trivial and distinct from 

the trivial (Gaussian) free theory. The alarming aspect 

of this result, however, is a surprisingly large 

variation of y, v, A and k with B. Such a violation of 

universality is a very unwelcome result and requires 

further investigation. At this stage, we will only state 

that since it is only assumed (and not proved) that the 

phase transition is second order, certain of these 

results, which are based on this assumption, may not .make 

sence. Also, neglecting confluent singularities may be 

another cause of this anomaly. The question of 

universality will be examined in the next Section and at 

latter stages of the thesis. In any case, it is clear 

that K l a u d e r f s work indicates a possible way out of 

triviality but his analysis is only at a preliminary 

level. In what follows we shall adopt his approach for 

the fully interacting theory (UQ *0) and supplement it 

with an examination of the order of the phase transition. 

We shall see that this, will alter the final conclusions.

More recently, Rivers has examined the behaviour of
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FIG. 2.5 : Variation of k  with B for Uo= 0  
and A=0.5. The results were 
obtained by using series expansi­
ons and Fade a p n r o x i m a n t s .
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the coefficients of the high themperature series in the 

limit B -* 1“ (in which the theory becomes scale 

invariant) and for UQ = 0 (pseudofree case) [41 ]. He 

found that in this limit the series coefficients depend 

very simply on the moments of the spin distribution. 

Using ratio methods to analyse the series, the critical 

exponents of the scale invariant theory turn out to be

y = 0.5 (2.43.a)

A = 0.5 ( 2 .43.b)

v — 0 (2.43.C)

whence

k * -0.5 (2.43.d )

independent of dimension. This means that the pseudofree 

scale invariant theory does not exist in any dimensions. 

However, Rivers points out that even a superficial 

examination of the behaviour of K c reveals that the 

pseudofree scale covariant model in the B -> 1- limit (as 

examined numerically in [29 ] ) has properties which are 

disconnected from those of the scale invariant model (for 

which B = 1-e ; e small). The two limiting proceedures 

are not equivalent. Thus, the properties of the scale 

invariant pseudofree theory can be of limited use to an
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examination of the full ( B  * 0 ,  UQ * 0  ) theory.

From the discussion of the last two sections it is 

apparent that the approximation methods have failed to 

enlighten the situation. The only encouraging results 

come from the numerical analysis of Klauder [29]. It is 

therefore evident that one must attempt to clarify the 

situation in this direction. The numerical analysis 

which is exposed in subsequent chapters is a non-trivial 

generalisation and extension of the numerical analysis to 

its limits. We have, however, proceeded in the spirit of 

this early work [29].

6. A comment on universality

In the next chapter, we shall explicitly calculate 

numerically the values of the critical temperature and 

critical exponents of the model. Given a pair of values 

for the bare parameters B and U , we shall evaluate the 

inverse temperature for which the model has an 

(assumed) second order phase transition and the critical 

exponents near K c> However, even if the assumption 

concerning the order of the transition is correct, we are 

not guaranteed a continuum field theory at K c# This is 

because a second order phase transition is a necessary 

but not sufficient condition for the continuum field 

theory to exist ; the continuum theory lives only at the 

phase transition point of the phase diagram for which the 

renormalised mass m^ (the two point Green' s function)
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has a fixed physical value. As we will perform our

measurements in the bare parameter space (B-U ) without
o

fixing m , the analysis that will follow may appear K
dubious at first sight.

This is not so ; since we will not be measuring the 

coupling constant gR but only the corresponding critical 

exponent k , we do not need to consider renormalisation 

aspects of the problem carefully. The information we are 

seeking concerns primarily only the sign of k . Thus, two 

alternatives seem plausible : (a) The critical exponents 

turn out to be universal. They do not vary with B and 

U Q . This view is supported by most results obtained for 

more conventional spin models. It has recently been 

stated that the principle of universality may not be 

valid in its ’s t r o n g e r ’ sense in the \<j)4case [46]. It is 

possible that continuous spin theories are characterised 

by a ’w e a k e r ’ universality ; i.e. there are different 

regions of their parameter space, each labelled by a 

different shape of the single site spin distribution, in 

which the critical exponents are universal but different 

from those in other regions. This point will be treated 

in greater detail in Chapter V. (b) The critical 

exponents are smooth functions of B and U Q . This sounds 

intuitively plausible and is supported by the numerical 

data of Klauder [29 ] but is a very unwelcome situation as 

it contradicts the generally accepted principles of

Statistical Mechanics.
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For the moment, we shall not attempt to clarify 

which of the two possibilities is true. This will be 

postponed intil Chapter V. In either case, however, 

careful renormalisation becomes redundant : By performing 

measurements over a large number of points in the B- U Q 

plane (the real parameter space) we may establish the 

behaviour of the critical exponents at all critical 

points. We will be able to deduce their behaviour at 

the t h e o r y ’s continuum limit, irrespective of whether 

this behaviour turns out to be universal or smoothly 

v a r y i n g .
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CHAPTER III

HIGH TEMPERATURE ANALYSIS

1. High temperature expansions

We shall now introduce briefly the way to obtain 

high temperature series expansions (i.e. expansions in 

powers of K) for the thermodynamical quantities of 

interest. We have used the results of Kincaid e t . a l . 

[47] who rely on the method of Wortis [48] to obtain 

their series. As the general methodology is described in 

great detail in [48] and its application to any 

continuous spin Ising model is fully given in [47], we 

shall only give a brief outline of the main idea, 

referring the reader to the above referenes for details 

and proofs. A fuller exposition of the techniques and 

the results of this Chapter can also be found in [49].

Having defined the moments I and I of the single 

site spin distribution dp.(a) (see equations (2.21) and 

(2.22)), we recall that the magnetisation per site k is 

given by

M l (k) = < 0k > = / [ndn(cr )] ok exp(-S [ a]) (3.1)
i

It is easy to verify that
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1 <5Z
M 1 (k) = ----- (3.2)

Z 6hk

We observe that all the quantities of interest are 

expressible as functional derivatives of M^(k) :

6M1 ( 0 )
X = Z — =---- (3.3.a)

k 6hk

• 63M..(0)
X ( 2 \ = 2 ---------  (3.3 .b )
 ̂ J klm 6h. 6h, 6h k 1 m

k k 6M1 (0 )
|i2  =  2  i-----  ( 3 . 3 . C )

k a z 6h.k

We can now develop (in the limit of low K) the 

exponential of e q n . (3.1) as a series expansion in powers 

of K and thus obtain the magnetisation as a power series 

in K. This expansion, systematised in terms of lattice 

graphs, can be carried out by using a complete set of 

diagrammatic topological and algebraic rules [48]. In 

order to give a flavour of the Wortis method, we quote 

just one result. The diagramatic expansion for the 

magnetisation per site is given by the sum of all 

topologically distinct 1-rooted connected graphs 

according to Rule 2 of Wortis. This expansion, to order 

K 3 looks like
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Mi(k) o + I + - 2 +2 » + 
<D 2 ♦

(3.4.a)

which, according to Rule 2 of Wortis corresponds to the 

algebraic expression

Mj^k) = M°(k) + Z M°(k) K ( k , 1) M°(l) +

_  Z Mg(k) K ( k , l ) 2 MgCl) +

Z M°(k) K ( k , 1) M°(l) K ( 1,m) M°(m) +

1
-  Z M°(k) K ( k ,1) M°(l) K ( k ,m) M°(m) +... (3.4.b)
2 1 ,m

where

and

K(i,j) s K 6j , i+H ^  \x (3.5)

M^(k) = M^(hk )
d J

dh n In ( I A K )) (3.6)

One can refine such diagramatic techniques to a
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great extent ; W o r t i s ’s ’linked cluster expansion' 

artillery consists of 19 diagramatic rules. Essentially, 

these rules systematise the following three fundamental 

procedures which are necessary for carying out the 

expansion. They are :

(i) enumeration of the contributing graphs

(ii) calculation of the contribution of each graph

(iii) addition

Step (ii) usually consists of two parts : (a) a factor 

that depends on the graph's topology, called weight and

(b) the graph's multiplicity which is determined by the 

number of different ways it can be embeded in the 

underlying lattice.

Utilising the method in order to carry out the 

calculation to a sufficiently high order is no easy 

task. Typically, the first few coefficients are trivial 

and no special methodology is necessary for their 

calculation. However, in higher orders the bookkeeping 

is extremely involved. Kincaid et. al. [47] have listed 

the necessary graphs, their symmetry factors and free 

multiplicities for the calculation of the series for M^, 

X, X(2) an<  ̂ ^2 order in K and for eight
lattices (linear chain, square, triangular, cubic, 

body-centered cubic, face centered cubic, hypercubic and 

hyper-body-centerd cubic). The outcome is that M^(h) and 

consequently x, x,9 >. and can be evaluated as a power 

series of the form
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F(K) = E fn K n (3.7)
k=0

where the coefficients f are polynomials of certain even 

order normalised moments ^ m ^ )  as defined in (2.22).

Note that the coefficients f only depend on certain 

moments 1^ irrespective of the single site spin 

distribution through which these moments are defined.

This means that the results of Kincaid et. al. can be 

used with any single site spin distribution, including 

our scale covariant dn(a).

We have utilised their results as follows : Recall 

that the normalisation condition (2.24) can be solved 

numerically to give A, for any pair of (B, U ) values. 

Having obtained* A, the computer w a s .then used to generate 

the even moments, up to 1 ^ ( 0 ) ,  which are necessary for 

the high temperature expansions to tenth order in K.

This was simply done by performing the integration of 

(2.21) numerically using the NaG 8 Fortran Library .

From these moments, and their coefficients tabulated by 

Kincaid et. al., the computer was then used to generate 

the actual high temperature series to tenth order in K 

for %> X ( 2 ) ’ ^2’ These being known, we used (2.13) to 

generate the high temperature expansions of £ and gD to 

the same order.

2. Pade Approximants
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We have outlined how, by using the method of high 

temperature analysis certain physical quantities of 

interest (collectively denoted here by F(K)) can be 

represented by p- order power series of the form

p -
F(K) = E f K n + 0(KP i ) (3.8)

n=0 n

(in our case we saw that p = 10). We shall assume that 

the 0(K^+ ^) terms do not contribute significantly and 

shall neglect them from now on. This can be dangerous 

(e.g. for conventional Xtj)4 in d = 3, p = 10 does not 

resolve the question of triviality since it gives the 

result k=0.028 ± 0.003 [14]) but we can only adhere to 

the present day available accuracy which has been 

sufficient for the d=4 conventional Xtj)4 theory for which 

k= 0 .30 ± 0 . 0 4  [14].

Since we assume that in the critical region of 

interest the behaviour of F(K) is described by

F(K) = f(K) (K-Kc ) e (3.9)

(f(K) analytic in K ), we want to utilise the series 

approximation of (3.8) in order to extract estimates for 

K c and e. The standard method is to use Pade 

a p p r o x i m a n t s . This method is meant to be a good 

approximation of functions F(K) in their circle of 

meromorphy except for those regions of K where they
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display branch point singularities. Unfortunately, eqn. 

(3.9) suggests that the critical region has such a 

singularity at K c . To circumvent this problem, we used a 

variant of the Pade analysis known as D-log Pade which we 

now describe : We first observe that

d dF(K)
—  In F(K) = ------  F(K)
dK dK

-1 (3.10)

Since F(K) is represneted by a p-order power series in K, 
d
— lnF(K) is also known as a p-1 order power series by 
dK
virtue of (3.10). Thus, given the f 's of (3.8) we can 

uniquely determine the c n 's of the expansion

P-1
dK

In F(K) = Z
n=0 c n K (3.11)

From (3.9) it is obvious that as K ■* K ,
d e
—  In F(K) = ----
dK K-K

+
dK

In f(K) (3.12)

This has a simple pole at K = K c with residue e, so we 

expect it to be well approximated by the Pade 

a p p r o x i m a n t s , which we now define.

Given the series of eqn. (3.11) we define its [ L/M ] 

Pade approximant as the following ratio of polynomials
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[L/M](K) = -I—
Q m (K)

R (K)
L
E r.. K 
1=0 1

1

(3.13)¥ m

with q Q= 1. Equating the right hand sides of (3.11) and

(3.13) we get

and provided that L+M < p - 1 , the coefficients r ^»Qm are 

uniquely defined in terms of the coefficients c n

The claim is that the approximants [l /m ], thus 

obtained, converge to F(K) as their order increases.

This is not generally true, although there are theorems 

that guarantee that, for certain special cases of 

functions F(K), the approximants converge to F(K) [52], 

Our functions F(K) do not have any properties that would 

theoretically guarantee convergence of the approximants. 

It is true, however, that the maximum region of 

convergence of sequences of Pade approximants exceeds 

that of a Taylor series. If F(K) has p poles in its 

circle of meromorphy, the circle of convergence of a 

Taylor series extends only up to the pole which is 

closest to the origin. The [L/m ] sequance of Pade

n (3.14)

[49,51].

approximants, however, converges uniformly to F(K) as L ■>
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00 everywhere inside the circle of meromorphy, except at 

the neighbourhoods of the p poles [53,54]. In practice 

[54], convergence is still satisfactory in the vicinity 

of the poles near the origin for M < p. These results 

are justified by the fact that the poles of F(K) can be 

represented naturally by Pade approximants since they are 

defined to have a pole structure (cf. equation (3.13)). 

Combining theory and experience from numerical 

experiments we can expect our series to be sufficiently 

well approximated by Pade approximants as obtained from

(3.13).

The M zeroes of the polynomial (K ) in the denominator

give the possible values of K , while the polynomialc
R t (K) evaluated at K gives values for e. The relevant

pole out of the M candidates is picked by requiring

consistency between different order Pade approximats :

the pole at K must remain stationary while other poles c
will move around between different order approximants.

This process was carried out by computer. From the

fn 's of the F(K) series, the cn 's of the D-log series

were calculated. The [L/M ] approximants to this series

were then calculated for 1 < L,M < 5  and their poles and

residues found numerically. This gave possible values of

K and e. c

3. Practical aspects and consistency of Pade 

approximants
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We insist that our series are such that Pade 

approximants are not theoretically guaranteed to work. 

Trouble can arise; for instance increasing the order of 

the approximant does not necessarily improve the accuracy 

close to the singularity of interest. Another problem is 

the appearance of spurious poles and almost coincident 

zeros in regions close to the origin where F(K) is 

analytic. Despite all this, practice has shown that in 

many occasions [51,55] the diagonal [L/L ] and near 

diagonal [L+j/L] approximants give good results. 

Nevertheless, the lack of theoretical justification 

becomes apparent in cases where the approximants fail to 

give meaningful answers for no obvious reason. To 

extract reasonable estimates, we have used three 

different methods of Pade-approximating the series of 

interest. In all cases, at least one method will yield 

approximants which provide self consistent estimates for 

K and e. Occasionally, two or all the methods workV-/

well, providing us with consistency checks. The three 

methods we used are presently described.

Method 1 : The D-log Pade approximants of the threee high

temperature series of y, *(2 ) anc* ^  §ave "three estimates 

of K c and a single estimate for each of y, A and v. The 

values and apparent statistical errors of these estimates 

were obtained by calculating the means and standard 

deviations of the results of the [l /m ] approximants for 3 

< L,M < 5 (i.e. the near diagonal high order 

approximants). A weighted mean was calculated from the
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three estimates of K and a value for the criticalc
exponent k was obtained from y, v and A using eqn.

(2.18). The weakness of this method is that although the 

three exponents y, v and A have reasonable individual 

errors, these sometimes add up to give rather imprecise 

values of k with big errors. As an example, we present 

typical Pade tables obtained from this method for B=0.8 

and U o =0.1 (Table (3.1.a, b, c)). The final results are 

collected in Table (3.1.e).

Method 2 : A series for g^ was obtained from the y, X(2)

and 2̂ series using equations (2.13.a,b). This was then 

analysed using D-log Pade approximants to give a further 

estimate of K and a direct estimate of k . The weaknessc
now is that in our search for non-triviality we are 

primarily interested in locating values of B and U q  for 

which k = 0. If this is the case, the D- log Pade 

approximant of the g^ series will be expected to simulate 

a zero residue at K c (see eqn. (3.12)). So it either 

collapses by modelling 'irrelevant' singularities or, at 

best, it models non leading singularities. Thus, this 

method can be an improvement on the errors of k compared 

to those from the previous method, but only in cases 

where k ^O. A s an example, we provide the Pade table 

obtained from this method (Table (3.1.d)) for the same B 

and UQ points as in the example of the previous method. 

The comparison of the results from both methods is given 

in Table (3.1.e). In those cases where Method 1 provides 

us with values of c which are compatible with zero, the
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( a )

\  L 3 4 5
.12102 .12104 .12083

3 -1.01407 -1.01474 -1.00684

.12104 .12101 .12136
4 -1.01479 -1.01377 -1.02455

.12106 .12169
5 -1.01544 -1.03662

, ( c )

\  L
m V 3 4 5

.12104 .12113 .12079
3 -2.02829 -2.02735 -1.98800

.12113 .12097 .12113
4 -2.02719 -2.02450 -2.02735

.12069 .12113
5 -1.95299 -2.02719

( e )

( b )
\ L

3 4 5
.12005 .11974 .11973

3 -3.29304 -3.23574 -3.23398

A .11966 .12005 .11919
-3.22128 -3.23574 -3.16179

5 .12053 .11822
-3.39906 -3.05196

(d)
\ L  
M \ 3 4 5

.12639 .12846 .12821
3 .77762 .86603 .85629

.12882 .12639 ***
4 .88285 .77761

5 .12884
.88371

***

METHOD 1 METHOD 2

K c .12100(9) .128 (1)

r 1.018 (8)

A 1.11 (5)
V .50 (1)
K .8 (1) .84 (5)

TABLE 3.1 : (a) The L/M Fade 
table of the X series at B=0.8 
and U o=0.1. The top number is 
the position of the pole ( K c) 
and the bottom number is the 
associated residue (critical 
exponent O .
(b) same as (a) for the K{z) 
s e r i e s .
(c) same as (a) for the |^2 
s e r i e s .
(d) same as (a) for the ^

series. The asterisks indicate that no pole can be chosen 
c o n s i s t e n t l y .
(e) Final results for K c and the critical exponents p .s  
obtained from Tables (a) to (c) (Method 1) and Table (d) 
(Method 2). Figures in brackets indicate the statistical 
errors between different order ^ade a ^ r o x i n a n t s .
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simultaneous collapse of Method 2 has been used as

corroborative evidence (see Table (3.2)).
dFMethod 3 : If Jin has the critical behaviour of eqn.

(3.13), then we expect that

( K - K C ) ^  An F ( K )  = E + 0 ( K - K 0 ) ( 3 . 1 5 )

When F(K) is the series for g^ (and thus, e is the 

critical exponent «) we can use a good estimate of K c as 

evaluated from Method 1 and obtain the left hand side of 

the above equation as a power series. The Pade 

approximant of this will then be evaluated at K to give 

a better estimate for c [54]. Just like in the case of 

the previous method, this method is unreliable when k=0. 

As our input value for has also been obtained with the 

Pade method (and so, it is not an independent estimate) 

we did not use this method widely.

We again wish to stress that eqn. (3.9) describes 

only the dominant power law behaviour near the critical 

region. The possibility of the existence of less 

dominant confluent power and logarithmic singularities 

cannot be excluded. Their presence is in principle a 

source of small systematic errors in the calculation of 

critical exponents and their detection is not 

s t a i g h t f o r w a r d . The systematic errors they introduce are 

indeed very small (for example, in a study of 

2-dimensional canonical \<J> , neglecting confluent
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___________

]THOD 1 METHOD 2

B K 7 V A K K c K

. 0 5 . 1 2 4 1 5 ( 2 ; . 9 9 5 1 ( 1 ; . 4 9 6  ( 2 ) 1 . 3 7 ( 6 ) . 2 ( 1 ) . 1 2 8  ( 3 ) . 1 6 ( 3 )

. 1 0 . 1 2 2 8 4 ( 2 : . 9 8 7 ( 6 ) . 4 9 0 ( 4 ) 1 . 3 7 ( 5 ) . 2 ( 1 ) . 1 4 0  ( 3 ) . 2 1 ( 3 )

. 3 5 . 1 1 4 0  ( 2 : . 9 2 7 ( 7 ) . 4 4  ( 1 ) 1 . 2 7 ( 1 ) . 1 5 ( 6 1 . 1 5 8  ( 1 ) . 2 1 4 ( 6 )

. 4 5 . 1 0 8 8  ( 3 : . 8 9  ( 1 ) . 4 0  ( 2 ) 1 . 2 1 ( 2 ) . 0 6 ( 9 ) *  * *

. 8 5 . 0 6 7 3  ( 6 ; . 6 1  ( 5 ) . 1 3  ( 8 ) . 7 3 ( 3 ) - . 3  ( 3 ) . 0 5 7 2 ( 1 ) - . 0 8 0 ( 1 )

TABLE 3 . 2  : Sam e a s  T a b l e  ( 3 . 1 . e )  f o r  U = 0 . 0 0 1  a n d  v a r i o u s  B
v a l u e s .  T h e  a s t e r i s k s  i n d i c a t e  t h a t  no n o l e  c o u l d  
b e  c h o s e n  c o n s i s t e n t l y  f r o m  t h e  Pa.de t a b l e  a t  t h i s  
B v a l u e .

oo
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singularities results in y = 1.92 ± 0.06 ; to be compared 

to y = 1.996 ± 0.02 when they are taken into account 

[46]). The conventional practice has been to neglect 

their influence when using Pade approximants and treat 

the calculation as a "zeroth order" estimation of the 

critical exponents. This approach has been used both by
r i kBaker and Kincaid [15 J for studying conventional \<J) (B=0

, U Q *0) and by Klauder [29] for the pseudofree theory 

(B*0 , U o =0). In this work, we follow the spirit of 

’ Baker, Kincaid and Klauder and adopt their approach to 

the study of the more general scale covariant theory 

(B*0,Uo *0). In Section 4, we present our "zeroth order" 

estimates for the values of y, v, A and k . An analysis 

which takes the subdominant critical behaviour into 

account will be presented in Chapter V.

4. Results from the series analysis

Having discussed so far the methods used, we now 

present our r e s u l t s , which concern the behaviour of the 

critical exponent k in the d=4 case. We have already 

mentioned that Klauder had already done so for the 

pseudofree case (U -0) and for A = 0.5 (reference [29] 

and Figure (2.5)). He found evidence for the existence 

of a non-trivial pseudofree theory for some value of B in 

the interval (0,1). Our results are in agreement with 

his, but we have extended the analysis to the full 

interacting theory (U^* 0).
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It was found that as the scaling parameter B is

increased from zero to one at fixed U , the criticalo
exponent k remains positive for most values of B and Uo
(see Figure (3.1)). For Unsufficiently small, and B

sufficiently close to one, however, the critical exponent

k becomes negative. This behaviour is fully illustrated

in Figure (3.2.a, b, c, d, e) for the typical case of UQ

= 0.001 and for Be(0,l). If we assume that k is a

continuous function of .B and U , it follows that there iso
a region in the B - U q  plane in which k < 0. We recall

that k = 0 is the necessary condition for non triviality;

thus a non- trivial solution can only exist at a specific

tuned value (or set of values) of B as a function of U .o
Several comments are appropriate here : First, at 

points in the B- U q  plane where k is very close to zero, 

the consistency checks mentioned above yield poor results 

due to the failure of Methods 2 and 3 as discussed 

previously. Away from this region, the results of the 

three methods were reasonably consistent. Second, we 

note that as B + 1 , the coefficients of the high 

temperature series diverge as a result of the divergence 

of the moments I (see eqn. (2.21)). For this reason, we 

expect the series to be invalid in this limit, and hence 

the results of our analysis to be less reliable in this 

region. Thirdly, we have performed some measurements for 

B < 0 where we find k > 0. There are strong indications 

that for B < 0 the model is in the same universality
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FIG. 3.1 : The variation of k  with B for U 0 =0.1 
Dots indicate results obtained from 
Method 1; squares indicate results 
obtained from Method 2.

FIG. 3.2 (a) : The variation of K with B for
Uo=0.001. The statistical er­
rors are too small to be slotted.



88

F I G .  3.2 (b) : The variation o f y  ^ith B for
U o=0.001.

FIG. 3.2 (c) : Same as Figure 3.2 (b) for r .
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class as the Ising model [37,56], which has the same 

fixed point with the ("almost certainly") trivial 

canonical X4>4 field theory [12]. As our results indicate 

that the theory is trivial in this region, we have 

concentrared our attention on the interval 0 < B < 1.

One final point ought to be made again. Our data, 

just like K l a u d e r ’s [29], indicates very strongly a 

smooth non-universal behaviour of K with B and U_. ThisU U
may be due to the fact that our Pade a p p r o x i m a n t s , 

although they have worked with surprising consistency, 

may have systematic errors. The source of these errors 

may be any of the following : (a) finiteness of the 

series expansion ; (b) neglect of confluent and 

logarithmic singularities ; (c) a first order phase 

transition may be setting in exactly in the region of the 

B -U plane for which the critical exponents display the 

wildest variation with the bare parameters. This latter 

source of errors can be a serious one, since Pade 

approximants are based on the conjecture of a second 

order phase transition. We shall examine this 

possibility in the Chapter IV. In Chapter V we shall 

investigate whether a confluent singularity behaviour 

influences the results. There is nothing that can be 

done to remedy the problem of the finiteness of our 

series apart from increasing their order so that higher 

approximants may be constructed. Such an extensive 

project is beyond the scope of this work.

In Figure (3.3), we plot the points of the B-U q
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FIG. 3.3 : The final results of the high temperature analysis.
The +(-) signs indicate the points examined on the 
B-U0 plane for vhich K is positive (negative). The 
dots indicate the points for which k is compatible 

» with zero. The solid curve indicates the approximate
position of the K = 0 line.
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plane we examined and the corresponding sign of k . From

it we see that the values of B and U Q which any

non-trivial field theory can take are restricted. A

non-trivial scale covariant X4> 4 field theory can only

exist for values of B and U 'tuned' so that k=0 , aso
shown in Figure (3.3).

5. Scale covariance in two dimensions

In this Section we report briefly some preliminary 

results we obtained in two dimensions. The reason we 

examined the model for d=2 is in quite a different spirit 

to that of triviality. As we pointed out in Chapter I, 

scale covariance could be interesting not only as-a 

non-trivial alternative to canonical theories, but also 

as a means of examining the problem of non 

r e n o r m a l i s a b i l i t y . We have seen so far that the proposed 

change of measure fails to rectify conventional \<|)% to a 

non-trivial status. We want to investigate whether this 

failure becomes apparent in aspects of 

nonrenormalisability as well.

Our line of thinking is the following: We know that

conventional in d=2 is a non-trivial

superrenormalisable theory which has absolutely no reason 

to be modified. As was pointed out in Chapter I, in the 

d=2 case, Sobolev type inequalities indicate that the 

paths allowed by the quartic interaction are



topologically equivalent to those of the free theory.

Thus, perturbations are continuous and the measure need 

not be modified; i.e. there should be no pseudofree 

theory distinct from the free case. In terms of our 

lattice spin analogue model, this means that in the 

pseudofree case (Uo =0 with B*0) the theory ought to be 

non existent for all values of B (i.e. k < 0) or belong 

to the Ising universality class (for d=2, the Ising model 

is a non-interacting field theory); otherwise a scale 

covariant pseudofree theory would exist as well as the 

trivial free one.

We followed the same line of analysis, using high

temperature series and Pade approximants to evaluate < as

a function of B when U = 0. The results are plotted ino
F i g . (3.4). It is evident that k < 0 everywhere; thus 

scale covariance does not seem to contradict the early 

(pre-triviality) expectations of its inventor [20,21 ] at 

this level of analysis. However, Monte Carlo results are 

required in order to establish the order of the phase 

transition and the validity of this conclusion.

Moreover, in order to resolve such questions 

conclusively, one needs to estimate k with a bigger 

accuracy than the present one. This can be possibly done 

with Monte Carlo Renormalisation Group techniques. As 

the aim of this thesis is to investigate the triviality 

aspect of scale covariance (and not the renormalisability 

question) we shall not pursue these questions further.

9 3
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CHAPTER IV

MONTE CARLO ANALYSIS

1* General motivation

As we have repeatedly stressed in the previous 

Chapter, the results we obtained with the aid of Pade 

approximants rest entirely on the assumption that our 

model has a second order phase transition at some inverse 

temperature for every pair of values (B,Uq ). One 

feels encouraged to believe that this is indeed the case: 

for any values of (B,Uo ) we investigated, the Pade 

approximants (which are meant to mimic a criticality of 

second order) seemed to work without problems. The 

approximants were fairly consistent at least in most, if 

not in all cases (the only sign of trouble being the 

violation of universality). However, as we pointed out 

in Chapter II, the semiclassical Landau approximation 

indicates that a first order phase transition is 

possible. Although taking the full quantum effects into 

consideration will inevitably alter the semiclassical 

picture, the possibility of a discontinuous transition 

cannot be ruled o u t .

This means that the phase diagram of the theory must 

be worked out. There are various ways that this can be 

done : (a) solving the model exactly, (b) perturbation
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expansions, (c) renormalisation group calculations and

(d) Monte Carlo simulations. The first method is 

unsuitable ; our model is a continuous spin Ising model 

and so far exact solutions only exist for the one- and 

two-dimensional discrete spin Ising model. Of the three 

existing possibilities, Monte Carlo simulations turned 

out to be the most popular method of obtaining accurate 

results on phase transitions during the last five years 

[57]. We shall not describe the Monte Carlo method at 

all here. A brief discussion of how and why it works 

will be presented in Chapter VI. In what follows, we 

shall assume knowledge of the basics of the Monte Carlo 

technique from the reader.

2. Early Monte Carlo results

The first attempt to clarify the situation was made 

by Ogielski [37]. Our position towards this work is 

somewhat critical and our "philosophy" on how to 

implement Monte Carlo simulations in order to derive 

information on the triviality of the theory considerably 

different from O g i e l s k i ’s. Thus, we shall first 

summarise his work ; the details can be found in [37]. 

Monte Carlo simulations were used to investigate 

thoroughly the order of the phase transition at the 

following four points of the B - U q  plane : (a) B=0 , 

U q = 1.0 , (b) B = 0 .6 , U q = 1.0 , (c) B = 0 .6 , U q =0.1 and (d) 

B=0.6 , U Q =0.01. Two variants of the Metropolis
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algorithm [58] were used. In the first one, a numerical 

method was used to produce updates from the distribution 

d (a) of eqn. (2.10) which were accepted or rejected (the 

Metropolis criterion) with the Ising action S[a] as given 

in eqn. (2.9). The second variant is the standard one 

where updates are produced from a flat distribution da
4and then they are accepted or rejected with the full U o a

action (see next Section, eqn. (4.2)). It was found [37]

that results from both variants agree reasonably well at

temperatures T > but the second one is more reliable

at T < T .c
Ogielski used the internal energy (to be defined 

below) as an order parameter and studied certain of its 

properties of convergence to equilibrium from different 

initial configurations in order to estimate the order of 

the transition. As a first step, the critical region is 

located with the aid of the fact that in a stochastic 

Monte Carlo simulation the order parameter relaxation 

time grows considerably at temperatures near T c [59]. 

Thus, the system is slowly cooled from high to low 

temperatures and subsequently heated again. The energy 

was recorded after each temperature change AT = 0.1 and a 

100 lattice sweeps. The location of the observed 

hysteresis loops in the energy-temperature plane gives a 

rough estimate for the value of T and their size gives 

an indication of the order of the phase transition 

(continuous transitions have much smaller hysteresis
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loops than discontinuous ones).

Having located the critical region around T ,c
Ogielski then recorded the relaxation to equilibrium of

the magnetisation and the internal energy. He used mixed
3 3starts, i.e. a 6 X16 lattice was split into two 6 X8

subsystems and each was initialy populated by a random

and a frozen spin configuration. He then recorded the

relaxation to equilibrium of the magnetisation and

internal energy in the two halves, for different values

of temperature in the critical region. Whenever the

order parameters in the two lattice halves converged

after about 300 iterations, the transition was termed

second order. Such a case must be contrasted to what was

intepreted as a first order transition : This was

characterised by a distinct coexistence of two phases for

up tp 10000 iterations at T c and slow relaxations (about

4000 iterations) near T .c
Ogielski supplemented his analysis with an 

examination of the behaviour of most physical quantities 

of interest (namely X^2)» and the specific heat) in
4the critical region, using 4 lattices and runs with 

200,000 to 400,000 configurations. Having found the 

B=0.6 , U Q =0.01 point displaying non-Ising behaviour, 

indications of Lebowitz violation and a discontinuous 

transition and the other three points displaying the 

opposite behaviour, he concluded that at the points where 

the field theory exists, it is a trivial one.

Our criticism towards this approach is that although



his simulation is of high enough accuracy to give precise

information about the internal energy (the order

parameter) and the specific heat , it is insufficient as

far as the reported measurements of £, X(2) anc* gR are
concerned. For example, despite the huge number of

iterations performed, the range of the correlation length

turns out to be either larger than the lattice size or

smaller than one lattice spacing in the K's of interest

([60] ; see fig. 6*(d) and 7(d) of [37]). These estimates

turned out to be unreliable although they were obtained

with extensive and costly use of the computer. Also, the

hysteresis and relaxation method for estimating critical

temperatures is very expensive in computer resources and

far less accurate than the results which were obtained in

Chapter III with the use of the "much cheaper" Pade

a p p r o x i m a n t s . Moreover, a non-trivial theory would

emerge only for very specific values of the parameters.

Such a tuning is impossible to be seen unless a lot of

points in the parameter space have been investigated.

Thus it is clear that for the four pairs of B-U valueso
considered in [37], the order of the phase transition 

(and only this) has been correctly diagnosed but in order 

to draw definite conclusions on the theory's triviality, 

the B-U q  plane must be scanned systematically and more 

pairs of B-U q  values need to be considered.

3. Monte Carlo calculation of the phase diagram
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In this spirit, we followed an approach orthogonal 

to that of Ogielski. Rather than attempting a high 

precision Monte Carlo simulation on a few B- U Q points, we 

opted for a low accuracy simulation for as many values of 

B and UQ as possible (a high precision simulation on a 

lot of points of the B- U q  plane would require 

exceptionally large computing resources). Having already 

obtained Pade approximants for K c and k , we are 

interested in utilising Monte Carlo simulations in order 

to determine the order of the phase transistion only.

No measurement of g^ or other relevant physical 

quantities will be attempted. The only aim is to find 

the phase diagram of the theory and in particular the 

region for which the transition is second order. This 

can be achieved with a low accuracy simulation by 

measuring suitable order parameters. These were chosen 

to be the absolute magnetization per site and the 

internal energy per link, defined as

1
M (4.1.a)

and

1 d
< K E E a., 1 kk [i=l

E (4. 1 .b)

4for a finite lattice of N sites. A slight change of

viewpoint is in order here Instead of simulating our
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model with an action and a single site spin distribution 

as defined in (2.9) and (2.10) respectively (which is the 

first variant of the Metropolis algorithm used by 

Ogielski), we found it more convenient to generate a 

flat spin distribution da and perform a Metropolis 

algorithm with action

S [ a ]  = Z [ - K  
k

d
Z
\i=l

a, ^  . k k+ \i + A af + U
B
- In 
2

] (4.2)

(This is O g i e l s k i ’s second variant). The lattice size 

used was 5 4 with periodic boundary conditions. Cold 

starts were mostly used ;i.e. the field was initially set 

to a constant non zero value (if a^ = 0, the term of

(4.2) diverges). It turned out that it was adequate to 

do a 100 lattice sweeps to thermalise the system and 

another 200 to measure M and E. We have neglected 

correlations between measurements; thus we have computed 

the error in the standard way [59] as the ratio of the 

standard deviation over the square root of the number of 

measurements. The error was always found to be small.

At first sight it seems unlikely that such a coarse 

analysis may yield meaningful answers. It is natural to 

assume that the smallness of the lattice size, the 

neglect of correlations (which are present in any Monte 

Carlo calculation) and the low number of iterations would 

result in big errors in our calculation and thus, render 

the Monte Carlo analysis unreliable. It has recently
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been shown for canonical \<J> that this is indeed the case 

for complicated operators like < <J><J><t><|>> (i.e. the 

evaluation of the four point function ;[10 ] and [50]), 

whereas in the case of simple operators like < <>> (used 

here in the evaluation of the order parameter M) a few 

iterations on a small lattice turn out to be sufficient 

[38,60 ]. This is still true in the case of our scale 

covariant generalisation. To support this claim, we 

provide a comparison of O g i e l s k i ’s results [37] 

to our own (Table 4.1). It is quite clear that the 

critical point K c can be located with an accuracy which 

is satisfactory for our present purposes. Moreover, a 

somewhat crude but fairly consistent value for the phase 

transition "jump" can be obtained.

Of course, the measurement of a finite jump, however 

big (typical values for the jump range from about 2.5 to 

10.0 for M and from 6 to 100 for E !) does not in itself 

prove the order of the transition. In fact, the rigorous 

result concerning phase transitions is that for a finite 

lattice system (i.e. a system described by a finite 

number of well behaved integrals) no phase transition can 

occur; a fact which would be reflected in a theoretically 

infinite Monte Carlo run. It is reasonable though to 

expect that for a finite system at around K , traces of a 

phase transition can be observed along with certain 

signals of its order.

We now present our criteria and how we interpreted 

them as signals of a transition of a particular order:



------------------------------ -

LATTICE

S I Z E

NUMBER OF 

ITERAT.
Kc

ERROR IN 

K,

JUMP IN 

MAGNETIS.

JUMP IN 

ENERGY

A 63 x  16 1 0 0 0 0 0 . 0 9 6 ± 0 . 0 0 2 - 2 . 5 0 ~  7 . 5 0

B 4* 2 0 0 0 0 0 0 . 0 9 6 6 t  0 . 0 0 0 5 n / a -  8 . 7 5

C 5« 3 0 0 0 . 0 9 7 5 *  0 . 0 0 1 5 - 2 . 9 6 ^  6 . 0 0

TABLE 4.1 : Comparison of Monte Carlo results.
A: Ogielski* s results with one half of the

the lattice initially disordered and 
the other half ordered. B : Ogielski# s 
results with hot and cold starts done 
separately. C : Results from the present 
w o r k .

103
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We know from [38 ] and [50 ] that for the canonical theory

(B=0) the transition is of second order. If however B is

increased sufficiently towards 1, with UQ fixed to an

appropriate value, the transition becomes first

order [37]. Therefore, for a fixed value of U ,

U =const., we started from a high enough value of B o
(typically B=0.8) and measured the order parameters.

Then we moved down the U =const. line of the B-U plane 

towards the B=0 line in steps of magnitude AB=0.2. We 

found that for Uo small enough, there is a step AB for 

which the behaviour of the order parameters around K c 

changes qualitatively. As an example, we describe a 

representative procedure of obtaining the measurements of 

relevance: We start at U Q =0.01 and B=0.8. From our high 

temperature analysis, we have an estimate for the 

critical value of K, K c = 0 .0956±0.0006. We begin 

measuring M and E for values well above a-nd below the 

critical point (Kc ±0.07) and,as expected, we see that M=0 

and E=0 when K<K and M~6, E~10 when K>K . We then 

repeat the measurements approaching K c in steps of 

AK=0.01 and observe that the transition jump decreases 

slowly. As we get nearer the critical region, we 

decrease the stepsize AK in an effort to obtain values of 

M and E that would interpolate between the zero and 

non-zero values of the two phases. We found this 

impossible to do down to step widths AK=0.0025 ; both the 

M and E curves displayed a discontinuity. We then repeat 

this process as we move on the UQ =0.01 line towards B = 0 . 0



105

The same behaviour is displayed at B=0.6 and B=0.4. When 

however B=0.2 or smaller, the order parameters are 

behaving in a qualitatively different way: as K is 

approached, the M and E curves depart very smoothly from 

their zero values and it was always possible (to the same 

or bigger accuracy in AK as before) to get values of M 

and E which interpolated smoothly between their high and 

low temperature behaviour. The whole proceedure is 

depicted in Figure (4.1.a) and (4.1.b). Repeating the 

analysis for even smaller values of U Q we saw even more 

dramatic differences in the size of the jumps as we vary 

B; for instance Figure (4.2.a) and (4.2.b). This 

qualitative difference was interpreted as a signal for 

the change of the order of the transition somewhere 

between B=0.4 and B=0.2.

In this manner, we have scanned the B-U q  plane,

especially around these points where the high temperature

analysis indicates that k=0 . Typical examples of

parametric curves of M and E as functions of K (with B as

the parameter for a given value of U ) indicate a range

of B values for which the transitions change from

discontinuous to continuous and the corresponding K ;c
see also Figure (4.3.a) and (4.3.b). Our results are 

also in agreement with Ogielski's for the four points he 

considered.

In Figure (4.4) we indicate the pairs of B-U q  values 

examined and the order of the transition observed. It is 

clear that there is an area of tricritical points
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( p r o b a b l y  a  l i n e )  s e p a r a t i n g  t h e  two c a s e s .  No c o n t i n u u m  

f i e l d  t h e o r y  c a n  e x i s t  i n  t h e  r e g i o n  o f  f i r s t  o r d e r  p h a s e  

t r a n s i t i o n s .

I t  m u s t  b e  n o t e d  h e r e  t h a t  t h i s  a n a l y s i s  w o u l d  n o t  

g i v e  c o n v i n c i n g  r e s u l t s ,  h a d  we a t t e m p t e d  t o  u s e  i t  f o r  

l o c a t i n g  a c c u r a t e l y  t h e  v a l u e  o f  B f o r  w h i c h  ( f o r  a  g i v e n  

U ) t h e  t r a n s i t i o n  w o u l d  c h a n g e  o r d e r .  We h a v e  o n l y  

a t t e m p t e d  t o  l o c a t e  a  r e g i o n  ( w i t h  an  u n c e r t a i n t y  A B = 0 . 2 )  

i n  w h i c h  t h i s  h a p p e n s .  I f  we h a d  t r i e d  t o  u s e  t h i s  

m e t h o d  t o  p e r f o r m  m e a s u r e m e n t s  n e a r  t h e  t r i c r i t i c a l  

v a l u e s  o f  B ,  we w o u l d  h a v e  b e e n  u n a b l e  t o  s p e c i f y  w h e t h e r  

a  ju m p  o c c u r s  a t  K o r  n o t .  I n  s u c h  c a s e s ,  i t  w o u l d  b e  

n e c e s s a r y  t o  m e a s u r e  t h e  s p e c i f i c  h e a t  a n d  p e r f o r m  a  

f i n i t e  s c a l i n g  a n a l y s i s .  As i s  shown r i g h t  b e l o w ,  t h e  

f a c t  t h a t  t h e  r e g i o n  o f  i n t e r e s t  ( < = 0  l i n e )  i s  n o t  n e a r  

t h e  t r i c r i t i c a l  r e g i o n ,  a l l o w s  u s  t o  d r a w  o u r  c o n c l u s i o n s  

e v e n  a t  t h i s  l e v e l  o f  lo w  a c c u r a c y  M on te  C a r l o  a n a l y s i s .

4
4 .  T h e  t r i v i a l i t y  o f  s c a l e  c o v a r i a n t  \<|>

One c a n  now c o m b i n e  t h e  r e s u l t s  f r o m  t h e  h i g h  

t e m p e r a t u r e  a n a l y s i s  o f  F i g u r e  ( 3 . 3 )  w i t h  t h o s e  o f  t h e  

M onte  C a r l o  s i m u l a t i o n  o f  F i g u r e  ( 4 . 4 )  i n t o  o n e  f i n a l  

d i a g r a m  ( F i g u r e  ( 4 . 5 ) ) .  From  i t  we d e d u c e  t h a t  t h e  B - U q 

p l a n e  i s  s p l i t  i n t o  tw o  r e g i o n s ,  o n e  c h a r a c t e r i s e d  b y  a  

f i r s t  o r d e r  p h a s e  t r a n s i t i o n  a n d  t h e  o t h e r  by  s e c o n d  

o r d e r  o n e s .  Our e a r l i e r  P a d e  a p p r o x i m a n t s  m e a s u r e m e n t s  

o f  k w e r e  made i n  b o t h  r e g i o n s  u n d e r  t h e  a s s u m p t i o n  t h a t
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FIG. 4.5 : Division of the B-U0 plane into regions of positive and 

negative K and first and second order phase transitions. 

The shaded areas indicate roughly where (a) the change 

in the sign of |< and (b) the order of the transition

occured. Ill
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the transition is always continuous ; therefore our high

temperature analysis in the first order region is

inapropriate and the results on the values of all the

critical exponents (including k ) do not make sense. In

the same region the Pade a p p r o x i m a n t s ' prediction of K c

was in good agreement with that obtained with Monte Carlo

simulations. We do not have any explanation of this. In

the region characterised by second order phase

transitions, however, the Pade approximants analysis is

justified. Naturally, their K prediction agrees well

with the Monte Carlo one. We see that the value of k in

this region is always positive. In fact, the area of <=0

lies so deep inside the no-field theory region, that even

a largely improved numerical analysis (e.g. bigger

lattices, better error analysis, and longer runs in the

Monte Carlo simulation or longer series in the high

temperature analysis) is unlikely to affect the

qualitative features of this result. Thus, we conclude
4that scale covariant \<J) is a trivial theory.

5. Partial restoration of universality

There is another aspect of the problem which our 

Monte Carlo simulations have helped clarify and this is 

the aparent violation of universality. As we have 

speculated in the previous Chapter, it turns out that the 

critical exponents vary a lot with B and U Q in or near 

the region of the B-U^ plane where the transition is
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first order or tricritical. It appears that once deep 

inside the second order phase transition region, the 

critical exponents vary little with B and UQ and these 

variations can be attributed to systematic errors, 

numerical inaccuracies etc. We must point out that 

throughout the project it was apparent that the x series 

behaves a lot better than the X(2 )> ^ 2 ’ ^ anc* ser:*-es 
and, consequently, y is easier to evaluate than v, A and 

k . Since we know that their slightly more erratic 

behaviour is due to the more erratic behaviour of the 

coefficients of the corresponding series, we have 

concentrated our attention to the behaviour of the 

consistently behaving y exponent.

As an example, we present the results for y at U q = 

0.01 and for different B values (Figure (4.6)). This is 

a typical case in which a curve connecting the various y 

points seems to be flattening as it moves away from the 

tricritical region and into the continuous transition 

area. All other results display a similar behaviour 

which, without being unambigously universal, does not 

openly violate univrsality. Besides the case of Fig.

(4.6), the worst cases of an apparent universality 

violation are shown in Figure (4.7.a) and (4.7.b) for the 

variation of y and k with B at U Q = 0.1. Clearly, even 

in these worst cases, universality violation may be an 

illusion due to the nearby tricritical points. The idea 

that tricritical points may influence the behaviour of 

the high temperature series and their critical exponents
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FIG. 4.6 : Variation of with B at Uo =0.01 .

The results are almost universal 

in the region that they are 

appropriate (B£0.2) .
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1.08]
I

F I G .  4 . 7  : Same a s  F i g .  ( 4 . 6 )  f o r  ( a )  : t h e

v a r i a t i o n  o f f a n d  ( b )  : t h e  v a r i a ­

t i o n  o f  K , when U o= 0 . 1  .
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with the result that universality might falsely appear to 

be violated has resently been proposed by Barma et.al.

[61 ]. This conjecture may be one possible source of 

"noise". The other is the presence of subdominant 

singularities, which will be examined in the next 

Chapter. In any case, we have concluded that the Monte 

Carlo analysis on the phase structure of the theory has 

not only rendered it trivial (a result which is contrary 

to all earlier results on scale covariance) but has also 

explained the most severe manifestations of universality 

violation. Although universality has not been proved, 

the Monte Carlo refinement on the data showed that our 

results are not incompatible with it.
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CHAPTER V

CONFLUENT SINGULARITY ANALYSIS

1. On the presence of confluent singularities

So far, we have occasionally been stressing the fact 

that the characteristic critical behaviour

F(K) ~ (Kc - K ) £ (5.1)

of the correlation functions is only a conjecture. It is 

a justified one, as it is suggested by Renormalisation 

Group analysis [40,45]. It is however, nothing else but 

the dominant divergent behaviour ; subdominant power-law 

divergencies of the form

F(K) = C q (K)(Kc -K) ° + C 1 (K)(Kc -K) (5.2)

are expected [62], Here, C^(K) are the non-universal 

amplitudes of the theory, which are regular in K. They 

also depend on the bare parameters (like B, U ) but they 

are not necessarily analytic for all their values. We 

also define eQ to be the dominant exponent and the rest of 

the e ^ ’s to be confluent singularities ;(i.e. >

...). Another posibility is the presence of logarithmic
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factors of the form

F(K) = (Kc - K ) £ [ln(Kc - K )]X (5.3)

Behaviours of the form (5.2) and (5.3) can even

occur cumulatively. We shall see in a latter Section of

this Chapter how they introduce systematic errors in the

Pade evaluation of the dominant singularity. In any

case, as B and U Q vary, the analytic parts C^(K) will

vary with them. This results in the variation of the

relative strengths of the confluent corrections to

scaling. It is conceivable that in the light of the

previous analysis, the slightest departures from

universality of the values of e is an artefact of theo
neglect of confluent singularities. Moreover, since 

taking confluent singularities into account may alter the 

Pade estimates for e , it may turn out that the physical 

picture we have in Figure (4.5) is inaccurate. It is 

unlikely but in principle possible that the two "bands" 

of Fig. (4.5) (i.e. the tricritical points and the k =0 

points) may overlap. This will alter the conclusion on
4the triviality of scale covariant \<t> . In this Chapter, 

we shall investigate the effects of a power law confluent 

correction (eqn. (5.2)) on our results. We shall again 

neglect logarithmic corrections such as those of 

eqn(5.3). This is because series extrapolation 

techniques turn out to be somewhat inefficient in
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detecting logarithmic corrections in relatively short 

series ( [54,63]).

There are quite a few methods for detecting 

confluent singularities. As an example, we metion the 

differential approximants (see [64] and references 

therein) and the inhomogeneous partial differential 

approximants [65]. As these methods turn out to be 

relatively inefficient unless the series are long [63], 

we will use a third method which is known to work even 

when the series are short [66,67]. This method will be 

analysed fully in Section 3.

2. The dispute on universality limitations

Before presenting the method we used and the results

we derived, we wish to refine the notion of universality.

The universality hypothesis is that all critical problems

may be divided into classes differentiated by (a) the

dimensinality of the system; (b) the dimension of the

local variables in the action; (c) the symmetry group of

the coupling between the local variables (which is the

symmetry of the order parameters) and (d) perhaps other

criteria [39,68]. The last criterion (d) is, of course,

very general and leaves a lot of room for different

interpretations of the validity and generality of the

universality hypothesis. This is especially so in the 
4case of \<|> theory, whether canonical or scale covariant. 

We have shown that this theory is a model with an Ising-
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like nearest neighbour interaction. Unlike the original
4Ising model, however, \<j> has a spin on each lattice site

the value of which varies continuously from -® to +®.

Its actual value is determined stochastically by the

single site spin distribution d|i(a) of eqn. (2.10).

Let us first examine the canonical case (B=0). When

U q =0, the spin distribution is clearly that of a Gaussian

model. When U ®, it turns out that dii(a) becomes o
symmetrically double peaked (6-function peaks) and so it 

represents te spin-)£ Ising model [69]. In the case of 

the pseudofree (Uq =0) scale covariant theory, we again

have the Gaussian model when B=0 and a spin-Js Ising model 
when B -► ® [29]. The question that arises is whether in 

these cases the continuous spin Ising model remains in 

the same universality class as it interpolates smoothly

between the Gaussian and the spin-J^ Ising model. We 
shall see shortly how such an interpolation offers a 

natural way through which the fourth and most intangible 

notion that differentiates universality classes may arise 

(recall that this notion was just "other criteria").

Two contradicting answers have been given to this 

question. The first one comes from the work of Fisher 

and his collaborators [56], who analysed two models that

extrapolate smoothly between the Gaussian and the spin-)^ 
Ising model. One was K l a u d e r ’s pseudofree theory and the 

other the double Gaussian model. They used partial 

differential approximants to analyse the series for the 

three dimensional case and for the multicritical point of



1 2 1

the parameter space. Their results imply Ising-like 

universality over the whole range of values of the 

m o d e l ’s parameters. Also, the values of both the primary 

critical indices and the confluent singularity for the 

susceptibility x turn out to be universal over the two 

models. Thus, they conclude that universality is valid 

in its strongest sense for the interpolating models.

A different approach is that of Baker and Johnson 

who examined the universality problem whithin the same
4model, namely canonical X<|) in two dimensions, and 

investigated whether the critical index of the 

susceptibility x is universal for all values of the bare 

coupling U q . They adopt the conjecture [46] that the 

shape of the single site spin distribution d^i(a) and 

certain properties of the amplitude of the correlation 

length are responsible for limitations on the model's 

universality. In particular they note that near K~, the 

correlation length behaves like

5 = D + (U0 ) [l-K/Kc (D0 ) ]-v (5.4)

and it turns out that there is a "borderline" value of

U q (which is U^= [ /  r()*0 ] =0.114 ) for which A(U^)=0 and 
D diverges. ‘(Recall that A is a function of U n defined

through eqn. (2.7).) Now they distinguish five regions
4of U q values for which \<J> can be expected to have 

different critical behaviour. They are :
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(i) U q = 0 , for which dM-(tf) is the distribution of the 

Gaussian model

(ii) 0 < U q < , for which d|i(a) is symmetrically

single peaked

(iii) U q = Up , the "borderline case"

(iv) < U q < ® , for which d[i(a) has a minimum at cr=0 

and two symmetric round peaks

(v) U q = ® , for which we have the Ising model

In [46], Baker and Johnson studied the U^ case. They 

examined the x series with and without taking the 

confluent singularities into account, for plane square 

and triangular lattices. They found that y = l .955±0.065 

which is different from the Ising m o d e l ’s value (at U q = ® )  

y=1.75 [70]. Therefore, universality is not valid over 

the whole U q range (0,®). This result suggests that the 

behaviour of the single site spin distribution and the 

amplitude of £ may provide the "other criteria" for 

distinguishing different universality classes. It is 

possible that only within each of the. five regions of U q 

values referred to above, the theory obeys universality. 

Thus, the model's real parameter space may consist of 

different universality regions.

Using their partial differential a p p r o x i m a n t s ,

Fisher and collaborators claim that this is not so. In 

particular, they examined the scale covariant pseudofree 

and the double Gaussian models in two dimensions [61]. 

They concluded that certain multicritical properties 

suggested by their analysis imply universality over the
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whole range of the bare parameter for both models.
Despite the fact that they also found "borderline" values

of the bare parameter for which both models had y ~ 2 , they 

regarded this result an anomaly. They propose that the 

presence of the anomaly may be explained by the fact that 

in the full Hamiltonian space the manifolds corresponding 

to all the border models under consideration lie "close" 

to a tricritical subspace. The anticipated proximity of 

the tricritical region to the border model is regarded as 

the source of an overestimation of y. As this conjecture 

is only supported by weak qualitative plausibility 

arguments [61 ], Baker and Johnson have recently refuted 

it on similarly qualitative plausibility lines [71 ].

In the spirit of Baker and Johnson, we examined the 

behaviour of the scale covariant spin distribution dn(a) 

under variations of B and U q . Given d^(s) from eqn. 

(2.10), we define M(a) through

d|i( a) = M( a) d a  (5.5)

Ogielski [37 ] has given examples of some characteristic 

shapes of the function M(a) for a few values of B and U q . 

We have worked out all the regions of the B - U q  plane for 

which M(a) has different "characteristic shapes". By 

this we mean that we have ignored the fine details of the 

function D(a) (i.e. saddle points, widths etc) and only 

paid attention to the number of its peaks as well as 

their sharpness (i.e. rounded or infinite peaks). The
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result, depicted in Figure (5.1), is the separation of 

the B-U q  plane into different candidates of universality 

classes. The dividing curve turns out to be the locus of 

points satisfying

A ( B,UQ )2 - 4BU q = 0 , with A < 0 (5.6)

It has been located numerically. As we do not have any

knowledge of the singularities of the amplitudes of £,

the possibility of borderline models has been ignored.

The object of this thesis is not to examine the

universality issue. We have only presented the whole

situation in order to demonstrate that the question of

universality is still open and that a definite answer is

not easily obtainable. Thus, our primary concern is to

examine the influence of the confluent singularities on

the result we have obtained ; i.e. the triviality of
4scale covariant \<j) . It is a matter of secondary 

interest (which, however, may in principle be obtained as 

a by-product of our analysis without extra labour) to see 

whether a confluent singularity analysis may have any 

effect on the weak conclusions we derived in Chapter IV 

regarding the m o d e l ’s universality.

3. Confluent singularities and Pade approximants

The most suitable method for obtaining a confluent
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F I G .  5 . 1  : S e p a r a t i o n  o f  t h e  B- U0 p l a n e  i n t o
d i f f e r e n t  r e g i o n s  a c c o r d i n g  t o  t h e  
f i v e  c h a r a c t e r i s t i c  s h a p e s  o f  t h e  
s i n g l e  s i t e  s p i n  d i s t r i b u t i o n .  The  
s h a d i n g  m a r k s  t h e  t r i c r i t i c a l  r e g i o n .
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singularity structure from a short high temperature

series has recently been proposed by Adler et.al.

[66,67]. It is essentialy a generalised variant of the

D-log Pade a p p r o x i m a n t s . We start by specifying our

conjecture for the critical behaviour of some correlation

function F(K) ; it is to behave like eqn. (5.2) truncated

after the first two terms. After some trivial algebra

and an expansion of the analytic functions C^(K) in

powers of (K -K), like c

(K) = c<0)+ c(1;i(Kc-K) + cp )(Ko-K)2+ ... (5.7)

we may reexpress the critical behaviour in the form

“ 8n D iF(K) = a(K -K) U [ 1 + a0 (K -K) 1 +

D„ +1 D.+2
b x (KC ~K) + a i (Kc -K) 1 + b 2 (K,-K) + a 2 (Kc -K) 1 + ...]

(5.8)

where

D1 = £0 “ el (5 -9 )

and a, a ^ ’s and b ^ ’s are constants in K, which depend on 

B and U q and are expressible in terms of the c?m ^ ’s of 

eqn. (5.7). In (5.8) we have only kept the first three 

terms of the expansion (5.7). The fact that we want
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to be a confluent singularity means that it must satisfy 

both £^>0 and £^<£q which restricts in the region

s0 > D i >0.

The method of Adler et.al. will now be described. 

They assume [66] that the ratio of the amplitude aQ to 

the other amplitudes (a^, a^, b^, etc) is sufficiently 

large to allow us to truncate (5.8) even further :

- £.
F(K) = a(Kc-K) [ i

D.
W K )

(5.10)

From expression (5.10) we see that a biased D-log
i

Pade analysis of F(K) (i.e. Method 3 of Chapter III) in 

the presence of a confluent singularity, probes a 

behaviour like

(Kc-K) (F'/F) a Q °i (Kc —K) Dl 
1 + a0(Kc-K)U l

(5.11)

which reduces to eqn. (3.15) and Method 3 when & q =0.

Now, however, the term (K - K ) ^ 1 is not analytic when
c

is not an integer and Pade approximants are not expected

to converge well at branch points such as K . Thus, thec
presence of confluent singularities may have been a 

source of systematic errors in the previous analysis.

The next step in the method is to change variables 

from K to y, which is defined by
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y = i - (i - k /k c )d (5.12)

where D is a new free parameter. Reexpressing F(K) in 

terms of y we get

F(K(y))
-  e

a K 0 (i-y) - V D D. D./D
[ 1 + a 0 K o 1 (1 - y ) ]

(5.13)

As K + K , y •* 1 and the D-log Pade analysis in terms of
t

the new variable y now consists of approximating the 

function
d

GD(y) = D (l-y) _ [  lnF(K(y)) ] (5.14)
dy

which, given (5.12) behaves like

D i/D
a n D 1G D (y) = -Y + - ----±--------™  (5.15)
1 + ?0 (l-y)

where a = a K Obviously, the choice D = D 1 reproduces
0 0 c -1

the usual D-log Pade evaluation of (c.f. eqns. (5.12)

and (5.15)). The cases of interest are those for which 
D 1 /D

(l-y) is analytic. This is so when D=D^/k with k

integer. For D close to D^/k, we may linearise (5.15) in

D-D^/k and retain the leading terms as y ■> 1, to get
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GD (y) - e0 + aQ k 2 (l-y)k ln(l-y) (D-D^/k) + 0 ( ( l - y ) k )
(5.16)

Any Pade approximant of GD (y) is an estimate of and 

forms, for different values of D, a trajectory on the 

Eq -D plane. The above expression (5.16) implies that the 

trajectories of different order Pade approximants should 

intersect with small slopes at the points (D=D^/k, 

e =s~ .) of the plane. This ideal picture is

smeared by finite series effects and higher confluent 

terms. In practice [66,67], one observes a convergence 

of the different approximants in a region of the e^-D

plane for D * D which allows a better estimation of e 
• 1 0

than the one obtained with the simple biased D-log Pade 

method. The resulting estimate of is very unreliable. 

This is analogous to the situation of the simple D-log 

Pade approximants which provide us with excellent 

estimates for K c but rather poor results for £q .

4. Results from the confluent singularity analysis

We will now apply the method of Adler et.al. to our
4high temperature series for the scale covariant \<J> 

theory, in order to establish whether neglecting 

confluent singularities is a justifiable approximation or 

not. There is one problem in applying the method of the 

previous Section and this the fact that K Q must be a
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known input parameter. As we do not know the critical 

temperature exactly, the method is expected to work less 

accurately than in the cases it was originally used 

[66,67]. For models with unknown critical temperature, 

the standard way out is to use the K c estimate from the 

original Pade analysis. This was successfully 

implemented for \<J>̂  in two dimensions [46] and the Ising 

model in three dimensions [72]. We have used our Pade 

K estimates which were always accurate to four or fiveV-/

significant digits. Moreover, we shall describe an 

improved version of the method which sometimes gives 

better results as we vary K^slightly.

It would be desirable to repeat the complete 

analysis of Chapter III using the Adler et.al. method. 

This is very unrealistic since for every point of the 

B-Uo plane and for each critical exponent, one has to 

make multiple measurements for different values of D, in 

order to plot the Pade trajectories on the Eq -D plane.

If, on top of this, one wants to vary slightly in 

order to be optimally confident about the answer, the 

restrictions on computer resources become inhibitive.

Such considerations have enforced us to consider very few 

points of the B-U q plane. We have also examined the 

susceptibility series only, which, as we mentioned in the 

last Chapter is the more reliable one. The assumption is 

that if the results turn out to be uninfluenced by the 

presence of confluent singularities for x> then the whole 

analysis of Chapter III ought to be reliable. If not, we
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must also investigate the other series .

• Typical results are presented for the points B=0.1, 

U q =0.05 and B=0.3, U q =0.15 . Our original estimates 

were

Kc =0 . 13088(0) , y=l.046(4) 

for the first, and

K =0.13405(4) , y=l.066(4)

for the second point. Using these K values as inputc
parameters and the method of the last Section, we 

obtained

Y=l.0506(18) , D 1=0.75(15) 

for the first, and

Y=l.0689(7) , D 1=0.9(l)

for the second (B,U q ) point. These results have benn 

obtained from Figure (5.2.a and b.). The errors have 

been estimated in the standard "windowing" fashion of 

Adler et.al. Thus they are very subjective.

The next step is to investigate the sensitivity of 

these results to slight variations of the input K c « We 

repeated the analysis for a few new values (typically 

introdocing a small deviation 6 ~ 0.001 from the original 

estimate) and found a significant instability of y. To 

see how this arises, we have repeated the analysis of 

Section 3 with

y = 1 - (1 - K / ( K c ±6)) (5.17)

to find, not surprisngly, that
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D
FIG. 5.2. a : Plots of ^T(D) obtained with

the [L/M] Pade approximants 
(3^L,M<6). The window indicates 
the estimated region of c onver­
gence .
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FIG. 5.2.b :
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V D
a  D 1 ( 1 - y )

G j^ (y )  = Eq — ---------------------- p—j-g-------- + C ( y ) 6  ( 5 . 1 8 )

l+£0 (l-y) 1

where we have linearised in 6. The coefficient C depends

in a complicated way on ag, D^, K , y and grows as y ■> 1.

If a^ is not as large as it has originally been

anticipated, then the third term of (5.18) wins over the

second one and systematic errors occur. Luckily, this 

also results in large errors that signal the 

unreliability of an input K c ±6.

In order to find a way round such uncertainties, we 

have introduced the following variant to the method: If

small 5 values result in big instabilities of y, this is 

due to the smallness of a^. It may then be that the 

original assumption of Adler et.al. that aQ is the 

largest amplitude in eqn. (5.7) is not always true. In 

such a case, the next non-analytic term with amplitude a^ 

may be important. Repeating the analysis with the a^ 

rather than the a^ term surviving in (5.10) gives

( D i + D / D
a (D +1) (1-y)

G D ^ y) e0 --------------(TT + I7/D------  (5.19)
1 + a x (l-y)

D l+1with a^=a^Kc . This implies that there may be another 

convergence region at D»D^+1 which (since a^ is the large
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amplitude) may be the stable one in small changes of K^.

Of course, as we do not know what the amplitudes are,

such a picture can only be justified a posteriori. One

such example (for B=0.1 and Uq=0.05) is depicted in
Figure (5.3), where for K =0.13098 there is a secondc
convergence region around D ~ 1.75. Although the first 

convergence region in this plot is around D ~ 0.5 (and 

not D ~ 0.75, as it should be) one must recall that our 

original estimate for K =0.13088 gave an answer 

compatible with D ~ 0.75. Thus, although this scenario 

does not always work, it does sometimes improve our 

confidence limits (see Figure (5.4.a and b)). Note that 

the values of the analysis with aQ dominance are 

considerably more inconsistent compared to the ones for 

which the dominant term was the a^ term. This is true 

for both the y and values.

It is now clear from Figure (5.4.a) that the 

confluent singularity analysis results in improved 

estimates, for y which, however, do not vary appreciably 

from those that were obtained with the simple D-log Pade 

analysis. This is probably true because the (admittedly 

poor) estimate for has always been a value close to 

one. Although we cannot conclude with confidence that 

our model has no confluent exponents, it is certain that 

if they are present, they do not compete appreciably with 

the dominant singularity.

Our full results are depicted on Table (5.1). It is 

clear that no significant universality restoration takes
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FIG. 5.4. a : Variation of 'J* estimates for
different input values of Kc . 
Dots indicate results obtained 
from the first convergence 
region, crosses from the second.
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cSimple I)-log Pade me1:hod Adler et.a]L. method

B °0 Kc Y Y Di
0.5 0.10 0.12875(0) 1.04(2) 1.0445(15) 0.98(14)

0.1 0.10 0.13393(0) 1.064(4) 1.0657(7) 0.89(11)

0.1 0.01 0.12560(1) 1.009(6) 1.0138(18* 0.65(15)

0.1 0.05 0.13088(0) 1.046(4) 1.0506(18) 0.75(15)

0.3 0.15 0.13405(4) 1.066(4) 1.0689(7) 0.9(1)

Table 5.1 : Comparison of the results obtained with simple 
D-log Pade approximants to those obtained with the confluent 
singularity analysis of Adler et.al.

^ T h i s  is the point closest to the tricritical region. 
T h e  “jf and D t values are unreliable. Note that they 
display the biggest variation from the mean of the 
measurements considered.



140

place. A look in Fig. (5.1) shows that all the points 

considered lie within the region where the model's single 

site spin distribution has one infinite peak ; thus even 

according to the weak universality notion of Baker and 

Johnson, the y values within this region ought to be 

universal. Our results show a somewhat varying y but, as 

we have argued in the previous Chapter, such small 

variations can be present near the tricritical region. 

Therefore as far as the universality hypothesis is 

concerned, our results are inconclusive but not 

incompatible with it.

In conclusion : (a) the new values of y are

trivially different from the old ones and (b) the new

errors are an improvement on the old ones. This means

that our analysis of Chapter III was done with the

biggest possible errors. Had we repeated it fully,

taking the influence of the confluent indices into

account, we would have only succeded in narrowing the

band of ic=0 points on the B - U q plane rather than shift it

towards the tricritical area. Thus, our earlier neglect

of confluent singularities has been justified, in that

their presence does not alter our conclusions about the
4triviality of scale covariant \<J> .
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CONCLUSIONS

We examined a lattice field theory characterised by 

an action defined in a three dimensional real parameter 

subspace (K,B,UQ ) with B < 1 and U Q > 0. We presuposed 

the existence of a critical surface in this subspace of 

the form = f(B, U ), on which a second order phase 

transition occurs, thus enabling the lattice theory to

have a continuum field theory limit on K . Neglectingc
any logarithmic critical behaviour near K , we managed to 

locate numerically a subsurface on which k = 0, i.e. the 

theory is non-trivial. Using Monte Carlo simulations, we 

then scanned the region around this subsurface in order 

to justify our assumption that a continuum theory 

actually exists there. We found areas of both first and 

second order transitions on the critical surface. The k 

< 0 region lies entirely within the first order 

transition area. The second order transition region is 

characterised by a k > 0 behaviour. A confluent 

singularity analysis improved the errors without altering 

the main features of the theory. Thus, the theory is 

trivial. As a collorary, the canonical theory, lying

on the B = 0 plane of the parameter space is found to be

t r i v i a l .
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PART B
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INTRODUCTION

1. Generalities on lattice gauge theories and Monte Carlo 

simulations

In Part A of this thesis, we have examined a
4modified version of \<t> scalar field theory. In

particular, we saw that the best way to have a good

understanding of the model's behaviour and obtain

reliable answers was to exploit its analogy to a well

known Statistical Mechanical theory, the Ising model.

Once the equivalence of scalar field theory to a

statistical spin system in equilibrium was established,

we could exploit all the existing techniques for studying

spin systems in order to solve the model field theory.

This game is relatively old; since 1974 physicists

have tried to use this similarity of spin systems to

field theories as the standard alternative line of attack

whenever perturbation theory failed. Not only field
4theoretic models (like ) but also the physical gauge 

theories have been intensively examined in the framework 

of a lattice r e g u l a r i s a t i o n . Given such a lattice 

formulation, a great number of different techniques, 

popular with solid state physicists, have been exploited 

in the study of gauge theories; these are both analytic 

(e.g. strong coupling expansions, mean field teory,



duality) and numerical (e.g. Monte Carlo simulations). 

Like Part A of this thesis, this considerably shorter 

second Part will deal with a field theory on the lattice. 

Unlike Part A, however, it will be a gauge theory, namely 

S U (2).

Although theories with gauge symmetry are of extreme 

physical importance nowdays, we are not going to deal, at 

least directly, with any problems related to the physics 

of SU(2) gauge theory. On the contrary, we shall be 

involved with a few technicalities that characterise the 

most popular method which is nowdays used to study 

lattice gauge theories, that of Monte Carlo (MC) 

simulations. In particular we shall see how the gauge 

fixing of the theory may influence the thermalisation 

properties and the statistics of a MC simulation. It is 

true that such aspects are of limited importance to the 

physics of gauge theories since they are problems related 

to the numerical techniques involved. However, MC 

simulations have lately developed into the major method 

of solving lattice gauge theories [73]. Their importance 

has lead to an unprecedented involvement of field 

theorists in games related to the improvement of 

numerical techniques, computer architecture and software 

development. Thus, our study of the effects of gauge 

fixing on MC simulations is carried out in this spirit.

Moreover, although we have been unable to give a 

definite explanation of our numerical results, a 

plausibility argument is briefly presented at the end.



This is of some interest, since it relates MC 

thermalisation phenomena to non-equilibrium Statistical 

Mechanics. Although we have been unable to utilise it, 

the connection is there.
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CHAPTER VI

GAUGE FIXING AND MONTE CARLO SIMULATIONS

1. Formulation of gauge theories on the lattice

Gauge theories on the lattice have been proposed by 

Wilson [74]. The essential idea is to make the theory as 

well defined as possible (by regularising it on a 

lattice) even at the cost of loosing Lorentz invariance, 

while, however, preserving the all important gauge 

invariance. The way to achieve this was not 

straightforward; Wilson has found out that in order to be 

consistent with such a scheme, he had to set up the whole 

theory from scratch (i.e. arbitrarily define what the 

fundamental degrees of freedom, action and gauge theory 

are, rather than deduce them from analogies to the known 

continuum physics). In particular, one must give up the 

notion that the fundamental degrees of freedom are the 

gauge fields A^(x) which are elements of the gauge 

algebra; in the lattice formulation of pure gauge 

theories, we define the dynamical variables to be 

elements of the gauge group which are associated with 

each bond of the lattice. Since an oriented bond can be 

completely defined by a site k and a direction \i, the 

dynamical variables are anotated by
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G b E G ^(k) E exp (iag A ̂ (k) ) (6.1)

where A^(k)=A^(x) is the gauge field, a is the lattice 

spacing (x=ak) and g is the theory's coupling constant. 

We then define gauge group elements g(k) which live on 

the lattice sites and are not dynamical degrees of 

freedom; they are only there in order to gauge-transform 

the dynamical variables according to the following gauge 

transformation

G ^ k )  * V k )' = §(k ) V k > g(k + ^)_1 (6.2)

Finally, Wilson [74] proposed the plaquette action. For 

each plaquette, which may be labeled by a site k and two 

directions \x and v, we have an elementary action

sp = S (iv(k) = 1 - £ R e T r f G ^ k )  G v(k+|i) G ( k + v ) -1 G v(k)_ 1 ]
(6.3)

for an SU(2) pure gauge theory. the total action is 

simply the sum of the plaquette action over all 

plaquettes, i.e.

S (6.4)

The theory's generating functional is defined to be



Z = J n d G b exp[-|3 S(G )] (6.5)
b y

where dU^ is the gauge invariant Haar measure [38 ] and
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p = 4 / g 2 ( 6 . 6 )

is the inverse coupling constant. Starting with the 

action (6.3) and with the aid of definitions .(6.1) and

(6.6) the action for the lattice pure gauge theory 

reduces to the continuum Yang Mills action (see [74] and 

also the reviews [38,39])

Now the typical lattice gauge invariant correlation 

function which is interesting to study is the Wilson 

loop; i.e. a product of oriented link group elements 

which belong to a closed contour C of the lattice:

The simplest Wilson loop consists of the boundary of an 

elementary lattice plaquette. Provided we also average 

over all such plaquette contours on the lattice, this 

object is known as the "average plaquette".

< W(C) > = / n dG. W(C) exp(-pS) 
b D

(6.7)

where

W(C) = Tr ( n G' ) 
beC D

( 6 . 8 )



In order to study this lattice version of the gauge 

theory, we will use a suitable parametrisation of the 

dynamical variables which was proposed by Creutz [73].

He pointed out that SU(2) group elements can be 

parametrised in the form

G = a I + a t  (6.9.a)o —

where a =(a ,a) is a four vector of unit length. \i v o -

a 2 + a 2 = 1 (6.9.b)o v '

I is the 2X2 unit matrix and t are the three Pauli 

matrices. The invariant Haar measure is then given by

dG = -t-  6(a -1) d a (6.9.c)
2 TC2

As we shall see in Section 3, this parametrisation is 

extremely useful for MC simulations.

2. Gauge fixing on the lattice.

4Just like for the \<j> model of Part A, once our 

gauge theory is put on the lattice, it becomes a 

perfectly well defined theory. As is suggested by eqn. 

(6.5), the generating functional is a multiple integral 

which, for a finite size lattice consists of a finite
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number of definite integrals. Since the integration is 

over the group (rather than the algebra) space, and since 

the group is compact, nothing is ill defined. This is to 

be contrasted to the case of continuum physics, where the 

gauge symmetry renders the integrations over the algebra 

space infinite unless we introduce the Fadeev-Popov ghost 

term in the action [3]. In the lattice formulation of 

gauge theories, counterterms and ghost terms are 

u n n e c e s s a r y .

On the other hand, we have the freedom to eliminate 

a few degrees of freedom. This can be done by gauge 

fixing. In particular, one may use a judicious choise of 

the site SU(2) elements g(k) to fix a number of links to 

the value of a constant group element (say, the unit 

element of the group). Thus, a g(k) and a g(k+n) can be 

found such that (6.2) becomes

V k ) * V k )' E 1 (6 .1 0)

This means that the corresponding algebra element A (k) 

is fixed to zero. This process may be repeated for more 

lattice links until a point is reached when all the site 

group elements have been used up to fix gauge degrees of 

freedom. In such a case, the gauge fixing is maximal.

A few applications of this process will illuminate 

the situation. In Figure (6.1) a maximal gauge fixing 

has been performed for a two dimensional finite size 

(4X4) lattice with free boundary conditions. In (a), the
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a

KE Y -
fi-x-eJ Pivik 

uv̂ f/xe J Pi'nk

FIG. (6.1) : Gauge fixing on a 4X4 lattice
with free boundary conditions
(a) maximal axial gauge
(b) maximal random tree gauge
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gauge fixing is axial, in that all links in one direction 

are fixed. Note that maximal gauge fixing allows us to 

freeze a few extra degrees of freedom of the system in 

another direction as well; this was not so for the axial 

gauge in the continuum. In ( b ) , the same process was 

repeated, but no special care has been taken to fix the 

links of one particular direction; this gauge fixing we 

shall term random tree gauge.

The same ideas can be applied when the lattice has 

periodic boundary conditions. Now, the two dimensional 

lattice is a torus. It is depicted in Figure (6.2).

Gauge fixing is almost the same; the only difference 

being that the links which, because of the periodic 

boundary conditions, "curve back" to the lattice edges, 

have to be unfixed. Thus, the axial gauge is 

i n c o m p l e t e .

The whole situation can be generalised in d

dimensions [75,76]. Given a hypercubic lattice of size

a ^ x a g X ...xa^ h v with periodic boundary conditions, denote

any lattice point n by a set of d integers ( n ^ , , . . . , n ^ )

with l<n <a . We may fix all dynamical variables to |x
unity on a maximal tree which consists of a set of V-l 

links and satisfies the properties: (a) it visits all 

points on the lattice (b) it contains no closed loops and 

(c) it leaves one gauge transformation undetermined. For 

the special case of the axial gauge this means that 

the gauge fixing is the following:

Ud (n) = 1 for all n with nd <ad ~l
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FIG. (6.2) : Came as (6.1) but for a lattice
with periodic boundary conditions 
The "open circle" edge sites at 
the top and on the right coincide 
with the edwe sites at the bottom 
and on the left.
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U, 1 (n)=l for all n with n =1, n , . < a , .-1 d - l v y d * d-1 d-1
tL(n)=l for all n with n = n , =...= n = l , n-<a--l1 d d-1 2 * 1 1

3. Monte Carlo theory

At the time of writting, MC simulations are 

considered as the most powerful numerical method of 

solving Euclidean lattice regularised field theories. It 

is the only promising method of a direct calculation of 

such a fundamental non-perturbative problem as the QCD 

mass spectrum. Thus, we shall devote this Section to a 

brief description of the method.

The MC method is used to make approximate 

calculations of integrals by summing over randomly 

selected points in the integration domain. In field 

theories, it is applied to the calculation of operators 

like

< f > = / dUb f[ub] exp (-{SS(Op ) ) (6.11)

where the operator fCu^) is a functional of a lattice 

field configuration {u^}. The essence of the method is 

the following: The computer is used to generate lattice 

configurations one after the other; we denote by x the 

discrete computer time (we will sometimes refer to it as 

"fifth time") in the course of which these configurations

are generated in a step by step fashion. Two probability 

notions are important: (a) the normalised transition
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probability p of jumping from configuration ( u ^ i ) }  to 

the state (U^(j)} in one computer x-time step x and (b) 

the normalised probability of each configuration which 

for systems in thermal equilibrium is given by the 

Boltzman distribution

= it(U(j)) = Z-1 exp(-ps) (6.12)

(we have dropped the subscript b from the bond element) 

The essence of the MC method is to approximate 

expectation values like the one of eqn. (6.11) by a sum

1 x
Y ( t ) = —  I f[U(i) ] (6.13)

x i=l

We will avoid any details which involve otherwise 

irrelevant topics such as Markov chains; the reader is 

referred to [77,38] for a lenghtier treatment of MC 

theory. Here we shall only state that such an 

approximation is justified by a theorem which states 

that

Y(x) - / dU ic(U) f(U) ~ 0(l//x) (6.14)

which renders the approximation reliable for large x.

One only needs to generate in the computer x number of 

appropriate lattice configurations and then calculate 

f [ u (x) ] and Y(x) explicitly. For large x, Y(x) will
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converge to the desired expectation value <f(U)>.

It is now quite clear that the method is expected to 

work at least in principle but also in practice, provided

each "fifth time" step i, with the probability 

distribution of eqn. (6.12). This is known as importance 

sampling and it can be achieved in two ways: (a) the 

Metropolis et. al. algorithm [58] and (b) the heat bath 

algorithm. These are now briefly described.

The Metropolis et. al. algorithm involves a 

generation of states with an initialy arbitrary

leaves us the freedom, once we have an inital lattice 

configuration {U(i)}, to generate the next one {U(j ) } 

almost arbitrarily. We then define the transition 

probability

that it is possible to generate configurations {U(i)} at

P
if n  . / tz. <1

y  i
if it . / it >1y  *

(6.15)

Recall that

it. / it̂  « exp (- p A S ) ( 6 .16.a )

with

AS = S(U(j) ) - S(U(i) ) (6.16.b)
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Since it turns out that p . . satisfies all theij
requirements of Markov chain theory for which eqn. (6.14) 

is valid [77], all that we need to do is ensure that the 

computer updates configurations, calculates the change in 

the action AS and accepts or rejects the update with 

criterion (6.15). A significant detail of the theory is 

that the requirement known as detailed balance condition

7t. 1 % J 1
(6.17)

is satisfied.

Unlike the Metropolis et.al. algorithm, which can be 

applied to any lattice action S[U^], the heat bath 

algorithm [73 ] depends on the particular symmetry group 

we are dealing with. The idea is to generate new 

configurations by successively touching a heat bath to 

each link variable. Each link element U is replaced by a 

new one U', chosen randomly with probability density 

proportional to the Boltzman factor

dP(U') * e x p [-p S(U')] dU' (6.18)

In order to generate this probability density, we 

consider the SU(2) parametrisation given in e q n s . (6.9). 

The part of the theory's action which contributes to 

exponentials like that of eqn. (6.18) is the contribution
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of the six plaquettes touching the link U; thus we may- 

write

dP(U) = dP(U) exp [/2 p Tr (U E U a ) ] (6.19)
a=l

where by U a we denote the six products of the link 

variables which interact with the link in question. The

useful property of SU(2) elements is that

6
Z U = kU (6.20.a)1 a 'a=l

where U is an SU(2) element and

2 6 ~k = d e t ( aI 1U ) ( 6 . 2 0 .b)

The next step is to use the invariance of the group 

measure [38] to write

dP(U tJ X ) oc dU exp [Jfe p k (TrU) ] 6(a2- l )
pka o d^a

( 6 . 2 1 )

If we choose the new link element to be U' = U U - ^, we 

see that all we need is to generate a probability density 

according to (6.21). This can be done easily, as it only 

involves randomly generating points on the surface of a 

four dimensional unit sphere with exponential weighting
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along the aQ direction [73].

4. Gauge fixing and Monte Carlo relaxation

We have repeatedly stressed that MC simulations have 

recently become very important in the study of hadronic 

physics. In the course of this development, more and 

more computer resources are required. This is necessary 

for obtaining results for more complicated physical 

quantities, on bigger lattices, with improved statistical 

error analysis. Thus, one is tempted to improve the 

basic MC methods in order to gain in numerical 

r e l i a b i l i t y .

One possible line of approach is the effort to 

exploit the gauge symmetry of the theory in order to 

achieve faster thermalisation and improved statistics.

In particular, as we explained in Section 2, one is free 

to "freeze" about one quarter of the lattice link 

variables to a constant value. This is just the result 

of fixing the gauge of the theory; apart from this the 

theory is the same and MC simulations can be carried out 

as before. The possible gain, however, is that MC runs 

with the new action will not involve the systematic 

updating of all the lattice links but only those which 

are not gauge fixed. Thus, if all the other things are 

to remain the same, one naively expects to obtain the 

same answers with less computing. (We found out that 

typical gains in computer time ranged between 5% and 10%,
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a significant amount.) Unfortunately, other things do 

not remain the same. In his seminal MC paper [73],

Creutz had hinted that in the study of SU(2) theory, once 

the axial gauge is chosen, the relaxation from different 

initial configurations to equlibrium is slower than 

without gauge fixing. As he never presented any results, 

we looked into the matter more carefully. We must 

emphasise that C r e u t z fs results were based on runs which 

are very slow by today's standards. Typical measurements 

of the average plaquette were performed with only 30 to 

50 iterations; thermalisation was regarded adequate after 

10 to 15 iterations.

Thus, we investigated the problem carefully by
4performing a few hundred iterations on a 4 lattice with 

periodic boundary conditions, using both hot and cold 

starts. We used the heat bath algorithm of Creutz. Our 

results consist of computing the average plaquette in 

three cases: (a) without fixing the gauge, (b) with an 

axial gauge and (c) with a random tree gauge. For the 

axial gauge the links can be fixed in the standard 

directional pattern. For the random tree gauge, a 

program had to be written according to which, starting 

from a particlar site, we navigate.randomly through the 

lattice, fixing links according to the requirements of 

Section 2 (no loops etc) until a maximal tree has been 

created. About a quarter of the total number of fixed 

links correspond to each space time direction. This tree 

has been formed once and for all; then this information
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is stored and used as input for subsequent MC runs.

We performed simulations for nine different values 

of the inverse coupling p. We present those results 

which are most representative of the different 

characteristic behaviour of SU(2) lattice gauge theory.

As is well known [73], the theory has a strong- and a 

weak- coupling region, separated smoothly by a crossover 

region at about p=2.2. The crossover region is due to a 

neighbouring phase transition on the extended SU(2)-SO(3) 

real parameter space [78].

In Figure (6.3) we show our results at p=2.2. It is 

clear that without gauge fixing, thermalisation is 

faster. The random tree gauge is better than the axial. 

Similar behaviour was observed for p=2.0 and p=1.2, 

although in the last case the difference in behaviour 

between the three gauges was less vigorous. Indeed, as p 

is further decreased (high temperature regime) 

thermalisation is faster in all three cases and none of 

them is significantly better than the other. We have 

seen this for p=0.9 and p=0.1 (the last case is shown in 

Figure (6.4]).

This behaviour is no surprise. According to eqns. 

(6.12) and (6.18), when p -► 0, the probability 

distribution becomes unity; i.e. all configurations of 

the canonical ensemble contribute e q u i p r o b a b l y . Thus, 

since they are all accepted by MC trials, the sampling 

proceedure (with or without gauge fixing) becomes 

u n i m p o r t a n t .
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On the other hand, if we start looking at weaker 

couplings, thermalisation without gauge fixing is always 

the fastest of the three. In some cases (p=2.6, p=5.1) 

the axial gauge converges marginally faster than the 

random tree gauge; in others (p=3.2) the situation is 

reversed and sometimes they behave almost identically 

(p=9.5). This last case is shown in Figure (6.5).

This weak coupling behaviour is quite surprising and 

counter-intuitive. We know from the behaviour of the 

Boltzman distribution (eqn. (6.12)) that as p -* ®, only 

the configurations which minimise the action S will 

contribute. Given ,the definition of the action (eqn.

(6.3)), it is evident that for large p, the only 

surviving configurations are those for which the bond 

variables equal or nearly equal the unit group element. 

Thus, at large p one would naively expect that gauge 

fixing, which already fixes about a quarter of the links 

to the desired value, would somehow help the system 

attain equilibrium faster. This is unfortunately not so.

In all cases, C r e u t z 's conclusion was verified, 

despite the increased number of iterations and the 

implementation of an asymetric (axial) and a symmetric 

(random tree) gauge: when the gauge is fixed, the lattice 

takes longer to arrive at thermal equilibrium. We have 

no explanation to offer for this behaviour. A handwavy 

attempt to an interpretation of this phenomenon will be 

given with the final conclusions.
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5. Gauge fixing and error analysis

So far we have dealt with the effects of gauge 

fixing on the convergence to equilibrium problem. We 

will now turn our attention to a more important aspect of 

this game, namely that of error analysis. We know that 

the error of a MC estimate is given by the ratio

6A = a / / t  (6.22)

where a is the standard deviation of our measurements

a = < A 2 > - < A > 2 (6.23)

and t  the number of iterations. Here A stands for the 

measured quantity (the average plaquette) and <A> for the 

mean of A over the number of x measurements.

This is a standard result [59 ] but only if we assume 

that the measurements are uncorrelated. This assumption 

is unjustified, since in practical MC programs the Markov 

chain is generated from the previous one by only a small 

change. Thus, the presence of correlations between 

measurements is guaranteed. Correlations are a source of 

underestimation of MC errors and thus a permanent 

headache. The standard way to tackle this problem is an 

empirical one: One may safely assume that correlations 

are strong between adjacent measurements but largely 

separated measurements are virtually uncorrelated.
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There are two ways to exploit this idea. Both ways 

involve a proceedure of "blocking" the measurements in 

small groups; i.e. having performed a number of 

measurements, we split up their total in groups of N 

adjacent measurements which we will call blocks. Denote 

by M the number of blocks, so that the total number of 

measurements is MXN. Now the first method relies on the 

fact that if we work out the mean value of the 

measurements of each block, and denote by the standard 

deviation of these means, this is related to the standard 

deviation a of eqn. (6.23) by

6A = a 2 / MN = a 2/ M (6.24)

provided that the measurements are uncorrelated. So, if 

the measurements were uncorrelated, the error 6A should 

be the same irrespective of whether we block or not. 

Departure from this behaviour gives a measure of 

correlations. This we term Method 1.

We will now describe Method 2. It is a simple 

variant of the method proposed in [59]. From each block 

of size M, we drop the first N-l measurements and 

consider just the Nth. Thus, we have a total of M 

measurements, with standard deviation and error

Provided we do not have any correlations, 

this error is related to the original error of eqn.

(6.22) by
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6A = 6A2 / /N (6.25)

Deviation from this relationship measures the presence of 

correlations. Although we have used both methods, we 

believe that Method 1 is somewhat more reliable, because 

it uses all the available information (i.e. it does not 

throw any measurements away).

We have used the two methods in order to compare the 

reliability of the errors with and without gauge fixing. 

Typical results are shown in Table (6.1) and (6.2). Each 

column is labeled by the size of the blocks. The 

abbreviation M1(C) stands for "results obtained with 

Method 1 and cold starts"; analogously for M1(H), M2(C), 

M2(H). Also note that columns labeled APQ are the 

measurements of the average plaquette and those labeled 

6A are the corresponding errors. The figures in 

bracketts are the quantity 6A2 //N of (6.25) which is used 

for the criterion of Method 2. These measurements were 

obtained over 1000 iterations, the first 100 of which 

were dropped, in order to let the system thermalise.

In an ideal situation without correlations, the 

errors from Method 1 and the figures in bracketts from 

Method 2 should agree reasonably well across each 

horizontal line of the Tables. We see that this is 

indeed the case from the results of Method 2. No 

significant fluctuations between the errors are observed. 

From Method 1, however, we see that significant
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S IZ E  OF BLOCKS

HO GAUGF F IX IN G  

10 15 ZO 25

APQ <5 A APQ M APQ SA APa FA ap<s SA a p q SA
MlfC)

M2(C)

Mi(H)
M2(H)

•42612 .00052  
. 4-2612 . 0 0 052

.42881  .0 0 0 4 9  

.4 2 8 8 1  .0004 9

.4 2 6 1 2  . 0 0 1 0 0

.4251 4 .00108  
( . 0 0 0 4 8 )

.4288 1  .0009 2

.4 2 8 5 6  .0 0 1 0 8  
( . 0 0 0 4 8 )

. 42612 .00124

.4 2 4 6 9  .0 0 1 5 0  
( .0 0 0 4 8 )

.42881 .0 0 1 1 0

.42921  .00161 
( .0 0 0 5 1 )

42612 .00141

.42495 .00202 
( . 0 0 0 5 2 )

.4288 1  .00126

.4285 8  .00201 
( .0 0 0 5 2 )

.42612 .00143

.42 551 .0 0 2 2 0  
( . 0 0 0 4 9 )

.42881  .00134

.4291 6  .0 0 2 6 8  
( . 0 0 0 6 0 )

42612 .00142

42380 .00218  
( . 0 0 0 4 4 )

.42861  .00142

.4273 2  .00243  
( . 0 0 0 4 9 )

S IZ E  OF BLOCKS

AX IAL GAUGE 

10  15 20 25

APQ SA A P Q SA APQ SA APQ SA Ap a SA a ?gl SA
t f i f e  ) 
M 2(c)

M t (w) 

MS ( H>

,42148 .00051  
,42148 .00051

.4298 3  .00051 

.4 2 9 8 3  .00051

,42148 . 0 0 1 0 0

,42199 .0 0 1 1 7  
( . 0 0 0 5 2 )

.4298 3  .00101

.4 2 9 4 5  .0011 0  
( . 0 0 0 4 9 )

.4214 8  .00132

.4 2 1 5 4  . 0 0 158 
( . 0 0 0 5 0 )

.4 2 9 8 3  .0013 3

.4292 7  .0016 1  
1 .0 0 0 5 1 )

.4 2 1 4 8  .00154

.4236 2  .0 0 1 9 6  
( . 0 0 0 5 1 )

.42983  .0015 7

.4 2 7 7 7  .0 0 1 7 7  
( . 0 0 0 4 6 )

.4214 8  .00172

.4227 2  .00237  
( .0 0 0 5 3 )

.4298 3  .00172

.4 2 8 1 9  .00232  
( . 0 0 0 5 2 )

.4 2 1 4 8  * 0 0 1 8 A

.4235 9  .00268  
( .0 0 0 5 4 )

.4298 3  .00184

.4297 9  .00261 
( .0 0 0 5 2 )

S I Z E  OF BLOCKS

RANDOM TREE GAUGE 
10 15 20 25

A P d SA APQ SA APQ fA APQ SA A PGt SA APQ / / )
Ml(C)
M2CC)

MlfHJ
M2CH)

,42752 .0 0 0 5 0  
42752 .0 0 0 5 0

.42788 .00044  
,42788 .0 0 0 4 4

.4 2 7 5 2  .00096
.4272 9  .0 0 1 1 3 .  

( . 0 0 0 5 1 )

.4278 8  .0 0 0 8 4

.4280 8  .00097  
( . 0 0 0 4 3 )

.4275 2  .0012 5

.4266 4  .00156  
( . 0 0 0 4 9 )

.4 2 7 8 8  .0010 7
.4 2 8 5 9  .0 0 1 3 9 .  

( .0 0 0 4 4 )

,42752 .0014 7

,42699 .00202  
( . 0 0 0 5 2 )

.42788  .0011 8

.42892  .00162  
( .0 0 0 4 2 )

.4275 2  .00160

.4275 8  .00228  
( .0 0 0 5 1 )

,42788 .00132
.42769 .00204  

( .0 0 0 4 6 )

TABLE (6.1) : Error analysis for p=2.2

.42752  .00169

.4293 6  .00234  
( .0 0 0 4 7 )

.4 2 7 0 8  .0013 6

.4306 8  .0019 6  
( . 0 0 0 4 0 )
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S IZ E  OF BLOCKS

NO GAUGE F IX IN G  
10 15 20 25

SA A pql SA a  p a SA APQ. SA APQ. SA APQ SA

Ml(c;
M 2 ( c )

.0 8 0 7 6  .0000 6  

.0807 6  .0 0 0 0 6

.0 8 0 7 6  .0000 8
. 0 8 0 6 1  .00012  

( . 0 0 0 0 6 )

.0 8 0 7 6  .0000 8
• 0001(.0000. 0 8 0 7 * .  . 0 0 0 1 ^

,08076" .0000 8
.0807*  *00021 

C.0 0 0 0 5 )

. 0 8 0 7 6  .0000 8

.0 8 0 * 7  .0 0 0 2 6  
( . 0 0 0 0 6 )

.0 8 0 7 6  .0000 9

.0 8 0 3 7  .0002 9  
( . 0 0 0 0 6 )

MtfH)
M2CH)

08067 .0 0 0 0 6  

08067 .0 0 0 0 6

08067 .00007

0805* .0 0 0 1 *
( . 0 0 0 0 6 )

.0806 7  .00008

.0 8 0 5 0  .0001 8  
( . 0 0 0 0 6 )

.0806 7  .0 0 0 0 ?

.0 8 0 7 *  .0 0 0 2 5  
( .0 0 0 0 6 )

.0806 7  .00007

.0 8 0 3 5  .0002 6  
( .0 0 0 0 6 )

.0 8 0 6 7  .0000 8

.0 8 0 6 5  .00037  
( . 0 0 0 0 7 )

S I Z E  OF BLOCKS 1

Ml(C) 
M2 f c  )

APQ

08053

08053

AXIAL GAUGE

SA
00006

00006

APQ

08053

08037

5 1 0

1/1
.00008

.0 0 0 1 3 .  
( . 0 0 0 0 6 )

APQ
08053

08017

J A
, 0 0 0 0 9

. 0 0 0 1 9
( . 0 0 0 0 6 )

15

A P Q
08053 .

0801* . 
( •

S A  _  
00010 ' .

0005)

20

A P q  JV!
08053 .00011 7

08 0*6  .0 0 0 2 6  
( .0 0 0 0 6 )

25

a  pa J~A
0 8053 .0 0 0 1 0

08082 .0002 8  
( .0 0 0 0 6 )

Ml( H) 
M2 (H)

08093 .00007  
00093 .0000 7

.08093  .00011

.0808 7  .0 0 0 1 6  (.00007)

.0809 3  .00013

.08061  .0002 3  
( . 0 0 0 0 7 )

.0809 3  .0 0 0 1 5

.0811 2  .00027  
( .0 0 0 0 7 )

.0809 3  .0 0 0 1 5

.0 8 0 3 *  .0 0 0 3 0 .  
C . 00007)

.0809 3  .0 0 0 1 6

.0807 1  .00 0 *1  
( . 0 0 0 0 8 )

RANDOM TREE GAU6E

S IZ E  OF BLOCKS 1 5 10 15 20 25

/) PGL S A APQ J~A A P Q  / A A P Q  f A / ) P Q  J7? A  P a  S A

.0806 9  .0 0 0 0 6  

.0 8 0 6 9  . 0 0 0 0 6

.0 8 1 * 3  .0000 7  

.0 8 1 * 3  .0000 7

.0 8 0 6 9  .00008

.0806 6  .0 0 0 1 *  
( . 0 0 0 0 6 )

.0 8 1 4 3  .0 0 0 1 0

.0 0 1 3 6  .0001 5  
( . 0 0 0 0 7 )

.0 8 0 6 9  .  00010

.0806 3  .0001 9  
( .0 0 0 0 6 )

.0 8 1 * 3  .0 0 0 1 2

.0 0 1 2 0  .00021  
( . 0 0 0 0 7 )

. 0 8 0 6 9  .0 0 0 1 0

.0 8 0 * 3  .00023  
( . 0 0 0 0 6 )

.0 8 1 * 3  .00014

.0814 9  .0002 0  
( .0 0 0 0 5 )

.0 0 0 6 9  .00012

.0 8 0 7 8  .0 0 0 2 6  
( . 0 0 0 0 6 )

.0 8 1 4 3  .0 0 0 1 *

.0811 3  .0 0 0 3 0  
( .0 0 0 0 7 )

.0 6 0 6 9  .00012

.0808 9  .00029  
( . 0 0 0 0 6 )

.0 8 1 * 3  .0 0 0 1 5

.0 8 1 2 0  .00032  
( .0 0 0 0 6 )

TABLE (6.2) : Error analysis for p=3.5



fluctuations between the errors occur, for different 

sizes of blocks. As this method is more reliable, this 

is a signal that correlations are actually present. A 

glance at the Tables shows that they appear to be 

marginally stronger for the gauge fixed case. Given 

this, we conclude that no significant benefit will arise 

from a computational point of view by fixing the gauge. 

Although not considerably, the errors were worse than 

without gauge fixing.
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CONCLUSIONS AND DISCUSSION

We have seen that gauge fixing, contrary to naive 

expectations, does not seem to improve the quality of MC 

simulations. Although, once the gauge is fixed, as a 

result of fewer link updates, the same number of lattice 

sweeps occur in less CPU time, convergence to equilibrium 

is slower and the errors are longer. Correlations also 

seem to persist marginally longer. We were unable to 

give any reasonable explanation of all this. There is, 

however, a plausibility scenario which can at least give 

a better understanding to the thermalisation effect. We 

stress that it is only a proposition which sounds 

plausible but for which no proof can be given. This is 

why we will discuss it as briefly as possible.

The argument is based on the idea of Stochastic 

Quantisation as proposed by Parisi and Wu [79]. They 

assigned to the fields U of any quantum theory an extra 

dependence on a "fifth time" t (i.e. U=U(x , t )) and 

postulated that the field obeys a particular Langevin 

equation. A standard result of non equilibrium 

Statistical Mechanics [80 ] is that if the field obeys a 

Langevin equation, the probability distribution P ( U , t ) of 

the field obeys the so-called Fokker-Planck equation 

which in turn can be written as a Schrodinger eigenvalue 

equation
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5 4>
2 H (P = -----

5x

where

H / d 4x { J L  (p i £  > }
6U 6U

and

c|* = P exp(S/2)

Here S [u ] is the theory's action. The result of interest 

for us is that for large "times" ( t  -► ®) this 

probability behaves like

P « exp(-S) + 0 (exp(~2\x))

where \ is the mass gap of H (i.e. its first eigenvalue). 

Thus, P tends to the Boltzman probability distribution of 

thermal equilibrium.

The relavance of all this is obvious. If the "fifth 

time" x of this formalism can be identified with the MC 

computer time, the last equation states that the 

probability distribution relaxes to its equilibrium state 

with typical relaxation times

T 1 /X
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where X is the first eigenvalue of H. Now H is gauge 

dependent, so in principle its spectrum ought to depend 

on the choise of gauge. If, when fixing the gauge, X 

decreases, then the relaxation time becomes longer.

Thus, the observations of the previous Chapter could be 

i n t e r p r e t e d .

The problem with this approach is that the Fokker- 

Planck Hamiltonian is a very complicated object. 

Consequently, it does not seem possible to evaluate its 

spectrum. Therefore, although this whole picture seems 

plausible enough, it has not been proved to be true. One 

recent result which has strengthened our belief in this 

picture is that of Lautrup [81 ]. He managed to show 

that at least for the simple case of an action consisting 

only of a potential which depends on a scalar field 

V ( K x )  ), the Fokker-Planck formalism is equivalent to the 

detailed balance condition (eqn. (6.17)). Thus, the 

formalism of Stochastic Quantisation appears to be a 

Markovian process of the MC type, and our conjectures 

concerning the reasons of the particular behaviour that 

governs MC relaxation are reinforced.
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