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ABSTRACT

How can we characterise arterial stenosis using blood velocity 

measurements downstream of a stenosis? The question sums up the 

problem at hand and the thesis is an attempt to provide a simple 

answer although the fluid dynamics of such a physical system are 

complex.
The data i.e. the velocity signal is acquired from an in vivo 

experiment where an external constriction is imposed on the descending 

aorta. The percent stenoses (by area) considered are 

0, 20, 40, 58, 74, and 88%. These form the database for subsequent 

signal processing and analysis.

Conventional techniques of signal analyis like ensemble averaging 

and Fourier spectral analysis are used to characterise the velocity 

waveforms and their limitations are noted. In comparison, 

autoregressive techniques are explored and are found to give better 

spectral estimates than conventional methods.

The disturbance velocity waveforms, which are derived from the 

velocity signal, are the focus of the last part of this thesis since 

they convey useful information related to the occlusion level. Two 

modelling techniques, which appear to give an insight into the 

disturbed flow field, are suggested. These are: (i) the adaptive 

autoregressive technique which tracks nonstationarities in the signal 

and provides time-variant spectra, and (ii) the impulsive noise model 

which suggests that the disturbance signal can be thought of as a 

narrow-band process or a wave packet driven by impulsive noise.
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Eventually, the work is concluded with a summary of the analysis 

techniques used and certain clinical considerations in relation to the 

detection of atherosclerosis. The need for more experimental work is 

discussed as well as the necessity and importance of more 
sophisticated signal analysis techniques.
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CHAPTER 1 

INTRODUCTION

Blood flow in the arteries is an area of research where challenges 

never end. Its natural diversity has aroused the interests of 
scientists from various fields. Biomedical engineers are no exception 

in that they try to reconcile the two worlds of Medicine and 

Engineering motivated by the need to understand the relationship 
between flow and arterial disease.

Among the most interesting blood flow phenomena are those which 

arise as a consequence of atherosclerosis. Atherosclerosis is a 
progressive disorder which begins with the deposition of lipid 

material in the intima which gradually increases in size and extent of 

involvement. In its earliest stages the arterial plaque does little 

to interfere with the delivery of blood but ultimately it reduces the 

arterial cross-sectional area and distorts the constituents of the 

vessel wall (Mitchell and Schwartz,1965).
The flow field resulting from this occlusive disease is complex 

and consequently its description taxes even the most sophisticated 

mathematical analysis. Yet, there is always a fruitful strategy that 

the engineer can employ, by developing and applying signal processing 

techniques to the analysis of blood flow, it is possible to simplify 

even a problem which involves an array of interrelated variables.

1.1 Arterial Stenosis: Basic Physiological Considerations

Arterial stenosis refers to a narrowing of an arterial segment.



15

Fig.1.1 A diagramatic representation of the 
branches of the canine arterial tree 
(After McDonald,1974)

ma j o r
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This is most frequently caused by intravascular atherosclerotic 

plaques which develop at the arterial walls. These fatty plaques are 

distributed preferentially at certain locations like,for example, the 

outer walls of arterial junctions, the inside walls of curves (e.g. 

the aortic arch), the carotid sinus and the abdominal aorta 

(Pedley, 1980; see also Fig. 1.1 for a description of the arterial 
tree). Hence the assumption that there are haemodynamic factors 

involved in the initiation of atherosclerosis cannot be disregarded. 

Therefore, the aim of this chapter is to emphasize both the importance 

and complexity of these factors without resorting to an exhaustive 
literature review.

1.1.1 T h e  P r o p e r t i e s  o f  B l o o d

Blood consists of different biological structures: red blood 

cells, white blood cells, platelets etc... suspended in plasma. 
Although the plasma itself is Newtonian, blood is classified according 

to its shear rate (shear rate is defined as the gradient of the 

velocity (Caro ,Pedley,Schroter and Seed, 1978). At low shear rates, 

blood exhibits non-Newtonian behaviour while at higher shear rates, 

which is the case in the larger arteries, blood is usually assumed to 

be Newtonian (Young 1979). The density of normal blood is
approximately 1050 kg/m and its apparent viscosity (measured at high 

shear rates above 100s at 37° C) is in the range 3 - 4.5x10 N.s/rn 

for dogs and humans.
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18

1.1.2 Flow in the Arteries

Blood flow in the arteries is pulsatile and the velocity and 

pressure waveforms vary depending on the location in the arterial tree 

as shown in Fig. 1.2. Three parameters are usually used to

characterise these flow patterns: (i) the Reynolds number, (ii) the 

frequency parameter, a , and (iii) the Strouhal number.
(i) The Reynolds number is defined as:

Re = (D U)/ v (1.1)

where D is the lumen diameter, U some characteristic velocity and v 

is the kinematic viscosity.

(ii) The frequency parameter " q " is as follows: (R=D/2)

where w  is the fundamental frequency of the pulsating flow, 

(iii) The Strouhal number is defined as:

St = wD/U (1.3)

Because of the variability of living systems it is hard to specify 

these parameters accurately for an individual. Examples of 
physiological variability are heart rate changes and respiratory 

effects (Kitney and Giddens,1982).
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Fig.1.3 Simultaneous velocity and pressure measurements 
in the aorta of a patient with severe aortic 
stenosis using catheter-tip instruments. (After 
Clark,1980)
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1.1.3 The Effect of Stenosis on Arterial Blood Flow

The presence of a stenosis in an artery causes a major disruption 

in the flow field. Stenotic blood disturbances have been described by 
many workers including Schultz, Tunsball-Pedoe,Lee,Gunning and

Bellhouse(1969)(humans), Nerem and Seed (1972)(dogs), Clark and
Schultz(1973)(dogs) and Giddens,Mabon and Cassanova(1976)(dogs). 

Measurement of these disturbances are strongly dependent on axial and 

radial positions of the probe as well as on the geometries of the 

artery and the stenosis (for example Fig.1.3 illustrates axial 
variations). Clark(1976) states that: given an instantaneous blood 

velocity, v , of 4 m/s in the stenosis the dynamic pressure (= 

1/2( p v^), where p = fluid density) is 63mm Hg and, if it behaves 

like a steady flow, pressure in the ascending aorta may increase by 

more than 15mm Hg over a distance of a few cm.

Because the circulatory system is a complex, tapered, branching,, 
network of distensible vessels, it is difficult to account for all 

these factors in experimental or analytical models. Rather, in 
attempting to model a stenotic flow field, it is common to consider 

the stenosis as a rigid-walled constriction in a rigid-walled tube. 

Such simplifications frequently resulted in models which have little 

or no relation to the living system. The stenosis is geometrically 

complex, yet the variable which is most commonly used to describe it 

is the ratio of the minimum cross-sectional area, A^, to the 
unobstructed lumen area Aq. Thus the term 'percent stenosis',Pgt,
defined as:
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P = (1 - ĵ -) x lOO (1.4)
o

and this term will be used extensively in the following chapters.

1.2 The Fluid Mechanics of Arterial Stenosis

1.2.1 Pulsatile Blood Flow through a Distensible Vessel

In analysing pulsatile flow in a distensible vessel, difficulties 

arise in solving the equations that describe the flow and those that 
describe the movement of the vessel walls because of their 

interrelationship. If it is assumed that blood can be treated as an 

incompressible fluid and that the flow has cylindrical symmetry, then 
the basic flow equations can be defined as follows (Attinger ,1981):

(a) The continuity equation:
9v V 9v__r _r __ z _
3 r + r 9z (1.5)

(b) The Navier Stokes equations for an incompressible Newtonian fluid:

3 v 3v 3 v 1 9p a 29 V z 1 9 V 3 2
+v — 2+v -- 2 =F - ----+v ( + 2 +

9t ^ r\3 r 29z p 3 z 9r" r 9 r 3 z

9 v 9 v 9 V 1 3p 32V 1 9v vr+v — r+v -- r = F - ----+ v ( r+---- r — ^
91 r 9r 2 9z r p 9 r a 2 9 r a 2r 9 r r

where r is the radial coordinate, z is the longitudinal coordinate, t 

is the time, p is the pressure, r is the internal vessel radius, p 

is the density of blood and V is the kinematic viscosity of blood 

where v = y / p  , y being the viscosity of blood, V z is the
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instantaneous axial velocity, V r is the instantaneous radial velocity, 

and F is the sum of external body forces. Equations (1.6) can 

alternatively be expressed as:

INERTIAL FORCES = BODY FORCES - PRESSURE GRADIENT FORCES 

+ FRICTIONAL FORCES

The description of the vessel motion represents a much more 

difficult problem. Such descriptions can range from the simple 

assumption of rigid tube to elaborate formulations for a thick-walled 

tube, with non-uniform properties and geometrical tapering. For 

example, Lou(1975) assumes that the dynamic motion of the axisymmetric 

vessel can be represented by a radial oscillation of finite amplitude 
which decays exponentially along the axial direction, i.e.:

[Total motion of vessel]=[Finite radial motion] x Exp(-jkx)] (1.7)

After a lengthy derivation and some simplifications, Lou presents an 

expression for the radial motion which describes the total motion.
In general it is very difficult, if not practically impossible, to 

obtain solutions in closed form for such equations without first 

carrying out some form of linearisation and/or simplification. Also 

such equations have not been used successfully to describe disturbed 

flow such as that found downstream of a stenosis.

1.2.2 Flow through a Stenosis

As mentioned earlier, atherosclerosis has certain preferential 

sites in the human body, two main regions of plaque formation being
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50% Sharp-Edged Stenosis

Recirculation Zone ^ “Vortex Ring Break-Up 

■50% Contoured Stenosis

Recirculation Zone Vortex Ring Break-Up A t W a ll

Fig.1.4(a) Flow patterns for the 50% stenoses in 
steady flow; Reo=2540, Re^=3590. 
(After Cassanova and Giddens, 1978)

NOMENCLATURE FOR FIGURES 1.4 AND 1.5

RSd
ReD

Reynolds number based on constriction diameter 
and average velocity in the tube.
Reynolds number based on tube diameter and 
average velocity in the tube.
Reynolds number based on peak waveform velocity 
and tube diameter.
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75% Sharp-Edged Stenosis

mew
Recirculation Zone Vortex Ring Coalescence 

and B re a k-U p

Recirculation Zone Instability B reak-U p

Fig.1.4(b) Flow patterns for the 75% stenoses in 
steady flow; ReD=635, Re =1270.
(After Cassanova and Giddens,1978)
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the coronary arteries and the carotid bifurcation. The geometry of 

these locations make it difficult for any analytical, or even 

numerical, study to attempt to assess the flow field downstream of a 

stenosis. However, experimental investigations, though in some cases 

oversimplify the problem, tend to provide a basic description that can 

be common to both the model and the physical system. Cassanova and 
Giddens (1978) developed a rigid tube model of arterial stenosis using 

both contoured and sharp edged stenoses. Their results can be 

summarised as follows:

(i) The Steady Case

The results for 50 and 75% occlusion are shown in Fig. 1.4(a) and 

(b) . Referring to the figures it is important to note that in both 
types of stenoses there are three main zones: (1) the recirculation 

zone which is in the vicinity of the stenosis, mainly downstream but 
also upstream in the case of a very abrupt stenosis such as the 

orifice type, (2) a vortex ring -break-up region, and (3) a more 

disturbed or turbulent region which is further downstream. 

Ahmed(1981) performed a similar experiment and used a laser Doppler 

velocimeter to measure the velocity. The two variables considered 

were the Reynolds number and the degree of constriction, as defined by 
area. Ahmed observed that the size of the separation zone increases 

with either an increase in Re or in the degree of constriction. He 

noted also a vortex ring structure near the tube walls which expanded 

while being shed and conveyed downstream, the strength and shedding 

frequency being proportional to Re and degree of constriction. The
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E’ig.1.6 Centerline velocity waveforms measured at seven axial positions downstream 

of a 50% axisymmetric stenosis.(After Khalifa and Giddens,1981)
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(ii) The Pulsatile Case

Fig.1.5 shows the complexity of pulsatile flow through a 

constriction. The pulse shape used by Cassanova and Giddens(1978) was 

approximately sinusoidal (top diagram). Flow visualization for times

(a) , (b), (c), (d), and (e) are shown in the respective figures. 

There is separation near the wall at (a), flow disturbances form at

(b) and are convected downstream at (c), (d) and (e). At (d) and (e)
the region immediately downstream of the stenosis is completely 

relaminarised. Velocity waveforms for different axial positions are 

shown in Fig. 1.6 for a modelled stenosis. Khalifa and Giddens(1981) 

state that the disturbances observed consist of: a start-up structure 

during the acceleration phase and subsequent quasi-periodic 

fluctuation during the decceleration phase, as well as turbulence. 
Ahmed(1981) noted a recirculation zone which expanded during the 

acceleration interval and contracted during the deceleration interval 

and vortex shedding. The activity in the separation region is 

dependent upon the frequency parameter, a . For an increase in a , 

Ahmed observed the formation of a relatively violent swirling vortex 

ring with the following properties: its decay was dependent upon

conditions and area reduction, its strength increased with a or the 

degree of constriction, and its axial velocity was proportional

to a .

vortex structures might break up into smaller irregular patterns or

decay depending on specific parameter values.

It is important to note that Ahmed's results are for rigid tube
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models of stenoses. A literature search was unable to find any 

detailed experiments involving pulsatile flow in a flexible tube. 

Hence, there is a need for detailed experimental evidence concerning 

the differences, rather than the similarities, between human or dog 
data on the one hand and those obtained from rigid tube models on the 

other.

1.3 The Clinical Assessment of Arterial Stenosis

The diagnosis of stenotic obstructions is of particular concern to 

the clinician. The initiation of a stenosis is not completely 
understood although its presence can lead to serious circulatory 

disorders (e.g. Stein,Sabbah and Mandal, 1976). A severe stenosis in 

one or more of the major vessels supplying the brain can lead to a 

'stroke'. Alternatively, partial occlusion of the blood supply to a 

limb can cause severe pain and loss of motor function. Hence, the 

detection of disease at an early stage is of utmost importance to 
clinicians. The most common method for obtaining information about 

the presence (and size) of a stenosis is contrast arteriography 

(Strandness,1983; Young,1979). This invasive technique is only 

effective when the disease reaches an advanced stage and also involves 

some risk to the patient.

Breslau and Strandness(1983) separate techniques for the 

non-invasive diagnosis of carotid artery disease into direct and 

indirect methods. Direct methods according to their definition, 

provide anatomical and/or physiological information about the artery. 
Examples are: phonoangiography, ultrasonic Doppler imaging, B-mode
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imaging and Duplex scanning. Indirect techniques test for 

haemodynamic changes at some site removed from the stenosis. 
Suprar-orbital directional Doppler examination, fluid-filled 

oculoplethysmography and air filled oculoplethsmography are defined as 

indirect methods. Examples of these methods will now be considered in 
greater detail.

1.3.1 Direct Methods

(a) Carotid Phonoaniography

Phonoangiography makes use of the vibrations induced by turbulence 

which appear at the skin surface as sound waves. These waves are 

detected by a hand held microphone which is placed over the carotid 

artery at the low, middle and high locations. A phonoangiographic 
display of bruits in relation to the first and second heart sounds is 

produced. The frequency spectrum of the bruits is analysed and a 

'break frequency', f estimated. The 'break frequency' is defined as 

the frequency beyond which the power of all higher frequencies sharply 

declines (Duncan ,Gruber,Dewey,Meyers and Lees, 1975). The 

realtionship between the residual lumen (dp) of the stenotic vessel 

and f is given by:

dp = U/fQ (1.8)

where U is the peak systolic velocity in the unoccluded portion of the 

artery. The main disadvantage of this method is that neither mild nor

very severe stenoses necessarily produce bruits.
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( b )  U l t r a s o n i c  I m a g i n g  M e t h o d s

T h r e e  o f  t h e  m o s t  c o m m o n l y  u s e d  u l t r a s o n i c  i m a g i n g  m e t h o d s  a r e :  

( i )  D o p p l e r  i m a g i n g ,  ( i i )  B - m o d e  i m a g i n g  a n d  ( i i i )  D u p l e x  s c a n n i n g .  

T h e  l a s t  m e t h o d  c a n  b e  c o n s i d e r e d  a s  a  c o m b i n a t i o n  o f  t h e  f i r s t  t w o  

m e t h o d s  a n d  p e r h a p s  a n  i m p r o v e m e n t  o n  b o t h  a s  w e  s h a l l  s e e  i n  t h e  

f o l l o w i n g  b r i e f  d e s c r i p t i o n s  o f  t h e s e  t e c h n i q u e s .

( i )  D o p p l e r  I m a g i n g

R e c e n t l y ,  i t  h a s  b e e n  p o s s i b l e  t o  u s e  t h e  D o p p l e r  e f f e c t  t o  

g e n e r a t e  ' f l o w  i m a g e s '  w i t h  t h e  c o n t i n u o u s - w a v e  o r  p u l s e d  u l t r a s o n i c  

s y s t e m s .  T h i s  i s  a c h i e v e d  w h e n  a n  u l t r a s o n i c  b e a m  i s  d i r e c t e d  a t  a  

b l o o d  v e s s e l  a n d  t h e  f l o w  i s  r e g i s t e r e d  a t  p o i n t s  w h e r e  t h e  v e l o c i t y  

o f  t h e  r e d  b l o o d  c e l l s  p r o d u c e s  a  f r e q u e n c y  s h i f t  w h i c h  i s  h i g h e r  t h a n  

t h e  s h i f t  r e s u l t i n g  f r o m  w a l l  m o t i o n .  I f  t h e  s y s t e m  i s  p u l s e d ,  i t  i s  

p o s s i b l e  t o  s a m p l e  t h e  f l o w  f r o m  a n y  p o i n t  a l o n g  t h e  p a t h  o f  t h e  s o u n d  

b e a m .  A t w o - d i m e n s i o n a l  i m a g e  o f  t h e  f l o w  f i e l d  c a n  b e  p r o d u c e d  b y  

t h e  u s e  o f  t h e  p o s i t i o n - s e n s i n g  a r m  a t t a c h e d  t o  t h e  t r a n s d u c e r .

T h i s  m e t h o d  h a s  b e e n  d e v e l o p e d  f o r  u s e  i n  t h e  c a r o t i d  a r t e r y  

w h e r e b y  a  p r o b e  i s  m o v e d  o v e r  t h e  s k i n  o f  t h e  n e c k  a n d  a  p i c t u r e  i s  

p r o d u c e d  o n  t h e  s c r e e n  o f  a  s t o r a g e  o s c i l l o s c o p e .  H o w e v e r ,  t h e  i m a g e  

c a n  b e  o b s c u r e d  b y  t h e  p r e s e n c e  o f  c a l c i f i c  p l a q u e s  w h i c h  a b s o r b  

u l t r a s o n i c  w a v e s .  T h i s  c o n s t i t u t e s  a  m a j o r  d i s a d v a n t a g e  t o  t h e  

e m p l o y m e n t  o f  t h i s  t e c h n i q u e .

( i i )  B - m o d e  I m a g i n g

W h i l e  t h e  D o p p l e r  u l t r a s o u n d  m e t h o d  r e c o r d s  i n f o r m a t i o n  r e l a t e d  t o
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the flow in the arteries, the B-mode technique on the other hand, 

registers echoes that are related to variations in the acoustical 

impedance of the tissues. The brightness on the screen of an 

oscilloscope is made to correspond to the amplitudes of the reflected 

echoes which in turn are tissue dependent. The scan across the vessel 

under investigation produces lines with varying intensities which are 
stored to produce a two-dimensional image of the vessel.

Nevertheless, this technique is not highly reliable in the 

detection of plaques which exhibit a variation in absorption 

characteristics that is dependent upon the material in the lesion. 

Soft, fatty plaques have an acoustic impedance similar to that of the 

blood while calcific plaques have a high reflectivity.

(iii) Duplex Scanning

Potentially, high resolution images and important haemodynamic 

information could be attained by combining a real-time B-scan 

instrument and a Doppler device. This is termed as 'Duplex Scanning'. 

In such a system, the B-mode image is used to identify the carotid 
arteries and visualise plaques. The picture is 'frozen' and a Doppler 

beam is directed towards a chosen blood sample volume. The angle 

between the beam and the vessel is measured. A Doppler angle of 

approximately 60 degrees provides a convenient orientation and a 

favourable return signal(Langlois, Roederer,Chan,Philips, 

Beach,Martin,Chikos and Strandness , 1983) . The output Doppler signal 
is sent to an on-line spectrum analyser where grey or colour scale 

images are produced. Although a Duplex scan can have a high
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sensitivity (ability to detect the presence of disease) , its 

specificity (ability to recognize the absence of disease) can be very 

poor(Breslau and Strandness 1983) .

1.3.2 Indirect Methods

(a) Supraorbital Doppler Examination

The supraorbital artery is a branch of the opthalmic artery, which 

is in turn a branch of the internal carotid artery. Normally, the 

ophthalmic artery supplies the forehead through its branches the 

supraorbital and medial frontal arteries. With complete or severe 

stenosis in the internal carotid, the external carotid becomes an 

important collateral source to the brain through the ophthalmic 
artery, thus reversing the flow in this artery. By compressing the 

branches of the external carotid artery, one can measure the 

re-reversal of flow in the ophthalmic using a Doppler ultrasound 

device. This will indicate the presence of a stenosis in the internal 
carotid. Yet, this method remains unsuitable for a mild degree of 

stenosis, since severe constrictions are required before opthalmic 
arterial flow reverses.

(b) Plethysmographic Systems

This method also relies on the fact that the ophthalmic artery is 

the first branch of the internal carotid artery. Two systems are 

available: the oculoplethysmograph combined with angiography, and the
oculopneumoplethsmograph.

In oculoplethysmography, fluid-filled plastic cups are placed
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against the eyes and subjected to a negative pressure of 40mm Hg. A 

pulse wave representing the volume change of ocular filling is 

generated and recorded. A significant delay in pulse arrival time is 

the prime determinant of disease. Among the main disadvantages of 
this method is the fact that it cannot distinguish between a tight 

stenosis and total occlusion and that it is unable to detect small 
ulcerating plaques or mild disease.

In oculopneumoplethysmography, the negative pressure applied is 

much greater, namely 300mm Hg. The point at which pulses appear 

during the gradual reduction in the vacuum pressure accurately 
measures the pressure in the opthalmic artery, but the test cannot 

measure pressures above 110 mm Hg. Further, it is insensitive to 
lesions which do not produce pressure drop.

In summary, although significant advances in non-invasive 

detection of localised atherosclerotic plaques have been achieved in 

recent years, the recognition of early stages of the disease 
development remains difficult. For example, with regard to the 

carotid arteries it is usually possible to diagnose only the 

haemodynamically significant stenosis by methods of phonoangiography, 

oculoplethysmography, and directional Doppler ultrasound studies. 

Since most of the diagnostic techniques involve some aspects of 

haemodynamics, a detailed study of the flow field downstream of a 
stenosis could help in lowering the threshold of recognition of 

arterial disease; for, even a relatively mild stenosis (e.g. 20% by 

area) can produce the most interesting flow patterns as we shall see 
in the subsequent analysis.
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CHAPTER 2

EXPERIMENT, INSTRUMENTATION, AND DATA PROCESSING

A good starting point when studying the fluid dynamics of arterial 

stenoses is to consider an arterial location whose geometry is 

relatively simple. The carotid bifurcation is geometrically complex 

and hence flow field analysis in this region is difficult. The work 

reported in this thesis is derived mainly from measurements in vivo of 

the velocity field created by subtotal, externally placed constriction 
imposed on the descending thoracic aorta of mongrel canines.

2 .1 Basic Physiological Preparation

The animals used were mongrel dogs, weighing 18-25 kg. Each dog 

was anesthetized initially with 2.5% thiamylal sodium (Surital 

sodium)(10-20 ml,iv). This was followed immediately by injection of 

atropine sulfate (0.4 mg,iv)'and later, sodium pentobarbital (150 mg). 

The dog was maintained in a satisfactory anesthetized state by 

administering sodium pentobarbital at a rate of 200 mg/hour.
The thoracic descending aorta was exposed for a distance of 

approximately 15 cm. An electromagnetic flowmeter was placed about 

the vessel at the most distal accessible position above the diaphragm. 

The hot-film anemometer probe was then inserted into the aorta and 

stationed in the midline (see Fig.2.1).
Several precisely measured, notched, plastic strips were placed at 

pre-determined locations around the aorta for the extravascular 

occlusions. These strips were then attached individually to a device
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specially fabricated to cause varying degrees of occlusion by use of a 

micrometer adjustment. This device gives a measurement of external 

occlusion diameter. The internal diameter is computed by increasing 

the constriction until flow is totally obstructed, noting the 
resultant external diameter, and then assuming that the vessel wall is 

deformed isovolumetrically at each stage of occlusion.
The local instantaneous velocity was obtained by a DISA 

Electronics model 55D01 anemometer and 55D10 linearizer. Each probe 

was calibrated with blood taken from the dog under study and the 

anemometer output was linearized in accordance with this calibration. 

Giddens ,Mabon and Cassanova(1976) describe the difficulties 

associated with in vivo hot film measurements. Reverse flows could 
not be determined accurately with the single sensor; and transverse 

velocities occurring in a turbulent flow will affect the anemometer 

output which was calibrated only for the axial flow. Although the 

conical probe tip tends to reduce this latter effect, it is 

nonetheless present and has an increasing effect as flow becomes more 

turbulent. The velocity signal and the ECG were both recorded on FM 
tape for further processing.

2 .2 Hot Film versus Doppler Ultrasound

During much of the cardiac cycle the arterial flow is positive. 

The response of hot-film probes is considered to be good up to 1000 Hz 

(Giddens et al. 1976). In comparison, the laser Doppler velocimeter 

has a frequency response of 200 Hz when employed in a similar fluid 

dynamic situation. Thus the data obtained with the hot-film probes is
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Fig. 2.1 A sketch of the physiological preparation showing 
hot-film probe and external constriction.

DO) Viscous boundary layer, thickness $v

Fig. 2.2 A sketch of a hot-film anemometer probe. The
dark rectangle represents the film; the shaded 
region around it represents the insulating 
substrate. (After Pedley,1976)
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more useful in the understanding of blood flow disturbances caused by 

a stenosis especially if a bandwidth above 200 Hz is required. 
Inspite of the fact that the hot-film anemometer is believed to be 

superior to the Doppler ultrasound velocimeter for measuring disturbed 
flow with a bandwidth of about 500 Hz (Pedley, 1980), the description 

of both techniques in more detail is essential in assessing the 

reliability of the measured data.

2.2.1 The Hot Film Anemometer

The hot film anemometer (HFA) measures the flow-related cooling of 

a heated probe by moving blood. A constant-temperature HFA consists 

of a thin metallic film mounted flush with the surface of an insulated 

solid probe as shown in Fig .2 .2. The temperature of the film is kept 
at a fixed value slightly higher than the temperature of fluid which 

is assumed to be constant, by an electronic feedback circuit. The 

power required to maintain the probe at constant temperature is 

proportional to the rate at which heat is lost to the fluid. This in 

turn is related to the velocity of the fluid flowing past the probe. 

The conduction of heat to the blood from the hot-film is a very 
complex problem. An empirical equation governing the transfer of heat 

is given by Schultz ,Tunsball, Lee and Gunning(1969) as:

Nu = A (Pr)1/3 .(Re)1//2 + B (Pr)1/3 (2.1)

where Nu is the Nusselt number, Re is the Reynolds number, Pr is the 

Prandtl's number, and A and B are constants. _Nu and Pr may be written

as:
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(a)

(b)

Fig.2.3 Probe response to pitch at 0=0 (a) and to yaw (b)
at (j)=0 : (1) cylindrical (2) conical. UQ is0
the apparent velocity and Uq is the true 
velocity i.e. 0.75 m/s. (After Clark,1974)
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Nu = q / ( b . At . k )

Pr = V / K

K = k /( p. c ) (2 .2)

where q is the heat transfer rate, b is the gauge length, AT is the 

temperature difference between film and fluid, k is the thermal 
conductivity of the fluid, v is the kinematic viscosity, p is the 

density, and c is the specific heat (Clark,1974). Schultz et 

al.(1969) show that equation (2.1) can be written as:

V 2 1 / 2Nu = --- C + D (U) ' (2.3)
AT

where V is the potential difference across the thin film, U is the the 

fluid velocity, and C and D are constants. With the temperature 

difference AT held constant, a calibration curve is obtained by 

plotting the square of the voltage against the square root of the 

fluid velocity (Woodcock 1975).

The HFA is not sensitive to direction. Fig.2 .3(a) and (b) 

displays the response to pitch and yaw of two types of probe: 

cylindrical and conical. Note from the figures that the sensitivity 

of the conical probe is dependent upon 0 (best for 0=0) and 
almost independent upon $ .

When considering the response of a hot-film probe for conditions 

of reversed flow, the wall shear over the hot-film becomes an 
important factor. The heat transfer from the hot-film, and hence the

output from the anemometer, is proportional to the one-third power of



41

Fig. 2.4 Simultaneous aortic velocity measurements with (a)an 
electromagnetic flow cuff and (b) a hot-film anemo
meter located on the vessel centre line. The signal 
from a second hot-film, (c), indicates when reversal 
occurs. (After Clark and Schultz, 1973)
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Fig. 2.5 Amplitude response to oscillatory velocity component as a 
function of Strouhal number: (a) conical probe (1=0.5 mm) 
(b) cylindrical probe (1=2.5 mm). U and U are apparent 
and actual oscillatory velocity components, respectively. 
(After Clark,1974)
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the local wall shear (Pedley 1980) . Now blood flow in certain large 

arteries reverses its direction at least twice each beat, and 
therefore so does the film shear and it is due to this shear reversal 

- which occurs before the reversal of the centre-line velocity - that 

the measured velocity signal is subject to rectification before the 

actual zero crossing of the true signal. Fig. 2.4 shows a cycle of a 

velocity signal with an apparent 'rectification' effect by a HFA. 

Notice that: (a) the 'rectified' part of the signal seems to be 
attenuated, and (b) 'rectification' starts before the velocity goes 

negative.

Inspite of this disadvantage, hot-film anemometry is still a 

useful technique in blood velocity analysis because of its good 

frequency response. Giddens et al.(1976) report good frequency 

response up to 1 KHz for turbulent flows in rigid tubes. Clark (1974) 
showed that the amplitude response is a function of Strouhal number 

(St=(2 tt f 1 )/ u where f is the frequency, 1 is the length of the 

film, and u is the mean velocity) rather than just of frequency. The 

amplitude response shown in Fig .2 .5 for both conical and cylindrical 
probes depicts: (a) a gradual decrease in sensitivity with the conical 

probe for St > 0.1 ,and (b) a region of increased sensitivity and then 
sharp decline for the cylindrical probe. Although the amplitude 

response cannot be considered as flat, the behaviour of this device is 

superior to Doppler ultrasound techniques for measuring turbulent 
blood velocity signals as we shall see in the next section.
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Fig. 2.6 A sketch of ideal and real spectra 
velocity signals.

for laminar and turbulent
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2.2 .2 Doppler Ultrasound Techniques

Doppler ultrasound velocity meters can be classified into 

continuous wave (CW) or pulsed devices (PDU). Both types are based on 

the familiar Doppler principle that moving particles subjected to an 

incident wave field will create reflected wave frequency shifts. The 

Doppler shift, A f, is given by (Woodcock 1975): 

v
A f = —  f ( cos 0 + cos g ) (2 .4)

c

where f is the emitter frequency, v is the blood velocity, c is the 

the velocity of sound, 0 is the angle between the transmitted beam

and the direction of the velocity and 0 is the angle between the 

received beam and the direction of velocity.

The range ambiguity i.e. the inability to estimate the position 

of the scattering particles in the CW system is remedied in the pulsed 

system. In the latter, pulses are transmitted and received using the 

same transducer. During the interval between emission of successive 

pulses, the transducer receives the scattered signal. For such a 

system equation (2.4) becomes: 

v
A f = -  2 fQcos 0 (2.5)

c

For both laminar and turbulent flow, the output of the PDU 

velocimeter may be considered in terms of the power spectra of the 

Doppler and detected velocity signals. The upper four graphs in 

Fig .2 .6 show the ideal spectra for both these signals. One of the 

main limitations of the Doppler technique is the spectral broadening
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Fig. 2.7 Idealised operation of the Doppler system for a rectangular 
sample volume.
(a) The idealised configuration of the acoustic sample 

volume.
(b) The transmitted signal in the time domain.
(c) The transmitted signal in the frequency domain.
(d) The transit-time window in the time domain.
(e) The transit-time window in the frequency domain.
(f) The ideal mixing process.
(g) The Doppler spectrum for an idealised system.
(After Baker, Forster and Daigle, 1978)
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exhibited in the four lower graphs of Fig .2 .6. Factors influencing 

Doppler spectral broadening can be divided into instrument effects and 

flow-related effects. The instrument effects can be described by 
considering the movement of a single particle through the acoustic 

field at constant velocity. The form of the Doppler spectrum is 
dependent on the sample volume dimensions. For simplicity, consider a 

single particle intersecting a rectangular sample volume at the centre 
as shown in Fig.2.7(a). The 'transit time', t , is given by:

1 w
t = -  = -----  (2.6)

f vsinQ

w, v and 0 are defined in Fig.2.7(a). Fig.2 .7(b) shows a typical 

transmitted Doppler signal, ut(t), and Fig.2.7(c) depicts its 

representation in the frequency domain, Ut(f). The returning Doppler 

shifted signal (in the frequency domain), Ug(f) is given by:

Us(f) = C Ut(f (1 + a)) (2.7)

where C=constant, and a = Af/f = 2vcos0 . The returning signal 

exists only for the time the particle traverses the sound, i.e. 
during the 'transit time'. This is equivalent to multiplying u (t) 

with the time window, w(t), shown in Fig.2.7(d) or convolving U (f) by 

the transform of w(t), W(f) (see Fig.2.7(e)). Hence the resulting 

signal, U (f), is:

usw(f) = V f) * W(f) (2.8)

where * denotes convolution. The Doppler signal is obtained by mixing 

(multiplying) Ugw(t) with cos(2ff fQt) and sampling. U (f), the output
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of the mixer can be described as:

V f > "  ° - 5' V f - f o ) + ° * 5»sw <t + f o> ( 2 ‘ 9)

Fig.2.7(f) gives a pictorial description of an ideal mixing process. 

It shows how the contributions centered at + 2fQ (l+a ) are filtered 

off. The final Doppler signal is obtained by sampling um (t). Ideal 

sampling could be thought of as convolving the filtered Um (f) or 

Um ^(f) with a sampling function , S(f),i.e.

Ud(f) = Umf(f) * S(f) (2.10)

where
00

s(f) =Y~ <S(f-mfr)
m = - ° ° i 2The resultant power spectrum U^(f)| of the Doppler signal could be 

seen in Fig.2.7(g). In practice the signal is low pass filtered at

f /2 to obtain the frequency shift, df. The two factors that affect 

the general broadening of the spectrum are: (a) the burst duration, 

1/f^, or the source broadening, and (b) the effect of the acoustic 

field because of the finite transit time, tt , or 'transit time 

broadening'. If we now consider the window function in Fig.2.7(d) and 

(e), we will find that, by increasing t i.e. increasing the sample 

volume, the width of W(f) decreases and hence the broadening of the 

Doppler spectrum becomes less. This, however, decreases the spacial 

resolution of the system.

So far, we have considered the effect of an ideal rectangular
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sample volume on the Doppler spectrum. In practice however, this

sample volume is of a 'tear drop' shape (Saxena 1978) and its

contribution to the Doppler spectrum is more difficult to describe.

Another complication to the broadening problem is the fact that flow

too can worsen this effect. Consider the field in the sample volume

as consisting of particles moving with different velocities, we would

expect contributions of these particles in the spectrum. The extent

of these velocity variations is a function of the velocity gradients

across the volume as well as the size of the sample volume(Baker ,

Forster and Daigle,1978)• Arts and Roe vros(1972) assumed that the
volume under consideration contains N particles. Every particle is

supposed to give the same contribution and hence the definition of an

average velocity contribution is as follows(ibid):
N

Aw± (2 .1 1 )

i = 1

where Aw is defined as the difference between the average angular 

frequency of the power spectral density of the received signal and the 

angular frequency of the transmitted signal. However, the 

distribution of velocities in a sample volume is certainly non-uniform 

and hence a further study of the velocity distribution (given flow 

conditions) is necessary.

Although models of the Doppler ambiguity process have been 

suggested (George and Lumley 1973, Garbini et al. 1982 (a) and (b)), 

a thorough understanding of Doppler ambiguity remains a challenging 

task for many researchers. Thus, the choice of the Doppler ultrasound 

technique for the measurement of disturbed or even turbulent velocity
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Table 2.1 Relevant data for in vivo experiment employed as sample study

Percant occlusion Constriction diameter Peak local velocity Mean volume flow rate Peak Reynolds Mean Reynolds
(reduction in area) Up Q number number

p U p D h _ 4 p Q / * v J 3

cm em/s ml/s
0 1.2 69 31 2600 1200 .

20 1.1 60 29 2100 1100
40 0.9 46 31 1900 1200
58 0.8 41 30 1700 1100
74 0.6 48 29 2000 1100
88 0.4 67 27 2400 1000

Frequency parameter: a =  13.3(uj =  16.0 rad/«t r\m -  03330 poise)

ti

Fig. 2.8 Velocity measurements obtained at the
vessel centreline, 2 cm distal to stenoses 
imposed on the descending thoracic aorta 
of a dog.
a No occlusion b 20% occlusion 
c 40% occlusion d 58% occlusion 
e 74% occlusion f 88% occlusion
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fields ought to receive much thought. Another consideration when 

dealing with a turbulent velocity signal should be the spatial 

averaging caused by a large sample volume. This tends to obscure 

small scale fluctuations, particularly at high wavenumbers. Thus, 

although a larger sample volume tends to reduce ambiguity effects, 

this improvement is at the expense of spatial resolution. When 

analyzing a disturbed velocity signal like the signal measured distal 

to a stenosis, the choice of measurement technique, hot-film or 

Doppler, is assisted by a clear understanding of what features of the 

field are important within the context of a particular situation. If 

it is the overall (or average) behaviour of our physical system which 

is required, then the Doppler technique could be a useful non-invasive 

tool. However, if the detailed or fine structure of the velocity 

field is of interest, then the hot-film anemometer can produce a more 

accurate signal. Initially, the objective is to use the hot-film 

technique in order to extract certain features that are not available 

to us in the Doppler measurements. Eventually, the Doppler technique 

can be used if and only if we possess an adequate understanding of the 

system under study.

2.3 Data Preprocessing

2.3.1 Analog to Digital Conversion

The data employed in this study were obtained from the series of 

in vivo experiments reported in section 2.1. The degree of stenosis 

ranged from 0 to 88% reduction by area. Table 2.1 summarises the 

experimental conditions. Fig.2.8 displays the instantaneous velocity
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measurements for several heart cycles for each degree of constriction.

This signal together with the ECG were recorded on an FM tape and then

digitized. The sampling rate, f , ( 2560 Hz) was based on the outcomes
of preliminary experiments conducted by Khalifa and Giddens(1981).
These experiments indicated that the turbulence information for this

flow system might contain frequencies as high as 500 Hz before being

lost in noise. Other factors involved in the choice of f were thes
resolution and appropriate data length for Fourier transform (Kitney, 

Giddens and Mabon ,1980). In the analog to digital conversion, ADC, 

procedure the data was stored on digital tape in 1200 sample blocks, 

each level of occlusion being stored in separate files comprising 

about 300 blocks. Two channels were recorded, the velocity and the 

ECG.

2 .3.2 Data Sectioning

Respiration, temperature control, and the blood pressure control 

system, all affect the spatio - temporal nature of the blood velocity 

waveform. In addition to this underlying physiological variability, 

there is also noise artefact. To overcome these problems, it is 
necessary to remove the temporal variation by defining a fiducial 

point and then selecting the appropriate section of the waveform. The 

problem due to noise can be solved by either low-pass filtering or 
ensemble averaging; this will be discussed in the following chapters.

The sectioning procedure consists of defining a timing marker and 

then choosing a fixed number of samples for given block of data. The 

timing marker is derived from the R wave of the ECG. The underlying
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Fig. 2.9 Ensemble selection procedure.
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assumption is that even though the RR interval is variable, the 

interval between the R-wave and the required section is constant. The 

program which controls the selection process is designed to operate in 

three modes: manual, semi-automatic and automatic. At the beginning 
of selection the program is normally run in the manual mode, i.e. the 

sections of data to be used in the ensemble are selected automatically 

by the program but the operator can check that each beat to be used is 

appropriate. Once the operator is satisfied that the detection 

procedure is working satisfactorally the program can be either run in 

the semi-automatic mode, where every tenth beat is displayed, or run 
in the fully automatic mode, where none of the beats detected by the 

program are displayed. For each level of occlusion, a total of 120 to 

125 blocks are chosen automatically with 512 samples for each block. 
A pictorial description of the sectioning procedure is illustrated in 

Fig .2.9.

2.3.3 Detection of Unsuitable Beats

With the sectioning program in automatic mode, the unsuitable or 

mis-triggered beats can amount to 3-5% of the total. Fig.2.10(a) 
shows 125 beats for a 40% occlusion level. It can be seen that B19, 

B34, B39, B59 and B79 have been mistriggered (Fig.2.10(b) is a 

magnification of B19). To deal with this problem, two procedures have 

been devised. The first procedure relies on our perception of 

unsuitable beats. These are missed out when the whole 100 ensemble is 

rewritten to a different file. The second procedure is operator 
independent and relies on the integral under the velocity section.
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B 19

Fig. 2.10(b) A magnification of beat B19 in Fig. 2.10(a).

Fig. 2.11 A frequency histogram of the time integral of the
velocity waveform for the 125 beats shown in Fig. 2.10(a). 
The vertical arrows show the beats to be discarded.
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The integral is utilized because the signal is positive and because a 

mistriggering can lead to a considerable reduction in area as seen in 

Fig.2.10(b). In Fig.2.11 the frequency histogram of the mentioned 

integrals is plotted. The mean has been normalized and the x-axis has 

a resolution of 0.1 standard deviation. The beats that are discarded 

from the 40% occlusion ensemble are those with integrals which are 

greater than +2 standard deviations(see arrows in Fig.2.10). This 

technique has proved to be reliable for occlusion levels of 

0,20,40,58,and74%. For the 88% the signal becomes highly disturbed 

and the histogram of integrals is flattened indicating a large 

variability. Other techniques have to be used for this level and they 

will be discussed in the following chapters.

The end result of data preprocessing is to generate 100 blocks of 

data (each block having 512 samples) for each level of occlusion, 

namely 0,20,40,58,74 and 88%. In the next two chapters, techniques of 

analysing these data will be discussed and subsequently an attempt 

will be made to model the generating velocity field as a stochastic 

process. The amount of information derived from these measurements is 

a function of the techniques used. These techniques should be 

designed or chosen such that they exploit the power of signal 

processing theory without being detached from the basic physical 

notions of which the signal is a product.
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CHAPTER 3

CHARACTERISATION OF THE VELOCITY WAVEFORM : BASIC METHODS 

3 .1 The Velocity Waveform as a Time Series

The velocity signal discussed in chapter 2 consists of sampled 

sections of the continuous signal, each section comprising 512 data 

points. A section can be considered as a time series i.e. a

collection of observations made sequentially in time (Chatfield,1980); 

and will be denoted by {u(t) ; t=T,2T,3T,... ,NT} where T is the

sampling interval and N is the total number of observations (i.e. 
512). A first step in the analysis of such a time series is to decide 
whether it can be considered as stationary.

A time series {x(t)} is strictly stationary if for any

t^,t2 »...,tn and any k, the joint probability distribution of 

(x(t^),x(t^),..., x(tn)} is identical with the joint probability 

distribution of {x(t^+k),x(t2+k),...,x(tn+k)} (Priestley, 1981) . 
Strict stationarity is, however, a severe requirement and is relaxed 

by introducing the notion of stationarity up to order m . Under this 

weaker condition, the probability distribution of, say x(t ), need not 

be identical to the probability distribution of x(t^+k), but the main 
features of these two distributions should be the same, i.e. their 

moments, up to a a certain order, m, should be the same. x(t) is
called second-order stationary or ( weakly stationary ) if the 

following are satisfied:( E[ ] denotes expectation )

(1) E[ x(t) ] = y , i.e. the mean, y , is a constant
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independent of t.
2 2(2) E[(x(t) -y ) ] = a ,i.e. the variance is a constant 

independent of t.

(3) E[ x(t) x(s) ] = function of (t-s) only,for every t,s; 

i.e. the covariance between the values at any two points s 

and t depends on (t-s), the interval between the time points, 
and not on the location of the points along the time axis.

From the above definitions of stationarity and after inspection of 

several samples (or blocks) of the same process (i.e. the velocity 

field), the time series (u(t)} can be considered as non-stationary 

(i.e. its statistics are a function of time). Consequently, the 

strategy employed in the analysis of {u(t)} is to break the waveform 

into its constituent components using an approach adopted by Hussain 

and Reynolds (1970) and Khalifa and Giddens (1978). The signal can 

then be described as follows:

VELOCITY SIGNAL = TEMPLATE + RANDOM COMPONENTS

The template of the velocity signal is basically the pulse wave which 

is to a certain extent, repetitive and reconstructable. The random 

components on the other hand, seem to be influenced greatly by the 

degree of constriction. Both of these components will be the object 

of more rigorous processing and analysis in subsequent sections. Two 

approaches have been designed to extract these components from the 

original time series which are:

(1) The time domain method : In this method the template is 

derived by ensemble averaging several samples (blocks) of the
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time series, and the random components are considered to be 

deviations from the ensemble average and are obtained by 
subtracting the template from the raw signal. The equation 

governing this approach is as follows:

u(t) = U(t) + u'(t) (3.1)

where U(t) is the underlying waveform and u'(t) is the 

disturbance velocity.

(2) The frequency domain method : In this method the

assumption is that the separation of the template and random 

components can be achieved in the frequency domain assuming 
the following:

Fu(f) = FT(f) + FR(f) (3.2)

where F F™ and F_, are the Fourier transforms of the velocity u 1 K
time series, the template, and the random components.

As will be explained later, these two approaches are not 

equivalent and their advantages and disadvantages will also be 
discussed later especially with regards to the disturbance signal (or 

random components).
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3.2 Ensemble Average Analysis

In this section attention will be focussed on the time domain 

method suggested by equation (3.1). The template, (U(t)}, is

calculated by ensemble averaging several statistical samples ( a 

sample consists of a series of observations). In our case, ensemble 

averaging would be used to extract features of the velocity waveform 

that are consistent from beat to beat, and are characteristic of the 
ensemble under study. The characteristics of the ensemble may change 

for each level of occlusion. Before considering in detail the

application of the method to the velocity data, it is worth examining 
certain theoretical aspects of this useful statistical tool.

3.2.1 Ensemble Averaging

(a) General Theory

Mathematically, the ensemble average, {U(t)}, of a time series,
(u(t)}, can be represented by:( * denotes estimate)

M-l
U(nT) = l/M^u(nT+kTQ) (3.3)

k = 0

where n denotes the observation number, T is the sampling interval, M 

is the ensemble size, and T is the period of repetition. In the 

analysis which follows, a more simplified notation will be adopted ; 

it is based on Bendat(1964) where, for example, (u^(t)} is equivalent 

to {u(nT+kTQ} and <u^(t)> denotes the ensemble average over k, i.e. 

equation (3.3).

Using the model suggested in equation (3.1), equation (3.3) can be
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rewritten as follows:
M

U(t) = 1/M̂y ~ [ u
i=T

k(t) + u£(t) ] (3.4)

The ensemble mean and mean square values (size N) of {U(t)} are given 

by :
N

< U(t) > = 1/N > [ < Ui >+< u'> ] (3.5)
1 = J N

< U2(t) > = 1/N2< [ \  u. (t)]2 >
.1 = N

= i / n z [ 2 ^ <

i=T
Ui(t) > + X < Ui(t) UJ(t) >] (3‘6)

i , j =1

It will be assumed that the independent nonstationary random process
2{u'(t)} has an ensemble mean value of zero and a variance a ,(t).

Also, the coherent average U(t) at any time t has an ensemble mean
2value m(t) and a variance a^(t); i.e.,

< U.(t) > = m(t)

°u = < ui(t)> " m2(t) (3.7)

For the velocity signal under consideration, U(t), and u'(t) will be 

assumed independent, i.e.:

< U.(t) u'(t) > = 0

and u^(t) and uj(t) are statistically dependent, i.e,

ui(t) = U.(t) + u^(t)

(3.8)
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Uj(t) = U.(t) + u'(t) (3.9)

where U^(t) is recurrent in all samples. To obtain <U(t)> we 

substitute <U^(t)>=m(t) and <u^(t)>=0 in (3.5) to get :

< U(t) > = m(t) (3.10)

Obtaining <Uz(t)> is a more difficult task since we need to evaluate 
2<u^(t)> and <u^(t) u^(t)>. Since U(t) and u'(t) are uncorrelated, we 

2can write <u^(t)> as follows :

< u2(t) > = < U2(t) > + < uj(t) > (3.11)

Using equation (3.9) for u^ and u^ dependent we get

< u±uj > = < (Ui(t)+u'(t))(Ui(t)+u'(t)) >

= < Uz(t) > for i#j (3.12)

Replacing (3.11) and (3.12) in (3.6) we get :

< U2(t) > = l/N2 [N(<U2(t)>+<u:2(t)»+N(N-l)<U2(t)>]

= < U2(t) > + 1/N< u'2(t) >

or

(t)
u

+ - a It)
U  '

2a (t) 
u (3.13)
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Equation (3.13) shows that ensemble averaging filters out random 

components present in the original signal by reducing their variance 

by l/N. If N is large U(t) becomes a better estimate of the recurrent

underlying process U(t).

(b) Ensemble Averaging - a Filter Approach

Another interesting approach to the theoretical analysis of 

ensemble averaging is to consider it as a filter and to study its 

transfer function. The basic idea behind the ensemble average filter 

is that the present value in time is a weighted average of M past 
values separated by a period T , i.e.

M-l
U(t) = 1/M u(nT-kT ) w(nT-kT ) o o (3.14)

In our case, the window, {w(nT)}, is rectangular but it is possible to 

use a different window shape in order to achieve a better frequency 
response. To find the transfer function in the frequency domain, we 

will firstly consider the 2r- transform of equation (3.14) which is 

given by :

u(nT-k(TQ/T) T) w(nT-k(TQ/T) T}z- n (3.15)

where N is the number of points in the transform. Given that a 

rectangular window has {w(nT)=l} and interchanging the order of the
summations in equation (3.16) we have :

- k (T /T) o z
k=o
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Fig. 3.1 The comb filtering action of the ensemble average filter for different values 
of M i.e. the ensemble size. The frequency axis has been normalized.
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U (z) U (z)
M-l -k(T /T) o z

= u(z) ( - 
M

1-z 
1 - z

- M (T /T) o
-(T /T) o

(3.16)

This gives the desired transfer function H(z) which is :

H(z) = -
M

. ~M(T /T) 1-z_____o
n -(T /T) 1-z o

(3.17)

In the frequency domain i.e. for z=exp( j2 it m/N) this becomes :

_ . 2 7TmM
1 l-exp( N T )

H (mf) = -
M , . .27Tm T0 ,1-exp - i ---- —*  J  N T

or
H(mf) = (exp(-j. 2TTmT0 (M-l) sin (TrmMT0 /NT)

2NT ) ( ----------------------------------------------— )
M sin (TrmT0 /NT) (3.18)

which is a form of a comb filter as seen in Fig.3.1 for various values

of M. This filter seems to enhance frequency components that are

multiples of 1/Tq which is an accepted fact intuitively. Also, the

choice of M i.e. the size of the ensemble is important: not only does

a large M improve the signal to noise ratio (SNR) but it also improves

the frequency resolution of the filtered signal (i.e. the sine

function (sinx/x) at 1/T ,2/T , ...etc. has reduced width and reducedo o
sidelobes as M increases).
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Fig.3.3 Ensemble average velocity waveforms for 0,40 and 74% occlusion data.
Central curve is the mean of the ensemble averages and upper and 
lower curves are ±1 standard deviation.



70 -

(c) Application

In the analysis of {u(t)} i.e. the blood velocity signal, 100 

blocks of data (512 data points each) are ensemble averaged for each 

level of occlusion. The template U(t) is assumed to consist of the 

basic cardiac pulse, some periodic oscillations and other repetitive 

features. The random components in u'(t) are expected to be due to 

random velocity components like for example turbulence,and noise. 

Fig.3.2 shows ensemble averages of six levels of occlusion namely 0, 

20, 40, 58, 74 and 88%. The 20% to 74% ensemble averages show an 

increase in activity with increasing occlusion especially in the 

deceleration phase of the cardiac cycle. This activity is 'quasi' 

periodic and its frequency is low as we shall see when applying 

spectral analysis to the ensemble averaged data.

Because of the difficulty of obtaining 100 beats for the ensemble 

average under, clinical conditions, it would be advantageous to work 

with ensembles of 10 or 20 beats. To study the feasibility of using a 

small ensemble size, 100 set were divided into smaller sets of 10 or

20. The mean and standard deviation of the resulting 10 or 5 ensemble

averages are displayed in Fig.3.3 for the 0, 40 and 74% data.

Although the standard deviation seems to increase with increasing

constriction, ensemble averages of size 10 or 20 can produce a

reasonable estimate of the underlying process.

One serious disadvantage of this method (seen for example in the 

88% data) is the fact that it is very sensitive to phase jitter. In 

other words, the beats to be averaged have to be properly aligned 

before averaging can be performed.
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3.2.2 Phase Shift Averaging (PSA)

The ensemble of 100 beats obtained earlier on can be represented 

either as :

u(t) = U(t) + u'(t) (3.19)

or:

us(t) = U(t+D) + u'(t) (3.20)

where {ug(t)} is the shifted version of {u(t)} and D is a variable 

time delay. In order to obtain an accurate ensemble average, the 

delay D has to be estimated for each beat and then the beat has to be 

shifted by an amount -D. The method used to determine this time delay 

is to compute the cross correlation function given by:

ruus
(T) = E[ u(t) us(t + T ) 

T-l
]

1_
T u (t)u (t+T) s

T = 0

(3.21)

where T represents the observation interval. The argument that

maximizes equa.(3.21) provides an estimate of the delay. In the

frequency domain equa.(3.21) becomes ( B r a c e w e l l ,1978) :

R(f) = U(f) U*(f) (3.22)s

where U (f) denotes the complex conjugate of U (f). Hence one way of s s
estimating D is to take the Fourier transform of both the reference
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Fig. 3.4 The Phase Shift Averager
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signal (u(t)} and the shifted signal {u (t)} and then apply thes
relation given by (3.22) to obtain R(f), from which r (t ) can be

s
obtained. The cross correlation function r ( x ) is then searcheduu s
for its maximum and where that occurs (in time) gives an estimate of 

D.

The phase shift averager, based on a similar technique by 

Woody(1967), utilizes cross correlation with a template to align the 

individual beats {u (t)}, {^(t)}, ..., {uN (t)}. Its operation is

described schematically in Fig.3 .4 and can be summarized as follows:

A
(1) An ensemble average,{U(t)}, is obtained for {u^(t)},

{^(t)}, ..., {uN(t)}

(2) Its Fourier transform, U(f) , is calculated.

(3) Beat 1 to N are transformed: for each U (f), the complex 

conjugate is obtained and multiplied with U(f) to obain R(f).

The inverse Fourier transform is then calculated and.the 

resulting cross correlation function is searched for a 

maximum. Dn is obtained and used to shift the corresponding

beat.

(4) Once all the beats have been shifted, a new ensemble 

average is obtained which replaces the old template.

(5) Steps 1-4 are repeated until a convergence criteria is 

satisfied. We used the average delay which is defined as:

N

n=l
(3.23)
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Fig. 3.5 The original truncated sinewave used in the
simulation study of the phase shift averager.

Fig. 3.6 The effect of phase shift averaging on a 'lOO beat' ensemble of truncated 
sinewaves randomly distributed in time with random noise added.
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where N is the total number of beats.

Before application to velocity waveform data, the effectiveness of 

the PSA technique was demonstrated on a test signal which consisted of 

a truncated sinewave (Fig.3.5) to which has been added wideband random 

noise. The test data comprised one hundred truncated sinewaves 

randomly shifted in time to which random noise had been added. 

Fig.3.6 shows the effect of three iterations on the ensemble average. 

In addition to the noise being reduced, the hundred truncated sinewave 

signals which form the ensemble have also been accurately realigned in 

time.

The PSA method has proved to be very useful for the analysis of 

the 88% occlusion data. In Fig.3.7 an individual beat, its 

cros9-correlation function with the ensemble average, and the ensemble 

average itself are each shown for the first, fifth and ninth 

iterations. Most of the evolution of the ensemble average waveform 

occurs within the first few iterations. For milder degrees of

stenosis, convergence was much more rapid, usually no more than three 

iterations. A comparison of the first and ninth ensemble average 

waveforms in Fig.3.7 demonstrates that the coherent flow features are 

identified much better after phase shift averaging.

3.2 .3 Fourier Spectral Analysis of the Ensemble Average Waveform

The discrete Fourier transform (DFT) for a time series, {x(t)}, is 

given by : (w is normalized frecruencv)
N-l

exp(-jwt)
t=o

(3.23)
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Fig.3.7 Effects of applying the phase shift averaging technique to the 88% occlusion 
data.
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where w=2iTf, and f is the frequency. We will consider the ideal 

situation where the ensemble average waveform {U(t)} is a truncated 

cosine and will derive its theoretical transform. Let

U(t) = cos(wQt + 4> )

= 1/2 [ exp(j(wQt + <J) ) + exp(-j(wQt + <j) )] (3.24)

where w q is the angular frequency of the pulse. Ignoring the negative 

frequency part, we can represent the DFT of U(t) by (Bloomfield,1976):

U(w)
N-l

1/N^> U(t) exp(-jwt) 

t=° N-l
1/N { l/2exp(j 4>)̂ > exp(j(wo-w) t) } 

t=o

= 1/N{ 1/2exp ( j (J)) exp ( j (N-l)(wn-w)
2 1

sin { N (w0 -w) /2 } 
Nsin{ (w”-w)/2 }

(3.25)

The magnitude squared is given by:

nN(wp-w)/2  ̂
i n (w0—w )/2

(3.26)

U (w) N
si
Ns

and for N large and w small,

U (w)
2

tsf 1 sinN(w0 -w)/2 
2 N N(w0-w)/2

(3.27)
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Fig. 3.8 Amplitude spectra graphed for 20-beat ensembles and for occlusions 
varying from O to 74%.
In each Figure the central curve represents the mean value, while 
the upper and lower curves correspond to il standard deviation, 
a No occlusion b 20% occlusion
c 40% occlusion d 58% occlusion
e 74% occlusion
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Fig. 3.9 Cumulative amplitude curves for occlusion levels from O to 74% illustrate shift to 

higher frequencies as degree of occlusion increases.
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which has a peak at w = w and a first zero at w -w =2tt/N. Theo o
implication of this result for our data can be shown using a numerical 

example: given a cardiac pulse of 0.33 seconds duration (dog), then 

the peak of the function in (3.27) would be at approximately 3 Hz and 

the first zero crossing would be at 8 Hz. However, with a sampling 

frequency of 2560 Hz and a 512 point transform (DFT), the peak would 

appear to be at 5 Hz and we would not be able to observe the zero 

crossing because of 'leakage' effects from the higher harmonics. 

Leakage is introduced because each harmonic in the spectrum (i.e. 

delta function) is convolved with a sine function, found in eqaution 

(3.27) .

An important aspect of the analysis of ensemble average data is 

the determination of its frequency content for different degrees of 

occlusion. Figs 3.8 a-e illustrate the amplitude spectra obtained 

(using the fast Fourier transform,FFT) from 20-beat ensemble averages 

for the various degrees of occlusion. Each spectrum consists of a 

mean characteristic and two other characteristics which correspond to 

+ standard deviation. Two interesting features of the spectra are:

(1) The absolute, as well as the relative amplitude of the 

fundamental peak decreases as the degree of occlusion 

increases.

(2) The variability of the spectra, especially the high 

frequency content , seems to increase with an increase in 

occlusion level. This can be seen more clearly in the 

cumulative amplitude spectra shown in Fig.3.9.
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Fig. 3.10 The ideal transfer functions (f) and HR (f) for extracting
FT (f) and FR (f) in the model:

F (f) = F (f) + F (f) u T R

described in the text.
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3.3 Disturbance Velocity Analysis

So far, we have discussed ensemble averaging as a method of 

extracting coherent structures in the velocity waveform. It is also 

necessary to study random components derived using either the time 

domain model (equa.(3.1)) or the frequency domain method (equa.(3.2)) . 

Although there are strong similarities between the disturbance 

velocity waveforms extracted by these two methods, there are also 

subtle differences which make both techniques useful depending on what 

is being sought in the data.

In the first method , the disturbance velocity waveform , (u'(t)}, 

is derived from the velocity signal, {u(t)}, by subtracting the 

estimate of the ensemble average, {U(t)}, from it ,i.e.:

u'(t) = u(t) - U(t) (3.28)

for each block of data. The end result is 100 beats of {u'(t)} which 

are then processed to obtain the time-varying root mean square 

function (RMS) given by :
M-l

y < u ' ( t ) 2> = [ l/My~uj(t+kTo)2 ]1/2 (3.29)
k=o

where M is the ensemble size, and Tq is the period of repetition.

In the second method , the disturbance velocity waveform, {^(t)},

is obtained by high-pass filtering the raw velocity signal, {u(t)},

according to the model proposed in equation (3.2). The ideal

frequency response of the filter is depicted in Fig.3.10 and is

denoted by H0(f). An estimate of the random signal can be obtained K
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using the following relation:

u ^ ( t ) < & F R (f) = l y f )  Hu (f) (3.30)

The linear transition function shown in Fig .3.10 is only for 

illustration purposes; the function used is the Kaiser-Bessel function 

chosen to provide a smooth transition in the frequency domain and 

hence reduced leakage in the time domain. The Kaiser-Bessel function 

is defined by (Harris,1978) :

w (n)
Io (ira \ A ,0~ (N/2 ) 2)

i0 ("fa)

where

Io {x)

0« n <SN/2

(3.31)

where N is the total number of points, and tto. is half of the 

time-bandwid-th product. From the generalized uncertainty principle, 

the product of the mean-square time duration ,At, and the mean-square 

bandwidth ,Af, (i.e. the time-bandwidth product) should satisfy,for 

all functions, the following inequality (Bracewell, 1978) :

At Af > l/4tr (3.32)

The Kaiser function has the property that, for a restricted energy,
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Fig. 3.11 The Kaiser-Bessel window and its transform
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and a restricted time duration this function maximizes the energy in 

the frequency band Af. in other words, this function tries to 

concentrate the energy in the main lobe of its frequency transform 

given by :

N iinh [\/a27r2- (N0/2) 2]
W (0 ) =

i0 (7Ta) \Ja2n 2- (N0/2;

(3.33)

where 0=wT, T being the sampling interval. Fig.3.11 shows the 

Kaiser-Bessel function (a) and its transform (b) forCt=3.0. Notice 

that the sidelobes are suppressed to a level which is less than -60 

dB.

In order to obtain the disturbance velocity according to the 

scheme depicted in Fig .3.10, the Kaiser-Bessel function is chosen to 

give a -60 dB cutoff and f^ was in the region of 5Hz, assuming that, 

below that threshold velocity disturbances are non-existent. A 

hundred beats are filtered in this way and then the RMS time-variant 

function is obtained for each degree of stenosis.

To compare results from both models (i.e. equa.(3.1) and 

equa.(3.2)), a typical example of {u'(t)} and {u^Ct)} and their 

respective RMS functions for three degrees of stenosis namely: 20,40, 

and 74% stenosis (Fig.3.12) have been plotted. Some general remarks 

can be made about these figures :
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T IM E  DOMAIN MODEL FREQUENCY DOMAIN MODEL

Fig. 3.12 Examples of disturbance velocity waveforms and their 
respective RMS functions for 20,40 and 74% occlusion 
for both time and frequency domain models.
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(1) The major difference between {u'(t)} and {u^Ct)} is the 

fact that {u'(t)} has an additional low frequency trend which 

overshadows the high frequency components.

(2) This low frequency trend is also apparent in the RMS 

function of (u'(t)}.

(3) The initiation and spread of disturbances are more clearly 

seen in the RMS function of {u^(t)} than in that of {u'(t)} 

where the trend is the dominant feature.

(4) The time lag between the upstroke of the cardiac pulse and 

the onset of the high frequency signal, which we will call 

onset delay and denote by T , decreases considerably with 

increasing stenosis (see arrows in Fig.3.12) which is expected 

since the convection velocity increases with a higher 

constriction and the disturbances take a lesser time to reach 

the measurement site.

(5) For the lower degrees of stenosis the disturbances seem to 

occur in the deceleration phase of the cycle; while for the 

higher degrees (e.g. 88%) the disturbances are also apparent 

in the acceleration phase.
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The results manifest the complexity of the velocity field and 

emphasize the importance of using both techniques for the description 

of this field. The overall statistical behaviour of the signal can be 

characterized using ensemble and/or phase shift averaging while a more 

detailed study of the high frequency activity of the signal requires 

the high-pass filtering technique already described. This high 

frequency activity is of a stochastic nature and its analysis requires 

more sophisticated signal processing techniques which are the focus of 

the coming chapters.
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CHAPTER 4

CHARACTERISATION OF THE VELOCITY WAVEFORM : AUTOREGRESSIVE METHODS

In attempting to comprehend the blood velocity waveform with all 

its complexity, we have come to appreciate the attractiveness and 

usefulness of autoregressive modelling as a stochastic tool. Its 

rapidly developing theory and the interest of a wide spectrum of 

researchers in its application have facilitated its adaptation to our 

requirements. Its importance to our work lies mainly in its spectral 

estimation ability i.e. the Maximum Entropy Method which poses a 

strong challenge to the conventional Fourier methods. Nevertheless, 

its use should be coupled with a deep theoretical understanding 

otherwise little knowledge could prove to be a dangerous thing.

4.1 Autoregressive (AR) Modelling

The stochastic model used in the anlysis is based on the idea,

(Yule ,1927), that a correlated time series, {y(t)}, can be regarded

as generated from an uncorrelated series, {e(t)}, drawn from a fixed
2distribution usually Normal and having mean zero and varianceag . 

Such a sequence, i.e. {e (t)}, is usually termed as a white noise 

process . This white noise process is transformed into the process 

{y(t)} by means of linear filter as shown in Figure 4.1.

The output of the filter is a weighted sum of previous 

observations of {e(t)} i.e. a moving average process (MA) written as 

(Box and Jenkins ,1976):

y = e + b.e , + b „ e  _ + ...;n n 1 iv-1 2 n-2
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WHITE NOISE
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B ( z )
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--- »
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Fig.4.1 Representation of a time series as 
the output from a linear filter.
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Fig.4.2 The operation of the forward and backward 
prediction filter.
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■ en + Ylb e m n- m (4.1)
m=l

where b ^ ^ ^ ^ , . . .  are the weights or the MA parameters. Using

bp = 1 , we can rewrite equation (4.1) as follows :
CO

b e ^  m iv-m (4 .2)
m=o

Taking the Z-transform of (4.2) we obtain :

Y(z) = B(z) E(z) (4.3)

Equation (4.1) can, under suitable conditions, be written as a 

weighted sum of past values of {y(t)} plus an added noise, {e(t)}, 

i.e. an autoregressive (AR) process as follows:

, , - a.y - ... + en l'n-1 z n-2 ny„ = - a.y.

+ e/ m nrm n (4.4)
m= 1

Rearranging (4.4) and setting aQ = 1 we get
00

Im=oa y  = e m n-m n (4.5)

Its Z-transform is then

Y(z) = E(z)./ A(z) (4.6)

The condition for (4.4) to be equivalent to (4.1) is that the poles of 

B(z) should lie inside the unit circle of the Z-plane (see 

Dorf( 1980) ,p .439) which implies that the series b jb^ ,... is
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covergent. If they are equivalent, then we can write A(z) in terms of 

B(z) as follows:

A(z) = 1 / B(z) (4.7)

In practice, the parameters of the AR model are finite and the number 

of parameters is a very important factor in fitting the model.

Returning to equation (4.4), assumimg a finite model order M, 

multiplying by y , , and taking the expected value we obtainDf- K.

E[ W k  1 -  a l Et V t V l  1 + a2Et V k yn-2 1 + •••
+aMEl V f c V d  1 + EI V k en 1

Y k a lYk -l + a2 Yk-2 + *** + aMy k-M' k-M (4.8)

where y is the covariance. Dividing by y the autocorrelation form is 

then

Rc a iP k - l  + a2 ^k-2 + “ • + aH Pk- M (4.9)

Subtituting k=l,2,...,M in (4.9) gives

pi  =  a l  + a2 P1+ .... + aMp^.1
p2 = a lpl + a2 P? + ••• + ^ ^ 2

^  a l 1 + a2PM-2 + * *’ + aM
These equations are known as the Yule-Walker equations which, 

rewritten in matrix form, are



93

Pi  
P 2

M

1 Pi  
Pi  1

PM PM-1

M-l 
>M- 2

1 M (4.10)

A different representation of the Yule-Walker equations can be 

obtained if we consider the case where k=0. For k>0 we assumed that
9E[ y ,e ] = 0, but with k=0 E[ y e 1 =0 i.e. the variance of the n-k n ‘ 1 •'n n J e

innovation noise, and equation (4.9) becomes :

PQ = a P̂̂  + a2P2"*" . * .  + aj , ] P ( 4. 11)

This allows us to augment equation (4.10) which then becomes
_ r 2-i . _
Po Pi * * P "l a e p M+l
Pi Po • • DMM-1 " a i 0 0

• • •• • •

sCL
___1 1—1 1S
Q. * * Po _- a M 0 0

(4.12)

Solving these equations for the AR parameters, is one of the

methods commonly used to obtain a reasonable estimate of AR

coefficients. Another method, the Burg technique (Burg ,1967) , is

the one used here. Its main advantage is that it does not require

prior estimate of the autocovariance function. In this scheme,

estimates of the AR parameters are obtained by minimizing the average

of the sum of the forward and backward prediction energies i.e. :
N-M

E M  =  \  T T ~ T T  Y "  I f (n) I 2 + |b (n) I 2H 2 N-M / M M
n= 1

(4.13)

where N is the number of points, and f^(n) and b^(n) are t-'ie f°rward
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and backward errors respectively and are defined as follows:

fM<n> yn-yn 'n
M

]>ZaMmy n-t-m m=l
-  M

^ ( n) yn+-M - yn4-M ^  aMmyrH-M- m
m=l

(4.14)

tilwhere a ^  denotes the in coefficient for a given order M. Figure 4.2 

gives a pictorial description of the filtering process that results in
A  A

obtaining estimates y and y ... from which f.,(n) and b..(n) can be 

derived.

Vital to the Burg algorithm is the Levinson (1947) and Durbin 

(1960) recursive procedure which takes advantage of the Toeplitz 

(equidiagonal) form of the covariance or correlation matrix in (4.10). 

The recursion will be illustrated by considering a simple example:

Given a set of coefficients [ a 2 1 >a 22 ]> and a3 3 ( a 33 is obtained
9e (a )

by solving -- r---±jL—=q as will be shown later on ) , we will obtain
9a33

a^ and a ^ * Using equation (4.10) and setting M=3, we get

P 0 Pi  P 2 a 31 ’Pi"
Pi  P 0 Pi a 3 2 = P 2
P 2 Pi  P 0 .a 33. P 3

If we now consider the first two equations, i.e.

P . . 3 l  + P . a 32 + P 2a 3 3 -  P.

P 1 a 31 + P 0 a 3 2 + PlS33 ’ P!

we can now represent a^ ̂ and a^^ in terms of a^^ as follows
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P 0 a 31 + P 1 a 3 2 " P l " a 3 3 P 2 

+ P ° a 32 = Pz_ a 3 3 Pl

or in matrix form

'Po Pl' a 31 Pi'

—  a

P z

33
Pl Po ,a 3 2. P 2 Pi

letting

R (1) =
P o P 1

P l P o

we can write the above equation as

"a 3 1"
-1

'Pi'
-1

' Pz

= R(l) - R (1) a 3 3

a 3 2_ P 2 Pi

(4.15)

Going back to equation (4.10) and setting M=2 we get

'po Pl' a 2 1 ■p r

_p ! P 0 a 2 2. P 2
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or

a 2 1 _  I Pi

= R ( l )----1
CMCM P 2

Replacing this relation into equation (4.15) we get

a ̂ , a a31 21
- a

22
33

a _ a ~ a32 22 21

(4.16)

which is the required recursion.

The next step is to derive the recursion for the prediction error 

variance, , in terms of . For this we need equation (4.12) with 

M=3 i.e.

P 0 Pi  P 2 P 3 

Pi  P 0 Pi  P 2

1

_a 31
P4
0

P 2 Pi  P 0 Pi _a 3 2 0
P 3 P 2 Pi  Po _a33 0

This can be

P o Pi 

Pi P o 

P 2 Pi 

P 3 P 2

rewritten using (4.16) as follows

P 2 

Pi 

Po 

Pi

P 3 ( 1

P 2 “ a 21
Pi

-
_ a 22

Po 0
-

'33

O
-a
-a

V\

22
21

O
O
O

V
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and then decomposed giving

-a 33

0
0
O
0

O
O
O
O

Po 

Pi  

P 2 

o

o 
Po 

Pi  

P 2

Pi

Po
Pi

o

o
Pi

Po

Pi

o

i f
_a21
"a22

C
+c

- 0 If

0 c
_a22 c+
'a21 c
1 c

o
o
o

0
o
o

P 3 P 2 Pi  o

Pi  P 2 ft 

0 0 0 
0 0 0 
O O 0

1
-a
-a

O
-a
-a

21
22

22
21

P 14i
O  i
O
o

Letting x = p 3 ~ P 2*21 ~ Pia22 ’ We get

P.

a 3 3'

X v
0 = 0

0 0

_ P 3^
0

or

P 3 - a 33X ’ P4

X - a33P3 ' °

which gives

P4 P3 ( * " Ia33I ^ (4.17)

Equations (4.16) and (4.17) form the crux of the Levinson algorithm, 

which generalized can be written as follows (Andersen ,1974) :

aMm = - 1

aMm aM-lm" aMMaM- 1 14-m

aMm 0

for m=0 

for m=l ,2 , ... ,M- 1 

for m>M

(4.18)
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and

PM = P„ . ( 1 - a I )M M- 1 1 M M 1 (A.19)

Hence, if we are given the coefficients and variance for order M-1 and 

using a ^  which is derived by the Burg algorithm, we can estimate the 

rest of the coefficients for order M.

To get a^, it is necessary to minimize the average forward and 

backward power given by equation (4.13) which is rewritten as follows:
N - M

M . i -i- y2 N-M - Z—

M M
. 2 . \ 2 a y ) + ( / a v )—  ̂ --  Mm^n+m ^—  Mnrn + M-mn=l L m=o m=o

Representing a ^  as in equation (4.18), we get
N - M  r  M

'M 2 N-M "M-lmn = l L m=o
E„ = rr~ ? (2 a.. . y -an + m  a MM a M - l M - m ^ nm = o + m

M M
+ (> a v - a \  a v • )•+•—  M-lm n+M-m MM M-lM-m1 n + M-mm=o m=o

Letting 

b
M M

a y = / a yMn —  M-lm n + m z—  M-lM-m n+M-mm=o m=o
(4.20)

M M
>1 = > a y = aMn M-lm n + M-m -4—  M-1M-m = o m = o

ym n+m (4.21)

we obtain

1 1
EM 2 N-M

N-M _

n = 1
(b -a b ’ )2 + (b 1 -a b )2Mn MM Mn Mn MM Mn (4.22!
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Fig.4.3 Flow diagram of the Burg algorithm.



100

D i f f e r e n t i a t i n g  (4.22) w i t h  r e s p e c t  t o  a ^  g i v e s :  

3e .M
3 a = O

MM N - M
. -i. yN-M / - (b -a b ' ) b ' - (b ' -a b ) bMn MM Mn Mn Mn MM Mn Mn = O

n = l

this gives
N-M N-M

a = 2 b b' / (b2 +b ' 2 )MM Mn Mn - Mn Mnn=l n=l

(4.23)

Useful recursion formulas for bw and b' can be shown to be (usingMn Mn
equation (4.18) and equation (4.2 1) ):

bMn bM- In " aM- 1M- 1 bM- In (4.24)

U * _ V *
Mn “ M-liri-1 aM-1M-1 bM-ln+1 (4.25)

Starting values are

b = y In Jn

w -26)

Finally, a schematic representation of the Burg algorithm could be 

seen in the flow diagram of Figure 4.3 where b^ and b̂  denote b ^  and 

b' respectively and P(0) is the initial variance of the prediction

error.
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4.2 The Maximum Entropy Method (MEM) of Spectral Estimation

Having estimated the AR parameters using the methods described, 

the next step in the analysis procedure is normally the calculation of 

a spectral estimate of the underlying process which can be derived 

from these coefficients. The resulting power spectral density (PSD) 

has certain advantages in relation to conventional spectral estimates 

like the periodogram and the Fourier transform of the autocorrelation 

function.

In the periodogram method , it is assumed that outside the data 

interval the record is periodic with period equal to the length of the 

data inerval. The data in the interval is transformed and the power 

spectrum is estimated as the square of the resultant Fourier 

coefficients. A window function is frequently used in an attempt to 

reduce the effect of discontinuities at the two ends of the data.

In the traditional autocorrelation method , the autocorrelation 

function is estimated from the data and an estimate of the power 

spectrum is obtained as the Fourier transform of the estimated 

autocorrelation function. The assumption here is that the 

autocorrelation estimates are zero outside the data interval hence it 

is customary to taper the known autocorrelation estimates smoothly 

into the assumed zero values.

Unlike conventional methods, the Maximum Entropy Method does not 

make assumptions about the data which lie outside the interval of 

interest. These assumptions that constrain the data to be either 

periodic or zero outside the known interval are usually incorrect and 

often result in a poor spectral estimate. The MEM is a spectral
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estimation method which is consistent with the prior knowledge i.e.

the known data and is maximally non-committal with regard to

unavailable data. It can be interpreted as predicting the

autocorrelation function of the available time series by maximizing 

the entropy, where entropy here is a measure of our ignorance about 

the actual structure of the system (Brillouni,1956). The aim is to 

make sure that no information is added (i.e. no assumptions made ) as 

a result of the prediction process. The relationship between entropy 

and uncertainty or ignorance is formulated in the Jaynes Principle 

(Jaynes, 1963;1968) as follows:
The prior probability assignment (i.e. the probability 

distribution to be estimated) that describes the available information 

but is maximally noncommital with regard to the unavailable 

information is the one with maximum entropy.

The relationship between entropy rate, H, and the spectral 

density,S(f), of a stationary Gaussian process is given by (Smylie et 

al. ,1973) :

H =
+ fN
log( S( f) ) df

N

(4.27)

where f is the Nyquist frequency. From the Wiener-Khinchin theorem, 

the power spectrum, S(f) , is related to the autocorrelation function 

R(t) of the process by :

S(f)

+ CO
R(T) exp(-j2TTTf) dx (4.28)

Following the principle of maximum entropy, H is now maximized with
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respect to the unknown autocorrelation 

constraint that S(f) is consistent 

assumed known autocorrelation values.

can be written as follows:

f  + f “r(T) = I S(f) exp(j27Tfr) df 

-fN

coefficients subject to the 

with the known , or at least 

In equation form the constraint

(4.2 9)

Using the method of Lagrange multipliers (Srinath and 

Rajasekaran,1979), we can define an augmented function H'(R(t ),X ) 

where { X } are the Lagrange multipliers and maximize H' and set to 

zero as follows :

T = M
3H’ _ 3H V ~  , 3r (x )

3R(t ) 3R ( t ) l _ K t 3r (t ) °
T = "M for

(4.30)

where {XT} are positive and symmetric,i.e,

-T (4.31)

Using (4.27) and (4.2 9) in (4.30) , we obtain: 
+ f

f - ........... ■
'N
as (f) . i i . _

(~r~r~ " „ , * v X .exp(j2rrfr) )df =0
-f

3R (T ) 4 f S ( fN T = —M T
N

(4.32)

The solution is

1 
4 f

M
N XTeXp 27TfT) 

T = —M

S(f) =
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_______ 1_________
M_

c *exp(j2TTfT) 
X = —M T

(4.33)

where c =4f.T\ . Now for x = nAt and replacing (4.33) into (4.29), weT N T
get

r (nAt) =

-f

+ ff  N: / exP/ M
J TL- m=-M

exp ( j 2TTf nAt)
c exp ( j 27TfmAt) m OCn<M

N

(4.34)

If we take the Z-transform of equation (4.34) where z=exp( j27rf At) and

df= — -̂(— ) we get j 77 z

r (n) 'N
jTT

nz

n-1z
M

m=-M
mc z m

dz

z

dz
(4.35)

where the contour integral is applied to the unit circle in the 

Z-plane. Since the coefficients {cm } are positive and symmetric ,

they can be decomposed as follows (Robinson ,1967):
M M M

Z m \ m \  -mc z = > q z  > g z
m /  m Z _  m

m=-M m=o m=o

= G (z ) • G (1 / z ) M M
(4.36)
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with
M-m

m ■ I gkgk+m
k=o

Hence equation (4.35) can be written as follows:
n-1

r (n) =
-  / C (z)Gm (1/z ) M M

dz

M

Im=o
g r (n-m) = m - /

n-1

GM (l/z)M
2 fN

dz

for n=o 

for n= l ,2 ,. " M (4.37)

i.e. since the polnomial G^(l/z) has no zeros inside the unit circle 

for n^l, the integrand in (4.37) is equal to zero (Cauchy's residue 

theorem ). However, for n=0 the integrand has a simple pole at z=0 

with the residue equal to 1/gQ.
Comparing our result with equations (4.12) we find that (4.37) has 

a similar form with

2 f
gm =

N
P„ , m M + l

(4 .38)

Equation (4 .36) becomes

M
mc z m

m = -M

2 fN
M + l

A (z) A (1/z) M M
(4.39)
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where Am(z) is the transfer function of the prediction-error filter. 

Finally, in order to obtain the maximum entropy spectral estimate, we 

substitute (4.39), with z=exp( j2tt f At) , in (4.33) and obtain

S (f)
M + l

M
2f |l + a exp (-j 2irmf At) N ' mm=l (4 .40)

in (4.40) signifies that if we were to convolve the Mfl

coefficients a^ja^, ... ,aM with the time series y ^ ^ ,  **•»% t*ie
resultant variance (or power) of the error would be equal to p„ ..rrl-1

The maximum entropy spectral estimate (MESE), S(f), has a number 

of important potential advantages, the principal ones being improved 

resolution over conventional estimators and the continuity or 
smoothness of the AR spectral estimator. The resolution, or the 

ability to resolve two frequency components, of conventional

techniques is dependent on the record length and on the number of 

cycles of the fundamental frequency,f^. As a general rule Fourier 
spectral analysis requires a minimum of approximately five cycles of 

f^ for reasonable resolution (Bergland,1969) . On the other hand, the 
MESE is convenient for short records since this estimate is based on 

an infinitely long autocovariance function and can be obtained with as 

little as one cycle of the fundamental frequency (Ulrych, 1972). The 

MESE has also the property that, given a correct determination of the 

AR order, it is optimally smooth in a least-squares sense (Ulrych and 

Ooe,1979). This makes the spectrum continuous unlike Fourier
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estimators where the spectra can only be defined in terms of the power 

at harmonics of the fundamental frequency, so that if a true component 

lies between two harmonics, its power will be divided.

4.3 The Statistical Identification of Model Order

A crucial point in estimating maximum entropy spectra is the 

determination of the order of the AR process, M. This order
determines not only the resolution of the estimate , but also the 

smoothness. In the present study some statistical methods of

determining an optimal model order, M t, using the available data 
record(s) have been considered. These are:

(1) The Final Prediction Error

(2) The Autoregressive Transfer Function Criterion

(3) The Akaike Information Criterion

(4) The Modified Akaike Information Criterion

The application of these criteria to time series will be discussed 
in a later section.

General Definitions

(1) The Final Prediction Error (FPE)

The final prediction error is defined by Akaike (1969) as the 
expected variance of the prediction error when an autoregressive model 

fitted to the present series of {x(n)} is applied to another 

independent realization of {x(n)}. Hence, considering the time series 
(x(n) ,n=l,2,...,N} then

FPE of x(n) = E[ (x(n)-x(n)) ]
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where x(n) is the value estimated from the AR model. Akaike (1969)

has shown that the FPE consists of two components : the first

corresponding to the error of the best linear predictor for a given

model order, and the second due to statistical deviation of a„(m) fromM
a^(m) where a^(m) is the mL estimated model coefficient for order M 

and a..(m) is the true coefficient. As the model order increases the 
first term in the FPE decreases. The second increases for a given 

length N of {x(n)}. The result of Akaike's derivation can be stated 
as :

FPE(M) N + M + 1
N - M - 1 M

(4.41)

where P is the output error power of the filter. P^ decreases with M 

while the other term which is due to the fluctuations of a^(m) 

increases with M. The FPE function has a minimum, M . , for which M 

will be optimal, i.e. the optimal model order. This is only true if 

the stochastic process under observation is an AR process generated 

from a strictly stationary and mutually independent innovation. The 

relative FPE (RFPE) defined as :

(FPE)
(RFPE) = -------M (FPE) o

(4.42)

where

(FPE) N + 1 
” - 1 MO N
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is the one implemented in practice.

(2) The Autoregressive Transfer Function Criterion (CAT)

This method was developed by Parzen(1974) for determining the 

order of an AR model. The optimal filter order is obtained when the 

estimate of the difference in the mean-square errors between the true 

filter, A(z), and the estimated filter, A(z), is minimum i.e. when

the following quantity is minimized (Sawaragi, Soeda and

Nakamizo,1981):

Parzen showed that this difference can be calculated without 

explicitly knowing the exact filter (Haykin and Kesler,1979) i.e.:

+ 1/2

df

(4.43)

M
CAT(M)

(4.44)

where in this case the knowledge of P P2 »...,P^ is necessary for the 

estimation of CAT(M).

(3) The Akaike Information Criterion (AIC)

This criterion, due to Akaike (1973), is based on the minimization 

of the logarithm of the likelihood function of the prediction-error



n o

variance as a function of the filter order M. Assuming the process

has Gaussian statistics, the AIC to be minimized is :

AIC(M) = ln( p ) + 2M/N (4.45)

It is interesting to note that the FPE and the AIC are asymptotically 

related as follows :

lim [ ln( FPE(M) ) ] = AIC(M) (4.46)N-,00

Also, the term 2M/N in equation (4 .45) introduces a penalty on 

choosing too high a model order i.e. the AIC increases for increasing 

M.

(4) The Modified AIC or BIC
Critical evaluation of the statistical behaviour of AIC shows that 

the minimum AIC does not produce a consistent estimate of the order 

even when the system has a clearly defined finite order (Akaike,1970 ; 

Shibata,1976). Akaike (1977) suggested a modified criterion whose 
minimum produces a consistent estimate of the true order when this 

does exist. This new criterion, termed BIC by Akaike, is defined as 

follows (Akaike,1978) :

BIC(M) (N-M)In(S (M) N-M + M 1 n (S (o) -S(M)M '

(4.47)

where S(M) is N times the maximum likelihood estimate, assuming 

Gaussian statistics , of the variance of the prediction error. The
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usefulness of the BIC becomes apparent when it is applied to different 

records derived from the same stochastic AR model. Since in these 

records the AR model is the same yet there is some variability caused 

by either noise or outliers (e.g. spikes,steps etc...) in the data, a 
criterion that provides a consistent estimate of model order is 

indispensable.

4.4 AR Analysis of Ensemble Average Waveforms

In terms of signal analysis the velocity ensemble average waveform 

is a time series of a relatively short duration. As discussed before, 
the resolution of FFT methods (in this case it is 5Hz) is not good 

enough for detecting the main harmonic. Furthermore, with the Fourier 

methods the spectral content of a waveform can only be defined in 

terms of the power at harmonics of the fundamental frequency, so that 

if a true component lies between two harmonics, its power will be 

divided. Provided the correct model order is chosen, the MESE 
provides a better resolution and is continuous; thus in a way it is an 

'interpolated' version of the FFT estimate.

4.4.1 Model Order

The ensemble average velocity waveform consists mainly of coherent 

structures which are not removed during the averaging process and 
hence constitutes a weakly stationary process. For a weakly 

stationary time series of length N, low values of model order give 
insufficient resolution due to a smoothing effect of the true 

spectrum. Conversely, large values of M produce a peaky spectrum with
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statistically erroneous estimates (Haykin, 1979) . We have studied the

effect of model order on the spectrum of the ensemble average velocity
waveform and other simulated signals. Two model order criteria were

used : The Final Prediction Error (FPE) and the First Zero Crossing

(FZC) of the autocorrelation function.

By way of an example we applied the FPE criterion to a simulated

4t*1 order stationary AR process. Figure 4.4(a) shows a realization of 
tilthe 4U order AR series:

x(n)=-a1x(n-1) - a^xCit-Z) - a^x(n-3) - a^x(n-4) + e(n)

(4.48)

»

where

a = -0.2373 
a2 = +0.1940 

a3 = -0.6312 

a4 = +0.72 93
9and e(n) is a Gaussian bandlimited white noise source of -variance a .e

Comparing the power spectrum obtained using the FFT, Figure 4.4(b), 
with the theoretical MEM spectrum, Figure 4.4(d), calculated from the 

coefficients by applying equation (4 .40) , it is clear that the FFT 

spectrum has some random fluctuations. The Burg MEM, Figure 4.4(c), 

for M=256, N=512, overspecifies the model order resulting in a
spurious spectrum with peaks not representative of the true frequency 

content of the time series. The FPE gives a minimum at 4 (Figure 
4.4(e)) which is the correct model order for the process. Note that 

the FPE in this case is characterised by sharp fall and then rise
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Fig.4.5 Low model order applied to the 88% occlusion
ensemble average waveform, (a) The time series, 
(b) AR spectrum, model order 3 using 512 data 
points.
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(Figure 4.4(e)) and therefore is of a form consistent with the Akaike's 

criterion. The mean output power of the filter , Figure 4.4(f), drops 

sharply for M<4 and continues decreasing with higher model orders but 

at a slower rate. For M=4 the spectrum is consistent with that 
predicted theoretically.

The FPE for the 88% velocity ensemble average waveform (Figure 

4.5(a)) gives a minimum at M=3. The corresponding spectrum is 

illustrated in Figure 4.5(b). Note the overall smoothing of the 

spectrum and the large component at zero frequency. It is clear that 
the optimal order chosen by the FPE criterion has resulted in a bad 

estimate with very poor resolution. This result is typical for the 

application of the FPE criterion to ensemble averaged blood velocity 
waveform data.

An alternative criterion based on the first zero crossing of the 

autocorrelation function (the FZC criterion) gives a much improved 

estimate. As shown in section 4.1, the model coefficients are related 

to the autocorrelation coefficients by .the Yule-Walker equations 

(Equations (4.10)), the size of the autocorrelation matrix being equal 

to the model or filter order. It will be shown that the resolution of 

a harmonic in the MESE is a function of how well the extension of the 

ACF based on the Burg estimte matches the true ACF, which lies in the 
range +<» . The accuracy of the prediction of the ACF depends on the 

model order and there is a minimum requirement for model order M, the 

FZC of the ACF.

For a typical signal of N sample values, the ACF can be calculated 

directly in the time domain over a maximum shift range of + (N-l) lags
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Fig.4.6 Half sinewave test signal with bandlimited random
noise added, (a) The time series, (b) Burg AR spec
trum - model order 128, 256 points, (c) Autocorre
lation function of waveform 'a' together with the 
'exponential' AR extrapolation.
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or + (N-l) T seconds, where T is the sample interval. Given M AR 

coefficients, the ACF can be extended recursively beyond this point. 

Hence the ACF can be represented by :

Rxx ( n ) for |n|

r (n) = -xx

- Im = T
a r (n-m) M x for |n|>M

(4.49)

where R = true ACF and r = calculated ACF. For a sinusoid of xx xx
frequency fp the ACF is a cosine with the same frequency and the 
expression in (4.49) is equivalent to multiplying the true ACF with a 
window whichr can be defined as :

1.0 for |n|*M

w ( n) = -

f (n) for |n|>M
(4 .50)

where the shape of f(n) is dependent on M and on the noise level in 

the original time series.

A simulated single beat was used to investigate the effect of a 

window on the spectral estimate. The simulated beat is illustrated in 

Figure 4.6(a) and consists of a 1Hz sine wave to which Gaussian white 

noise- standard deviation 1 - has been added. The section of the beat

used in the calculations is 0.45 of a cycle (sampling rate 64Hz), the
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point of primary interest being how effectively the AR method can

resolve the fundamental frequency for this fraction of a cycle. For

the FPE minimum model order (M=4), the Burg spectrum (Figure 4.6(b))

has a primary peak at f=0. The true peak at 1Hz is not resolved. The
ACF of the signal (Figure 4.6(c)) shows an exponential decay in the

theoretical function as the number of lags is increased beyond 4.

Referring to equation (4.49), this corresponds to the condition | n|>M

where the observed ACF, rxx(n)> can be described by the product of the
true ACF, R , and a window function w(n). Here,X X

rxx(T ) = exP ( “aT ) cos ( wx) (4.51)

where exp ( -aT ) is the window function and T the time variable of 

the ACF (Figure 4.6(c)). In the frequency domain the window is 
convolved with the 1Hz spectral component and produces resultant power 

in the zero frequency region (see Figure 4.6(b)). As the model order 

is increased the unity range of the window expands (Equation (4.50)), 

i.e., r ^  = Rxx» for n<M, and the low frequency resolution improves. 
Figure 4.7(a) shows the Burg spectral estimate for M=16 from which it 

can be seen that the 1Hz component has been resolved.

In the Tr- plane the interpretation of the ACF window is as follows: 

A sinusoid, i.e. sin ( w^t ) has the following Z-transform :
(sinw0T)z

F ( z ) = — ---------------------
z - ( 2 co sw0T ) z + 1

(4.52)

Equation (4.52) corresponds to two poles on the unit circle
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Fig.4.7 AR spectrum of the test signal (Fig.4.6(a))
decimated to 64 data points, (a) Model order 
16. (b) Model order 32.
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z^ = expC+jw^T) and z^ = expC-jw^T). The quality of the AR model

representation of the sinusoid depends on how close the poles are to

the unit circle. The Burg MESE restricts the poles to within the unit

circle (Claerbout, 1976), which happens to be a sufficient condition

for an AR process to be stationary (Pagano,1973). However, the

further away from the unit circle the poles are, the more severely
convergent is the prediction of the ACF. If the decay of the ACF is

assumed to be exponential, which is consistent with what is observed

in practice, than it can be represented by exp(-t/Tc) where Tc is the

time constant. T in this case controls the width of the transform of c
the window which is inversely proportional to Tc and hence to the 

resolution of the ME spectrum.

The basis of the FZC is that M=16 corresponds to the point where 

the ACF crosses the time axis, i.e. n=16, and is also a function of 

sampling rate. Hence, the FZC criterion provides a reliable means of 

obtaining the minimum model order consistent with adequate low 

frequency resolution. Figure 4.7(a) shows the AR power spectrum

calculated for a model order of 16. Referring to the figure the 
fundamental frequency is now clearly resolved in spite of the fact 

that the original time series is only 0.45 of a cycle. With M=32 

(Figure 4.7(b)) there is peak splitting due to a noise component close 
to f=lHz, indicating that the model order is too large.

The need to compromise between good low frequency resolution and 

modelling of noise components is of importance in AR spectral 

estimation. The previous example illustrates that increasing model 

order moves the 'harmonic' poles towards the unit circle. However,
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the noise poles will also move closer to the unit circle (Kay,1979) ; 

and if the model order is too high, this will cause the appearance of 

'false' peaks, or peak splitting, in the spectrum. Hence an optimum 

model order to produce good low frequency resolution should be high 
enough to achieve this objective while at the same time not be too 

high in order that problems with noise poles are avoided. This can be 
achieved by using the FZC criterion.

4.4.2 Decimation and Spectra

Choosing an optimal model order is only one factor in improving 

the resolution of the MESE of the process consisting of one harmonic 

or more. Another important factor is decimation, whereby reducing the 

sampling rate while still using the same model order would produce a 

vaste improvement to resolution. A heuristic explanation of this 
phenomen can be given as follows :

A fundamental aspect of AR modelling is that the model (order M) will 

attempt to describe the entire frequency range , [ 0 ,fg ] where f is 

the sampling frequency. In the Z domain this means spreading 11/2 

poles over the upper half of the cicle - [ 0 ,f^ ] where f is the 

Nyquist frequency. Therefore, if the sampling frequency is 

significantly in excess of twice the highest frequency of interest in 
the signal, the AR model will include an estimate of at best 

irrelevant signal information and, at worst, noise. It is therefore 

often important to decimate the original signal (i.e. the oversampled 
signal) prior to modelling.

To illustrate this point, we will consider an example based on the
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Pig.4.8 Poles of the autoregressive model: (a) explains
the smoothing effect observed in the AR spectrum 
of Fig.4.5(b) , (b) demonstrates the effect of
decimation on the spectrum as seen in Fig.4.9(c)
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ensemble average data. The FFT spectral analysis has shown that this 

signal , sampled at 2560Hz, does not have any significant power 
components above 100Hz. In terms of the Z-plane representation the 

100Hz band would be the sector of the circle defined by 0 = 14.4° 

(see Figure 4.8(a)). Within that sector three poles can be seen , two 

of them sitting on the real axis (see arrows). The poles on the real 
axis correspond to the high magnitude D.C. component seen in the 

spectrum. By decimating the time series to a sampling frequency of 
320Hz we can see from Figure 4.8(b) that the 100Hz sector has been 

extended to 9 = 112.5° and that the spectrum has a much better 

resolution. Notice too that the conjugate poles of the main harmonic 

(see arrows) are now close to the unit circle. Hence, by decimating 

from N=512 to N=64 while still retaining the same model order M=16, we 

have improved considerably the resolution of the MESE.

The application of decimation and the FZC to ensemble average

waveforms for 0,20,40,58 ,74 and 88% ooclusion levels produced spectra

with better resolution than the FFT spectra especially when the

duration of the time series is less than one cycle. Figures

4 .9(a)-(c) illustrate the use of the FZC criterion in defining model 

order for velocity data for three different levels of occlusion 0,40 
and 88% respectively. The original sampling rate was 2560Hz but 

because the ensemble average velocity waveform comprises low 

frequencies only, the signal was decimated by a factor of 8, i.e. to 

a new sampling rate of 320Hz. In all three cases, it was clear from 

the ACF's that the FZC occurred at n=16. Consequently, applying the 

FZC criterion , we set the model order to 16. Referring to Figures
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♦

Fig.4.9 AR spectra of ensemble average velocity 
waveforms, 512 decimated to 64 points, 
(a) 0% occlusion, (b) 40% occlusion.
(c) 88% occlusion.
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4.9(a)-(c), there is a primary peak in all three at f<5Hz. It should 

be noted that at the decimated sampling frequency the number of data 

points per cycle is 64, hence, as in the previous example, the FZC 

occurs after a quarter of a cycle. Also, an important feature of t-he 

spectra in Figures 4.9(a)-(c) is the increase in high frequency 

activity with increasing percentage of stenosis. This is consistent 

with the results discussed in chapter 3.

4.5 AR Analysis of the Disturbance Velocity Waveforms

The AR anlysis considered sofar has focused on the ensemble
\

average waveforms for different levels of occlusion ; equally 

important is the anlysis of individual disturbance velocity records. 

These will be derived using the frequency domain method suggested by 

equation (3.2), i.e. high-pass filtering. The reason for this choice 

as opposed to subtraction of the ensemble average from the individual 

velocity beat is that both the simple and phase shift average 

techniques optimize the accurate representation of the low frequency 

content of the signal at the expense of the high frequency content. 

Hence, when studying the high frequency content of individual beats, 

high pass filtering is likely to be a more appropriate alternative.

4.5.1 Model Order

In attempting to define an order for the disturbance velocity 

waveform ,{u£(t)}, we have to start with a certain notion or 

assumption about the system under study i.e. the flow field with a 

varying parameter which is the occlusion level. The assumption here
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Fig.4.10 Plots of F P E , AIC, BIC and CAT against model order M.
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is that the model order, M, is fixed for all levels ,yet what is 

changing are the values of these H AR coefficients {a^,a^,...,a^ ^

fixing the model order we hope to be able to reduce the variability 

obtained by having a different M for each level and hence we would be 
able to observe the variability of the AR transfer function, A(z) , 

itself.

Using the statistical methods described in section 4.3, we 

investigated the choice of model order for a set of ten disturbance 

velocity waveforms for 40% occlusion. Figure 4.10 shows an example of 

the behaviour of FPE, AIC, BIC and CAT for M=256 and N=512. The 
result of the study can be summed as follows :

(1) The behaviours of the FPE, AIC and CAT were similar in that they 

dropped sharply and then fluctuated about a mean which is almost 

horizontal (see Figure 4.10) . Therefore, the absolute minimum was 

not well defined and consequently the optimal orders chosen were not 

consistent.

(2) The BIC, on the other hand, though showing a steep fall , it also 

had also a large-slope (=45°) rise. The absolute minimum was well 

defined and the order chosen was relatively more consistent as 

predicted by Akaike (1977).
The results for all four criteria can be seen in Table 4.1. From 

these results we concluded that the model order to be used was M=6 

(based on the BIC criterion).

4.5.2 Spectra

With the order selected by the BIC criterion, we studied two types
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MESE Mz6

Fig.4.11 Two typical examples. (a&b) of spectra
of the individual disturbance velocity waveforms

for O, 20, 40, 58, 74 an 88% occlusion.
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of ME spectra representing the disturbance velocity data: (1)

stationary spectra i.e. spectra based on the whole observation time 

window ; and (2) evolutionary spectra i.e. spectra based on sections 

of the whole time window and evolving in time (Priestley, 1965;1981) .

Two typical examples of stationary ME spectra for the occlusion 

data can be seen in Figures 4.11 (a) and (b). The following features 

are of interest in these diagrams :

(1) The MESE shows a narrowband process for all occlusion data (only 

half of the frequency scale is shown in the figures).

(2) The magnitude of the main peak tends to increase with increasing 

occlusion level.

(3) There is an increase of spectral broadening with an increase in 

occlusion level.

The previous examples were based on a time interval of 0.2 seconds 

(512 points sampled at 2560Hz). In order to study the evolution of 

spectra in the mentioned interval, segments of 0.05 seconds (128 

points) each were considered. It was found that a large overlap (i.e. 

0.0375 seconds or 96 points) in the moving window is more sensitive to 

small data variations. Figures 4.12 (a) , (b) and (c) show a typical 

disturbance velocity record for 0,40 and 74% occlusion respectively 

with 13 segments and their respective spectra (the MESE is the smooth 

curve) . We noted the following:

(1) The spectra of the 0% occlusion level were consistently (i.e. for 

all 13 segments ) broadband and of low magnitude compared to the rest.

(2) The 40% level showed a different behaviour: the first three 

segments showed broadband spectra similar to those of the 0% level ;
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the rest of the segments had narrow band spectra with a well defined 

peak, the magnitude of which dropped slowly as the moving window 

reached the end of the record.

(3) In the 74% record, the initiation of the narrow band process could 

be seen in the first segment. The spectra became more broadband in 

segments 8,9,10,11 and 12. In segment 13 the spectrum showed again 

narrow band activity which was still of considerable magnitude. In 

general, the disturbances either narrow band or broadband were spread 

over most of the record.

From these examples we can see that evolutionary MESE are of 

importance in trying to follow up time variations in the disturbance 

record. The fact that the MESE has a reasonably good resolution even 

for short records makes it useful in detecting fine structures in the 

velocity field that might not be detected if the whole record is 

considered. Its smoothness makes it very attractive in characterising 

noisy or broadband random processes which have rugged spectra when the 

FFT is employed. Yet, for a signal as variable as that of the 

disturbance velocity, the wish is to obtain , if possible, information 

about every single new data point based on its recent past. The 

information desired is the spectral content and obtaining 

time-variable ME spectra with a resolution of even a sampling interval, 

though overambitious , can still be realized if the AR process is 

considered as adaptive i.e. the AR coefficients are adapted to the 

new information acquired by the inclusion of a new data point. The 

adaptive AR technique used, its implementation and the difficulties 

encountered is the subject matter of the next chapter.
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In Fig.4.12 (pp.132-140) the velocity signal is in arbitrary units, the FFT spectrum is 

the dotted curve and the AR spectrum is the smooth curve.
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( F i g .4 . 1 2 (b))



( Fig.4 . 12(b) )
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The d i s t u r b a n c e  v e l o c i t y  record(74%)

T I M E (SEC)

( F i g . 4 . 12(c) )



( F i g .4.12(c) )
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Fig.4.12 Evolutionary Maximum Entropy spectra 
for 0% (a), 40% (b) and 88% (c)
stenosis disturbance velocity 
wave forms.
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CHAPTER 5

NO NS TATI 0 NARY MODELLING OF THE DISTURBANCE VELOCITY WAVEFORMS 

THE ADAPTIVE AUTOREGRESSIVE METHOD

The analysis of the disturbance velocity waveform is crucial in 

the overall understanding of the flow field downstream of a stenosis. 

Yet the non-stationary character of this signal is a matter that 

cannot be disregarded and presents some difficulties for techniques 
which are based on stationarity. The usual way of dealing with such a 

signal is to divide its time interval into smaller 'stationary' 

segments from which information can be derived. Sectioning in this 

way has been illustrated in the previous chapter in connection with 

the Maximum Entropy Spectral Estimate. Here an adaptive

autoregressive technique will be explored allowing us to adapt the AR 
coefficients to data non-stationarity. Time-variant spectra will be 

estimated and will be used to describe fine-scale flow structures that 

conventional techniques might fail to detect.

.5.1 The Adaptive AR Method

The stationary representation of an AR process of order M is given 

by(4 .4):
M

y = - \  a y + e  (5.1)'n / nrn-m n
m=l

The main assumptions underlying equation (5.1) are that: (i) a^,

â  ,..., a^ are invariant over the record length N; and (ii) that 
{e(n)} is a Gaussian white noise source with zero mean and a
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Fig . 5 .1 Schematic representation of an M order 
adaptive autoregressive process.

Multiplier

Error signal

Weight setting

(n)

Fig.5.2 The Least Mean Square (LMS) algorithm.
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time-invariant variance a .2e
In the nonstationary case, the AR coefficients are time-variant

and the process can be represented as follows :
M

The noise time series ,{e(n)}, is nonstationary with zero mean but

In modelling the time series , {y(n)}, as a time-variant AR

process, we can regard the series, {e(n)}, as the nonstationary 

prediction error given by:

where y(n) satisfies equation (5.2). A pictorial description of this 

process is given in Figure 5.1 where the weights a^(n), a^Cn), ..., 

a^(n) are adjusted according to the nature of the data's nonstationary 

properties. The adjustment of the weights can be achieved using an 
adaptive filter. Adaptation begins with an initial estimate of the AR 

parameters, these are then changed such that an error function is 

minimized. The function considered here is the mean square error 
defined by:

(5.2)
m=l

e(n) = y(n) - y(n) (5.3)

M

m=l
In vector form this becomes:

6ms =  ̂ Y(n-l) )2 ] (5.4)
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where A^(n) = [ a^n) a2(n) ... aM(n) ] and YT(t*-1) = [ y(n-1) y(n-2) 

... y(n-M) ]. Expanding equation (5.4) and taking expectations gives

ems = y2 (n) ] - 2E[ y(n) Y(n-l) ] A^(n)
+ AT(n) E[ Y(n-l) YT(n-l) ] A^n)

- ? (■>) - 2 *y; v n) + ̂  ♦;; V " )  <5-5>

where $ * is the vector of crosscorrelations between the desired
yy

signal, (y(n)}, and the estimated signal,{y(n)}, and is the
a

correlation matrix {y(n)}. From equation (5.5) it can be seen that, 

for stationary input signals, the mean square error is a second-order 
function of the filter coefficients i.e. a 'bowl shaped' surface 

(Widrow , 1970 ) . The adaptive process continuously adjusts the 
weights, while seeking the minimum value of the surface i.e. the 

'bottom of the bowl'. For the nonstationary case, the adaptive

process attempts to track the surface minimum, which may be moving.

5.2 The Adaptive Least Mean Square (LMS) Algorithm

The adaptive LMS algorithm was first proposed by Widrow and Hoff 

(1960) and was applied to AR modelling of nonstationary data by 

Griffiths (1975) and Griffiths and Prieto-Diaz (1977). The basis of 

the algorithm is the method of steepest descent; this uses gradients 

of the performance surface (i.e. the bowl) to seek its minimum vector 

(i.e. A^(n) ) which is proportional to the negative of the gradient

vector (Widrow, McCool, Larimore and Johnson 1976), as follows :
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AM(n+l) = AM(n) + y ( - V n) (5.6)

is a covergence 

of adaptation, 

filter weights,

(5.7)

V n = - 2 E [ y(n)Y(n-l) ] + 2E[ Y(n-l) Yx(n-1) ] A^(n)

and if the gradient of a single time sample of the squared error is 

required the gradient becomes :

V n = “ 2 [ y(n) - A^(n) Y(n-1) ] Y(n-l)

= -2 e(n) Y(n-l) (5.8)

Substituting (5.8) in (5.6), gives the LMS algorithm i.e.

AM(n+l) = AM(n) + 2 y e(n) Y(i>-1) (5.9)

The algorithm is primed with estimates of the AR parameters and 

requires as inputs: the error signal ,{e(n)}, and the input time 

series , {y(n)}, as seen in Fig.5.2. The output is a new set of

coefficients to be used to obtain a new error signal as in Fig.5.1.

where is the gradient at the n iteration and y

factor which controls stability and rate

Differentiating equation (5.5) with respect to the
AM(n), gives:

V =
3ems = -2$ + 23> A A (n)n 3A (n) yy $y MM

Now, equation (5.7) can be written as follows :



146

The choice of the proportionality constant , y , determines the 

rate of convergence of the processor and the steady state mean 

square-error. Griffiths (1975) showed that convergence is assured if:

y
a

Mp
y
(o)

(5.10)

where 0 < a <2 and Py(0) is the zero lag autocorrelation , or power 

level. For a nonstationary time series the power level is 

time-variant and hence Py(0) andy both become functions of time.

The choice of the initial coefficient vector , A^(0), affects only 

the preliminary portion of time output. The length of time required 

for the transient to decay is called the adaptive time constant, T ,
cl

and is bounded as follows (Griffiths 1975):

-1 -1
1n (1 -yX max ) ^ T a^ I n (1 -yX .mxn

(5.11)

where X . and X are the minimum and maximum eigenvaluesmin max °

respectively of the autocorrelation matrix $
yy

5.3 The LMS Forward and Backward Filtered Error (FBFE) Algorithm

The LMS algorithm considered sofar is based on the forward

prediction error, e^(n), given by :
M

ef(n) = y(n) - ^Tji^n) y(n-m) 
m=l
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o r  i n  v e c t o r  f o r m

e f ( n )  =  y ( n )  -  A T ( n )  Y ( n - l ) (5.12)

Twhere Y (n-1) = [ y(n-l) y(n-2) ... y(n-M) ] . This algorithm has

been modified (Jurkevics and Ulrych, 1978) to include both forward and 

backward errors as follows :

A(n+1) = A(n) - y V { E[ e^(n) + e^(n) ] }

= A(n) - u V { E[ ej(n) ] + E[ e^(n) ] } (5.13)

where e^(n) is the backward error defined as
M

eVl(n) = y(n-M) - ) am (n) y(rv-Mfm)

m=l
o r

e, (n) = y(n-M) - A (n) Y(n-Mfl) (5.14)

where Y(n-MH) = [ y(n-Mfl) y(n-M+-2) ... y(n) ]. The gradient of

the mean squared error can be obtained by taking the gradients of 

single time samples of the squared errors :

V { E[ e ^ ( n )  ] + E[ e^( n)  ] } = V { e^ ( n)  + e^ ( n)  }

= 2 ef ( n)  * V { ef ( n)  } + 2 eb ( n ) * V  { eb ( n)  }

(5.15)

From (5.12) and (5.14) the gradients { ef(n) } and { eb (n) }
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become

V{ ef(n) } = - Y(n-l) (5.16)

V { eb(n) } = " Y(ft-Mfl) (5.17)

Thus equation (5.13) becomes

A(n+1) = A(n) + g{ ef(n) Y(n-1) + eb(n) Y(n-Mfl) } (5.18)

Since the iteration can be performed for each coefficient , the 

algorithm becomes:

am(n+l) = am(n) + 8 { e^(n) y(n^m) + eb(rt-Mfm) } (5.19)

where g is the new proportionality constant given by (Jurekevics and 

Ulrych,1978) :

Y
 ̂ = Mp ToT

y
(5.20)

where 0<y <1 .

Because the gradient of a single time sample of the squared errors 

is noisy, there is a need to filter that gradient in order to have 

faster convergence and to reduce the fluctuations caused by noise. 

The gradient under consideration , g(n), appears in equation (5.19) as

follows :
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am (n+1) = am (n) + 8s(n) (5.2 1)

where

g(n) = ef(n) y(n-m) + eb(n) y(n-Mfm)

The filter suggested here is the low-pass RC filter given by :

8out(n) = q gout(n_1) + (1' q) gin(n) (5-22)

where g ^(n) t îe n°isy input and 8out(n ) is the smoothed output of

the filter and q is a positive constant which is less than one. The 

idea behind the new algorithm is to replace g(n) in (5.21) by the 

filtered gradient , gQut(n), in (5.22) as follows :

am(rtfl) = am(n) + e§out(n)

= am (n) + 6 [ q gout(n-l) + d - q >  gin^n  ̂  ̂ (5.23)

Substituting for §out(n“ 0  using

gout(l>_1) = ( am (n) " am (n_1) } 1 8 (5.24)

we can write (5.23) as folows :

am(n+!) = am(n) + q ( am(n) ■  ) + sd-q) 8in(n)

(5.25)
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wh e re
gin(n) = ef(n) y(n-m) + eb (n) y(n-Mtm)

Equation (5.25) is the forward and backward filtered error (FBFE) 

algorithm used in this study to estimate the time varying spectra of 

the nonstationary signal under consideration.

5.4 Spectra and Disturbance Velocity Simulations

The MEM of spectral estimation can be used in conjunction with the 

FBFE algorithm using a modified form of equation (4 .40) which relates 

power spectral density and AR coefficients given by:

the coefficients ,{ am (n) }, are functions of n - the position of the 

sample point in the record. With the coefficients given by (5.25) the 

only parameter that remains undetermined in equation (5.26) is the 

prediction error power P^_^(n) for each sample point. This can be 

derived from the coefficients themselves if the initial power level 

for each sample point i.e. P^(n) -*-s known. The prediction error 

power can be determined by using the Levinson algorithm with a 

backward recursion to estimate M reflection coefficients, k. or a.., 

for i = M,M-1,...,1. The recursion is as follows (Makhoul,1975) :

2
a ( n) exp ( - j 2iTmf At) |

(5.26)

where now the PSD , Sn(f), the prediction error variance , ^(n) , and



Fig.5.3 Convergence study of’ the adaptive algorithm:(a ) the test signal, (b)plot 
of first coefficient against time, (c) AR spectra and (d) variance of the 
prediction error.

i
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a . .
a - 3 1

- a . . a ,li i-]i 1< j < i-1
31-1 1 - k 2i (5.27)

P^(n) is then computed from these reflection coefficients,

{ all,a22 ***,,aMM }, using the Levinson equation for the error

variance propagation given in equations (4.19) as follows :

Pi(n) = Pi-l(n) ( 1 " aii(n) > (5.28)

for i=l ,2 ,... ,M.

The importance of this algorithm lies in its frequency tracking 

ability i.e. the ability of the derived MESE to follow up frequency 

changes in the data. However, it is also interesting to study its 

start-up process. A simulated sinewave (Fig.5.3(a)) having a 

frequency of 20Hz (sampling rate is 2560 Hz) was used for this 

purpose. The model order chosen was three i.e. M=3 and initially the 

AR parameters were set to zero. In Fig. 5.3(b) the evolution of the 

first coefficient was plotted against time. Fig. 5.3(d) shows the 

variance of the prediction error filter, P^n), which approaches zero 

as the first coefficient reaches its steady state value. The 

resulting maximum entropy spectra are displayed in Fig. 5.3(c) where 

a sharp peak at f=20Hz can easily be seen especially towards the end 

of the adaptation. These figures display the fast and almost smooth 

convergence of the adaptive FBFE algorithm , since as seen from Fig. 

5.3(b), the first coefficient rose quickly and smoothly from zero to a 

steady state value of approximately 1.2 while P^(n) dropped sharply to 

a value which is almost zero.
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In applying the algorithm to the nonstationary disturbance 

velocity signals we are faced with two significant problems: (a) 

estimating the time-varying power level of the signal i.e. p (0) in 

equation (5.20); and (b) instability in the algorithm itself.

(a) Estimation of the time-varying power level

Py(k)(0), was first computed usingThe time-varying power level,

L data points surrounding the time location of the adaptive filter, k, 

as follows :
k+L

Py(k)(0) = p ( .
m=k-L

) (5.29)

but this approach gave a noisy estimate. In the final version of the 

algorithm, a filtered version of this estimate based on the recursive 

low-pass filter described in equation (5.22), was used i.e.

py(k)(0) “ q p y(k-l)(0) + (1_q) py(k)(0) (5.30)

where Py(k)^^ denotes the smoothed estimate of p ^ k^(0) and q is a 

positive constant which is less than unity and controls the smoothness 

of the estimate, such that q=0 and q-»1 are equivalent to no smoothing 

and severe smoothing respecively.

(b) Instability of the algorithm

Instability took place when the filter poles i.e. the poles of 

A(z) attempted to go outside the unit circle. The criterion used to 

monitor the stability of A(z) is as follows (Markel and Gray,1973;
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Makhoul,1975) :

| ki(n) | < 1 l<i<M (5.31)

twhere k.(n) is the l reflection coefficient i.e. a..(n), M is the 

chosen model order and n is the position of the data point in the 

record. The condition given by equation (5.31) insures that the 

output power of the filter i.e. P^(n) in equation (5.28) stays 

positive and hence the filter remains stable. The stability of the 

filter was maintained by reducing the value of y in (5.20) whenever 

instability was detected according to the criterion described above.

Having achieved dynamic filter stability, the frequency tracking 

ability of the FBFE algorithm was next investigated. Hence a waveform 

with a time-varying instantaneous frequency was used as a test signal. 

The approach adopted was based on the work of Griffiths(1975) who 

derived a phase function for a digital FM signal given by:

y(t) = A cos[ 0(t) ] (5.32)

where 9(t) is the time-variant phase. The instantaneous frequency, 

f}(t), can be derived by differentiating ©(t) in discrete form as 

follows:

fl(t) - 9 (t) - 9 (t-1)
CO

(5.33)

The signal's instantaneous frequency can be considered to comprise a



(b)

•'T
l

F i g . 5.4 S i m u l a t i o n  study of the f r e q u e n c y  t r a c k i n g  a b i l i t y  of the a d a p t i v e  a l go ri th m:  
(a) The s i m u l a t e d  FM signal, (b) The m e s s a g e  signal  (smooth line) and the 
e s t i m a t e d  m e s s a g e (d o t t e d  line).
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constant, w^} and a message signal (i.e. the signal that carries 

information in a frequency modulated signal),{m(t)}, follows :

ft(t) = w0 + m(t) (5.34)

Combining (5.34) with (5.33) results in

0(t) = 0(t- 1) + wQ + m(t) (5.35)

which is a recursive equation for generating the phase, given the 

time-varying function m(t).

For the purposes of the test, the signal {m(t)} was chosen to be a 

sinusoid i.e.

where w = 2 it f and f =2Hz (sampling rate is 2560 Hz). In normalized s s s
frequency, A had a value of 0.05 and w^=2 tt fQ where fQ=0.15

(normalized). The FM signal generated using (5.35) and the function 

in (5.36) were then analysed using the FBFE algorithm with a model 

order M=2. The MESE was calculated for each data point in the record 

where N=256. The frequency location of the spectral peak as a

function of time was then compared with the function given by (5.35) 

i.e. the real phase. Fig. 5.4(a) shows the simulated FM signal in 

the time domain and in Fig. 5.4(b) two frequency domain signals are 

displayed: (1) the true phase of the FM signal (continuous line) ; and

(2) the estimated phase using the FBFE algorithm (broken line). The

close agreement between the two curves suggests that the algorithm is

m(t) = A sin( w t ) s s (5.36)
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DRTfl

Fig.5.5 Application of the adaptive algorithm to
the 40% occlusion data: (a) the time series
(b) AR spectra and (c) variance of the pre
diction error'.
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D A T A

(b)

(c)

O
V A R

Fig.5.6 Application of the adaptive algorithm to
the 74% occlusion data: (a) the time series
(b) AR spectra and (c) variance of the pre
diction error.
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D A T A

(b)

(c)

V A R

Fig.5.7 Application of the adaptive algorithm to
the 88% occlusion data: (a) the time series
(b) AR spectra and (c) variance of the pre
diction error. »
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capable of tracking, with a small amount of error, high frequency 

fluctuations in the data.

The algorithm proved extremely effective when it was applied to 

the disturbance velocity signal because of the insight it gave into 

the frequency and time composition of this highly variable, yet not 

completely random, signal. Waveforms for the stated occlusion levels 

were analysed and spectra were plotted against time. However, it was 

found that the 40,74 and 88% waveforms were illustrative of the 

evolution and intensification of disturbances as the constriction is 

tightened . Because of this it was . decided to choose a typical 

example from each of the stated levels in order to demonstrate the 

remarks we have made concerning the nature of the disturbance velocity 

data. Three beats of 40,74 and 88% occlusion levels are shown in 

Figures 5.5(a), 5.6(a) and 5.7(a) respectively. The relevant spectra 

are illustrated in Figures 5.5(b), 5.6(b) and 5.7(b) in the form of 

two-dimensional perspective plots. In Figures 5.5(c), 5.6(c) and 

5.7(c) the respective prediction error variances are plotted against 

time. The following points were noted:

(i) In all three cases the spectra showed narrowband activity that 

occured with a stenosis-dependent time delay ( the delay decreased 

with increasing percent stenosis).

(ii) The main peak shifted slightly to the left, i.e. the main 

harmonic had a higher frequency for a higher level of occlusion.

(iii) The spectra showed orderly and fairly resolved structures that 

appeared and disappeared during the 0.2 second interval. The 

superimposed envelopes of these structures could be seen more clearly
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Fig.5 . 8(b) Simulations of 74% occlusion data
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in plots of P (n) i.e. Figures 5.5(c), 5.6(c) and 5.7(c).

In order to establish the effectiveness of the adaptive stochastic 

AR model in representing the original data or physical process, it was 

decided to carry out a series of simulation studies. These were based 

on a slightly modified version of equation (5.2) which was adapted to 

include a Gaussian random number generator. This new equation is:

where N( 0,P^(n) ) denotes a random number derived from a Gaussian

distribution with zero mean and variance ,Pw (n), which is a timeM
varying function. Figures 5.8 (a),(b) and (c) are plots of 4 

simulated beats of the 40,74 and 88% waveforms shown in Figures 

5.5(a), 5.6(a) and 5.7(a) respectively. The striking similarity

between the simulated and original data suggests that this adaptive 

method is a very effective technique for the analysis of disturbance 

velocity data.

Because of its good amplitude and frequency tracking ability, the 

forward and backward filtered-error LMS algorithm has provided us with 

an insight into the intricate and stimulating nature of the 

disturbance velocity signal. Its has unveiled orderly structures in 

time which the velocity probe seems to pick up as the fluid flows 

past. These structures can be described by their time-variant 

narrow-band spectra which are derived from the AR coefficients of the 

adaptive filter. Also, their intensity (or multitude) in the defined 

time interval increases with an increase in occlusion level as seen in

M
) (5.37)

m=l

the perspective plots (Figures 5.5(b), 5.6(b) and 5.7(b)). These
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results, though not yet conclusive, are a demostration of the power 

and potentiality of this technique in comprehending the complex flow 

field. Its ease of implementation makes it one of the few rosy paths 

that could lead to that long desired objective.
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CHAPTER 6

NO NS TATI 0 NARY MODELLING OF THE DISTURBANCE VELOCITY WAVEFORMS

THE IMPULSIVE NOISE MODEL

The hot-film probe positioned at a fixed location downstream of 

the constrictions appears to be pulling out flow structures that might 

be characteristic of occlusion data. An attempt will be made at 

identifying these time-dependent structures and observing their 

behaviour in a fixed and already defined time interval. Previous 

analysis has suggested that these flow patterns have a narrow-band 

frequency content and the idea here is to use this property for the 

suggested model. Having defined the type of model to be used and 

knowing the model output (i.e. the disturbance velocity waveform), we 

need to describe the type of input series which if applied to the 

model reproduces the output. Since little is known beforehand about 

the input, it can be best described as noise; however, the usual 

assumption of Gaussianity we have found to be inappropriate and 

instead, we have characterised it as impulsive in nature (or point 

process). In what follows we seek to demonstrate the viability of 

representing the disturbance velocity as a narrow-band stochastic 

process driven by impulsive noise.

6.1 The Impulsive Noise Model

There are numerous physical phenomena which can be modelled as a 

process driven by impulsive noise as is shown in Fig. 6.1. Some 

examples taken from electrical engineering, physics , astronomy and
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IMPULSIVE NOISE

Fig.6.1 System driven by an impulsive noise.

Fig.6.2 The wave packet



168

medicine are given by Snyder (1975) who described the output of such a 

system as a filtered point process . Mathematically the discrete 

output, { y(t) }, can be written in terms of the discrete input, 

{ x(t) }, as follows :

y ( t )

N
^ h ( t - j )  x(j) + e(t) 
j=o

( 6 . 1 )

where N is the number of data points , { h(t)

response and { e(t) } is Gaussian white noise with 
2variance a . The input series is given by :

x(t)
K

e(t- v
k = 1

} is the impulse 

zero mean and

(6.2)

t i lwhere and t^ are the respective amplitude and time delay of the k 

pulse and K is the total number of pulses. The Delta function , 

6(t-t^), can be defined as :

5 (t-1 ) k

1

0

for t = t, k

for t^t.k

(6.3)

for k=l ,2 , ... ,K. Assuming that the impulse response is known and 

time-invariant , then the problem remains estimating the input series 

i.e. the pulse heights and time delays from the available noisy 

output data. This deconvolution problem has been the subject of 

recent research (Clayton and Ulrych,1977; Haddad,1978; Taylor, Banks 

and McCoy,1979; Kwarkernaak, 1980; Kormylo and Mendel,1982; Arya and
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Aggarwal , 1982 and Mendel,1983). It has proved to be of a difficult 

nature mainly because of the numerical instabilities associated with 

discrete deconvolution of a noisy sequence but also because the input 

series is sparse i.e. it has only a few elements with values greater 

than zero.

Modelling the velocity disturbance waveform as a process driven by 

impulsive noise, requires the estimation of the impulse response as 

well as the input series, solely from the available output. 

Attempting to do so would be extremely difficult, if not impossible, 

unless the problem is tackled in stages. Consequently, the modelling 

process has been divided into three distinct stages :

(1) Frequency domain system identification : whereby a kernel i.e. an 

analytical impulse response, is chosen for the system impulse response 

and the parameters are estimated from the data by minimizing the error 

between the analytical and virtual frequency responses.

(2) Estimation of pulse heights and arrival times using homomorphic 

filtering : The idea here is that the envelope of the disturbance 

velocity waveform can be used to estimate the pulse heights and 

arrival times. A stochastic homomorphic filter based on the Wiener 

filter has been designed to obtain a good estimate of the signal 

envelope.

(3) Modelling of the nonr-stationary velocity waveform using nonlinear 

regression : This is the final stage of the modelling procedure and is 

dependent on the first two. The impulse response is assumed to be 

time-variant and it is fitted to sections of the data by a nonlinear 

regression method developed by Marquardt (1963).
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These stages will be discussed in detail in subsequent sections. 

However, it is important to bear in mind that the objective of this 

exercise is the demonstrate the validity of the model suggested in 

(6.1) i.e. to show that the disturbance velocity can be considered as 

a system driven by impulsive noise. The choice of kernel is in a 

sense immaterial i.e. the importance given to the model itself should 

overweigh the importance given to the kernel itself, yet a good choice 

is an advantage. Another consideration is that higher levels of 

occlusion i.e. 74 and 88% show a high degree of complexity and

variability while the 40% occlusion data, for example, exhibits a 

relatively organized behaviour though it is also subject to

physiological variation. Thus for the rest of the chapter the 40% 

signal will form the database for modelling and analysis.

6.2 Frequency Domain System Identification

Before describing the identification technique used, we ought to 

begin by defining the kernel used in the analysis and state reasons 

for its choice. Also, an easy method of implementing equation (6.1) 

based on the defined kernel ought to be discussed. The kernel will be 

called 'wave packet' partly because of a similar structure that has 

been observed by Gaster(l981) in boundary layer flows and partly 

because the name carries a description of the shape of the kernel.

6.2.1 The Wave Packet

The form of the suggested impulse response or wave packet can be 

described by the following equation :
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w(t) = h tn exp( -t/tc ) cos( wQt ) (6.4)

where h is an arbitrary height , n is an arbitrary integer, t is the 

time constant and w q  is the characteristic frequency. The simplicity 

of of this function has made it very attractive to statistical 

modelling and analysis (see, for example, Hasan (1982,1983) ).

One of the important features of this kernel (shown in Fig.6.2) is 

that n controls the asymmetry or skewness of the resulting waveform . 

In order to obtain the time location of the absolute maximum of w(t), 

we will assume that (6.4) is obtained by multiplying 

f(t) = tnexp(-t/t ) with a constant amplitude sine waveform. Hence 

the maximum can be obtained by differentiating f(t) and equating to 

zero. The result can easily be shown to be :

tmax n tc (6.5)

and

fmax " <ntc)n exp(-',) <6’6)

where t and f are the location and amplitude of the maximum. To max max
normalize w(t) in equation (6.4) , one could choose h as equal to 

1/fmax
Another interesting observation about w(t) is that its

implementation as a model can be simplified if its Z-transform is 

considered. To simplify the derivation further, we have considered 

the case where n=2 and a good starting point was the well-known
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Z-transform of exp(-t/tc) cos(wQt) given by :

2z - exp(-aT)cos(w0T). z
F(z) = — ------------------------------------

z - 2exp(-aT) cos (w0T) .z +exp(-2aT)
(6.7)

where a = l / t a n d  T is the sampling interval. The Z-transform of w(t) 

i.e. W(z) can be derived by noting the following Z-domain rule 

(Jury,1973):

t f ( t ) < T z dF (z) 
d z

( 6 . 8 )

i.e. multiplying a time function ,f(t), by t is equivalent to-Tz

times the differential of its Z-transform. Using relation (6.8), we
2can derive a similar relation for the case t f(t) as follows:

t 2 f  ( t )  = t  ( t f  ( t ) ) <------------ > - T z  { ^ - ( - T z d ;  ^  ) }— ---------- ^  d  z dz

m 2 r 2 d F (z) . dF ( z ) -| > T tz ----x  + z------ }
d z dz

(6.9)

With F(z) being given by (6.7), W(z) comes out to be

W ( z  ) =
4 3z ( b ^ z  +  b ^ z  + b ^ z  +  b  )

~ 6  5 4 3 2z +a z + a_z +a.z +a„z + a rz + a r 1 2. 3 4 5 6
(6.10)
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where

= - 6 exp(-T/tc) c o s (w q T)

= + 3 exp(-2T/tc) [1 + 4 cos2 (w qT) ] 

a^ = - 4 exp(-3T/tc) c o s(w qT) [ 3 + 2  cos2 (w qT) ] 

a4 = - 3 exp(-4T/tc) [ 4 cos2(w qT) - 1 ] 

a,. = - 6 exp(-5T/tc) c o s(w qT) 

a& = + exp(-6T/tc)

and

= h T2 exp(-T/tc) c o s (w q T)

b2 = 2 h T2 exp(-2T/tc) [ c o s 2 (w q T) - 2 ]

b4 = 2 h T2 exp(-4T/tc) [ 2 - c o s 2 (w q T) ]

br = - h T2 exp(-5T/t ) cos(w T)5 c o

To obtain W(z *) , we divide both numerator and denominator in (6.10) 
£

by z which gives :

W (z ) =

-1 -2 -4 -5b z  + b „z + b „ z + b _ z _1_________2_________4_________5_____________
, -1 -2 -3 -4 -5 -61+a,z + a„z +a_z +a z +arz + a z 1 2 3 4 5 6

( 6 . 1 1 )

W(z) can be considered to be the transfer function described in Fig. 

6.1 and hence it can be written in terms of the input, X(z), and the

output, Y(z) , as follows :



o
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Fig.6.3 Wavepacket model driven by impulsive noise: (a) the impulsive input and (b) the output.
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Substituting for W(z) in (6.11) by (6.12) and knowing that z~'*'F(z), 

z F(z),... for an arbitrary function F(z) are equivalent to f(n-l), 

f(n-2),... in the time domain, we get a recursive equation for 

implementing (6.10) given by :

y(n) = - y(n-l) - a2 y(r>-2) - a3 y(n-3)

-  a4 y ( n - 4 )  -  a 5 y ( n - 5 )  -  a& y ( n - 6 )

+ b^ x(n-l) + b^ x(n-2) + b^ x(i>-4)

+ b5 x(rv-5) (6.13)

Fig. 6.3 (b) shows a record of 512 data points generated using (6.13) 

and with an input , {x(n)}, which consists of three impulses of equal 

height (Fig. 6.3(a)) and is given by :

x(n) = 6 (n- 100) + 6(n-200) + S(n-300) (6.14)

The system given by equation (6.13) is an autoregressive moving 

average (ARMA) system which can be driven by impulsive noise and the 

aim of the rest of this chapter is to show that the disturbance 

velocity waveforms can be modelled by such a system.

6 .2 .2 System Identification

The disturbance velocity can be considered as composed of the 

output of the model in equation (6.13) plus a Guassian white noise 

component , {e(n)} , as follows :

W(z) = Y(z) / X(z) (6.12)
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6 5

(6.15)

where the ARMA coefficients can be computed as in equation (6.10)

solely from the characteristic frequency, f , and the time constant,

t . Hence, it is required that the values of f and t be estimated c o c
from the data. This is a nonlinear problem that can be solved by 

minimizing the following cost function in the frequency domain :

where S(f^) is the parametric spectrum i.e. a spectrum derived 

analytically and is dependent on fQ and t , S(f^) is the estimated 

spectrum and should also be the frequency response of the system and 

Nf is the total number of harmonics. The minimization of this cost 

function can be achieved using a numerical optimization technique that 

does not require derivatives.

The usual way of obtaining S(f) is by sectioning the data record 

and then averaging the resulting spectra to obtain an estimate of the 

system frequency transfer function (Rabiner and Allen,1980). In this 

case, however, we found it more convenient to use the MESE since it 

gives a smoother estimate of the system response. The chosen model 

order was M=6 based on the already mentioned BIC criterion.

As for the parametric spectrum, S(f), it was obtained by 

considering the Fourier transform of the function in (6.4) with n=2 

i .e.

N•F
(6.16)

k =o

(6.17)
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where a=l/tc and b=wQ (previous notation). An easy method of deriving 

the transform of (6.17) is to consider the general relation

f(t) cos(bt)< > 1/2 [ F(w-b) + F(wfb) ] (6.18)

where F(w) is the transform of f(t) and F(w-b) and F(wfb) signify 

replacing the variable w in F(w) by (w-b) and (w4-b) respectively.
9Hence, what is required now is the transform of t exp (-at) which can 

be derived from the well-known transform of exp(-at) using the 

following relation :

tn f(t) < > J.n
_ n . .d F (w)

.  ndw
(6.19)

Therefore the transform of t exp(-at) is
2 d2 , ,F(w) = j —  F T {e x p (-at) }

dw

- „  { - ^ }
dw 2 a + jw

(a + jw) ( 6 .20 )

where FT denotes the Fourier transform and j is V-T . Using (6.20) 

and applying the relation (6.18) we get

W (w ) =
(a + j (w-b) ) (a+j(w+b!

( 6 . 2  1 )

which is the required transform. S(f) can now be computed by taking
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(b)

Fi g . 6

Disturbance velocity ( 40%)

Disturbance velocity(40%)

4 System identification in the frequency domain 
Two 40% stenosis records (a&b) and their res
pective spectra.
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the modulus squared of (6.21) l.e.

where the shape of S(f) is dependent on t^ (tc=l/a) and f

(f =w /2 7T =b/2TT ) . o o
In the actual optimization procedure the cost function was 

minimized with respect to t only since f can be estimated from the 

MESE (its peak). Typical results for two 40% occlusion data are shown 

in Figures 6.4 (a) and (b). Each set of figures shows the waveform

analysed (top left hand side), the parametric spectrum (bottom smooth 

line) and the estimated spectrum (bottom broken line).

The identification procedure was 

repeated for ten beats and average values of f and t were 130Hz and 

0.03 seconds respectively.

These values together with the initial estimates of pulse heights 

and arrival times (obtained by homomorphic filtering) will be used in 

the final stage of this analysis to obtain nonstationary estimates of 

some disturbance velocity waveforms.

6.3 Estimation of Pulse Heights and Arrival Times using Homomorphic 

Filtering

Homomorphic filtering allows us to derive the envelope of a signal 

and in our case the envelope carries information about the input of 

the system. This point will be demonstrated in the following argument:

Let the output of the system be (equations (6.1) and (6.2)):

S(f) = |W(f)| 2 (6.22)
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K
y(t) Ak (t“ tk)2 exp(-(t-tk)/tc) cos(wQ(t-tk) )

kRL
= ̂  Ak (t-tk)2 exp(-(t-tk )/tc) cos(wQt +4>k ) (6.23)
k = l

Now, going back to the wave packet itself, let us consider the case 

where the frequency , w q , is high compared with the frequency of the 

envelope itself. If that is the case then we can ignore the initial 

phase <j>k and hence (6.23) can be written as follows :

K
y(t) = ^  Ak (t-tk)2exp(-(t-tk)/tc) cos(wQt) 

k = l
= e ( t )  cos(wQt )  ( 6 . 2 4 )

where this is clearly an amplitude modulated waveform with the overall 

envelope, {e(t)}, given by :

K
e(t) = ^  Ak (t-tk)2exp(-(t-tk )/tc) (6.25)

k = l

from which we can derive amplitude and arrival time information about 

the impulsive input as we shall see later.

6.3.1 Homomorphic Filtering

When considering the problem of filtering signals that have been 

added , we often use a linear system. In contrast, when determining a 

filtering procedure to separate signals that have been nonadditively 

combined, such as through multiplication or convolution, it is usually 

more difficult, and in many cases less meaningful to use a linear 

system. Oppenheim, Schafer and Stockham (1968) generalized the notion



Fig.6.5(a) Generalised homomorphic filtering for a multiplicative system.
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of linear filtering in such a way that it encompasses this broader

class of problems. This new type of filtering has been called

homomorphic filtering and the aim of this section is to describe its 

application to a certain class of multiplied signals.

A homomorphic multiplicative system represented by

y(t) = e(t) v(t) (6.26)

should satisfy the following properties:

P [ e(t) v(t) ] = P [ e(t) ] + P [ v(t) ] (6.27)

P [ ( y(t) )° ] = c P [ y(t) ] (6.28)

and

p“ 1 { p [ y(t) ] } = y(t) (6.29)

where P is a transformation that changes the nonlinear problem into a 

linear problem where the components are added. If the signal {y(t)} 

is positive and greater than zero, then P is the natural logarithm and 

P is the exponential function. This class of homomorphic systems 

can be represented pictorially as in Figure 6.5(a).

When the signal is bipolar i.e.positive and negative the treatment 

of the problem under homomorphic systems is possible only if one of 

the components is positive. With reference to equation (6.26) this 

means that the envelope ,{e(t)}, should be positive if the carrier , 

{v(t)}, is bipolar. In this case the signal , {y(t)}, can be treated
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Fig.6.5(b) Homomorphic filter for a bipolar signal y ( t ) .
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as a complex signal as follows:

yc(t) = | y(t) | exp(j c()) (6.30)

where
IT if y (t) <0

<t> = -

if y (t) >0
(6.31)

Taking the complex logarithm of both sides gives:

ln( yc(t) ) = ln( | y(t) | ) + j <j> (6.32)

The inverse transform is the complex exponential and if {y(t)} is the 

filtered version of {ln( | y(t) I )} then the inverse can be written 

as follows :

yf(t) = exp( y(t) ) cos( <J> ) (6.33)

where (y^(t)} is the filtered version of {y(t)} (see Fig. 6.5(b)).

The multiplicative homomorphic system studied here is that system 

where the product consists of a slowly varying but always positive 

component, and a rapidly varying bipolar component with constant 

amplitude as in equation (6.24). To be able to separate these two 

components using a linear filter as in Figures 6.5(a) and (b), the 

frequency content of the logarithm of the signal should be understood.
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The logarithm of the signal in equation (6.24) can be written as :

ln[ y(t) ] = ln[ e(t) ] + ln[ |cos(wQt)| ] (6.34)

We are interested in the envelope (e(t)} and hence the component 

ln[|cos(wQt)| ] in (6.34) has to filtered out. The Laplace transform 

of the logarithm of a cosine function is given as (Roberts, Kaufman 

and Saunders, 1966 )

In 2c o s (w t ) 1 o

, n k-l(-1) s
/ 2 2 2 f— : k (s +4k w ) k = l o

(6.35)

From the Laplace transform of a cosine function i.e.

(6.36)

we see that (6.35) can be written as

ln[ 2 cos(wQt) ] (- 1) k~ 1 • C(s,fi(k)) (6.36)
k = l

where

fi (k) = 2 k w (6.37)o

In the frequency domain this signifies that, if we represent the 

spectrum of a cosine function as A6 (w-Sl) we can write (6.36) as

follows :



Fig.6.6 The spectrum of the logarithm of a cosine function: (a) the function and (b) its FFT spectrum.
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Fig.6.7 The spectrum of the logarithm of a slowly varying function: (a) the function and (b) its FFT spectrum.
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00

ln[ 2 cos( w t) ] <Z3> o (-l)k-1 A*6(w-n(k))
k

(6.38)

k = l

i.e. the sum of delta functions occurring at w=2w ,4w ,6w .... ando o o
decreasing in amplitude i.e. A,A/2,A/3,... (the sign is ignored here

because the spectrum is always positive). Fig. 6.6(a) shows 512 data

points of a cosine function (fQ=50Hz) sampled at 2560 Hz and Fig.

6.6(b) is an example of the type of spectrum onbtained when the

Fourier transform of the logarithm of that function is computed.

Notice that in the region 0-500Hz of Fig. 6.6(b) there are four peaks

at f=100Hz (2w ), f=200Hz (4w ) , f=300Hz (6w ) and f=400Hz (8w ) ,o o o o9and that the power decreases by l/k which is expected in theory. 

However, unlike what is predicted in theory, k in equation (6.38) 

cannot increase indefinitely because of the finite sampling rate.

With this known about the logarithm of the rapidly varying 

component in equation (6.34) what remains is to try to study the 

frequency content of the low frequency component. Fig. 6.7(a) shows 

the envelope of the signal in Fig. 6.3 and the transform of its 

logarithm can be seen in Fig. 6.7(b) where most of the power is 

concentrated in the lower end of the spectrum. This facilitates the 

separation of the two components in equation (6.34) since they occupy 

separate frequency bands. As a general rule we found that if we are 

to filter a signal such as (6.24), then we should make sure that the 

highest frequency in {e(t)} should not exceed 0.25fQ and a good 

setting for the linear filter in the homomorphic filtering process 

would be in the region of 1.5f . This criterion will be used in the

next section to separate the two components in the disturbance
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velocity signal (i.e. envelope and carrier) using a stochastic 

homomorphic filter.

6.3 .2 The Stochastic Homomorphic Filter

Stochastic homomorphic filters have been used in image processing 

for the removal of multiplicative noise or blur (see, for example, 

Fries and Modestino(1979) and Peli and Quatieri (1984)). These are 

based on a knowledge of the process and the noise statistics and are 

usually implemented using the well-known Wiener filter.

The stochastic homomorphic filter used here is based on the model:

y(t) = e(t) . v(t) . n(t) (6.40)

where {y(t)}, {e(t)} and {v(t)} are as described before and {n(t)} is
2Gaussian white noise with zero mean and a variance c • Now let then

Fourier transforms of ln[ y(t) ], ln[ e(t) ], ln[ v(t) ] and ln[ n(t) ] 

be Gy(w), Gg(w), Gv(w) and Gn(w) then the required Wiener filter has 

the following frequency response :

G (w)
W(w) = —-, „e ,----- 7— --;-r (6.41)G (w)+G (w)+G (w] e v n

and applying it to the data gives an estimate of Gg(w) i.e.

G (w) = W(w) Y(w) (6.42)

Equation (6.41) assumes knowledge of the theoretical response of 

Gg(w), Gv(w) and Gn(w) which is only true in the case of Gn(w) which



Fig . 6.8 Frequency domain analysis of the ideal stochastic homomorphic filter.
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height an (see Fig. 6.8). As for Gg(w) and Gv(w) these can be 

estimated from G^(w) by AR modelling as follows :

can be chosen to be equal to a constant i.e. a horizontal line of
9

G' (w) e

and

G' (w) v

G (w) w<wy  c

Me
V ” a G (w - m ) w ̂.w2__ m y c
m=l

0<w<w N
(6.43)

G (w)
y

Mv

Za G (w-m) m y
m=l

w<(w -w ) s c

w^ (w -w ) s c
w <w<?w N s

(6.44)

where w is the cutoff frequency (see Fig.6.8) , w is the sampling c s
rate and Mg and M are two different model orders found empirically 

using the BIC criterion.

A complex version of the Burg algorithm is used for modelling and 

the linear phase component of the signal is conserved by considering 

only the moduli of G^(w) and G^(w) as follows :

I G g  ( w )  |

Ge (W) “ | G' (w) | + f G ' (w) I + G„1 e v N

(6.45)

where N here is a constant independent of frequency. An estimate of



192

Pulse information can be derived from the envelope by locating the 

local maxima. The resulting record of sparse impulses is then used as 

input to the model of equation (6.13) whose coefficients have already 

been estimated. The output is then correlated with the original 

signal to find the optimal shift. The end result is a set of impulses 

with given time locations and heights. These will be the input to the 

nonlinear regression scheme that models the velocity waveform as a 

nonstationary process.

the envelope {e(t)} can be obtained by transforming Gg(w) back to the

time domain then taking the exponential.

6.4 Modelling of the Nonstationary Velocity Waveform using Nonlinear 

Regression

The model to be fitted to the data is of the form 
K

y(t) (t-tk ) exp(-(t-tk )/T k) cos[ 2 i r Q k (t-tk) ]
k = l

(6.46)
where K is the total number of impulses, hk> tk , T k and fik are the

t hheight, arrival time, time constant and frequency of the k pulse 

respectively. Let us define the vector as follows :

t fck hk T k fik J (6.47)

Then the problem is to compute the parameters { b , b„ ,..., b }— I — -L — K.
which will minimize 

N

* = X  [ i2
t=i

(6.48)
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t U  A
where y(t) is the t data value and y(t) is the value predicted by 

equation (6.46). To reduce storage requirements, we have divided the 

overall optimization scheme involving 4K parameters into K smaller 

optimization schemes of 4 parameters each. This has been achieved 

through the use of the function

=  hk ( t - t k ) e x p ( - ( t - t k ) / T  k ) cos[ 2tt ft k  ( t - t k ) ] (6.49)

in equation (6.48) which gives 
N

$
t = l k=l

IN

- I [ y(t) - J f ( t , b k ) y (6.50)

The algorithm used is based on a procedure by Marquardt

(1963,1970) and it minimizes $ with respect to an arbitrary

given by:

s:
-3

EAt . A h . A t AS for k=j

for k*j
(6.51)

Replacing f(t,bk ) in (6.50) by fttjb^. + _6..) and differentiating we^  -j-
get

N K
3$ V  
37. “ 2 (y(t) - £  f(t,b„ + 6 j  ) ^ ( t , b k + 6 . )

-k -j
t = l k = l 36 . 

-3
(6.52)
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Using a Taylor series expansion of f(t,b^ + .) we have

f ( t , b t + 6 . , , f (t , b t ,+ A t . f f ) + i h jM  + A x .|l + 4 0 j | f

or in matrix form

F = F. + P . 6. -  -0 J -J (6.53)

where F1 = [ f (1 ,b + 6 ) ,f (2 ,b + 6_.) , 
= [ fCl.bj), f(2,bj),...,f(N,b.) ] and

P . 1

...,f ( N ,_b..+ 6_j ) 1

T?: p . 5 .J 2 - 1 ‘ j

i • • ■* ' *-r
' 3 f i 3f i 3f i 3f i'
31 . 3h . 3t . HI.

1 1 1 3
3f 2 3 f 2 3 f 2 3 f 2
31 . • 3h . 3x . 3ft .
. 3 ••

. 3 ••
.  ̂••

. 3 ••

3fN 3 f N 9fN 9fN
31 . 3h . 3 t . 3ft .

1 1 J 1

and setting 3_$_ =0 we i
36 .
-J

l I -  i o 1 (6.54)

where
K

io - X W
k = l

and

y t = [ y(D ,y(2),... ,y(N) ]

Because the initial guesses might be far away from the true values of 

the parameters , Marquardt introduced the constant Lambda ,  ̂, to 

accelerate the convergence, and the new set of equations to be solved
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are

( Pj Pj + XI) 6-j = Pj t I '  Yq ] (6.55)

where I is the identity matrix. These equations are solved for

and then the vector is updated i.e. 

b(n)= b (n-l)+ 6(rt-l)
-3 -J “3 (6.56)

t hwhere n denotes the nL iteration. This process is repeated until 0 

reaches a minimum.

At this point , it is worthwhile to clarify the overall operation

of our optimization procedure. The Marquardt algorithm is used to

estimate an optimal vector for a certain pulse (in this case it is

bj) . Once b^ has been estimated we can move either sequentially or

randomly to the (j+p; pulse and find b.j+p and so on until K pulse

vectors [ b ,b_ ,... ,b ] have been computed. The initial values of — 1 — L — K.

arrival times, {t^}, anc* pulse heights , {h^} , are obtained from the 

output of the stochastic homomorphic filter. As for the initial time 

constants, { x^}, and frequencies, { ^}, these are all set to the two 

values obtained by the frequency domain system identification 

procedure.

The application of this modelling procedure to the disturbance 

velocity waveforms of the 40% occlusion case has shown promising 

results. Fig. 6.9 shows three examples of these waveforms with their 

envelopes, reconstructed signals and estimated impulse trains. The

striking similarity between true and modelled signals demonstrates the
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Estimated signal

Estimated impulsive input

Fig.6.9 Modelling of the disturbance velocity as a wave packet model driven by impulsive noise.
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feasibility of the suggested model i.e. a narrowband process driven 

by impulsive noise (equation (6.1)). This could prove to be a useful 

tool in the comprehensive understanding of the generating flow field 

and hence the unravelling of the discrete relationship between flow 

disturbances and degree of stenosis.
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CHAPTER 7 

DISCUSSION

7.1 Summary of Analysis

If the material presented sofar has managed to raise more 

questions than provide answers concerning the nature of poststenotic 

flow, then this work has achieved its objective. For, the chief aim 

has been to provide techniques of analysis that might shed some light 

on the solution of the problem and hence provide a basis for further 

investigation.

A description of the complexity of this physical system (i.e. the 

poststenotic velocity field) was given at the beginning of this 

thesis, as well as its clinical significance with regards to the early 

detection of atherosclerosis. Practical methods of dealing with 

experimental data i.e. velocity waveforms have been discussed 

together with types of perspective velocity measuring devices in order 

to assess the usefulness and quality of the data set at hand. Some 

basic methods of analysing the sectioned velocity waveforms have been 

presented, for example: ensemble averaging and/or phase shift 

averaging (the time domain model), high-pass filtering (the frequency 

domain model) and a comparison of the two approaches has been made.

Autoregressive modelling has proved to be a useful technique in 

studying the frequency content of both the ensemble average and 

disturbance velocity waveforms. The maximum entropy spectral estimate 

provides smooth spectra with good resolution that are a much better 

improvement on the conventional FFT spectra. Also, the AR spectrum
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has been treated as the frequency response of a system driven by white 

noise. The adaptive AR algorithm- the LMS forward and backward 

filtered error algorithm - has proved to be useful in detecting hidden 

structures in the disturbance velocity records. These structures have 

been termed wave packets because of their shape i.e. they look like 

sinusoidal beats or bursts of short duration. Not only is this new 

algorithm capable of following amplitude changes in the data but it is 

also very useful and accurate in tracking frequency fluctuations and 

hence it is also applicable to the Doppler blood velocity signal.

Based on these observations and similar observations by other 

authors e.g. Nerem and Seed (1972) and Gaster(1981), a wave packet 

model driven by impulsive noise has been presented. In a relevant 

flow system i.e. a highly disturbed flow, Nerem and Seed (ibid) 

observed these wave packets when the disturbed velocity signal was 

passed through a frequency analyser. They observed with different 

frequencies when the signal was band-pass filtered as seen in Fig.

7.1. Notice also that the dominant amplitude is that of the lowest 

frequency component i.e. the 50Hz component. No interpretation of 

these wave packets were given but they seemed to behave in a similar 

fashion to the wavepackets observed in this study i.e. they were 

associated with peak systole and the subsequent deceleration, were 

damped out during diastole and were generated anew in each beat. 

Nerem and Seed also hinted about a possible relationship between these 

disturbances and sound generation in the aorta.

These disturbances have also been described as modulated simple 

waves in a theoretical study of unsteady flow in flexible tubes
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(Seymour,1975) and Lou (1975), yet a fully comprehensive 

interpretation of these wavepackets is not readily available. Hence, 

there is need for more experimental work to be done by fluid dynamicists 

to investigate the generation, propagation and decay of such 

structures in flexible tube models of the artery. The primary 

question is whether these structures are a feature of turbulence or 

whether they are wall effects. Recently, there has been more interest 

in the role of coherent structures in turbulence (Jimenez,1980 and 

Hussain,1983) and the stress is now shifting from the overall 

statistical behaviour of turbulence to its more detailed structure. 

Hence, it is hoped that in the near future the results of more 

rigorous experimental and analytical work on disturbed flow in 

flexible tubes will be available.

7.2 Clinical Considerations

The detection and quantification of arterial stenosis might become 

a reality if more is known about the statistical behaviour of the 

proposed model i.e. the statistical fluctuations of the model

parameters for a given level of occlusion. Another probably more 

important source of information is the impulsive noise which needs to 

be characterised. We noted that the arrival time of the first 

disturbance seems to decrease with increasing stenosis . Also, the 

pulse intensity appears to be directly proportional to the occlusion 

level though this is also subject to physiological variability. Hence 

its quantification, requires the use of some more sophisticated

statistical methods.
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It might also be possible to derive the realtionship between flow 

disturbances and sound generation in the artery. This could prove to 

be very useful for phonoangiography which, though noninvasive is still 

in its infancy as a technique because little is known about the 

generating process. Some correlation might be found between sound 

spectra and disturbance velocity spectra which might also lead to a 

better understanding of the transmission of sound waves through the 

human body.

The application of the technique developed in this study to 

Doppler ultrasound measurements of blood velocity in humans is the 

subject of future research because of the fact that the disturbance 

could have a narrow-band frequency content could help in isolating 

effects in the signal that might be due to ambiguity and noise. Again 

autoregressive techniques can be applied to this signal to extract a 

good estimate of the process spectral density. In addition, since 

directional components can be detected using Doppler ultrasound 

techniques , a study of the mentioned process in more than one 

dimension could prove to be useful in the better understanding of the 

three dimensional velocity field.This could make an important 

contribution to medical imaging by Doppler ultrasound and could 

trigger the development of the relevant image processing techniques 

and hence the localization of arterial obstructions.

Although some clinicians might find it hard to accept that there 

is indeed a relationship between stenosis and blood velocity 

disturbances, the understanding of this process makes possible the 

interpretation of clinical techniques that, though widely used in
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practice are still theoretically vague like sonography , for example. 

Also, clinical decisions should not only be based on the presence or 

absence of flow disturbances but also on the nature or detailed 

structure of these disturbances.

7.3 Future Reflections

As mentioned before, experiments with simple laboratory models of 

pulsatile flow in a constricted artery are essential in clarifying the 

generation , propagation and decay of flow disturbances. In addition, 

more sophisticated signal processing techniques should be developed to 

extract more precise information about the fine structure of this 

velocity field.

7.3.1 Experimental Data Requirements

The techniques chosen are highly dependent on the ability to 

acquire good measurements of velocity components at prescribed 

locations in the model. Since the velocity field is a three 

dimensional field which is varying in time, the ideal situation would 

be to try to describe it in that context. Unfortunately, this can 

only be a long term objective; consequently, in the short term we can 

only regard the disturbance field as a function of both time and 

distance away from the constriction.

Of interest in this space time analysis is the location of the

disturbance source. In the present study a time delay has been
between

observedv the start of the cycle and the onset of the first

disturbance. This could signify that the observed disturbances have
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been generated in the vicinity of the constriction (downstream) and 

have travelled from that location to the site of measurement. In 

locating that source, it is considered important to find the point of 

maximum disturbance intensity as this is considered to be a favourable 

site for meaningful measurements.

With the source located, it would be equally interesting to follow 

up the propagation of the disturbances downstream while still keeping 

the same distances away from the wall. Two dimensional spectra i.e. 

spectra of time and axial distance can then be obtained to analyse the 

frequency content of the propagating signal.

Equally important would be the monitoring of the wall motion and 

its effects on the velocity signal and vice versa. Flow induced 

vibrations could also be investigated and measurement of the velocity 

signal at resonance could produce an understanding of the coupling 

between flow and wall motion.

Although all these data requirements might not be satisfied 

because of the limitations of the measuring devices and other 

experimental difficulties, the few that are satisfied could provide 

many clues to the complex nature of the disturbance velocity field and 

would eventually lead to the development of a more general stochastic 

model of the process.

7 .3.2 Theoretical Modelling and Analysis

The next step in modelling would be to consider the disturbance 

velocity as a state space model driven by a point process noise. This

means that the system transfer function
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H (z)
M—1 M-2b z +b z + . . . +b ,z+b 1 2 M-l M

M M-lz +a z + . . . +a ,z +a1 M-l M

(7.1)

can be represented in state space form where the state equation is 

given by:

X(k+1) = $ x ( k )  + y u(k) (7.2)

where X(k) is an Mxl state vector , u(k) is the point process input 

sequence and $ the transition MxM matrix and x the Mxl input 

distribution vector are defined as follows :

$

0 1 0  
0  0  1

0
o

-a M-l - aM-2 (7.3)

and

x  = [ o o . . .  i (7.4)

On the other hand the measurement equation can be written as follows :

Z(k) = hT X(k) + n(k) (7.5)

where Z(k) is the observation vector, n(k) is an additive noise source 
Tand li , the measurement vector, is given as :
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h = [ bM M- 1 (7.6)

The state space representation of a discrete ARMA process can be 

solved using a Kalman filter and can be used to estimate the transfer 

function parameters as well as the statistical parameters of the noise 

input sequence (for references on state-space filtering see Meditch 

(1969), Gelb(1974) and Srinath and Rajasekaran (1979) )

For the optimal operation of the Kalman filter, the noise 

statistics of the input noise should be known apriori. Hence, one of 

the objectives of the future analysis is to try to determine the 

statistical nature of the point process noise (for example its 

distribution) . This would require the analysis of a vast amount of 

experimental data which would be acquired from carefully controlled 

experiments on pulsatile flow in models of stenosed arteries. Human 

data would also be considered at a later stage for comparison.

Once the statistics of the noise are obtained the filter would be 

applied to study the variations of the statistical parameters (for 

example, the parameters that define a distribution) with changing 

occlusion level. Also, the transfer function parameters can be 

estimated accurately and hence waveforms for a given level can be 

quantified in an optimal statistical fashion. This might provide a 

more accurate estimate of the degree of stenosis be it in the low or

high range.
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The long desired objective might still be far away but we now have 

a clearer vision of the path. Some of the difficulties we have 

overcome but many more are still to come. The battle is not yet over 

and since the challenges remain, the interest will never fade away. 

The hope is that the future will carry an abundance of work by those 

who believe that progress is not a relic of the past.
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