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ABSTRACT

The true dimension of space time, according to most contem­
porary theories, is more than four! This is suggested in 
order to explain the intricate physics of elementary parti­
cles and gravity. A study of three ways for enlarging 
space-time dimension, with the help of algebraic computing, 
constitutes the major part of my PhD thesis. These are :

1- The embedding theory : Which evolved naturally from 
the fact that Riemannian spaces, The mathematical "models" 
of space-time, can be considered as surfaces in Euclidean 
spaces of sufficiently large dimension. The theory of nor­
mal deformations of space-times is discussed, and a new 
mathematical method for computing these deformations is 
presented. The formalism obtained is applied to specific 
cosmologies, with emphasis on the physical significance.
2- Kaluza-Klein : Here, "real" space is obtained from the 

observed (i.e. 4-dimensional) space-time by adding to it a 
compact space, which is appropriately chosen so that it 
will account for particle symmetries (gauge-fields). A 
specific ansatz for the full metric is presented, and 
relevant parts of the Lagrangian of the theory are com­
puted using a computer program that can handle compactifi- 
cations.
3- Supergravity : Assuming Fermions-Bosons symmetry under 

the supersymmetric group action, (in a superspace) the 
Lagrangian of the theory is constructed for the massive 
N=2 supergravity model, using the symmetric and antisym­
metric representations of the OSP(4/2) group. Then using 
spontaneous symmetry breaking the physical spectrum of the 
theory is revealed: a massless spin 2 graviton, two mas­
sive spin 3/2 gravitinos, one massive vector-boson and two 
massive scalar fields.

Algebraic computing was applied for performing tedious com­
putations, and a presentation of the subject is given in a 
separate chapter.
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Thesis Outline

This thesis comprises of four main chapters and a pseudo­
chapter (chapter zero!). The latter presents broad physical 
arguments for justifying the research presented in the rest 
of the thesis.
The first chapter includes a review of the application of 

algebraic computing to research in theoretical physics, and 
in particular, to general relativity and other gravitational 
theories. Section (1-1) discusses the motivation for using 
the computer. The requirements of constructing an algebraic 
computing package are discussed in section (1-2). The dif­
ferent types of computing languages are presented in section 
(1-3), and attention is concentrated on the language LISP. 
The available algebraic computing packages are reviewed in 
(1-4) with closer examination of the packages SHEEP and 

STENSOR which are of exceptional relevance to general rela­
tivistic applications. To demonstrate the power of these 
packages, two non-trivial applications are discussed in (1- 

5), the Rainich conditions of general relativity, and the 
Clifford's algebra of the Dirac gamma-matrices.
Chapter tow tackles the classical problem of local 

isometric embedding of space-times. A general introduction 

to embedding is given in (2-1), then, in (2-2), mathematical 
structure of the theory of submanifolds is explored. Section 
(2-3) reviews the different types of embeddings, and their 

connection to general relativity. In (2-4) attention is
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turned to the problem of normal deformations of space-times, 
a new strikingly simple formalism is developed, and applica­
tions to four well known exact solutions of Einstein's field 

equations are discussed.
Kaluza-Klein theories are presented in chapter three. The 

introductory section (3-1) clarifies the relationship 

between Kaluza-Klein theories, and the theory of embedding, 
it also discusses the relevance of these theories to contem­
porary theoretical physics. The original (5-dimensiona1) 
Kaluza-Klein theory is presented in (3-2), while (3-3) 
discusses the generalization of this theory to the n + 4- 
dimensional case, using what is known as the Kaluza-Klein 
ansatz. Section (3-4) contains a new ansatz for the metric 
of the total space, which generalizes completely all the 
previous work in this field. A computer program is con­
structed for calculating some relevant parts of the Lagran- 
gian, this program, which is applied to this new ansatz, is 
of a very general nature, and can be used for any other 
ansatz. Some of the difficulties facing the Kaluza-Klein 
theories are presented in (3-5), together with a discussion 
of the physical interpretation of the additional dimensions 
and the link to supergravity.
Chapter four is devoted to the study of massive N = 2 super- 

gravity from a geometrical point of view, this is done by 

considering the super-fibre-bundle theory with an OSP(4/2) 

right action group. A brief introduction to supergravity, 
and its relation with higher dimensional theories is given
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in section (4-1). Section (4-2) constructs the mathematical

apparatus for the study of geometrical supergravity. The 
Orthosymplectic groups are introduced in (4-3) and their 
symmetric and antisymmetric representations are given, with 
particular attention to the transformation rules of these 
representations under the action of the super-group. The 
Lagrarigian of the massive N=2 supergravity theory is con­
structed and analyzed in section (4-4), this Lagrangian is 
manifestly invariant under the action of 0SP (4 / 2 ) . When the 
OSP(4/2) symmetry is spontaneously broken, the physical 
spectrum of the theory becomes clear, this turns out to con­
sist of a massless spin 2 graviton, two massive spin 3/2 
gravitinos, a massive gauge vector-boson and two massive 
scalar fields.
Appendices A, C and D contain listings of some computer 

programs and results. While appendix B is devoted for the 
notational conventions.
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Chapter 0 Introduction

Chapter Zero

INTRODUCTION

0-1 GRAVITY THEORY AND UNIFICATION ATTEMPTS

The gravitational force is the oldest force known to man, 
yet, when compared to the other known forces of nature 
(electromagnetism, weak and strong nuclear forces), it is 
the least understood!. This curious fact is mainly attri­
buted to the extreme smallness of the gravitational constant 
(" 6.6 x 10 c.g.s. units, dyne-cm/gm) which makes gravita­
tional experiments very difficult to perform with the 
presently available lab-equipments and energies. However, 
for the theoreticians, the source of the same problem is 
much harder to identify, and is still a disputed issue.
Einstein's geometrical theory of general relativity is, so 
far, the most successful classical theory for describing 
low-energy gravity. Experimental data known hitherto, con­
firm this theory and thus it is likely that any future quan­
tum theory of gravitation should have general relativity as 
its low energy limit, rather than replacing it completely. 
Nevertheless, a full understanding of general relativity and 
its implications has not been achieved yet, which is obvi­
ously a serious hurdle in the way of quantizing and/or gen­
eralizing it.
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Chapter 0 Introduction

Being essentially a geometrical theory, general relativity 
differs radically from the usual field theories of physics 
on fundamental issues, like the nature of the "force" 
itself: whether it is a description of space-time curvature, 
or rather, an exchange of a particle?
The methods of conventional "field theories" have been, 

apparently, quite successful in describing nongravitational 
forces. For electromagnetic and weak interactions, there is 
the unified quantum field theory of SU(2)xU(1) of Glashow, 
Salam, Ward, Weinberg and others. At the same time, "Quan­
tum Chromo-Dynamics" QCD theory of interacting gluons 
(Yang-Mills bosons) with quarks, presents a good model for 
studying strong interactions. There even exist grand uni­
fied schemes (GUTs) in which these two theories are unified 
in a world of color and flavor, but without gravity!! Note 
that the predictive power of these quantum field theories is 
a consequence of their renormalizability.
These successes tempt theoreticians to treat gravity on the 
same footing, i.e. considering it a field theory with spin 2 
massless particle as the "force carrier", as a first step 
towards the ultimate unified theory of nature (the Utopia of 
physicists!), however, this scheme faces the grave problem 
of non-renormalizability of gravity, due to the dimensional­
ity of its coupling constant.
The alternative procedure, of "geometrizing" field theories 
is also equally problematic, which casts doubts on the unif­
ication idea as a whole. However, the difference in basic
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Chapter 0 Introduction

mathematical tools used for studying different forces of 
nature did not compel most physicists to give up the unifi­
cation dream, especially after the emergence of new theories 
that claim to possess the remedy. The most important of 
these theories is a combination of two types of theories:

i) Supergravity theories: which are basically field 
theories, that hope to provide an alternative to renormal- 
izability through automatic (magic) cancellation of infin­
ities .
ii) Kaluza-Klein theories: which are of geometrical 

nature, they explain the non-gravitational fields as 
geometrical symmetries in extra (hidden) dimensions of 
space-time.
It is interesting to note that one important formulation of 

supergravity is done in superspace, whose dimensionality is 
more than (the usual) 4. This observation helped to inves­
tigate the geometrical nature of some supergravity theories 
(see chapters 3 and 4), which should provide the recipe for 
forging a link with Kaluza-Klein theories, that would hope­
fully lead to the total unification of forces.
From the above discussion, The importance of higher­

dimensional theories (i.e. theories which regard the dimen­
sion of the universe to be grater than 4) is clear, since 
they are becoming the "standard approach" for modern 
theoretical physics, and these will provide the major theme 
of this thesis, which will present, from a geometrical point 
of view, specific problems facing the above mentioned
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Chapter 0 Introduction

schemes, and attempt to solve them. However, before going 
into these "super-theories", a presentation of the most 
natural higher-dimensional theory is needed, that is the 
embedding theory, which has not been fully understood yet, 
particularly the question of normal deformations of embedded 
space-times of the classical general relativity theory.
Another common thing between these theories is the extreme 
complexity of the mathematical calculation involved!!, which 
lead us to adopting algebraic computing as another theme of 
the thesis. This however does not mean that all the thesis 
will be filled with computer terminology, since these are 
only restricted to the first chapter, and some appendices, 
while only results are given in other chapters.
0-2 EMBEDDING AND HIGHER DIMENSIONAL THEORIES

More and more physicists are beginning to question the true 
dimensionality of space-time (as discussed above), to which 
the number 4 is usually associated as "a priori". In this 
section some interesting facts concerning space-time dimen­
sionality are presented, together with a preliminary intro­
duction to the embedding theory.
It is quite remarkable to note that the quantum field 

theories are much more successful in d-dimensional space- 
times with d < 2 or d > 4 rather than d = 4, for which they 
are notorious for being ill-defined! one quoted example is 
the dimensional "regularization" technique [1], which avoids
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Chapter 0 Introduction

the divergencies in 4-dimensions by working in d-dimensions 
and them taking the limit d—*4 in the final answer!.
Another intriguing fact is that the basic postulates of 
Einstein's theory of general relativity are independent of 
the dimensionality of space-time and therefore one can study 
d-dimensional general relativity using the same formalism. 
However, general relativity theories in d < 4 dimensions
have completely unintuitive implications, which are qualita­
tively different from well established classical physics
[2], therefore they can be dismissed.
Embedding is the most natural higher-dimensional theory,
since additional dimensions are implied by the curvature of
the space-time, rather than being inserted by hand. It
should provide a clear and intuitive geometrical picture for
space-times, making their properties transparent. For exam-

2pie, if we consider the 2-sphere S , it is clearly much 
easier and useful to study it as a surface in 3-dimensional 
Euclidean space, rather than a mere abstract manifold. How­
ever, this scheme faces severe computational problems, over 
and above the fundamental physical problem of the lack of 
the manifold which correctly describes the universe. On the 
other hand, other higher-dimensional theories (including 
supergravity and Kaluza-Klein) "implant" the extra dimen­
sions artificially, so as to (hopefully) extract the correct 
physical theory.
Despite the huge amount of literature present, it is fair 
to claim that the study of higher-dimensional theories is
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still in its infancy, especially regarding the development 
of the mathematical tools needed in such type of work. A 
simple example that could be sited is the work of Teli [3], 
who used Hexon-algebra for formulating the classical 
Maxwell's equations in 6-dimensions, however his algebra did 
not close [4]! and an alternative construction using Octons 
was suggested in [4] to retain the results of [3].
0-3 THE ROLE OF ALGEBRAIC COMPUTING

Another thing common to all higher-dimensional theories (as 
well as most theories of physics) is the extreme complexity 
of the mathematical calculation involved!!, this lead me to 
adopt algebraic computing as another major theme for this 
thesis. This however does not mean that this thesis will be 
filled with computing terminology (which is naturally not 
familiar to theoretical physicists), in fact an attempt is 
made to restricted all computing material to the first 
chapter, and the appendices A, C and D, while only results 
are given in other chapters.
It is no exaggeration to describe the 20th century as the 
"computer age" for mankind, because of the undeniable impact 
of this machine on all human activities. The main effect is
felt in the research areas.

. . . 1 . .Computers are traditionally known as the "stupid efficient
hard-worker"! therefore, they are well suited for solving 

1 "Artificial intelligence" is being slowly build into 
them!!
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Chapter 0 Introduction

heavy calculations far beyond human capacity. In particular, 
using computers for routine-type work can pay back with sig­
nificantly improved efficiency.
However, the use of computers, especially for algebraic 
calculations, is not as widely spread as one would hope to 
see, and hence the need to introduce this subject in a 
separate chapter (the first chapter), because of its funda­
mental role in obtaining the results presented in this 
thesis.
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Chapter 1 Algebraic Computing

Chapter One
ALGEBRAIC COMPUTING

1-1 Motivation

It was reported that Einstein, the founder of the present 
theory General Relativity [1], was rather surprised to learn 
that Schwarzschild [2] presented an exact solution to his 
field equations, only a few weeks after these equations were 
actually published. His surprise stems from his knowledge 
of the cumbersome nature of the required calculations.
Hundreds of exact solutions have since been found [3], 
still it is generally accepted that working on General Rela­
tivity involves extensive and difficult calculations.
Fortunately though, the great bulk of General Relativity 
calculations are of an algebraic nature, which makes it pos­
sible to use electronic computers for carrying out the heavy 
computations. At this stage it is important to note that 
what has been said so far is equally true for all branches 
of theoretical physics, where a lot of time is employed in 
carrying out algebraic calculations of different levels of 
complexity, of routine nature.
To use the computer, one is compelled to formulate his 

problem in a language understood by that machine, and a 
natural choice for a theoretical physicist, is to use a high 
level programming language, since machine code and assembly 
languages are subjects of specialization in their own right, 
and they are more likely to vary from one machine to
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Chapter 1 Algebraic Computing

another. Nevertheless, one has to narrow down the possible 
programming language choice even further.
For historical (and may be psychological) reasons, most of 

the well known high-level languages are of a "procedural" 
nature designed mainly for number-crunching computations, 
and thus are not entirely adequate for algebraic calcula­
tions (symbol-crunching!), and despite earlier attempts to 
construct algebraic computing packages based on a procedural 
language (two important examples are FORMAC [4] and ALTRAN
[5], which are FORTRAN-based systems) the present trend is 
heavily dependent on "functional" languages, which are them­
selves receiving much renewed interest and attention in com­
puter science for their fundamental role in developing 
"artificial intelligence", which is very much needed for the 
building of the "Fifth Generation" computer [6].
1-2 REQUIREMENTS

Before deciding on the most suitable "language" for alge­
braic computing, it is essential to examine the problems 
involved in algebraic manipulation itself:

1-2-1 Data Structure
Historically, computers are thought to be number-crunching 

machines, thus, the data input, processed and then output­
ted, was supposed to consist of numbers only, and conse­
quently, procedural languages were designed mainly to handle 
numerical data. Clearly such data are not adequate for 
algebraic calculations, where symbols are needed for most of
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Chapter 1 Algebraic Computing

formatting. Functional languages, on the other hand, pro­
vide much greater liberty in defining a multitude of data­
types; This includes both numerical and symbolic data.
Hence, it is obviously beneficial to start off with a func­
tional language as a base for an efficient algebraic comput­
ing package.

1-2-2 Garbage collection!
The complexity of an iterative numerical calculation 
increases at worst power-wise, whereas in an iterative alge­
braic calculation, involving symbolic data, the complexity 
grows exponentially. Thus would easily lead to a memory 
"blow-up", i.e. the computer storage would be choked up with 
expressions, however, a close examination reveals that most 
of the data responsible for creating this problem is 
obsolete. This can be succinctly illustrated by the follow­
ing example:

. i oSuppose we would like to expand the expression (x+7)
iteratively, we then have:

(x+7)10 = (x+7)...(x+7) = .... (1>1)
= x 10+ 7 0 x 9+ 2 2 0 5 x 8+ 4 1 16 0 x 7 + 5 0 4 2 1 0 x 6+ 4 2 3 5 3 6 4 x 5+ 2 4 7 0 6 2 9 0 x  

+ 9 8 8 2 5 1 6 0 x 3 + 2 5 9 4 1 6 0 4 5 x 2 + 4 0 3 5 3 6 0 7 0 x + 2 8 2 4 7 5 2 4 0  

Clearly, if the computer continues to hold on to the data 
of the intermediate steps, then a small number of similar 
operations would exhaust the memory of even large (main­
frame) computers. Hence the need to have our chosen 
language equipped with a special device to round up
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discarded information and reclaim the store for further use, 
such a device is technically called a "garbage collector".

1-2-3 Simplification
According to Fitch [7], there are three major reasons for 
simplification:

i) Compactness, which is concerned with making the 
expression small to save on the store, and to speed up the 
subsequent calculations.
ii) Intelligibility of algebraic expressions: This is not 

a well defined concept, because it has a subjective ele­
ment for deciding the most appropriate form in which an 
algebraic expression should be presented to the user.
iii) Checking identities, or in other words, checking 

whether a certain expression is identical to zero, some­
thing which was proven to be untenable within a finite 
number of steps, indeed, Richardson [8] proved rigorously 
that, in general, no algorithm exists for deciding if an 
algebraic expression, containing terms from the class 
formed from the action of addition, multiplication divi­
sion, subtraction, forming trigonometric functions, 
exponentiation and logarithm modules on x (a 
variable), tt, log2 and other elementary constants, vanishes 
identically. Thus, even if people would agree on the sim­
plest form of every expression, it is clear that con­
structing a general algorithm for simplification is impos­
sible .
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However, there are well defined classes of algorithmic 
expressions that has canonical forms (the class of polyno­
mials over rational numbers is one example) i.e. they can 
be written in a unique fashion by assigning an arbitrary 
rule for canonizing the terms in the given expression. 
The identity problem for such expression is decidable [9]. 
The above reasons for simplification are obviously not 
entierly independent, since, for example, if one has the 
expression:

x2-y2 = (x-y)(x+y) (1.2)
The decision on whether the left hand side or the right 

hand side form of the same expression should be used, can 
vary depending on its position relative to the rest of the 
calculation, in particular, if the next step would involve 
dividing by x+y, the right hand side is more desirable.
The best way out, for solving simplification problems exam­
ined above is to provide an interactive environment for 
doing the calculations, then the user will be able to inter­
fere with the work of the computer at suitable times, and 
tell it where and when to expand a given expression.
Therefore, it is very desirable to chose a computing 
language that can run interactive programs, as well as 
Batch jobs.

1 "Batch job" is a technical term, used for non- 
interactive jobs that are submitted as a single bundle to 
the computer.
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1-2-4 Substitutions
These are needed in algebraic computing for dividing the 
calculation into stages, this would help to increase the 
speed and storage efficiency of the manipulation.
Substitutions are of three different types:

i) Expansion, where one term is replaced by its full 
value, which in turn might contain terms that are expand­
able. This used to break down the given algebraic expres­
sion and is mostly needed at the start of the manipula-

ii) Algorithmic substitutions, are those substitutions 
which are carried out in all basic computer systems, like: 

a- gathering substitutions, which are used to gather a 
few terms of an expression in one term. These are gen­
erally needed at the end of simplification, although 
they can also be useful in intermediate stages of work 
to reduce the number of terms to be dealt with. b- 
Algebraic ring substitutions, e.g. if A is a ring over 
F:

tion.

x+0=x
x. 1=x
x . 0=0

(forx*0)

x-x=0
— y y , ,x x -1 , y is finite m  A.

For all x e A. 0, 1 e F have the usual meaning.
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Chapter 1 Algebraic Computing

Therefore, studying the "substitutions" problem, reveals 
another aspect of the usefulness, or rather necessity, of 
interactive computing.
iii) Sum substitutions: These are probably the most dif­
ficult type of substitutions, since the relation given 
will be of the form:

a+b+c=0 (1.3)
Where a, b and c could themselves be complicated expres­
sions. A very important example of such substitutions is 
the trigonometric relation:

cos^x+sin^x-1=0 (1.4)
The difficulty in such substitution arises from the fact 
that there is no standard way of deciding which term 
should be removed and replaced by the other two terms! A 
judicious use of (1.4) would extensively help in simplify­
ing trigonometric polynomials, but on the other hand, the 
simple-minded procedure of using*.

2 . o  3 . 2cos x -*■ 1 -sm.x cos^x - * cosx-cosxsin x etc
can sometimes be a recipe for disaster!.
Although there exist some fairly successful trigonometric 
simplifiers, that exploit the sum relation (1.4) optimally 
(see for e.g. [10]), still the best current expedient for 
handling an arbitrary sum substitution is the user-machine 
interaction. One example where "foresight" (something 
which cannot be done by an unaided computer) is needed, is
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the observation that: 

as : A-aei, where A =

bgf+cdh-ahf-bdi-cge. may
a b c 
d e f g h i

be written

1-2-5 Interactibility
From what has been mentioned so far, interactibility is 
clearly a very desirable quality in the candidate language 
for constructing an efficient algebraic computing package. 
While in numerical computing there is nothing but the 
straight-forward process of number crunching, it is obvious 
from what has been said so far that algebraic computing 
involves, in addition to straight forward processes, a lot 
of intelligent decision-making and guess-work which is not 
always algorithmic, and hence not programmable. Therefore, 
the most effective way round this problem is to let the user 
share the work with the machine, by intervening when neces­
sary to give directing commands about the method in which 
the work should be carried out. It is important here to 
concede that the user may err in his suggestions but the 
advantage of using the computer to do the hard labour is 
that the price that has to be paied for a wrong guess is the 
loss of only a few minutes (or, at most hours) rather than 
days or months!.
The need for interactive computing has risen in more than 

one field of study, and at the time of writing this thesis, 
most popular programming languages in use have been updated 
to allow for this facility, and to make the most of it.
One should note that the interactiveness problem is linked
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to the problem of intelligibility, that is the user should 
be able to read off the stage of calculation reached by the 
computer as easily as possible, to reduce the chances of 
making a wrong assessment of the current situation, which 
would inevitably lead to issuing misleading "hints" to the 
computer.
It is true that interactive computing generally takes 
longer time than batch computing, because the computer has 
to loose valuable "seconds" just waiting for the user to 
enter his command. In fact, even if the user did not have 
to think about the commands he is typing in at all, still 
the time needed to type the characters on the terminal could 
be enough for the computer to execute thousands of elemen­
tary jobs! but still, for work that requires intermediate 
guessing, interactive computing saves a lot of time for the 
user, who would not have to wait each time for the computer 
to finish the whole calculation before finding out whether 
his guess was lucky!

1-2-6 Calculus and Polynomial Division
Calculus is a very important mathematical tool, which is 
essential for serious calculations in all branches of sci­
ence and engineering. It is therefore natural to expect 
that all algebraic computing packages would provide calculus 
facilities, at varying levels, depending on the special pur­
pose of the package concerned.
Differentiation, which is a straight forward algorithmic
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process, is available in almost all algebraic computing 
packages. It has attracted the attention of the earliest 
system builders because of its algorithmic nature. However 
the inverse of derivation, namely, indefinite integration, 
is not algorithmic Indeed not all functions, satisfying the 
usual smoothness conditions, have integrals that can be 
drawn from the set of elementary functions. Earlier 
integration programs had severe restrictions [11], despite 
using artificial intelligence techniques, but more recently 
improved algorithms have been used, and overall, the situa­
tion looks more hopeful, especially since the development of 
a new algorithm [12] that decides whether an expression, 
from a fairly wide class of expressions, is integrable in 
terms of that class, and if so, the integral can be worked 
out, this procedure has already been implemented in MACSYMA 
and REDUCE (see section (1-4) on packages). However the 
integration program is so large at present, that it is con­
sidered a special purpose program, that is, unless a calcu­
lation involves extensive amount of integration, it is not 
recommended to load this program onto the user's working 
space in the computer. Immediately related to integration, 
is the problem of polynomial factorization. This problem is 
basically algorithmic, since it is related to finding the 
common factor, (or the GCD) of polynomials [15], but it 
involves much testing, and thus consumes a lot of computer 
time. This would also classify factorization programs as 
"special purpose".
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7-3 CHOSING THE COMPUTING LANGUAGE

1-3-1 More Constraints!
Examining the requirements for algebraic computing is not 
enough, on its own, to pinpoint a specific programming 
language as the ultimate choice for building the desired 
system. This unfortunate fact is due to practical difficul­
ties, which, despite being traditionally disregarded by 
theoreticians, play an important role in the process of 
engineering (i.e. building a real apparatus from a theoreti­
cal model). These physical constraints can be summerized in 
one word: "availability", or rather, the non-availability of 
certain facilities. For example, no interactiveness can be 
achieved if the appropriate hardware (in this case VDU) is 
not available. It is arguable that divergence in the comput­
ing languages used in constructing algebraic computing pack­
ages (as will be seen in (1-4-1)) is mainly due to the prob­
lem of availability! This means that there is little hope 
in unifying those systems, mainly because computer manufac­
turers and scientists are too far apart to agree.

1-3-2 Procedural Versus Applicative Languages
The high level programming languages can be divided into 
two main groups "procedural" and "functional", whose major 
properties are presented below:
i) Procedural languages: are the more traditional type of 
languages, such as FORTRAN, BASIC, PASCAL etc, they were 
designed mainly for numerical analysis, with generally two
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data-types available: integers and floating-point numbers! 
even in their modern versions, defining symbolic data 
requires a lot of intricate formating.
Variables in procedural languages behave in a peculiar way, 
completely different from the traditional mathematical 
understanding of the nature of variables! this is mainly 
because of the "procedural" nature of these languages. More 
precisely, a variable in a procedural language is a name 
given to an allocation in the memory of the computer, hence, 
statements of the type:

x = x + 1 (1.5)
are quite sensible!
The command (1.5) means: add one to the content of store 
'x', and replace the result in that same store.
Obviously, this makes it more difficult to adapt these 
languages to symbolic and algebraic computing, where
x = x + 1 is meaningless!
These languages however are quite powerful in numerical 
computing, with a speed and precision far beyond human capa­
cities. They have also been used to build algebraic comput­
ing systems (as shall be seen in (1-4-1)) mainly because 
they are widely available, in contrast to "applicative" or 
"functional" languages, which were thought to be of less 
importance.
ii) Functional languages are programming languages in which 

variables behave in the usual mathematical way. These
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languages have varying design philosophies, for example APL 
is organized around the concept of arrays as the building 
blocks, for accomplishing the mathematical notation for 
algorithms, as described by K. Iverson [38], while LISP is 
based on lists, in the widest sense of the word [39].
All functional languages accept symbolic data, but the 
flexibility of the data structure may vary from one language 
to another. And since algebraic computing generally demands 
the use of highly complex data-types (like tensors and 
operators), it is important to be selective, even when con­
sidering functional languages.
Recently, a lot of research has been taking place in the 
field of functional languages and a new breed of language is 
emerging, such as the language HOPE [40], which provides an 
extremely flexible data structure, where the introduction of 
new data-types is at the fingertips of the user, in addition 
to a lot of other interesting features. The main problem 
with these languages is that they are, in general, still 
developing, and thus should be regarded as computing- 
languages of the future!
Table (T1) contains a general comparison of the major 
features of the rather well known functional languages. 
This table shows that LISP is apparently more favorable to 
fulfill the requirements needed for constructing an alge­
braic computing system, this was also the conclusion of most 
system-builders, as shall be seen in (1.4). Hence, the rest 
of this section will be devoted for explaining LISP and its
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relevant advantages and disadvantages.

1-3-3 The Language LISP
LISP, an acronym for List Processing, was designed by John

McCarthy and co-workers for symbol manipulation algorithms.
Atoms are the building blocks of LISP; an atom can be an
integer, a floating point number, or a symbol composed of
one or more characters (but not starting with a numeric 

2character ) also the use of some special symbols in atoms 
are permitted. Atoms can be grouped together to form lists. 
A list is either empty, or contains a collection of atoms 
and/or lists. For example:

Language APL LISP PROLOG SASL
Building
Blocks Arrays Lists Relations Lists
Notation Infix Prefix Infix Infix
Garbage
Collection No Yes Yes Yes
Datatypes
Available

Integers 
+ Symbols

Open Integers 
+ Strings

Reals 
+ Strings

Important
Features

Large and 
Confusing 
Character 
Set

Input and 
Output are 
of the Type 
(Lists)

Very small 
Library

Difficult 
to Learn

Table T1: Well Known Applicative Languages

Since the LISP-reader uses the first character to 
discriminate between variables and numbers.
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1 , 0.206 , A1F ... are atoms
() , (3) , (A (3 I) MATH) ... are lists.
A running LISP constitutes of an infinite READ-EVAL loop,
i.e. it reads strings from the standard input and evaluate 
them, then waits for more input.
The basic LISP functions are only 8 in number, and under­
standing these is enough for writing LISP programs! these 
functions are:

(1) QUOTE (or just ' ) returns the value of its argument! 
in other words, it shields its argument from the LISP 
evaluator. For example, if you type: (QUOTE NAME1) to 
LISP, it responds: NAME1
(2) ATOM is a predicate, which returns NIL if its argu­

ment is not an atom, otherwise it returns T (for true). 
e.g.: The input (ATOM 'ALPHA) has the value T (for true), 
while (ATOM '(ALPHA)) has the value NIL.
(3) EQ This function should be applied to two argu­

ments, it is also a predicate, which checks whether its 
arguments are EQual.
(4) CAR returns the first member of the argument list, 

e.g. :
(CAR '((HEAD OF) THE (LIST))) = (HEAD OF) It has no

meaning if applied to an atom, and will give an error.
(5) CDR returns its argument list, after chopping off 

the first member (i.e. the CAR), for example:
(CDR '((HEAD OF) THE (LIST))) = (THE (LIST))
(6) CONS CONStructs a new list, whose CAR is the first
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argument, and CDR the second, e.g.:
(CONS 10 '(20 30)) = (10 20 30) clearly the second

argument must be a list.
(7) COND this function takes any number of lists as 

arguments. It first checks if the CAR of the first list is 
empty, if not, it will evaluate its CDR and stop, other­
wise, it will do the same work on the next argument list, 
and so on.
(8) DE this function helps to introduce new functions 

to LISP, it takes three arguments: the first is the name 
of the function being defined, the second is the list of 
variables and the third is the algorithm of the function. 
Using the same syntax, different function-types can be 
defined in LISP, the most important are:

i) Expr: These functions take only a specific number of 
arguments and evaluate them (via the LISP EVAL reader), 
before doing its job. Thus it is important to QUOTE the 
argument for which pre-evaluation is not desired. As an 
example, consider the built-in addition function EQ, If 
one types: (EQ ALPHA ALPHA), the computer will complain,
since ALPHA can not be evaluated! the answer for this 
operation is neither T nor NIL!! However, if we quote 
both ALPHA'S by ' we have: (EQ 'ALPHA 'ALPHA) which
gives T. Alternatively, we may set ALPHA to a value, 
say A1, using the SETQ command (more about SETQ in the 
next section), then the above command will be equivalent 
to checking whether A1 is the same as A1, which is
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obviously true, giving the output T. All the functions 
presented so far, except QUOTE of course, are Expers.
ii) Fexpr: Takes, in theory, one argument (which can be 
a list of arbitrary number of entries!), and do not 
pre-evaluate it. This is extremely useful for introduc­
ing functions with a flexible argument-list. Consider 
for example the built-in function PLUS which takes two 
arguments and add them up. To allow the addition of more 
than two numbers in one go, we can define the Fexpr 
PLUSG (G for general), as follows:

(DF PLUSG (X)
(COND ((ATOM X) X)

((NULL X) 0)
(T (PLUS (CAR X) (PLUSG (CDR X))))) ) 

Note that for defining Fexprs one should use DF instead 
of DE.

Needless to say that in addition to these functions, LISP 
knows all the traditional functions of one variable (log, 
exp, sin, ...) the arithmetic operations (+ , x , ...) and
the Boolean operations (AND , NOT, ...). There are also 
other very useful built-in functions, like SETQ, PUT, APPEND 
etc (for more details on these and other functions, see for 
eg [35]). Here we shall only describe the command SETQ:
This is an Expr which takes two arguments (and quotes the 
first argument automatically). Its job is to set the second 
argument as the LISP-value of the first. Therefore, if we 
type: (SETQ ALPHA ' A1) Any subsequent use of un-quoted
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ALPHA, will be understood by LISP to be A1, in particular, 
if we enter only: ALPHA, the computer will respond by print­
ing A1 .
Clearly, the syntax of LISP is extremely simple, and thus,

LISP itself is a very easy language to learn. No previous 
knowledge of other programming languages is needed, on the 
contrary, having experience in another language can be harm­
ful, since different languages do things differently and 
"functional-to-function" translation may lead to unnecessary 
complications.
Although the traditional ideas of "programs" and "loops" 
are known to LISP, "purists" try to avoid using them, they 
recommend instead the use of the very powerful tool of 
recursion, which in most cases, supercedes the traditional 
iterative techniques. For example, one can compare the fol­
lowing two ways of defining the factorial of an integer:
i) (DE FACTORIAL (N)

(COND ((EQ N 0) 1)
(T (TIMES (FACTORIAL (DIFFERENCE N 1)) N))))

ii) (DE FACTORIAL (N)
(PROG (A) (SETQ A 1)

LOOP (COND ((EQ N 0) (RETURN A))
(T (SETQ A (TIMES N A))))

(SETQ N (DIFFERENCE N 1))
GO LOOP))

Particularly, in symbolic manipulation, recursion is more 
suitable for most applications, while iteration may be of
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some use when working with arrays.
Another characteristic of LISP, is the simplicity with 
which program-generating programs can be written. This is 
substantially helped by the fact that both, programs and 
data are constructed from the same structure; namely lists. 
This property is extremely useful in algebraic computing, 
where it might be necessary to have different levels of data 
abstractness, such that the passing from one level to 
another is algorithmic. An example of this is TCOMP program 
in STENSOR, which will be described in section (1-4-3).
The major alleged disadvantages of LISP are only two:

i) According to M. Ward [41], it has been alleged that 
LISP stands for: "Lots of Irritating Single Parentheses", 
which appears as a fair accusation to an outsider. Experi­
ence, however, show that this is rather an artificial 
disadvantage of LISP, similar in nature to the fear from 
water for beginners in learning swimming!, and as soon as 
this initial fear is overcome, its hidden beauty becomes 
clear.
ii) The second disadvantage of LISP is a real one, but is 

by no means confined to LISP only. This is the problem of 
"dialects"!. It is due to the continuous succession of 
contributions and "improvements" to local versions of LISP 
at different research sites, as well as the constraints 
imposed by the hardware structure of different computers!. 
This impedes the standardization of LISP, so necessary for 
the development of easy software interaction.
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The original versions of McCarthy (LISP1.5 , LISP1.55 , 
LISP1.6 etc) are obsolete, and at present, the most impor­
tant versions in use are: i) MACLISP [42]: developed at
MIT, which has in turn split into different subdialects, 
the most important of which is the FRANZ LISP [43]. ii) 
Interlisp [44]. iii) UCI LISP [45]. iv) SLISP [46]; which 
was intended to be Standard LISP!
1-4 IMPORTANT PACKAGES

1-4-1 Historical Development
Originally, algebraic computing packages had two distinct 
sources: researchers (particularly in areas of theoretical
physics) and computer scientists. The packages designed by 
computer scientists were aimed at quite general algebraic 
procedures, with no specific application in mind; On the 
other hand, the packages designed by research workers were 
much less sophisticated and more to the point, because there 
research workers had specific problems that required solu­
tion. Generally, the latter packages were more successful, 
judging from the amount of usage generated. However, at 
present, systems are being developed by a new generation of 
scientists, who should be called "computational-physicists, 
possessing extensive knowledge of various branchs of phy­
sics, or engineering and expertise in computing. Thus the 
impact of new algebraic systems is expected to change radi­
cally the way research is carried out in a lot of theoreti­
cal fields of science. Especially since many of the new
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generation packages are designed to work on mini and per-
3sonal desk-top computers , which are relatively cheap, and 

within the budget of small research firms and small univer­
sity departments
R d 'Inverno [9 and 16] reviewed extensively the historical 
development in algebraic computing, giving attention to 
almost all algebraic packages, including those now out of 
date. Here however, I attempt a more pragmatic analysis, 
considering critically only the "surviving" packages and 
systems, in order to select the most appropriate one for our 
work. Nevertheless, for the sake of completeness, table T2 
below exhibits all the systems and packages known to the me.
The word "package" usually refers to a collection of pro­
grams, with development time measured in days of human work. 
While a "system" is a collection of packages, often built 
from a scratch, having their development time measured in 
years!. Systems, therefore have wider applications, but the 
price to pay is that the storage-size needed is much bigger 
than that of a package, restricting their use to relatively 
large computers.
Although it has been argued above that the language LISP is 
the best candidate for construct an efficient algebraic com­
puting system, there are nowadays a few other systems and 
packages in use, which are not LISP-based, important exam-

3For example REDUCE is already available on Darkstar- 
Sirius.
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pies are (see table T2): the system ALTRAN and the packages 
GOEDEL [17] and GRATOS [18] which are FORTRAN-based. There 
is also CAMAL, which is written in a low-level language, 
where the data structure that originally accommodated 
integers and floating-point numbers, was modified fo accept 
symbols instead of the latter data-type [19]. Despite many 
drawbacks, CAMAL has been very successful as a system [17], 
mainly due to the active support group it enjoys. However, 
it is interesting to note that the main author of CAMAL, J. 
Fitch, declared in a lecture at Imperial College (on 2-2-
1982) his preference to LISP over other computing languages, 
in the field of symbolic manipulation!, and he is at the 
time of writing this these involved in constructing a new 
version of LISP: the Cambridge-LISP. The view of the author 
is that, if only because of the need for standardization, 
CAMAL may not survive much longer.
At the end of this, rather quick, process of elimination, 
one is left with mainly three LISP-based systems: MACSYMA
[20], REDUCE [14] and SHEEP [21]. It is actually very hard 
to chose between these systems, since they all have very 
great virtues, especially in their latest versions. 
Nevertheless, after careful consideration of the types of 
applications intended, which are in the area of gravita­
tional theories, and keeping in mind the limitations on the 
computer storage available for such a project. SHEEP 
emerges as the most suitable system for use for research in 
general relativity, since its main rivals MACSYMA and REDUCE

K.Shaker Jomaa 30 PhD Thesis



Chapter 1 Algebraic Computing

being both large systems, intended for a variety of alge­
braic computing requirements, (including integration and 
factorization packages), which as discussed before, would 
make their storing and running expensive, in terms of com­
puter time. Though, it is only fair to remark that both of 
the rival systems have been used in gravitational and gen­
eral relativistic calculations, and have produced very 
important results (see for e.g. [22], [23] and [24]) and 
they are still being used, and developed in many research 
institutes.

Package/
System

Specialized 
For General 
Relativity

Base
Language

Interactive Obsolete

ALAM Yes L No YesALPAK No F No YesALTRAN No F No NoCAMAL No 0 No NoCLAM Yes L No YesFORMAC No F No YesGOEDEL No F No NoGRATOS Yes F No NoLAM Yes L No YesMACSYMA No L Yes NoMETASAC No F No NoORTOCARTAN Yes L No NoREDUCE No L Yes NoSAC-1 No F No YesSCHOONSCHIP No 0 No NoSCRATCHPAD No L Yes NoSHEEP Yes L Yes NoSML No 0 No NoSYMBAL No 0 No Yes
Key: L = LISP, F = FORTRAN and 0 = Other. 

Table T2: Algebraic Computing Packages
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1-4-2 The Package SHEEP
SHEEP was written by I. Frick [21] to become the latest 

member of the LAM family of packages (Lisp Algebraic Manipu-
lators), developed by R d'Inverno [5] and [26], who
described the new commer as: "a very different "animal"
indeed" ! [9]. It supercedes its "predecessors" with many
improvements in basic algorithms and important additional 
functions, like tensor manipulation, tetrad calculations, 
truncated power series and complex arithmetic. However, the 
most important new feature, is that SHEEP can be used 
interactively. With respect to efficiency, SHEEP competes 
favorably with respect to other existing packages and sys­
tems, both in computing storage and in speed [9].
Although my decision to use the system SHEEP is now made, 
it still is useful to present a brief account of its advan­
tages and disadvantages!. This will contribute to a better 
understanding of the system, its capacity and limitations, 
which would help in applying it more efficiently.
The major advantages of SHEEP are:

i) The "grown up LAM(B)" has a comparatively small size: 
typically 30k words (of 32 bit word), which leaves a lot 
of free memory for the user's work. The small size 
should, in principal, be helpful in making SHEEP available 
for a greater number of machines, including those with 
limited storage capacity, but unfortunately, there are 
still other problems impeding portability (more about por­
tability in the section on disadvantages).
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ii) SHEEP is a very fast "animal" when it was put to the 
"standard" test of calculating the Einstein tensor for the 
Bondi radiating metric [27], SHEEP took about 30 seconds 
to compute and print out the components of the Christoffel 
symbols, the Riemann tensor and scalar, and the Einstein 
tensor. Also, it gave a print-out of the covariant and 
contravariant components of the metric (for confirmation). 
Throughout this job, only 35k of memory was used. SHEEP 
is thus 10 times faster than REDUCE.
iii) Interaction is a very important property of SHEEP, 

not only for facilitating the work, but also to make some 
calculations at all possible, as has been discussed ear­
lier .
iv) However, for efficient interaction, neat and clear 
formatting is needed for inputing and outputting data. 
SHEEP has probably the most readable output, compared to 
all other systems [9], and as far as inputing is con­
cerned, the notation of SHEEP is quite straight forward. 
Also, data can be entered interactively, so that the user 
can verify instantly whether any typing mistakes were 
made.
v) The internal layout of SHEEP is organized as a series 
of self-contained components, called modules. This means 
that only the modules which are needed for the task in 
hand will be "loaded" into the working space of the com­
puter so contributing to the remarkable efficiency of

4SHEEP. Also, this helps debugging the system (when
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needed), and makes it much easier to add more modules in 
the future to provide extra facilities.
vi) SHEEP is very easy to learn at the user level, since 
the knowledge of only a few basic functions can start the 
user off. So that in a very short time he becomes able to 
tackle interesting research problems [28]. This has been 
a major factor in increasing the number of its users quite 
rapidly, and significantly helps the developing of the 
system, in accordance with the feedback from the users.

The major disadvantages of SHEEP:
i) The LISP base of SHEEP has obviously played an impor­

tant role in providing the above mentioned advantages, yet 
the same LISP is responsible for one of the major disad­
vantages of SHEEP, namely: its availability.
SHEEP was written in SLISP dialect, the Standard LISP, or 

rather what was intended to be the standard LISP! There­
fore, at present, SHEEP can only run on PDP10 and VAX 
machines of DEC computers; for which translators of the 
implemented LISP (1.6 or Franz) were written by I. Frick, 
the author of SHEEP. However, more adaptable (portable) 
versions of SHEEP are being prepared.
ii) Common to all algebra systems, is the problem of run­

ning into store difficulties, and SHEEP is no exception to 
this, although it generally holds a bit longer than
4 Debugging: is a technical term in computer science 

which is used for the process of removing the sources of er­
ror (Bugs!) from a program.
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others!
iii) SHEEP has no symbolic integration program, which is 

a price that had to be paied for compactness, since all 
known integration programs are extensively large. How­
ever, the lack of integration facility dose not seriously 
handicap SHEEP, since it is not essential for most general 
relativistic applications, which constitute the intended 
domain for SHEEP.
iv) Another missing facility is polynomial division and 
factorization, which is usually more needed than integra­
tion. To compensate for this SHEEP has got a built-in 
program, which will detect if a denominator appearing in a 
standard computation consists of an irreducible sum of 
terms, and if so it will replace that denominator by a 
single new term before proceeding with calculations. This 
procedure has to be done manually in case of a non­
standard type of calculation.

The last two disadvantages (iii) and (iv) can be overcommed 
in the case when REDUCE and SHEEP live together in the same 
machine, since the formatting of SHEEP is compatible with 
that of REDUCE, so that one can easily direct the output of 
the calculation of one system to be used as an input to the 
other. But, the efficiency of such a procedure is question­
able .
SHEEP has already been used for solving many general rela­

tivistic problems, even exceeding the scope predicted by its 
author [29]. At present, an estimated 30 research
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institutes are using it, for yet more applications and 
developments.
Two very important modules have been added to SHEEP, 

namely: CLASSI [30] written by J. Aman, and STENSOR [10]
written by L. Hornfeldt. The current research using SHEEP, 
includes the study of the "equivalence problem" [31 and 32] 
and building a data-base for all exact solutions of 
Einstein's field equations, the relativity research group at 
Queen Mary College (London) under M.H.A. MacCallum's.

1-4-3 Tensor Manipulator: STENSOR
As indicated above, SHEEP is run by loading onto LISP some 
basic packages for general definitions of algebraic comput­
ing, then if needed, more modules can be added subsequently, 
depending on the specific application intended. This con­
tributes substantially to the speed and efficiency of SHEEP, 
and it gives it a powerful ingredient for expandability. 
Figure (F1) below illustrates this property of SHEEP, and 
gives a comparison with the sizes of MACSYMA and REDUCE.
STENSOR module shall be considered in more detail, because 

of its importance for the rest of this thesis.
Basically, STENSOR is a special-purpose algebraic manipula­

tor, designed to handle any type of indicial quantities, 
i.e. quantities that have symbolic indices; these include: 
spinors, tensors and operators. STENSOR can perform all 
known tensor-calculus operations, such as addition, multi­
plication, partial differentiation, covariant differentia-
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Figure 1: The approximate storage needed for the package SHEEP 
and associated packages, compared to other systems, in Kilo-bytes.
tion etc. It also uses efficiently the symmetries of dif­
ferent indices during computation. For example, if we

metric and symmetric in the pair of indices i and j, then

automatically.
STENSOR can handle anticommuting, as well as non-commuting 

objects, and it possesses a very sophisticated substitution 
program, which uses the interactivity of SHEEP quite effi­
ciently .
Another important sub-program of STENSOR is the tri­
gonometric simplifier, which exploits optimally the tri­
gonometric sum-relation (1.4). By adjusting few switches, 
the user can direct the process of simplification which com­
bined with interactiveness, makes this program the best tri­
gonometric simplifier presently known in the field of

define the tensors A. . and S1-313 to be respectively antisym-

the contracted quantity A ^ S 1-3 will be given the value zero
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algebraic computing.
Probably, the most important feature of STENSOR is the 

automatic generation of tensor algorithms: there is a com­
piler that from any given tensor formula, generates a pro­
gram for computing individual tensor components (via SHEEP) 
by actually performing contractions, derivations, matrix 
inversion etc. This means that SHEEP's work is not any more 
restricted to calculating the traditional terms of general 
relativity, using the metric, but also new tensors and 
scalars can be defined, and computed, which might not be 
related to the metric at all! this opens up the way for all 
sorts of new applications to this system.
The input notation of STENSOR is extremely easy to learn,
since it is very similar to ordinary textbook conventions.
For example, if we want to define the tensor T E . i n  terms13 x
of tensors A., B. and C.., where: l l 1 3 '

TE. =A. B . , +C. . , lDk 1 3 ,k 13;k (1 .6 )
using the command PDEF (Put DEFinition), we have to input 
only the following line:

(PDEFTE) <AIXBJ,K> + <CIJ;K> $ (1.7)
Obviously, the resemblance between (1.6) and (1.7) is 

unmistakable! and it hardly takes any time at all for the 
potential user to get acquainted with STENSOR, and start 
using it in intersting projects. Note that the '$' sign at 
the end of (1.6) is an indication to the computer that the 
input has ended. Another way to end input is by a ';'
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(semicolon), which (as in SHEEP) will echo on the computer 
terminal (printer/VDU) the inputed formula, ended by a ques­
tion mark '?', and then it will wait for the user to confirm 
the formula, by typing another ';', or to enter the formula 
again, if an error was detected.
STENSOR has been successfully applied in investigating many 

problems in the fields of classical relativity (see for 
example [33]), quantum gravity [23] and supergravity [34]. 
In the next section, more recent applications of STENSOR are 
reported in the course of illustrating the properties of 
STENSOR (and SHEEP as well) discussed above.
1-5 APPLICATIONS

1-5-1 Introduction
Applications are the crucial test for the usefulness and 
efficiency of computing systems. Some of them also serve to 
add to the power of these systems, and their facilities, 
such applications are usually referred to as the "user 
library".
In what follows, two of the applications that were carried 

out at Imperial College are discussed. These applications 
were selected because they demonstrate the most important 
features of STENSOR and SHEEP, while serving as a simple 
tutorial for the system.

1-5-2 The Rainich Conditions
G.Y. Rainich [35] analyzed the relationship between the 
Riemann (curvature) and the Maxwell (electromagnetic)
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tensors. He arrived at a set of constraints on the first 
tensor, that should be satisfied to allow the presence of a 
non-null electromagnetic tensor field in the corresponding 
Einstein field equations. These constraints are equivalent 
to demanding the vanishing of the following two tensors:

These tensors provide a straight forward method for testing 
whether a given solution of Einstein's equations includes 
electromagnetism, or not. It is clear however, that the cal­
culation involved can be horrendous! especially for compli­
cated metrics, for which the computer's help is very neces­
sary .
A very simple program is written in STENSOR, introducing
the RAIN1 and RAIN2 tensors to SHEEP. This program is
needed only once since, after loading it to STENSOR, the

5command SAVBU (SAVe BUlf ) can be applied to the tensors 
concerned and this command, in turn, will use the TCOMP 
(Tensor COMPiler) command to generate a program for comput­
ing the individual components of the desired tensors, via 
SHEEP, for any given metric. The generated program is saved 
on a separate file, which can be loaded onto a "naked" 

5Bulf is a technical term which refers to "automatic 
program-generation" program.
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version of SHEEP (i.e. SHEEP on its own, where it is not 
necessary to have STENSOR running as well), and after enter­
ing the component of the metric 9apr the command WMAKE can 
be applied to RAIN1 and RAIN2 tensors, to obtain their exact 
values. The file containing the definitions of RAIN1 and 
RAIN2 tensors is exhibited in figure (F2), the simple and 
straight forward nature of the commands used is apparent. 
Note that the "V means that the rest of the line is a com­
ment, i.e. it is there to clarify the program to the reader, 
and will be overlooked by the computer.
To use this program, the following should be done:
1- Log-on to the computer and start STENSOR by typing 
'stensor'.
2- Load the file containing the necessary definitions,

using the SLISP command (LOAD "RAIN.DEF"), the response of
the computer during the loading process is self-explanatory, 
(cf. the listing on page 174 of appendix C).

3- Use the command SAVBU as suggested: (SAVBU RAINICH RAIN1
RAIN2), STENSOR will then generate programs for computing 
RAIN1 and RAIN2, then save them in a file called
"rainich.blf".
To apply the Rainich test to a given metric, one needs to 
enter the components of this metric, via the command RPL 
(see SHEEP manual), then using the command (WMAKE RAIN1 
RAIN2), and leaving the rest to the computer!
One interesting application was the verification that, con­

trary to his claim, Wilson's solution [36] does not satisfy
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% * * * rain.def ***
(PRIN2
% The next three lines will be printed when this file is loaded. 
"The Rainich Conditions: RAIN1=RAIN2=0
(Exact Solutions P. 72 (5.20,21))
RAIN1 and RAIN2 are computed in frame, from RICMF, HUU and GAMF") 
% define a new tensor RIC2 to simplify calculations:
% PDEF command is invoked, with the name of the tensor 
% to be defined as an argument.
(PDEF RIC2)
<RICMF A BXRICMF B A> $
% RICMF is the built-in Mixed RICci tensor in the 
% Frame version of SHEEP.
% The first, Algebraic Rainich Condition (IBID (5.20)):
(PDEF RAIN1 1)
<RICMF A BXRICMF B C>-1/4<DEL C AXRIC2 > $
% DEL is the usual Kroneker delta.
(PDEF RICU S12 1 2)
<RICMF A BXHUU B C> $ % HUU is the frame metric.
% Take the co-variant derivative:
(PDEF RICUC S12 1 2 R) <RICU A B ;C> $
% Below EDEF this RICUC-TSR!!
(PDEF GAMU 1 S23) <GAMF K B CXHUU A K> $
% Only GAMF known in FRAME
(PDEF RICUU S12 1 2 3 RXRICUC A B CXHUU C D> $
(PDEF ALF) 1 /<RIC2 XEPS4 A B C  EXRICMF B DXRICUU D E C>$
% The second, Analytic Rainich Cond (IBID (5.21)):
(PDEF RAIN2 A12) <ALF A ,B>-<ALF B ,A> $
% Write and Evaluate DEFinition:
(WEDEF RICUC)
°* Must EDEF this RICUC-TSR!! do EDEF by hand if not reloaded 
% as said above. EDEF expands the COVAR-DIFF(;) into GAMU's.
% Write and Simplify DEFinition:
(WSDEF ALF)
% l i TCOMP complains, do SDEF to canonicalize formulea.
% Now do (TCOMP GAMU) explicitly,
% if yo do this in cord (to replace old BLF).

Then, do (SAVBU rainich RAIN1 RAIN2) ,
% and answer Y(es) on TCOMPilation.

Figure F2: A listing of the Rainich program
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the Rainich conditions. In fact the second Rainich tensor 
turned out to be:

Rain212 = -(3/x)1^2 , and, Rainl = 0 (1-9)

1-5-3 The Gamma-Algebra
Another more involved application of STENSOR, is the crea­
tion of an algebraic system for the ^-matrices of field 
theory. A description of this system will be given here, 
while the listings of the basic programs, and results are 
left for a separate appendix (appendix A).
The -^-matrices (known as Dirac matrices in 4-dimensions) 

are of great importance in theoretical physics. They always 
feature in scattering cross-section computations, and all 
sorts of calculations in supergravity and field theory.
The noncommutativity of these matrices, which form a 
Clifford's algebra, makes their handling extremely cumber­
some. It is no exaggeration to say that the computation of 
some expressions involving ^-matrices, by hand, is practi­
cally impossible!. Hence the need for a computerized system 
arises.
To start off, the only relation needed is:

■ ^ b  + V a  = 2nab
which is the basic relation in Clifford's algebra.
that the matrix indices are suppressed
fact -y = v13, and (1.10) should read: a a

(1.10) 
Noting 

here, in
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ik j _ „ ^(a^bjk nab .13 (1.11)
where, a, b,.. = 1,.. n and i, j,.. = 1,... N.
Using (1.10), one can easily find (still suppressing the 

matrix indices):

nab*Y y, = *y 'Y - n ’a ’b 'a 1 (1 .1 2 )
By definition, tr -y =0, and using (1.10) again, implies:a
straight forward calculation yields the general formulea for 
tracing:

tr ("Y "Y 
a 1 a 2

If 'p' is even. 
Where the hat

) = PEi=2 (-1)1na„a.1 l
tr ( ”y.

symbol over -y indicates 
ai

)
(l.13)

that this

matrix is missing from the product. This recursive relation 
reflects the mounting complexity of computations for large 
values of p, since the number of terms in each tracing is

(p - 1 ) igiven by: --ft— -— ^-----  , and each term contains p/2
2P/2_1(p/2-1)!

different n's which, for p = 8, becomes 105, and for p =10, 
is 945 terms!, each containing 5gammas‘s!!.
The -y-algebra system was built in stage-wise process, dur­
ing which, the results obtained by the computer at each 
stage of the calculation, were added to the input informa­
tion, thus, facilitating the calculations of the next stage, 
and so on.
In the first instance, the computer was instructed not to 

commute any two terms automatically, except the Kronecker 
delta (since otherwise, ordinary tensor algebra would apply
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where STENSOR arranges factors according to lexicographical 
order, as a part of simplification). This was done by the 
commands6: (ON FOINS AUTONEVERCOMMUTE) and (ALWAYSCOMMUTE
DEL) .
Other switches are also turned on, to help in simplifica­
tion. The basic relation (1.10) is not given to the com­
puter in its sum-substitution form, but rather, it was used 
as an ordinary substitution with an additional requirement 
imposed on the order of the indices:
(SETSUB SW1 (ORDERASK A B))
<T B< <T A< $
-<T A< <T B< + 2 <DEL A B> $
Where SW1 is the name of the substitution list which con­
tains the given substitution, the second and third lines of 
input are respectively the mask and the substitute. This 
substitution, whenever used in calculations, will first 
search for all occurrences of the "mask", which is any pro­
duct of two y 's, then will check whether the indices are in 
the wrong lexicographical order, if so, it will do the sub­
stitution, otherwise it will not!. Checking the order of 
indices can be done interactively by turning on the ORDERASK 
switch, then the user's decision on ordering supercedes the 
lexicographical implications.
Another basic substitution is:

g For a complete explanation of the STENSOR commands used 
here, refer to the STENSOR manual [10]
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■Y -Ya = n (1.14)
For the first stage of work, no more input is needed, 
except defining the quantities that we wish to calculate. 
Suppose that we want to evaluate the contraction:

^ a b c  (115)
Where a y with more than one index represents the totally

antisymmetrized product of the appropriate number of single
’Y-matrices.
The intuitive approach would be to expand *y  ̂ fully, and 

then on applying SW1, we will have terms of the form: 
’Ya'Yy'YC'Yc and ^a^b‘‘- "then using (1.14) we get the
answer:

acing y 'Ybdc

^ a b c  = <d-2^ab (1'16)
The relation (1.16) can be defined as a new substitution,

and then used in future calculations (for example in comput-
etc) .

It is profitable to place different types of substitutions 
in different substitution lists, and then to use the suit­
able subs-list at the appropriate stage of the calculation. 
This would eliminate ambiguity, and put less strain on the 
simplification algorithm, by limiting the number of "masks" 
it has to match.
After a few similar exercises, the user will acquire enough 
experience to be able to set beforehand the sequence of sub­
stitutions needed for a particular exercise, which would cut 
the time needed for interaction.
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Iterating the process described above, a large library was 
built, containing almost all basic possible combinations of 
y ' s that may be required in dimensions < 7 calculations.
However, keeping the dimensions = n throughout the work, 
without specifying its value, makes the interpolation to n > 
7 rather academic!. The value for n can actually be fixed 
at the last step of the calculation.
The collection of results obtained are saved on separate 
files, which can be loaded to the system whenever required, 
rather having to recompute them from a scratch. Some of 
these results are probably at the limit of human capacity: 
for example, it is expected that not many people would try
to verify by hand the result:
abc ? i

y ^ijk^abc = (228+128n+21n +n obtained by the com­
puter, interactively, in about 5 minutes.
A special file of this "library" was devoted for the trac­
ing relations.
Although a special recursive function could be constructed 
for to compute the trace of any combination of y's, it is 
more efficient from computing-time point of view to do these 
traces up to a certain level (say a product of 10 y ' s ) only 
once, and save the results on a file. Since, on the one 
hand, using the results obtained so far, practically all 
physical computations can be reduced to traces of a finite 
product of y 's. While on the other hand, it is not practi­
cal to repeat the same computation again and again, as is 
necessary for the recursive definition: because, for
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evaluating the trace of the product of n-*Y's, the computer
has to evaluate (P-lJ.) •„ traces of (n -1)—y's each,

2 P / 2 " 1 ( P / 2 - 1 )!
and so on, until the number of y ' s in each trace reduces to 
0, i.e. we are left with tracing the delta function, which 
has the known result: tr6.. = N.
A typical scattering x-section calculation, would involve 
terms of the form:

tr(*taA’Yb )̂ and tr (y ̂ y ^ V y ^ p y ^ V )  (1.17)
clwhere, A = A -y + M etc.

1 * a 1
Both of these terms were calculated in less than a minute! 
(a listing of the input and output files is given in appen­
dix A) .
Another important addition to the ^-algebra, are the Fierz 
substitutions [37]. For example, one of the Fierz rear­
rangements in 7-dimensions is:

ne V f?na = (1/48) T na'V?'Yijkne ~ (1/16) y W ^ i jijk........ _ .. , 4  ,14 T) y l J

-  (1/8) ^1nanbT?’Yine + d/8) nanbi?ne d.is) 
where n is a spinor, and y^ stands for a *y of any order. 
This can be defined in STENSOR, using the WILDCARD command 
(see STENSOR manual).
Obviously, Fierz rearrangements are not particularly easy 
to handle! even with the help of the computer, they may 
still be very tricky, and only careful interactive manipula­
tion can be effective. A portion of the substitution pro­
gram for Fierz rearrangements is listed in table T3.
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What has been presented in this section is meant to give a 
flavor of the way the computer algebra system SHEEP (and its 
extensions) operate. This would hopefully help deciding 
whether it would be suitable for a given problem or not, but 
in no way can replace the "manual", or even claim to exhibit 
all the features.
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% * * * fiertz.sbs
% Turn the following switches on:
(ON POTSIM FOINS AUTONEVERCOMMUTE)
% POTSIM the "power" simplification.
% FOINS the formula input reader.
% and AUTONEVERCOMMUTE (self explanatory).
% The exception for never-commute is of course delta: 
(ALWAYSCOMMUTE DEL)
(USETSUL FZ) % declare a new substitution list FZ
(REMSP XI YD) % remove previous substitution properties

% on XI and YD.
% ?T stands for any gamma matrix, with unspecified number 
% of indices.
% ===== Headed by XI: ======================================
(PDEF TENO)<XI < <N E< < Y B<< ! ?T < <N A < $
(PDEF FIENO)1/8 <N A< <Y B<< ! ?T < <N E <

- 1/8 <T I< <N A< < Y B<< i ?t < <T I< <N E <
- 1/16 <T I J< <N A< <Y B<< ! ?T < <T I J< <N E <
+ 1/48 <T I J K< <N A< <Y B<< ! ?T < <T I J K< <N E <

(SETSUB FZ (ORDERASK A E))
<:TENO A B E> $<XI <<:FIENO A B E> $
(PDEF TEN2) <XI <<!?T < <N E< <Y B<<!?T < <N A < $
% Here we have TWO different ?T's in the "mask" definition,
% they can be distinguished in the "substitute" by assing 
% the number 2 for calling the 2nd of them:
(PDEF FIEN2)1/8 <N A< <Y B<<!?T 2> <!?T <<N E<

- 1/8 <T I< <N A< <Y B< <!?T 2> <T I<<!?T <<N E<
- 1/16 <T I J< <N A< <Y B< <!?T 2> <T I J<<!?T <<N E< 

+ 1/48 <T I J K< <N A< <Y B<<!?T 2> <T I J K<<!?T <<N E< $
(SETSUB FZ (ORDERASK A E))
<:TEN2 A B E> $<XI <<:FIEN2 A B E> $
% Note that for making the character ? acceptable to LISP 
% it had to be quoted by a '!'.

Table T3: The Fietz substitutions program
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Chapter Two
EMBEDDINGS

2-1 INTRODUCTION

Einstein's theory of general relativity establishes a very 
intimate connection between gravitational fields, and the 
geometry of a class of Riemannian manifolds, particularly,
4-dimensional manifolds with Lorentzian signature.
An n-dimensional abstract manifold is defined as a paracom-

2pact Hausdorff topological space , which admits an atlas, 
i.e. it can be covered by a collection of local-coordinate 
patches with coordinates: (xa, a=1,2...d). For Riemannian
manifolds extra structure is imposed, namely, covariant dif­
ferentiation and the metric 'g', for making them adequate as 
physical models.
Historically, the idea of Riemannian manifolds evolved from 

the concept of surfaces in Euclidean spaces (of arbitrary 
dimension). On such surfaces, the number of independent 
coordinates (i.e. the effective dimension of the surface) is 
less than the dimension of the total space, such a surface 
can be parametrized (locally) by the coordinates 
(xa, a=1,2...d). If (yA, A=1,2...d') are the coordinates of 
the total Euclidean space, then one can relate these to the

Some authors exclude either paracompactness or Haus­
dorff ness, or both, when defining manifolds. However, for 
our work both of these are needed for the rigorous proofs of 
theorems that will be assumed
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xa's on the surface, the set of these relations is nothing 
but the "equation" of the surface:

yA = yA(xa) (2.1)
The metric on such surfaces is non-trivial (i.e. not of 

Euclidean type), in fact the differential distance between 
two neighbouring points on the surface is given by:

ds2 = nAByta(X)y?p(X)dXa<iXp (2 .2)
From (2.2) one can immediately read off the metric:

gaf!(X) = nAByAa tX)yV X) (2‘3)
Hence the obvious generalization is to consider spaces

which admit, locally, metric-tensors of the form: g Q(x) (we01 p
Ado not know yet whether functions y (x) can be found for 

which the relation (2.3) holds), the only restrictions on 
such metrics are that they should be symmetric w.r.t. the 
indices a and 0, and they should be non-degenerate.
From what has been said so far, it is natural to enquire 

whether the reverse problem can be solved? i.e. whether 
abstract manifolds can be, in general, embedded in Euclidean 
spaces of sufficiently high dimensions?. This leads to the 
study of embedding, which is a sub-case of the theory of 
submanifolds.
There are other "geometrical", as well as physical motiva­

tions for studying the embedding problem: clearly, embedding 
offers a better insight into the structure of a given mani­
fold and its global properties, it provides a tool to inves­
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tigating singularities, by eliminating those caused by a 
"bad choice" of parametrization [1], and to find the maximal 
extension of the manifold considered [2]. In principle, glo­
bal embedding should pave the way for assigning a suitable 
boundary for the manifolds and thus "completing" it. A pos­
sible link between elementary particle symmetries and 
extrinsic invariants of embedded space-times was suggested 
in [4], while Fronsdal [5] used the embedding techniques to 
study elementary particle properties on a background mani­
fold of constant curvature.
However, despite the apparently very intersting nature of 
the embedding problem, research in this field does not 
attract many relativists, this is mainly due to the profound 
complexity of the mathematics involved. And unfortunately, 
there is so far no clear physical interpretation of the 
mathematical quantities and invariants introduced by this 
theory.
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2-2 SUBMANIFOLDS

2-2-1 Existence Theorems
Rigorously speaking, an immersion of a manifold Ma into

d 'another manifold M' is a map f: M— *M' , such that:
rank(f*)=d, at all points xeMd . Furthermore, the immersion

k •is called C k=1,2,... , if f is of differentiability
class Ĉ .
Embedding is defined as an injective immersion.
For example, if we consider the printed characters as maps

2from a real segment IcR into the two-dimensional plane R , 
then C, 0 and S are embeddings, a, q and t are immersions 
(since they contain double-points) while v, u> and Y are 
neither because they have cusps which make rank(f^) > 1 .

iIf the metric forms of M and M' are related via:

g(X,Y) = g ‘(f*X,f*Y) X,Ye T CM) (2.4)
A

then f is an isometric embedding at the point xeM. If (2.4) 
holds for all xeUcM, then the isometric embedding is local, 
it is called global if U=M.
In local embedding, (2.4) can be expressed as:

gAB g (2.5)
CL * Awhere (x ) are the coordinates of xeM and (y ) are the coor­

dinates of f(x)eM'. And the components of the metric form
are defined as usual by: g 0 = g(d ,3Q). (note that (2 .5 )dtp cl p

iSee appendix B for the notational conventions adopted in 
this thesis.
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is identical to (2.3))
In most cases, the question of existence of embedding was 

settled positively. The following results, concerning 
existence, are quoted:

i) For abstract manifolds:
Whitney's embedding theorem [10]: Every d-dimensional

2 dmanifold can be embedded in E^ .
ii) For Riemannian manifolds:

(a) Local embedding:
Generalized Cartan-Janet theorem [11]: Any analytic

Riemannian manifold (g), locally can be analyti-
( n 1 CT 1 )cally and isometrically embedded m  any M  ̂ ^ (g ' ) ,

provided that: d'>d(d+1)/2 , [for C°° manifolds, this
should read [12]: d'>d(d+3)/2 ] preserving p'>p and
q 1>q, simultaneously.
(b) Global embedding:
(Improved) Nash theorem [13]: Any C°°-Riemannian mani- 

( CT ) kfold with C -Riemannian metric of rank r and sig­
nature s, has a C°°-global and isometric embedding into

• (o' cr1 )an Euclidean space E ^ , with:
p'>d-(1/2)(r+s)+1

and q '>d(3d+1 1 ) / 2 for compact M
q '>(d/2)(2d+37)+(5/2)d+ 1 for non-compact M.

if the metric is C°°, then [13]:
p'=q'>d(d+5) /2 for compact M

and d'=q'>2d(2d+1 )(d+3) for non-compact M
It is interesting to note that the existence theorems
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displayed above, impose no restriction on the choice of the 
metrics g and g' (except for conditions on dimension and 
signature) nor they restrict the global topological struc­
ture of the manifolds.
The embedding formalism can be easily constructed within 

the frame work of fibre bundles. Here the manifold M is con­
sidered as already embedded in M', i.e. a submanifold of M', 
therefore, no explicit reference to the embedding function f 
is needed, except for translating results to coordinate- 
dependent forms. Hence, no distinction will be made between 
xeM and f(x)eM'.
Define N (M) the normal space to M at a point xeM, w.r.t. 
its embedding in M', to be the complement to T^(M) in 
TX(M'), (more rigorously Tf(x)^M '))• i.e.
T (M') = T (M) © N (M).X X X
And let N(M) = u N (M) be the normal bundle. It is easy

xe M  X
to see that:

T (M*) = T(M) © N(M)
where Tm (M') := (tt')”1(M) = u T (NT)

xeM
The projection maps t and v are defined to separate the 

tangential and transverse parts respectively:
x :Tm (M' )~*T(M) andv :T^(M1 ) — >N (M)
Let i = 1,2...d'-d, be d '-d x-sections of N(M) that form 

a basis in each fibre, with corresponding dual 1-forms m1, 
defined by: w1^ )  = 6  ̂ and a»1 (X) = 0 for all XeT(M) 
Therefore we can write v(X) = u)1 (X)^^ for XeTM (M' )
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obviously: t (X) = X - v(X).

2-2-2 The 2nd Fundamental Forms
The torsion-free linear connection V' on M' induces, in a 

natural way [14], a torsionless connection V on M via the 
map t . Let X and Y be sections of T(M) , then 
t (V'x ,Y) = VXY.
The 2nd fundamental form a is defined to be the transverse 
component of V' Y i.e. a(X,Y):=v(V' Y)X X
Which implies that:

V' Y = VVY + a(X,Y) (2.6a)a  A
We may locally write: a(X,Y) = a1 (X,Y)^^
The forms a1 (X,Y) are known as th 2nd FFs in classical 
literature. Since V' is torsion-free, it follows that the 
map a :T(M)xT(M)~*N(M) is symmetric consequently the a1 's 
should be also symmetric.
Let £ be a section of N(M). The covariant derivative of ?• 

w.r.t. X can be decomposed into tangential and normal com­
ponents in a similar fashion:

V'XE = Dx£ + A(X,E) (2 .6b)
here the normal component Dx£ is the covariant derivative 
w.r.t. the induced connection on the normal bundle [14], 
also known as the "shape operator" in classical literature. 
And for a fixed £, A is the symmetric linear transformation 
of T(M) with respect to the metric, which corresponds to the 
function a on T(M)xT(M), i.e.:
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g'(a(X,Y), E) = -g1(A(XfE),Y)
It is trivial to show that a and A are bilinear.
Analogous relations can be obtained for 1-forms on M: 
Locally, on M, chose an "adapted" frame
(Xa,£^), a=1 ,...,d and i=1 ,..d'-d, with Xa 's tangent to M. 
Then, define the matrices of one-forms:

(2 .8a) 

(2 .8b) 

(2 .8c)

(2.9)
in expressing the results (2 .6) in a 
which allows great simplifications in

Let Y' be a x-section of (M ') then, we can write:
Y' = x(Y ') + v(Y ') = Y + £

using a locally adapted frame: Y' = YaXa + Y1*;̂ Therefore:

V.-Y' = V„ Y + Y1h<f(Z)X 
lj u i a

+ ot1 (Z,Y)Ei + Y1DzEi + (VzY1 )5.i 

= VZY -
+ yV ^ Z K .  + YjD*(Z)E. + (V-Y1)̂ .Ot X J -L li 1

If d' stands for covariant exterior differentiation of ten­
sor valued p-forms of M' (w.r.t. the connection V  ), we 
have:
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[D]j = w1(D )

[A]“ = u)aA( . t 
From (2.4) we get:

q. . = -g _A?yi3 a ya(3 l
These matrices help 

more compact form, 
future calculations.
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0 A 
a D Y'd' Y'  = d Y ‘ +

treating Y ' as a column vector:
r <*1 Y 1

(2 .10)

(2 .1 0) can be written as:

d'  = d + r a ( 2 . 1 1 )

The product law a , is a generalization of the usual 
a , allowing (implicitly) for matrix product, therefore 
anticommutation should be used with care!.

Here the connection one-form
■ o A"is the block-matrix a D

2-2-3 The GCR Equations
The integrability conditions for (2.11) can be found by 

applying a second exterior differentiation, this yields:

d '2Y ' = d2Y ' + r A r A Y ' + d r A Y '  (2.12)
Let R' be the Riemannian two form on M':

Q'p = d/2) R'
n oand let R = P q

rewrite (2 .1 2) as:

<2dxadx^apDa a
Using the relation R

(2.13)

X Y = d Y we can

R' = R + T A r + d r  
substituting for the value of r,

f

fi,n R 21

n ' 1 2 R 22
Jwhere

(2.14)
we get after some algebra:

(2.15)

R' <1 <1 = R+A a a
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«' 12 = dA+A /% D 

Q' 2 -j = da+D a a 

Q '22 = dD+D a D+a /n A
To calculate the explicit components of the Riemann tensor, 

R'abcd relative to a given frame of local coordinates (xa) , 
using (2.13) and (2.14), the following 4 equations are 
obtained:

R .a

(1/2)R

= Ra + 2a1 _ r A r -i • (2.16a)0^6 P*y6 P[‘Y a5]i

P-yS = “ %[-r;6] " Dj Cf01'55 ] p (2.16b)

i'Yfi Aai[f;6] + D?r A •i[-Y a6]D (2.16c)

j’Yfi = D j ; 6] - D*r D*n . - a* r Ak[*Y SID otl’Y a6JD (2.16d)
ia _ j *Y idx := a „ etc.

Upon replacing A by its value relative to a (cf (2.9)) it 
is clear that (2.16b) and (2.16c) are identical, and the 
only independent equations are:

D , a _ i ja
P'YS fl-yS 1 } PL’Y 5]

R ,:Lq _ = 2a1or - 2D* a3RloPtS PL-YjS] D O  6jp

(2.17a)

(2.17b)

R,1 D, 6 = 2Dj[,;6] -  2 D f r D * n . + 2 a *  r nQg a ^ g ., ( 2 . 1 7 c )k[t 6]d ctt’Y 6]P Dk
Equations (2.17a,b and c) are better known as the Gauss 
Codazzi and Ricci equations (GCR for short). For the par­
ticular case when the embedding space is Euclidean, i.e. R' 
= 0, the GCR equations are necessary and sufficient
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conditions for the embedding to exist [14].
Nevertheless, the GCR equations are not completely indepen­
dent! this was discussed as early as the year 1936 by Tho­
mas [15], who was looking for a set of algebraic conditions, 
necessary and sufficient for embedding a d-dimensional 
Riemannian manifold in a d+1-dimensional Euclidean space, 
when he found that if the second fundamental form was of the 
full rank, the Gauss equations imply the Codazzi equations, 
for d>3. This result was generalized to embeddings into 
Euclidean spaces of n+2-dimensions in [17], where it was 
found that, provided that one of the 2nd fundamental forms 
is of full rank, the Gauss equations (2.17a), together with 
one set of the Codazzi equations (taking for example i=1 in 
(2.17b)), imply the other set of Codazzi (i.e. for i=2 in 
(2.17b)) and the Ricci equations.
On a more general level, the Bianchi identities:

R 'aB[CD;E] ~ 0 (2.18) 
provide the interdependence constraints to the GCR equa­
tions. These constraints were explicitly presented by Blum
[18] and later generalized to the indefinite case by Goenner
[19] , who used the modern coordinate-independent notation. 
Using our notation however, provide the simplest way for 
deriving the interdependence relations, since the Bianchi 
identities (2.18) are equivalent to:

d 'fl' = 0 (2.19)
Therefore only a single exterior derivation should be
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applied to the Riemann 2-from (2.14). 
First, define the two-form TT to be:

TT = Q' - Q -  T A T - d r (2 .2 0)
with the block-diagonal form:

(QTT =
H

( 2 . 2 1 )

v y
where the matrices of 2-forms: G C and H will vanish if the 
Gauss, Codazzi and Ricci equations are respectively satis­
fied .
Apply exterior differentiation on (2.20), this gives:

dTT = dS2' - d « - d r A r  + r A d r - Q A r  + r A «  (2.22) 
The Bianchi identities for Q and Q' are:

dQ = 0 (=> dQ = 0 ) (2.23a)

and d 1Q' = d«' + r X C2' - Q' X T = 0  (2.23b)
replacing (2.23) into (2.22), we get:

dTT = - T a Q ' + Q' A r - d r A T  + r A d r - Q A T  + T A Q
(2.24)

= - r x ti + tt x r
This can be expanded to three equations:

dG = C /\ a - A A C (2.25a)

dCt = H /v a - a A G — D A Ct (2.25b)

dH = H A D - D A H + C*’ a A - a /s C (2.25c)
The local-coordinate form of (2.25) is:
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(2.26a)

(2.26b)

Hij[ap;6] Hik[a0D |j|6]
+ S i C c ^ l  j|6]

(2.26c)

The explicit values of G, C and H can be looked up from the 
relations (2.17). Blum noted that (2.26) do not depend 
explicitly on the embedding therefore this result for flat 
embeddings could be extended to any embedding type.
These results can be used to reduce the number of equations 
that should be solved in the GCR system, by eliminating 
redundancies, for example: suppose that a set 2nd fundamen­
tal forms is found that satisfies the Gauss equations, i.e.
G a n r and Ga„ E = 0 , this implies that (2.26a) reduces to p-yS P'yG ; q
a system of linear and homogeneous equations in the C's 
which restricts the number of independent components of the 
Codazzi tensor. In particular, for MacM' (respectively

+ )̂ the result of Thomas [16] (respectively Gupta and 
Goel [17]) is verified.
It is interesting to note that Gupta and Goel [17] did not 

know of Blum's result, although it was published two and a 
half decades before their work!.
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2-3-1 The Class
In general relativity the embedding procedure can be used 
for obtaining arithmetic invariants characterizing the 
intrinsic geometry of a given space-time. The existence 
theorems presented in (2-2) suggest the investigation of a 
particular arithmetic invariant, namely the "embedding 
class"; which is defined as follows:

dThe embedding class of a d-dimensional manifold M , is the
minimum number 1p ' such that M could be embedded in an

d 'Euclidean space E of dimension d' = d + p.
Clearly, other types of embedding class numbers can be 

defined, by varying the choice of the embedding space, in 
general, these class numbers are different for the same M, 
for example, the well known extended Schwarzschild space- 
time has a class number p = 1 if the embedding manifold is 
conformally decomposable [3], while its class is p = 2 when 
embedded in a flat space [6 , p200]. Therefore for the sake 
of conformity, and for reducing ambiguity, the structure of 
the embedding space should be fixed in advance, and in this 
work, only flat embedding will be considered. This choice 
is based on intuitive and subjective inclinations rather 
than on physical arguments! simply because a clear physical 
understanding of the "class" is still lacking. In fact, 
previous work on embedding include the study of embeddings 
into spaces of constant curvature [6], conformally flat [7 ]
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or Ricci-flat [9], etc.
The argument for adopting minimal embedding is also very 
loosely supported by physical interpretations!. Indeed, 
non-minimal flat embedding have been used (more or less suc­
cessfully) in studying geometrical problems like the geo­
desics in Godel-Synge spaces [20], physical problems, like 
the scalar and Neutrino fields in the Godel universe [21], 
and even in a new approach to the embedding itself, defined 
as algebraic embedding (see later). However, it transpires 
that relaxing the minimality requirement from embedding 
without imposing alternative conditions, introduces further 
new degrees of freedom that could be unexplainable! for 
even Minkowski space-time can be embedded in any for d'
> 4 (for example, consider the embedding:
y^=cos(t), y^=sin(t), y^=x 11 y^=z. Then clearly:
ei(dy1 2 2 2 2 2 ) =dt -dx -dy -dz , with ê e2 e3 ~e4 e5 1 There-
fore, minimal embedding could be adopted, at least, for
being rather less problematic than other embedding that one 
can use.
Arithmetic extrinsic invariants can also be defined, e.g. 
the type-number [22] which is identical to the rank of the 
2nd fundamental form for class one embedding.

2-3-2 Algebraic and Global Embedding 
Besides minimal l.i.e., other types of embedding were stu­

died, two of these types appear to give help for clarifying 
the underlying geometrical structure of space-time, these
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are the algebraic local isometric embedding and the global 
isometric embedding.
In algebraic embedding, space-time is considered as an 

algebraic 4-dimensional variety of that would naturally
exclude multiple points. This type of embedding was investi­
gated by Ferraris and Francaviglia [32] for a few simple 
metrics, where they established its usefulness in explaining 
some geometric properties of the considered space-times. 
However, no systematic approach for obtaining the algebraic 
local isometric embedding of a given manifold is known, 
which greatly reduces the credibility of this scheme.
The interpretation of singularities as "boundary points" of 
space-time has contributed immensely to the interest in glo­
bal embedding, since clearly, the best way for visualizing 
the boundary of a space-time is through regarding it as a 
subset of an Euclidean space. Unfortunately however, as in 
the case of algebraic embedding, no general method fr solv­
ing global embedding is known, therefor, physicists resort 
to techniques for extending the local isometric embedding of 
the given space, this approach suffers many disadvantages, 
and works only in limited number of cases, it also cannot 
provide, in general, a way for completing the manifold, i.e. 
there would still be geodesics running into singularities! 
consequently, the important question of fixing global topol­
ogy remains unresolved.

2-3-3 Embedding Techniques
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From a physicists point of view, studying the local 
isometric embedding of a given space-time Md, is usually 
linked to determining the embedding function itself, i.e. 
finding the values of y ^ ( x a ) that describe the surface in 
Ed . This is called "explicit embedding". However, no short­
cut technique is available for solving for these functions 
in general. One therefore have to resort to "guess work"! 
which when combined with the suggestions offered by Rosen 
[23] for embedding certain patterns of line-elements, will 
lead to an embedding in most cases, but will not guarantee 
the minimality. When the explicit embedding of a space-time 
is known it is possible to calculate the 2nd fundamental 
forms and the Ricci vectors, using the equations (2.44a,b).
A more natural approach to the embedding problem is to find 
first the implicit embedding, i.e. to solve for the 2nd fun­
damental forms and Ricci vectors, using the GCR equations 
and then using these, one try to look for an explicit embed­
ding. However, this method is generally not adopted in 
literature, except for the odd cases when the GCR are rela­
tively intelligible, like for example, the cases of 
Schwarzschild [24], Narliker-Karmakar [25] spaces and 
plane-fronted gravitational waves [28].
Looking back at the local coordinate form of the GCR equa­
tions (2.4), it is clear that these equations are highly 
non-linear, the number of unknown functions is significantly 
large: For a class 'p ' embedding, there are pd(p+d)/2 unk­
nown functions determining the 2nd fundamental forms and the
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Ricci torsion vectors. Therefore, it is not surprising that 
even for a seemingly simple metric, like Godel's space, no 
solution has yet been found.
Attempts were made to find necessary and sufficient condi­
tions, of algebraic nature, for the existence of a solution 
for the GCR equations. These have been successful only in 
the simplest case of class 1 embedding [16], where necessary 
and sufficient conditions in the form of tensor equations 
were determined [26]. For class 2 embedding, only necessary 
conditions were found [27] while no significant results are 
known for higher classes!.
Since a general solution of the GCR equations is unobtain­

able, attention was given to specialized cases, in the hope 
that these cases would be sufficient for testing the useful­
ness of the embedding approach. One way of testing a spe­
cial case is by restricting the choice of the 2nd fundamen­
tal form, which would simplify (and possibly linearize) the 
GCR equations.
Barnes [29] wrote down the Jordan canonical forms for the 
rank 2 symmetric tensor, corresponding to the different 
Segre types in a 4-dimensional space with Lorentzian signa­
ture as follows:

cxf3 a(3 < « s 0 ) + A 2e o t W a f p f ° r  t y p e  [ Z Z 1 1 ]

A n—+2 Aap for type [2 1 1 ]
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Aap +X1 [2 1 (anp)+eaep]+2 1 (aep)+A3fafp f°r tyPS ^31-* 
where the coefficients i = 0,...3 are the eingenvalues
of A, a and 0 are the real and imaginary parts of the com­
plex eigenvalue, and the frame vectors satisfy:
-u ua=s sa=e ea=l na =1 and all other inner products vanish, a a a a
He used these forms to link the Segre classification of the 

2nd fundamental forms of class 1 embedding, to the algebraic 
classifications (Petrov types) of the Ricci and Weyl ten­
sors, and consequently to study the case of perfect fluids 
of class one.
The relationship between these canonical forms and the 

Petrov classification for empty space-times (which are of 
embedding class 2) have been used by Hodgkinson [30] to 
determine the possible algebraic structure of the two 2nd 
fundamental tensors. It was hoped that this would provide a 
mechanism for obtaining all possible empty space-times [31], 
and a program was written for STENSOR to obtain the dif­
ferential equations That would determine the frame vectors 
for each possible case. The resulting equations turned out 
to be harder than the GCR equations themselves! and thus not 
particularly useful.
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2-4-1 More Embedding Equations!
So far, differentiation in the normal space have not been 

used, simply because the classical interpretation of embed­
ding excludes variations in the directions transverse to the 
manifold itself. However, interesting results can be 
obtained from studying space deformations in the normal 
directions, which may have physical relevance, as shall be 
discussed in this section. Unfortunately though, there has 
been virtually no research into this area! and to the my 
knowledge, only the work of Kerner [34] exists in this 
field. The following will include a full generalization of 
Kerner's work.
Parallel to what has been done in the previous section, 
concerning computations in the tangent bundle, we shall 
assume the following structure for the covariant differen­
tiation w.r.t. the "normal" vectors:

+ m , n ) (2.27a)

^x = d^X + B(E,X) (2.27b)
Locally, we may chose the normal vector fields to be geo­
desics in the normal bundle, without loss of generality, 
this would make V' =  0 always.
Using the torsionlessness property of the Riemann spaces, 

we can relate the normal and tangent components of V' ̂ X , 
namely d^X and B(E,X) to the 2nd fundamental fornTand the
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Ricci torsion-vectors. Noting that X and E commute always 
(which is a consequence of splitting M' in the said way), we 
have:

a£x = dx e (2.28a)

B(E,X) = A(X,E) (2.28b)
On M, the metric form of a tangent vector and a normal one 
should vanish, however this is not necessarily true else­
where. Indeed, expanding v'^g'(X,E) = 0, we get:

E.g'(X,E) = g ‘(DxE,n) 
in local coordinates, (2.29) becomes:

(2.29)

g ' . . = g ' ., Dk . y la,] ik jot (2.30)
Consider now a pair of commuting X-sections of N(M) 
from the definition of connection we have:

nand£,

2g' (V 1 ?, X) = ?.g' (HfX) + n.g'UrX) - X.g'U,n) =0 (2.31) 
since v' £ = 0- Deriving (2.31) w.r.t. £ yields:

ESg'(n,x) + Eng'U.x) = o 
similarly, we have:

(2.32)

S E g ' c  n , x) + ? n g '(E,x) = o 

subtracting (2.33) from (2.32) gives:
(2.33)

n [Eg' U,X) - ?g' (E,X)j = 0 
but we also have:

(2.34)

2g'(v'xE,?) = X .g'(?,E) + E.g'U.X) - ?.g'(X,E)
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Therefore (2.34) can be written as:

n g ' ( V ' X ^ S )  = 0 (2.35a)

this implies that g‘(V' E,?) is constant w.r.t. transverse
A

deformations.
Using (2.6b) and (2.30) we obtain the following local coor­

dinate form for (2.35a):

D • • iDia, 1 ‘ aja0Dil (2.35b)
As far as the 2nd fundamental form is concerned, straight 
forward computation reveal that:

g' (a(X,Y),£) = -(1/2) E. g' (X,Y) 
or locally:

(2.36a)

= -(1/2> g«P,j (2 36b)
from equation (2.36) we can readily interpret the 2nd funda­
mental form as the rate of metric deformation along normal 
directions, with a factor of -1/2. Each of the classical 2nd
fundamental forms a1 is associated with the deformation ofap
the metric g along a particular normal direction .
Computing the curvature tensor, using the same method as in 

the previous section, we arrive at two more (new) equations, 
which can be written in the local-coordinate system chosen 
above as:

R' .

R'

iap j

•yapi

a iap,j + ajpai”Ya DikaDjp Dija;p (2.37)

+ ajpai*Ya Dijpa -ya + ^ P y , i ̂ 2 * 38 ̂
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In the case of flat embedding, R' = 0, antisymmetrizing 
w.r.t. a and 0, (2.37) becomes the Ricci equation (2.17c), 
while (2.38) becomes the Codazzi equation (2.27b). There­
fore, if is clear that (2.37) and (2.38) are consistent with 
the standard GCR set of equations (as they should).
Obviously, adding (2.35), (2.37) and (2.38) to the GCR sys­
tem (2.17) will only make the system more complicated, even 
the number of variables will increase to d' instead of d. 
But then, the total system will be describing the normal 
deformation of the embedded space in addition to the embed­
ding itself.

2-4-2 The Deformation Formalism
To avoid confusion, we shall henceforth use a tilde sign 
""" to denote the general (deformation-dependent) tensor, 
while the un-tilded tensor will be its restriction to M.
Now, consider an infinitesimal transverse deformation of 

magnitude e and direction V1, using Taylor's expansion to 
the 2nd order in e , we can write:

'otp g Q + eg Q .VD + e2/2 g . ..V3Vk + 0(e3) exp ap,j *ap,3k (2.39)
and similarly for a, D
Considering flat embedding, then R' = 0  and in a suitable
choice of normal coordinates: g.. = n - U s i n g  (2.36b) and1 ] 13
(2.37) we can write (2.39) as: (2.40)

'otp Sag - - 01*
The transverse deformation formalism can be used to gen­
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erate solutions to Einstein's field equations "near" a given 
solution, these new solutions would satisfy Einstein's equa­
tions up to a fixed order in e, the deformation magnitude 
(incidently this would also suggest a procedure for quantiz­
ing space-times, by quantizing the deformation field [33]).
The perturbed form of the Riemann tensor can be most easily 

obtained from the Gauss equation (2.17a) and the perturba­
tion of the 2nd fundamental forms, up to the first order in 
e we have:

i Q * = R Q * - 2zr\-, (D^Q r a1-n ap-y6 ap*y5 'ik D P ; L *Y
+ Dk D* a* - r ak _ - D* -i Q ( 2.4 1 )IP Dtt 6]a 3a;[-y 6]p la 3 L *Y 6]P

" a^aeal|3[-Yal6]f} * + 0(e2)
, „ ef, k i , ̂n41g ( q Cx p alxl  ̂jl pe a[-y 6Jf

where the new equation (2.37) have been used for calculating 
the value of the derivative of the 2nd fundamental form in 
the normal direction.
Now, assuming a similar perturbation development for the
cosmological constant X and the energy-momentum tensor T _,aP
we can expand Einstein's field equations w.r.t. e. First 
define the (new) Einstein-equations tensor by:

E«B = Rae - ((1'2)R + *>»«p - XqTcp (2.42)
Clearly E vanishes if the Einstein field equations are a p
satisfied.
Let g be a given metric satisfying E 0 = 0 for a given K ap a p
and T Q, and assume that the embedding of g known. Then ap ap
g is also known (at least formally). In general, g does not 
satisfy E = 0, however, this can be used as a constraint for
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restricting the deformation options. Working to the first 
order, we have:

E a = en^V^<g^5a^ rRa^ . + g^6a^ r 1p qap p[6 a]-y,k * 6[a "y]p,k k ap
+ g y 6 9 e t g -a1,.,- a-’-T . + 26fg’Y6ge£R . a +yap f[e 6]-y,k k 'yape 6f
+ 26kgCdgefgapRce“jdf> - ga|3A1 " *0T 1aP

’ap
(2.43)

where the derivative of g p was obtained via the relation:

ap , -y _ a5 J og = -g g g . Qop f Q
(2.43) provides a powerful tool for studying transverse 

deformations of space-times, especially when compared to the 
formalism in [37], which involves solving second order dif­
ferential equations!. Therefore, hopefully more interesting 
space-times can be studied, and as examples we study Ein­
stein static, deSitter, Robertson-Walker and Schwarzschild 
spaces.

2-4-3 Topology of Space-Times
One of the most interesting, and yet most difficult prob­
lems of general relativity is the study of the topology of 
the st of solutions of Einstein's field equations, this 
would provide the most natural way of classifying space- 
times and would settle the question of equivalence [38] of 
any two given solutions. The fundamental question of defin­
ing "distance" for the proposed topology introduced in the 
space of symmetric tensor fields of type (0 ,2) on M, can be 
stated as follows: Given an exact solution g of (2.42), do 
there exist another exact solution g of these same equa-Otp
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tions, which can be regarded as being near g? and are there 
any "isolated points" [40] in the set of all solutions of 
these equations?.
It is easy to demonstrate that embedding formalism is 

indispensable for a complete analysis of this problem 
through the following example:
Consider the Minkowskian metric n^j = diag(1,-1,-1,-1) ,

4this metric can be realized on a flat space E , or on a 
4 5cylinder C embedded m  E , with:

z1 = t,
z 2 = x> 
z3 = y-
ẑ  = Rcos(z/R) 
z<- = Rsin(z/R) .

4 4Both manifolds (E and C ) are exact solutions of 
Einstein's field equations, however, they clearly cannot be 
considered as "near" each other, because of the fundamental 
difference in their topologies. Hence, the 4-dimensional 
picture on its own is not adequate for a complete under­
standing of this problem, and in general, there is no 
guarantee that the two metrics, arbitrarily near each other 
in a suitable topology, can be realized on the 4-dimensional 
manifold of the same kind.
Kerner [37], proposed the method of deformation of embed­

dings for investigating this problem, however, his formalism 
involves very hard and complicated calculations and works
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only for Einstein spaces [40] which satisfy the relation 
R a ~ (1/4) g or which imposes a severe restriction on theCXp CXp
class of metrics that could be studied, and the only exam­
ples he gave were the Minkowski, Einstein and deSitter 
spaces, which are, at most, of embedding class one!.
Using the equations developed in the previous section, we 

are able to propose an alternative scheme to that of Kerner, 
for doing the same calculations. This scheme has, in prin­
ciple, no restrictions on the types of metrics that it can 
handle, and although the algebra involved is still very 
hard, this formalism is completely algebraic, and does not 
require solving differential equations of any order. This 
very fact meant that we could give the new formalism to the 
computer and have no further worries about the computational 
aspect of the problem!. A full listing of the input file is 
given in a separate appendix (see appendix C).
Our formalism also involves the 2nd fundamental forms and 
the Ricci vectors, i.e. the implicit embedding must be known 
beforehand. This is still a less severe demand than finding 
the explicit embedding (which is required for Kerner's 
approach). In particular if the explicit embedding function 
is known, straight forward algebra can be used to find the 
2nd fundamental forms and the Ricci vectors (which calls 
again for the use of computer algebra).
From the definition of the 2nd fundamental forms and Ricci 

vectors given above, we have:
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“\ b = 5 '(Ei,ataa,a ))
g• (yB + r'B yC yD )g ABni'y ;ap 1 CDy ,ay , (3'

(2.44a)

Dija 9 ^ i ,Ba^j^
= ^ A B ni(nBj,a + r'cD“V D,a>

(2.44b)

In particular, for flat embedding, g' -> n and r' -> 0. 
Obviously, the first step for calculating and t is finding 
the normal vectors n^'s. This is done in the following 
manner: 1st the p.d (where p = d' - d) relations:

Z1 := n.nyA nf = 0 (2.45)'AB*1 , a l

which state that the normal vectors are actually perpendicu­
lar to the space-time, should be fully exploited, then the
p/2 (p +1 ) orthonormality relations of the set of normal 

A Bvectors: n.^n.n. = 0 are employed to determine the most of
the unknown components of the normals, the rest of the unk­
nown components (if any) can be found via careful analysis 
of the Gauss equation, which can be constructed from the 
information available hitherto (this step is not needed for 
class one embeddings, p = 1). Interactive computing is
invaluable for carrying out such a calculation as is shown 
in the following example for computing the normal vector 
field for the deSitter universe [42]:

2-4-4 Applications
(i) Deformation of deSitter space-time
deSitter's universe is a static spherically symmetric and 

homogeneous Einstein universe [41, from page 335], the line
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element is given by:

ds2 = (1 - A) dt2 - (1 -A)-1 dr2 - r2 (d02 + sin^dip2) £. 46) 
owhere: A = (r/C) and C = constant, the radius of the 

universe.
This can be readily embedded in a 5-dimensional Euclidean 
space, with the embedding function given by:

Z 1 = 2 2) (C -r ;
1/2

s h (t / C )

z 2 = 2 2) (C -r ;
1/2

c h (t / C )

Z 3 = r c o s (0)

Z 4 = rcos (ip)s i n (0)

Z 5 = rsin(ip) s i n ( 0)

(2.47)

the metric for this space is: nAB = diag(1 ,-1 ,-1 ,-1 ,-1 ). 
Computing the value of Z1, we get:

1/2
Z1Q = (C2-r2) [ch(t/C)n1 - sh(t/C)n2]/C

Z11 = -r(C2-r2)“1/2[sh(t/C)n1 - ch(t/C)n2] 
- (sinBcosî n̂  - |sin8sin<i]n̂

= r[sinejn2 - rJposBcosqjn̂  - rjposOsinijjn̂

4 5Z1 ̂ = rsin0 (§5imji|n - |cosip]n )

(2.48a)

[cossjn'
(2.48b)

(2.48c)

(2.48d)
The system Z1 = 0 can be easily solved interactively, by
eliminating the components of n w.r.t. each other gradually,
the first of such eliminations is clearly: replacing this

5 _ T 4value for n = Jtamgn will cause Z1  ̂to vanish immediately,
3 4and Z ^  will depend on n and n only. Simplifying Z1 and
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Arepeating the above step us enable to calculate n up to a
multiplicative factor, which in turn can be fixed by the

A A Bfact that the "length" of n is unity, i.e. nABn n = -1 .
AEventually we get the value of n , which turn out to be pro-

A A Aportional to the embedding functions y ; n = (1/C) y .
The computation of the 2nd fundamental form becomes 
straight forward and we find that it is proportional to the 
metric; a^  = -(1/C) gap
Using this result in the deformation equation, we find the 

magnitude V of the deformation to be constant, proportional 
to the ratio of the deformation of the cosmological constant 
to that constant itself:

V = (C/2A) A1 (2.49)
which is identical to Kerner's result, up to a scaling fac­
tor .
(ii) Repeating the same work for Einstein's space-time

[43] , whose line element is given by:

ds2 = dt2 - (1 -A) ~1 dr2 - r2 (d02 + sin2 8dip2) (2.50)
we get the 2nd fundamental form: a"" = -(1/C) g"* withOtp CXp
a = 1,2,3 and = 0 and the deformation is identical to
the that for deSitter.
(iii) Taking now a more complicated metric which general­

izes the previous metrics, namely the non-static homogeneous 
model (also known as Robertson-Walker) with line element
[44] :
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' 2 1/2
(“«0> = (1+f >

The deformation factor becomes:

2 . 2 - sin r (d8 2 + sin20dip2) ] (2.J
depends on f :

(2. 52)
1+f2)"1 0 0 0 “
0 f 0 0
0 0 * . 2 fsm r 0
0 0 0 * . 2 fsm rsin20.

V = A
2 ’ 2 2  f'dH-f'V).

14f 2-(1+f2)(4f -2f A)
(2.53)

This clearly gives back the previous results for f = 1 .
(iv) Finally, we apply our scheme to a more interesting 

space-time, the Schwarzschild universe, which is clearly 
beyond Kerner1s approach because it is of embedding class 2 
and it does not satisfy the requirements of Einstein spaces.
The Schwarzschild metric, which describes a static, spheri­
cally symmetric universe, has the following line element:

ds2 = (1-A) dt2 - ( 1 —A)  ̂ dr2 - r2 (d82 + sin2 8dcp2)(2.54)
where: A = (2M/r), M = constant,
Being the oldest known exact solution for Einstein's field 
equations, it received a lot of attention, and although it 
is not very realistic from the cosmological point of view, 
it has been very helpful in understanding important physical 
problems, at least qualitatively (for example the general 
relativistic perihelion shift in the planetary orbits [34]).
A local isometric embedding of Schwarzschild space was 
obtained by Kasner [35], soon after Schwarzschild published
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his result. Much later, Fronsdal [36] embedded 
Schwarzschild into a flat space with Lorentzian signature. 
Other authors have investigated the embedding of 
Schwarzschild and its implications, and probably the most 
complete analysis is given in [24], since there, the impli­
cit embedding is solved first, yielding an explicit embed­
ding which includes the embeddings of Kasner and Fronsdal 
(and others) as special cases!.
Let us turn now to the deformation problem of Schwarzschild
space^ Here we have two 2nd fundamental forms, a1 _ = 1,2ap
which can be calculated as prescribed above. We find

•1 0 0 O'
3 1/2 (MB/2r )l/z 0

0
3
0

0

0

0

0
0 0 0 0

(2.55 )

(a2 -1 1/2 (Br) (M/2r) 'z

B2 0 0 0

0 -1 0 0

0 0 22Br 0

.0 0 0 2Br^sin28.
where: B = 1-2M/r
For this particular choice of 2nd fundamental forms, the 

Ricci vector does not vanish and it is given by*.

°12a = t0,_3 {B/2r,0,0) (2.56)
Although it is well known, from the works in [24] and [27]

1 . . .Here we use a new implicit embedding of
different from that in [24] Schwarzschild,
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(and others) that the Ricci vector can be made equal to zero
by an appropriate choice of the normal vectors, in this
work, the vanishing of D will not be demanded because, ona
the one hand it is not actually needed, and on the other 
hand its presence helps to demonstrate the potential of our 
formalism, which can work equally well for the most general 
cases.
Here we have two deformation vectors, corresponding to 

deforming the space-time in the directions of the 2 normals.
We obtain the following:

AEqo = (3B/2r3)(2MB/r)1 /2(1-8M/r)V1 - (3BM/r4 )(2M/r)1/2 (1-8M/r)V2
-B*,

AE-j 1 = (1/2r3) (2M/Br)1 /2 (3-8M/r)V1 + (3/2Br3) (2M/r) 1 /2 (1-4M/r)V2 
+ B ' 1 \

& E or> = (1/8r)(2M/Br)1/2 (4M/r + 6BM/r - 27B2)V1 +
(9/8r) f t 3 T  (l - 6H/r) V 2 +

AE33 = (AE22 ) sin2 8 (2.57)

2-4-5 Discussion
A full answer to the question : what does the normal defor­
mation of space-times mean physically? is not yet known;
Kerner (the only person to deal with the question of normal 
deformation, prior to my work) did not attempt to discuss 
the physical implications of this technique at all. In the 
following, only superficial explanation of the above results 
is offered, hoping that future research will clarify the 
deeper implications of this scheme.
(i) DeSitter: for this space-time, we can easily see that
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the 1st order deformed metric is proportional to the metric 
(of the unperturbed space), in fact:

gae = -2V9«e
Which implies that the deformed metric (up to first order) 
is :

gap = (1-2Ve)gap + 0(E2)
Using this, it is easy to show that the effect of such 

deformation can be obtained by rescaling the coordinates t 
and r by a factor J1-2Ve each! Therefore, a normal defor­
mation of de'Sitter is equivalent to a rescaling of the time 
and radial coordinates, and the cosmological constant. This 
implies that all physical and cosmological properties of 
de'Sitter are preserved under normal deformations. Also, 
the knowledge of the scales of the coordinates would deter­
mine the cosmological constant A precisely and vice versa.
The same result can be easily obtained for the Einstein's 
universe, except that the time (t) coordinate will be left 
unsealed.
(ii) Robertson-Walker: Here the situation is more compli­

cated because of the use of an arbitrary function f(t). It 
is clear from the deformation equation above (2.53) that in 
general, V can depend on time, which means that one cannot 
absorb it in the deformed part of the cosmological constant 
(as was done in the previous cases) therefore, a non-trivial 
energy-momentum tensor must be added to balance this result, 
i.e. a matter field should be created! This is a very
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interesting consequence of normal deformation that should 
receive a lot of attention.
(iv) Schwarzschild: We had originally no cosmological con­

stant, and clearly the cosmological constant (introduced via 
perturbation) can not explain the rest of the terms in 
(2.57), hence we are forced to introduce a matter-field, in 
the form of the first order expansion of the, otherwise 
empty!, energy-momentum tensor. Clearly, this result is con­
sistent with the well known fact that the Schwarzschild 
solution of Einstein's equations, which is the only empty 
space-time which is static and spherically symmetric [8].
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Chapter 3 Kaluza-Klein

Chapter Three

KALUZA-KLEIN THEORIES

3-1 INTRODUCTION

3-1-1 Embedding and Higher Dimensional Theories
The profound complexity of the embedding formalism, exhi­

bited in the previous chapter, was a "convincing argument" 
for most physicists to forsake it! however, the basic theme 
of working in higher dimensional spaces (i.e. spaces of 
dimension > 4) is still held by many as a possible framework 
for obtaining the ultimate grand unified theory, which 
should explain gravity, electromagnetism and elementary par­
ticle physics, in one go!. This time, however, the addi­
tional dimensions are chosen manually, with the particular 
properties that would provide the desired additional fields 
to the Lagrangian of the theory. It is important at this 
stage to clarify the relationship between such theories and 
embedding:
i) Theories described above are still embedding theories, 
in the broad sense of the term. i.e. these theories 
involve the study of manifolds that are embedded in larger 
manifolds, with the restriction that the normal bundle is 
chosen to (at least) include a tangent bundle of an 
appropriately chosen manifold (in Kaluza-Klein theories, 
the inclusion becomes identification).
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ii) Clearly therefore, these theories as they stand, have 
no relation to flat embeddings, except in the instance 
when the flat embedding of one of the manifolds involved 
was to be studied separately (as suggested in [2]).
iii) Additional dimensions are completely physical, and 
should be placed on equal footing with the "intuitive" 4- 
dimensions of space-time. This is an important observation 
for studying the consistency of such theories [1]. To 
explain the fact that these additional dimensions are not 
obvious (to say the least!) in the daily experience of 
mankind, it is alleged that they are of periodic nature 
with a very small amplitude (of the order of Planck's 
length).

3-1-2 Kaluza-Klein and Unified Theories 
The use of Kaluza-Klein theories in the quest for unifying 

the fundamental forces of nature is not new; in fact the 
very first paper by Kaluza [3] was directed the particular 
problem of unifying Maxwell's electromagnetic field with 
Einstein's gravitational field (of general relativity). The 
electromagnetic gauge transformations were interpreted as 
coordinates transformations in the extra dimension, in such 
a way that the invariance of the 5-dimensional line element 
is preserved. (This model will be explained in more details 
in the next section).
Kaluza-Klein theory spent a long time in obscurity, mostly 
because of Einstein's declared opinion; that this theory "do
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not bring us nearer to the true solution of the fundamental 
problem", which is, according to him, the logically distinct 
structures of of the gravitational field, and the matter 
(including electromagnetic) fields [30].
The first interesting generalization of the Kaluza-Klein 

theory was suggested by deWitt [4], who considered theories 
in higher-dimensions (higher than 5) with non-Abelian gauge 
fields coming into the stage as part of the generalized 
metric. The need for non-Abelian gauge fields became 
apparent after the introduction of the Salam [5]-Weinberg
[6] unified model for weak and electromagnetic interactions 
with gauge group SU(2)xU(1).
Further interest in higher-dimensional field theories arose 

with the advent of supergravity theories and the correspond­
ing unification schemes. Aspects of these theories will be 
discussed in chapter 4, while in the present chapter, we 
will only study the use of supergravity in constructing 
important Kaluza-Klein models, while concentrating mainly on 
the techniques of dimensional reduction and spontaneous com- 
pactification.

3-1-3 Kaluza-Klein and Supergravity
Using the term Kaluza-Klein "theories", in the plural 

tense, should be clear by now; since more than one theory 
have been so far mentioned, which adopts the basic Kaluza- 
Klein idea. Even when restricting ourselves to Kaluza-Klein 
formulation of supergravity, we are left with a number of

K.Shaker Jomaa 95 PhD Thesis



Chapter 3 Kaluza-Klein

options, corresponding to the freedom in choosing the topol­
ogy and dimension of the additional manifold, and the metric 
for the total space.
This chapter however, will be restricted to the special 
case of N = 8 supergravity theory, obtained from N = 1 
supergravity over an 11-dimensional total space, taking the 
"squashed seven-sphere" , as our compact subspace. Unfor­
tunately, there are no compelling theoretical arguments for 
favoring this particular theory!, however, there are some 
indications supporting our choice of a 7-dimensional compact 
space. The most important of these observations is given by 
Witten [7]:
The number 11 is the maximum number of dimensions allowed 
for space-time admitting a supergravity theory, since for d 
> 11, spin > 2 fields will have to be used (which cannot be 
accounted for physically).
This same number "11 = 4 + 7", is also the minimum number 
of dimensions required for accommodating an isometry group 
G=SU(3)xSU(2)xU(1), (which is needed for the unification of 
strong and electro-weak interactions), in the additional 
compact space.
In section (3-2) of this chapter, the original Kaluza-Klein 

theory in 5-dimensions is presented, as a simple introduc­
tion to Kaluza-Klein basic techniques. Then in (3-3), a gen­
eralization of the work in (3-2) is given, and the basic 
question of finding an adequate ansatz for the metric is 
addressed. (3-4) and (3-5) contain the calculation done
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using a new ansatz, together with analysis and conclusions.
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3-2 ORIGINAL KALUZA-KLEIN IN 5-DIMENSIONS

3-2-1 Formalism
The original theory proposed by Kaluza [3], and Klein [8- 
9], was simply to consider a 5-dimensional space-time, con­
sisting of the usual 4-dimensional space-time and an addi­
tional space-like dimension with the topology of a circle 
(i.e. periodic). Thus the 5-dimensional manifold is, at

ileast locally, of the form MxS .
The Hilbert action is generalized in a natural way to 5- 

dimensions,

IEH = (k 2 )S ^ 7 7R'd5X' (3.2.1) 
and the idea is simply to integrate away the 5th dimension 
to reduce the action to a 4-dimensional one, describing 
Einstein-Maxwell theory. To be able to achieve this goal, 
the ansatz for the 5-dimensional metric was carefully con­
structed to be:

9'ab = «■» 1/3
gap-K ipAaAb -KipAb

— KtpAa ■tp (3.2.2)

cx 5where tp = g'55(x ,x ) is a scalar field, A^ is a vector
field, which plays the role of the 4-dimensional electromag­
netic field. i.e. it has units of mass, therefore k = 4 J ttG 
(G = the gravitational constant) is needed to render kAM
dimensionless.
To see that A^ identifies with the electromagnetic gauge 
field of Maxwell's theory, we consider the isometry
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transformation of the line element:

 ̂ , ,-1/3 , 2 , ,2/3 , , 5 . A , a,2ds = (tp) ds - (tp) (dx + KA^dx ) (3.2.3)
2 cx pobtained from the metric (3.2.2), where ds = g^dx dxp is 

the usual 4-dimensional line element.
Assuming that A^ would transform as a covariant vector 
field w.r.t. general coordinate transformations on M, we 
shall only study its transformation under a change of the 
5th coordinate

5 ~5, 5 a,X — ♦ X (x ,x )
We shall assume ip and A^ to depend only on xa for the time 
being, concentrating on the study of the massless sector. 
Therefore, the possible transformation of the 5th coordinate 
is :

x5 = x5 + f(xa) (3.2.4)
where f is an arbitrary function of xa .
Replacing this in the last term of (3.2.3), we get:

dx5 + k A  dxa dx5 + [k A (x ) + d f(x)]dxa (3.2.5)a a a J

The invariance requirement fixes the transformation law for 
A :

A --♦A = A (x) - k 1 d f (x) (3.2.6)a a a a
Which is nothing but a gauge transformation for the vector
field A !. a

3-2-2 The Lagrangian
An explicit calculation of the 5-dimensional Ricci scalar
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(R') yields:

R' = (M>)1/3 [h - (K/4)2 >̂FapFaP - (1 /6ip2) 9aM)d“ip] (3.2.7)
where F = 2b r Abn is the usual field strength in the elec- ap [a ]
tromagnetic theory. R is the 4-dimensional Ricci scalar. 
Replacing (2.3.7) into the Einstein-Hilbert (EH) action
(3.2.1), and performing the "trivial" integration w.r.t. the 
5th coordinate, we get:

(3.2.8)
IEHYM = (k - (x/^ipF^F0113 - n/6>p2) 3aipS“<P

This action describes a 4-dimensional theory of massless
spin 2 graviton (g _), a massless spin 1 photon (A ) and aot p ex
massless spin 0 (scalar) field (ip) .

5Assuming x dependence for g , A^, and ip we can expand 
these fields in a Fourier series of the form:

F(xa,x5) = E Fn(xa)elnXn=-<x>
The ground state Lagrangian (for n = 0 in the Fourier 
expansion) provides the same expression as the massless sec­
tor (3.2.8), and the other terms, will add an infinite tower 
of massive states [10].
It is interesting to remark that, chosing the "amplitude"

of the fifth dimension to be very small (of the order 
-3310 cm) would serve at least three purposes in Kaluza-

Klein theory:
i) Explains the hiding of the 5th dimension from the human 

eye! .
ii) Gives correct value for the 4-dimensional gauge
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coupling constant.
iii) The massive states obtained in the Lagrangian have

1 Qmasses in excess of 10 GEV, which explains why they are 
not observed in present-day labs [11].

3-2-3 Discussion
The periodicity of the 5th dimension, which results from

1the compactness of S , plays a crucial role m  the Kaluza- 
Klein theory as is clear from above. First, it leads to the 
quantization of the electric charge in a natural and 
geometrical way. Secondly, it allows the expansion of the 
different fields into a sum of harmonics (in this case: 
Fourier harmonics), with coefficients depending only on the 
"observed" (xa) coordinates, and thus allowing the interpre­
tation of the transformations in the fifth dimension as 
gauge transformations in the 4-dimensional physical world.
Generalizing this idea to non-Abelian gauge transformations 
of Yang-Mills (YM) theory appears to be straight forward;
all what is needed is a higher dimensional compact space

1(dimension d > 1) to replace the circle S m  the above
work. The topology of this space will be prescribed in such 
a way that it includes the necessary symmetry groups that 
provide the desired gauge fields, which are determined by 
the killing vectors of the compact space.
For our Kaluza-Klein theory to include strong and elec- 
troweak interactions the internal compact space must have 
SU(3)xSU(2)xU(1) as an isometry group. This does not neces­
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sarily imply that the above group should be a subset of the 
compact space, in fact such a choice would force us to 
excess in the dimensions unacceptable by virtue of the Wit­
ten observation discussed earlier. The most natural choice 
would therefore be a coset space (of the form G/H with H a 
subgroup of G), since this will have G as an isometry group, 
and dim(G/H) = dim(G) - dim(H), which is the most economic 
choice for the extra needed dimensions, especially if H was 
chosen to be the maximal proper subgroup of G. In our work, 
we shall take G = S0(8), H = S0(7), and hence G/H = Ŝ  
(seven-sphere). Note that although S0(8) does not include 
SU(3)xSU(2)xU(1) as a subgroup, we still get an 
SU(3)xSU(2)xU(1) theory where SU(3) comes from a Lorentz 
group, and the rest come from breaking the S0(8) gauge sym­
metry .
It is important to note at this stage that our scheme does 

not lead to a "Grand Unified Theory" (GUT) since 
SU(3)xSU(2)xU(1) group is not contained in a simple group
[12]. For that matter, it seems that Kaluza-Klein theories 
are not well suited for such schemes, since the choice of G 
= SU(5) grand unified group, with H = U(4) will give 
dim(G/H) = 8, i.e. unacceptable!.
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3-3 GENERALIZED KALUZA-KLEIN

3-3-1 Geometry of Coset Spaces
Since coset spaces are of special interest, a brief summary 

of the necessary mathematics is given in this subsection.
A coset space G/H is the set of all equivalence classes of 
the form: [g] = { g ' e G  3 h eH and ge G; g' = gh}, H
being a closed subgroup of G. Clearly, G acts transitively 
on G/H.
Consider the Killing vector fields on G/H generated by

ithe left action L: GxY * Y of G on the homogeneous space Y 
diffeomorphic to G/H. Then the commutation relations of 
these fields will be:

[K • , K . ] = - C . .K,L l ' j J 1 3 k
,k

(3.3.1)
where the CJ,\ ̂ are the structure constants of G. Obviously 
the 's will depend on the coordinates in Y: (ya).
Following Salam and Strathdee [2], we label the points in 

coset space by e [Ly]• From transitivity of the action 
one can show that [2]:

Ki(y) = LD.*ay) e ^ _  (3.3.2)
Q 0*where L = dimensional constant, ep = vierbein of G/H and D.a ' 1

= matrices of adjoint representation of G. the index a =
1,...d = dim(G/H) is a numbering index.
Since the matrix D is of full rank, it is easy to see that

1We are using the notation of [13], where the - sign in
(3.3.1) is essential
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one can chose the first d killing vectors to be linearly 
independent, and hence to form a basis for the tangent bun­
dle of G/H.
For the product space, we can thus define the following 

vector fields in the tangent bundle T(M) + T(Y):

e i ( K ty) = K±(y)

e(x,y) = (— - A^(x)e. (x,y)

(3.3.3a)

(3.3.3b)M 'a x M x p

(3.3.3) serves as a basis for the tangent bundle, when the 
index i is restricted to a in (3.3.3a).
(3.3.3b) is nothing but the "gauge-derivative" vector 

field, with A^(x) the usual Y-M potential.
It is easy to show that the commutation relations for this 

basis are:

[ea'ep] = ~clapKi(y)V x'y) (3.3.4a)

[e , e ] = AiCk. K, (y) L p a p lock* (3.3.4b)

[e ,enu] = F1 (x)K.(y) L P ' pv 1 J
(3.3.4c)

Where K?(y) are the coefficients of expanding K. w.r.t. K1 1 "Y
basis, i.e. K. = K?(y)K , and Fi = -26r A ^  - Ci .,AiAk are l l 7 pv LP v ] Dk p v
the field strengths of Y-M potential. We have fixed
[d ,eQ] = 0. This basis is very convenient for doing calcu- M p
lations in Kaluza-Klein theory.

3-3-2 The Kaluza-Klein Ansatz
The immediate generalization of the 5-dimensional Kaluza-
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Klein metric (3.2.2) to higher dimensions is given by

AB
V tX)'Ai(X,Av(X)Ki(y)Kj(y)gaP(y) -AvKjgaS

-A^K^g v j a|3 'a0 (3.3
.a.where g n is the killing metric on G/H, i.e. g Q = K.K.QCXp CX.p 1 lp

For the present time, we chose to work in the horizontal 
lift basis (as defined in [14]) given by the 1-forms:

wa = dya + K?(y)A1(xjdx^ l M
(3.3.6)

In this frame, the metric takes the simple block-diagonal 
form:

'AB
g (x)(JV
0

0
o-gap

(3.3.7)

The frame itself is given by the dual to (3.3.6):

- A1(x)K^e M l ae = dM M
e = 8a a

(3.3.8)

The above ansatz is known in the literature as the Kaluza- 
Klein ansatz. The commutation relations of the frame 
(3.3.8) are given by:

= 0 (3.3.9a)

[V ea] = A1k7 e M l, a -y (3.3.9b)

[e ,enu]M = F1 K?e pv l •y (3.3.9c)
where F1pv = -28 r Ai1 - [p v ] C1 ., A^A^ is the Y-M field strength, jx m v
as above.
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Using the same techniques as in (3-2-1), we show that the

which may be recognized as the Y-M gauge transformation of 
the non-Abelian gauge field. Hence, the first hope that the 
gauge fields can be obtained from higher-dimensional 
Kaluza-Klein theories is fulfilled, which supply us with 
more courage to examine other aspects of this theory.

3-3-3 Mathematical Derivations
Here we attempt to calculate the action of the theory, and

2we start by computing the Chnstofel symbols given by :

This computation can be very easily performed with the help 
of STENSOR's splitting facility, which allows introducing a 
multitude of index-types, each with a different range, with 
the possibility of considering a particular index-type as 
the direct sum of two (or more) other index-types, then com-

2Following the notation of Kobayachi and Nomizo (see 
volume I in reference [14] of Chapter 2)

line element defined via (3.3.5) is invariant under xM-
dependent left action of the form:

(3.3.10)

(3.3.11)

Ar iu> [e , e ](373.12)
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pactification can be done in a natural way, via replacing by 
its (symbolic) constituent indices (for example, a sum over 
such an index will be replaced by two (or more) sums over 
the ranges of the sub-indices). We get the following 
result:

r MVQ
rM

v e
r Mva ( - 1 / 2 )  f1m K ? g  Q = r' v l  ap Mav

II>n
L_ ( 1 / 2 )  F ^ K ® (3.3. 13)

r a  = 
P m

A 1 ^  Q M P
na ra
r  P - Y " P-Y

Using (3. 3.13) we proceed to compute the Ricci scalar,
given by:

R = Rm M + Rr l u  + gMVRa G/H pav i a P R Ma p p (3.3.14)
where and R^ are the

vjt / ri Ricci scalars for the 4-
dimensional space-time M and the coset space G/H respec­
tively .
Note that in our notation the Riemann tensor is:

r^ = e rA - e rA + rE rA - rE rA * BCD eC DB CB 1 DB CE CB1 DE
nA Er n
r EBU> -̂eC ,eD^

The result for the Ricci scalar is:

(3.3.15)

R = RM + RG/H 9apK?KjFiMVFiMV
Note that RG/H

(3.3.16)
will be a positive number for closed compact

spaces with positive definite metric g Q.otp
As in the 5-dimensional theory, we write a higher­
dimensional analogue of the Einstein-Hilbert action:
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I ™  = (K2Vr ,„)-1 J F g d 4x J (g)1/2dmyR EH G/H M G/H
(3.3.17a)

where V_ .„ = J (g)1/2dmy = "volume" of G/H. This implies 
G/H G/H

that, for = constant:

(k 2)J >Fgd4x (Rm + Rg/h) + (B±j)(4kEH 'VG/H

(3.3.17b)

r 1 j >F?dM
where B.. = J (g)1/2dmy (g 0K?K?)13 G/H a(3 l 3

is the average measure over G/H. To first order in the 
expansion of K^K^, B^j is directly proportional to 6^, 
hence contracting with 61-3 gives:

6i;lB, . = I2J(g)1/2dInyg g“P = mVL2 13 aR

“> B.. = L-(dG/H/dG) V8±j 
2taking L = (KdG^H)/dG, we finally get the Einstein-

Hilbert-Yang-Mills action:
(3.3.17c)

IEHYM = j|. 'I-9d x H R m  + Rg /h )-(1/4) F ^ F 1^

The term plays the role of a cosmological constant.
So far, the "size" of the compact space is not fixed, how­

ever, it is possible to relate it to the gauge coupling con­
stant, except when U(1) is a factor of the gauge group [15].

3-3-4 Harmonic Expansion
In this section we show that a scalar field on higher 

dimensional Kaluza-Klein background MxG/H is equivalent to 
an infinite tower of scalar fields on the effective 4- 
dimensional world, with masses quantized in unites of the 
"radius" of the compact space G/H. This is done by expanding
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the higher-dimensional field in terms of the appropriate 
harmonics on G/H (which generalizes Fourier expansion).
The action for a charged scalar field (p on MxG/H is:

I = J J -g'd̂ x {gADeAF eD<p - m^F tp - eRF ip} (3.3.18)
where m = mass and e = curvature coupling coefficient.
Expanding the field ip(x,y) in terms of scalar harmonics on 

G/H we have [2]:

<p(x,y) = V_1/2E [TV"' . (L '1)<p(n). (x) (3.3.19)\l n a l y i an n n n n
where the index "n" refers to a particular representation of
the group G, with a dimension d and matrices ' . (g)n a i ^n n
for geG. Obviously, the indices a and i in (3.3.19) are 
summed, and n runs over an infinite number of representa­
tions .
Let (Tk -i ke the matrices of the d^-dimensionaln3n
representation of the Lie algebra of G, relative to the 
representation "n". Then one can show [14 and 30] that:

Ki9aD 'n)« j < V 1) = ‘ “'"’a k (V 1)(T'n)i)k j (3‘3-20>nJn J n n J nJn
It is also known [2], that the group representations obey

the orthonormality conditions:
(3.3.21)

1J dV D(n) . (L 1)D(m) . (L ’) = (V/d )6. . 6  5r/H y otn1n y « Y l i o nmo/n n n  m m  n m n m
substituting (3.3.19) into (3.3.18), and using the identi­
ties (3.3.20) and (3.3.21), and expanding R as in (3.3.15), 
we can integrate away the y-dependence in all but one term
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of the Lagrangian, namely the term containing
• _ .9 F1mv, which can be integrated after employing theCt0 1 j |JV
same trick as in (3.3.17). After some manipulation we find:

i  =  E J \ l - g d 4 x  < ( V  tp ( n ) . ) * ( v ' V n ) i  )n M n n n n
rr-2^ , . . 2 , n -i (n)* (n)- [L C (n) + m + eR ]<p L V Ln n n n

(3.3.22)

r, (n) (n) , r, i 2^1 ripv (n)* (n)l a  l a  L G/H ' G' J |j v   ̂ l a /  a  ln n n n n n n
where

V ipM
(n)

l a n n 3 ip(n). + kL 1Al(T(n).). • ip{n5 .M 1nan M 1 x n Jn 3n“n
is a generalized covariant derivative and C^(n) is the qua-Vjr
dratic Casimir invariant for the representation "n" of the 
group, given by:

(T( *•)• • (T( 5.) .i i ]  i ] knJn Jn n CG(n)6i k n n
which is proportional to the eigenvalue of the 
Beltrami operator for scalars on G/H [16].
The effective 4-dimensional action (3.3.22)

describes an infinite number of scalar fields ip
of the mode ip̂ n  ̂. is given by:

3nan

(n)

(3.3.23)

Laplace-

clearly 
the mass

M2 = m2 + eRG/H + L 1CG(n) (3.3.24)
Thus, the quantum masses for our modes will be very large, 
if the "radius" of the coset space was chosen to be very 
small, as discussed above. Another observation is that the 
coupling between the gauge fields and the scalar fields is 
not minimal (for e= 0) due to the last term in (3.3.22).
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3-3-5 Problems With Kaluza-Klein Ansatz 
So far the "rosy" side of Kaluza-Klein ansatz has been 

exhibited, nevertheless, one must concede that the above 
approach suffers from a lot of difficulties, especially when 
used for constructing models of "nature"!. The most impor­
tant of these problems can be summarized as follows:

i) Absence of fermions!: This problem is not related to 
the choice of the ansatz, but unfortunately is of more 
fundamental nature. The previous work allowed us to 
obtain Einstein-Maxewll-Yang-Mills theory (3.3.17c), where 
all propagating (physical) fields were of integer spin 
(0,1 and 2). One would naturally hope to include Fermions 
(i.e. half-integer spin fields) in Kaluza-Klein theories, 
however, the Lichnerowicz theorem [17] states that there 
are no zero eigenmodes of the Dirac operator on spaces 
which admit positive scalar curvature, which apply to all 
coset spaces with their standard metrics, save the unin­
teresting case of the n-torus Tn . Hence, no spin 1/2 
Dirac particles can be included in a natural way.
ii) The cosmological constant causes a two-fold problem; 
first, the choice of the sign: To illustrate this problem, 
let us work with the maximally symmetric (Einstein) 
spaces, with:

RAB (2 A
d-2 ) g AB (3.3.25)

then, in the ground state, we have R = c„g andMV  1^|JV
Rap = C2gap with C<|C2 > 0 always (i.e. C1 and C2 have the
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same sign).
The Myers theorem of differential geometry states that 
Einstein spaces with positive definite metrics and C ^ y o 
are always compact, while on the other hand, according to 
Yano [18], such spaces with < 0 have no symmetries!. 
Therefor we need > 0, which forces >0, i.e. we
should use the deSitter space-time for our manifold M, 
which is not very satisfactory, since deSitter does not 
have a positive energy theorem and cannot be used for a 
supersymmetric theory!.
The second independent problem with the cosmological con­
stant is related to its magnitude; the requirement of 
assigning Plank size to the extra dimensions forces a 
cosmological constant for space-time 120 orders of magni­
tude greater than the observed upper limit [19] !, this is 
known as the cosmological constant puzzle, and is not con­
fined to Kaluza-Klein theories.
iii) Consistency of the Ansatz: It is quite a common mis­

take in the literature to start off a Kaluza-Klein compu­
tation with an inconsistent ansatz for the ground stat 
total metric. The underlying reason is that the extra 
dimensions are not treated as physical, but rather 
regarded as a mere mathematical device.
As a simple example, consider the original 5-dimensional 
theory: many authors take g55 = 1 (see for example the
review article [14]), this is inconsistent with the R55 
0 component of the Einstein equation, since this would
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force FpvFMV to vanish!. However, with our choice of 
(see (3.2.3) in the previous section), the 5,5 component 
of Einstein's equations implies:

□(logip)  ̂ipF̂ vFMV (3.3.26)
Therefor, consistency can be restored by retaining the 
scalar field ip.
In higher-dimensional theories, the process of restoring

consistency forces the inclusion of all the massive modes in
the harmonic expansion in most cases [1], this means that no
consistent truncation of the high energy part of the theory
can be done, which would clearly limit the predictive power
of this theory for the low energy scale. Fortunately, a few

7exceptions exist, amongest these are certain S compactifi- 
cations of 11-dimensional N = 1 supergravity (which shall be 
considered later).
We will not attempt to solve these problems explicitly, 
however, it is useful to introduce the model which is held 
by many to be a possible break-through, namely the N =1, d =

711 supergravity on an (anti-deSitter)xS background, spon­
taneously broken to N = 8, d = 4 supergravity [20]. In this 
model Fermions (of spins 1/2 and 3/2) are introduced via the 
spin 3/2 11-dimensional gravitino field 4>A [20], while the 
introduction of the generalized "electromagnetic" field AABC 
will resolve the sign-problem of the gravitational constant 
by introducing Bosonic matter with non-trivial VEV (Vacuum 
Expectation Value) in the ground state, the Einstein equa­
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will read [21]:

. _ 2= -12m g , l.e. pv pv' c1 < 0 (3.3.27a)

ag = -12n,2gaP' L -e -
C2 > 0 (3.3.27b)

here m = constant. Where the Lagrangian of this system is
given by [23]: (3.3.28)

L0 = (1/4) (dete”) <e®e^R””(uO - 2i$ArABCDB[ (ui+u.)/2]#c
„ _ABCD .,.,.-4 A1A2‘'-A11_ „“ (1/12) FABCDF +8(12) e FAr ..A4FA5

, ,~rABCDEF. . —CrDE.FWT:. * .+ 3(12) (4>r 4'b + 124. r i|> )(Fcdef + fcdef)
gwith e^ being the "elfbein" on the 11-dimensional manifold,

FABCD = 4^[AABCD] invarian't field strengths associ­
ated with the field Anr(r.. andh)Q~U

^BMN (1/2) ( QMNB + nNMB QBMNJ- AC —+ (l/4) ["4>ArBMN4)c + 2(l̂ BrNll,M
r.-di., + ii>r d>) 1 VB IYrN BhM j

with

qmAB oa M - 29[BeA]
_ +4> = 4> ro

Da (ui) — 9A+(1/4)ui- r .T A A MN
a . ... BC
^AMN ==a*AMN+(l/4)ll,BrAiyiN'

fabcd =FABCD" [ ArBC4*D ]
The r symbol is the generalized Dirac r-matrix in 11
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dimensions, and r  with more than one index is the fully 
antisymmetrized product of the appropriate number of r's.
On the other hand it has been suggested [22] that the Fer­

mionic condensates and the Ricci-flattening torsion, which 
exists whenever the extra manifold admits a Killing-spinor, 
may resolve the "fine-tunning" puzzle of the cosmological 
constant.
Finally, the consistency of this theory is retained in the 
zero mode restriction [1 and 10].
We conclude by writing down the 11-dimensional field equa­
tions for the bosonic fields [23]:

ABCD
= (1/3) (F 

A ^ 2 . . .AqBCD
acdefb

CDE d/8) gABF2)
(3.3.29)

-(1/576) e
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3-4 THE NEW ANSATZ

3-4-1 The Computer Program
In the previous section the credibility of the Kaluza-Klein 

theories was defended. However, the number of degrees of 
freedom in constructing such theories is still unfortunately 
very large, and we are still in need of the "trial and 
error" techniques for refining the input ansatz. The immedi­
ate problem that confront us is the tremendous amount of 
calculation required for testing individual "guesses" which 
can deter the keenest of physicists from contemplating such 
a technique for improving the ansatz of the Kaluza-Klein 
theory, such type of work.
The rest of this chapter will be devoted to the study of a 

particular new ansatz, which can be used for constructing a 
Kaluza-Klein theory from any coset space G/H, with no res­
trictions on the total number of dimensions, or the geometry 
of the 4-dimensional manifold used. For this purpose, a com­
puter program was developed to handle the computational 
aspects of the work. However, this program was designed to 
work equally well in the general cases and can be used for 
computing the necessary physical quantities for any ansatz, 
therefore it can be of great help in the search for the 
"ultimate" ansatz.
The program computes the connection coefficients, the 

Riemann and Ricci tensors and the curvature scalar of a 
given d-dimensional metric, via the usual spontaneous com-
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pactification techniques. It utilizes the "index-splitting" 
facility of STENSOR; this allows defining different index- 
types, which would run over different ranges of integers 
(always starting with zero). One index-type can be subse­
quently split into two (or more) other index-types, whose 
combined ranges are equal to the range of the initial 
index-type. This facility can be extremely useful in other 
problems of theoretical physics, such as the 3+1 formalism 
of the Cauchy problem in general relativity.
A full listing of our program is provided in appendix D.
The first test of this program was to re-calculate the

Ricci scalar for the important ansatz of M. Awada [24]
(which helped clearing a lot of confusion in previous
literature), the computer did more than verifying the
results in [24], it actually combined two complicated terms
in the expression of which were not combined in [24],
which proves the superiority of the machine "noticing"
power!. More important of course was the time-saving
involved, it transpires that such a computation takes an
enormous duration of time to be performed by hand: Dr. Awada
revealed to the author that he spent more than a month to
complete his calculations, while the computer managed to

1finish the same work m  less than 10 minutes , and these 
include the time used for interaction, which is naturally 
responsible for any time-wasting!.

1 The time needed for writing the software itself is not counted, of course!
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3-4-2 The Ansatz
Further generalization of the above work was suggested 
[25]; the main change is to multiply the total contravariant 
metric by a "weight" factor which depends on both (xa,ya) 
coordinates (cf the 5-dimensional case). It shall be shown 
later on (see section (3-3-4)) that this weight is nothing 
but the determinant of the old g metric raised to theOtp

ap_1 / qpower -1/9 i.e. W(x,y) = (detg p ), however, for the time 
being we may leave it as an unknown.
The new ansatz metric would therefore be:

'AB W (x, y)- 1
g (x)y |JV
0 ga|3(x'y) 

a(3

(3.4.1)

where g is the inverse of g (x,y) defined by"oc p

gaf3(x,y) = K^(y)K?(y)cpi^(x) (3.4.2)
The reasons behind the choice (3.4.2) lies in the fact that
it provides the most natural generalization of the ansatz in
ref [24], since it is known that on the one hand g (x)pv
should be the lowest order mode in the expression of the g^fi 
harmonic expansion, after restricting the indices A=m and 
B=v, in order that the ground state of our theory should 
describe the usual general relativity metric, and on the 
other hand, (3.4.2) is by construction ([24 and 25]), the 
1st order term of the harmonic expansion of g.^, A=a, B=S. 
Therefore, to get maximal generalization, we should multiply 
the metric by (so far) an arbitrary factor W(x,y) which
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depends on both sets of variables, with the only constraint 
that its zeroth-order mode should be identical to one, 
allowing us to retrieve the initial ansatz in the zeroth 
order.

3-4-3 Computations
Using the program described above, the calculation proceeds 

as follows:
i) Computing the Lie derivative of the metric tensor, 

with respect to the basis vectors: This is done by split­
ting e,.g into its constituents: e.g Q and e.g (noteA  D L  A  CXp A  (JV
that g^a=0) i then evaluating these individually and stor­
ing the results for future use in computing the connection 
coefficients.
One useful relation is employed for computing ejj9ap' 

namely:

epgctB g gOKe g cry |3G p
6̂ (3.4.3)

since the form of g01*3 is known.
ii) The next step is evaluating the connection coeffi­

cients, using (3.3.9 and 12), the results obtained by 
STENSOR are displayed in figure F3 below.
Two important remarks concerning F3: The first is that 
the Group indices are typed as small Roman indices, from 
the bigging of the alphabet, in order to distinguish them 
from the space-time capital Roman indices. This is neces­
sary since SHEEP can not handel Greek letters. The second 
remark is that the numerical indices 0 and 1 denote the
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different indextypes and have no other significance.

iii) Finally, we evaluate the Ricci scalar, which is 
needed for the Kaluza-Klein Lagrangian, from (3.3.9 and 
15) and the connection. The result is displayed in figure 
F4.
After appropriately rearranging the terms we have:

* = WRM + °G/H + « V PV(S 6 KK 7v»kl) 
- (W/4) gMX KiK?Kj(9e^ aP +

(W/4) gMVgQOg qK^K^F1 F̂* * cx0 l 3 pg va (3.4.4)
where

_ 19 a ID , -k-l}Vip - o i p  + A S ,  p p p k
and the gauge covariant derivative

(3.4.5)

V p
and

c) + P r P (3.4.6)

ur/„ = Wu , , + f(W,W ,W )G /H old a p
where f is a non-trivial function of W and its 
tives, which vanishes for W=1, and:

(3.4.7)
deriva-

uold tuG/H]W=1
The term uQld is used to denote the result of [24] 
The potential for the scalars is given by:

(3.4.8)

L>

U[6, ip1 ̂ ] = <V G / H ) 1 / d my  lg(x, y )*uG Ĥ (3.4.9)
iv) Integration of the y-dependence: The expression of
. is too complicated to be integrated for an arbitrary
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0 q R pS p
T -1/2d MW -1/2d MW +1/2W g g +T
00 p R p q S qR qR
0 pR i a qT -1/2g g F K -1/2Md W
01 ca qR i P c
0 pq i a R

T -1/2g g F K -1/2Md W
10 ba Rq i P b

0 pq i j a d  pq
T 1/2g DFI g g K K +1/2Mg W g

11 q ba cd i j q be
1 i a ab

T 1/2F K +1/2Mg W g
00 qR i b qR
1 i a j c ij a b

T -A K C -1/2Md W -1/2DFI g K K
01 q j ci a q q cb i j
1 a

T T
10 bR
1 ad e i ad e i

T -1/2g g K C -1/2g g K C
1 1 ce i bd be i cd

ad i j e f a i ij a d
-1/2g S g g K K -1/2K C +1/2S g K K

d be cf i j i be c bd i j
i j a d ad c

+1/2S g K K +1/2Mg W g -1/2Md W -
b cd i j d be a b
a

-1/2Md W 
b c

Figure F3: The computer output for the connection coefficients. 
Note that the term M is a shorthand for (1/W) and a W with an 

index is the derivative of W w.r.t. that index.
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R
ab ij kl a b

= ( -1+NC) g e W + W H S  S K K  +W R
a b i j a b k 1 M

ab c i ab cd i j+(1-NC)g W K C -1/4Wg g H C C -
a i be i j ac bd

ab c i j ab c d j i ab c d i jWg K C C +1/2Wg K K C C -Wg K K C Ci a j be i j ac bd i j ac bd
2 ab ik jl a b

+ (1/2-1/4NC-1/4NC )Mg W W +1/2W H S S K K +a b i j a b 1L k
ab ik jl ab i j kl-5 / 4Wg H H S S -1/4Wg H H S S +

i j kl a b i j kl a b
ab i j ab ik j+ (-1/2+1/2NC)g W H S +2Wg H S C

a ij b i j a bk
ab ij c k i j a b k ij a b k+Wg H S K C +WS K K C +WS K K Ci j a k be a k i jb a i k jb

i j a b ab ik c j ab
+ (1-NC)W S K K +Wg H S K C + 4 g e Wa b i j i j a k be a b

pq pq i j- (3/4NC)g W W + (3-1/2NC)g DFI W H
p q P q i j

ab c i ab ij pq RS i j
-4 g W K C + 2 g W H S -1/4Wg g H F Fa i be a i j b ij pR qs

pq i j pq ij kl+(3/4)Wg DFI W H -1/4Wg DFI DFI H H
p q ij P q ik jl

pq ij kl 2 pq
-1/4Wg DFI DFI H H +(1/2NC-NC-1/4NC )Mg W W 

P q ij kl p q
2 ab ij a b

+(-2NC-5 )Mg W&Wb - 4 W&S bK ± K j
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p q a  pq R a i j a b c k
+W ( -2g e T +2g T T ) -2WS K K K C

p aq pq aR a i j k be
Figure F4: The Ricci Scalar

coset space G/H. However, restricting ourselves to zeroth 
order in the expansion of the K?•s [24], we can integrate 
the kinetic term in (3.4.4).
First we rescale ip1-5(x) to make its determinant equal to 

one by: (p1  ̂ — ► 6 ^(x)^-* where detip1 
Therefore, we should have g

1 .

a(3 6(x)g using:jCXP
VG/H =: dIRy J 9 ̂ (x , y) we can evaluate: EQ I (3.4.10)G/H
lambda sub i j :"int from G/H d sup m y (sqrt g sub 1 
(x,y)> g back 50  ̂ sub {alpha beta} Kia (y) Kjb (y)

(3.4.9)
as follows:
Contracting with ip1-5 yields: ip1:iA. . = mV„ then writingJ-D o/ H

A . . = (ip. . + o, .) V- and contracting again, implies: lj lj i] W  «

ip1 j = m -  n (3.4.11)
expressing ip1-3 as a perturbation of the group metric:

ip1D = + g13 + ei}13 (3.4.12) 
Here the i|)13 are the deformations around G associated with 
the scalar fields of our theory [24]. Similarly we can 
write: aij = + eT2ij Then (3.4.11) implies: 
g ^ T ^ j  + etg1-^.^ + = m - n this identity in
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turn implies:

g13T,.. = m - n (3.4.13a)y 113

gijT_. . + i^T.. . = 0 (3.4.13a) ̂JL 3 T 13
the first of these relations imply that we may have:

TU j = -d - m/n) g±j (3.4.14)
(3.4.13b and 14) give: T sub 2ij ’“ = "-( 1 "-“'m/n) ~ psi sub ij

(3.4.14)
and finally:

= (m/n)if»ijVG/H (3.4.15)
to the first order in e.
Therefore we have:

_ rj4 i ftm/2n , „r_ ijnI = Jd x v]-g{5 R + U [ 6 , ip J] -
M
. ... pv go, (1+m/n) -.i .2tm/2 uv.rt(m/4n) g g* 5V pgF va (m/2n) 5 9 <P

- (m2 (n+1 ) /4n) 6~ (2_m/2 5 gpv 0^5 ) ( )  } (3.4.16)

3-4-4 Discussion
The Kaluza-Klein model presented above provide a new and 

consistent theory that generalizes completely all previous 
work in this field. This makes it the best candidate for 
testing important features of the Kaluza-Klein theories in 
general. The "weight" factor W(x,y) which multiply the 
ansatz metric is a very important ingredient, since it opens 
the door for formulating the general (non-linear)

K.Shaker Jomaa 124 PhD Thesis



Chapter 3 Kaluza-Klein

supergravity (see below). The fixing of W is done as fol­
lows :
From (3.4.4) we have W as a factor multiplying the "tradi­
tional" 4-dimensional Ricci scalar, Therefore demanding that 
our theory should include the usual Lagrangian term for 
Einstein's general relativity theory in all modes (and not 
only zeroth mode, as used in integration of (3.4.3)), we 
must impose:

i--' 7 , . 1 / 2>|“9W = <“9m>
> ( g o/ n

1/9
’G/H 

> W = (g

’M‘1/2 -11/2 ) ' W ' . W = 1

G/H

(3.4.17)

The scalar fields in our work are described by ip1-3 or 
rather 4)1-3, the deformation around the group metric
(3.4.12), these fields are not singlets in general, and it 
is easy to show that, when we restrict them to singlets only 
(by choosing 4)"1 proportional to g1-3) we obtain the results 
of ref [26] exactly.
It is very difficult to check whether our potential for the 

scalars (3.4.9) is bounded from below, except for simple 
special cases; for example, if g p = ip6 , then U[6,ip] is 
proportional to 6m/zip, with a positive proportionality con­
stant, which means that it is bounded below in this case.

K.Shaker Jomaa 125 PhD Thesis



Chapter 3 Kaluza-Klein

3-5 CONCLUSIONS

3-5-1 Difficulties
A clear analysis of the difficulties facing a physical 
theory provide the best means for gauging its importance and 
future!. The most important problems with Kaluza-Klein 
theories, presented above, are the following:

i) The understanding of the full content of the potential 
for the scalar fields (3.4.7 and 8) is almost impossible 
in the general case, which limits the physical interpreta­
tions to special cases only!. Fortunately, however, in the

7interesting case of S , the killing tensors (which are
products of killing vectors [27]) describing the scalars

. . . . . . 7have unique properties that simplify integration over S .
ii) In general, it is necessary for the ansatz to include 

non-geometrical fields (i.e. matter) coupled to the metric 
field, as in the case of the work above, for "triggering" 
spontaneous compactification. The presence of these ad-hoc 
fields detracts from the simplicity of the purely geometr­
ical theory, and may indicate that the geometrical com­
ponent is not necessarily of fundamental nature. Super­
gravity might provide a justification for these additional 
fields, since it allows for such fields through the 
requirement of supersymmetry [21].
iii) The restrictions imposed on the choice of the ansatz 

are still not enough to limit the class of possible 
metrics to a well defined set. Indeed, there is even no
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theoretical justification for restricting the choice of 
the additional compact space to coset spaces (although 
this choice is favored because of the hand-wavy arguments 
in the conclusion of section (3-2) above). Therefore work 
is concentrated on what are considered "hopeful" models, 
linked to supergravity theories, while physicists are 
keeping their fingers crossed!.

3- 5-2 Interpretation of additional dimensions
The ultimate aims of Kaluza-Klein theories is to translate 

all physics into geometry! and in the same way that energy 
and momentum are associated with translational symmetry in
4- dimensional Minkowski space-time, the internal quantum 
numbers, such as electric charge, would be associated with 
symmetry in the extra dimensions. This would mean that 
gravity is the "only" force of nature, which has in reality 
4+m-dimensions, the differences in the topological proper­
ties of the 4 and m-dimensions is responsible for the dif­
ferent manifestations of the gravitational force!. Thus, 
each point of the 4-dimensional space that we observe is a 
compact m-dimensional manifold by itself! which is so small 
in size (of the order of Planck's length) that it escapes 
all attempts of detection!. The only "appearance" of the 
extra dimensions takes place in the form of multiplets of 
the associated symmetry groups, which is better known as the 
physics of elementary particles.
In addition to the benefits of associating Planck's length
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to the radius of the compact space, there is an important 
drawback; namely that this would render Kaluza-Klein 
theories untestable! since the excitations above ground 
state are too massive to be accessible at energies that 
would be available in the accelerators of the foreseeable 
future. One would hope to discover exceptional cases, where 
for reasons of symmetry, the mass contribution is oppressed 
(as in the case with the vector which is prevented from
acquiring any mass by the gauge symmetry), this phenomenon 
is known as "space invaders" [22 and 28].

3-5-3 N=8 Supergravity
One instance of partial success for the Kaluza-Klein
theories is the "Duff-Pope theory" of spontaneous compactif-

7ication of d = 11 N = 1 Kaluza-Klein supergravity on the S
compact manifold, which reproduced a non-trivial N = 8
supergravity theory with local S0(8) invariance on a 4-
dimensional anti-deSitter background. Furthermore, "squash-
mg" Ss leads to spontaneously breaking N = 8 to N = 0 or 1

7 .supergravity (depending on whether Sg is "right" or "left" 
squashed [28 and 10]).
The ansatz for massless fields, at the linearized level, 

was fully determined [20] and used to prove that, at the 
linearized level, the truncated Duff-Pope theory is 
equivalent to the gauged N = 8 supergravity theory of DeWitt 
and Nicolai [29].
It is remarkable to note here that our ansatz can be a good
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candidate for the complete non-linear ansatz, since, to the 
first order, we have:

|detg«P(Xiy)|1/9gaP(Xiy) s gaf»(x,y) + 1/96«PgTr
which is the exact expression obtained for 1st order linear­
ization. One can show that this is also true for other 
fields as well. This reveals the importance of the (1/9) 
exponent, which was calculated (see (3-4-4)), rather than 
put by hand in our work. However, the final verdict on our 
ansatz can only be reached after it is supplemented by 
another ansatz for the "generalized" electromagnetic term 
AABC' an<̂  further complicated calculation is done.

K.Shaker Jomaa 129 PhD Thesis



Chapter 3 Kaluza-Klein

REFERENCES FOR CH3

(1) M. Duff et al, Preprint: Imperial/TP/83-84/56

(2) A. Salam Sc J. Strathdee, Annals of Phys. 141, 316
(1982)

(3) Th. Kaluza, Sitzungsber Preuss. Akad. Wiss. Berlin 
Math. Phys. K1_, 966 (1921)

(4) B. deWitt, in "Relativity, Groups Sc Topology" edited by 
deWitt Sc deWitt (Gordon Sc Breach, N.Y. 1964)

(5) A. Salam, in "Elementary Particle Theory" edited by N. 
Svartholm, (Almiquist Sc Forlag, Stckhlm 1968)

(6) S . Weinberg, Phys. Rev. Lett. T9, 1264 (1967)

(7) E. Witten, Nucl. Phys. B186, 412 (1981 )

(8) 0 . Klein, Z. Phys. 32, 895 (1926)

(9) 0 . Klein, Nature, 118, 516 (1927)

(1 0) M. Awada, Ph.D. Thesis, Imperial College, (1984)

(1 1 ) M. Duff Sc D. Toms, in "Unification of the Fundamental
Interactions" edited by J. Ellis Sc S. Ferrara (Plenum, 
1982)

(12) J. Ellis, M. Gaillard Sc B. Zumino, Acta Phys. Pol. 
B13, 253 (1982)

K.Shaker Jomaa 130 PhD Thesis



Chapter 3 Kaluza-Klein

(13) Y. Choquet-Bruhat, C. Dewitt-Morette & M. Dillard- 
Bleick, "Analysis, Manifolds & Physics" (North Holland, 
Amsterdam 1977)

(14) D. Toms, in "An Introduction to Kaluza Klein Theories" 
edited by H. Lee (World Scientific, 1983)

(15) S. Weinberg, Phys. Lett. B126, 265 (1983)

(16) J. Strathdee, in "Supersymmetry Sc Supergravity" edited 
by S. Ferrara, J. Taylor 8c P. Van Nieuwenhuizen, (World 
Scientific, 1982)

(17) A. Lichnerowicz, C. R. Acad. Sci. Paris Ser. A-B 257 
(1963)

(18) K. Yano, "Integral Formulae in Riemannian Geometry" 
(Interscience 1970)

(19) M. Duff, Preprint: "Modern K-K Theories"
Imperial/TP/83-84/56

(20) M. Duff 8c C. Pope, in "Supersymmetry S< Supergravity" 
edited by S. Ferrara, J. Taylor 8c P. Van Nieuwenhuizen, 
(World Scientific, 1982)

(21) P. Freund Sc M. Rubin, Phys. Lett. 9_7B, 233 (1980)

(22) M. Duff, B. Nilson Sc C. Pope, Nucl. Phys. B2331 433
(1983)

(23) E. Cremmer, B. Julia 8c J. Scherk, Phys. Lett. 76B, 409
(1978)

K.Shaker Jomaa 131 PhD Thesis



Chapter 3 Kaluza-Klein

(24) M. Awada, Phys. Lett. B127, 415 (1983)

(25) M. Awada & K. Shaker Jomaa In Preparation.

(26) R. Percacci & S. Randijbar Daemi, Trieste Preprint, 
IC/82/18 (1982)

(27) I. Hauser 8c R. Malhiot, J. Math. Phys. 1_6, No. 8

(1975)

(28) M. Duff, B. Nilson Sc C. Pope, Phys. Rev. Lett. 50, 
2043 6c 51, 846 ( 1983)

(29) B. deWitt Sc H. Nicoli, Nucl. Phys. B231 . 506 ( 1984)

(30) M. Awada Sc D. Toms, Nucl. Phys. B245, 161 ( 1984)

K.Shaker Jomaa 132 PhD Thesis



Chapter 4 Supergravity

Chapter Four

MASSIVE N=2 SUPERCRAVITY

4-1 INTRODUCTION

1Since its invention m  mid 1970's , supergravity theory has 
been gaining more and more attention from theoretical physi­
cists, because it is the only known gauge theory in which 
space-time curvature is obtained as a natural consequence of 
the demand for local supersymmetry. Although supergravity 
theories were not originally designed as higher-dimensional 
theories, their most interesting formulation is done in 
"superspace", which assumes extra spinorial coordinates in 
addition to the usual x-y-z-t coordinates. There are various 
approaches to superspace, based on different geometrical 
ideas and using different bundles for constructing the 
theory, however, they all use the notion of anticommuting 
Grassmann coordinates.
Supergravity manages to avoid the stricture of the "no-go

2theorem" of Coleman and Mandula by generalizing groups of 
1 The first 4-dimensional theory with linearly realized 

supersymmetry was that of Wess and Zumino [16], while super­
gravity itself was introduced later by Deser and Zumino [17] 

This theorem states roughly that the only allowed sym­
metry groups for a realistic, relativistic S-matrix are lo­
cally isomorphic to the direct product of Poincare group and 
an internal symmetry group, and hence changes in spin and 
mass are prohibited [1 ]
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symmetry to "graded groups" (supergroups), which are charac­
terized by graded Lie algebras, i.e. algebras whose composi­
tion rules contain anticommutators, as well as commutators 
[5]. These groups assume a new kind of symmetry between 
bosonic and fermionic fields, which is known as supersym­
metry. In fact supergravity is defined as the gauge theory 
of local supersymmetry.
It is well known that the traditional renormalization tech­

niques used in quantum field theories, cannot be used in 
gravitational theories because of the dimensionality of the 
coupling constant in general relativity, which is a conse­
quence of the equivalence principle. Therefore, the only 
hope for a quantum-gravity theory with predictive power is 
through a mechanism in which infinities in the S-matrix can­
cel without the need for renormalization! Remarkably, super­
gravity does just that for 1st and 2nd order quantum correc­
tions and one would like to conjecture that these cancella­
tions persist in all higher order corrections, due to the 
symmetry between bosons and fermions.
Supergravity theories are generally classified according to 

the number of fermionic companions to the graviton (called 
gravitinos) in each theory, thus we have N = 0 supergravity 
which is nothing but general relativity, N = 1 "simple" 
supergravity with one gravitino, and N = i "extended" super­
gravity where i = 2,3..8. For i > 8, spin 5/2 particles 
enter the theory, for which no consistent coupling to parti­
cles with other spins is possible. The N-extended
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supergravity can be viewed as an entension to pure general 
relativity (i.e. "general relativistic vacuum" without 
matter) in which there is one super-particle, whose "polari­
zations" are: the single graviton, N-gravitinos, N(N - 1)/2 
vectors etc. This would lead to unification of all forces, 
since forces arise from the exchange of particles.
The most important case is the N = 8 supergravity which 
"predicts" amongst other things, massive spin 1/2 quarks 
with SU(3) symmetry and correct fractional charges [2]! How­
ever, one should concede that the very high predictive power 
of this scheme might be its downfall!!
In what follows, we shall study the geometrical structure 

of supergravity, using fibre bundle approach to study 
specific models for constructing massive supergravity 
theories.
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4-2 FIBRE BUNDLES AND GENERAL RELATIVITY

The analysis of the intrinsic geometry behind the structure 
of supergravity theories rests heavily on fibre bundle tech­
niques (or rather super fibre bundle); such a purely 
geometrical approach provides an easy technique for con­
structing supergravity in a natural way. It was also shown
[3] that fibre bundle formulation of supergravity helps 
overcomming certain difficulties that arise from using the 
superspace approach.

4-2-1 Principle Super-Fibre-Bundle 
A principle fibre bundle P is a triplet (E, tt , M) , and an 
action Lie group G (which is also a manifold), where E is a 
bundle space, M is the base manifold and tt : E - >  M is the 
natural projection map, satisfying the following conditions
[4] :

i) The right G-action on E, defined by (X,g)e ExQ 
--> Xg e E is free, i.e. if for some Xe E, Xg = X

this implies that g = e (the identity of G).
ii) M ~ E/G and tt is the canonical projection (dif­
ferentiable) .
iii) E is locally trivial, i.e. for every x gM 3a

_ ineighbourhood U cm such that, tt (U)  ̂UxG.
iv) Every fibre is diffeomorphic to G.

A connection r  in P is a map:
X , E - > Q X C V E )  , such that:
i) TX(E) = GX©QX
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ii) QXg = (RX)*QX for every XeE, geG
iii) Q depend differentiably on X where R is theci

transformation of E induced by the right action of G, and Gx 
is the subspace of TX(E) consisting of vectors tangent to 
the fibre through X.
Given a connection r in P, one can define the connection
1-form a) to be the algebra-valued one-form on E, such that:

* *i) For uxeGx , w(ux) = ue Lie(G). where u is the
unique element of the Lie algebra of G that induces the 

*vector field u at the point X eE.
ii) o>(Qx) = 0 .
One can show that the connection 1-form satisfies the relation

* -1  (R ) ui = ad(g )ui g ^
If h: TX(E) — ► Qx is the horizontal projection of TX(E) ' 

we define the exterior covariant differentiation D by:
Dtp = (d(p).h For a r-form (p , D (p is (r+1)-form and d 
is the usual exterior derivative operator.
The curvature two-form of a given connection r is 

defined by: Q = Dai
The curvature two-form can be calculated via the struc­

ture equation:

Q(X,Y) = du) (X, Y) + (1/2) [ui(X) ,ui(Y)] (4.2.1)
or symbolically: Q = dm + (1 /2 ) [ui,u»].
It also obeys the Bianchi identity: DC2 = 0.
The standard general relativity theory evolves from the

definitions given above. The bundle used is the bundle of
vierbeins, or linear frames L(M), which is invari-
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ant under the action of the Poincare group (for spaces with 
Lorentzian signature of course). Thus, a connection r  in 
this bundle may be expressed as:

T = (1/2) wabJ . + 0aP (4.2.2) ab a
where P and J are the usual translation and rotation in the 
Lie algebra (boson + SL(2,C) subgroups) which obey the fol­
lowing commutation laws:

-̂Jab'Jcd^ r'bcJad + ^adJbc ^acJbd ^bdJac (4.2.3a)

CJab'Pc] = % c Pa - nacJb (4.2.3b)
From (4.2.1) and (4.2.3) we have:

Q = (1/2)QabJ . + TaP (4.2.4)ab a
Let o : M --> L(M) be a local x-section, then the pull­
back of Q is given by:

o*Qab = (1/2) RabdxM a dxv pv

a*Tab = (1/2) Ta dxM a dxv pv
where:

(4.2.5a)

(4.2.5b)

RabMv
and

2u>ab[v, m] + 0 ac 2ud r w LM
b
| c| v

T = 2e~ + 2u»r . , eMv L v ,m J L M | c |  v
are the usual curvature and torsion tensors, relative to the

cl bvierbein e , with the Levi-Civita connection w M M
The Lagrangian is constructed by demanding that its varia-

3.13tion w.r.t. w , should lead to an equation stating that the M
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torsion is zero. And since it is a 4-form, we have [3, 7]:

6L0=Cst : 
Remembering

26u,ab X Ta X 0b sabcd 
that Ta = D0a an4DQab = 0 ,

(4.2.6) 
we can integrate

(4.2.6) to get:

L = 0a X 0b X acd eabed
whose pull-back is

(4.2.7)

L = e R (4.2.8)
clwhere e = det(e^) and R = Ricci scalar.

4-2-2 Supergravity and Super Fibre Bundles 
Attempts to generalize the work in the previous section to 
supergravity should start at the fundamental level of gen­
eralizing the fibre bundle to super fibre bundles, with a 
super-group action. The new versions of the definitions in 
(4-2-1) will have "super-group" replacing all occurrences of 
the term "group", and "graded Lie algebra" replacing "Lie 
algebra". In particular, when defining the super-curvature 
two-form via the structure equation, the operator [ , ] in
(4.2.1) should be interpreted in the sense of Nijenhuis [6], 
i.e. it can be either a commutator or an anticommutator, 
depending on the grading of the algebra.
As a concrete example, consider [7] the N = 2 super Poin­
care group, with a single central charge Z as the structure 
group, the super-algebra is given by the relations (4 .2 .3) 
and (4.2.9) below:
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(O • , Q« • > = (C-ya ) . -P + C rte..Z vai,vipj T ap 1 3  cl exp lj (4.2.9a)

^ a b ^ a i 3 = ^ a b ’a i ^ j  ' Where °ab = (V4)[Ta .Ta3(,4.*5.9d )
where Q  ̂are the generators of fermionic translations, Z is 
the central charge generator of U(1), and C Q is the 
antisymmetric charge conjugate matrix (other commutators 
vanish).
The connection in this bundle is r  :s

r  = r  + 4>alQ . + AZ (4.2.10)
where r  is the connection given in (4.2.2), 4>al is a one- 
form on the super-bundle E, taking values in the odd part of 
a Grassmann algebra (i = 1,2) and A is a one-form on E. The 
pull-backs of 4>al and A are (the usual spin 3/2 fields) 

and A^ (the electromagnetic field) respectively.
Repeating the calculation as for the classical case, we 

arrive at:

Q = ( 1 / 2) Rab J ai, + TaP + galQ . + HZ (4.2.11)' E a e cxi
where

a*b = aab -- (1/3) fmnf 0a * 0bmn (4.2.12a)

Ta = Ta + d / 2) .i.1 a cyStK (4.2.12b)

aie dil>al + (1/2) u,b c  A (obc*)al (4.2.12c)

H = dA + (1/2) a 4>j Eij (4.2.12d)
where f _ mn = (1/2) Fmn is a zero-form matter field, antisym-
metric tensor representation of S0(1,3). The pull-backs are
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given by:

Ta = pv Ta + (1/2) 0)1 C-Ya4» . pv p pi (4.2.13a)

aiP - pv - 24)?1 -i + (1/2 ) u>bc(o, 4> -,)al[p,v] [p be v] (4.2.13b)

•c <
li 

ll a b„ e e F , p v ab
-2Ar + (1/2) 4>r C4>1 ne. . [p,v] [p vj 13

(4.2.13c)

The Bianchi identities imply:

,~ab a ncb nac b ^ 0 .dQ + tu a Q - R a u> = 0 (4.2.14a)c c

d T a + oiab a T b - «ab a 8b + 4)1 /s C'Ya g i (4.2.14b)

, ai , -l * ai , . j. /0. be , . alphi , A . _bc . , , . aidg + dit> + (1/2) ai a (a^g) - (1/2) 52 A (0^40

dH + il)1 a Cg1 e. . (4.2. 14d)l j
The formulation of N = 2 supergravity proceeds from these 
equations, to obtain the Lagrangian of the theory [7]:

(4.2.15)
A 8~Eabcd " ^

- (ot/4)[4dA + tlT1 a C«lijeij] a *k * C-Y54>1 ekl .«Df'CdA Q
L„ 0 = - (1/3) fmnf 0a a 0b a 0C * ad- - ~ ~ "bN=2 0 ' mn

-cd
+ af a vJj C-y 4»̂  a 8 a Aeaj;>C(j cx / 2 )

Further generalization is possible by extending the group 
of the bundle to the Orthosymplectic group OSP(4/2) (more 
about these groups in the comming section), whose generators 
now satisfy:

Ĵab,Jcd^ r*bcJad + nadJbc ^acJbd ribdJac (4.2.16a) 

[Pa'Pb] = Jab (4.2.16b)

K.Shaker Jomaa 141 PhD Thesis



Chapter 4 Supergravity

-̂Pa '  ^ a i ^ = d / 2 ) ^ a ^ a i ^ p  j ( 4 . 2 . 1 6 c )

 ̂J a b '  ^oti^ = d / 2 ) ( a a b > a K j ( 4 . 2 . 1 6 d )

{Qa i ' Qpj ^ = ( a a b C) a p 6 i j J ab  + (C”Ya ) . .P + C 0 £ .«  1 ap l )  a  ap x}
( 4 . 2 . 1 6 c )

£J a b ' Pc l “ rib c Pa ria c J b ( 4 . 2 . 1 6 f )

CQa i , Z ] ~~ Gi j ^ a i ( 4 . 2 . 1 6 g )
The N = 2 super Poincare algebra can be obtained from
(4.2.16) via a Wigner-Inonu contraction, where the genera­
tors J . and Q . are rescaled to m.J . and m.Q ., then tak- ab yai ab *ai'
ing the limit as m --> 0 .
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4-3 ORTHOSYMPLECTIC GROUPS

The Orthosymplectic groups play a very important role in 
the geometric formulation of supergravity theories, it is 
therefore useful to review their major properties:

4-3-1 Definitions:
Following ref [8], consider a graded vector space {ZAu}

with m commuting (bosonic) coordinates, and 2n anticommuting
(fermionic) coordinates. The metric of this space is of the
form: nAB = [q where C is an antisymmetric root of the
2nx2n unit matrix and I is the mxm unit matrix. It follows
that this metric have the same symmetry property as Z.Zn,A fcJ
i . e.

nAB ( 1J nBA
(4.3.1)

where i. 0 for A = 1,2...2n

= 1 for A = 2n+1,...2n+m.
Note that for n ho be invertible, the number of anticommut­
ing coordinates must be even (2n). The dot-product is 
defined as ( Z , Z ' ) = Z^r\Z ' .
The 0SP(2n/m) group is defined as the group of linear

Atransformations on the space {Z } leaving the dot-product 
w.r.t. n invariant.
The dimension of 0SP(2n/m) is the total of the sum of n(2n 

+ 1) due to SP(2n) part, m(m — 1)/2 due to 0(m) and the grad­
ing dimension 2nm. Since 0SP(2n/m) has SP(2n)xO(m) as its
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ordinary subgroup (theBose sector [8]).
To study the generators of the Orthosymplectic group, con­
sider the infinitesimal variation to be of the form:

„„A _ „Bu A 5 Z = -Z u)p
where ui is the gauge
invariance of (Z,Z‘)

parameter of 
requires that:

the group.
(4.3.2) 

Then the

A ^B^A+ B̂^ A
6 (Z,Z') = 0 = ^ nAB + (_1) nC.Au,B (4.3.3)

where uĵ  is assumed to have the commutativity properties as
ID

ZAZb , i.e.

_Bu A , . . 1B(:LA+;LB) A„Bu (4.3.4)Z u»B = (-1 ) WgZ
(4.3.3) implies the following symmetry properties for uj:

bwa =
cdb d

- n u . d n = -<" c (4.3.5a)

P _ 0) = a - C uJ(C“1)6P a-y 5 (4.3.5b)

(3 _ wa
c , 1 . 5p

V “6(C } (4.3.5c)

d0) = 
y

~ a bd bd ,- C ai, n = n + •ya b 1
a _ uu.C b a-y ( 4 . 3 . 5d)

The submatrices û,ri â ]3 an<^ (“C)ap are antisymmetric and
symmetric respectively, they belong to the subalgebra of 
SP(2n)xO(m), while the (2n)m graded parameters provide the 
graded extension for the algebra.

4-3-2 Irreducible Representations
Consider the matrix representation of the Orthosymplectic

B Rngroup 0SP(2n/m): , which transforms like ZAZ , i.e.
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6*! =A
Notice

C, BV c • C BV c

that

(4.3.6)

(-1)^6^ = (-1)lAu.^A - (

which implies that the trace: 
ant.
The representation 4>A can be 
tensors:

-v A.C A
11 V c
.  ̂ A.A _ 1) *A "

0

-<t>a + 4>a is a a invari-

spilt into two irreducible

, _ .s , .a^AB ^AB + *AB

(1/2)(^AB + ("1)
AB

4>BA) + (1/2)(*ab
.(4.3.7)

The respective dimensionalities are clearly:

* (ab) + *[<x0] + Vm(m+1 ) / 2 + n(2n-1 ) + 2nm

 ̂[ab] + *(a0) + *apm(m-1 ) / 2 + n(2n+1 ) + 2nm
These provide the symmetric and antisymmetric (adjoint)

. srepresentations of 0SP(2n/m) (clearly <t> _ is not faithfulAfcJ
in general).
For the special cases of 0SP(4/1) and 0SP(4/2), we have
[9]:

sB
A

( ( 1 / 4  )tf>+ip5 'Y5+ip^|5 i'Y p V a (4.3.8a)
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aB (i/2) (ip y +(1 /2)ip a ) p vl) v p ' (j v  p v  a

T a4> 0
(4.3.8b)

sB
A

aB

((1/4)<p+lp5-Y5+lpM5i-Y|J-Y5)a

-ai-4)

(i/2) (<p -y + (1/2)<p a )'
' m m  mv MV a

—ai4>

4> a

tp-ip. <p.

4» a

0 -A 
A 0

(4.3.9a)

(4.3.9b)

where ip (respectively 4> ) are bosonic (respectively fer­
mionic) fields, and stands for the Dirac matrices. In both

aB4> , (aftercases, the gauge matrix is of the form: Q = exp

replacing 4)1 by e1 the usual supersymmetric parameter and ip 
by ai) ,

4-3-3 The Transformation Rules 
Before constructing a gauge invariant Lagrangian for the 

theory, the transformation laws under the action of the 
Orthosymplectic symmetry group must be studied for the basic 
ingredients of the theory. These are the gauge potentials

for local 0SP(2n/m) ^ $aB and the matrix C ^ sB Here we

restrict ourselves to the OSP(4/2) case, remembering that 
the 0SP(4/1) case can be immediately obtained by a suitable 
truncation of the OSP(4/2) theory.
The gauge potentials and the matrix C are given locally by:
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<*> = P
(i/2)(K-1eMa+(1/2)BMaboab)P k1/S  M“

1/2Tai k ' 4>
0 -Am
A 0 P

(4.3.10)

((i/4)*+,Tf5+vaiV r5>|| ^

A bai
tt-o m 
m a.

(4.3.11)

where i = 1 , 2 is an 0 (2 ) index, A^ is a gauge field describ­
ing a spin 1 particle, k is the gravitational constant, p,v=

i
1,...4 are the usual space-time indices. pa are gravitino
fields, e is the vierbein field, o . = i/2 [-y ,-y. ], 71pa ab a b
and CT are two pseudo-scalar fields.
Let tybe a matter multiplet, which transforms under the full group

(4.3.12)
Then the covariant derivation of T, defined by:

V Y(x) = d Y(x) + <t> T (x ) P P P (4.3.13)
transforms as:

V^Y(x) — ► Q(x) ( X) (4.3.14)
with the connection obeying:

<t> sT1 + Qd Q_1 (4.3.15)P P P
For the matrix C, we have:

C QCQ- 1 (4.3.16)
We may define the following covariant derivative for C:

V C = d C + [> ,C] (4.3.17)p p p' J
which obviously transforms as:

as
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V C —♦ QV CQ 1 (4.3.18)M M
The field strengths of the gauge potentials is defined
by:

pv 3 4> - 3 $  + [ <t> , 4> ]
M V  v m  M v

(i/2) xf , K1/V [MV]aL Mv J a

1 /27ai K 4> r ~\LM V J
~ 1 F c .MV 3

where:

(4.3.19a)

XP[ M v ] a (3 X - 3 X + (i/2) [X ,X ])p M V  v m  m v a
ai _ p  ai _p

+ (2/i) (4* V4»Jm)
(4.3.19b)

4»1 [ M v ] a  _ ai
3 4> M 3 4) M + (i/2) (X 4' V " X 4) )̂(4*3-19c) v m v a

MV '\ a a a . ,7 1 .3v 7 1 , ( 4 . 3 . 19d)3 A - 3 A + k (4» 4‘ - 4» ) e. .M V  v m M v 13

1 e . J
0 1
-1  0

(4.3.19e)

-1X = k e -y + (1/2) B , a , M p a  a  ' M^-b a b (4.3.19 f)
From (4.3.15), it is easy to show that the transformation
rule for 4> is: Mv

♦ --»• Q4> Q 1 (4.3.20)MV mv
The transformation laws for individual fields in <t> and CM
can be evaluated by using (4.3.6) and the value of Q for 
expanding (4.3.15) and (4.3.16) in component form, this 
yields:
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5e = - 9 ui + UD, B , — uj , e ,pa p a  b pab ab pb
9 - • i+ (i/2) k e'S d) Md

(4.3.21a)

-26B , = — 9 u) . + k (we . - ui, e )pab p ab a pb b pa
i

- (u> B . - ai. B ^ ) - (i/2) ke^o , ijj ^ac pcb be pea ab^
(4.3.21b)

ai
6>f " = - V «  + (i/2) [K “a^a + (1/2) V J *  M

jyot (4.3.21c)- A E  'IDa p+ e13^  - Ac13*
- (i/2) [k 1e -y + (1/2) B .a .le1 ' L pa a pab ab a

B A
M

= - 8 A M
, i j - a i ,+ 0 0

( 4 . 3 . 2 1  d )

6<p -1= - K u»av a  “ H / 2 )k
1/ 2 - i  v i

e V ( 4 . 3 . 2 2 a )

5 V a
-1= “ K u’a ,,, “ " a b V b  ' ( 1 / 2 ) k 1 / 2 - i  • . i 

e ( 4 . 3 . 2 2 b )

B A 1a =  (i/ 2) [ k 10) -y +  (1/2)cl cl ula b cla b 1 A 1 ( 4 . 3 .22c)
1/ 2~K ( ( 1 / 4 ) TT + IpY 5 + V ^ S ) 6 i - K 1 ' 2 0 A W a

. 1 / 2  + K & 1̂ ( 8 a  (77 “ +  e 2 a
. , 1 / 2  _i, 1 ^ m) + k 5 ~ (0 m  + 2 a

2 % e a ) a

5 m - K 1 ̂  2 ,- a 1 v 2 , - a 2 v (e A + e  A oc «> ( 4 . 3 . 2 2 d )

6a =  2 k 1 ' 2 c A - 2 m A  a ( 4 . 3 . 2 2 e )

B it =  2 k 1 ' 2 0 1 A i ( 4 . 3 . 2 2 f )
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4-4 APPLICATIONS

4-4-1 Construction of The Lagrangian
Equations (4.2.16, 18 and 20) provide us with the
ingredients for constructing a gauge invariant Lagrangian
density from and C, which is also invariant under the
general coordinate transformations. The use of the matrix C
constitutes the main departure from the traditional Yang-
Mills theory. In this construction, the metric tensor,
g = e ea shall not be explicitly used, since, although it jjv pa v
can be defined, it is not invariant under the action of the 
full group. This would limit us to an almost unique Lagran­
gian density, which is manifestly Orthosymplectic invariant 
[9]:

L = Mvrhpo, Tr (C4> 4> ) + g0Tr (C2 ) Tr (CV CV CV CV C)1 MV go 2 M v Q 4 ^
+ g_-.Tr (CV CV C4> )}3 p v go

The factors g^, g ^ r and ĝ  are (so far) arbitrary dimen-
2sional coupling constants. The Tr(C ) factor has been 

included in the 2nd term of the Lagrangian in order to give 
a it , ip and m dependence to the potential of the scalar 
fields (which will be calculated later), in such a way that 
the VEVs (VEV is the short-hand notation for: "Vacuum Expec­
tation Value") for these scalars would vanish. Other powers 
of the matrix C can also be added, however, this does not 
seem to be particularly useful.
It has been shown [9] that, for the 0SP(4/1) case, the 

first term of (4.4.1) gives the usual N = 1 supergravity
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Lagrangian, plus a cosmological term and a "masslike"term
for the i!>u field (after fixing the VEV of C to

■*5 0
be: <C> = <ip > 0 0 ), this demonstrates the versatility of

the above choice of Lagrangian.

4-4-2 The Gauge Fixing
To expand the Lagrangian (4.4.1) fully in terms of the com­
ponent fields, would obviously involve an enormous number of 
traces to be calculated. This could be unrewarding, since 
we still have the gauge freedom at hand. Therefore, it is 
more natural to chose our gauge-fixing first.
From the transformation laws of the fields, (see previous
section) it is clear that the Lie parameters w ^ can h® used

• ito make e^a symmetric, while can be used to gauge away 
the spinor fields A^ [10]. This can be seen through the 
following argument: Assume that the VEVs of
tt , m, a, V and A1 are vanishing (this will proved later,a  CX
when minimizing the potential), then from (4.3.22b,c) we see 
that:

<6V > = - k ~ 1u> <ip>and <6A1> = -Yc<ip>e1 (4.4.2)a a a 5  ̂ a
Indeed, V and A1 are Goldstone fields, corresponding to a ot

the spontaneous breaking of the Orthosymplectic symmetry to 
the Lorentzian symmetry [9]. The gauge defined above is 
called the Unitary gauge. In this gauge, the matrix C takes 
the simple form:
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C =
((1/4)ir+ip-Y5+Vai'ra-Y5 )£ 0

0
TT-O m
m o

and V C becomes: M

V C = M
pa - k 1 / 2  R ^ V ^  <*3

K1 /2 ^  .Ra;? A s1 + B1 .M3 -yi p 3 PD
where:

(4.4.3)

(4.4.4)

E  ̂= (1/4) tt + O  + iK )ip'Yc pa p p 5
-1+ (i-y 3 ~ k e + iB ru'Ŷ i ) V '̂YC-a p pa pab a[b cj a 5

(4.4.5a)

f 2m 2o-tt |
s1 =3 1 2o-tt -2m I (4.4.5b)

b l =3
fTT-a
\2m :]

(4.4.5c)

Rai = ■YD B15°t 
3 y

-
3 y

(4.4.5d)

Ta = 
y

(1/4) tt + <p*y5 ( 4.4.5e)

B 1 = M D d B1 M 3
( 4.4.5f)

Substituting (4.3.19), (4.4.3) and (4.4.4), we get the full
Lagrangian in component form:

L = + L + L

with:

(4.4.6)
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where:

gigMvrhpo{.(1/4) Tr(iry5X X ) -(1/16) . I r ( y  )
(4.4.7a). • i • i ~

•kM^4j — kip4>̂ "Yr-4) go +ttF F }3 pv* pv'5^ pv go

M̂ 4>3 4» Q O = Tr(B̂ 4)̂  4> e°)] pv D MV

g2e
Mvrhpa{(3/4) ^2 + 4(p2 + 2 (a2 + m2 _ OTr}{

T r {(TE E E E )a + k4>5 . ( ^ ^ Mn4>G (R*M v g a a T vi a 0 6 j gl 7

- 2k (TE E ) V - ( R PH ? ) V ° P - k (TEM v a g] f 6 3 M D a gl

- kT*3 (Rq (A S + I ) Rk|Eaa |3 v v 3 gk i5 ae

Ft-,cx n , 1 . mR ) ubm \b _ e at;

(RXE )a 1 0 7

+ K(TEWRj>a* + V RlEa>“

+ KTa (Rp(AvS + +

+ k4>̂  .b ^ cr^e E r ?1)6^1- MD k D m Q 1 7 a6 (4.4.7b)
lm Q7+ K't'vl(B(A|jS + + Ba»i*

+ K*MiBk(Rj + ZA > > » s + V m ^ s

+ (B(A S + 5 )RP)*(E Rm ) o4,nrvl m m 7 k g n 0 a6

7 7 a.j^lp.m 76 .-p^i.e.n - ><*ijj(BRi)]tRmol*vp*ep(R‘Rn)6+ae

+ k7  ■BP(R-’R 1 )|3t|)m o (Bl I )*M3 k n m 7rvp q a'l

+ K(iil ) i ^ m (R?Ri) *4>n + K ( i  i l l  J,1}}M v k gm 1 n 5 ae p v g o k
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Lg3 = g3E"VrhPO Txl(i/2) (TIMEvXca)P 

(i/2) +
DOy n

(4.4.7c)

k (TE )yR2:6̂  - k (T5r J(A s + B ));UPp a ]^H goi v 6 a 6 v v : r paiT v5

+ Kip'* . (BRa )̂ I îp1 Q + k (B(A S + B ) )il)'Y1R',:i34> °°P 
VJ *y k vorgap p p k^vl H V

PD
ip 1

k*Y N‘1'c'' la^vP* go+ Kip̂  • (BR)Pa (Re) t,''ipJ"QF ) + tt(tt - 2o )m FP P Qo

where: tt = 9 it ;m = d m  and so on. P P P P

4-4-3 Minimizing the potential 
To explore the physical content of our Lagrangian, we 
should study its bilinear form, for an infinitesimal shift 
from the ground state values of the fields; these values are 
nothing but the values that minimize the potential of the 
theory for the scalar fields.
The potential of the theory is found by putting all fields

in the Lagrangian (4.4.7a,b,c) to zero except the vierbein
field e , we find:P

V (Tr, m, a , <p , e ) = ( 96/k4 ) (dete ) { (1 /4 ) g.ip - g ((3/4) tt2 +
o r , 2 (4.4.8)+ 2m - 2au)ip + (1/2 ) g^ipj

To minimize the potential we solve the set:

a v = 6v _ a v _ a v
3 it 3m d o  dtp

Assuming det (e )*0, and excluding the trivialpa
<tp>=0 , since it corresponds to g^=0 , we get:

(4.4.9)
solution
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< it > = <m> = <o> = 0 (4.4.10)

(1/4) g1 - 28g2ip6 + (3/2) g3cp2 = 0 (4.4.11)
Moreover, requiring the sum of the cosmological terms to be 
zero, we should set the vacuum expectation value of the 
potential to zero.

< V ( it , m, o , ip, e^ ) > = 0 (4.4.12)
Equation (4.4.12) assures the fact that our physical space 
is Minkowskian in the flat limit.
From (4.4.10)-(4.4.12) we get the following solutions [6]:

<ip > =
-3g .1 / 2
4g3 J

g33 = (27/2) gi2g2
(4.4.13)

<e > Ma npa
Clearly, the potential (4.4.8) is not bounded from below. 

To get the physical spectrum of our Lagrangian (4.4.7) we 
consider its bilinear form: First we expand the fields 
around their expectation values:

ip = <ip > + ip

= n + Kpa pa
B = BM M
V = Va a

TT = IT

m = m

pa (4.4.14)
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o = o
Then writing the Lagrangian in terms of the shifted fields 
(4.4.14) up to bilinear order, we have:

___ = eMVKXg1(-K 1 <ip>h 3 B. ,e , +1 va k Acd i'bilinear 'pacd
(4.4.15)

2 2 
(1 /2 k ) OP>BKvaBAcd%acd - (w /k ) 3kBAmv

- (2/k2) + (3/k ) X

_ i . 7_ i
- 4i<ip>tl>vi-Y5’YjjdKil> > - ePVK g2 U12/K) <ip> ^

- ( 96/k2 ) <P5aMVaavVbeabKA - (64/K3 )lp63tJVaEavKA - (32/k4 )

+ eMVKAg3( (7/2)k 1 <ip K - (1 /k2 ) <tp >2Trd(jBjj kA

- ctJVKXg312i<W >3i:AiSK^5YiJ4' V - (6/x2)<4'>29MBtjabEabKA -

- (2 / k2 ) ipd V a V, e . . - (4/K3 )ip2a V e. . - (2/K4 )cpV V e . }' ^ p a v b abKA p a  avKA p a  avKA

- (96/k4) {2g3<ip>ip'2 + (3/4) g2<ip>5TT2 + 2g2<ip>5 (o2 + m2 + ott)} 
The Bosonic part of (4.4.15) given by:

pvwA (g / 2 ) fK ' <ip> (-2e 'd B. ,h + k ’e ,B B. „ *1' u pacd k Acd va pacd Kva Aca
-1 -1

+ (1/2k 2 ) 0 ^ ) bmkX - (5/2K2 ) O b>p')B^beabKA ]

- ( 96/k4 ) <ip> (2 g 3<p ' 2 + g 2 <ip>4 ( (3/4) tt2 + 2 ( o 2 + 2 m 2 - ott))}
(4.4.16)
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+ (4/K2 )<ip>g {((d V )(3 V ) - (a V )2) + (1/k2)V V + 2 <(p > (d V h 3 M v v p  M M  M M  N M M
To see whether the scaler fields tt, a and m propagate or 

not we solve the Euler-Lagrange equations for the Field B 
which gives:

Mab

B = k (B h - a h ) + (4<ip>)QiOK K O p  O K Q
- 1 e 3 tt M KQO M

+ 5 (2<ip>K2) 1 (a ip1 n• i ~ a <p1 n )H cv ' m r k  'go
(4.4.17)

Substituting this back into (4.4.15) we finally have:

L, . -n. = g. <ip > {2 (a h ) O vh. ) + O  h. )(a hv )bosonic,bilinear 1 k v v  A A k k A v k A v

- 2 0  h ) (a. h. ) - O  h ) (a h ) }K KV A Av K V V  K V V
75g (2k2 <<p>) 1[ 0  cp * ) (a tp1 ) - (96/25k2)(p ’2] 

I M M

- 3g.(16K2<ip>) 1[ 0  tt ) (a it) l M M
-2 212 K  TT ]

+ (4/K2 )<lf,>g3 ( [ O tjV v ) O yV ) - O ^ ) 2 ] + (1/k2 )V(;
+ 2 <ip > (3 V hM M a V h )M v mv 1 2tp• a v /k>M M
-+ 6 (<ip>K̂ ) 1g 1 (a2 + m2 - oir)

Let g1, g2
expanded in

g i = Kb 1
g2 = Kb2

9 3 = Kb3
Where b1/ b:

and g.
(4.4.18)

the dimensional coupling constants be

(4.4.19)

2 »3 are three dimensionless parameters,and b
then from (4.4.1 0)-(4.4.1 2) we have for

gi<ip> = -1/2 (4.4.20)
The following values: 

3= -3b13<ip> = -(2Kb!) 1 = b, (4.4.21)
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With b1 being now a free parameter chosen to be real.
The full rescaled Lagrangian (4.4.15) takes the final form:

L, ... = -d/2) (2(3 h )(dvhv ) + (9 h. )(3 h. )bilinear ' ' k v v  A A k k A v   ̂ Xwk Av

- 2 0  h ) O vh. ) - O  h ) O  h )}K KV A Av K VV K VV
- <p' ) (3 <p' ) - (96/25k2)h> ,2]
- - (1 2/k2)tt2] (4 4 22)
+ - (9mV^)2] + (1/“2)V p
- (Kb,)” 1(9 V h - 8 V h ) - 12ipO V /k )1 p p vv p v pv p p
- 12k 2 (o 2 + m2 - ott )
+ ( 5 i / 4 ) e^VK^(4> 'Yp.'Y 9 4»v + ( 3 i / 1 0) \\> 'Yc’Y "Yv 5 p k A v 5 p 'k A

From (4.4.22) we see that the physical spectrum of our 
Lagrangian (4.4.7a,b,c) is: Two massive spin 3/2 fields, a 
massless graviton, a massive gauge vector boson, two massive 
physical scalars q>, it, and two auxiliary fields m and a, 
which can be eliminated via their equations of motion .

4-4-4 Orthosymplectic breaking 
The most important feature of our work, crucial to the 
emergence of particle spectrum, is the spontaneous breaking 
of the Orthosymplectic symmetry in the ground state; this 
breaking provide us with the following lessons:

Our Lagrangian is manifestly invariant under OSP symmetry 
in the general form; the symmetry was broken only in the 
ground state.

Two Goldstone fields (spin 1/2 A's ) arising from this SSB 
(Spontaneous Symmetry Breaking) were gauged away from the
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ground state.

The resulting ground state Lagrangian (which retained 
Lorentzian symmetry) had no Orthosymplectic symmetry, and 
it describes massive N = 2 supergravity in the presence of 
auxiliary fields.
This is a manifest example of the supper-Higgs effect.
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4-5 GENERALIZATION

4-5-1 Difficulties in generalization
To generalize the above work for N>3 supergravity theories, 

one immediately thinks of the theory with the geometrical 
group, OSP(4/3). Such theory should have the gauge fields 
9 ,4) and A ; i = 1,2,3, with w being the connection;
these are the of the same type as the OSP(4/2) gauge fields 
(the only difference is the range of the index i) of the N = 
2 theory. However, such naive generalization runs into 
immediate trouble, since the form (4.2.15) is not invariant 
under OSP(4/3)! this is due in part to the deficiency in the 
number of fields to carry an OSP(4/3) transformation. Thus 
the moral is that introducing extra gauge fields is neces­
sary. In fact the apparent source of trouble is the content 
of the N = 3 theory, since the representation theory of 
S0(3) should contain a spin 1/2 field which is not a gauge 
field (i.e. it does not belong to the super algebra of 
OSP(4/3)). Therefore it is clear that the geometrical group 
should be greater than OSP(4/3).

4-5-2 Geometric spin 1/2
The most natural and simple generalization of OSP(4/3) is a 
semi-direct Sumn of it with an Abelian group G, i.e. [11] 
E = OSP(4/3) G- G. The Abelian group G is chosen to have a 
generator S^ that will carry an extra field 8a, the latter 
will represent the "missing" spin 1/2 field upon imposing a 
new rheonomic [12] symmetry on the geometrical Lagrangian
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[11]. The mechanism for obtaining the spin 1/2 field is by 
spontaneously breaking the S0(3,1) subgroup of Z [13], which 
will give the spin 1/2 field from a gage connection of spin 
3/2. This new connection is time-like under the action of 
the non-compact S0(3,1), while the three "physical" spin 3/2 
fields are space-like. The resulting theory is the usual N 
= 3 supergravity (the SO(3) invariance is preserved). The 
beauty with this construction is that Z can be embedded in a 
new super group OSP(4/3,1) [14], it is this group which have 
been employed in the construction of a geometrical (i.e. all 
fields are gauge fields) action of N = 3 supergravity.
This opens the door for further generalization to our work, 
for constructing massive N = 3 supergravity theories. Since 
all what is basically needed is to find the antisymmetric 
and symmetric representation of OSP(4/3,1) and repeating the 
work done here to generate the Lagrangian of the theory.
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APPENDIX A

The Gamma Algebra

This appendix comprises of a listing of some of the pro­
grams related to the algebra of the GAMMA-matrices.
Comments for clarifying the significance of commands are 
included in this listing, a comment (in LISP) must start by 
a percent '%' sign. My comments, however, are not meant to 
replace the full description given in the STENSOR manual.

% **** gamalg.sbs
% This file contains the basic substitutions 
% characterizing the algebra of the 
% the famous Gamma matrices (of field theory).
(ON FOINS AUTONEVERCOMMUTE POTSIM)
(ALWAYSCOMMUTE DEL)
(SETQ CODIM 'N)% set to N for general database.
% Then one can afterwards specialize by 
% (SETSUB ESUL)N $ n $ and (ON ESUBS)
(LOAD "GAMPRG.STS")
% Make sure its in. (Some help-programs)
% Reverse prod, of T and T. (Commutator relation):
(PDEF TT) <T A< <T B< $
% *** From rank to products:
% These are actually the Definitions of multi-indexed 
% gammas:
(PDEF TDD A12 T) <T A<<T B< -<DEL A B>$
% The A12 in PDEF means that the defined tensor TDD is 
% Antisymmetric in the indices 1 and 2.
% The term T is used as a print-out name for the gamma, 
% since SHEEP cannot use Greek symbols.
(PDEF TDDD A123 T) 1/3 <T (A<<T (B (C< $
(PPDEF TDDD !( ) % Perform Permutations.
(PDEF TDDDD A1234 T) 1/4 <T [A<<T [B [C [D<$
(PPDEF TDDDD ![ )
(PDEF TDDDDD A12345 T) 1/5 <T (A<<T (B (C (D (E<$
(PPDEF TDDDDD !( )
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(PDEF TDDDDDD A123456 T)1/6 <T [A<<T [B [C [D [E [F<$ 
(PPDEF TDDDDDD ![ )
% Introduce a 
(USETSUL CO)
% Remove previous 
(REMSP TD TDD TDDD 
(USETSUL SW1) 
(REMSP TD TDD TDDD 
(USETSUL SW2) 
(REMSP TD TDD TDDD 
(USETSUL SW3) 
(REMSP TD TDD TDDD 
(USETSUL TSUL) 
(REMSP TD TDD TDDD 
(USETSUL SSUL) 
(REMSP TD TDD TDDD

new substitution list CO:
substitutions 
TDDDD TDDDDD

on TD TDD... 
TDDDDDD TDDDDDDD TDDDDDDDD)

TDDDD TDDDDD TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDD TDDDDD TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDD TDDDDD TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDD TDDDDD TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDD TDDDDD TDDDDDD TDDDDDDD TDDDDDDDD)

(RELOAD "gamalg.Kef")
% Contains the N-dim. Saved dEFinitions for subs.
(USETSUL TSUL) % TSUL is the built-in substitution list 
% ****** Always do contractions: ******
(SETSUB TSUL) 
(SETSUB TSUL) 
(SETSUB TSUL) 
(SETSUB TSUL) 
(SETSUB TSUL) 
(SETSUB TSUL) 
(SETSUB TSUL) 
(SETSUB TSUL)

<T A<<T A<
<T B<
<T A B<

A 
A 
A 
A
A B C  K< <T D K< $

$ <:A0 > $

<T
<T
<T
<T
<T

B<
B<
B<
B K<

<T A B< $ < : AB1 A> $
<T B< $ - < : AB 1 A > $ 

B< $ < : BB2 A C> $<T
<T

C
A C<

<T B C<
< : BB2 BC> $

<T C K< $
-<:BB2 
<:CB3 A 
<:DB3 A

A C> $ 
B C >  $
B C D> $

**** conditional swapping
(SETSUB SW1 (ORDERASK A B))
<T B< <T A< $ -<T A< <T B< + 2 <DEL A B> $
(USETSUL SW2)
(SETSUB SW2 (AND (ORDERASK A C) (ORDERASK A B))) 
<T B C< <T A<$ <:POS1 A B C> $
(SETSUB SW2 (AND (ORDERASK A C) (ORDERASK B C))) 
<T C< <T A B<$ <:P0S2 A B C> $
(USETSUL SW3)
(SETSUB SW3 (AND (ORDERASK A B) (ORDERASK B C))) 
<T B< <T A C<$ <:P0S3 A B C> $
(SETSUB TSUL (AND (ORDERASK A B) (ORDERASK B C)))
<T A OCT B<$ <: P0S4 A B C> $
% The values of the tensors P0S1, P0S2 and P0S3 are 
% saved in the file gamalg.kef loaded above. However, 
% if STENSOR did not find these defintions, it will 
% re-compute them!
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gamaco.sbs
This file contains some contraction exercises

% This flag causes a SETSUB to also do a PDEF:
(SETQ PSETSUB T)
% In the substitutions below the contractions 
% in the mask will be computed once for all,
% and then assigned to the AO, A1... etc.
% From there on, these results are used through 
% the substitution, without STENSOR having to 
% recompute them again.
% Furthermore, the values AO,... are saved in 
% a file, via SAVDEF command, and can be loaded 
% prior to this file next time.
(SETQ PDEFINED NIL)
% Introducing new substitution lists:
(USETSUL C01)
(REMSP TD TDD TDDD TDDDD TDDDDD TDDDDDD TDDDDDDD) 
(USETSUL C02)
(REMSP TD TDD TDDD TDDDD TDDDDD TDDDDDD TDDDDDDD) 
(USETSUL CO) %Sets LASUB too
(REMSP TD TDD TDDD TDDDD TDDDDD TDDDDDD TDDDDDDD) 
(RPLACD CO NIL) (RPLACD C02 NIL) (RPLACD C01 NIL)
% Interaction is not necessary if the steps of the 
% evaluation are known, in such cases, one can 
% program the Evaluation:
(SETQ EVSUB'(CO(0 C0)(0 TSUL) C0(0 TSUL)(0 SW2)

(CO TSUL) SW1 (0 GA)(0 GA)))
% Here, during evaluation the substitution 
% lists CO and CO and TSUL etc. are used.
% In (0 GA) only simplify, "No eval".
% Substitute for contractions:
(SETSUB CO) <T I<
(SETSUB CO) <T I< <T A< 
(SETSUB CO) <T I< <T A B< 
(SETSUB CO) <T I< <T A B 
(SETSUB CO) <T I< <T A B

<T I< $< : AO > $<T I< $< : A1 A > $<T I< $< : A2 A B > $
C< <T I< $< : A3 A BC> $
C D< <T I< $< : A4 A B C D>$

(SETSUB CO)<T A B< <T A B<$ <:B0> $
(SETSUB CO)<T A B<<T I< <T A B<$ <:B1 I> $
(SETSUB CO)<T A B<<T I J<<T A B<$ <:B2 I J> $
(SETSUB CO)<T A B<<T I J K<<T A B<$ <:B3 I J K> $
(SETSUB CO)<T A B<<T I J K L<<T A B<$ <:B4 I J K L>$
% B4 needed 1311366 sec.
(SETQ EVSUB '( CO (0 CO) (0 TSUL) C0(0 TSUL)(0 SW2)
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(CO TSUL) (0 GA1)(0 CO TSUL) 
SW1 (0 GA1) (0 CO TSUL)
SW1 (0 GA) (0 GA)) )

(SETSUB CO) <T I J K< <T I J K< $ <:CO > $(SETSUB CO) <T A B C < <T I < <T A B C<$ <:C1 I> $(SETSUB CO) 
%-was 26min

<T A B C< <T I J< <T A B C<$ <:C2 I J> $

% * * * * gamtra.sbs
% Substitutions for the tracing the Gamma matrices.
(ON FOINS AUTONEVERCOMMUTE POTSIM) 
(ALWAYSCOMMUTE DEL S N M A B C D)
(SETQ CODIM *N)
% Remove previous substitutions on TD TDD...
(USETSUL TRACE)
(REMSP TD TDD TDDD TDDDD TDDDDD 
(USETSUL CO)
(REMSP TD TDD TDDD TDDDD TDDDDD 
(USETSUL SWD
(REMSP TD TDD TDDD TDDDD TDDDDD 
(USETSUL TSUL)
(REMSP TD TDD TDDD TDDDD TDDDDD 
(USETSUL SSUL)
(REMSP TD TDD TDDD TDDDD TDDDDD

TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDDDD TDDDDDDD TDDDDDDDD)
TDDDDDD TDDDDDDD TDDDDDDDD)

(USETSUL CO)
(SETSUB CO) <T A< <T A< $ N $
(USETSUL TRACE)
(PDEF TRO) N $
(PDEF TR2) N* <DEL A B > $
(PDEF TR4)
N<DEL A BXDEL C D>-N<DEL A CXDEL B D>+N<DEL A DXDEL B C>$ 
(SETSUB TRACE)
<TRACE XLPAREN X T  A<<T B<<T C<
<T D< <T E<<T F< <T G<<T H< <RPAREN >$
% The special terms LPAREN and RPAREN introduce (as expected) 
% a left an right parenthesis respectively.
<:TR8 A B C D E F G H >  $
(SETSUB TRACE)
<TRACE XLPAREN X T  A<<T B<<T C<
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<T D< <T E< <T F< <T G< <RPAREN >$
0 $ % Trace of odd number of gammas is zero.
(SETSUB TRACE)
<TRACE XLPAREN X T  A<<T B<<T C<
<T D< <T E< <T F< <RPAREN >$
<:TR6 A B C D E F> $
(SETSUB TRACE)
< TRACE XLPAREN X T  A<<T B<<T C<<T D<<T E< <RPAREN >$

0 $
(SETSUB TRACE)
< TRACE XLPAREN X T  A<<T B<<T C<<T D< <RPAREN >$
<:TR4 A B C D> $
(SETSUB TRACE)
<TRACE XLPAREN X T  A<<T B<<T C< <RPAREN >$

0 $
(SETSUB TRACE) <TRACE XLPAREN X T  A<<T B< <RPAREN >$

<:TR2 A B> $
(SETSUB TRACE) <TRACE XLPAREN X T  A< <RPAREN > $

0 $
(SETSUB TRACE) <TRACE XLPAREN XRPAREN > $

<:TRO > $
% exercises:
(PDEF ASL) < A I X T  I< + M $
(PDEF DSL) <D I X T  I< + M $
(PDEF CSL) <C I X T  I < + M $
(PDEF BSL) <B I X T  I< + M $
(PDEF EX1)
<TRACE XLPAREN XT I<<ASL X T  J<<BSL 
(PDEF EX2)
<TRACE XLPAREN X T  I<<ASL X T  J<<BSL 
<T I < <CSL X T  J< <DSL XRPAREN > $

XRPAREN
>

> $

% *** gamtra.out 
% The result for the exercises:
% The execution time is given below each result, note 
% that the second tensor was simplified from 198 terms 
% to 10 terms in less than one minute!

2 j jEX1 = M Nd -NA B d +NA B +NA B
ij i k k i  j i  i j

(Ex.-GC time= (4 567) GC= 0)
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EX2
2 2 2 2 3  2 2 2 2 3

= (4M N-4M N +M N )C D +(-4M N+6M N -M N )B D
i i i i

2 2 2 2 3  2 2 2 2 3
+(4M N-4M N +M N )B C +(4M N-4M N +M N )A D

i i i i
2 2 2 2 3 2 3

+(-4M N+6M N -M N )A C +(-8N+6N -N )A B C D
i i i j j i

2 3 2 3
+(16N-1ON +N )A B C D +(-8N+6N -N )A B C D

i j i j  i i j j
2 2 2 2 3  4 2 4 3

+(4M N-4M N +M N )A B +(2M N -M N )
i i

198/ 10TERMS
(Ex.-GC time= (54 400) GC= 0)
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APPENDIX B

Notation

The notational conventions described here are adopted
throughout the thesis, unless explicitly stated otherwise.
The term Euclidean space is used to refer to all kinds of
flat spaces, including hyperbolic spaces (pseudo-Euclidean).
The same applies to Riemannian spaces.
A d-dimensional manifold is denoted by Mp,c*(g), M^(g), or
simply M, depending on the particular situation, where g is
the metric two form, and p (respectively q) is the number of
positive (respectively negative) eigenvalues of the metric
form g. Clearly, p + q = d, and p - q = s := signature.
If x is a point in M, then T (M) and N (M) denote thex x

tangent and normal spaces (relative to a particular embed­
ding) to M at x respectively. u t (M) = T(M) is the

xeM x
tangent bundle over M, with projection it, being the natural 
projection that takes each vector to the point on M at which 
this vector is defined. (More about Bundles in Chapter 4)
If f :M — ► M* is a map, then then its induced differential 

map is defined as:

f* :Tx(M) —  Tf(x)(M')
X -~► X'

such that, if h :M' R, then X' .(h) = X (h.f).f (x) x
A Riemannian connection over T(M) is denoted by v, with VA.
denoting the covariant differentiation associated with such
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a connection with respect to a cross-section X of T(M). 
is the Lie-algebra of vector fields on M andjM) the algebra 
of differentiable functions on M.
Small letters are used to denote points in M, while

capitals X,Y,... denote vectors and X-sections in T(M), 
and are reserved for vectors in the normal bundle.
In local coordinates, a point xeM is represented by an 

ordered set of real numbers (xa) , a=1 ,...d, and tangent vec­
tors can be written as linear combinations of the basis
3/3xa =: 3 .a
Greek indices a, (3,.. will have the range 1,...d. Capital 

Roman indices A ,B... run from 1, to d ', while small Roman 
indices i,j.... run over the range: 1 ,...d'-d.
The components of a form can be expressed in local coordi­

nates, in the usual way, for example, the components of the
metric form can be written as: g _ = g (3 ,3„)a|3 * a ' |3
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APPENDIX C

The Deformation Programs

This appendix contains a listing of the file "dform.def" 
which gives the definition of the program used for computing 
the normal deformations of space-times, followed by a list­
ing of the file "dform.doc" which is a documentation of the 
computer's response to the loading of "dform.def", and 
finally, a sample of the output is given in the file 
"dform.out".

% * * * * dform.def ****
% DeFORMation formalism using embedding.
% For nicer output, having e (for epsilon),
% n (for eta) and V at first. The ORDER 
% command is used to imposes a new ordering 
% weight for tensor:
(ORDER -100 EP ETA VU)
% DECLT = Declare Tensors:
(DECLT (ALF A 1 S23 "2nd fundamental forms")
(ETA E S12 "The flat metric")
(EP e "The infinitesimal")
(VU V 1 "Deformation vector")
(D 1 "Ricci vector")
(LAM L! "Cosmological cnst")
(DTS Ds 1 "Derivative of Ricci vector")
(LAM1 L1! "Variation of cosmo cnst"))

% Transverse space, NORMAL to space-time. 
(INDEXTYPE NORMAL N I J K L M N O P Q R S )
% The INDEXTYPE command introduces a new index-type 
% with the head term of the argumnet-list is a name 
% for this type the second term is the dimension,
% i.e. the range of the indices, which are given in 
% the rest of the argument-list.

% Tangent space, usual space-time.
(INDEXTYPE USUAL U A B C D E F G H X Y Z )
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(PDEF GAUST Gt "Deformed Riemann Tensor")
<ETA I JXALFT I A [CXALFT J B [D>$

(PPDEF GAUST ![ )
(PDEF GAUS G "Rie tensor")
<ETA I JXALF I A [CXALF J B [D>$

(PPDEF GAUS ![)
(PDEF RIE1 dG "1st order deformation")

<GAUST A B C  D>-<GAUS A B C  D>$
(PDEF (ALFT I A B) At 1 "Deformed ALF")

<ALF I A B> + <EP XALFS I J A BXVU J> $
(PDEF (ALFS I J A B) As 1 "Derivative of ALF")

<DTS I J A B> + <D I K A XD K J B>-
<ALF I C AXALF K B DXGUU C DXETA K J> $

(PDEF (DTS I J A B) "Derivative of D") <D I J A ;B> $
% Need only 1st order terms:

(SETSUB TSUL) <EP XEP > $ 0$
(PDEF EINS S12 E "EINStein's field equations")

<RIC 1 A B>- 1 /2 <RSCL 1 XGDD A B>- 
<LAM1 XGDD A B>-1/2 <RSCLC XG1DD A B>
-<LAM XG1DD A B> $

(PDEF RIC1 R1 S12 "RICci tensor first order")
<G 1UU A BXRIEC A C D B> + <GUU A BXRIE1 A C D B>$ 

(PDEF G1UU S12 1 2 g1 "contra-Metric, 1st order")
2<EP XVU IXETA I JXALF J C DXGUU A CXGUU B D> $ 

(PDEF G1DD S12 g1 "cov-Metric, 1st order")
-2 <EP XVU IXETA I JXALF J A B> $

(PDEF RSCL1 R1! "Ricci Scalar, 1st order")
<GUU A BXRIC1 A B> + <G1UU A BXRICC A B>$

(USETSUL ARR) (REMSP EP)
(SETSUB ARR)

<EP XETA I J>$ <F I J< $
(SETSUB ARR)

<F I J<<VU K> $ <F I J *K< $

***** Documentation of Objects in file DFORM.DEF and .BLF ***** 
Wed Aug 1 22:33:29 1984 
Loading dform.def
ALF 2nd fundamental forms
ETA The flat metric
EP The infintesimal
VU Deformation vector
D Ricci vector
LAM Cosmological cnst
DTS Derivative of Ricci vector
LAM1 Variation of cosmo cnst
GAUST Deformed Riemann Tensor

K.Shaker Jomaa 173 PhD Thesis



1
Gt

abed
i D = E At At

ij a[c bd]
GAUS Rie tensor

G
abed

i j= E A A
ij a[c bd]

RIE1 1st order deformation
dG

abed
= Gt -G

abed abed
ALFT Deformed ALF

i
At

ab
i i j= A +eAs V 
ab jab

ALPS Derivative of ALF
i

As
jab

i i k i k cd 
= Ds +d d -A A g E

jab ka jb ca bd kj
DTS Derivative of D

i
Ds

jab
i

= D
ja; b

EINS EINStein's field equations
-1  -1

E = R1 -(2) R1 g -L1 g -(2) RSCLCgl -L g1
ab ab ab ab ab ab

RIC1 RICci tensor first order

R 1
cd

ab ab 
g1 RIEC +g dG

aedb aedb
G1UU contra-Metric, 1st order

ab
g1 =

i j ac bd 
2eV E A g g 

i j cd
G1DD cov-Metric, 1st order
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RSCL1 Ricci Scalar, 1st order
ab ab

R1 = g R1 +g1 RICC
ab ab

dform.def loaded

The Gause-Riemann tensor. (The 't' for tilde!)
a i d  i dGt = -At At E +At At E
bed ad be ij ac bd ij

The deformation in Rie. for the first order:
i k i k i  k 1 i

dG = eV E ( -Ds A + D s  A - d d A  +
abed ki jbe da jbd ac lb jc da
k l i  e f k i l  e f k i l

+ d d A + E g A A A E g A A A
lb jd ac jl be de af jl bd ae cf

ef k 1 i ef k i 1 i k
- E g A A A + E g A A A + Ds A

jl be df ac jl be da cf jac bd
i k i 1 k i 1 k

- Ds A + d d A - d d A )
jda be la jc bd Id ja be
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APPENDIX D

The Kaluza-Klein Program-Listing

Only the basic files are listed in this appendix, these are 
the "job" file, which monitors the interaction with the com­
puter, the "initialization" file, needed for any Kaluza- 
Klein computation, and finally the two files for defining 
the connection and the Ricci tensor.
Samples of the output are found in chapter three.

% *** job.def ***
% This file is automatically loaded by STENSOR,
% as soon as it is provoked.
% Here it is used to load KK files needed for a 
% specific work session. Edit as appropriate.
(LOAD "KKPRG.STS") % Additional LISP functions.
(OFF EDEFASK)% temporarily stop interactive evaluation.
(SETQ PSETSUB T)
(LOAD "KKINI.DEF")
% the following command asks the user interactively about 
% the ansatz file to be loaded:
(COND (

(YASK "Load Mustafa's ansatz?" "answer Y or N : ")
(LOAD "MADER.SEF"))
(T
(EVALIST 'LOAD
(CAR (ERASK "Enter alternative-ansatz file"

"(remember to quote)"))) ))
(ON NOASK NOZERO ALLMSG SYMZERO)
(LOAD "KKCOM.SBS")
(LOAD "KKDER.SBS")
(LOAD "KKTSB.SBS")
(USETSUL TSUL)
(LOAD "KKCON.DEF")
(LOAD "GRCONU.SEF")
(LOAD "KKCUR.DEF")
(USETSUL TSUL)
(OFF NOASK) (ON EDEFASK SPLIT)
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(DOSUM RS)
(EDEF RS)(PUT 'T110 'DEF (COPY (CONU 1 1 0)))
% defining the following two tensors proved to be quite 
% useful in subsequent simplifications, since they are 
% standard for all ansatz.
(LPDEF CONU 1 1 0)% here we define only one "component"

% of the split connection.
<T110 A B R> $

(PDEF CDER)-2 <GSUU P QXESD PXT110 A A Q>
+ 2 <GSUU P QXTUDD R P QXT110 A A R> $

% * * * kkini.def ***
%Kaluza-Klein INItialization file DEFining basic relations. 
(OFF GDD GUU) % to prevent g & () from commuting.

% which is built-in.
(ORDER -200 GUU GSUU GCUU) % To keep GUU to the left!!!
(SETQ INDEXTYPES '(
(DSPACE ID JD KD LD MD ND PD QD RD SD TD UD VD XD YD ZD))) 
(INDEXTYPE GROUP NG

I J K L M N 11 J1 K1 L1 M1 N1 12 J2 K2 L2 M2 N2)
% I,J,.. =1,...,NG. for the Group G.

(INDEXTYPE COSET NC
A B C D E F G H A1 B1 C1 D1 E1 F1 G1 H1 
A2 B2 C2 D2 E2 F2 G2 H2)

% A , B, . . = 1 , . . . , NC. for the Coset G/H.
% RPL (RePLace ) is a SHEEP command for assigning a value 
% for a variable.
(RPL CG) NG - NC $ % To have a specific value for CG, use:
%(SETQ CG (EVAL CG)) % after specifying MC & NC via SETQ.
(INDEXTYPE SUBG CG IX IY IZ)

% IX,IY,.. =1,..,NC-MC. Sub-Group H.
(INDEXTYPE SPACETIME ST

P Q R S T X Y Z P1 Q1 R1 S1 T1 X1 Y1 Z1 
P2 Q2 R2 S2)

% X ,Y,...=1,..,ST. Space-Time indices.
(RPL TOT) ST + NC $
(SETQ CODIM TOT) °*(EVAL TOT))
(SETSPLIT DSPACE SPACETIME COSET) % Initialize splitting.
(DECLT (ED e)(ECD e)(ESD e) (DID d)

(FIUU FI S12 1 2) (COMUDD C 1)
(CUDD C 1 A23) (KUD K 1) (AUD A 1)
(FUDD F 1 A23) (GCDD g S12) (GSDD g S12)
(GSUU g S12 1 2)(SUUD S S12 1 2))

(DIFFOPERATOR (ED ID) (ESD X) (ECD A) (HU ID) (DID X))
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(PDEF HDD h S12 "The metric of the group")
<GCDD A BXKUD A IXKUD B J> $

(PDEF GUU g S12 1 2)
<GUU ID JD>$

(SPLIT GUU)
(PDEF GDD g S12)

<GDD ID JD>$
(SPLIT GDD)
(PDEF ED)

<ED ID>$
(SPLIT ED)(LPDEF ED) % the "split" EDEF command! note that it

% takes two tensor expressions, since the 
% index I is split to X and A.

<ESD X> $
<ECD A> $(ON POTSIM) % turn on simplification for interaction.

% **** kkcon.def ****
%DEFinig the CONnection coefficients for the KK theory.
(PDEF CON T) % define the connection in terms of two

% new tensors to simplify computations. 
<DG JD KD LD > +<DCM JD KD LD > $

(PDEF DG)
CLPAREN XED [JDXGDD [ID [KDXRPAREN > $

(PPDEF DG ![ )
(PDEF DCM)
<GDD LD MDXCOMUDD MD JD KD>
- <GDD JD MDXCOMUDD MD KD LD>
- <GDD KD MDXCOMUDD MD JD LD > $

(PDEF CONU T 1)
1/2 <GUU ID LDXCON JD KD LD> $

MSPLIT DCM) % the splitting was needed only once,
%(SPLIT DG) % the result was saved in a separate
%(SPLIT CONU) % file. This can be repeated for new

% ansatz.
(DECLT (TUDD 1 T) (T110 1 T))

% **** kkcur.def ****
% DEFining the CURvature tensor for KK theory.
% The evaluated CONnection coefficients:
% (LOAD "MACONU. SEF" ) load if needed.
(PDEF CUR R "The Ricci tensor")

<ED LDXCONU LD KD JD> -<ED KDXCONU LD LD JD> 
-<CONU LD KD IDXCONU ID LD JD>
+ <CONU LD LD IDXCONU ID KD JD>
- <CONU LD ID JDXCOMUDD ID LD KD > $
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(PDEF RS R "The Rieman Scalar")
<GUU ID LDXCUR ID LD> $

(SPLIT CUR)(RPL CUR 0 1 ) 0 $  % put the off-diagonal elements
(RPL CUR 1 0) 0 $ % o f the Ricci tensor to zero,

% this works in our case because 
% after all we are only interested 
% in the trace of this tensor.

K.Shaker Jomaa 179 PhD Thesis


