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ABSTRACT

This thesis examines the application of multistage interconnection networks 

to highly parallel computer systems which may contain many thousands or 

tens of thousands of component processors. The cost and complexity of the 

network becomes prohibitively high when existing network design techniques 

are applied to very large-scale systems. A number of performance models 

for interconnection networks are derived. This analysis covers some 

interesting variations on conventional network designs as well as that of a 

new class of networks which are capable of exploiting locality of 

reference whilst still providing low-cost global communication. The 

general properties of this class of networks is described. The analysis of 

asynchronously controlled full crossbar switches with request blocking is 

also described. A new approach to network design is then presented. This 

approach enables the efficient bit-serial control of the network which 

naturally reduces the size and complexity of the network by allowing larger 

single-chip component switches to be constructed. The design of the 'XS1* 

prototype network switching chip, which incorporates these design 

techniques, is described. Network interfacing and performance are also 

examined. Finally, network fault tolerance is discussed. We show how by 

extending any interconnection network so that each attached component has 

multiple links into the network, a fault tolerant topology can be realised 

which does not require fault location in order to achieve fault avoidance. 

We describe a novel technique for concurrent error detection in bit- 

serially controlled networks which does not require error detection codes 

to be transmitted through the network. A technique for dynamically 

replacing individual faulty switches in a fault tolerant network is also

described.
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CHAPTER 1

Introduction

It is now widely acknowledged that concurrency in program evaluation 

provides the only means of significantly increasing processing speed.

Cooperation between the component processors of a parallel machine relies 

on inter-processor communication, and the design of communication systems, 

or communication networks, for multiprocessor architectures has been a 

subject of growing interest in recent years. This thesis examines the 

a class of communication networks in the context of highly parallel systems 

where communication among many hundreds, thousands, or even tens of 

thousands of processing components is required.

Feng [Fen82] categorises interprocessor communication into static and 

dynamic types, the former corresponding to distributed, and generally 

loosely coupled systems where communication is only between adjacent 

processors which are arranged into a processor interconnection graph, and 

the latter corresponding to systems where a separate communication 

subsystem is employed to achieve processor coupling. The latter types of 

system are often, although not always, closely coupled, with the 

communication system providing each processing device with a ’multiport1 

view of a shared memory system.

Static communication networks are often employed where the structure of the 

problems being solved closely reflect the structure of the machine (i.e. 

the topology of the processor interconnection graph). Virtual tree 

machines [BuS81], which are very effecient at evaluating divide-and-conquer 

problems are good examples of such systems. Note that there is generally 

no global communication: subcomputations (together with their data) are



spawned from one processor to an adjacent processor in the graph and 

results are fed back via the same connection when evaluation is complete.

Dynamic communication networks have been proposed for various SIMD [Bar8l, 

Lan76,LaS76,LaV82,Law75,Len78,NaS80,NaS82,Sie79,YeL81 ], MIMD [Dij81,JuD81, 

MAS81 ,McS80,MSi80,Pat79], dataflow [ADI83,GWG80] and reduction [DaR8l, 

KeL79] machines. In these machines, each system component is connected to 

a separate communication network and communication between two arbitrary 

components is achieved by establishing either a physical or a virtual 

channel through the network between the two along which data can be 

transferred.

In these machines subcomputations gain access to a data structure not by 

being passed a copy of the structure, as is often the case in static 

networks, but by making a direct (or indirect) reference to a shared copy 

of the structure when the subcomputation is invoked. As a consequence of 

sharing data structures in this way, computation soon becomes *detachedf 

from the data on which they operate. The communication network provides 

the mechanisms for efficiently accessing shared (global) data items which 

may be located anywhere in the system, and for the general coordination of 

concurrent tasks by the passing of control information among the systems1 

components. The distribution of the processes or computations may also be 

facilitated by the network.

This thesis is concerned with the design and analysis of a class of dynamic 

interconnection networks, which are communication networks analogous to 

high speed telephone exchanges.

The particular applications considered are those systems which obtain high 

performance by exploiting very large degrees of parallelism and which have 

the property of extensibility whereby a guaranteed increase in performance

can be achieved by simply incorporating more processors into the system.



These systems may contain tens or even tens of thousands of component

% processors depending on the computing power required.

A number of network designs have been suggested for use in SIMD and MIMD 

environments [Bar8l,Bar82,LiW82,MAS81,Pat79,WLL82], but we argue that these 

designs are impractical and inappropriate for systems of any significant

size. Networks based upon existing principles then become very large,

♦ complex, expensive, and inherently unreliable. This thesis examines a 

very different approach to network design and proposes techniques for both 

reducing network complexity and enhancing network reliability.

1.1 Exploiting Concurrency

Considerable research has been done into the problem of exploiting 

concurrency but this has often led to frustration because of the inherently 

sequential nature of the programming languages used to formulate the 

problems being solved. Some language extensions have been- introduced (for

example, parallel DO, and Fork-and-Join in FORTRAN) to enable the

♦ programmer to make better use of the parallelism available in the machine, 

but this greatly complicates the task of programming - the user requiring a 

detailed knowledge of the machine in order to best exploit its concurrent 

capabilities.

Although a number of concurrent programming languages have been developed
♦

(for example Modula [Wir83] and Occam [IMS84]), one of the most promising 

solutions to this problem has evolved through the study of declarative 

(side-effect free) programming languages [Bur75,Hen80,DHT81]. Such 

languages possess a clean mathematical semantics which enhances program 

clarity and which significantly aids the task of program development and
♦

automatic transformation [BuD77»Dar81]. Additionally, these languages 

exhibit the property of referential transparency, one consequence of which 

is the potential for concurrent evaluation. These issues are eloquently

3



discussed by Backus in [Back78], and a number of machines designed to 

exploit this concurrency have been proposed, for example [BuS81,DaR81, 

KeL79, Mag79],

It is this class of so called declarative language support architectures* 

to which this thesis is particularly addressed, although the issues raised 

are applicable to all network-based systems employing very large numbers 

of component processors.

J«2t Pvnanic Interconnection Networks-

A dynamic interconnection network is a communication system in which any 

network input link can be connected to any network output link by 

appropriately setting the switch, or switches, from which the network is 

constructed. This differs from static network where the links between two 

components are passive and cannot be reconfigured for direct connection to 

other components [Fen82].

The simple shared bus is one extreme form of dynamic network. This is 

effective provided the number of components attached to the bus is small. 

As the number increases the bus reaches a saturation point and bus 

bandwidth, and hence system performance, levels off [KiA78].

In terms of performance, the most effective dynamic communication system is 

the full crossbar matrix [LVA82,MeC80, MuM82] which may be viewed as a 

multiple bus system in which each of the connected components has its own 

unique communication bus. The full crossbar forms the opposite extreme of 

dynamic communication networks and has been used in several systems (for 

example the CDC Cyber 170 [Tho70] and Cmmp [FuH78] systems). Again, 

however, its use is limited, this time because of the very large (0(N2))

costs associated with its construction,



♦

♦

Single and multistage interconnection networks provide a cost-effective 

compromise between the extremes of the shared bus and the full crossbar 

matrix. These networks are composed of an interconnected array of 

switching devices each of which is effectively a small crossbar switch. By 

appropriately setting these switches, any network input link can be 

dynamically connected to any network output link.

A number of subclasses of network have evolved. These include the 

rearrangeable (non-blocking) Clos [Clo53] and Benes [Ben65] networks, the 

PM2I subclass which includes the Data Manipulator [Fen73], the ADM [McS80, 

M c S81] and Gamma [PaR82] networks, the single-stage (perfect shuffle) 

networks [Sto71], and the so called 'N log N' multistage interconnection 

networks [DiJ82] which include, for example, the Omega [Law65], Baseline 

[WuF80], SW-Banyan [GoL73]» indirect binary n-cube [Pea77] and Generalised 

n-cube [SiM8l] networks.

It is this latter class of networks which are considered in this thesis and 

throughout the remainder of the thesis we shall use the term 

'interconnection network' to refer solely to the 'N log N' class of 

networks although strictly the term is generic, covering the Benes, Clos, 

PM2I, full crossbar networks, and so on.

*

*

The remainder of the thesis is divided into three parts:

Chapter 2 describes the general characteristics of the 'N log N' class of 

dynamic interconnection networks which are of interest to the thesis. 

Network performance analysis is also studied and four interconnection 

network variations are examined and compared.

Chapter 3 describes two design techniques, 'self clocking' and 'serial 

switching', which are techniques aimed at reducing the cost and complexity 

of the interconnection network whilst maximising the network flexibility.

5



This chapter includes a description of a network implementation which has 

been designed and built as part of the ALICE reduction machine project 

[DaR81].

Chapter 4 examines the (much neglected) issues of fault tolerance and 

describes how this can be obtained in interconnection networks by 

introducing error detection mechanisms and by exploiting some of the 

topological properties of these networks to facilitate fault avoidance and 

fault repair.

Finally, the summary and conclusions of the thesis are laid out in

Chapter 5.



£HAEXER 2.
Network Operation And Analy3i3

Interconnection networks are a cost-effective means of providing arbitrary 

point to point communication in a multiprocessor or multicomputer 

environment, offering greater architectural simplicity and flexibility than 

the full crossbar matrix which they aim to simulate.

Section 2.1 of this chapter describes the general properties of 

interconnection networks with regards to their physical and operational 

characteristics. Section 2.2 is concerned with network analysis and 

examines the performance of four variations on conventional network 

implementati ons.

2,1. General Properties Of Interconnection Networks.

2.1.1 Topology

A regular interconnection network is rectangular array of interconnected 

full-crossbar switches of arbitrary, but fixed size. In the remainder of 

this thesis, the switch size - which we generally refer to as the switch 

degree - will be denoted by x.

A regular interconnection network of size N and degree x consists of 

n=logxN stages of crossbar switches with N/x switches in each stage. 

The total number of switches in the network is consequently (N/x)logxn. 

Each switch in the network has x input ports and x output ports so that the 

total number of input and output ports in each stage of the network is 

equal to N. An example of a simple interconnection network of size 16 and 

degree 2 is shown in Figure 2-1.



%

*

Figure 2-1: An Interconnection Network, Size 16, Degree 2.

The interconnection topology describes the way in which the input and 

output ports of adjacent stages are connected. Note that there are no 

connections between the switches of a single stage. Three types of 

interconnection topology are frequently referred to in the literature; 

these we now define.

Let the n stages of the network be indexed from 0 to n-1 with stage 0 

corresponding to the input side of the network. Now let the jth input 

link of stage s be labelled I3(j)f j = 0..N-1, s=0..n-1, and let the jth 

* output link of stage s be correspondingly labelled 0s(j)» j=0..N-1,

s=0..n-1.

The interconnection (or permutation) between adjacent stages, say s and

8



s*1, may be viewed as a function mapping each of the 0g(j) to exactly 

• one of the T3, i<.1'). se[0..n-2], j, j' <r [0..N-1 ], i.e.

P (s) : O g ( j)  - >  I s + 1 (j> )

where P is the permutation function for stage s of the network.

We describe the permutation by specifying the relation between j and j*
ihw above for a given value of s for each of the three permutation functions.

To do this we shall write j as a base x number, which, for a network with n 

stages will contain n digits. So let j be written:

j = ^n-l'Jn-2» *•»h* J0>» jk e[0..x-1], k=0.. n-1

We can now express the three permutation functions as functions which 

transform the component digits of j:-

*

*

1. The CUBE Permutation.

P(s) . 0S(< jn_ i, j n_2 »»» i j s+2»J s+ 1»J s»

*s+1^n-1»jn-2»,#»^s+2» ̂ 0* js»**» ̂ 1»j s + 1 ^ f s=0..n-2
i.e. exchange digits 0 and (s+1) of j.

(This permutation is so called since the couplings between stages s 

and s+1 of the network are the same as the couplings in the (s+1)th 

dimension of an x-wide n dimensional hypercube [MSi80, Pea77].

2. The Shuffle Permutation

P(s) : Og(̂ Jn—1 * jn—2 * • •» Jl» ^

^s+1 (^jn— n— 1 ̂  ®
i.e. left rotate the digits of j.

(This permutation is so called since the case x=2 produces a mapping 

analogous to that produced by shuffling, or interleaving, two halves 

of a card deck whose face values are the integers 0..N-1. This 

topology with x=2 forms the basis of Lawrie's omega network [Law75].)

9



3. The Partial Shuffle Permutation
*

P(s) : 0S(< jn_ ^ j s+2 , js+‘j, i Jq>) ->

Iĝ . ̂  ̂Jji— 1 »• •1 ̂ s+2 »Jo * ̂s"*" ̂ ̂  ̂ 1 S- 0 •»n~2
i.e. perform the shuffle permutation on digits 0..S+1 of j.

(This permutation forms the basis of the baseline topology [WuF80] 

which has been used to demonstrate the topological equivalence of
* various N log N networks.)

For example, starting at input port 3 (0011) in the network of Figure 2-1

(which has a Partial Shuffle topology) we have that:

o0<oon> -> i ^ o o m

0^0011> -> I2<0110>

02<0110> -> I3<1100>.

2.1.1.1. Discussion of Topology

The three permutations defined above form the basis of all regular 

interconnection networks . A number of these networks use inverted forms
*

of the above topologies, for example the Generalised Cube topology [SiM81] 

which is simply an inverted form of the indirect x-ary n-cube (which itself 

is a generalisation of the binary n-Cube of Pease [Pea77]). Note that the 

Cube permutation function as defined above requires an additional 

permutation on the output side of the network to 'realign1 the port 

addresses so that they are contiguous at the network outputs. The same is 

true of an inverted shuffle topology, although the inverted baseline 

topology requires no output permutation, regardless of the orientation of 

the network.

• An interesting property of the shuffle permutation is that the

interconnection is independent of the stage number. Consequently, an 

extension to a shuffle interconnected network of size N requires the

10



existing interconnections to be rewired so as to retain the shuffle

topology in the extended network. This limits its applications in 

reconfigurable systems. Also, since the interconnection is the same for 

all stages, the network may be compressed into a single stage topology in 

which the network outputs are fed back to the inputs. This configuration 

is termed a *single stage* shuffle-exchange network [LaN76,WuF81], and 

functions by repeatedly circulating requests through the single stage until 

the required destination node has been reached. Various algorithms have 

been developed to run directly on a single stage shuffle processor array 

[Kuh80]. The use of these networks for more general interprocesor 

communication has been examined in [KDJ83].

2,.l t2t Irregular Topologies

Of particular significance in the next chapter is the class of irregular 

network topologies which can be obtained by incorporating switches of 

varying size into a single network. Irregular networks are important when 

large switches are being used to construct a network. If only switches of 

degree x are being used then only networks of size xn, n=1,2,... can be 

constructed. If intermediate sizes are required, then it must be possible 

to integrate stages of switches of degree y<x. Such a network then has no 

fixed degree; the term hybrid network will often be used to refer to such 

irregular configurations.

As a simple example, consider the problem of constructing a Cube-based 

network of size 2xn using n stages of switches of degree x and one stage of 

switches of degree 2.

The rules for interconnecting the n stages of switches of degree x are 

simply obtained from the regular permutation function for the Cube as was 

given above. Further extending this network by a factor of two requires 

adding an additional stage of switches of degree 2. In the regular Cube



network new stages are (ordinarily) added to the bottom (output) stage of 

m the network. The permutation function required between the old output

stage and the new degree-2 stage is obtained by viewing the original 

regular network as being of size 2r for some r. (An integer value of r 

will always exist since x is a power of two [Pat79].) The extension is 

then viewed as a normal extension to a network of degree 2, i.e. the 

required permutation function is simply that of the Cube, with x=2. Note 

that if the existing cube is inverted (yielding the Generalised Cube 

topology), then the extra stage will be added at the top of the network, 

but the permutation function will be the same.

A wide variety of irregular networks can be conceived. Networks composed 

of many different sized switches are possible and these can, in theory, 

occur anywhere in the network so long as the network can be consistently 

addressed.

An exhaustive categorisation of irregular topologies is impossible, suffice 

it to say that the ability to construct hybrid networks adds considerable
♦

flexibility to system design. A network of size 2n for any n, for example, 

may be constructed using a combination of switches of size 2, 4, 8, 16... 

and so on if required by the system. In the next chapter we propose a 

design methodology which enables arbitrarily complex hybrid systems to be 

built without destroying the functionality of the network as a whole.

2.1.3. Routing

The process of establishing a path through the network involves 

individually selecting or addressing exactly one switch in each stage of 

the network.
•

It is easy to see from Figure 2-1 that an interconnection network Is a 

system of N interwoven 1:x demultiplexor trees (of fixed, or mixed degree),

12



and the path building process is similar to that used in conventional tree

«

4

4

f t

traversal. Only the required network output port address need be specified 

in order to establish a path from any source (network input port) to any 

destination (network output port).

Consider a regular network of size N and degree x. Let the source node 

address be:

^ ^sn-1»sn-2»• • * 1 Sq> £ C 0 •. x—1 3 , i=0 • • n— 1

and the destination node address be:

D = <dn-1 »dn-2»« • »d1»d0> di f [0..X-1], i=0..n-1

A path from S to D is established by using d^ (or dn_i_“| depending on the 

network) to select stage i of the network. Since each switch in a regular 

network has x input and x output ports, d^ is sufficient to specify exactly 

one of the switches* output ports. It is easy to show that this rule 

correctly steers the request to its addresed destination node:-

Consider, for example, the Generalised Cube topology which is an inverted 

form of the Cube topology defined in 2.1.1 above in which dn_i„i is 

ordinarily used to select stage i of the network, i=0..n-1. In the 

Generalised Cube, the input (top) stage of the network is traditionally 

labelled stage n-1 and the output (bottom) stage of the network - stage 0. 

Using our notation, the permutation function, G, for stage s is given by:-

G(s) . ^s(^jn—1,••,Js+1,Js»Js—1,•*,J1,Jô ) —^
Is-1 C^Jn-1 * * * * ̂ s+1 * do»Js-1 > • •»*ii» »  s=1.. n-1

After stage n-1 of the network has been selected (using dn_^)f the request 

is steered to the stage n-1 output port labelled:

<sn-1»sn-2,# * »S1»dn-1>#

13



From the G(n-1) permutation rule, this port is linked to the stage n-2 

input port labelled:

^dn-1 * sn-2» • •»S1»sn-1^ •

After stage (n-k) has been selected similarly, the request is steered to 

the stage n-(k+1) input port labelled:

* <dn-1>dn-2»,*»dn-k»sn-(k+1)»,,,s1»sn-k>#

Consequently, after stage 1 (=n-(n-1)) has been selected, the request 

arrives at input port

<dn-l»dn-2»**»di»s1̂

of stage 0 of the network. Thus supplying the last routing address, dg, to 

the corresponding switch then steers the request to the network output port 

labelled

<dn_ 1 »dn-2» * *»d1»d0^ Q.E.D.

* In an irregular network, the bit string representing the destination 

address is simply partitioned irregularly so that the length of each 

substring, d^ used for addressing purposes may be different. In the case 

where each stage of the network contains switches of fixed degree but the 

stages themselves are of mixed degree, then the routing scheme may be

ft viewed as being based on mixed radix addressing [BhA82]. A folded network

of this sort reduces to an alpha structure as defined in [BhA82].

f t

2.1.4. Blocking

The paths from a single source node to the set of all destination nodes of 

a network form a 1:N demultiplexor tree. Because the demultiplexor trees 

of all the available input nodes share common nodes in the interconnection 

graph it is possible that two requests originating from separate source
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nodes and addressed to separate destination nodes both require to use the 

% same output port of one particular switch in the network. Because in a

demultiplexor tree there is only one path between any input and output 

node, one of these requests must be denied and a blockage is said to have 

occurred. Until the successful request Releases1 this output port, the 

blocked request must either 'hang1 or cancel. Path building may be held up 

in any stage in the network mas a result of blocking.

The degree of blocking experienced in a network is a key factor affecting 

network performance. This isssue is raised in 2.2. below where we use 

probabilistic techniques to analyse the contention in a variety of 

interconnection network configurations.

2.1.5. Switching Mode

An interconnection network may operate in either a circuit switched or a 

packet switched mode of communication, and the arguments concerning both 

approaches are similar to those debated in the context of other 

* communication systems. Basically, packet switching offers the advantages

of reduced link contention since the packets themselves are buffered in 

successive stages of the network so that the links used to transmit the 

packet may be immediately released for further traffic. An excellent 

examination of packet switching techniques has been presented by Jump and 

« Dias for both single [KDJ83] and multistage interconnection networks

[JuD81, DiJ81 ].

In this thesis we concentrate on circuit switched interconnection networks 

in which a physical (rather than virtual) channel is established between 

the source and destination nodes. We do not wish to argue that this
*

approach is generally superior since the most suitable mode is dependent 

very much on the application. Circuit switching yields faster access times 

[Bar8l], allows for arbitrarily large volumes of data to be transferred in
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a single transaction and also facilitates bidirectional (full duplex) 

communication between source and destination.

2.2. Performance Analysis

This section examines interconnection network performance for networks 

with varying physical and operational characteristics.

We examine four network models. The first considers an extension to the 

model given by Patel [Pat79] in which we derive equations for the 

throughput of a conventional switching network operating in a cyclical mode 

with non-uniform input load. The second model examines the effect of 

providing multiple channels on each port of the switching nodes of a 

conventional network. The third model covers the analysis of new class of 

interconnection structures called Lambda networks, which we define, and the 

fourth investigates the application of queueing theory to the analysis of 

asynchronous networks. The design of asynchronous networks is taken up 

in Chapter 3*

2.2.1. Networks with Non-Uniform Load

This analysis relates to networks which operate in a cyclical mode. A 

network cycle describes a time frame in which the entire network is 

synchronously routed through and data is transferred along those paths 

which have been established without incurring blockage [Pat79]. 

Consequently this analysis is particular to circuit-switched 

implementations.

The analysis serves two important functions:

1. For networks which naturally operate in a cyclical mode, for example 

[Bar8l], it yields an accurate measure of the networks throughput.
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2. It provides a valuable reference model by which different network 

configurations can be compared. The cyclical model is adopted in 

both the next two sections; a direct comparison of the performance of 

the various networks is then possible.

2*2.*.1«.! . Assumptions of the Hodel

The following model is a generalisation of that given in [Pat79] which 

covers the analysis of delta networks.

The environment considers networks which operate on a cyclic basis. For 

the time being we shall consider a regular network of size N and degree x 

in which N.̂  of the input ports and NQ of the output ports are actually 

connected to system components. n will be used to denote the number of 

stages in the network, i.e. n=logxN.

At the start of a network cycle, requests are synchronously presented to 

each of the networks* input ports. These requests are then passed through 

each of the logxN switching stages of the network simultaneously. Certain 

of the requests will be blocked at intermediate switches in the network. 

Those which are not blocked form physical channels betwen the input and 

output ports of the network. The network then enters a data transfer phase 

during which data is passed (possibly in both directions) across the 

network. At the end of data transfer, all paths are simultaneously 

released and the cycle repeats.

We lift the restriction imposed by Patel's model and consider a system in 

which the inputs may be unequally loaded by the components attached to the 

network. This enables the performance of certain types of heterogeneous 

systems to be predicted. In particular, the analysis subsumes both the 

original analysis given by Patel and that of sparse networks, in which 

only a subset of the input and output ports of the network are connected to

system components,



Let the cycles be enumerated by C  = {0,1,...} and let E(c,k) be the event:

"there exists an arrival on channel k at the start of cycle c (ceC, 

0ik£N-1)n. The extended definition of Patel's model is then as follows:-

1. E(c,k) and E(c',k*) are assumed to be independent, c/*c', k^k'. Note

that this implies that blocked requests are 'lost', i.e. requests are 

assumed to be submitted to a port independently of any previous 

transactions on that port.

2. The probability that a request is submitted on input port k at the 

start of a cycle is Pk, k=0..N-1.

3. All output ports connected are equally likely to be addressed, that is 

no output ports are 'favoured' in preference to others.

Note that if only a subset of the output ports are connected to system 

components, then these are assumed to be evenly distributed across the 

outputs. That is, each switch in the last stage of the network is assumed 

to have the same number of connected ports. Note also that assumption 1 is 

not realistic since in practice blocked requests are almost certain to be 

resubmitted in the next cycle. However, simulation suggests that this 

assumption introduces only a small inaccuracy in the predicted performance 

of the network.

The performance measure we are concerned with here is normalised 

throughput, Tjj, as defined in [Ju D81]. This is the proportion of the 

output ports which are active during each cycle and is also accurate as a 

measure of the degree of blocking in the network. From the normalised 

throughput, the acceptance probability, PA, [Pat79] can be easily obtained 

from:

N-1

k=0

and the actual bandwidth BW (in requests passed per second) from:



*

%

N0 tn
BW = _____ where tc is the network cycle time.

fcc

2.2.1.2 A Recurrence Equation for Generating

We begin by considering the top stage of switches (stage 0) and viewing 

each switch in isolation. Label the switches of the top stage of the 

network 0..(N/x)-1, and consider some switch w, we [0..N/X-1], Now label 

the input ports associated with that switch k, k+1 .. k+x-1. (Clearly, 

k=wx.) We wish now to derive the normalised throughput of this switch 

given that the input loads on the inputs to the switch are pk+1»*-» 

Pk+X_ 1 , as specified by the model. Define Tjj(s ,w ) as the normalised 

throughput of switch w of stage s. TN(n-1,w) then represents the 

normalised throughput of switch w in the output stage of the network.

Let R be a random variable denoting the number of requests present at 

switch w at the start of a given cycle. Then, we have: 

k+x-1

Pr{R=0}

l=k

k+x-1 k+x-1

Pr{R=1} = 2 ^  P1 ] T  ° - Pm)
l=k m=k

m^l

k+x-1 k+x-1

l=k l=k

and so on. Generally: 

k+x-1 k+x-r k+x-(

Pr{R=r) = (1-Pi)Zz
l=k aii•H i2=ir

k+x-1Z r

m= 1

Pim
(1-

[2-1]
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tn(0»w ) can be interpreted as the average load on each output port of the 

switch. Let U(r) be the probability that a given output link of the switch 

contains a request given that r requests are present at the inputs to the 

switch. Then U(r) is given by:

. , .  (̂)"
Thus, we have for Tjj(0,w):

Tjj(0,w) = ^  Pr{R=r}.U(r)

r=0

x k+x-1 k+x-r k+x-(r-1) k+x-1 r

=Z TT(i"Pi) Z Z ••• Z TT
r=0 l=k i^=k  i 2=ii+1  i r = i r _i+1 m=1

x—1
1 -

x k+x-1 k+x-r k+x-(r-1) k+x-1 r-zn-> z z -z Tl£(x-1) pim

r=0 l=k i l = k  i  2= i  -j+1 i r = i r - 1 +  ̂ m=^
v

[2-2]

In order to simplify this expression, we consider the following product 

term:-

D = (a0+b0) x (ai+b-j) x .. x (an.-j+bn.-j)

This expands in a similar manner to the Pr{R=r} terms given above. In 

fact, the component of D which contains exactly r 'a* terms is given by:
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*

n-1 n-r n-(r-1) n-1 r

‘-■TT* E E -  Z TItm1=0 ii=0 i2=ii+1 ir=ir_i+1 m=1

Thus D may be rewritten as:

n

i=0
Therefore, by substituting aj=(x-l)Pj/x and bj=( 1 —Pj)» j=0..x-l, we arrive 

at an equivalent equation for Tfj(0»w) i.e.

k+x-1

■" TT ('' ;J)
j=k

Now, if Pj=p for all j=k..x+k-1, then equation [2-4] becomes:

0,w) = 1 — ( 1 “ ~

which is consistent with the result given in [JuD81].

♦
The set of Tn( 0»w)» w= 0..(N /x) -1  characterises the normalised throughputs

for each switch of the first stage of the network and these form the input 

load to the switches of the next stage (stage 1) of the network.

By using the values for the TN(o,w) and by applying the process 

• recursively, the equation for TN(1»w) can be found. From the values of

w=0..(N/x)-1, the values of the TN(2,w) w=0..(N/x)-1 can be found,

and so on. An interesting property of these networks is that:
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%(n-1,w) = TN(n-1,w') for all w.w' = 0..(N/x)-1.
•

Observe that although the inputs to the network were unevenly loaded, the 

normalised throughput of all the networks outputs is the same. This 

result, (which holds for all networks based on the topologies of 2.1.1.1 

but not for all delta networks), stems from the partitioning properties of 

the three important permutation rules defined in 2.1.1.1:-

Consider stage 0 of the network. This stage partitions the rest of the 

network into x independent subnetworks [Sie80]. That is, stages 1..n-1 

form x independent networks which have no switches in common. The outputs 

of each switch in stage 0 of the network are fed into the top stage of 

independent subnetworks. No two links from such a switch connect to the 

same subnetwork.

Consider now switch w in stage 1. This is linked to by exactly x disjoint 

switches in stage 0. Let the stage 0 switch connected to input port k of 

switch w be labelled w kf, k=0..x-1. The w*k can be found from the 

permutation function of the network. Consider, for example, the Cube 

topology defined in 2.1.1.1. If w is written as a base x number, 

<wn-1 »wn-2,,,»w2»w 1>» then wfk is given by:

wfk = <wn-1»wn-2»* *»w2,k>» k=0..x-1.

Now consider some w’k, k e [ 0 . . X - 1 ] ,  The complete set of stage 0 output 

ports associated with switch w'k are those labelled <wn-1 ,wn_2»**»w2,k,d> 

d=0..x-1 . These outputs are attached to the stage 1 switches labelled

^ w - j , w 0 . . X - 1 .

* Consequently, the dth output port of each of the w'k, k=0..x-1, all 'meet1

at the same switch in stage 1, that is, at switch < w n-1,w n_2»««i«2»d>*

Note that:
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1. Each of the switches of stage 1 labelled <wn_i ,wn_2,..,w2,d>, d=0..x-1 

lie in independent subnetworks formed by stages 1..n-1.

2. Each of the switches of stage 1 labelled <wn.-j »wn_2,..,w2,d>, d=0..x-1 

have identical input loads, since their inputs originate from the same 

set of switches in stage 0.

Since the same argument applies to all switches in stage 1, it follows 

that each of the x subnetworks formed by stages 1..n-1 have identical 

loading patterns i.e. for each stage 1 switch (forming a top-stage switch 

of exactly one subnetwork), with input loads, Lq , . . , L x _ ‘| » there exists 

exactly one corresponding switch in each of the other x-1 subnetworks with 

the same input loads, Lq , . . ,L x _<|. The above argument can now be applied 

(recursively) to each of the x subnetworks. Since each stage partitions 

the network into x independent subnetworks and since the network has a 

total of n=logxN stages, it follows that after the last stage has been 

traversed, the throughput of all switches in the last stage of the network 

is the same. Consequently, TN(n-1 ,w)=TN(n-1 ,wf) for all w, w'=0..(N/x)-1.

Note that the equation for Tjj is correct, providing each output port of the 

network is being used. Consider now the case where Nq<n , and where each 

switch in stage n-1 of the network has c of its outputs connected, so that

no =(N /x )c. F o l lo w in g  th e  sam e se q u en ce  o f  s t e p s  a s  w as u sed  t o  g e n e r a te  

e q u a t io n  [ 2 - 4 ] ,  th e  v a lu e  o f  Tjj i s  fo u n d  to  b e : -

x —1

j=0

where Lm is the input load to link m of each switch in the last stage.

As a result of the uniform load sharing properties of these networks, the 

value of Tn is valid for all connected output ports of the network. The 

value of Tjj may also be interpreted as the percentage load on each 

connected output link of the network. Thus the total network bandwidth and



acceptance probability may be expressed as was given in 2.2,1.1.

2 a2.1t3. Sparse Networks

As was stated earlier, the above analysis subsumes both Patels* original 

delta network analysis and that of sparse network analysis in which only a 

subset of the network input/output ports are connected. The throughput of 

such networks can be obtained by setting the input load values of all 

unconnected input ports to zero, and by using equation [2-5] to determine 

the throughput of the last stage of switches, where only a subset of the 

output ports of each stage n-1 switch are connected. Note that for a 

single switching element of degree x in which only y of the inputs are 

used, the load presented to the switch when each of the y inputs are 

saturated (that is, have input loads of 1) is equivalent to a load of:-

on each of the x ports of an equivalent fully populated switch; not (y/x) 

as might be predicted. This (incorrect) assumption has been assumed made 

on at least one occasion in the literature.

Sparse networks have been proposed as a means of reducing network 

contention [Bar8l]. Figure 2-2(a) shows a comparison of conventional and 

sparse network performances for varying network sizes^ and switch degrees. 

In these curves each connected input is assumed to be saturated (i.e. p=1 

for all connected inputs). The parameter, (J, denotes the ratio of 

connected inputs (and outputs) to network size. Thus (7=1 corresponds to 

a conventional (non-sparse) configuration. Figure 2-2(b) shows the 

relative performance/cost curves for the same sparse networks. The 

parameter, p , denotes the ratio of sparse network performance/cost to 

conventional network performance/cost. The cost is defined to be the

 ̂ In the performance curves, N denotes the number of connected inputs and 
outputs in the network not the total number of network inputs/outputs.



N

(a) Performance Comparison With Conventional Networks.

9

%
(b) Relative Performance/Cost Curves.

FI mire 2-2; Sparse Network Performance.
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number of switches required to connect a given number of system components. 

4 Thus, p  is given by:

TN(sparse)
= a -------------

Tjj( non- sparse)

Although sparseness reduces contention, these curves show that the 

performance gain does not outweigh the required cost increase of 1 /(j. 
Sparse networks are, however, easily implemented and require no additional 

hardware in either the switches or the network interfaces.

%

*

*

2.2*2 k-Channel Network Analysis
We now examine an interesting variation on traditional network topology and 

consider the analysis of networks in which each switch port has k channels, 

or links, associated with it instead of the usual one.

Figure 2-3 illustrates a single switching element of degree x in which each 

of the x input and output ports contains k links.

0 Links 1 Ports x_i

Figure 2-3: A k-Channel Network Switch With Degree x.
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A k channel network operates in the same manner as a traditional network 

except that up to k requests can now be passed through a switch port 

simultaneously instead of only one. We wish to examine to what extent the 

additional channels reduce network contention and how the resulting 

performance compares with that of equivalent conventional networks.

There are two ways (not necessarily mutually exclusive) of attaching the 

system components to such a network:

1. If the system components themselves have multiple communication ports, 

then the network can be made fully populated, with each component 

supplying k communication ports for network connection, thereby 

utilising all k.xn network input/output ports.

2. If the components have only one communication port, then a sparse 

connection scheme may be used on the input side of the network so that 

only one of the k available channels of that port is used, and a k :1 

multiplexor used on the output side of the network to concentrate the 

k network port channels into the (single) destination component port. 

It is possible for each of the input ports to be connected to 

independent system components, but multiplexors must always be 

provided at the output ports.

In order to make a meaningful comparison of k-channel networks with 

conventional and sparse networks, we consider configurations in which only 

one of the k network input links associated with an input port is connected 

to a system component.

Again, we assume the cyclical model as described above where probability of 

a request being presented to a channel of an input port of the network at 

the start of a cycle is p for all channels. Since these channels are 

independent, we may immediately write the probability of there being r



requests at the input channels of a given top-stage switch at the start of

a cycle as:

P** (1-p)x-r

Given that there are r requests at the inputs to a switch, we now wish to 

know the probability that an arbitrary output link is selected. To do 

this, we consider the problem in two parts. Firstly, we derive the 

probability of m of the r requests being directed to an arbitrary output 

port (a port here is a collection of k links), then from this we generate 

the individual output link utilisations.

Given that r requests are present at the inputs to the switch, the 

probability that exactly m are directed to an arbitrary output port is 

given by:

Given that there are m requests at an output port, the mean utilisation of 

each of the output links associated with that port is defined to be:-

since two requests cannot both be directed to the same output link.

For the sake of the model, we assume that a request proceeding to an output 

port, randomly selects one of the currently unused port channels (if one 

exists). If m>k then the utilisation of each output channel is 1. 

Consequently the equation for the mean output channel utilisation must 

consider two cases: m£k and m>k. Thus, we get for the mean utilisation, U:

r-m

m

k



k-1 x

»-Y! r<» Hi)

i=0 j=k

%

*

*

%

where:

,n/ \ X X /
r=0

Now observe that:

x\/r\ x! r! /x\ /x-n

,r/\n/ r!(x-r)! n!(r-n)I \n/ \x-r

So that we have for f( n):

fin) =
x-n

and consequently for U:

k- 1

i=0

This analysis is correct for a single switch network. However, the 

equation for U above cannot be used recurrently as in the analysis of

2.2.1. The problem is that although the output ports of a given switch 

generate statistically independent input processes to the next stage, the 

channels within the port are not independent. The value of U formulated 

above is actually an average load taken over the whole port. We cannot, 

from this average alone, infer that each output link of a given port places 

a load of U on the next stage of the network independently. So, in 

forming a recurrence equation to solve for total networkthroughput, we
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must consider ports, not links within ports:

t Thus, for a given switch, s, we define the following:

1. Rr: The probability that a total of r requests are present on the

(kx) input links of s.

2. Tp: The probability that a total of r requests are present on the (k)

links of an output port of s.

3.. 0p: The probability that a total of r requests are present on the

(k) links of an arbitary input port of s.

0rf: The probability that r requests are present on the (k) links of 

an arbitrary output port of s.

*

*

♦

(Since the ports are independent, each input port will have the same value 

of 0r and each output port will have the same value of 0r'.

Considering, now, an arbitrary switch in which up to kx requests may be 

present at the switch inputs, we have: 

kx

n=r

and,

0 tr

Tr

\

k- 1

1

i=0

r<k

r=k

[ 2- 6 ]

We are now aiming to derive a recurrence equation for the 0r» in terms of 

the 0r r=0..k-1 .

R^ is dependent on the way in which requests are distributed over the input 

links of the switch. Thus, define a vector:

30



*

♦

*

*

*

J1 = <n0,n1 ,.. ,nx_ 1 > and let In!

x—1

ni
1=0

where denotes the number of requests present on port t of a switch, 

t=0..x-1. R̂ , i=0..kx can then be expressed as:

R, =

x— 1

i  n 0 1 =0. .kx

J1 j=0
s. t. In! =1

[2-7]

and the normalised throughput of the output multiplexer by

tn -  1- 0o

The required recurrence equation is then obtained from [2-6] by 

substituting equation [2-7] for Ri# Initially, since only one of the (k) 

links of a given input port is attached to a system component the 0^ are 

given by: 0Q=1-p, 0-,=p, 0j=O, j=0..k.

The equation defining R^ (equation [2-7]), however, is very hard to 

simplify. The values of the Rj, can be computed explicitly, although 

equation [2-7] should really be considered as a generating function.

For small values of x, it is relatively easy to generate an equational form 

for the recurrence equation. As an example, consider the simple case with 

x=k=2. For given values of 0q , 0 1 and 02, equation [2-7] gives us the 

following values for Rq ..R̂ :

R1 = 2 0O 01

R2 = 2 0O 02 + 0j2

R3 = 2 02 V
- 2

Rll = 02
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We then have for the Tr» r=0..4:

4

n=0

which (as may be verified by the reader) gives the following recurrence 

equation for the 0^:-

02 Of 022
V  = 0o (1 ------ > + - -  (1 -  0O) + —

2 4 16

®1 302 02
01 1 ~ 0Q (01 + $2)  +  ( 0-J + ----) +  

2 2 :4

02 f = 1 -  (0O* + 01*)

The normalised throughput of the network is obtained by repeatedly applying 

the above equations, setting 0o=0o?» 0i = 0if and 02=02' each iteration 

and repeating the process as many times as there are stages in the network.

Figure 2-4(a) compares the throughputs of conventional and k-channel 

interconnection networks for varying network sizes (measured by the number 

of connected inputs) and switch degrees. These graphs assume that all 

connected inputs present a load of 1 (i.e. a request is submitted on every 

cycle).

In terms of raw performance, the k-channel configurations offer higher 

throughput than conventional networks, but they require larger switch 

packages because of the additional communication links associated with each 

port. A conventional switch of degree x thus requires approximately the 

same number of pins as a k-channel switch of degree x/k.

The effect of this is revealed in the relative performance/cost curves 

shown in Figure 2-4(b). In these curves the relative performance/cost 

metric, p , is given by:-
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(a) Performance Comparison With Conventional Networks.

Network Size

(b) Relative Performance/Cost Curves

Figure 2-4: K-Channel Network Performance.
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logxN TN(k-ohannel)
* p = -------- - ------------------

k.logx/kN TN(single channel)

In Figure 2-4(b) the performance/cost figures for conventional networks of 

degree x are compared with those of k-channel networks with degree x/k for 

varying values of k>1 .

2.2.3. Lambda Network Analysts.

In a conventional interconnection network the input and output ports of the 

network occur at opposite extremes of the network. The distance1, in 

terms of the number of switches traversed, between a source component 

attached to the input side of the network and a destination component 

attached to the output side of the network is the same for all 

source/destination pairs - i.e. logxN.

♦ We now introduce Lambda networks which offer the benefits of global 

communication yet which also allow locality between communicating 

components to be exploited. Lambda networks are homomorphic (one-sided) 

networks which are similar in topology to conventional interconnection 

networks except that both the input and output links of the network occur

4 on the same side of the network. Figure 2-5 shows an example of a Cube-

based Lambda network of size 32 and degree 2.

In Figure 2-5, the system components are shown at the bottom of the diagram 

and each has both a link into and a link out of the network via the bottom 

stage of the network, although the input and output links could be attached
* to independent components. Requests submitted by the components are fed 

upwards until the addressed destination node can be reached from the
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1
*

0

O 2 4 6 8 lO 12 14 16 18 20 22 24 26 28 30

Figure 2-5: A Lambda Network, Size=32/ Degree=2.

currently selected switch by turning round (’pivoting*) and traversing the 

network in the opposite direction. The switches on the downward path are 

selected in the usual way i.e. the switch select addresses are derived from 

* the destination node address. An algorithm for path building in a Lambda

network is described in Appendix I.

Unlike conventional networks, it is possible for a request to reach its 

required destination by traversing less than the usual logxN switches. 

(In the extreme, if the source and destination addresses are the same then 

the network need not be accessed at all.) We now wish to know whether the 

ability to take these ’short cuts’ through the network has any effect on 

the network performance for a network of given size and degree. Firstly, 

though, we describe some of the general characteristics of these networks 

which are important to the analysis given in 2.2.3.2 below.
%
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P-2.3.1. Lambda Network Characteris tics

A regular Lambda network of size 2N and degree x consists of two identical 

and interconnected subnetworks located side by side each of which has one 

of the topologies specified in 2.1.1.1. There are thus n=logxN stages in 

the network. In a Lambda network, a channel between two switches, say 

and S21 consists of two independent links - one from S-j to S2 and the other 

from S2 to Sj.

The bottom stage of switches (stage 0) is designated the input/output side 

of the network which provides 2N network input links and 2N network output 

links. Each output link from the top stage (stage n-1) of one subnetwork 

is connected to exactly one input link of the other subnetwork. Note that 

the permutation here is arbitrary, a sufficient permutation rule being, 

for exampie:-

°Vl(J) -> I n- 1  ( 2N-j-1), j=0. .2N-1,

where 0 and I have the same meaning as in 2.1.1. tagged with a ,/'1 if the 

corresponding link is an upgoing link.

The visibility of switch w is defined to be the set of network outputs 

which can be reached by traversing a downward path from w. During path 

building from some source node, S, to some destination node, D^S, 

successive stages of the network are traversed, from S, in the upward 

direction until a switch, w, is reached from which D is visible. The 

request then pivots about w and traverses the downward path toward D. If 

stage n-1 is reached before D has become visible, then D must be connected 

to an output link in the other subnetwork comprising the Lambda network. 

The request is therefore passed over to the other subnetwork via the links 

at the top of the network. Because each subnetwork is equivalent to a 

conventional network when being traversed in the downward direction, the 

request can enter the subnetwork anywhere in the top stage (stage n-1). 

Thus the choice of permutation rule between the two subnetworks at the top



Observe that:-

1. A request only pivots once.

2. A request traversing I^3(j) never traverses 0s(j) since pivoting 

occurs as soon as the destination becomes visible.

But most significantly,

3. If a request is to be steered upwards from some switch, w, then the 

choice of which upgoing output link to take is arbitrary, i.e. all 

upgoing traversals are contention free.

This third point we now prove in the following theorem which relates to 

a Cube-based Lambda network. Similar results can also be derived for non 

cubic topologies.

Theorem 2-1: Let the stages of the network be labelled 0..n-1 with stage 0

associated with the input/output side of the network. Let the 

interconnection topology be that of the Cube i.e.

0 s ^ n - 1 9 • *» js+2»^s+1 ’ ^s* • •»

^sfl^^n-l jsf2 ,'̂0, ŝ» ^1 »'3s*1>)» s=0..n- 2

Let be switch j in stage s, j e[0..N-1], se [0..n-1]. Then: each

switch in stage i, i=s+1..n-1 accessible from W_ * has the same visibility.o, J

Proof: Assume that we select 0~s(a), xj.£a<x(j+1), through which to steer

the request. Let <an-.| ♦••»a&4.2 »aS4.i >as»**»ai »ao> be the base-x expansion 

of a. From the definition of the Cube topology, the request is steered to 

Is+1 (a’), Where af=<an -1 ,..,as+2 ,a0,as,..,a1 ,as+1 >. The stage s+1 

switch associated with this input link is W _.4 whereSt I ̂ a

a*,= <an- 1  >**>as+2 »a0»as», *»a 1 The d°wngoing output links of „

are thus the outputs °s+ifk where k takes all values 

,**,^s+2,a0,as," ,̂ 1 Q=0..x-1. Theselink to the I3(k*) where k*

takes al 1 values ^a^^^,..,a3_̂2 »Q»ci3,..,a^,aQ^, Q=0..x—1.

is arbitrary.



Applying the rule repeatedly for each stage down to stage 0, it is easy to 

+  see that the visibility of Ws+1 >ai» is the set of network outputs labelled

<an-1 »an-2»**»as+2»^s+1 »^s»*,̂ 0>» Qi=0..x-1, i=0..s+1. Generally, the
visibility of each switch of stage t, t=s+1..n-1, accessible from 0~s(a)

(of W s>j), xj.£a<x(j+1 ) is given by <an_ 1 »an_2 »«*>at+i »Qt»Qt - 1  Q1 ,Q0>*

Since â .+ ̂..an_^ is the same for each of the upgoing outputs of W s>j it

follows that these visibilities are the same, i.e. the choice of whichm
upgoing output link to take is arbitrary.

[]

Thus, a sufficient routing procedure is for all requests arriving on I*s(j) 

not pivoting in stage s to be sent out on CT_(j). This is assumed in theo
analysis which follows.

2.2.3.2. Analysis.

In the analysis of Lambda networks we assume the same cyclical mode of 

operation as in 2.2.1 and 2.2.2 above. To simplify the analysis, we 

consider a uniform input load: at the start of a cycle, the probability 

that a request is presented to a network input is p for all inputs. For 

the time being we shall assume that the probability that a request on input 

i addresses output j, i,j=0..N-1 is the same for all j. The effects of 

locality of reference are considered in 2.2.3.2.1. below. Also, in order 

to correctly model the behaviour of Lambda networks, we assume that
%

requests never traverse the same switch port twice. This implies that a 

request steered upwards from stage s to stage s+1 via port P is not 

directly routed from stage s*-1 to stage s back through P. Thus, if the 

requests* source and destination addresses are the same, it is assumed that 

the network is not accessed at all.
♦

In this analysis the principle performance measure is the normalised 

throughput, Tjj» of the network, as above.
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Figure 2-6 shows the layout of one component switch of a Lambda network of 

degree x. Here, the switch is shown with the input and output connections 

separated so that the direction of the flow of requests is from the top of 

the switch to the bottom.

In generating Tjj We are concerned with the mean utilisation of the downward 

links at the bottom (i.e. input/output) stage of the network.

The mean utilisation of the downgoing output links of a switch in stage 

s (say 0S) is dependant on:-

* ]

+

9

Figure 2-6: Lambda Switch Loading.

1. The utilisation of those switch inputs originating from a higher stage 

(stage s+-1 ), i.e. 0S+1.

2. The utilisation of those switch inputs originating from a lower stage 

(stage s— 1 ), say qs_-j*

In addition to the downgoing outputs of the switch (with mean utilisation 

03), the switch also has outputs which are fed into switches in stage s+1.
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The utilisation of these links is, by our definition, qs.

Note that requests arriving at a switch from above will never be routed 

back up again. Consequently, qs is independent of 0s+v

It is convenient to separate the qs_-j terms into two components, qs and rs 

so as to simplify the expression for 0S. rs represents the load imposed on 

the downgoing links of the switch by those requests which pivot at the

* switch and begin traversing the network downwards. Thus,

<ls_1 = qs + rs, s=1 ..n-1 .

Consider now a switch in the bottom stage (stage 0) of the network. At the 

start of a cycle, the probability that the component attached to that 

switch generates a request is p, as defined by the model.

Now, with probability 1/N (assuming a random addressing distribution), the 

destination address will be equal to the source address and the request can 

bypass the network altogether.

# Consequently, the Tq component is:-

p(x-1 )
rQ = ------

N

and the q0 component

Note that rQ+qQ=p( 1-( 1/N)) not p since we have excluded all requests whose 

source and destination addresses are the same.

Now, for each stage encountered going up into the network, the r loads will 

be multiplied x-fold since the visibility of stage s is x times that of 

stage s-1, s=1..n-1. Thus generally, 

pxs(x-1 )
rg = -------- s=0.. n- 1

N
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♦

*

*

*

♦

Similarly, we get for q s : “ 

xs+1
qs = p( 1 ----- ) s=0.. n- 1

N

Note that rs+qs=qs_i as can be easily verified.

One of the boundary conditions occurs at the top stage (stage n-1) of the 

network. Here, in a Lambda network, we expect the value of qn_i to be p/2 

since under the random addressing assumption, exactly half of all requests 

generated in one subnetwork will be ultimately routed to the other 

subnetwork. This is easily verified:-

Qn-1 = P(1-xn)

N
xlog(N/2)

= p( 1 ---------- )
N

N
= p( 1 --- )

2N

= p/2 Q.E.D.

Note that the q n_-| of one subnetwork form the 0n of the other subnetwork so 

that:-

P
^n = qn- 1 = "2

This is used as the starting point for the iteration.

From the values of rs and 0 -̂j the throughput of each stage s switch can be 

found. However, we cannot simply apply equation [2-4] to the problem. 

This is because a request which pivots in stage s (thereby contributing to 

the rQ component) cannot be steered back through the link from which it 

came. Consequently, requests arriving at the switch from below are not 

evenly distributed among the outputs of the switch. This is not true of 

requests which have pivoted somewhere higher in the network, (i.e. the 0S+J)
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so we shall consider, for the time being, just the contribution to 0_w
made by r_.

Consider a single switch in stage s and consider only those requests which 

pivot about the switch and let 0S* be the contribution made to 0g by such 

requests.

If there are m pivoting requests present at the switch inputs then:

1. Pr{a pivoting request is present on the kth upgoing input} = m/x

/x-2\ m
2. Pr{output port k contains request} = 1 - 1  --  )

\x- 1 /

Hence:-
m- 1/ m y  /x-2\ " - \  / m \ /  /x - 2

3. Pr{output k accessed} = ( - Jn - (--- ) 1 + M  “ - )H  - ( --

■ , ■--)
Vx-1 / V x(x-2) /

m

Therefore, we get:-

0g' = Pr{a request exists at an arbitrary output} 

xZ
m=0

- e l -*

= 1 -z (: (rs)m (1-rs)x“m
x- 2

x— 1

,m

m=0

-Zx

m

'x-2\m m
(r3)m (1-rs)x-“

x-1 / x(x-2)
m=0

= 1 - (i - - ------Y (x
\ x- 1  / x(x-2) \m

x\ /r<,(x-2)\ m
.m .(1-r )x“m

x- 1
m=0

H2
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*

Now,
'x\ m x! x(x-1 )! /x- 1

jn / m!(x-m)l (x-m)!(m-1 )I \m- 1

Substituting, we get for 0s»f

(1-rs)x-m

= 1
x- 1

This is, perhaps, intuitive since for pivoting requests, only x-1 of the 

switch output ports are Candidates1 for that request.

Since the requests contributing to 0s+-j are independent from those 

contributing to rs, equation [2-4] can now be applied, which yields:-

x—1

with the boundary cases:-

px11" 1 (x-1 )
0n- 1 = 1 /2 and rn- 1 = ---------N

Figure 2-7 shows the values of TN for conventional interconnection networks 

and Lambda networks for varying x and N. This shows Lambda networks to 

have higher throughput than conventional networks, but, as with 2-channel 

networks, a Lambda network switch requires approximately twice as many pins 

as a conventional switch. Thus, the relative performance/cost curves shown 

in Figure 2-8(b) below favour conventional networks. The benefits of 

Lambda networks, in terms of both performance and performance/cost become 

more apparent when the inherent locality in these networks can be 

exploited.
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Figure 2-7: Lambda Network Performance.

2.2.3.2.1. Effects Of Locality.

Locality in a Lambda network has the effect of reducing the average number 

of stages traversed before pivoting occurs over the number traversed under 

a random addressing distribution. Thus it affects the value of rs defined 

above (and hence the value of qs) for each stage.

In order to provide a simple means of quantifying the locality in a Lambda 

network we assume that Vs - the probability that a request pivots in 

stage s - has a straight line* distribution of the form:- 

vs = PDL + G.(s+1) s=0..n,

where n is the number of stages in the network, is the probability of

direct locality i.e. the probabilty that destination=source, Vn is the 

probability that a request pivots implicity (i.e. by traversing the links 

at the top of the network), and G is the line gradient, subject to:-



n

Z [2- 8]DL T / "34-1
3 = 0

rQ is then given by 

>-3 = PV3
By rearranging equation [2-8] we have:- 

1 / g (n+1) \

Pdl= ;;; _ \~r~)
G is maximal when PDl ~>0 and minimal when PDL approaches the value of Vn 

when G is maximal, i.e.

2
Gmax = “ “ and Gmin = ” G max*(n+1 )(n+2)

Therefore, the locality in the network can be specified by a single 

parameter, A, - 1.£.A<J from which we get:-

2 A

(n+1 )(n+2 )

1 G(n+1)

n+2 2

Thus, the more negative A is, the greater the locality described. Note 

that with A =0, Ppjj=Vs=( 1/n+2), s=0..n.

G = A G

DL

Figure 2-8(a) compares the performance of conventional networks, 2-channel 

networks and ’biassed' Lambda networks with varying values of A, and

• Figure 2-8(b) shows the relative performance cost curves for the same 

configurations in addition to those of Lambda networks under a random 

addressing distribution. As with k-channel networks, the larger switches 

required to implement Lambda networks affects the cost more than the 

benefits of the network affect the performance. Consequently, the

♦  performance/cost curves favour conventional networks for networks of any 

practical size.
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Network Size

(a) Performance Comparison With Conventional Networks.

*

*

p

x =-i 
x=-\ 
x =0
k=2

A = + l

Unbiassed Lambda

Network Size

(b) Relative Performance Cost Curves.

Figure 2-6; Lambda Network Performance With Locality.
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2*2A The Analysis of Asynchronous Svataina

The previous sections of this chapter have been concerned with the analysis 

of networks which operate cyclically (and consequently synchronously). We 

now address the analysis of networks in which all activity (path building, 

data transfer and path release) in the network is asynchronous. Such 

networks are beneficial where the volume of information required to be sent 

through an established channel varies from one transaction to the next. In 

such systems there is no notion of a network cycle, and as a result the 

corresponding analysis is more complex.

We begin by describing the model:

1. We concern ourselves solely with circuit-switched networks in which a 

physical channel is established across the network before information 

is passed. Packet switching has been examined in [JuD81].

2. All network input/output ports are assumed to be connected to system 

components. Components attached to the input ports of the network 

(source components) may present requests to the network at any time. 

The time between the completion of one request and arrival of the next 

request is assumed negative-exponentially distributed with mean 

t̂ . All source components are assumed identical in this respect.

3. Once a channel has been established between a source component and a 

destination component (i.e. one attached to a network output port), 

information is exchanged for a mean time of tx and the channel is then 

released. The channel-hold time (i.e. exchange time) is again assumed 

to be negative-exponentially distributed.

4. Requests remain in the network until they have successfully reached 

their addressed destination node. A blocked request is not removed 

from the network.
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5. The switching times are assumed to be insignificant in comparison to

• the channel-hold time and may therefore be ignored.

The principle performance measures of interest are the network bandwidth 

(in requests completed per second) and, as in the above sections, the 

acceptance probability, PA.

A similar analysis has been attempted in [WLL82] although this assumed a 

synchronous control mechanism in which blocked requests were assumed lost.

#

*

Z.2A.1 The Analysis of an Asynchronous Crossbar Matrix.

In this section we derive exact results for both the bandwidth and 

acceptance probability for an asynchronous full-crossbar network. For 

completeness, we shall consider an asymmetric crossbar comprising x input 

ports and y  output ports as shown schematically in Figure 2-8(a). To model 

the circuit-switched nature of the switch operation, we distinguish active 

input ports, which currently have a submitted request pending completion, 

from inactive ports, which are awaiting the next request arrival on that 

port. An inactive port is modelled as a server with service rate:

A= 1/t±

Channel communication is modelled by viewing each output port of the switch 

as being a server with service rate:

A* = 1/tx

Blockage in the switch is modelled by considering each server to have an 

associated queue of capacity x-1. Requests which attempt to obtain service 

from a busy server join the queue associated with the server.

When the current request completes service, a queued request is arbitrarily
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chosen and serviced. The request currently in service may not be pre- 

empted by any arriving requests. A request which completes service 

effectively reactivates the input port on which the request arrived. This 

port then becomes a candidate for further arrivals. Figure 2-9(b) shows a 

queuing network model of the switch.

To simplify the analysis, we reduce this network to a two-stage feed- 

» forward closed queueing network as shown in Figure 2-9(c). Arrivals to the

switch are imagined as being generated by a single server (SI in the 

diagram) whose inputs are those requests fed back from the output ports of 

the switch on completion.

y-i

(a) Switch Schematic

(b) Internal Queueing Model.

^ nl n2
(c) Closed Feed-Forward Equivalent Of (b).

Figure 2-9: Queueing Network Model For Single Asynchronous Switch.
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The state of the system at time t is a tuple <n-j,n2> where n-j is the number 

of requests associated with S1 and its queue, Q1 (i.e. the number of

inactive input ports in the switch), and n2 is the number of requests 

either in service or currently queued for service (i.e. the number of 

active input ports in the switch). At all times n-j and satisfy: 

n̂  + n2 = X

The arrival rate of the reduced model (i.e. the service rate of S1) is 

state dependent and is given by:

A( n) = An (0.£q£x)

The composite service rate, U, for S2 is rather more difficult to obtain 

since it must include the way in which the (n2) requests are distributed 

among the servers in Figure 2-9(b). We state without proof a result given 

by Harrison [Har83]:

Let P(n-j,n2) be the probability that the system is in the state <n^,n2>. 

The balance equation for this system is given by:

We use the well-known result given in [Kob78] namely that at equilibrium 

the steady state probability, 7T(n̂  , ^ 5  of being in state <n^,n2> is:

i W
U(n) = ((Kn£x)

n+y-1

n2)C /V(n1) + U(n2) ] =

P(n1+1 ,n2- 1 ) A ( n 1+1) + P(n.,-1 ,n2+1 )U(n2+1 )



*

%

*

G is a normalising constant which ensures that the probabilities sum to 

unity, i.e. :

G = z (it (ft is
all <n-j,n2>\ m=1 

n1+n2=x

n= 1

Now:

n1 n

n  = TI
m= 1 m= 1

and:

■ (!)  •
Am \ ^ /

IT is - TT
n= 1 n= 1

n2
m-y- 1 / 1  \ / n2+y- 1

nyv \yv-j V y- 1

Thus:

'1

7T( n-j, n2 )

1 / 1

V  \y^,

n2+y- 1

y- 1

ZG1 v r* \x_i 1 / x - i + y ' 1

A /  \ y p) i  i \  y-1
i=0

(n2+y-1 )I
-  [ 2 - 9 ]

i-n<

n1! n2! z ;
(x-i+y-1 )1 

! (x-i)!

1

A

x-n2-i

i=0

(Note that the balance equation is valid for anv work preserving queueing 

discipline.)
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Now that we have the steady-state probabilities, we can derive equations

for the switch bandwidth and acceptance probability.

The switch bandwidth is simply the average number of requests serviced at 

the second server of Figure 2-9(c) per unit time, and is given by: 

x

BW 7T(x-n,n)

n=0

U(n)

Expanding the

BW = y fi

71 and U terms, this becomes: 

x
n2+y-1 .

(x-n)! (n—1 )! E (x+y-i-1 )! 

i! (x-i)!

W

A

m-i-x

To find the equation for acceptance probability, we must use both the 

original and the reduced models of Figure 2-9. Equation [2-9] gives us the 

equilibrium probability of being in state <n-j,n2>. The arrival rate in 

this state is given by /V(n^). The acceptance probability is the 

probability that an arriving request immediately goes into service at the 

switch outputs. Given that we are in the state (n-j,^), let }^(n2) be the 

probability that an arriving request immediately selects an idle server.

Let q^ be a random variable denoting the number of requests at switch 

output i, i=0..y-1 .

Without loss of generality, assume that an arriving request, R, selects 

switch output 0 and let H=<N^,N2 > be the random variable denoting the 

equilibrium state vector with R removed.

The acceptance probability can then be expressed as:-



PA = Pr{q0=0)

* x—1

= £  Pr(q0=0 I Jl= <x-n-1 ,n>) .Pr{J[=<x-n-1 ,n>}
n=0 

x—1

= y  | ]/?(n).7r(x-1-n,n)

n=0

from [LaR80].

Now consider just the output side of the switch and the case where there 

are n<x requests currently either in service or queueing for service. The 

state of this subsystem may be viewed as a vector: 

n(n) = <rQ, r1 , ..,ry_.,>

where r^ represents the total number of requests at the server and in tne 

queue of service station i, i=0..y-1. Clearly:

y-i

Now, since each request passed through the switching centre of Figure 

2-9(b) is routed to service station i with probability 1/y for all 

i=0..y-1, the visitation rate [Kob78] is the same for all servers. Since 

each server has the same service rate, /n, the ratio of visitation rate to 

service rate is also the same for all servers. Thus the extended states:

<x-n,rQ,r1 ,..,ry_1>, n=0..x

(which includes the number of requests present at the inputs of the switch) 

each occur with equal probability.

The equation for }̂ (n) in equation [2-10] consequently reduces to a ’ball- 

in-bag’ problem, namely:

53



|^(n) = Pr { a server is idle given there are n requests already at 
the outputs of the switch}

Number of ways of arranging n balls in y-1 bags 

Number of ways of arranging n balls in y bags

7-1 

y+n- 1

Observe, now, an interesting result when the switch is saturated, that is 

when A->co . Here, requests which complete service are immediately 

resubmitted to the switch, so that 7T(0,x) approaches unity. In the 

limiting case, we have:

y- 1
pa -> J V n  = ----

x+y- 2

Consequently, for square switches, in which x=y:

PA -> 1/2 as A -> co

Note that this is independent of the switch size!

It is interesting to compare this result with the same figure for cyclical 

systems. In the latter, PA is not the same for all sizes of switch but 

does have an asymptotic limit given by:

lim

X—> 00

1
-> 1 - - = 0.632 [ JuD8 1 ]

e
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In Figure 2-10 the network bandwidth is expressed as the completion rate 

per switch port and is normalised with respect to the service rate, fi. The 

absolute switch bandwidth is obtained by multiplying the normalised 

bandwidth (BWjj for a given value of N and ) by x/j . Figure 2-10 also

shows the behaviour of with varying N and Xifi ratios.

Figure 2.-1 Q Asynchronous Full-Crossbar Performance.

2 .2.4.2 Towards Asynchronous Multistage Network Analysis

The above analysis provides exact results for the bandwidth and acceptance 

probability of a single asynchronous switch. However, extending the model 

to cover multistage networks presents a problem which, to date, we have 

been unable to solve. Consider, for example, a two-stage network. To
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obtain the network bandwidth and acceptance probability we can reduce the 

network to a simple two-stage queueing arrangement with each stage 

corresponding to one stage of the network. Each of these queuing stages 

can then be modelled by a two-stage feed-forward queuing network as was 

done above. This reduces the size of the state space, and the balance 

equations can be easily written down.

Provided we know the arrival rate of requests to the second server then we 

can apply the results of 2.2.4.1. to obtain the overall network throughput 

and acceptance probability. This arrival rate, however, depends on the 

departure rate from the first server, which, in turn, is dependent on the 

effective service rate of the second server (as opposed to the devices 

connected to the outputs of the second server), which we don't know.

So, we end up with an unknown value in the system of equations, namely the 

rate of traffic flow between the two stages. This problem occurs in all 

multistage networks and this has prevented the analysis of such networks. 

Although there appears to be no obvious solution to this problem, further 

research may yield, at least, some reasonable approximations. We leave 

this as an open question.

*
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CHAPTER 3

Self-Clocking Networks

3.1. -Network Design Technimig*.

Figure 3-1 shows a schematic diagram of a switching element, taken from 

[Pat79]. This design has been widely adopted and forms the basis of all 

currently proposed network designs although a number of extensions to the 

control plane have been proposed in [LiW82, MAS81, WLL82]. A network of 

such devices operates as follows:-

At the start of a network cycle, all source components wishing to submit a 

request to the network place their respective destination addresses on the 

data busses of the switching elements to which they are connected at the 

top stage of the network. (Ordinarily, each network input port is 

associated with only one source component.) The request lines (REQ in the 

diagram) are then raised on the switch control inputs. All requests 

currently present at the inputs to the network then 'ripple* through the 

network until either they reach their addressed outputs successfully or 

they become blocked due to competition for a common switch output link 

somewhere in the network. Each switch uses one bit from its data bus 

(which holds the network routing address) to specify the switch output port 

required by the request. If the request can be successfully steered to 

this output port, then both the control and data lines are switched through 

accordingly. The REQ line then propogates through to the next switch 

(attached to that output port), indicating to that switch the presence of a 

request on its corresponding input. Since the data bus is also switched 

through to this switch the network routing address is also made available 

to it. This switch then undergoes the same operations, this time using a 

different bit in the data path to select the device. If, on the other 

hand, the request is blocked i.e. if the switch output port it wishes to
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use is currently busy then the 'request blocked' (b) line (which is 

ordinarily LOW) is raised. This signal propogates back to the source node. 

After a time, dependent on the size of the network, the request will reach 

its designated output port (if, of course, it has not been blocked during 

the addressing process).

Ordinarily, the network operates synchronously, that is, all requests are 

presented to the network at the same time. The model has been extended 

slightly, so that network addressing and data transfer is controlled by 

alternate cycles of a two-phase clock [WLL82]. The JJxH switch design 

described in [MAS81] is architecturally similar except that at each stage 

two bits from the data plane are used to select a device.

The advantages of this approach are:-

1. Because the entire network routing address is available on the data 

bus during path set up, the switching time is very fast and the logic 

required to select a switch is very simple. Nearly all the complexity
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2 . Because the data path is wide (limited by pin constraints), the time 

taken to transfer data through an established channel is small.

Consequently, this design can lead to very high performance networks.

However, there are serious drawbacks to this approach which become more

significant as the size of the network is increased:

1. As a consequence of employing wide data paths to carry the routing 

address and through-channel data, the size of switch which can be 

constructed from a given size of package is limited. This means that 

very large numbers of switching elements are required to implement a 

network of any significant size. Multiple data planes which share the 

same control signals may be employed, but this only makes the problem 

worse; If k data planes are used then the network cost increases by 

approximately 0(k).

2. Because the number of switches and, more significantly, the number of 

interconnections is so high, the resulting network is inherently less 

reliable. (Reliability is discussed in Chapter 4.)

3. As the network gets larger and the number of stages increases, the 

problem of skewing in the data path becomes a significant problem. 

This is particularly true of multiple-plane networks where the data 

path is distributed over many independent ICs. This inherently limits 

the rate at which data can be transferred through an established 

channel.

4. Because the network is synchronous, a global control clock must be 

provided for control. Some implementations require individual 

switches to be strobed, for example [WLL82]. As the network is made 

larger, clock distribution becomes a significant problem.

5. Because the network cycle time is dependent on the size of the 

network, an extension to the network will require an adjustment to the

lies in the bus gating logic.



source timing logic.

So, whilst this approach may be suitable for small scale, static, SIMD and 

MIMD machines, we argue that their use in the very large-scale, extensible, 

multiprocessors which are of interest here is limited.

3.1.1. Serial Switching
We observe from the description of the switch of Figure 3-1 that:-

1. During path set up, the data bus serves only to 'hold' the network 

routing address for the currently selected device.

2. During data transfer, the switch select address and 'blocked status* 

lines in the control path of each switch are idle.

We now introduce the concept of serial switching which is a technique aimed 

at making more efficient use of the available pins on a switch package. In 

a serially-switched network, there is no. explicit data path. Instead, the 

data path and control path are unified so that they both share the same 

pins on a single package; the width of the data path is inherently reduced 

as a result and there is only one network plane. During path set up, the 

control lines control network addressing and path building; during data 

transfer, some of the control lines change roles and become data transfer 

lines. The result is that for a given size of package, we are able to 

imbed a significantly larger switch than is possible with conventional 

switch design techniques, and each pin in the control/data path is fully 

utilised both during path set up and during data transfer.

The immediate consequence of serial switching is a reduction in network 

cost: fewer stages and fewer switches per stage are required to implement

a network of a given size. Network contention is reduced, and, perhaps 

most significantly, the network is made inherently more reliable, 

requiring fewer components and far fewer interconnections than existing 

implementati ons.



Although reducing the width of the data path inherently reduces the 

switching speed and the through-channel data rate, this is offset by the 

fact that there is now less contention in the network. For a given size of 

package, reducing the width of the control/data path by a factor of k means 

that the size of switch which can be accomodated in that package is 

increased by a factor of approximately k. For a given size, N, of network, 

♦ this reduces the network cost by a factor of approximately:-

klogxN

l°gkxN

which is >k. In addition to the reduced contention in the network the 

problem of relative signal skew is also reduced (in the limiting case of 

bit serial control and communication the skew problems are eliminated 

altogether). Thus, serially switched networks offer the potential for 

improved cost/performance when compared to conventional implementations.

* 3.1.2. Self-Clocking Networks
Let us now take a closer look at the implications and problems associated 

with the serial switched approach:

The ability to construct large switches has obvious benefits in terms of 

network cost, contention and reliability, but it offers less flexibility

* in the choice of network size. A regular network of degree x may only be

of size x11, n=0,1,2.. If intermediate sizes are required then irregular

or 'hybrid1 networks must be made possible.

In a serially-switched network, because there is no data bus to hold the 

^ network routing address during path set up, the individual switch select

addresses(log2x bits for a switch of degree x) must be loaded from the 

source on demand. (The network routing address could be passed from switch
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to switch but this is unnecessary and time consuming and requires buffering 

logic to be provided in the switches.) If the network has an irregular 

topology, then clearly each address fetch may require a different number of 

select address bits to transmitted by the source. Somehow the source must 

'know* how many bits are required by each fetch operation. This presents 

an interesting problem: the source node cannot determine how many bits are 

required on each address demand unless it has a-priori knowledge of the 

topology of the network. If the stages of the network are not of a fixed 

degree then the source must further take into consideration where the 

request is being sent to since it may encounter different sized switches in 

transmitting to different destinations. Consequently, the source node (or 

its interface to the network) would have to be very complex, performing 

synchronisation on each demand, predetermining the address pattern to be 

sent to the network based upon the network topology and destination node, 

and further transmitting the right number of bits to each switch for it to 

be selected. The partitioning of the routing address would most likely 

have to be done in software which introduces a time overhead in addition to 

the hardware overheads required for the control of the network.

The proposed solution to these problems lies in a modest extension, not to 

the source nodes or their interfaces, but to the component switches of the 

network. A Self-Clocking network exploits the fact that successive select 

addresses for successive stages of a network are held contiguously in the 

network routing address regarldess of exactly how many bits are required by 

each switch on a given path. In a self-clocking switching element, a 

'demand1 for a select address consists of a pulse train or burst clock 

equal in length to the number of address bits required to select that 

device. By maintaining the routing address in a shift register (or similar 

device) at the source, this pulse train can be coupled to the shift 

register clock input so that the required address component is

automatically extracted from the register. This will also align the
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♦

remainder of the routing address at the 'front* of the register for 

subsequent switches to clock out. Observe that:-

1. No synchronisation or control clock is required at the source. The 

network itself provides the clocks required to control the 

transmission of address bits from the source register.

2. The scheme functions independently of the size (which is bounded by 

the length of the source address register) and topological 

configuration of the network. Each switch 'knows* its own size and 

can therefore provide the correct number of burst clock pulses.

3. In theory, only two wires are required to perform the address fetch 

operation: one to transmit the pulse train back to the source, and one 

to carry the select address back to the switch. After path set up, 

the burst clock and select address transmission lines may be coupled 

to the source and destination components to form a bidirectional (full 

duplex) serial communication channel.

4. The resulting network is naturally asynchronous. No global control 

clock is required, so the problems of exact phase and frequency 

matching of the control clocks does not arise. Note that the 

asynchrony is achieved with very modest overhead. The burst clock is 

simple to implement and overcomes many of the problems associated with 

asynchronous control.

In the next section, we clarify these ideas by describing an implementation 

of a network based upon these design techniques. Note that serial 

switching and self clocking design techniques may be readily applied to k- 

channel and Lambda networks as described in Chapter 2. The description 

which follows, however, assumes a conventional, single channel network 

implementation since this configuration yields the minimal pin count per 

package and results in the best performance/cost figures when compared to 

the other two variations.
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3*2.* Jhs. design _q£ the XS1 network switching deylgg
The XS1 was originally designed as a building block for a network used for 

device interconnection in the prototype ALICE reduction machine [DaR8 l.l. A 

schematic diagram of the machine architecture is shown in Figure 3-2. The 

principle system components are reduction (processing) agents and 

intelligent storage segments. Load sharing is done via a distribution 

network which is ring based; agents and storage segments communicate via a 

switching network which is composed of interconnected XS1 devices.

The characteristics of the network are summarised below:

1. The network employs serial switching and self-clocking protocols as 

were described above.

2. The network is circuit switched, i.e. physical channels are 

established through the network between the source of a request and 

its designated destination. This enables arbitrary volumes of data to 

be transferred through the network and also facilitates bidirectional 

(full duplex) communication. The return channel can also be used for 

concurrent error detection. The mechanisms for achieving this are 

described in Chapter 4.

3. The network is asynchronous. There is no global clock to control 

network operation. Source components may submit requests to the 

network at any time convenient to them. Individual switches may 

consequently receive requests on their input ports at any time. Each 

switch in the network may, if necessary, operate at a different speed.

4. The network is arbitrarily expandable. Since all switches in the 

network function asynchronously, there are no timing or 

synchronisation problems associated with the expansion process. The 

prototype ALICE implementation is based around a 64 port network 

although systems of size 4 , 16, 64, 256 etc. are easily obtained. 

Note that XS1 is a 4x4 switching element.



5. The resulting network design philosophy yields inherent structure

independence. This basically enables the system and network 

components to function without knowledge of the topological structure 

or size of the network. This is explained in more detail in section

3.2.4.

3.2.1 Descriptionthe XS1
The XS1 is a custom-designed self-clocking network switching device of 

degree 4 fabricated in Emitter-Coupled-Logic (ECL) technology. The device 

has no explicit data path, i.e. it is a serially switched device. The XS1 

forms a building block to enable arbitrary sized interconnection networks 

to be constructed.

F ig u re  3 - 2 :  The ALICE M achine S c h e m a tic .



The XS1 has four upper (U) ports and four lower (L) ports, and functions to 

enable a 1 :1 coupling to be achieved between any arbitrary pair of U and L 

ports. At most one U port may be connected to a given L port at any time. 

The device is logically divided into four slices labelled 0..3. Each slice 

has associated with it one U port and one L port. Internally, each slice 

is connected to all other slices in the device, i.e. Ui no  ̂ necessarily 

always coupled to L̂ . Figure 3-3(a) shows a schematic diagram of the XS1 

and Figure 3-3(b) shows the control lines associated with each U and L 

port. These consist of five wires labelled A, B, C, D and R. C, D and R 

are forward-directed (i.e. from U to L); A and B run in the opposite 

direction. In Figure 3-3» these control lines are tagged with I and 0, for 

'input' and Output*, according to whether the line forms an input line or 

an output line to the slice. These five wires are now described.

DI ■ C l ,  Rl ;  AO, BO,  
A A

V V *

S L I C E

7T

v V Y
DO, COf- RO, AI • B l,

(b)

*
Figure 3-3: XS1 Schematic

3.2.1.1. The D (Data) and C (Clock) lines

The D and C lines are path-matched data and clock lines which serve two 

purposes. During path building these wires form part of the control path 

of the XS1. The D wire carries the address bits required to select the 

device. Since the XS1 is of degree this select address always consists
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of two bits. However, to simplify the on-chip logic, a start bit is also 

transmitted with each select address. Thus each time an XS1 is selected, a 

three-bit packet is issued to the appropriate port of the device.

The C wire carries a clock signal which is one half cycle out of phase with 

respect to the signals on the D wire. This enables the select address bits 

to be clocked into the XS1 without the need for a data-synchroniser on 

chip. This again simplifies the internal logic of the device.

Once a path has been established through the network the D and C lines form 

a two-line matched-path communication channel between the source node and 

the addressed destination node. Because the wires are delay-matched, they 

can be used to transmit blocked* data through the network. Exactly how 

these wires are used is dependent on the implementation.

3.2.1.2 J M  R (Reset) Line

The reset line is used in much the same way as the request line in 

conventional switch design, the only difference being that it is active 

LOW. The RI input of an inactive U port is always HIGH, holding the port 

in its reset state. The arrival of a request on that port is signalled by 

a transition in the RI line to its set state (i.e. LOW); that port is then 

enabled to receive select address bits on D and C. RI is held in this 

state for as long as the source node requires the channel through the 

network. The U port is released by setting the RI line back to its reset 

state. The associated U port then remains inactive until RI is set LOW by 

some subsequent request. Note that at anv time during the path building or 

data transfer phases, the RI line may be set HIGH. That is, the XS1 allows 

the asynchronous cancellation of requests.

3-2,1.3, The A (Address Valid) 11ns.
As with the D and C lines, the A line has a dual role. During path
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building, the A line acts as an addressed value (or acknowledge) line which 

is set HIGH when a select address has been clocked into the XS1 through the 

D and C wires, and LOW when a path through the device has been successfully 

established. The two select address bits transmitted to the XS1 on the D 

wire denote the address of the L port through which the associated request 

is to be steered. The A line is set LOW as soon as this L port becomes 

free. In theory, this protocol alone (which we refer to as the A-protocol) 

is sufficient for network control.

Once a path has been established through the network, the A wire provides a 

return channel from the addressed destination node back to the source node.

3.2.1.4. The B (Burst) line

The B line provides the XS1 with the self-clocking properties which were 

described earlier. When a U port is inactive, the associated BO line is 

held in its passive state, which is LOW. When a request arrives on the U 

port, the corresponding RI line transits from HIGH to LOW as already 

described. This transition causes the XS1 to administer a three pulse 

burst signal back to the source on the B wire. If the network routing 

address is held in a shift register at source, then by coupling the BO wire 

(at the topmost stage of the network) to the clock input of this shift 

register, the required select address bits are automatically clocked out of 

the register as and when the currently selected XS1 device is ready to 

accept them. This protocol is referred to as the B-protocol. Note that a 

three pulse signal is issued to enable the required start bit to be clocked 

out as well. This assumes of course that the start bit(s) have already 

been introduced into the network routing address. This is clearly awkward 

to maintain, particularly if subsequent implementations allow hybrid 

topologies to be used and arbitrarily changed according to the needs of the 

system. So, the A and B protocols have been designed to allow Automatic* 

start bit insertion which can be achieved by using both the A and B



protocols in conjunction. A simple extension to the source/network 

interface enables the first pulse of each pulse train appearing on the B 

wire to be 'picked off' and used to generate the required start bit. This 

combined protocol (which we refer to as the C-protocol) is described more 

fully section 3.2.5 on interface design.

To provide complete symmetry in the device, the A and B lines are also 

delay-matched through the XS1. Consequently, once a path has been 

established through the network, the A and B lines form an exact mirror of 

the D and C lines, except that they run in the opposite direction, i.e. 

from the destination to the source. Their use is, again, dependent on the 

implementation.

By overlaying the data and control paths in this way we obtain optimal 

utilisation of the available pins on the package. The XS1 is housed in a 

single 48 pin DIL ceramic package.

#

♦

♦

3«2.2. The XS1 routing cycle

A regular interconnection network can be produced by interconnecting the U 

and L ports of a number of XS1 devices according to one of the topological 

rules described in Chapter 2. To obtain a single channel through such a 

network from a source node (SCE), to some destination node (DST), exactly 

one switch in each stage of the network must be selected. The XS1 routing 

cycle describes the sequence of events which take place in order for a 

coupling to be made between a U port and an L port of each switch on the 

path between SCE and DST.

Consider now set-up depicted in Figure 3-4. Here, the network contains 

three stages, S1, S2 and S3, labelled sequentially from top to bottom. The 

three switches which occur on the path between SCE and DST are labelled X1, 

X2 and X3 as shown.
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Consider now the routing cycle of X2 in the diagram. Suppose that device 

XI has just been selected and that the request from SCE has just arrived 

at the inputs to X2. Assume that the U port on which the request arrives 

is in slice i of X2, and that is to be coupled to Lj for some j. 

Initially, the lines of port i are in their 'passive* states i.e. 

RI^HIGH (Ui in reset state); DIi=HIGH (no select addresses have yet 

reached X2); CI^rHIGH; BO^=LOW; AO^=LOW (U^ is ready to receive a 

request) . ̂

Figure 3dLL Path Building

The routing cycle of X2 then proceeds as follows (Note that the discussion 

assumes the use of the full self-clocking (C) protocol for network 

control.):-

1. RI^->LOW. At this point X1 has become transparent and the output 

signals on in the diagram are those present at SCE.

2. The transition in RI^ enables U^. The burst signal, BO^ is then 

generated by the device. At SCE, the first pulse in BOjL is used to 

generate a start bit (which is a 0); the remaining two pulses clock

 ̂ (The i subscript signifies that the control line is in slice i.)
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select address bits from a shift register at SCE.

3. The burst clock is reflected back into the network on the C line at 

the source together with the start bit, and select address bits from 

the shift register on the D line. The leading edge of the burst 

pulses clock out select address bits from SCE, while the falling edge 

of the reflected burst pulses clock the address bits into X2.

4. The three bits arriving on DI^ of X2 are clocked into a three bit 

internal register. The address valid (A) line is raised when 

the start bit hits the end of the register.

5. now attempts to 'claim1 Lj (the address, j, is held in the 

internal register). A global engaged status line Ej indicates the 

current status of Lj. If Lj is currently engaged, i.e. if there exists 

a request on some other U port of X2 which is currently coupled to L..,J
then the request on is blocked. When Lj is released, may 

contend for it with other requests waiting on the release of L̂ . The 

XS1 employs a dynamic-priority, starvation-free arbitration mechanism 

which guarantees a maximum upper bound on the blockage time for a 

given request if the request is held in the 'wait* state by SCE. This 

is described below.

6. As soon as Ui successfully claims L-, E. is toggled marking L- as 

'busy*. All lines on are then coupled to the corresponding lines 

on Lj, i.e. RIi->ROj, DIi->D0j, CIjL->C0j, AIj->AOi and BIj->BO±. 

Coupling AOj to AO^ causes a transition to be observed in the AO line 

at source. This prepares SCE to generate a start bit on the first 

pulse of the next burst clock (in this case from X3). Coupling RI^ to 

ROj causes a transition in the RIm input to X3. X3 then undergoes a 

similar routing cycle to that of X2. Note that X2 is now transparent.
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1*2*2*. 1. The End-Of-Path Protocol

Once X3 has been selected, the R0n output line in the diagram (which is 

linked directly to DST) makes a negative transition from HIGH to LOW. This 

signals to DST the presence of a request at its associated network output 

port. DST then responds by issuing a single pulse on the corresponding B 

wire, whilst holding the A line LOW. This is observed back at SCE and 

causes an interrupt to be issued (possibly to the source processor). SCE 

and DST are now directly connected via the C and D lines in the forward 

direction, and the A and B lines in the reverse direction. The network is 

now transparent to both SCE and DST, and they may communicate freely in 

both directions across the network.

The path through the network is held for as long as is required to complete 

the conversation between SCE and DST. When this conversation has ceased, 

SCE releases the path by setting the RI line HIGH back at X1. This 

immediately disengages all the U/L couplings made by the request. L̂ , Lj 

and Ln of X1, X2 and X3 respectively may then be fclaimedf by other 

requests awaiting their release. SCE is then free to submit a further 

request to the network and DST is free to receive further requests from the 

network.

1*2.1. XS1 Logic
One of the major problems associated with the operation of the XS1 is 

arbitration. Because the four U ports in the device operate asynchronously 

there is the problem of two requests, on different U ports, both trying to 

claim the same L port simultaneously. This is resolved by means of a 

system of arbitration clocks which control the activities of each slice. A 

single externally generated high speed clock, 0X, is driven on chip and 

separated into four internal clocks, These clocks are arranged so

that 0if i=0..3, is HIGH on only one in every four cycles of 0X. 

Furthermore, the clocks are phase shifted so that no two clock signals are
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ever HIGH at the same time. This set up can be viewed abstractly as a 

single *token* which is passed cyclically around the four slices in turn, 

i.e. from slice 0 to slice 1 to slide 2 to slice 3 and then back to slice 0 

again. The arbitration protocol is simple: All incoming requests are 

synchronised with respect to 0X and the U port of slice i, i=0..3, may

only claim and release L ports when it has the token, that is, when is 

HIGH. Both claiming and releasing of L ports is done on the rising edge of

* which has two important consequences:

1. Since the 0^ are distinct it is not possible for two U ports to claim 

the same L port simultaneously.

2. The L port release timing guarantees that arbitration is starvation- 

free. If Uj releases L- it can only do so if it has the token. When^ J

Lj has been released, the token is passed on to the neighbouring slice 

of slice i in the chain. cannot now perform another claim

operation until it has the token again. Clearly, if other U ports 

wish to claim L̂ , they are all guaranteed to be given the chance since 

the token must flow through them before returning to slice i.

• The arbitration is said to have *dynamic priority* since an arriving 

request can *jump the queue* for a busy, and already demanded, L port if 

the U port on which it arrives happens to be *closer* in the token chain to 

the current owner of Lj than any existing blocked requests for Lj. This 

arbiter involves minimal on-chip logic complexity whilst still ensuring

# stravation-free characteristics. Simulations have shown that the resulting 

network throughput is indistinguishable from that which would be 

experienced as a result of employing a more complex first-come-first-served 

arbitration scheme. This is predictable since the arbiter is work 

preserving in the queue-theoretic sense.

All incoming requests on a U port must be synchronised with respect to 

these arbitration clocks. The arbitration clock generator circuit is shown 

in Figure 3-5.
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Figure 3-5: The Arbitration Clock Generator

A schematic diagram of one of the four slices of the XS1 is shown in 

Figure 3-6. A slice contains four types of component each of whos* 

operation is now described:-

Figure 3-6: XS1 Slice Schematic.

7H



3.2.3̂.1 -The Address .Generation .Unit, £
The RI, DI and Cl inputs to in the device are all inputs to the 

corresponding G unit. The G unit is responsible for acquiring select 

address bits from the source node. The burst clock generator is present in 

G, as is the select address shift register. Figure 3-7 shows the logic 

diagram for this unit. The burst signal is generated from the two 

bistables and the four input OR gate at the top left of the diagram. The 

OR gate shown, passes 0X for exactly three cycles after which it is 

disabled by the (3 output of the second bistable. The three bistables in 

the centre of the diagram form the select address (and start bit) shift 

register. The two address bits, ADO and AD1 are further latched by the two 

buffers shown at the top centre of the diagram. When loading the select 

address, the arrival of the start bit (a zero) at the far end of the shift 

register generates the address valid signal, ADVS which is ultimately

flDUSi

flDUSi.

Figure 3-7r The Address Generation Unit



routed back to the source on the AO wire. ADVS is also buffered. ADVS, 

ADO and AD1 must be buffered in this way so as to enable a new set of 

select address bits to be clocked into the device whilst the L port claimed 

by a previous request is being released. A full description of the XS1 

timing may be found in [CrF83J.

■̂2.3.2. The Arbitration Unit*. A
A schematic diagram of the arbitration unit is shown in Figure3-8. The 

inputs to the arbitration unit are the external RI line, the ADVS, ADO and 

AD1 lines generated by the G unit, and four L port engaged-status lines

Eq -.Ê  which are global to all four slices. If Ej is HIGH, then Lj is 

currently *busy' i.e. there exists some currently coupled to Lj.

*

*

Figure ^-8 ; The Arbitration Unit.

The arbitration unit simply examines the status of the addressed L port on 

each arbitration clock edge, i.e. each time the * token* passes. If the 

corresponding E line indicates that this port is free, then the port is
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claimed, and the corresponding E line is set HIGH indicating to other 

requests in the device that that port is now engaged. When this claim has 

been successfully achieved, one of the select lines, Sq. ^  in the diagram, 

is raised. This transition results in the lines on the U port being 

coupled to the corresponding lines on the addressed L port. When this port 

is eventually released, the coupling is broken and the arbitration unit 

waits for the next appropriate arbitration clock edge (i.e. it waits for 

the token) before lowering the relevant E line. Whilst this is being done, 

another set of select address bits may be arriving in the G unit. The ADO, 

AD1 and ADVS lines must be held stable during this time, hence the double 

buffering in the G unit.

k

»

3«2i3.3«. The Pas3 (P) and Multiplexer (M) Units
The pass and multiplexer units contain the logic necessary to couple 

together an arbitrary pair of U and L ports. The required couplings are 

specified by the select lines generated by the arbitration unit. A HIGH 

signal on causes the five wires associated with to be linked to the 

corresponding wires of Lj. The multiplexer units here are 5 to 1 

multiplexers. Before the device has been selected by a request, the 

address valid and burst signals (internally - the ADVS and BRST signals) 

must be propogated back to the source on the A and B wires respectively. 

The extra input to these units enables this to be achieved whilst retaining 

the delay-matched property of the A and B lines through the chip.

A more detailed description of the internal logic of the XS1 together with 

timing diagrams explaining the interaction between the slice components and 

other XS1 devices may be found in [CRF83].

Although we have adopted a very narrow data path for the device (two wires 

in either direction), the routing cycle time (i.e. the time taken to 

request a device, fetch the select address bits, perform arbitration and
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achieve coupling between and U and L port) is extremely fast (85ns without 

blocking). The A,B, C and D lines through an established channel each have 

a bandwidth of approximately 150Mbits/sec. Because of the delay-matched 

paths of C and D, and of A and B, this corresponds to a 150MHz self-clocked 

data communication channel in each direction. Performance is covered in 

more detail in 3.2.6. where the effects of blocking on the throughput of 

the XS1 and similar devices is considered.

3.2.4. Serial Switching. Self Clocking and Structure Independence

An important feature of this approach to switch design is that the 

surrounding system need not be aware of the size or topological structure 

of the interconnection network. Consider now a self-clocking network whose 

building block switches are of mixed degrees. We envisage providing a 

suite of different sized switches, each designed with the same self­

clocking capabilities described above. All that is required to be known 

about the network is its maximum potential size, i.e. we must know how 

large to make the shift registers at the source nodes. Once this has been 

established the network can be configured in any way which suits the 

designer. As described in Chapter 2, large switches will generally be used 

wherever possible, firstly to reduce contention and increase performance, 

and secondly to reduce the total network chip count. If the requirements 

of the machine are such that one or more stages of smaller switches are 

desirable, however, then such switches can easily be introduced. Each 

switch extracts from the source shift register only those bits required to 

select it. Additionally, because he destination node provides an end of 

path signal the network can have arbitrary depth; the network 'tells* the 

source node when it has completed building the requested path. 

Consequently, the system operates independently of the network size.



For example, in a hybrid network composed of one stage of 8x8 switches and 

one stage of 2x2 switches the network routing address will be 'consumed1 in 

the following way:-

Network routing address register

-> data out

consumed by consumed by 
the 2x2 stage the 8x8 stage

Note that address bits are clocked out from the least significant end of 

the network address. This is to preserve structure independence (the index 

of the most significant used bit in the network address is dependent on the 

network size).

Now suppose that a network of size 32 is required, possibly by making an 

expansion to the existing network. This could either be achieved by using 

an extra stage of 2x2 switches, or by replacing the existing 2x2 switches 

by 4x4 switches and simply doubling the number of 8x8 switches in the 

network. Consider the latter example. The fact that the 2x2 no longer 

exist and the fact that the network is now twice its original size is of 

importance to the system components or their interfaces. All that happens 

now is that one extra bit is consumed from the network routing address 

register, thus:-

Network routing address register

U N U S E D d4 d3 d2 <*1 dQ

consumed by consumed by
the 4x4 stage the 8x8 stage

-> data out



*

If a particular stage contains switches of varying degrees then the network 

still operates correctly. This time, two requests may generate different 

demand patterns if they are required to traverse different sized switches 

in the same stage.

Structure independence significantly eases the task of network construction 

and reconfiguration. The network now assumes the properties of a fblack 

box’ which functions correctly and at its maximum speed irrespective of the 

environment in which it is being used.

*

♦

%

3-2.5. Interface Design

The network controlling mechanisms may be viewed on two distinct flevelsf, 

which we term level 0 and level 1, corresponding to the path building and 

data transfer phases of a transaction. Level 1 provides mechanisms for 

enabling data transfers between the source and destination components. 

This level is dependent on the system components. Level 0 facilitates 

control of the interconnection network. The design of the level 0 logic 

concerns the interaction with the network via the self-clocking protocols 

described above and is independent of the attached system components. This 

section concentrates on level 0 since it is common to all interface 

designs. Implementation-dependent level 1 designs have been explored 

elsewhere for other networks, for example [WLL82].

3.2.5.1. XS1 Level 0 Interface Description.

In order to simplify the discussion of the XS1 interface logic, we consider 

a particular implementation which demonstrates the minimal logic required 

to control an XS1 network.

We consider an interfacing device whose role is to provide, as the result 

of the path building process, a single bit-serial channel in each direction
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through the network. In the example, the D and A wires from the XS1 have

been selected for this purpose although the choice is arbitrary.

In systems where the components have built-in serial communication channels 

a level-0 design provides all the necessary logic to control network 

operation. Such is the case with the ALICE machine where the systems 

components are formed by interconnected INMOS Transputers [IMS84]. Level 1 

corresponds to the Transputer serial link controller. The role of the 

interconnection network is to provide a dynamic coupling between the serial 

links of two independent Transputers.

The logic diagram for this interface is shown in Figure 3-9 . The 

network routing address is supplied to the interface via a parallel 

interface of arbitrary width. The serial input and output wires forming a 

link are also supplied to the interface. When a path has been established 

to the addressed destination Transputer, the interrupt (ATTN) line is

0 C 8 A 8

a
L  HIGH

Figure 9: Level 0 Interface For Transputer/Transputer Interconnection
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raised at which point the serial links of both source and destination 

* Transputers are connected. The interface shown is a combined network

input/output interface. Thus two serial links are provided by each 

Transputer to its corresponding interface. Each Transputer may then submit 

requests to and receive requests from the network concurrently.

+ 3.2.5.2. Interface Operation.

When a (source) Transputer wishes to communicate with some other 

(destination) Transputer in the system, it writes the address of the 

destination Transputer to its associated interface. This write operation 

automatically initiates the self-clocking protocols in the network. Path 

building then proceeds automatically. The source Transputer waits for the 

interrupt to occur on its ATTN input which is generated directly from the 

end-of-path signal generated by the destination interface. At this point 

the network (and the interface) is transparent and the two Transputers can 

communicate as if they were hard-wired together. The established channel 

4  through the network is released by performing a 'read' operation on the

interface register. This has the effect of resetting the XS1 request (R) 

line thereby freeing the channel.

Viewing the Transputer/interface bus as an occam [IMS84] channel, the 

following occam code is sufficient to control a network transaction:-

At the transmitting end:

PAR
—  Any other activities..
SEQ

Parallel.Port ! Target.Node
ATTN ? ANY
Serial.Link ! <some data>
Serial.Link ? <possible reponse>
Parallel.Port ? ANY

—  Any other activities..

—  Write network address
—  Wait for interrupt
—  Send data
—  Optional response
—  Release network channel
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At the receiver:

PAR
—  Any other activities..
SEQ

Serial-Link ? <some data> —  Input message
Serial-Link ! <possible response> —  Optional response

—  Any other activities..

Note that the NIC logic may be incorporated into a custom interfacing 

device, although, it is easy to construct this using discrete logic. (The 

interface shown in Figure 3-9 can be implemented using the equivalent of 

five 7^-series TIL ICs.)

Observe that everything in the NIC is asynchronous; no control clocks or 

synchronisations are required since all timing information is provided by 

the network itself.

This defines the minimum interface required to be able to integrate an XS1 

network into a parallel computer system. The speed (i.e. the eventual 

throughput) of the network is dictated by the speed of the serial links. 

The maximum speed attainable by this interface is the XS1 D/A wire 

specification speed of 150 MHz. If the processor serial links are slower 

than this, and greater bandwidth is required, then a separate high-speed 

NIC with a parallel interface to the processor must be provided. This NIC 

could simply provide the same (or similar) functions as are provided by the 

Transputer serial links, only at higher speed (for example by exploiting 

the fast off-chip serial communication capabilities of ECL, GaAS, etc. 

technologies and by using the path-matched properties of D and C, and A and 

B to self-clock the data through the network).

If only unidirectional block transfers are required (as is the case with 

many declarative systems architectures), then the NIC could be buffered so 

that the whole block is present in the NIC before the transaction is 

initiated into the network. Then, once the channel is established between 

the source and destination NICs, the block transfer can proceed at NIC



speeds. This minimises the Channel-hold’ time through the network and 

therefore minimises overall network latency. In this mode, the network is 

operating at its maximum speed, during both the path set up and data 

transfer phases of the transaction. Multiple buffers can be included in 

the NICs to enable the next transaction(s) to be assembled whilst the 

previous one(s) are being completed. This minimises the delay between 

successive transactions being initiated. The buffers in the NICs can be 

filled (at the source end) and emptied (at the destination) by memory 

mapping from the respective processors or, more appropriately, by DMA. The 

problems of network interfacing are raised again in Chapter 4 where the 

requirements of a fault-tolerant network interface are examined.

Note that because the XS1 allows the asynchronous cancellation of requests 

it is possible for the interface to implement a timeout facility whereby 

blocked requests are cancelled and later retried. This yields a marginal 

performance improvement, as described below, but does not guarantee 

starvation-free routing behaviour.

^-2.6 Performance

Analytical models for obtaining asynchronous network perfomance are still 

being developed. At the present time, -the predictions of self­

clocking network performance have been achieved through simulation, 

although single-switch configurations have been successfully analysed as 

described in Chapter 2.) The following performance figures were obtained 

from an interactive event-driven simulation program written in PASCAL and 

developed primarily for the rapid acquisition of performance estimates for 

arbitrary self-clocking networks through user interaction.

The operating environment is specified by the user and can be modified from 

run to run. The list of system commands and alterable operating parameters 

are given in Appendix 2.



The significant network operating parameters are:- 

N - The size of the network

x - The degree of the network (only regular topologies are exmamined)

I- The mean time taken to present a new request to the network 

following the completion of the previous request.

T - The mean time taken to complete a transaction after path 

building.

The significant performance statistics referenced here are:-

BWfl - The normalised bandwidth, which is the proportion of the data 

transmission clock frequency actually used for data transfer.

TTjj - The normalised mean transaction time, which is the mean 

transaction time expressed in data transmission clock periods.

In each simulation run, the switch control clock, (0X in the XS1) is 

assumed to operate at frequency f. This enables the performance metrics to 

be expressed independently of the network clock frequency. Except for very 

short transfers, the transaction time is dominated by the path set up and 

data transfer times, so the switching speed (determined by 0X) does not 

contribute significantly to the overall transaction time.

Figures 3-10(a) through 3-10(c) show the behaviour of BWjj and TTjj for:-

1. x=4, 1=0 (e.g. the XS1) with varying N and T.

2. x=4, N=1024 with varying I and T.

3. N=4096, 1=0 with varying T and x.

3.2.6.1. TiJaeouts

As described above, the XS1 allows the source node interface to 

asynchronously cancel a request and then resubmit it. This mechanism can be 

analysed by use of the SET V, SET Y and SET H options in the simulator (see
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Figure ?-1Q: Self Clocking Network Performance

Appendix 2). There appears to be no 'optimum* rule for establishing the 

value of the V, Y and H parameters, particularly when the network transfers 

are of varying size. However, by experimentation with the simulator it has 

proven possible to enhance the network throughput by up to approximately 

12$ for some configurations. It is questionable whether the additional 

complexity in the interface required to implement the timeout scheme can be 

justified with only comparatively little gain in performance at stake. 

Also, in order to implement the scheme the minimum network path building 

time must be known to the interface and the timeout parameters must be to 

be re-programmed after a reconfiguration of the network so as to retain the

optimal performance.



3^2.7. Future Developments

* We conclude this chapter by describing two enhancements to the XS1 design

which may be incorporated into future self-clocking network implementations.

3..2.7.1. AgyQQhroflQus Burst Clock Generation

In the XS1 two synchronisations are required in order to select a switch in 

^ the network. However, by extending the width of the data/control path, it

is possible to reduce this to just one synchronisation by having the burst 

generator clock supplied externally and synchronised with respect to the 

network Reset line. The extended six line interface would operate exactly 

as before except that the negative transition in the network Reset line 

corresponding to an arriving request need not now be synchronised with

respect to 0X to generate the burst clock. Instead the required number of 

burst clock pulses supplied on the additional clock input (generated by the 

previous stage) can be 'picked off1 and passed back to the source without 

requiring synchronisation. This enhances the switching speed of the 

network and reduces the probability of errors occurring due to (transient) 

synchronisation failure prior to the generation of the burst clock.

3t2.7.2. Tri-Level Logic Implementations.

An obvious way to improve the current XS1 design is to further reduce the 

width of the control/data path from five wires (six wires if the above
♦

enhancement is made) so as to further improve the ratio of switch size to 

package size. As described earlier, self clocking techniques can be 

implemented with just three wires: D and C can be contracted into a single 

phase-encoded, or isochronous transmission line, and the A and B lines 

reduced to just the burst signal, dispensing with the acknowledge line 

altogether. However, by doing so, many of the attractive properties of the 

self clocking scheme are lost. Phase encoding relies on some form of 

phase-locked loop decoding on chip which is awkward to implement.
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Transmission of data without including an explicit clock (isochronous 

transfer) is less reliable and relies on an accurate matching of the source 

and destination clocks to make it work. The lack of an acknowledge line in 

the control path means that an end of path signal (easily generated in the 

five wire configuration) requires more complex coding techniques which must 

be adhered to by both the burst clock and acknowledge signal generators on 

chip, and the end of path signal generator at the destination interface. 

Finally, as a result of there being no explicit clock line in either the 

forward or reverse data paths after path set up, the through-channel data 

transmission speed is necessarily reduced (phase encoding, for example 

requiring a channel bandwidth of 2f Hz in order to transmit data at a 

rate of f Hz).

Despite this, however, a three line data/control path could be used by 

employing tri-level logic to overcome all of the above problems, and 

provide additional advantages over the XS1 design.

A tri-level logic implementation of the XS1 would employ only three 

data/control wires at each switch port: a tri-level combined Reset/Burst 

clock input line, R/0 with logic states LOW, MID and HIGH, say, a tri-level 

unified data/clock (D/C) line, and similarly, a tri-level unified 

burst/acknowledge (B/A) line. In the passive state, the R/0 line is in its 

HIGH logic state. The conventional Reset signal is signalled by a 

transition from the HIGH to MID logic state and this is then followed by a 

continuous clock between the MID and LOW logic states. This clock is used 

to generate the burst clock. For all data transmission on the A/B or C/D 

lines, a MID->LOW transition is be interpreted as a 'clock data LOW1 

signal, and a MID->HIGH transition as a 'clock data HIGH' signal. 

Consequently the full bandwidth of the transmission line is made available 

for data transfer.

Since the burst and acknowledge signals are mutually exclusive, the burst



clock could be generated using MID<->HIGH transitions on the A/B wire, and

• the acknowledge signals, by using MID<->LOW transitions, for example. The 

end of path signal is then easily generated by, for example, issuing a 

double pulse from MID->LOW on the A/B wire.

Using this technique, the full suite of self-clocking network protocols can 

be implemented using only three wires per slice. This results in a pin

* count of only 6x+P+1 where x is the switch degree, P is the number of power 

pins and the extra pin is for the arbitration clock input.

Reagrdless of whether the implementation uses a three, five or even six 

wire control/data path, the use of self-clocking network principles results 

in networks which are inherently smaller, cheaper, more cost-effective and 

more reliable than equivalent conventional implementations.

m
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CHAPTER 4
Fault Tolerance In Self-docking Networks

Despite the growing interest in interconnection networks in recent years,

^ comparatively little attention has been paid towards making these networks

fault tolerant. In this chapter, we consider this problem, and describe a 

highly efficient means of obtaining fault tolerance which is particularly 

appropriate to the asynchronous self-clocking networks which were 

introduced in Chapter 3.

The fault problem in interconnection networks may be appreciated by 

examining a. typical interconnection network, for example that shown in 

Figure 2-1. For any pair of source and destination nodes there is only 

one path through the network which links the two. If a (permanent) fault 

is introduced anywhere in the switches or interconnections on this unique

* path, then the network ceases to provide complete inter connectivity. In 

small systems, where the number of switches and the number of device 

interconnections required in the network is comparatively small, the fault 

problem is less significant. In highly parallel systems, however, a large 

number of switches and an even larger number of interconnections are

* required. At this point the fault problem must be taken seriously if the 

system is to operate without requiring frequent down time for repair. Note 

that we consider here only the fault tolerance of the interconnection 

network; fault tolerance within the components attached to the network is 

not addressed.

4.1. Fault Models
An interconnection network may go wrong for a number of reasons; the types
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of fault which may occur may be broadly categorised into transient and

permanent fault types.

4-1-1- PfliTangnt Fault3 

4t1.1.1. *Stuck-at» Faults

The classical fault model for digital circuits is a single line stuck at 

either a logical 0 or a logical 1 [Agr82]. The stuck-at fault model is 

applicable to all digital systems and accounts for a majority of SSI and 

MSI failures and is applicable to all VLSI systems even though transient 

faults predominate here (see 4.1.2.1).

A stuck-at fault occurring in the control/data path terminals of a device 

in an interconnection network will either cause:

1. A request to be stuck as the result of the inhibition of the self­

clocking protocol signals between the network an the interface 

control logic.

2. The request to be steered to the wrong network output port.

3. Data to be corruped as it is transferred through an established 

network channel.

Errors of type 1 may be caused by any stuck-at fault in the B or C 

terminals of a switch, a stuck-at-one fault in the R terminal of a switch, 

or a stuck-at fault in the A terminal of a switch (or interface) causing 

the end of path protocol to be corrupted. Errors of type 2 may be caused 

by a permanent stuck-at fault at one of the D-wire terminals of a switch or 

by a stuck-at fault at an A terminal causing address bits to be clocked out 

as start bits (if start bits are used). Errors of type 3 may be caused by 

stuck-at faults in any of the A,B,C or D lines depending on the nature of 

the communication through an established channel. Note that a stuck-at- 

zero fault at an R terminal will effectively set up a permanent channel



from an internal switch of the network through to some destination 

interface. Any information sent to the associated faulty switch port will 

be immediately transmitted to this destination node. The request will then 

fail because no end of path signal will be generated.

4.1.1.2. Permanent Link Faults

Permanent faults in the links of the interconnection network will produce 

effects similar to those produced by stuck-at faults. The fault scenario 

is as described above.

4.1.2. Transient Faults.

4.,1.2.1. Transient Switch Faults.

Although the stuck-at fault model is recognised as being applicable to SSI 

and MSI technologies, field studies indicate that between 90 and 98$ of 

all detected faults in VLSI are transient and are induced as the result of 

interactions between adjacent elements in densely packed layouts over a 

limited area [MST79]. Although the stuck-at fault model is still 

significant, and must be considered, it would appear that transient errors 

predominate. Transient (•soft1) errors in an interconnection network may 

cause stuck requests, incorrect routing as a result of soft errors during 

path set up, or data transfer errors as a results of soft errors occurring 

during data transfer.

4«1.2.2. Transient Link Faults.

A majority of faults occuring in data transfer paths have been shown to be 

unidirectional (either 1s becoming Os or Os becoming 1s) [CSS73]. Broken 

connections, the shorting of signal lines to power or ground and the loss 

of power all cause unidirectional errors during data transmission, be it 

during the path set up or data transfer phases of a transaction.



4.1.2.3. Synchronisation Failure.

In any asynchronous system, the failure to synchronise two phase- 

independent signals will cause undeterminable voltage signals to be 

induced in the system ('metastability', 'glitching1, 'boggling' etc.). 

Although the synchronisation failure probability can be reduced by the use 

of high loop gain bistables (as in the XS1 device) and long settling 

times, the possibility of failure still remains. In the XS1, for example, 

synchronisation failure will cause one or more burst clock signals to be 

lost resulting in the associated request becoming 'stuck' at the currently 

selected switch.

In the proposed fault tolerant scheme we assume the following fault models 

based upon the scenarios listed above:

1. Stuck-at faults at the terminals of any switch in the interconnection 

network or at the terminals of the network interfaces which link into 

the network.

2. 'Soft* faults within any switch in the network causing:

(a) The wrong switch output port to be selected during path 

building.

(b) The (transient) corruption of a control signal during path 

building causing a request to become 'stuck'.

(c) Unidirectional errors in the data as it is transferred through an 

established network channel.

3. Either permanent faults in the links of the network (or links between 

the network interfaces and the peripheral stages of the network), or 

transient link faults causing unidirectional errors in data 

transmission.

4. Synchronisation failure prior to the generation of the burst clock.1 

 ̂ This can be eliminated as described in 3»2.7»



Note that bidirectional data transfer errors can be handled provided the 

number of bits corrupted from 0 to 1 is different from the number of bits 

corrupted from 1 to 0. Note also that faults present at the junctions or 

links between the interfaces and the system components are not considered.

Existing Fault Tolerant Schemes
Before describing the proposed approach to fault tolerance we first comment 

on related work in the area of fault tolerance network design.

HmZmI*. Self Testing Switches
In SIMD systems, the interconnection network is controlled synchronously. 

In [LiW82], the synchronous property of such networks is used to 

periodically perform *test cycles* on the network. In this test cycle each 

switching element performs a self test operation in the network and if a 

fault is recorded during this test, then backup logic within the device is 

switched in. Multiplexers and demultiplexers are provided within the 

switch to achieve this. After the test cycle, the network resumes normal 

operation. All switches are, at that point, guaranteed to be fault free.

Whilst the test cycle correctly diagnoses any faults within the switches of 

the network, there is no provision for fault handling during normal 

operation. Additionally, the implementation of the scheme requires 

considerable increase in the complexity of the switch. Most of the switch 

logic is concerned with implementing the self test, i.e. generating test 

patterns, detecting faults and performing recovery. It is questionable 

whether this makes the switch any more reliable than before. The scheme 

appears impractical for switches of degree larger than 2.

4.2.2̂  jBxfcca .Stags networks
An elegant scheme for enhancing network reliability has been proposed in



[AdS82] and elsewhere in [WLL82]. In these designs an extra stage of 

switching elements are provided at the input side of the network. 

Initially, the extra stage is enabled onto the network inputs by 

demultiplexer units attached to each extra-stage switch, and the output 

stage of the network is disabled via multiplexer units attached to each 

switch. Faults detected in the internal stages of the network can be 

bypassed by switching in the extra stage which yields a second (fault-free) 

path between the source and destination. Faults in the topmost stage of 

the network are bypassed by switching in the extra stage and switching out 

the topmost stage. Complete connectivity is preserved at all times.

The 'extra-stage* approach is very economical, but relies on the ability to 

detect errors to the level of individual switches so that the correct 

choice of redundant paths can be made after reconfiguration. It is never 

clear, though, whether a fault lies in output to a switch in some stage, S, 

the input to a switch in stage S+1, or in the link between the two. 

Furthermore, the scheme does not cater for multiple faults affecting the 

same source/destination path, or faults in the terminals, links or 

(de)multiplexers at the peripheral stages of the network.

4.2.3. Multiple Plane Networks

An obvious way of obtaining fault free paths in an interconnection network 

is to have two or more independent networks and simply switch a new network 

plane into operation whenever a fault is detected in the currently 

operating plane [Agr79]. Multiplane networks of this sort are by default 

fault tolerant. This is an effective, although not very economical means 

of achieving fault tolerance since each redundant paths introduces only one 

extra potential path between an arbitrary source and destination.

However, a method of exploiting multiplane networks in bit slice 

configurations has been proposed in [LLY82]. Here, the network is assumed 

to already exist in three dimensions: each word to be transferred across



the network is bit sliced into packets and these packets are passed through

♦ the network synchronously with each packet being submitted to an 

independent data plane. Error correcting codes are used within each packet 

to enable the destination node interfaces to perform automatic error 

correction of the entire word transferred. An entire network plane can 

fail without causing the network to fail, and can consequently be replaced

^ while the other planes continue to operate.

The scheme exploits the packet redundancy inherent when large words are 

being transferred in bit slice fashion. The scheme is not applicable to 

single plane systems, and is only suitable for synchronous network 

implementati ons.

4.3. A Fault Tolerant Scheme For Self-Clocking Networks.

None of the existing approaches to achieving fault tolerance is suitable 

for the class of networks which are of interest here, namely the 

asynchronous serially-switched networks which were introduced in Chapter 3.

* The asynchronous nature of each switch in the network makes it impractical 

to perform on line self testing (fault avoidance), whether by using self 

testing switches, or *test stimuli* techniques as described in 

[Agr82,WuF79]. *Extra-Stage* networks could be adapted for asynchronous 

implementations, but these rely on exact fault location followed by a

• complete reconfiguration of the network. What is desirable is a 

distributed error detection and isolation mechanism which can be exercised 

by each system component independently of, and asynchronously with respect 

to the other components in the system. In the following sections we 

describe how error detection, fault avoidance and fault recovery can be

♦  provided in a self-clocking network, although many of the techniques may 

applied to existing designs.

In a fully populated interconnection network, only one path exists between
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a source node and an arbitrary destination node. (This is obvious since 

the set of paths from a source node to the set of all destination nodes 

forms an x-ary demultiplexor tree.) A failure in any switch or link 

between switches in the network will prevent certain source/destination 

couplings from being made. Consequently, a necessary condition for fault 

tolerance is the presence of multiple paths between all source/destination 

pairs. We now propose an extended network topology in which each system 

component is allocated one or more additional links into the network. This 

applies to both source and destination components. The number, k<xf of 

network links at each component is termed the degree of fault tolerance.

The existance of k links at the source components results in there being 

potentially k distinct paths between each source node and a given network 

output port. However, since each destination component also links to k 

independent network output ports, there are potentially a total of k^ 

distinct paths between each pair of source and destination nodes.

In this definition, two paths are said to be distinct if they share no 

internal network links in common. Each link between the peripheral stages 

of the network and the system components will be shared by k distinct 

paths. In addition, two paths are said to be independent if they share 

neither a common link nor a common switch in the network. A network is 

defined to have the path independence property if for every possible path 

from a source node to a given destination node there is at least one 

additional and independent path between the same two nodes. The path 

independence property thus guarantees the network to be fault tolerant in 

the case of all single faults.

The problem is now to find a general interconnection rule which guarantees 

this property regardless of the size or topology of the underlying network. 

We choose as an example a network based upon the Generalised Cube topology
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and consider the problem of providing dual-port fault tolerance i.e. k=2. 

» We choose to discuss the Generalised Cube since the proofs for this

topology are slightly simpler than for other topologies. However, similar 

properties can also be derived for non Cube-based topologies and for cases 

with k>2. Initially, we shall consider only regular networks. Fault 

tolerance in irregular networks is discussed in 4.3.3.

♦
4.3.1. Providing Multiple Path3.

4.3.1.1. Address Transformation

In a normal operating environment, a source node, s, obtains a channel 

between itself and some destination node, d, by issuing the address of d to 

its associated network interface. In the fault tolerant set up, the same 

destination node can also now be reached by routing the request to the 

other (generally, any of the other k) network output port(s) associated 

with the destination node. With k=2, the alternative address, denoted by 

d’, is obtained by a simple, and consistant transformation, T, on d, i.e.

# d» = T(d) for all d.

Issuing either d or df to the source interface will steer the request 

successfully to the destination node. Thus there are four ways to address 

the network in order to provide a coupling between a source and a 

destination node since either input port and either the transformed or 

4 untransformed version of the destination address may be used. We now

demonstrate that there exists a topological rule which ensures that each of 

the paths taken by these four methods is distinct and that the network as a 

whole has the path indpendence property.

* 4.3.1.2. Extending The Cube.

The Generalised CUBE topology is similar to that of the CUBE topology 

described in Chapter 2. We use the traditional definition of the topology 

which assumes the stages of the network to be labelled such that stage 0
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occurs at the output side of the network and stage n-1 at the input side of 

the network. To simplify the proofs, we use the more convenient and 

general notation for specifying the topology, as has been used in the 

previous chapters. The permutation function for stage s we shall denote by 

G_ and is defined as follows:

% ^s  • ® s ^ ^ n - 1  * ^ n - 2 »’ *» ^ s +1» ^ s - 1 »• •»

*s-1^^n-1»Jn-2** *»Js+1*jo*^s-1»••» Ji»

In a normal operating environment no permutation is required at the output 

side of the network, i.e. a routing address:

d = <dn-1»dn-2»••»d1»d0>

steers a request directly to the network output port labelled d. In the 

fault tolerant system with k=2, there are two network ports associated with 

each system component, thus there are additional permutations on both the 

inputs and outputs of the network.

The fault tolerant topology is obtained by applying the same permutation 

that occurs between the last two stages of the network between the source 

components and the top level of switches in the network. Thus in this 

example, we extend the Generalised Cube topology so that the G^ permutation 

function is applied between the system source components and the top level
#

of switches. In the fault tolerant scheme, the bits of the destination 

address are clocked out of the source NIC from the least significant end to 

preserve structure independence. (This is discussed in 4.4.) Thus at the 

output side of the network, a digit reversal permutation is applied to 

*realign' the addresses.

The system components at the input and output sides of the nodes of the 

system are now connected to the network via ad.laoent pairs of network links
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#

♦

respectively before and after the input (G^) and output (address bit 

reversal) permutations have been applied. Thus, for example, input links:

, In—2 * * * * ̂1 * ̂*0̂  snd l̂fl_ i, 1 ^_2 »• •»1^» 1q * ̂ l^=0..x—1, i=1..n— 1

are both associated with the same input node, where 1q and Iq1 differ only 

in their least significant bit. From here onwards the prime (*) may be 

assumed to be the postfix operator meaning *invert least significant bit1.

We now demonstrate that using the above interconnections, the 4 (i.e. k̂ ) 

possible paths between 2 arbitrary nodes in a network of arbitrary size and 

degree each access independent subsets of the network switches, with the 

exception of stages 0 and n-1 which must clearly be shared by 2 (i.e. k) 

paths each.

Firstly, we must demonstrate that each system component is connected (via 

its interfaces) to exactly 2 independent switches in stage 0 and 

stage n-1.

T-Pimna 4-1: Each input node links to 2 independent top level (stage n-1) 

switches.

Proof: Let <in-1 ,..,i1 ,iQ> and <in_1,..,i1 ,io*> be the two network links

associated with source node i. After applying the input permutation, 

G-j, source node i links to inputs <in_̂ ,..,iQ,i-j> and <i n_ -j,.., ig1, i -j > 

of the top level (stage n-1) of switches. These are associated 

with the switches labelled <in_.j ,..,i2 »io> and <in_«j ,..,i2 >io’> 

respectively. Since iQ^ig’, these switches are independent.

[]

Lp m m  4-2: A destination node d=<dn_p..,d^,dg> can be accessed from all

source nodes by supplying either the routing address d, or the address

d' =<dn_i t • •»d-| »^0 *

Proof: The generalised cube which clocks from the least significant end of 

the routing address, steers a request with routing address d to
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♦

network output <dQ,d-j,..,dn_-j>. After realignment, it is steered to 

<dn-1 f»di»do>« Similarly, a request with routing address d1 will be 

steered to ,..,d̂ ,dQ*> after realignment. Since adjacent pairs

of outputs are both connected to the same destination node, and since 

dQ and d0* differ only in their least significant bit, both d and d* 

will steer a request to the same destination node, d.
[]

Thus if path building to some target node fails with address d, an 

alternative address can be derived by inverting the least significant bit 

of the destination address. This defines the transformation function, T, 

described in 4.3*1*1*

We must now demonstrate that for all possible transactions from a given 

source node, s, the set of switches of stages 1 to n-1 which are accessed 

by issuing a request on one input channel, is disjoint from those accessed 

by issuing the same request on the other channel. This amounts to showing 

that the set of switches in stages 1 to n-1 which are accessible from 

either one of the network inputs of a given source node is disjoint from 

that accessible from the other input.

Lemma 4-3: Let i=<in-1 ,..,i2,i1 > and j=<jn - 1 j2» j-j> be the two stage

n-1 switches to which with some arbitrary source node, i, is 

connected. From Lemma 4-1, ik=jk, k=2..n-1; j^=i^'. Let Dk be the set 

of all devices in stages n-1 through 1 which are accessible from 

switch k of stage n-1, k=0..N/x-1.

Then, PI Dj = 0.

Proof: Denote by [s,w], switch w of stage s, s=0..n-1, w=0..N/x-1, and let 

D^(s) be the set of switches of stage s satisfying:

[ s ,w ]  e <=> [ s ,w ]  € Dj^Cs).

(Note that Di(n-1) = {[n-1,i]} and D^CO) = I , the set of all switches

in stage 0 of the network.) may then be expressed as:
4

D± = D±(n— 1 ) U D±(n-2) U .. UD^I).
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Now start with [n-1,i]. The output links associated with[n-1,i] are

those outputs of stage n-1 labelled <in_1 ,in_2, • •»i-j »®i>» 

Now, applying G(n-1) to these we have that:

il,©1>, G.j=0..x-1

DiCn-2 ) = {[n-2, <0-j ,in_2 i..,ii>]}» et=0..x- 1

From the definition of G(n-2) we have that:

y=1..n-(s+1)

Therefore, since i ^ j p  and since D^Cs) fl Dm (s+1 ) = 0 for all k,m it 

follows that for all s=1..n-1, [s,d] e Di(s) => [s,d]^Dj(s) s=1..n-1,

Finally, we must demonstrate a similar result for the address

transformation scheme, i.e. that:

T-pimna 4-4: The set of switches of stages n-2 through 0 accessed by issuing 

a routing address, d=<dn-1 ,..,d1,dQ> is disjoint from that accessed by 

issuing the address df=<dn_̂  ,..,d-j ,dg*> from the same source node.

Pr.QQl1: Let the top level switch through which a request is issued be 

labelled <in-1 ,..,i2,i1 >. The stage n-2 switch which is accessed by 

supplying the routing address d is then given by <dQ,in_2 >~»i2»*i^‘ 

Similarly, <d0’,n_2»**»i2,i1 ̂  for the routinS address df. The proof 

then follows similar lines as for Lemma 4-3. This time, the sets 

corresponding to D. and of Lemma 4-3 are disjoint by virtue of the 

fact that d0^d0f. []

Thus:

Theorem4-1: Thefour possible paths between any two nodes have no stage

2..n-2 switch in common.

hence, from
[]

Proof: FromLemma 4-3> no stage 2..n-1 switch accessible from one ofthe



input ports of a given source node is accessible from the other. From 

Lerama4-4, no stage 2..n-1 switch traversed by issuing the routing 

address, d, from a given network input is traversed by issuing the 

address d* from the same input. Consequently, in these stages none of 

the four paths have any switches in common.
[]

Hence,

Theorem 4-2: Each of the four possible paths from a given source node to a

given destination node is distinct and for each of these paths there 

exists exactly one additional and independent path between the same 

two nodes.

Proof: Follows directly from Theorem 4-1, and from Lemmas 4-2 and 4-4.

An example of a regular fault-tolerant network is shown in Figure 4-1. 

This example shows an extended Generalised CUBE network of size 16 and 

degree 2 with the additional permuatations for fault tolerance shown at the 

peripheral stages of the network. The four paths from source node 4/5 to 

destination node 8/9 are shown highlighted. This shows the four distinct 

paths which consist of two pairs of independent paths.

4 . 3 . 1 . 3 .  I r r e g u l a r  T o p o lo g ie s

In the previous chapters we have stressed the benefits of hybrid or 

irregular topologies which may contain stages of varying degrees. In the 

proposed fault tolerant scheme the only problem presented by irregular 

topologies is retaining the distinctive and independent properties of the 

k^ paths through the network for each source /destination pair. However, 

this is not hard to achieve and can be seen from, for example, Figure 4-1. 

An irregular topology can be easily formed by replacing the switch arrays 

within each broken box shown by switches of degree 4. If required, the 

lower three stages could even be replaced by two switches of degree 8 in

102



SOURCE COMPONENTS

F ig u re  4 - 1 :  A CUBE-Based F a u l t  T o le r a n t  N etw ork . N=32, x= 2 f k = 2 .

the obvious way. Four distinct paths are still retained, and each path has 

an independent counterpart so that the path independence property still 

holds. Provided the whole array is not replaced by just a single switch, 

the systematic replacement of subparts of the network by larger single 

switches will not affect the networks* ability to provide independent paths 

between each pair of source and destination components.

3-2. Error Detection .And .Fault Avoidance 
Because the enhanced interconection topology described above provides four 

(generally k̂ ) mutually independent paths between any pair of source and



destination ndoes, a permanent fault anywhere in the interconnection 

network can be avoided. The mechanisms for error detection and fault 

avoidance with the proposed approach are now decribed by means of an 

example of a fault tolerant network. The techniques for providing 

permanent fault avoidance are indepedent of the mechanisms for error 

detection and are described later.

• The example set up is shown in Figure 4-2. and considers a self clocking

network which is being used to transfer messages or blocks of data 

unidirectionally from the source components (attached to the input side of 

the network) to the destination components (attached to the output side of 

the network). Each system component is shown to have a separate network 

interfacing component (NIC) for each of its k (in this case 2) network 

input or output ports. These may, however be combined, and even integrated 

into the system components themselves. The blocks of data are assumed to 

be buffered in source NICs before the transaction is initiated into the 

network. Transferred blocks are further assumed to be buffered in the

^ destination NICs. This yields a guaranteed data transfer rate after path

set up which increases the network throughput. Multiple buffers could also 

be provided so that buffer filling and buffer emptying within an NIC can 

proceed concurrently. For simplicity, though, we consider only single

INTERCONNECTION NETWORK

Figure 4-2; Example Fault Tolerant Set up.
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buffering. The protocols at the interface between the NIC and system

component are undefined, as is the logic required to perform the block 

transfer.

4-.1*2*1*. Error D e te c t io n  Mechanisms.

Error detection in an interconnection network must be performed at three 

different levels corresponding to the path building, path verification and 

data transfer phases of a transaction. Path building error detection and 

path verification are invariant among different implementations. The 

mechanisms described for error detection during data transfer are dependent 

on the implementation of Figure 4-2 although they can be readily applied to 

other set-ups.

4.3.2.1,1. .Path bnildinK Failure.
Stuck-at faults at a switch or interface terminals, permanent link faults, 

transient faults in the switches or links of the network and 

synchronisation failure will often cause a request to become stuck during 

path building as a result of the corruption of the self-clocking network 

control signals. Such errors are detected by a timeout mechanism 

implemented by the source component. The timeout period is a function of 

both the network size and the maximum network channel 'hold1 time and must 

be greater than the maximum possible network transaction time. The maximum 

time between initiating a transaction and completing the transaction is 

equal to:

(N-1)s
T = ’max C4-1]

x— 1

which is the value of Tn_^ in the recurrence

max:+xW  Ti = smax+xTl-1> i=1--"-1

maxHere s. is the maximum possible switching time through one switch of the



network (without blocking), N is the size of the network and tmax is the 

maximum time taken between obtaining a path and completing the transfer of 

the transmitted data. This is a pathological case since it relies on every 

component trying to reach the same network output port at the same time. 

However it defines the necessary minimum timeout period which must be set 

when a transaction is initiated. In the event of a timeout occurring, the 

partly1 claimed channel is cancelled and the request is later retried (see 

below).

4 . 2 . 1 . 2 .  A d d re s s in g  F a i l u r e .

When an end of path signal is generated by a destination node interface, 

there is no guarantee that the correct destination has been reached. 

Certain faults in the network may cause a corruption of the routing address 

information causing the request to be steered to the wrong output. 

Consequently, immediately after path building is complete, the requested 

and the obtained destination addresses are compared. The claimed channel 

is released if any discrepency is observed, and status information is
A reported back to the source node indicating the nature of the failure.

4 . 2.1.3. Pata Transfer Error.
If the address check succeeds then control is passed to the data transfer 

unit (level 1) in the interface where the block transfer proceeds.

* Regardless of any errors which may occur during data transfer, the entire 

block is always transferred from the source NIC to the destination NIC. 

Because the fault model assumes unidirectional faults in the data 

transmission path, a Berger check [Ber6l] is performed on the data as it is 

transmitted. The Berger checksum is simply the number of logical zeros

♦ within the data block and is optimalNin the sense that there is no 

unidirectional error detecting code with fewer check bits for the same 

number of data bits transferred. The Berger check has been proposed in
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[FAH83] for interconnection networks with conventional control mechanisms 

but it is particularly suitable for serially-switched networks since the 

checksum can be accumulated 'on the fly' by means of a counter triggered by 

the signals transmitted on the forward data/clock path (the D and C control 

lines) through the network. The checksum logic required is thus very 

simple. At the end of the block transfer, the received checksum is 

compared with the transmitted checksum as described below. If the
♦ comparison fails then the network channel is released and a status word is 

made available to the source node. If the comparison succeeds then the 

transaction is complete and the claimed channel can be released normally.

Note that because data transfer errors are (hopefully) infrequent, the use 

of continuous block transfer protocols, as opposed to handshaking 

protocols, will, in the long run, yield higher overall throughput since no 

redundancy is required. Additionally, block transfers require fewer (if 

any) synchronisations between the sender and the receiver.

These mechanisms are explained more fully in the next section which 

describes the operation of the fault tolerant network interfacing component 

(or NIC).

NIC Operation.

The following discussion describes the operation of the NICs from the point 

at which the buffer of the source NIC has been filled. There may be 

additional buffers in the NIC which may be filled whilst the current buffer 

is being emptied; indeed, the block transfer may be done directly from the 

source main memory to the destination main memory via conventional DMA. 

This is not important to the discussion. We merely consider the mechanisms 

for error detection as the block is transferred from the source NIC to the 

destination NIC.

The error detecting NIC may be viewed as containing three levels of network
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control. Level 0 is exactly as described in Chapter 3 except that status 

information is now maintained to assist the process of fault diagnosis. 

(Fault location and fault repair are described in 4.3*3.) Level 0 

contains the routing address register used by the self-clocking protocols. 

Writing the destination address (possibly transformed) to this register 

initiates the transaction by pulling the Reset line LOW into the network. 

At this same time, the source component begins the timeout. The routing 

address is also copied to an address comparison register located in the 

intermediate level of the NIC shown in Figure 4-3.

From now on the self-clocking protocols take effect. Any fault in the 

network causing the request to become stuck during path building is 

detected by the timeout in the source node (although the timeout logic may 

be included in the NIC). During path building the signals present on the A 

(acknowledge) and B (Burst) lines from the network are monitored and counts 

of the number of transitions occurring on these lines is maintained in the 

form of a status register held within the NIC. Additional status 

information is also held as described below. If the request times out then 

the source component reads the contents of this register and passes it on 

to a system monitor where it can be used to assist in fault location. The 

A count indicates the number of stages traversed to date. The B count 

should be consistant with the A count and indicates the total number of 

burst clocks received by, i.e. the total number of address bits transmitted 

from, the routing address register. Any discrepency in these two counts 

may assist fault diagnosis.

If path building completes successfully, then an end of path signal is sent 

by the destination NIC and the signal will be made available in the status 

register. This signal disables level 0 of the source NIC and enables the 

network A/B and C/D lines through to the intermediate level where path 

verification is performed. Following the end of path signal, the



destination NIC immediately transmits its own address (which is written to 

a register internal to the NIC during system initialisation) back to the 

source node. The received address is loaded into the internal level of 

the NIC where it is checked against the intended destination address which 

was loaded when the transaction was initiated. If the two addresses differ 

then an error has occurred either during path building or during the 

transmission of the destination address. Both conditions are errors so in
+ the event, the established channel is released and an interrupt is sent to 

the source component. The end of path signal and the result of the address 

check are added to the status register so that appropriate actions for 

recovery in the event of failure may be undertaken.

If the address check succeeds then control is transferred to the data 

transmission logic (level 1 of the interface as defined in Chapter 3) and 

the data is transmitted across the network. Regardless of any errors 

which may occur during transmission, the entire block is always 

transmitted. The block is transferred in Chunks* which may be bytes, 

words etc., each chunk being preceded by a start bit of one. These are 

serialised and self-clocked through the network on the C/D data path. 

Error detection is performed at the source and is achieved by two 'dynamic* 

Berger checksum counters maintained by level 1 of the source interface as 

follows:

* When the destination address has been sent by the destination NIC for path

verification, the destination NIC is set to receive incoming data on C/D 

and the data received (i.e. the data on D clocked by C) is then sent back 

to the source node on the A wire. The network is thus configured so that 

the source NIC receives all data it transmits. The two Berger

• checksum counters at the source NIC are triggered from the data transmitted 

on the C/D data path and received back on the A wire. Thus each data bit 

transferred makes a round trip from the source NIC through the network to
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the destination NIC and then back to the source NIC. The last word of the 

block is preceded by a start bit of zero. After this last word has been 

transmitted, an additional *end of block* signal is transmitted whereby a 

positive edge is provided on D whilst C is held HIGH. When the last word 

has been received at the destination, the destination NIC is configured to 

pass this end of block signal back to the source on the (as yet unused) B 

wire. The receipt of this signal on B at the source end signals that the 

Berger checksum counters are valid i.e. this mechanism preserves structure 

independence since the network latency is unimportant. The output from 

the comparitor is enabled onto the network D wire after the end of block 

signal has been sent and the B wire is enabled onto the C wire. Thus the 

received signal on B is immediately sent back to the destination. 

Consequently at the destination the signal on the C wire will clock a one on 

the D wire if the checksum succeeded and a zero if it failed. This signal 

either enables or disables the buffered data according to the result of the 

checksum.

Note that this scheme is very robust since it is impervious to both 

permanent and transient faults before the final *buffer valid* signal is 

generated. However, this final validation signal must be fault-free. 

There is no way of guaranteeing a successful acknowledgement at the end of 

a transaction.

A signal received on the B wire at the source end causes an interrupt to be 

sent to the source component and, subsequently, the release of the channel. 

If the B signal was received prematurely then a flag is set in the status 

register indicating the fault. This aids the process of fault diagnosis.

In addition to the status register, the address validation register, the 

two Berger checksum counters and the original routing address register can 

also be accessed by the source component. A description of how this 

information is used in the event of failure is given in 4.3.3* below.
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Observe that:-

1. Once the block transfer is intiated, the communication is 'self-timed* 

in the sense that no synchronisation is required in either the source 

or destination NICs. Only two synchronisations are required in total: 

one to transmit the destination address and one to begin the block 

transfer, although if the extended protocol described in 3.2.7. is 

used the first of these can be eliminated by using the burst generator 

clock at the output of the last stage to clock out the destination 

address.

2. The use of Berger checksums means that error detection is very simple 

and fast. Because the checksums are generated 'on the fly1, the 

comparison is made just two network delays after the last data bit has 

been sent regardless of the size of the network. The Berger checksums 

are not required to be transmitted through the network.

3. There is no data redundancy required since the source NIC re-recieves 

all data that it transmits.

4.3.2.3. Finding Fault Free Paths

Under normal operation, both ports of the source and destination nodes can 

be used. To even the load at the network outputs, alternative requests 

submitted by the source nodes may use the transformed version of the 

destination addresses. This, in theory, makes it possible for two 

transactions to take place between the same source/destination pair 

concurrrently.

If a fault is detected by the source node during path set-up, the immediate 

effect will be for the source node to cancel the request (by reading the 

NIC status register) and then to retry it an arbitrary number of times. If 

the request now succeeds, then the error was transient. If the retry (or



retries) still fail then there is a permanent fault somewhere in the 

network which must be avoided. It is an important property of the proposed 

scheme that neither the location nor the cause of the fault need be known 

by the source node. The fault may be local to a single slice of one 

switch, or it may affect a whole (or several) switches, for example as a 

result of power failure. Furthermore, the fault may lie in a link between 

two switches or it could even lie in one of the network interfaces, 

although this is not covered by the fault model.

To avoid a permanent fault, the source component first attempts to use the 

address transformation to steer around the faulty part of the network. If 

the failed request used an untransformed address then the request will be 

retried using the transformed version of the address, and vice versa. 

Using the transformed (or, correspondingly, untransformed) address causes 

the request to take a distinct path to that taken by the original attempt, 

although the request still passes through the same switch in the top stage 

of the network as before. If this successfully steers the request to its 

required destination node, i.e. if it successfully avoids the fault, then 

all subsequent requests submitted to that port will use only transformed 

(untransformed) versions of the required destination addresses. This is 

balanced by now using only untransformed (transformed) addresses on the 

other network port. Thus, even after a fault has arisen, it is still 

possible for the network to provide two communication channels between all 

pairs of source and destination nodes. (Compare this with multiple plane 

networks where only one path would now exist). Note that:

1. Rather than restricting all subsequent transactions to using 

transformed addresses, a table could be provided in the source node 

indicating whether or not a transformation must be enforced in 

communicating with a particular destination node, although this may

be costly to maintain.



2. If the fault lies in a switch in the last stage of the network or in 

the link between the last stage of switches and the destination node 

interface, then issuing the transformed (untransformed) version of the 

destination address will cause an error to be detected regardless of 

which source input port is used. In this case both source ports must 

issue only untransformed (transformed) addresses in order to avoid the 

fault.

If on the other hand the retry with (or without) transformation does not 

successfully avoid the fault, then the transaction can only be completed by 

using the other network input port associated with the source node. This 

implies that the fault lies either at the source NIC or at the top level 

switch to which the NIC is connected, or in the link between the two. By 

using now the other port, the alternative path obtained is guaranteed to 

avoid the fault.

Note that if an error status table is not used at the source node, then the 

network input port on which the fault was detected cannot now be used at 

all. Consequently, this port must be shut down until the failed device(s) 

have been replaced (see H.3-3.).

4.S.2.4. Multiple Faults

Using the above scheme, all single faults in the network switches and 

links can be tolerated. However, a substantial number of multiple faults 

can also be tolerated. The only dual faults which cannot be catered for 

are those which affect both switches (or interfaces) to which a source or 

destination component are attached. That component then has no access to 

the network at all. With k=2, the network will still function with up to 

three permanent faults in the internal stages of the network in the worst 

case. Many more failures can be tolerated provided they do not result in
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all four distinct paths between any pair of source and destination nodes

being affected.

4.3*1* Coping With Permanent Faults.

In the previous discussions we have been concerned only with keeping the 

network operational in the event of a network failure. Over a long period 

of time, however, multiple errors in the network will make necessary some 

form of repair.

One approach is to simply wait for multiple faults to cause the network to 

fail and then instigate the repair by powering off the machine and 

replacing the faulty switches or connections. However, a far more 

desirable approach is to make these repairs fon the fly* i.e. whilst the 

rest of the system remains operational. The network can then be maintained 

to be far less susceptible to failure from multiple switch and 

interconnection faults. In this section we describe a method for doing 

this which is compatible with the fault tolerant scheme described above. 

This process of maintainance is referred to as dynamic switch replacement.

4,3.3.1. .Eaulfc Location.
One of the benefits of the fault tolerant scheme from the point of view of 

the systems components is that neither the nature of the failure nor the 

exact location of the failed switch or interconnection need be known. 

Thus ji2 fault location facilities need be provided by the components. In 

order to carry out a repair this information is established by either 

automatic or manual analysis of error reports transmitted by the components 

to a central monitoring processor.

All network errors detected by the system components are logged in the form 

of an error log table, which is transmitted to the central monitor for

statistics-gathering and for permanent fault location. The error log table



has the following format:

#

*

<Source Node Address>

<Intended Destination Node Address>

<Error Code>

<NIC Status At Time Of Error>

{ <Additional Information> }

The NIC status register has the format shown in Figure 4-3 below:- 

|" ERR | PBS | WOP | CSE | EOP | A-COUNT | B-COUNT

I I I I I I I
I I I I I No. of Acks No. of Bursts
I I ! I I
I I I I I
| I | | \___  End Of Path Signal
i l l !
I | | \___ Checksum Error
I I I
j | \___  Wrong Output reached
i I
| \___  Premature end of block signal on B
I
\___ Error present flag

Figure 4-3: NIC Status Register Format.

The error code denotes the type of error recorded i.e. transient, 

permanent, incorrect routing, timeout etc. If the fault was permanent then 

the additional information is a dump of all the other NIC registers at the 

time of the error, together with the isolation mechanism which was used to 

avoid the fault (address transformation or port closure). If the fault was 

transient and resulted in the wrong output being reached then the 

additional information is the address validation register. If the error 

was a transient data transfer error then the additional information is the 

contents of the checksum register(s).

If a stuck-at fault or permanent link fault in either of the C or D lines 

is present between the last stage of switches and the destination node
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interface then the block transfer checksum will fail on all requests 

directed to that destination interface. Note that a received and incorrect 

destination address of all Os or all 1s, or a failure to receive an end of 

path signal when the A and B counts of the status register indicate that 

path building was complete when a timeout occurred, suggests a permanent 

fault in the A/B data path between the destination NIC and the last stage 

of switches. Stuck-at faults or permanent link faults in a C line higher 

in the network will cause path building failure and hence a timeout. A 

permanent fault in the A line higher in the network may cause incorrect 

routing if start bits are used by the self-clocking control protocols and 

will also inhibit the transmission of the end of path signal which is, 

again, detected by a timeout. The status register A-count field then 

indicates the location of the fault. Faults in a D line occurring anywhere 

other than at the outputs to the last stage will cause requests to be 

steered to the wrong network output. This is detected by the path 

verification logic. Permanent faults in the R line of the network will 

cause a data transfer error if the fault occurred after path building and a 

timeout error in all other cases.

Once the fault has been approximately located (observe that the exact 

location of the fault is often not possible although at most two devices 

(or their interconnections) will be candidates), the fault can be isolated 

and subsequently rectified by manual replacement.

fr.̂.3,2. Isolating .Faulty Switches.
The problem of affecting a dynamic repair using the fault tolerant scheme 

described above is that although one particular switch port (or subset of 

switch ports) or the interconnections between two switch ports may have 

become unusable, the rest of that switch may still be operational. A 

partly faulty switch, therefore, might not be completely isolated. Before



any form of replacement can be undertaken, the switch must be made 

inaccessible from all of the source components in the system.

Consider again the extended Generalised Cube network of degree x with k=2, 

as described above. In this topology each source and destination component 

has two links to the input and output ports of the network respectively, as 

shown in Figure 4-1. Now label these two ports respectively the 'even' and 

’odd' ports according to whether the corresponding network input (output) 

port to which they are attached is even or odd numbered after the input 

(before the output) permutation has been applied. Then:-

Leama 4-5: The source node ports to which an arbitrary switch in stage n-1 

of the network is attached are all labelled either 'even1 ports or 

•odd' ports.

Proof: Consider an even numbered switch <in„-j,**,i2 »ii>» *1 =<̂ x-1 »••»&!

b^ e [0,1], i=1..x-1, in stage n-1 of the network. The network input ports 

associated with this are thus the <in_-j ,..,i2,î  ,0>, 0=0..x-1. Now,

applying the inverse of the G 1 permutation function to the port addresses 

maps them respectively onto the source inputs numbered <in__̂ ,..,i2 ,0,i<j>f 

0=0..x-1. Since bQ of î  is 0, these are all even. Similarly, if we 

consider only odd numbered switches, then bg of î  will be 1 and hence the 

source output ports these switches connect to will all be odd.

[]

Lemma4-6: The destination node ports to which an arbitrary switch of

stage 0 of the network is attached are all labelled either ’even* 

ports or 'odd* ports.

Proof: Is analagous to that of Lemma 4-5.
[]



We now wish to shaow that the set of switches of stages 1 to n-1

(inclusive) which can be accessed from the even ports of all the source 

nodes is disjoint to that which can be accessed from all the odd ports.

Thus.- Leb Wa ike set if £>£ o~\ Lo k-e<( ~h>-fr&vx
< r t p t t  t  j  C  t> o r <  C k e  0 i t ^ e /'/w u 'tc L .'ttc ./v  L - c - c ^  a p p  l» « c O  

Theorem 4-4 :f Let E and Ef be respectively the sets of all even and odd

ports. Let £ be the set of even numbered switches of stage n-1

and let £* be the set of odd numbered switches of stage n-1. Let

be the set of switches in stage 1 to n-1 which are accessible from

input port k (before the permutation is applied), and let Dk be

defined as in Lemma 4 -3 . Finally, let £ and £ * be given by:

£ = ?>e and i' = Ae»
e e E efeEf

Then: £ n £ ' - 0 .

Proof: For all j e E: j & j'e P* are both associated with the same source 

node. From Lemma 4-5 , L( j) e £ , and L( j') € £ *. From Lemma 4-3 , 

Pj H /}j, = 0 . This implies that fl DL(j,) = 0 . Thus, since

6  fl £» = 0 it follows that Z f U '  = 0.
[]

And, similarly for address transformation:

Theorem 4-4: The set of switches of stages 0 to n-2 which are accessible

by issuing only even destination addresses from all the source nodes 

is disjoint from that accessible by issuing only odd destination 

addresses from all the source nodes.

Proof: The proof of this is analogous to that of Theorem 4 -3 , using

Lemma 4-3 and Lemma 4 -6 .
[]

Thus, by instructing all source nodes to either stop transmitting on their 

even or odd ports, or to submit only even or odd destination addresses to 

the network, any single fault in the network can be fully isolated and



therefore replaced.

♦

»

♦

The isolation mechanism is as follows:-

If the fault potentially lies in stage n-1 of the network (including the 

links between stage n-1 and the source node interface, and between stage 

n-1 and stage n-2) then either the even port or the odd port of each source 

node must be temporarily shut down depending on whether the fault was 

detected by an even or an odd port in the first place. This information is 

held in the error log record transmitted at the time of the error was 

detected. This caters for faults local to one slice (plus its 

interconnections) of a switch in stage n-1 of the network which were 

originally avoided by using address transformation. In all other cases, 

address tranformation will have caused all subsequent requests submitted 

from the failing source port to access a different subset of the switches 

of stages 0 to n-2 to that which contained the fault. Thus, from Theorem

4-4, the fault can be made inaccessible from all the source nodes by having 

each source node temporarily restrict the parity of all destination 

addresses transmitted. The error log record indicates whether only even or 

odd destination addresses should be used.

Note that if the fault is known to lie between stage 1 and stage n-1 

(inclusive) then, from Theorem 4-3, either isolation mechanism can be used 

to isolate the fault from all the source nodes. If port closure is to be 

used, however, then the information on which port to shut down is not 

available in the error log record since the fault will have been avoided 

using address transformation. This information must be determined from the 

location of the fault and from the network topology.

Note that when rectifying multiple faults in the network, it may be 

necessary to perform the replacements in separate operations. There are 

some cases where the isolation commands transmitted to each source node
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will prevent a source/destination transfer from being performed during the 

1 transplant. This occurs when, during the transplant, the only available

path from a source node to a destination node is via another faulty device 

or interconnection which has already been made inaccessible from the source 

node. In such cases the source node must idle until the repair is 

complete. Of course, if the system is maintained so that only single 

% faults are ever present then this situation will never arise!

4.^.3-^. Fault Repair.

The problems of physically accessing and replacing a faulty device in the

network is closely allied to the problems of packaging. The network cards

must have all their external connections provided by flexible cable to

allow the cards to be removed without affecting unisolated devices present

on the same card. Furthermore, power transistors must be provided for

each switch to enable individual switches to be powered off and replaced

independently of other switches on the same card. ZIF mounting of ICs is

also desirable. Because the devices are powered off when they are replaced,w
these interconnections can also be tested during the repair. The issues of 

packaging are not covered further.

Once a repair has been made, a message can be sent from the system monitor 

to all the system components instructing them to resume normal operation. 

•  At this point the network will function correctly and any restrictions

imposed on port use or destination address parity can be lifted, and the 

default operation mode resumed.

*
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4 .4 . .Snimnanv.

This chapter has been concerned with the problem of fault tolerance in 

interconnection networks, with particular attention paid to self-clocking 

network implementations. In the proposed scheme, fault tolerance is broken 

down into three steps:-

1. Error detection

2. Fault Avoidance, and

3. Fault Repair.

Error detection in the network is performed by the system components 

themselves (catering for ^tuck* requests), and by the network interfaces, 

which are extended to include logic for path verification and dynamic 

error detection during the data transfer phase of a transaction.

Fault avoidance is achieved by incorporating an extension to the original 

network topology which guarantees the existance of multiple and independent 

paths through the network between arbitrary pairs of source and destination 

nodes. A novel feature of this scheme is that fault avoidance can be 

achieved without requiring any knowledge as to the location or the nature 

of the fault. The affected source component simply retries the request 

using address transformation or using its additional network input links 

(or both) until the request succeeds. In much the same way that self­

clocking protocols yield structure independence, so the fault tolerant 

scheme suggests some notion of fault independence.

Indeed, structure independence can be preserved using the fault tolerant 

scheme. The address transformation scheme described in 4.3.1.1. functions 

by manipulating the lower end of the network routing addresses, the network 

address bits are clocked out from the least significant end of the register 

and the network implements the full suite of self-clocking protocols during 

path building. The only network-dependent parameter required to be known
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is the timeout period which is a function of both the network size and the 

maximum data transfer time (tmax in equation 4-1).

A further important consequence of the fault tolerant scheme is that is 

simple to implement in terms of hardware. The use of self-clocked data in 

data transmission, and the use of twin dynamic Berger checksums makes the 

error detection logic very simple, very fast, and very reliable! Finally, 

the ability to dynamically replace faulty network components minimises the 

networks susceptibility to unavoidable multiple faults and hence maximises 

network availability.



£HAEXER 5.
Summarv And Conclusions

This thesis has examined how a class of dynamic multistage interconnection 

networks may be employed to provide arbitrary communication in very large 

parallel computer systems which may contain many hundreds, thousands or 

even tens of thousands of component processors.

We have variously exmamined the issues of performance, network design and 

integration, and network fault tolerance.

This work was primarily motivated by recent developments in so called 

declarative language support architectures* which promise to offer not 

only an improved programming environment, but also the ability to exploit 

very high degrees of parallelism in execution. Despite this relatively new 

approach to computation, many of the problems associated with conventional 

parallel processing systems remain. This thesis has been concerned with 

what is arguably the most critical aspect of these systems, namely that of 

copmponent interconnection and communication.

Chapter 2 described the general characteristics of the class of dynamic 

interconnection networks with which the thesis is concerned. This 

included sections on network performance analysis and the performance of a 

number of network configurations was investigated. A new class of 

interconnection networks - Lambda networks - were introduced which provide 

the same low cost global communication, as is provided by conventional 

interconnection networks, yet which also offer the potential to exploit 

locality of reference. From performance models of these and conventional 

networks, we demonstrated that under a random addressing distribution the
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performance of Lambda networks is superior to conventional interconnection

networks and that the performance increases in accordance with the degree 

of locality which can be preserved in the addresing scheme. It remains to 

be seen whether or not this locality can be effectively exploited by the 

surrounding system. Considerable work has yet to be done in this area 

which will involve a detailed study of 'typical' program behaviours, and 

run-time load balancing and data distribution mechanisms.

Chapter 3 examined the issues of network design and integration. A number 

of interconnection network designs have been offered in the literature, but 

we have argued that these designs are only practical for small and medium- 

scale parallel processing systems. Highly parallel systems containing very 

large numbers of processing devices have been proposed based upon these 

designs, but in reality these lead to unmanagable problems of cost, size, 

construction and wiring complexity and, perhaps most significantly, 

reliability. We believe that if interconnection networks are to be 

practical in very large-scale systems, then the effort should be put into 

reducing complexity rather than increasing it.

We proposed two design techniques aimed at overcoming the complexity of 

existing designs:-

1. Serial switching, which ensures maximal utilisation of available 

pins (which is the limiting factor in any switch design).

2. Self clocking of the network switches, which offers almost 

unlimited flexibility in the choice of network topology, size and 

configuration, and which overcomes the problems of bit-serial network 

control and many of the problems associated with asynchrony.

Networks incorporating these principles are inherently smaller, cheaper, 

more cost-effective and more reliable, and are naturally asynchronous so 

that the problems of global clock distribution do not arise.



Despite the adoption of very narrow data paths through the proposed 

network, very high performance can still be maintained. Chapter 3 

described how future implementations based upon tri-level logic encoding 

techniques can reduce the control/data path width to just three wires, 

thereby allowing large switches to be built, and can maximise the serial 

transmission rates by eliminating relative signal skewing. As device 

speeds increase, skewing will become a limiting factor in performance. By 

adopting ^elf-clocked1 single line data paths, the network performance is 

limited only by technology rather than by the physics and practicalities of 

providing matched transmission lines.

The self-clocking and serial-switching design techniques were substantiated 

by describing an implementation of a network based around a custom-designed 

network switching chip called the XS1. A network of XS1s is being used for 

component interconnection in the ALICE graph reduction engine prototype 

which has been developed at Imperial College.

In addition to network design, we also raised the issue of fault tolerance, 

which to date has received comparatively little attention. We have stressed 

that fault tolerance is vital in an interconnection network where very 

large numbers of switching elements, and even larger numbers of network 

interconnections are required. Despite a growing awareness of the need for 

fault tolerance in interconnection networks, the existing proposals have 

all been focused on synchronous network implementations, and most cover 

only a subset of the fault models which are relevent to VLSI network 

implementations.

In the proposed scheme, fault tolerance is viewed as consisting of three 

stages: error detection, fault avoidance and fault repair. The error
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detection mechanisms we have proposed are fast, simple, and effective and 

are particularly well suited to serially-switched network implementations.

Fault avoidance is achieved by providing multiple paths between each pair 

of source and destination nodes by means of an extension to the network 

topology which exploits the general partitioning properties of 

interconnection networks. The resulting fault tolerant topology 

guarantees fault-free paths in the event of all single network failures and 

a rich variety of multiple network failures. Furthermore, the fault 

avoidance mechanisms require no knowledge of the nature or the location of 

the fault. We argue that this is critical since in many cases the exact 

location of a fault causing a permanent error condition cannot be 

determined. Thus, in keeping with the ideas of structure independence 

resulting from self-clocking techniques, the fault avoidance scheme may be 

considered as being fault independent. The scheme has been tailored for 

self clocking networks where the asynchrony of the network means that fault 

avoidance must be achieved on a 'per-component* basis, i.e. independently 

of other components in the system.

The fault tolerant interconnection topology also allows the dynamic on-line 

replacement of permanently faulty switches and the repair of faulty 

connections. We have described how by using status information from the 

network interface a single permanently faulty switch or interconnection can 

be located and then both electrically and logically isolated from the rest 

of the network and replaced, without the need to power off the machine, or 

destroy the full point to point interconnectivity of the remainder of the 

network.

Research into parallel systems architecture indicates that interconnection 

networks will have an important part to play in many future concurrent 

Stjaftiyxs. HovOev-er, "there. \s <x ckt\n.ĉr -"the



diminishing fabrication costs of integrated ciruit components, the 

interconnection network cost will eventually dominate the machine cost and 

will contribute to a majority of the machines* bulk, manufacturing 

complexity and operational unreliability. Unlike the system components 

where progressively more of the interconnection can be placed in silicon, 

the interconnection network benefits less from VLSI, primarily because the 

number of I/O pins required to build a switch is directly proportional to 

the degree of the switch. In this thesis, we have taken a more pragmatic 

look at the feasibility of interconnection networks than has been done to 

date. We conclude that although existing design techniques present 

problems of unmanagable cost and complexity, there is still much that can 

be done to bring this complexity under control. By adopting a very 

different and more economical approach to switch design and by 

incorporating modest and cost-effective extensions to the network to cater 

for faults, it is possible to develop very large networks which are cheap 

and compact, fast, highly reliable and which are well suited for 

integration into many present and future concurrent processing systems.

»
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APPENDIX 1
A Routing in Lambda Networks.

Routing in a Lambda network is based upon relative addressing. The routing 

addresses and control information supplied to the network is derived from 

both the source and destination port addresses. This differs from 

traditional networks where the destination address only is sufficient to 

control network switching. Consequently, each source node may generate 

different addressing information in order to steer to the same destination. 

The following section describes a routing algorithm for Cube-based Lambda 

networks based upon the self-clocking design techniques described in 

Chapter 3.

It is the purpose of the routing algorithm to produce routing addresses for 

both the upward and downward network traversals. The network control 

information required to traverse a Lambda network is assumed to consist of 

a (possibly empty) sequence of 1s (one for each upgoing stage traversed), 

followed by a 0 (to denote fturn round here*)* and then a bit pattern 

corresponding to the address required to steer the request down through the 

network to its destination. As each stage is traversed going up, 

successive bits of the routing address are picked off and supplied as 

control information to the switches in the network. A 1 indicates that the 

request should be steered upwards, and a 0, that it should pivot and begin 

traversing the downward path. Once the pivot has occurred, the remaining 

bits of the routing address represent the switch settings for the downward 

path. For example, referring back to Figure 2-3, the path from source 001 

to destination 110 is given by

1 1 1  0 1 1 0  
a

go up 3 stages J select downward path with 110j
turn around
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A  Software Algorithm
The algorithm to generate this address string may be easily expressed as a 

procedure which takes the source and destination addresses as inputs and 

returns the necessary routing address, R.

To generate the routing address for a transaction between source

S=<sn-1 >sn-2»*,»s1 »s0> and a destination D=<dn_^ ,dn_2»*‘»di the
principle problem is to locate the stage at which the request pivots and 

begins its downward path towards D. This is done by comparison of the 

componentdigitsofS and D:-

If S=D, the network may be bypassed altogether. Here, S and D are said to 

be in direct locality. If Ŝ D, then a number of upgoing traversals of the 

network must be made in order to make D visible to S.

If si=di, i=1..n-1, s0^d0» then D must lie at one of the other x-1

downgoing outputs of the stage 0 switch to which S is attached. So, the 

request can immediately fturn round* and be steered out through the 

downgoing ouptut link, dQ, of this switch.

If Sj=d^ i=2..n-1, then traversing only one switch in the upward

direction is not sufficient to make D visible from S. Consequently, the 

request must be steered further into the network by routing it up into one 

of the (x) stage 1 switches attached to the stage 0 switch associated with

S. From this switch D is then visible. A downward path is then traversed 

by selecting this stage 1 switch with d-j and the next (stage 0) switch 

reached with dg-

Generally, if ŝ sd.̂  i=k..n-1, Sk_i^dk-1 » then the request must be passed 

upwards k stages before being turned around, and the address digits

dk-i ,djc_2,..fd-j ,dQ supplied, in that order, to each switch on the downgoing

path as it is traversed. This is like routing through a subset of a
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conventional interconnection network.

Note that if a request is ever required to traverse all n-1 stages of the 

network in the upward direction, then D must lie in the opposite half of 

the system to S. Consequently, upgoing paths out of the topmost stage of 

the network have only to connect to anv of the topmost switches into the 

opposite half of the network to complete the connectivity of the system. 

The permutation given in 2.2.3.1. is one of many possible permutations.

A software algorithm for generating the routing control string in regular 

Lambda networks when S/D is given below:-

Stack := 0 
P := 0 
y := log2X 
Source »  y
(Destination »  y) -> Stack 
WHILE Source^Destination 

P PLUS 1 
Source »  y
(Destination »  y) -> Stack 

ENDWHILE 
IF P=n THEN 
Stack << 1 
P MINUS 1 

ELSE
0 - »  Stack 

TO P
1 - »  Stack 

END TO

nommf>nh »  and «  represent respectively right and left logical 
shift operations.
(x »  y) -> z results in x and z both being shifted right by 
y places such that each bit shifted out of the least 
significant end of x is subsequently shifted into the most 
significant end of z.
x - »  y causes bit x to be shifted into the most significant 
end of y from the left.

hignr1 fctiM A1-1: Routing Address Generation in the Lambda Network.

Note that the resulting address is read left to right: the first control 

bit is held in the most significant end of the stack. Table A1-1 below 

shows the routing addresses generated for all destinations by source node 6



on a Lambda network of size 16 and degree 2.

«

*

#

Source=01102 2N=16

Destination Address Generated

0 0 0 0 1
1 1 1 0 0 0 0

0 0 0 1 1
1 1 1 0 0 0 1

0 0 1 0 1
1 1 1 0 0 1 0

0 0 1 1 1
1 1 1 0 0 1 1

0 1 0 0 1
1 1 0 0 0

0 1 0 1 1
1 1 0 0 1

0 1 1 0 1
1 —

0 1 1 1 1
1 01

1 0 0 0 1
1 1 1 1 0 0 0

1 0 0 1 1
1 1 1 1 0 0 1

1 0 1 0 1
1 1 1 1 0 1 0

1 0 1 1 1
1 1 1 1 0 1 1

1 1 0 0 1
1 1 1 1 1 0 0

1 1 0 1 1
1 1 1 1 1 0 1

1 1 1 0 1
1 1 1 1 1 1 0

1 1 1 1 1
1 1 1 1 1 1 1

{destination = source!}

Table A1-1. : Lambda Network Routing Addresses for All Paths From Source 6.

Note that it is possible to explicitly include the extra (virtual) stage of 

switches absent in a Lambda network to form a Lambda* network which 

provides the full x11 input/output ports. This, too, is controllable using 

• the algorithm above. A simple modification to the algorithm makes it

suitable for controlling such a configuration. The only difference here is 

that the 0 'pivot' bit is required in all control strings.

Implementation In Hardware
Although the algorithm given above can be used to generate the network 

routing control string, its evaluation may incur a computation time 

overhead which is significant relative to the total network transaction 

time. The algorithm can, however, be implemented in hardware using the 

self-clocking techniques described in Chapter 3:-

Figure A1-1 shows the structure of a self-clocking Lambda network switching 

element. The switch is logically divided into upgoing (distribution) and
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♦  F ig u re  A 1-1: A Lanbda N etw ork  S w itc h .

*

downgoing (concentration) logic. The distribution logic simply consists 

of 1:2 demultiplexers: if a request arriving on pivots at the switch 

then it is demultiplexed into the switch concentrator; if the request does 

not pivot in the switch then it passed out on 0~ i where it ascends to a 

switch in then next highest stage of the network. The concentrator is 

similar to the crossbar matrix in a conventional network except that here 

the matrix concentrates 2x input ports onto x output ports.

The algorithm given above may be easily implemented in hardware in the 

network interface (or NIC). The NIC is required to contain three 

registers, named S, D and K for Source, Destination and stacK. The S and 

D registers are right-to-left shift registers and the K register is a two- 

way shift register. Each switch port consists of five wires, A,B,C,D and 

R which have the same meanings as for the XS1 described in Chapter 3-

At the start of a transaction the S register is loaded with the source 

address automatically from a permanent holding register, and the D register
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is loaded with the destination address via an interface to the source

♦

component intiating the transaction. The K register is zeroised. When the 

registers have been loaded the interface lowers the R line into the 

network. The (stage 0) switch to which the interfacing component is 

attached responds by transmitting b burst clocks on the B line where b is 

the logarithm (base 2) of the degree of the switch. This burst clock is 

coupled to the clock inputs of the three registers. On each clock edge, 

S, D and K are shifted rightwards one place such that each bit overflowing 

from the least significant end of D is clocked into the most significant 

end of K. Throughout the shifting process, the contents of the S and D 

registers are compared. The output from the comparator is enabled onto the 

network D wire and the incoming burst clock from the network is enabled 

onto the C wire. When the final (bth) clock bit on C has been received at 

the switch an acknowledge signal is issued back to the interface on the A 

wire and the signal on the D wire is examined. This signal is:- 

(s »  b) = (d »  b)

where s and d are respectively the source and destination addresses and 

*M »  n’ means shift M right n places.

If the S=D signal is HIGH then s and d differ only in their least 

significant b bits. If this is the case then d is visible from the stage 0 

switch attached to s and the request must pivot at stage 0. If S=D is LOW 

then d is not yet visible from s and so must be fed higher into the 

network.

The signal on the D wire after the receipt of the b burst clocks is thus 

the ^ivot* signal; D=HIGH meaning 'pivot'. If the request is to pivot

then, since the switch itself provided the burst clock, the information now 

held in K is sufficient to select the switch in the downward direction. 

The distributor in the switch couples the five wires on its input to the 

corresponding input of the concentrator. Thus the concentrator 'sees' a
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♦

*

*

♦

*

transition on its R line and begins the normal self-clocking routing cycle 

as described in Chapter 3» At the interface, the K register is now set up 

to shift leftwards with the overflow from the most significant end of the 

register being enabled onto the network D wire and the S and D registers 

are disabled. The K register now behaves as the routing address register 

and the interface functions exactly as would a normal self-clocking 

controller.

If the request must be steered further into the network i.e. if the pivot 

signal is LOW at the switch and interface, then the distributor simply 

couples the fives wires (say on I j) to and the cycle repeats, this

time with the interface in communication with a switch in stage 1.

In a Lambda* implementation the S and D registers are bound to be equal at 

some time since there can be a maximum of m burst clocks and since each 

address is only m bits long. In a simple Lambda network, the interface 

must detect if the topmost stage has been passed (i.e. this is an implicit 

pivot). This could be done by simply inverting the acknowledge signal in 

the normal self-clocking protocol. Then, when the top stage is selected 

and the request is fed into a downgoing input link in the opposite half of 

the network, a double acknowledge will be observed at source. This could 

be used to indicate an implicit pivot. Alternatively, an extra contol line 

could be provided which is set HIGH only when an implicit pivot occurs. 

Observe that the routing mechanism preserves structure independence as 

described in Chapter 3 since at each stage going up sufficient bits are 

stacked in K to enable the network to be correctly addressed following the 

pivot. However, the switches of a given degree must all be of fixed 

degree.
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APPESDIX 2
♦

Network Simulator Decription

A number of simulators have been written for verifying theoretical models 

of network performance. The simulator described here is the largest of 

this suite of simulators and has been used extensively for predicting 

the performance of self-clocking networks with varying physical and 

operational parameters.

♦

¥

The simulator is event driven and there is one event for each of the major 

processes associated with network control and data transfer, as well as 

additional ('snap-shot*) events solely responsible for accumulating 

statistics. The simulator is designed to be run interactively although 

a batch version exists for analysing very large network configurations.

When the simulator is run the initial network configuration is prompted 

for. Once the operational parameters have been defined, a number of 

optional commands can be issued to vary the degree of tracing and 

statistics-gathering performed during a simulation run. Help information 

is available on all commands. The simulator is begun by issuing the RUN 

command followed by the number of requests to be passed before termination. 

When this number of requests have been completed a results summary is 

displayed and control returns to the command interpreter. Any of the 

simulation parameters may be altered before re-running the simulator. The 

list of available commands on the system is shown in Table A2-1 and the 

list of alterable simulation parameters is shown in Table A2-2. In Table 

A2-1, the minimum abbreviation for unique identification of each command is 

shown in upper case. The simulation results displayed at the end of a run 

are listed below:-
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♦

♦

♦

*

♦

»

* The observed mean block size transferred in bits

* The observed mean time between arriving requests to each input port.

* The mean observed path set up time

* The mean observed total network transaction time

* The total time taken to pass the specified number of requests

* The observed request completion rate

* The total number of requests experiencing blockage

* The proportion of requests succeeding without blockage

* The maximum observed path set up time

* The maximum observed total trasnaction time

* The maximum number of requests blocked at a switch at any time

Plus, the following optional or simulation-dependent summaries

* The observed utilisation of links specified by the OBserve command

» The observed total transaction time for each transfer class specified 

in the SET T V command

* The observed mean number of retries before holding the channel if 

the timeout mechanisms are in use.

* A plot of the distribution of transaction times for all requests 

passed.

* A plot of the distribution of network output port addresses (primarily 

for analysing the effects of biassing).

* Tracing information recorded during the simulation run. This includes 

the current simulated real time, the total number of requests passed, 

the total number of requests blocked, the number of requests currently 

blocked in the network, the number of requests in the system and, for 

each stage in the network, the total number of links in use and the 

mean stage utilisation.
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* Command Name Parameters Description

Bias <output port> 
<% bias>

Bias the given network output port by 
given percentage. That port' is then 
p£ more likely to be addressed than 
unbiassed output.

BLip <request count> Causes simulated real time to be 
displayed at the terminal every given 
number of requests.

Debias Resets all biasses

Exit Exit simulation system

Help Displays help information

OBserve <stage number> 
<link number>

Monitors the utilisation of the given 
output link of the given stage.

* Output <file name> Redirects results summary to specified 
results file.

PRintbias Displays current biasses

PLot <plot type code> 
{<destination>}

Plot either output port address (code 
A) or transaction time distribution 
(code T). Destination V 1 forces plot 
to terminal.

RESults {<destination>} (re)Display results of last simualtion 
run. Destination */* forces output to 
terminal rather than to results file.

RUn <no. requests> Run the simulator & pass given number 
of requests.

REDefine Redefine all simulation parameters

%
SEt <parameter code> 

<new value descr.>
Sets simulation parameter given by 
parameter code to value given in 
descriptor. (See Table A2-2).

STop Turns off link observation (see OB)

SYstem Display current simulator parameter 
settings.

#

Trace {<interval> 
{<file name>}}

Every n time units, given by interval, 
causes trace information to be sent to 
given file. No parameter => turn off 
trace. New file name => redirect with 
same interval.

TABLE A2-1: Simulation System Commands.
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Parameter Parameter Value 
Code Descriptor

N <inputs> No. of active network input ports.

M <outputs> No. of active network output ports.

W <width> Width of network, i.e. total number of 
network input/output ports.

c <crossbar> Size of each component crossbar switch

I <1. A. T. > 
{<dist. flag>}

Inter-arrival time. Distribution 
flags’F* => fixed intervals; flags*E* => 
exponentially distributed inter-arrival 
times.

L <low,limit> Transaction time histogram lower range 
limit.

U <up limit> Transaction time histogram upper range 
limit.

P <period> Data transmission clock period (in ATUs)

A <fetch time> Switch select address retrieval time.

T <trans.length> 
(<dist flag>}

Total number of bits transferred across 
established network channel. 
Distribution flags»F* => fixed size 
blocks; flags*E' => exponentially 
distibuted block size; flag=*V* s> 
variable block size: user is prompted 
for block sizes i relative frequencies.

S <interval> Master statistics clock interrupt period. 
Link observations & traces done after 
interrupt (if set on).

V <timeout> Request timeout period. After timeout, 
request is cancelled, delayed & retried.

Y <interval> Maximum timeout to retry interval. After 
random backoff time (^interval) request 
is retried.

H <timeout count> No. of retries before holding channel.
After given number of timeout/backoff/ 
retries, timeout is disabled. (Avoids 
starvation>.

TABLE A?-?: Possible Arguments To SET Command


