
University Of London

Imperial College Of Science And Technology,

Department Of Computing.

THE ANALYSIS AND DESIGN OF SNITCHING NETWORKS.'] FORf?
HIGHLI PARALLEL COMPDTER SISTEMS

by

A.J. Field.

This thesis submitted in part fulfillment for the requirements of the

degree of Doctor Of Philosophy, October 1984.

■ 3 -

\3

«

f t

»

«

IS \s
A

A l i ^

*

ABSTRACT

This thesis examines the application of multistage interconnection networks

to highly parallel computer systems which may contain many thousands or

tens of thousands of component processors. The cost and complexity of the

network becomes prohibitively high when existing network design techniques

are applied to very large-scale systems. A number of performance models

for interconnection networks are derived. This analysis covers some

interesting variations on conventional network designs as well as that of a

new class of networks which are capable of exploiting locality of

reference whilst still providing low-cost global communication. The

general properties of this class of networks is described. The analysis of

asynchronously controlled full crossbar switches with request blocking is

also described. A new approach to network design is then presented. This

approach enables the efficient bit-serial control of the network which

naturally reduces the size and complexity of the network by allowing larger

single-chip component switches to be constructed. The design of the 'XS1*

prototype network switching chip, which incorporates these design

techniques, is described. Network interfacing and performance are also

examined. Finally, network fault tolerance is discussed. We show how by

extending any interconnection network so that each attached component has

multiple links into the network, a fault tolerant topology can be realised

which does not require fault location in order to achieve fault avoidance.

We describe a novel technique for concurrent error detection in bit-

serially controlled networks which does not require error detection codes

to be transmitted through the network. A technique for dynamically

replacing individual faulty switches in a fault tolerant network is also

described.

Acknowledgements

I would like to take this opportunity to thank all the members of the ALICE

research group who over the past three years have become not only

respected colleagues but also great friends. My thanks go to Mike Reeve,

Pete Harrison, Ian Moor and Victor Wu who have fed me with numerous ideas,

Penguin biscuits and cups of dark roast coffee for the past three years,

and to Roger Bailey, whose threats of physical violence made the task of

writing up so much easier to come to terms with. A special "thank you"

goes to Alison Surry who took all the words and somehow managed to get most

of them typed out in the right order, to Duncan Haysom who in drawing the

diagrams saved me many long hours of frustration, and to Graham Fletcher

who turned the XS1 from paper to silicon in one go.

Special thanks also goes to the Science And Engineering Research Council Of

Great Britain who have supported both myself and the ALICE project for the

past three years.

Above all, however, I would like to thank my supervisor, John Darlington,

and my close colleague, Martin Cripps, without whom this thesis would most

certainly not have been completed. Their endless encouragement and undying

enthusiasm is an inspiration to us all.

1

3
4

7

7
7

10
11
12
14
15
16
16
17
19
24
26
34
36
38
44
47
48
55

57

57
60
61
64
65
66
67
67
68
69
72
72
75
76
77
78
80
80
82
84
85
86
86
86

TABLE OF CONTENTS

Chapter JLl Introduction.

1.1. Exploiting Concurrency
1.2. Dynamic Communication Networks

Chapter Zi. Network Operation And Analysis-

2.1. General Properties Of Interconnection Networks
2.1.1. Topology

2.1.1.1. Discussion Of Topology
2.1.2. Irregular Topologies
2.1.3. Routing
2.1.4. Blocking
2.1.5. Switching Mode

2.2. Performance Analysis
2.2.1. NetworksWithNon-Unif orm Load

2.2.1.1. Assumptions Of The Model
2.2.1.2. A Recurrence Equation For Generating T^
2.2.1.3. Sparse Networks

2.2.2. k-Channel Network Analysis
2.2.3• Lambda Network Analysis

2.2.3.1. Lambda Network Characteristics
2.2.3.2. Analysis

2.2.3.2.1. Effects Of Locality
2.2.4. The Analysis Of Asynchronous Systems

2.2.4.1. The Analysis Of An Asynchronous Crossbar Matrix
2.2.4.2. Towards Asynchronous Multistage Network Analysis

Chapter 3; Self-Clocking Networks.

3.1. Design Techniques
3.1.1. Serial Switching
3.1.2. Self Clocking Networks

3.2. The Design Of The XS1 Network Switching Device
3.2.1. Description Of The XS1

3.2.1.1. The D (Data) And C (Clock) Lines
3.2.1.2. The R (Reset) Line
3.2.1.3. The A (Address Valid) Line
3.2.1.4. The B (Burst) Line

3.2.2. The XS1 Routing Cycle
3.2.2.1. The End Of Path Protocol

Logic
The Address Generation Unit, G
The Arbitration Unit, A
The Pass (P) And Multiplexer (M) Units

Serial Switching, Self Clocking And Structure Independence
Interface Design

3.2.3. XS1
3.2.3.1.
3.2.3.2.
3.2.3.3.

3.2.4.
3.2.5.

3.2.5.1. XS1 Level 0 Interface Description
3.2.5.2. Interface Operation

3.2.6. Performance
3.2.6.1. Timeouts

3.2.7. Future Developments
3.2.7.1. Asynchronous Burst Clock Generation
3.2.7.2. Tri-Level Logic Implementations

i

Chapter 4: Fault Tolerance In Self Clocking Networks 89

4.1. Fault Models 89
t 4.1.1. Permanent Faults 90

4.1.1.1. "Stuck-At" Faults 90
4.1.1.2. Permanent Link Faults 91

4.1.2. Transient Faults 91
4.1.2.1. Transient Switch Faults 91
4.1.2.2. Transient Link Faults 91
4.1.2.3. Synchronisation Failure 92

4.2. Existing Fault Tolerant Schemes 93
4.2.1. Self Testing Switches 93
4.2.2. Extra-Stage Networks 93
4.2.3. Multiple Plane Networks 94

^ 4.3. A Fault Tolerant Scheme For Self Clocking Networks 95
4.3.1. Providing Multiple Paths 97

4.3.1.1. Address Transformation 97
4.3.1.2. Extending The Cube 97
4.3.1.3« Irregular Topologies 102

4.3.2. Error Detection And Fault Avoidance 103
4.3.2.1. Error Detection Mechanisms 105

4.3.2.1.1. Path Building Failure 105
4.3.2.1.2. Addressing Failure 106
4.3.2.1.3. Data Transfer Error 106

* 4.3.2.2. NIC Operation 107
4.3.2.3. Finding Fault-Free Paths 111
4.3.2.4. Multiple Faults 113

4.3*3. Coping With Multiple Faults 114
4.3.3.1. Fault Location 114
4.3«3.2. Isolating Faulty Switches 116
4.3.3.3* Fault Repair 120

4.4. Summary 121

* Chapter 5: Sn— anv And Conclusions 123

REFERENCES 128

-Appendix lL a Routing Algorithm For Lambda Networks 132

Appendix Asynchronous Network Simulator Commands 139

ii

8
25
26
33
35
39
44
46
49
55

58
65
66
70
74
74
75
76
81
86

103
104
115

136

135

LIST OF FIGORES

LLg-t. Description

2-1 An Interconnection Network, Size 16, Degree 2.
2-2 Sparse Network Performance
2-3 A K-Channel Network Switch With Degree x
2-4 K-Channel Network Performance
2-5 A Lambda Network, Size=32, Degrees2
2-6 Lambda Switch Loading
2-7 Lambda Network Performance
2-8 Lambda Network Performance With Locality
2-9 Queueing Network Model For Single Asynchronous Switch
2-10 Asynchronous Full-Crossbar Performance

3-1 2x2 Switching Element Schematic
3-2 The ALICE Machine Schematic
3-3 XS1 Schematic
3-4 Path Building
3-5 The Arbitration Clock Generator
3-6 XS1 Slice Schematic
3-7 The Address Generation Unit
3-8 The Arbitration Unit
3-9 Level 0 Interface For Transputer/Transputer Interconnection
3- 10 Self Clocking Network Performance Curves

4- 1 A Cube-Based Fault Tolerant Network, N=32, x=2, k=2.
4-2 Example Fault Tolerant Set-Up
4-3 NIC Status Register Format

A1-1 A Lambda Network Switch

LIST m -NUMBERED £QUAHQ.NS
Eqn. Defined

[2- 1]
[2- 2]
[2-3]
[2-4]
[2-5]
[2- 6]
[2-7]
[2- 8]
[2-9]
[2- 10]

19
20
21
21
23
30
31
45
51
52

[4-1] 105

LIST OF TABLES

A1-1 Lambda Network Control Strings

ill

CHAPTER 1

Introduction

It is now widely acknowledged that concurrency in program evaluation

provides the only means of significantly increasing processing speed.

Cooperation between the component processors of a parallel machine relies

on inter-processor communication, and the design of communication systems,

or communication networks, for multiprocessor architectures has been a

subject of growing interest in recent years. This thesis examines the

a class of communication networks in the context of highly parallel systems

where communication among many hundreds, thousands, or even tens of

thousands of processing components is required.

Feng [Fen82] categorises interprocessor communication into static and

dynamic types, the former corresponding to distributed, and generally

loosely coupled systems where communication is only between adjacent

processors which are arranged into a processor interconnection graph, and

the latter corresponding to systems where a separate communication

subsystem is employed to achieve processor coupling. The latter types of

system are often, although not always, closely coupled, with the

communication system providing each processing device with a ’multiport1

view of a shared memory system.

Static communication networks are often employed where the structure of the

problems being solved closely reflect the structure of the machine (i.e.

the topology of the processor interconnection graph). Virtual tree

machines [BuS81], which are very effecient at evaluating divide-and-conquer

problems are good examples of such systems. Note that there is generally

no global communication: subcomputations (together with their data) are

spawned from one processor to an adjacent processor in the graph and

results are fed back via the same connection when evaluation is complete.

Dynamic communication networks have been proposed for various SIMD [Bar8l,

Lan76,LaS76,LaV82,Law75,Len78,NaS80,NaS82,Sie79,YeL81], MIMD [Dij81,JuD81,

MAS81 ,McS80,MSi80,Pat79], dataflow [ADI83,GWG80] and reduction [DaR8l,

KeL79] machines. In these machines, each system component is connected to

a separate communication network and communication between two arbitrary

components is achieved by establishing either a physical or a virtual

channel through the network between the two along which data can be

transferred.

In these machines subcomputations gain access to a data structure not by

being passed a copy of the structure, as is often the case in static

networks, but by making a direct (or indirect) reference to a shared copy

of the structure when the subcomputation is invoked. As a consequence of

sharing data structures in this way, computation soon becomes *detachedf

from the data on which they operate. The communication network provides

the mechanisms for efficiently accessing shared (global) data items which

may be located anywhere in the system, and for the general coordination of

concurrent tasks by the passing of control information among the systems1

components. The distribution of the processes or computations may also be

facilitated by the network.

This thesis is concerned with the design and analysis of a class of dynamic

interconnection networks, which are communication networks analogous to

high speed telephone exchanges.

The particular applications considered are those systems which obtain high

performance by exploiting very large degrees of parallelism and which have

the property of extensibility whereby a guaranteed increase in performance

can be achieved by simply incorporating more processors into the system.

These systems may contain tens or even tens of thousands of component

% processors depending on the computing power required.

A number of network designs have been suggested for use in SIMD and MIMD

environments [Bar8l,Bar82,LiW82,MAS81,Pat79,WLL82], but we argue that these

designs are impractical and inappropriate for systems of any significant

size. Networks based upon existing principles then become very large,

♦ complex, expensive, and inherently unreliable. This thesis examines a

very different approach to network design and proposes techniques for both

reducing network complexity and enhancing network reliability.

1.1 Exploiting Concurrency

Considerable research has been done into the problem of exploiting

concurrency but this has often led to frustration because of the inherently

sequential nature of the programming languages used to formulate the

problems being solved. Some language extensions have been- introduced (for

example, parallel DO, and Fork-and-Join in FORTRAN) to enable the

♦ programmer to make better use of the parallelism available in the machine,

but this greatly complicates the task of programming - the user requiring a

detailed knowledge of the machine in order to best exploit its concurrent

capabilities.

Although a number of concurrent programming languages have been developed
♦

(for example Modula [Wir83] and Occam [IMS84]), one of the most promising

solutions to this problem has evolved through the study of declarative

(side-effect free) programming languages [Bur75,Hen80,DHT81]. Such

languages possess a clean mathematical semantics which enhances program

clarity and which significantly aids the task of program development and
♦

automatic transformation [BuD77»Dar81]. Additionally, these languages

exhibit the property of referential transparency, one consequence of which

is the potential for concurrent evaluation. These issues are eloquently

3

discussed by Backus in [Back78], and a number of machines designed to

exploit this concurrency have been proposed, for example [BuS81,DaR81,

KeL79, Mag79],

It is this class of so called declarative language support architectures*

to which this thesis is particularly addressed, although the issues raised

are applicable to all network-based systems employing very large numbers

of component processors.

J«2t Pvnanic Interconnection Networks-

A dynamic interconnection network is a communication system in which any

network input link can be connected to any network output link by

appropriately setting the switch, or switches, from which the network is

constructed. This differs from static network where the links between two

components are passive and cannot be reconfigured for direct connection to

other components [Fen82].

The simple shared bus is one extreme form of dynamic network. This is

effective provided the number of components attached to the bus is small.

As the number increases the bus reaches a saturation point and bus

bandwidth, and hence system performance, levels off [KiA78].

In terms of performance, the most effective dynamic communication system is

the full crossbar matrix [LVA82,MeC80, MuM82] which may be viewed as a

multiple bus system in which each of the connected components has its own

unique communication bus. The full crossbar forms the opposite extreme of

dynamic communication networks and has been used in several systems (for

example the CDC Cyber 170 [Tho70] and Cmmp [FuH78] systems). Again,

however, its use is limited, this time because of the very large (0(N2))

costs associated with its construction,

♦

♦

Single and multistage interconnection networks provide a cost-effective

compromise between the extremes of the shared bus and the full crossbar

matrix. These networks are composed of an interconnected array of

switching devices each of which is effectively a small crossbar switch. By

appropriately setting these switches, any network input link can be

dynamically connected to any network output link.

A number of subclasses of network have evolved. These include the

rearrangeable (non-blocking) Clos [Clo53] and Benes [Ben65] networks, the

PM2I subclass which includes the Data Manipulator [Fen73], the ADM [McS80,

M c S81] and Gamma [PaR82] networks, the single-stage (perfect shuffle)

networks [Sto71], and the so called 'N log N' multistage interconnection

networks [DiJ82] which include, for example, the Omega [Law65], Baseline

[WuF80], SW-Banyan [GoL73]» indirect binary n-cube [Pea77] and Generalised

n-cube [SiM8l] networks.

It is this latter class of networks which are considered in this thesis and

throughout the remainder of the thesis we shall use the term

'interconnection network' to refer solely to the 'N log N' class of

networks although strictly the term is generic, covering the Benes, Clos,

PM2I, full crossbar networks, and so on.

*

*

The remainder of the thesis is divided into three parts:

Chapter 2 describes the general characteristics of the 'N log N' class of

dynamic interconnection networks which are of interest to the thesis.

Network performance analysis is also studied and four interconnection

network variations are examined and compared.

Chapter 3 describes two design techniques, 'self clocking' and 'serial

switching', which are techniques aimed at reducing the cost and complexity

of the interconnection network whilst maximising the network flexibility.

5

This chapter includes a description of a network implementation which has

been designed and built as part of the ALICE reduction machine project

[DaR81].

Chapter 4 examines the (much neglected) issues of fault tolerance and

describes how this can be obtained in interconnection networks by

introducing error detection mechanisms and by exploiting some of the

topological properties of these networks to facilitate fault avoidance and

fault repair.

Finally, the summary and conclusions of the thesis are laid out in

Chapter 5.

£HAEXER 2.
Network Operation And Analy3i3

Interconnection networks are a cost-effective means of providing arbitrary

point to point communication in a multiprocessor or multicomputer

environment, offering greater architectural simplicity and flexibility than

the full crossbar matrix which they aim to simulate.

Section 2.1 of this chapter describes the general properties of

interconnection networks with regards to their physical and operational

characteristics. Section 2.2 is concerned with network analysis and

examines the performance of four variations on conventional network

implementati ons.

2,1. General Properties Of Interconnection Networks.

2.1.1 Topology

A regular interconnection network is rectangular array of interconnected

full-crossbar switches of arbitrary, but fixed size. In the remainder of

this thesis, the switch size - which we generally refer to as the switch

degree - will be denoted by x.

A regular interconnection network of size N and degree x consists of

n=logxN stages of crossbar switches with N/x switches in each stage.

The total number of switches in the network is consequently (N/x)logxn.

Each switch in the network has x input ports and x output ports so that the

total number of input and output ports in each stage of the network is

equal to N. An example of a simple interconnection network of size 16 and

degree 2 is shown in Figure 2-1.

%

*

Figure 2-1: An Interconnection Network, Size 16, Degree 2.

The interconnection topology describes the way in which the input and

output ports of adjacent stages are connected. Note that there are no

connections between the switches of a single stage. Three types of

interconnection topology are frequently referred to in the literature;

these we now define.

Let the n stages of the network be indexed from 0 to n-1 with stage 0

corresponding to the input side of the network. Now let the jth input

link of stage s be labelled I3(j)f j = 0..N-1, s=0..n-1, and let the jth

* output link of stage s be correspondingly labelled 0s(j)» j=0..N-1,

s=0..n-1.

The interconnection (or permutation) between adjacent stages, say s and

8

s*1, may be viewed as a function mapping each of the 0g(j) to exactly

• one of the T3, i<.1'). se[0..n-2], j, j' <r [0..N-1], i.e.

P (s) : O g (j) - > I s + 1 (j>)

where P is the permutation function for stage s of the network.

We describe the permutation by specifying the relation between j and j*
ihw above for a given value of s for each of the three permutation functions.

To do this we shall write j as a base x number, which, for a network with n

stages will contain n digits. So let j be written:

j = ^n-l'Jn-2» *•»h* J0>» jk e[0..x-1], k=0.. n-1

We can now express the three permutation functions as functions which

transform the component digits of j:-

*

*

1. The CUBE Permutation.

P(s) . 0S(< jn_ i, j n_2 »»» i j s+2»J s+ 1»J s»

s+1^n-1»jn-2»,#»^s+2» ̂ 0 js»**» ̂ 1»j s + 1 ^ f s=0..n-2
i.e. exchange digits 0 and (s+1) of j.

(This permutation is so called since the couplings between stages s

and s+1 of the network are the same as the couplings in the (s+1)th

dimension of an x-wide n dimensional hypercube [MSi80, Pea77].

2. The Shuffle Permutation

P(s) : Og(̂ Jn—1 * jn—2 * • •» Jl» ^

^s+1 (^jn— n— 1 ̂ ®
i.e. left rotate the digits of j.

(This permutation is so called since the case x=2 produces a mapping

analogous to that produced by shuffling, or interleaving, two halves

of a card deck whose face values are the integers 0..N-1. This

topology with x=2 forms the basis of Lawrie's omega network [Law75].)

9

3. The Partial Shuffle Permutation
*

P(s) : 0S(< jn_ ^ j s+2 , js+‘j, i Jq>) ->

Iĝ . ̂ ̂Jji— 1 »• •1 ̂ s+2 »Jo * ̂s"*" ̂ ̂ ̂ 1 S- 0 •»n~2
i.e. perform the shuffle permutation on digits 0..S+1 of j.

(This permutation forms the basis of the baseline topology [WuF80]

which has been used to demonstrate the topological equivalence of
* various N log N networks.)

For example, starting at input port 3 (0011) in the network of Figure 2-1

(which has a Partial Shuffle topology) we have that:

o0<oon> -> i ^ o o m

0^0011> -> I2<0110>

02<0110> -> I3<1100>.

2.1.1.1. Discussion of Topology

The three permutations defined above form the basis of all regular

interconnection networks . A number of these networks use inverted forms
*

of the above topologies, for example the Generalised Cube topology [SiM81]

which is simply an inverted form of the indirect x-ary n-cube (which itself

is a generalisation of the binary n-Cube of Pease [Pea77]). Note that the

Cube permutation function as defined above requires an additional

permutation on the output side of the network to 'realign1 the port

addresses so that they are contiguous at the network outputs. The same is

true of an inverted shuffle topology, although the inverted baseline

topology requires no output permutation, regardless of the orientation of

the network.

• An interesting property of the shuffle permutation is that the

interconnection is independent of the stage number. Consequently, an

extension to a shuffle interconnected network of size N requires the

10

existing interconnections to be rewired so as to retain the shuffle

topology in the extended network. This limits its applications in

reconfigurable systems. Also, since the interconnection is the same for

all stages, the network may be compressed into a single stage topology in

which the network outputs are fed back to the inputs. This configuration

is termed a *single stage* shuffle-exchange network [LaN76,WuF81], and

functions by repeatedly circulating requests through the single stage until

the required destination node has been reached. Various algorithms have

been developed to run directly on a single stage shuffle processor array

[Kuh80]. The use of these networks for more general interprocesor

communication has been examined in [KDJ83].

2,.l t2t Irregular Topologies

Of particular significance in the next chapter is the class of irregular

network topologies which can be obtained by incorporating switches of

varying size into a single network. Irregular networks are important when

large switches are being used to construct a network. If only switches of

degree x are being used then only networks of size xn, n=1,2,... can be

constructed. If intermediate sizes are required, then it must be possible

to integrate stages of switches of degree y<x. Such a network then has no

fixed degree; the term hybrid network will often be used to refer to such

irregular configurations.

As a simple example, consider the problem of constructing a Cube-based

network of size 2xn using n stages of switches of degree x and one stage of

switches of degree 2.

The rules for interconnecting the n stages of switches of degree x are

simply obtained from the regular permutation function for the Cube as was

given above. Further extending this network by a factor of two requires

adding an additional stage of switches of degree 2. In the regular Cube

network new stages are (ordinarily) added to the bottom (output) stage of

m the network. The permutation function required between the old output

stage and the new degree-2 stage is obtained by viewing the original

regular network as being of size 2r for some r. (An integer value of r

will always exist since x is a power of two [Pat79].) The extension is

then viewed as a normal extension to a network of degree 2, i.e. the

required permutation function is simply that of the Cube, with x=2. Note

that if the existing cube is inverted (yielding the Generalised Cube

topology), then the extra stage will be added at the top of the network,

but the permutation function will be the same.

A wide variety of irregular networks can be conceived. Networks composed

of many different sized switches are possible and these can, in theory,

occur anywhere in the network so long as the network can be consistently

addressed.

An exhaustive categorisation of irregular topologies is impossible, suffice

it to say that the ability to construct hybrid networks adds considerable
♦

flexibility to system design. A network of size 2n for any n, for example,

may be constructed using a combination of switches of size 2, 4, 8, 16...

and so on if required by the system. In the next chapter we propose a

design methodology which enables arbitrarily complex hybrid systems to be

built without destroying the functionality of the network as a whole.

2.1.3. Routing

The process of establishing a path through the network involves

individually selecting or addressing exactly one switch in each stage of

the network.
•

It is easy to see from Figure 2-1 that an interconnection network Is a

system of N interwoven 1:x demultiplexor trees (of fixed, or mixed degree),

12

and the path building process is similar to that used in conventional tree

«

4

4

f t

traversal. Only the required network output port address need be specified

in order to establish a path from any source (network input port) to any

destination (network output port).

Consider a regular network of size N and degree x. Let the source node

address be:

^ ^sn-1»sn-2»• • * 1 Sq> £ C 0 •. x—1 3 , i=0 • • n— 1

and the destination node address be:

D = <dn-1 »dn-2»« • »d1»d0> di f [0..X-1], i=0..n-1

A path from S to D is established by using d^ (or dn_i_“| depending on the

network) to select stage i of the network. Since each switch in a regular

network has x input and x output ports, d^ is sufficient to specify exactly

one of the switches* output ports. It is easy to show that this rule

correctly steers the request to its addresed destination node:-

Consider, for example, the Generalised Cube topology which is an inverted

form of the Cube topology defined in 2.1.1 above in which dn_i„i is

ordinarily used to select stage i of the network, i=0..n-1. In the

Generalised Cube, the input (top) stage of the network is traditionally

labelled stage n-1 and the output (bottom) stage of the network - stage 0.

Using our notation, the permutation function, G, for stage s is given by:-

G(s) . ^s(^jn—1,••,Js+1,Js»Js—1,•*,J1,Jô) —^
Is-1 C^Jn-1 * * * * ̂ s+1 * do»Js-1 > • •»*ii» » s=1.. n-1

After stage n-1 of the network has been selected (using dn_^)f the request

is steered to the stage n-1 output port labelled:

<sn-1»sn-2,# * »S1»dn-1>#

13

From the G(n-1) permutation rule, this port is linked to the stage n-2

input port labelled:

^dn-1 * sn-2» • •»S1»sn-1^ •

After stage (n-k) has been selected similarly, the request is steered to

the stage n-(k+1) input port labelled:

* <dn-1>dn-2»,*»dn-k»sn-(k+1)»,,,s1»sn-k>#

Consequently, after stage 1 (=n-(n-1)) has been selected, the request

arrives at input port

<dn-l»dn-2»**»di»s1̂

of stage 0 of the network. Thus supplying the last routing address, dg, to

the corresponding switch then steers the request to the network output port

labelled

<dn_ 1 »dn-2» * *»d1»d0^ Q.E.D.

* In an irregular network, the bit string representing the destination

address is simply partitioned irregularly so that the length of each

substring, d^ used for addressing purposes may be different. In the case

where each stage of the network contains switches of fixed degree but the

stages themselves are of mixed degree, then the routing scheme may be

ft viewed as being based on mixed radix addressing [BhA82]. A folded network

of this sort reduces to an alpha structure as defined in [BhA82].

f t

2.1.4. Blocking

The paths from a single source node to the set of all destination nodes of

a network form a 1:N demultiplexor tree. Because the demultiplexor trees

of all the available input nodes share common nodes in the interconnection

graph it is possible that two requests originating from separate source

14

nodes and addressed to separate destination nodes both require to use the

% same output port of one particular switch in the network. Because in a

demultiplexor tree there is only one path between any input and output

node, one of these requests must be denied and a blockage is said to have

occurred. Until the successful request Releases1 this output port, the

blocked request must either 'hang1 or cancel. Path building may be held up

in any stage in the network mas a result of blocking.

The degree of blocking experienced in a network is a key factor affecting

network performance. This isssue is raised in 2.2. below where we use

probabilistic techniques to analyse the contention in a variety of

interconnection network configurations.

2.1.5. Switching Mode

An interconnection network may operate in either a circuit switched or a

packet switched mode of communication, and the arguments concerning both

approaches are similar to those debated in the context of other

* communication systems. Basically, packet switching offers the advantages

of reduced link contention since the packets themselves are buffered in

successive stages of the network so that the links used to transmit the

packet may be immediately released for further traffic. An excellent

examination of packet switching techniques has been presented by Jump and

« Dias for both single [KDJ83] and multistage interconnection networks

[JuD81, DiJ81].

In this thesis we concentrate on circuit switched interconnection networks

in which a physical (rather than virtual) channel is established between

the source and destination nodes. We do not wish to argue that this
*

approach is generally superior since the most suitable mode is dependent

very much on the application. Circuit switching yields faster access times

[Bar8l], allows for arbitrarily large volumes of data to be transferred in

15

a single transaction and also facilitates bidirectional (full duplex)

communication between source and destination.

2.2. Performance Analysis

This section examines interconnection network performance for networks

with varying physical and operational characteristics.

We examine four network models. The first considers an extension to the

model given by Patel [Pat79] in which we derive equations for the

throughput of a conventional switching network operating in a cyclical mode

with non-uniform input load. The second model examines the effect of

providing multiple channels on each port of the switching nodes of a

conventional network. The third model covers the analysis of new class of

interconnection structures called Lambda networks, which we define, and the

fourth investigates the application of queueing theory to the analysis of

asynchronous networks. The design of asynchronous networks is taken up

in Chapter 3*

2.2.1. Networks with Non-Uniform Load

This analysis relates to networks which operate in a cyclical mode. A

network cycle describes a time frame in which the entire network is

synchronously routed through and data is transferred along those paths

which have been established without incurring blockage [Pat79].

Consequently this analysis is particular to circuit-switched

implementations.

The analysis serves two important functions:

1. For networks which naturally operate in a cyclical mode, for example

[Bar8l], it yields an accurate measure of the networks throughput.

16

2. It provides a valuable reference model by which different network

configurations can be compared. The cyclical model is adopted in

both the next two sections; a direct comparison of the performance of

the various networks is then possible.

2*2.*.1«.! . Assumptions of the Hodel

The following model is a generalisation of that given in [Pat79] which

covers the analysis of delta networks.

The environment considers networks which operate on a cyclic basis. For

the time being we shall consider a regular network of size N and degree x

in which N.̂ of the input ports and NQ of the output ports are actually

connected to system components. n will be used to denote the number of

stages in the network, i.e. n=logxN.

At the start of a network cycle, requests are synchronously presented to

each of the networks* input ports. These requests are then passed through

each of the logxN switching stages of the network simultaneously. Certain

of the requests will be blocked at intermediate switches in the network.

Those which are not blocked form physical channels betwen the input and

output ports of the network. The network then enters a data transfer phase

during which data is passed (possibly in both directions) across the

network. At the end of data transfer, all paths are simultaneously

released and the cycle repeats.

We lift the restriction imposed by Patel's model and consider a system in

which the inputs may be unequally loaded by the components attached to the

network. This enables the performance of certain types of heterogeneous

systems to be predicted. In particular, the analysis subsumes both the

original analysis given by Patel and that of sparse networks, in which

only a subset of the input and output ports of the network are connected to

system components,

Let the cycles be enumerated by C = {0,1,...} and let E(c,k) be the event:

"there exists an arrival on channel k at the start of cycle c (ceC,

0ik£N-1)n. The extended definition of Patel's model is then as follows:-

1. E(c,k) and E(c',k*) are assumed to be independent, c/*c', k^k'. Note

that this implies that blocked requests are 'lost', i.e. requests are

assumed to be submitted to a port independently of any previous

transactions on that port.

2. The probability that a request is submitted on input port k at the

start of a cycle is Pk, k=0..N-1.

3. All output ports connected are equally likely to be addressed, that is

no output ports are 'favoured' in preference to others.

Note that if only a subset of the output ports are connected to system

components, then these are assumed to be evenly distributed across the

outputs. That is, each switch in the last stage of the network is assumed

to have the same number of connected ports. Note also that assumption 1 is

not realistic since in practice blocked requests are almost certain to be

resubmitted in the next cycle. However, simulation suggests that this

assumption introduces only a small inaccuracy in the predicted performance

of the network.

The performance measure we are concerned with here is normalised

throughput, Tjj, as defined in [Ju D81]. This is the proportion of the

output ports which are active during each cycle and is also accurate as a

measure of the degree of blocking in the network. From the normalised

throughput, the acceptance probability, PA, [Pat79] can be easily obtained

from:

N-1

k=0

and the actual bandwidth BW (in requests passed per second) from:

*

%

N0 tn
BW = _____ where tc is the network cycle time.

fcc

2.2.1.2 A Recurrence Equation for Generating

We begin by considering the top stage of switches (stage 0) and viewing

each switch in isolation. Label the switches of the top stage of the

network 0..(N/x)-1, and consider some switch w, we [0..N/X-1], Now label

the input ports associated with that switch k, k+1 .. k+x-1. (Clearly,

k=wx.) We wish now to derive the normalised throughput of this switch

given that the input loads on the inputs to the switch are pk+1»*-»

Pk+X_ 1 , as specified by the model. Define Tjj(s ,w) as the normalised

throughput of switch w of stage s. TN(n-1,w) then represents the

normalised throughput of switch w in the output stage of the network.

Let R be a random variable denoting the number of requests present at

switch w at the start of a given cycle. Then, we have:

k+x-1

Pr{R=0}

l=k

k+x-1 k+x-1

Pr{R=1} = 2 ^ P1] T ° - Pm)
l=k m=k

m^l

k+x-1 k+x-1

l=k l=k

and so on. Generally:

k+x-1 k+x-r k+x-(

Pr{R=r) = (1-Pi)Zz
l=k aii•H i2=ir

k+x-1Z r

m= 1

Pim
(1-

[2-1]

19

tn(0»w) can be interpreted as the average load on each output port of the

switch. Let U(r) be the probability that a given output link of the switch

contains a request given that r requests are present at the inputs to the

switch. Then U(r) is given by:

. , . (̂)"
Thus, we have for Tjj(0,w):

Tjj(0,w) = ^ Pr{R=r}.U(r)

r=0

x k+x-1 k+x-r k+x-(r-1) k+x-1 r

=Z TT(i"Pi) Z Z ••• Z TT
r=0 l=k i^=k i 2=ii+1 i r = i r _i+1 m=1

x—1
1 -

x k+x-1 k+x-r k+x-(r-1) k+x-1 r-zn-> z z -z Tl£(x-1) pim

r=0 l=k i l = k i 2= i -j+1 i r = i r - 1 + ̂ m=^
v

[2-2]

In order to simplify this expression, we consider the following product

term:-

D = (a0+b0) x (ai+b-j) x .. x (an.-j+bn.-j)

This expands in a similar manner to the Pr{R=r} terms given above. In

fact, the component of D which contains exactly r 'a* terms is given by:

20

*

n-1 n-r n-(r-1) n-1 r

‘-■TT* E E - Z TItm1=0 ii=0 i2=ii+1 ir=ir_i+1 m=1

Thus D may be rewritten as:

n

i=0
Therefore, by substituting aj=(x-l)Pj/x and bj=(1 —Pj)» j=0..x-l, we arrive

at an equivalent equation for Tfj(0»w) i.e.

k+x-1

■" TT ('' ;J)
j=k

Now, if Pj=p for all j=k..x+k-1, then equation [2-4] becomes:

0,w) = 1 — (1 “ ~

which is consistent with the result given in [JuD81].

♦
The set of Tn(0»w)» w= 0..(N /x) -1 characterises the normalised throughputs

for each switch of the first stage of the network and these form the input

load to the switches of the next stage (stage 1) of the network.

By using the values for the TN(o,w) and by applying the process

• recursively, the equation for TN(1»w) can be found. From the values of

w=0..(N/x)-1, the values of the TN(2,w) w=0..(N/x)-1 can be found,

and so on. An interesting property of these networks is that:

21

%(n-1,w) = TN(n-1,w') for all w.w' = 0..(N/x)-1.
•

Observe that although the inputs to the network were unevenly loaded, the

normalised throughput of all the networks outputs is the same. This

result, (which holds for all networks based on the topologies of 2.1.1.1

but not for all delta networks), stems from the partitioning properties of

the three important permutation rules defined in 2.1.1.1:-

Consider stage 0 of the network. This stage partitions the rest of the

network into x independent subnetworks [Sie80]. That is, stages 1..n-1

form x independent networks which have no switches in common. The outputs

of each switch in stage 0 of the network are fed into the top stage of

independent subnetworks. No two links from such a switch connect to the

same subnetwork.

Consider now switch w in stage 1. This is linked to by exactly x disjoint

switches in stage 0. Let the stage 0 switch connected to input port k of

switch w be labelled w kf, k=0..x-1. The w*k can be found from the

permutation function of the network. Consider, for example, the Cube

topology defined in 2.1.1.1. If w is written as a base x number,

<wn-1 »wn-2,,,»w2»w 1>» then wfk is given by:

wfk = <wn-1»wn-2»* *»w2,k>» k=0..x-1.

Now consider some w’k, k e [0 . . X - 1] , The complete set of stage 0 output

ports associated with switch w'k are those labelled <wn-1 ,wn_2»**»w2,k,d>

d=0..x-1 . These outputs are attached to the stage 1 switches labelled

^ w - j , w 0 . . X - 1 .

* Consequently, the dth output port of each of the w'k, k=0..x-1, all 'meet1

at the same switch in stage 1, that is, at switch < w n-1,w n_2»««i«2»d>*

Note that:

22

1. Each of the switches of stage 1 labelled <wn_i ,wn_2,..,w2,d>, d=0..x-1

lie in independent subnetworks formed by stages 1..n-1.

2. Each of the switches of stage 1 labelled <wn.-j »wn_2,..,w2,d>, d=0..x-1

have identical input loads, since their inputs originate from the same

set of switches in stage 0.

Since the same argument applies to all switches in stage 1, it follows

that each of the x subnetworks formed by stages 1..n-1 have identical

loading patterns i.e. for each stage 1 switch (forming a top-stage switch

of exactly one subnetwork), with input loads, Lq , . . , L x _ ‘| » there exists

exactly one corresponding switch in each of the other x-1 subnetworks with

the same input loads, Lq , . . ,L x _<|. The above argument can now be applied

(recursively) to each of the x subnetworks. Since each stage partitions

the network into x independent subnetworks and since the network has a

total of n=logxN stages, it follows that after the last stage has been

traversed, the throughput of all switches in the last stage of the network

is the same. Consequently, TN(n-1 ,w)=TN(n-1 ,wf) for all w, w'=0..(N/x)-1.

Note that the equation for Tjj is correct, providing each output port of the

network is being used. Consider now the case where Nq<n , and where each

switch in stage n-1 of the network has c of its outputs connected, so that

no =(N /x)c. F o l lo w in g th e sam e se q u en ce o f s t e p s a s w as u sed t o g e n e r a te

e q u a t io n [2 - 4] , th e v a lu e o f Tjj i s fo u n d to b e : -

x —1

j=0

where Lm is the input load to link m of each switch in the last stage.

As a result of the uniform load sharing properties of these networks, the

value of Tn is valid for all connected output ports of the network. The

value of Tjj may also be interpreted as the percentage load on each

connected output link of the network. Thus the total network bandwidth and

acceptance probability may be expressed as was given in 2.2,1.1.

2 a2.1t3. Sparse Networks

As was stated earlier, the above analysis subsumes both Patels* original

delta network analysis and that of sparse network analysis in which only a

subset of the network input/output ports are connected. The throughput of

such networks can be obtained by setting the input load values of all

unconnected input ports to zero, and by using equation [2-5] to determine

the throughput of the last stage of switches, where only a subset of the

output ports of each stage n-1 switch are connected. Note that for a

single switching element of degree x in which only y of the inputs are

used, the load presented to the switch when each of the y inputs are

saturated (that is, have input loads of 1) is equivalent to a load of:-

on each of the x ports of an equivalent fully populated switch; not (y/x)

as might be predicted. This (incorrect) assumption has been assumed made

on at least one occasion in the literature.

Sparse networks have been proposed as a means of reducing network

contention [Bar8l]. Figure 2-2(a) shows a comparison of conventional and

sparse network performances for varying network sizes^ and switch degrees.

In these curves each connected input is assumed to be saturated (i.e. p=1

for all connected inputs). The parameter, (J, denotes the ratio of

connected inputs (and outputs) to network size. Thus (7=1 corresponds to

a conventional (non-sparse) configuration. Figure 2-2(b) shows the

relative performance/cost curves for the same sparse networks. The

parameter, p , denotes the ratio of sparse network performance/cost to

conventional network performance/cost. The cost is defined to be the

 ̂ In the performance curves, N denotes the number of connected inputs and
outputs in the network not the total number of network inputs/outputs.

N

(a) Performance Comparison With Conventional Networks.

9

%
(b) Relative Performance/Cost Curves.

FI mire 2-2; Sparse Network Performance.

25

number of switches required to connect a given number of system components.

4 Thus, p is given by:

TN(sparse)
= a -------------

Tjj(non- sparse)

Although sparseness reduces contention, these curves show that the

performance gain does not outweigh the required cost increase of 1 /(j.
Sparse networks are, however, easily implemented and require no additional

hardware in either the switches or the network interfaces.

%

*

*

2.2*2 k-Channel Network Analysis
We now examine an interesting variation on traditional network topology and

consider the analysis of networks in which each switch port has k channels,

or links, associated with it instead of the usual one.

Figure 2-3 illustrates a single switching element of degree x in which each

of the x input and output ports contains k links.

0 Links 1 Ports x_i

Figure 2-3: A k-Channel Network Switch With Degree x.

26

A k channel network operates in the same manner as a traditional network

except that up to k requests can now be passed through a switch port

simultaneously instead of only one. We wish to examine to what extent the

additional channels reduce network contention and how the resulting

performance compares with that of equivalent conventional networks.

There are two ways (not necessarily mutually exclusive) of attaching the

system components to such a network:

1. If the system components themselves have multiple communication ports,

then the network can be made fully populated, with each component

supplying k communication ports for network connection, thereby

utilising all k.xn network input/output ports.

2. If the components have only one communication port, then a sparse

connection scheme may be used on the input side of the network so that

only one of the k available channels of that port is used, and a k :1

multiplexor used on the output side of the network to concentrate the

k network port channels into the (single) destination component port.

It is possible for each of the input ports to be connected to

independent system components, but multiplexors must always be

provided at the output ports.

In order to make a meaningful comparison of k-channel networks with

conventional and sparse networks, we consider configurations in which only

one of the k network input links associated with an input port is connected

to a system component.

Again, we assume the cyclical model as described above where probability of

a request being presented to a channel of an input port of the network at

the start of a cycle is p for all channels. Since these channels are

independent, we may immediately write the probability of there being r

requests at the input channels of a given top-stage switch at the start of

a cycle as:

P** (1-p)x-r

Given that there are r requests at the inputs to a switch, we now wish to

know the probability that an arbitrary output link is selected. To do

this, we consider the problem in two parts. Firstly, we derive the

probability of m of the r requests being directed to an arbitrary output

port (a port here is a collection of k links), then from this we generate

the individual output link utilisations.

Given that r requests are present at the inputs to the switch, the

probability that exactly m are directed to an arbitrary output port is

given by:

Given that there are m requests at an output port, the mean utilisation of

each of the output links associated with that port is defined to be:-

since two requests cannot both be directed to the same output link.

For the sake of the model, we assume that a request proceeding to an output

port, randomly selects one of the currently unused port channels (if one

exists). If m>k then the utilisation of each output channel is 1.

Consequently the equation for the mean output channel utilisation must

consider two cases: m£k and m>k. Thus, we get for the mean utilisation, U:

r-m

m

k

k-1 x

»-Y! r<» Hi)

i=0 j=k

%

*

*

%

where:

,n/ \ X X /
r=0

Now observe that:

x\/r\ x! r! /x\ /x-n

,r/\n/ r!(x-r)! n!(r-n)I \n/ \x-r

So that we have for f(n):

fin) =
x-n

and consequently for U:

k- 1

i=0

This analysis is correct for a single switch network. However, the

equation for U above cannot be used recurrently as in the analysis of

2.2.1. The problem is that although the output ports of a given switch

generate statistically independent input processes to the next stage, the

channels within the port are not independent. The value of U formulated

above is actually an average load taken over the whole port. We cannot,

from this average alone, infer that each output link of a given port places

a load of U on the next stage of the network independently. So, in

forming a recurrence equation to solve for total networkthroughput, we

29

must consider ports, not links within ports:

t Thus, for a given switch, s, we define the following:

1. Rr: The probability that a total of r requests are present on the

(kx) input links of s.

2. Tp: The probability that a total of r requests are present on the (k)

links of an output port of s.

3.. 0p: The probability that a total of r requests are present on the

(k) links of an arbitary input port of s.

0rf: The probability that r requests are present on the (k) links of

an arbitrary output port of s.

*

*

♦

(Since the ports are independent, each input port will have the same value

of 0r and each output port will have the same value of 0r'.

Considering, now, an arbitrary switch in which up to kx requests may be

present at the switch inputs, we have:

kx

n=r

and,

0 tr

Tr

\

k- 1

1

i=0

r<k

r=k

[2- 6]

We are now aiming to derive a recurrence equation for the 0r» in terms of

the 0r r=0..k-1 .

R^ is dependent on the way in which requests are distributed over the input

links of the switch. Thus, define a vector:

30

*

♦

*

*

*

J1 = <n0,n1 ,.. ,nx_ 1 > and let In!

x—1

ni
1=0

where denotes the number of requests present on port t of a switch,

t=0..x-1. R̂ , i=0..kx can then be expressed as:

R, =

x— 1

i n 0 1 =0. .kx

J1 j=0
s. t. In! =1

[2-7]

and the normalised throughput of the output multiplexer by

tn - 1- 0o

The required recurrence equation is then obtained from [2-6] by

substituting equation [2-7] for Ri# Initially, since only one of the (k)

links of a given input port is attached to a system component the 0^ are

given by: 0Q=1-p, 0-,=p, 0j=O, j=0..k.

The equation defining R^ (equation [2-7]), however, is very hard to

simplify. The values of the Rj, can be computed explicitly, although

equation [2-7] should really be considered as a generating function.

For small values of x, it is relatively easy to generate an equational form

for the recurrence equation. As an example, consider the simple case with

x=k=2. For given values of 0q , 0 1 and 02, equation [2-7] gives us the

following values for Rq ..R̂ :

R1 = 2 0O 01

R2 = 2 0O 02 + 0j2

R3 = 2 02 V
- 2

Rll = 02

31

*

♦

%

*

We then have for the Tr» r=0..4:

4

n=0

which (as may be verified by the reader) gives the following recurrence

equation for the 0^:-

02 Of 022
V = 0o (1 ------ > + - - (1 - 0O) + —

2 4 16

®1 302 02
01 1 ~ 0Q (01 + $2) + (0-J + ----) +

2 2 :4

02 f = 1 - (0O* + 01*)

The normalised throughput of the network is obtained by repeatedly applying

the above equations, setting 0o=0o?» 0i = 0if and 02=02' each iteration

and repeating the process as many times as there are stages in the network.

Figure 2-4(a) compares the throughputs of conventional and k-channel

interconnection networks for varying network sizes (measured by the number

of connected inputs) and switch degrees. These graphs assume that all

connected inputs present a load of 1 (i.e. a request is submitted on every

cycle).

In terms of raw performance, the k-channel configurations offer higher

throughput than conventional networks, but they require larger switch

packages because of the additional communication links associated with each

port. A conventional switch of degree x thus requires approximately the

same number of pins as a k-channel switch of degree x/k.

The effect of this is revealed in the relative performance/cost curves

shown in Figure 2-4(b). In these curves the relative performance/cost

metric, p , is given by:-

32

A

(a) Performance Comparison With Conventional Networks.

Network Size

(b) Relative Performance/Cost Curves

Figure 2-4: K-Channel Network Performance.

33

logxN TN(k-ohannel)
* p = -------- - ------------------

k.logx/kN TN(single channel)

In Figure 2-4(b) the performance/cost figures for conventional networks of

degree x are compared with those of k-channel networks with degree x/k for

varying values of k>1 .

2.2.3. Lambda Network Analysts.

In a conventional interconnection network the input and output ports of the

network occur at opposite extremes of the network. The distance1, in

terms of the number of switches traversed, between a source component

attached to the input side of the network and a destination component

attached to the output side of the network is the same for all

source/destination pairs - i.e. logxN.

♦ We now introduce Lambda networks which offer the benefits of global

communication yet which also allow locality between communicating

components to be exploited. Lambda networks are homomorphic (one-sided)

networks which are similar in topology to conventional interconnection

networks except that both the input and output links of the network occur

4 on the same side of the network. Figure 2-5 shows an example of a Cube-

based Lambda network of size 32 and degree 2.

In Figure 2-5, the system components are shown at the bottom of the diagram

and each has both a link into and a link out of the network via the bottom

stage of the network, although the input and output links could be attached
* to independent components. Requests submitted by the components are fed

upwards until the addressed destination node can be reached from the

34

2

1
*

0

O 2 4 6 8 lO 12 14 16 18 20 22 24 26 28 30

Figure 2-5: A Lambda Network, Size=32/ Degree=2.

currently selected switch by turning round (’pivoting*) and traversing the

network in the opposite direction. The switches on the downward path are

selected in the usual way i.e. the switch select addresses are derived from

* the destination node address. An algorithm for path building in a Lambda

network is described in Appendix I.

Unlike conventional networks, it is possible for a request to reach its

required destination by traversing less than the usual logxN switches.

(In the extreme, if the source and destination addresses are the same then

the network need not be accessed at all.) We now wish to know whether the

ability to take these ’short cuts’ through the network has any effect on

the network performance for a network of given size and degree. Firstly,

though, we describe some of the general characteristics of these networks

which are important to the analysis given in 2.2.3.2 below.
%

35

P-2.3.1. Lambda Network Characteris tics

A regular Lambda network of size 2N and degree x consists of two identical

and interconnected subnetworks located side by side each of which has one

of the topologies specified in 2.1.1.1. There are thus n=logxN stages in

the network. In a Lambda network, a channel between two switches, say

and S21 consists of two independent links - one from S-j to S2 and the other

from S2 to Sj.

The bottom stage of switches (stage 0) is designated the input/output side

of the network which provides 2N network input links and 2N network output

links. Each output link from the top stage (stage n-1) of one subnetwork

is connected to exactly one input link of the other subnetwork. Note that

the permutation here is arbitrary, a sufficient permutation rule being,

for exampie:-

°Vl(J) -> I n- 1 (2N-j-1), j=0. .2N-1,

where 0 and I have the same meaning as in 2.1.1. tagged with a ,/'1 if the

corresponding link is an upgoing link.

The visibility of switch w is defined to be the set of network outputs

which can be reached by traversing a downward path from w. During path

building from some source node, S, to some destination node, D^S,

successive stages of the network are traversed, from S, in the upward

direction until a switch, w, is reached from which D is visible. The

request then pivots about w and traverses the downward path toward D. If

stage n-1 is reached before D has become visible, then D must be connected

to an output link in the other subnetwork comprising the Lambda network.

The request is therefore passed over to the other subnetwork via the links

at the top of the network. Because each subnetwork is equivalent to a

conventional network when being traversed in the downward direction, the

request can enter the subnetwork anywhere in the top stage (stage n-1).

Thus the choice of permutation rule between the two subnetworks at the top

Observe that:-

1. A request only pivots once.

2. A request traversing I^3(j) never traverses 0s(j) since pivoting

occurs as soon as the destination becomes visible.

But most significantly,

3. If a request is to be steered upwards from some switch, w, then the

choice of which upgoing output link to take is arbitrary, i.e. all

upgoing traversals are contention free.

This third point we now prove in the following theorem which relates to

a Cube-based Lambda network. Similar results can also be derived for non

cubic topologies.

Theorem 2-1: Let the stages of the network be labelled 0..n-1 with stage 0

associated with the input/output side of the network. Let the

interconnection topology be that of the Cube i.e.

0 s ^ n - 1 9 • *» js+2»^s+1 ’ ^s* • •»

^sfl^^n-l jsf2 ,'̂0, ŝ» ^1 »'3s*1>)» s=0..n- 2

Let be switch j in stage s, j e[0..N-1], se [0..n-1]. Then: each

switch in stage i, i=s+1..n-1 accessible from W_ * has the same visibility.o, J

Proof: Assume that we select 0~s(a), xj.£a<x(j+1), through which to steer

the request. Let <an-.| ♦••»a&4.2 »aS4.i >as»**»ai »ao> be the base-x expansion

of a. From the definition of the Cube topology, the request is steered to

Is+1 (a’), Where af=<an -1 ,..,as+2 ,a0,as,..,a1 ,as+1 >. The stage s+1

switch associated with this input link is W _.4 whereSt I ̂ a

a*,= <an- 1 >**>as+2 »a0»as», *»a 1 The d°wngoing output links of „

are thus the outputs °s+ifk where k takes all values

,**,^s+2,a0,as," ,̂ 1 Q=0..x-1. Theselink to the I3(k*) where k*

takes al 1 values ^a^^^,..,a3_̂2 »Q»ci3,..,a^,aQ^, Q=0..x—1.

is arbitrary.

Applying the rule repeatedly for each stage down to stage 0, it is easy to

+ see that the visibility of Ws+1 >ai» is the set of network outputs labelled

<an-1 »an-2»**»as+2»^s+1 »^s»*,̂ 0>» Qi=0..x-1, i=0..s+1. Generally, the
visibility of each switch of stage t, t=s+1..n-1, accessible from 0~s(a)

(of W s>j), xj.£a<x(j+1) is given by <an_ 1 »an_2 »«*>at+i »Qt»Qt - 1 Q1 ,Q0>*

Since â .+ ̂..an_^ is the same for each of the upgoing outputs of W s>j it

follows that these visibilities are the same, i.e. the choice of whichm
upgoing output link to take is arbitrary.

[]

Thus, a sufficient routing procedure is for all requests arriving on I*s(j)

not pivoting in stage s to be sent out on CT_(j). This is assumed in theo
analysis which follows.

2.2.3.2. Analysis.

In the analysis of Lambda networks we assume the same cyclical mode of

operation as in 2.2.1 and 2.2.2 above. To simplify the analysis, we

consider a uniform input load: at the start of a cycle, the probability

that a request is presented to a network input is p for all inputs. For

the time being we shall assume that the probability that a request on input

i addresses output j, i,j=0..N-1 is the same for all j. The effects of

locality of reference are considered in 2.2.3.2.1. below. Also, in order

to correctly model the behaviour of Lambda networks, we assume that
%

requests never traverse the same switch port twice. This implies that a

request steered upwards from stage s to stage s+1 via port P is not

directly routed from stage s*-1 to stage s back through P. Thus, if the

requests* source and destination addresses are the same, it is assumed that

the network is not accessed at all.
♦

In this analysis the principle performance measure is the normalised

throughput, Tjj» of the network, as above.

38

Figure 2-6 shows the layout of one component switch of a Lambda network of

degree x. Here, the switch is shown with the input and output connections

separated so that the direction of the flow of requests is from the top of

the switch to the bottom.

In generating Tjj We are concerned with the mean utilisation of the downward

links at the bottom (i.e. input/output) stage of the network.

The mean utilisation of the downgoing output links of a switch in stage

s (say 0S) is dependant on:-

*]

+

9

Figure 2-6: Lambda Switch Loading.

1. The utilisation of those switch inputs originating from a higher stage

(stage s+-1), i.e. 0S+1.

2. The utilisation of those switch inputs originating from a lower stage

(stage s— 1), say qs_-j*

In addition to the downgoing outputs of the switch (with mean utilisation

03), the switch also has outputs which are fed into switches in stage s+1.

39

The utilisation of these links is, by our definition, qs.

Note that requests arriving at a switch from above will never be routed

back up again. Consequently, qs is independent of 0s+v

It is convenient to separate the qs_-j terms into two components, qs and rs

so as to simplify the expression for 0S. rs represents the load imposed on

the downgoing links of the switch by those requests which pivot at the

* switch and begin traversing the network downwards. Thus,

<ls_1 = qs + rs, s=1 ..n-1 .

Consider now a switch in the bottom stage (stage 0) of the network. At the

start of a cycle, the probability that the component attached to that

switch generates a request is p, as defined by the model.

Now, with probability 1/N (assuming a random addressing distribution), the

destination address will be equal to the source address and the request can

bypass the network altogether.

Consequently, the Tq component is:-

p(x-1)
rQ = ------

N

and the q0 component

Note that rQ+qQ=p(1-(1/N)) not p since we have excluded all requests whose

source and destination addresses are the same.

Now, for each stage encountered going up into the network, the r loads will

be multiplied x-fold since the visibility of stage s is x times that of

stage s-1, s=1..n-1. Thus generally,

pxs(x-1)
rg = -------- s=0.. n- 1

N

4 0

♦

*

*

*

♦

Similarly, we get for q s : “

xs+1
qs = p(1 -----) s=0.. n- 1

N

Note that rs+qs=qs_i as can be easily verified.

One of the boundary conditions occurs at the top stage (stage n-1) of the

network. Here, in a Lambda network, we expect the value of qn_i to be p/2

since under the random addressing assumption, exactly half of all requests

generated in one subnetwork will be ultimately routed to the other

subnetwork. This is easily verified:-

Qn-1 = P(1-xn)

N
xlog(N/2)

= p(1 ----------)
N

N
= p(1 ---)

2N

= p/2 Q.E.D.

Note that the q n_-| of one subnetwork form the 0n of the other subnetwork so

that:-

P
^n = qn- 1 = "2

This is used as the starting point for the iteration.

From the values of rs and 0 -̂j the throughput of each stage s switch can be

found. However, we cannot simply apply equation [2-4] to the problem.

This is because a request which pivots in stage s (thereby contributing to

the rQ component) cannot be steered back through the link from which it

came. Consequently, requests arriving at the switch from below are not

evenly distributed among the outputs of the switch. This is not true of

requests which have pivoted somewhere higher in the network, (i.e. the 0S+J)

41

♦

*

*■

%

so we shall consider, for the time being, just the contribution to 0_w
made by r_.

Consider a single switch in stage s and consider only those requests which

pivot about the switch and let 0S* be the contribution made to 0g by such

requests.

If there are m pivoting requests present at the switch inputs then:

1. Pr{a pivoting request is present on the kth upgoing input} = m/x

/x-2\ m
2. Pr{output port k contains request} = 1 - 1 --)

\x- 1 /

Hence:-
m- 1/ m y /x-2\ " - \ / m \ / /x - 2

3. Pr{output k accessed} = (- Jn - (---) 1 + M “ -)H - (--

■ , ■--)
Vx-1 / V x(x-2) /

m

Therefore, we get:-

0g' = Pr{a request exists at an arbitrary output}

xZ
m=0

- e l -*

= 1 -z (: (rs)m (1-rs)x“m
x- 2

x— 1

,m

m=0

-Zx

m

'x-2\m m
(r3)m (1-rs)x-“

x-1 / x(x-2)
m=0

= 1 - (i - - ------Y (x
\ x- 1 / x(x-2) \m

x\ /r<,(x-2)\ m
.m .(1-r)x“m

x- 1
m=0

H2

♦

A

*

Now,
'x\ m x! x(x-1)! /x- 1

jn / m!(x-m)l (x-m)!(m-1)I \m- 1

Substituting, we get for 0s»f

(1-rs)x-m

= 1
x- 1

This is, perhaps, intuitive since for pivoting requests, only x-1 of the

switch output ports are Candidates1 for that request.

Since the requests contributing to 0s+-j are independent from those

contributing to rs, equation [2-4] can now be applied, which yields:-

x—1

with the boundary cases:-

px11" 1 (x-1)
0n- 1 = 1 /2 and rn- 1 = ---------N

Figure 2-7 shows the values of TN for conventional interconnection networks

and Lambda networks for varying x and N. This shows Lambda networks to

have higher throughput than conventional networks, but, as with 2-channel

networks, a Lambda network switch requires approximately twice as many pins

as a conventional switch. Thus, the relative performance/cost curves shown

in Figure 2-8(b) below favour conventional networks. The benefits of

Lambda networks, in terms of both performance and performance/cost become

more apparent when the inherent locality in these networks can be

exploited.

43

*

ft

(Lambda)

(Lambda)

(Lambda)

(Lambda)

Figure 2-7: Lambda Network Performance.

2.2.3.2.1. Effects Of Locality.

Locality in a Lambda network has the effect of reducing the average number

of stages traversed before pivoting occurs over the number traversed under

a random addressing distribution. Thus it affects the value of rs defined

above (and hence the value of qs) for each stage.

In order to provide a simple means of quantifying the locality in a Lambda

network we assume that Vs - the probability that a request pivots in

stage s - has a straight line* distribution of the form:-

vs = PDL + G.(s+1) s=0..n,

where n is the number of stages in the network, is the probability of

direct locality i.e. the probabilty that destination=source, Vn is the

probability that a request pivots implicity (i.e. by traversing the links

at the top of the network), and G is the line gradient, subject to:-

n

Z [2- 8]DL T / "34-1
3 = 0

rQ is then given by

>-3 = PV3
By rearranging equation [2-8] we have:-

1 / g (n+1) \

Pdl= ;;; _ \~r~)
G is maximal when PDl ~>0 and minimal when PDL approaches the value of Vn

when G is maximal, i.e.

2
Gmax = “ “ and Gmin = ” G max*(n+1)(n+2)

Therefore, the locality in the network can be specified by a single

parameter, A, - 1.£.A<J from which we get:-

2 A

(n+1)(n+2)

1 G(n+1)

n+2 2

Thus, the more negative A is, the greater the locality described. Note

that with A =0, Ppjj=Vs=(1/n+2), s=0..n.

G = A G

DL

Figure 2-8(a) compares the performance of conventional networks, 2-channel

networks and ’biassed' Lambda networks with varying values of A, and

• Figure 2-8(b) shows the relative performance cost curves for the same

configurations in addition to those of Lambda networks under a random

addressing distribution. As with k-channel networks, the larger switches

required to implement Lambda networks affects the cost more than the

benefits of the network affect the performance. Consequently, the

♦ performance/cost curves favour conventional networks for networks of any

practical size.

45

Network Size

(a) Performance Comparison With Conventional Networks.

*

*

p

x =-i
x=-\
x =0
k=2

A = + l

Unbiassed Lambda

Network Size

(b) Relative Performance Cost Curves.

Figure 2-6; Lambda Network Performance With Locality.

46

♦

*

*

2*2A The Analysis of Asynchronous Svataina

The previous sections of this chapter have been concerned with the analysis

of networks which operate cyclically (and consequently synchronously). We

now address the analysis of networks in which all activity (path building,

data transfer and path release) in the network is asynchronous. Such

networks are beneficial where the volume of information required to be sent

through an established channel varies from one transaction to the next. In

such systems there is no notion of a network cycle, and as a result the

corresponding analysis is more complex.

We begin by describing the model:

1. We concern ourselves solely with circuit-switched networks in which a

physical channel is established across the network before information

is passed. Packet switching has been examined in [JuD81].

2. All network input/output ports are assumed to be connected to system

components. Components attached to the input ports of the network

(source components) may present requests to the network at any time.

The time between the completion of one request and arrival of the next

request is assumed negative-exponentially distributed with mean

t̂ . All source components are assumed identical in this respect.

3. Once a channel has been established between a source component and a

destination component (i.e. one attached to a network output port),

information is exchanged for a mean time of tx and the channel is then

released. The channel-hold time (i.e. exchange time) is again assumed

to be negative-exponentially distributed.

4. Requests remain in the network until they have successfully reached

their addressed destination node. A blocked request is not removed

from the network.

47

5. The switching times are assumed to be insignificant in comparison to

• the channel-hold time and may therefore be ignored.

The principle performance measures of interest are the network bandwidth

(in requests completed per second) and, as in the above sections, the

acceptance probability, PA.

A similar analysis has been attempted in [WLL82] although this assumed a

synchronous control mechanism in which blocked requests were assumed lost.

#

*

Z.2A.1 The Analysis of an Asynchronous Crossbar Matrix.

In this section we derive exact results for both the bandwidth and

acceptance probability for an asynchronous full-crossbar network. For

completeness, we shall consider an asymmetric crossbar comprising x input

ports and y output ports as shown schematically in Figure 2-8(a). To model

the circuit-switched nature of the switch operation, we distinguish active

input ports, which currently have a submitted request pending completion,

from inactive ports, which are awaiting the next request arrival on that

port. An inactive port is modelled as a server with service rate:

A= 1/t±

Channel communication is modelled by viewing each output port of the switch

as being a server with service rate:

A* = 1/tx

Blockage in the switch is modelled by considering each server to have an

associated queue of capacity x-1. Requests which attempt to obtain service

from a busy server join the queue associated with the server.

When the current request completes service, a queued request is arbitrarily

U8

chosen and serviced. The request currently in service may not be pre-

empted by any arriving requests. A request which completes service

effectively reactivates the input port on which the request arrived. This

port then becomes a candidate for further arrivals. Figure 2-9(b) shows a

queuing network model of the switch.

To simplify the analysis, we reduce this network to a two-stage feed-

» forward closed queueing network as shown in Figure 2-9(c). Arrivals to the

switch are imagined as being generated by a single server (SI in the

diagram) whose inputs are those requests fed back from the output ports of

the switch on completion.

y-i

(a) Switch Schematic

(b) Internal Queueing Model.

^ nl n2
(c) Closed Feed-Forward Equivalent Of (b).

Figure 2-9: Queueing Network Model For Single Asynchronous Switch.

4 9

The state of the system at time t is a tuple <n-j,n2> where n-j is the number

of requests associated with S1 and its queue, Q1 (i.e. the number of

inactive input ports in the switch), and n2 is the number of requests

either in service or currently queued for service (i.e. the number of

active input ports in the switch). At all times n-j and satisfy:

n̂ + n2 = X

The arrival rate of the reduced model (i.e. the service rate of S1) is

state dependent and is given by:

A(n) = An (0.£q£x)

The composite service rate, U, for S2 is rather more difficult to obtain

since it must include the way in which the (n2) requests are distributed

among the servers in Figure 2-9(b). We state without proof a result given

by Harrison [Har83]:

Let P(n-j,n2) be the probability that the system is in the state <n^,n2>.

The balance equation for this system is given by:

We use the well-known result given in [Kob78] namely that at equilibrium

the steady state probability, 7T(n̂ , ^ 5 of being in state <n^,n2> is:

i W
U(n) = ((Kn£x)

n+y-1

n2)C /V(n1) + U(n2)] =

P(n1+1 ,n2- 1) A (n 1+1) + P(n.,-1 ,n2+1)U(n2+1)

*

%

*

G is a normalising constant which ensures that the probabilities sum to

unity, i.e. :

G = z (it (ft is
all <n-j,n2>\ m=1

n1+n2=x

n= 1

Now:

n1 n

n = TI
m= 1 m= 1

and:

■ (!) •
Am \ ^ /

IT is - TT
n= 1 n= 1

n2
m-y- 1 / 1 \ / n2+y- 1

nyv \yv-j V y- 1

Thus:

'1

7T(n-j, n2)

1 / 1

V \y^,

n2+y- 1

y- 1

ZG1 v r* \x_i 1 / x - i + y ' 1

A / \ y p) i i \ y-1
i=0

(n2+y-1)I
- [2 - 9]

i-n<

n1! n2! z ;
(x-i+y-1)1

! (x-i)!

1

A

x-n2-i

i=0

(Note that the balance equation is valid for anv work preserving queueing

discipline.)

51

Now that we have the steady-state probabilities, we can derive equations

for the switch bandwidth and acceptance probability.

The switch bandwidth is simply the average number of requests serviced at

the second server of Figure 2-9(c) per unit time, and is given by:

x

BW 7T(x-n,n)

n=0

U(n)

Expanding the

BW = y fi

71 and U terms, this becomes:

x
n2+y-1 .

(x-n)! (n—1)! E (x+y-i-1)!

i! (x-i)!

W

A

m-i-x

To find the equation for acceptance probability, we must use both the

original and the reduced models of Figure 2-9. Equation [2-9] gives us the

equilibrium probability of being in state <n-j,n2>. The arrival rate in

this state is given by /V(n^). The acceptance probability is the

probability that an arriving request immediately goes into service at the

switch outputs. Given that we are in the state (n-j,^), let }^(n2) be the

probability that an arriving request immediately selects an idle server.

Let q^ be a random variable denoting the number of requests at switch

output i, i=0..y-1 .

Without loss of generality, assume that an arriving request, R, selects

switch output 0 and let H=<N^,N2 > be the random variable denoting the

equilibrium state vector with R removed.

The acceptance probability can then be expressed as:-

PA = Pr{q0=0)

* x—1

= £ Pr(q0=0 I Jl= <x-n-1 ,n>) .Pr{J[=<x-n-1 ,n>}
n=0

x—1

= y |]/?(n).7r(x-1-n,n)

n=0

from [LaR80].

Now consider just the output side of the switch and the case where there

are n<x requests currently either in service or queueing for service. The

state of this subsystem may be viewed as a vector:

n(n) = <rQ, r1 , ..,ry_.,>

where r^ represents the total number of requests at the server and in tne

queue of service station i, i=0..y-1. Clearly:

y-i

Now, since each request passed through the switching centre of Figure

2-9(b) is routed to service station i with probability 1/y for all

i=0..y-1, the visitation rate [Kob78] is the same for all servers. Since

each server has the same service rate, /n, the ratio of visitation rate to

service rate is also the same for all servers. Thus the extended states:

<x-n,rQ,r1 ,..,ry_1>, n=0..x

(which includes the number of requests present at the inputs of the switch)

each occur with equal probability.

The equation for }̂ (n) in equation [2-10] consequently reduces to a ’ball-

in-bag’ problem, namely:

53

|^(n) = Pr { a server is idle given there are n requests already at
the outputs of the switch}

Number of ways of arranging n balls in y-1 bags

Number of ways of arranging n balls in y bags

7-1

y+n- 1

Observe, now, an interesting result when the switch is saturated, that is

when A->co . Here, requests which complete service are immediately

resubmitted to the switch, so that 7T(0,x) approaches unity. In the

limiting case, we have:

y- 1
pa -> J V n = ----

x+y- 2

Consequently, for square switches, in which x=y:

PA -> 1/2 as A -> co

Note that this is independent of the switch size!

It is interesting to compare this result with the same figure for cyclical

systems. In the latter, PA is not the same for all sizes of switch but

does have an asymptotic limit given by:

lim

X—> 00

1
-> 1 - - = 0.632 [JuD8 1]

e

5*1

In Figure 2-10 the network bandwidth is expressed as the completion rate

per switch port and is normalised with respect to the service rate, fi. The

absolute switch bandwidth is obtained by multiplying the normalised

bandwidth (BWjj for a given value of N and) by x/j . Figure 2-10 also

shows the behaviour of with varying N and Xifi ratios.

Figure 2.-1 Q Asynchronous Full-Crossbar Performance.

2 .2.4.2 Towards Asynchronous Multistage Network Analysis

The above analysis provides exact results for the bandwidth and acceptance

probability of a single asynchronous switch. However, extending the model

to cover multistage networks presents a problem which, to date, we have

been unable to solve. Consider, for example, a two-stage network. To

55

♦

%

%

obtain the network bandwidth and acceptance probability we can reduce the

network to a simple two-stage queueing arrangement with each stage

corresponding to one stage of the network. Each of these queuing stages

can then be modelled by a two-stage feed-forward queuing network as was

done above. This reduces the size of the state space, and the balance

equations can be easily written down.

Provided we know the arrival rate of requests to the second server then we

can apply the results of 2.2.4.1. to obtain the overall network throughput

and acceptance probability. This arrival rate, however, depends on the

departure rate from the first server, which, in turn, is dependent on the

effective service rate of the second server (as opposed to the devices

connected to the outputs of the second server), which we don't know.

So, we end up with an unknown value in the system of equations, namely the

rate of traffic flow between the two stages. This problem occurs in all

multistage networks and this has prevented the analysis of such networks.

Although there appears to be no obvious solution to this problem, further

research may yield, at least, some reasonable approximations. We leave

this as an open question.

*

56

CHAPTER 3

Self-Clocking Networks

3.1. -Network Design Technimig*.

Figure 3-1 shows a schematic diagram of a switching element, taken from

[Pat79]. This design has been widely adopted and forms the basis of all

currently proposed network designs although a number of extensions to the

control plane have been proposed in [LiW82, MAS81, WLL82]. A network of

such devices operates as follows:-

At the start of a network cycle, all source components wishing to submit a

request to the network place their respective destination addresses on the

data busses of the switching elements to which they are connected at the

top stage of the network. (Ordinarily, each network input port is

associated with only one source component.) The request lines (REQ in the

diagram) are then raised on the switch control inputs. All requests

currently present at the inputs to the network then 'ripple* through the

network until either they reach their addressed outputs successfully or

they become blocked due to competition for a common switch output link

somewhere in the network. Each switch uses one bit from its data bus

(which holds the network routing address) to specify the switch output port

required by the request. If the request can be successfully steered to

this output port, then both the control and data lines are switched through

accordingly. The REQ line then propogates through to the next switch

(attached to that output port), indicating to that switch the presence of a

request on its corresponding input. Since the data bus is also switched

through to this switch the network routing address is also made available

to it. This switch then undergoes the same operations, this time using a

different bit in the data path to select the device. If, on the other

hand, the request is blocked i.e. if the switch output port it wishes to

%

*

dO
REQ0

bO*r

d 1
R E Q 1
b1+-

CONTROL

P L A N E

+ REQ
<:--- bl'

xo XI

>
DATA PLANE < r - *>?°

< c _

F ig u r e ^ - 1 : A 2x2 S w itc h in g E lem en t S c h e m a tic .

use is currently busy then the 'request blocked' (b) line (which is

ordinarily LOW) is raised. This signal propogates back to the source node.

After a time, dependent on the size of the network, the request will reach

its designated output port (if, of course, it has not been blocked during

the addressing process).

Ordinarily, the network operates synchronously, that is, all requests are

presented to the network at the same time. The model has been extended

slightly, so that network addressing and data transfer is controlled by

alternate cycles of a two-phase clock [WLL82]. The JJxH switch design

described in [MAS81] is architecturally similar except that at each stage

two bits from the data plane are used to select a device.

The advantages of this approach are:-

1. Because the entire network routing address is available on the data

bus during path set up, the switching time is very fast and the logic

required to select a switch is very simple. Nearly all the complexity

58

2 . Because the data path is wide (limited by pin constraints), the time

taken to transfer data through an established channel is small.

Consequently, this design can lead to very high performance networks.

However, there are serious drawbacks to this approach which become more

significant as the size of the network is increased:

1. As a consequence of employing wide data paths to carry the routing

address and through-channel data, the size of switch which can be

constructed from a given size of package is limited. This means that

very large numbers of switching elements are required to implement a

network of any significant size. Multiple data planes which share the

same control signals may be employed, but this only makes the problem

worse; If k data planes are used then the network cost increases by

approximately 0(k).

2. Because the number of switches and, more significantly, the number of

interconnections is so high, the resulting network is inherently less

reliable. (Reliability is discussed in Chapter 4.)

3. As the network gets larger and the number of stages increases, the

problem of skewing in the data path becomes a significant problem.

This is particularly true of multiple-plane networks where the data

path is distributed over many independent ICs. This inherently limits

the rate at which data can be transferred through an established

channel.

4. Because the network is synchronous, a global control clock must be

provided for control. Some implementations require individual

switches to be strobed, for example [WLL82]. As the network is made

larger, clock distribution becomes a significant problem.

5. Because the network cycle time is dependent on the size of the

network, an extension to the network will require an adjustment to the

lies in the bus gating logic.

source timing logic.

So, whilst this approach may be suitable for small scale, static, SIMD and

MIMD machines, we argue that their use in the very large-scale, extensible,

multiprocessors which are of interest here is limited.

3.1.1. Serial Switching
We observe from the description of the switch of Figure 3-1 that:-

1. During path set up, the data bus serves only to 'hold' the network

routing address for the currently selected device.

2. During data transfer, the switch select address and 'blocked status*

lines in the control path of each switch are idle.

We now introduce the concept of serial switching which is a technique aimed

at making more efficient use of the available pins on a switch package. In

a serially-switched network, there is no. explicit data path. Instead, the

data path and control path are unified so that they both share the same

pins on a single package; the width of the data path is inherently reduced

as a result and there is only one network plane. During path set up, the

control lines control network addressing and path building; during data

transfer, some of the control lines change roles and become data transfer

lines. The result is that for a given size of package, we are able to

imbed a significantly larger switch than is possible with conventional

switch design techniques, and each pin in the control/data path is fully

utilised both during path set up and during data transfer.

The immediate consequence of serial switching is a reduction in network

cost: fewer stages and fewer switches per stage are required to implement

a network of a given size. Network contention is reduced, and, perhaps

most significantly, the network is made inherently more reliable,

requiring fewer components and far fewer interconnections than existing

implementati ons.

Although reducing the width of the data path inherently reduces the

switching speed and the through-channel data rate, this is offset by the

fact that there is now less contention in the network. For a given size of

package, reducing the width of the control/data path by a factor of k means

that the size of switch which can be accomodated in that package is

increased by a factor of approximately k. For a given size, N, of network,

♦ this reduces the network cost by a factor of approximately:-

klogxN

l°gkxN

which is >k. In addition to the reduced contention in the network the

problem of relative signal skew is also reduced (in the limiting case of

bit serial control and communication the skew problems are eliminated

altogether). Thus, serially switched networks offer the potential for

improved cost/performance when compared to conventional implementations.

* 3.1.2. Self-Clocking Networks
Let us now take a closer look at the implications and problems associated

with the serial switched approach:

The ability to construct large switches has obvious benefits in terms of

network cost, contention and reliability, but it offers less flexibility

* in the choice of network size. A regular network of degree x may only be

of size x11, n=0,1,2.. If intermediate sizes are required then irregular

or 'hybrid1 networks must be made possible.

In a serially-switched network, because there is no data bus to hold the

^ network routing address during path set up, the individual switch select

addresses(log2x bits for a switch of degree x) must be loaded from the

source on demand. (The network routing address could be passed from switch

61

to switch but this is unnecessary and time consuming and requires buffering

logic to be provided in the switches.) If the network has an irregular

topology, then clearly each address fetch may require a different number of

select address bits to transmitted by the source. Somehow the source must

'know* how many bits are required by each fetch operation. This presents

an interesting problem: the source node cannot determine how many bits are

required on each address demand unless it has a-priori knowledge of the

topology of the network. If the stages of the network are not of a fixed

degree then the source must further take into consideration where the

request is being sent to since it may encounter different sized switches in

transmitting to different destinations. Consequently, the source node (or

its interface to the network) would have to be very complex, performing

synchronisation on each demand, predetermining the address pattern to be

sent to the network based upon the network topology and destination node,

and further transmitting the right number of bits to each switch for it to

be selected. The partitioning of the routing address would most likely

have to be done in software which introduces a time overhead in addition to

the hardware overheads required for the control of the network.

The proposed solution to these problems lies in a modest extension, not to

the source nodes or their interfaces, but to the component switches of the

network. A Self-Clocking network exploits the fact that successive select

addresses for successive stages of a network are held contiguously in the

network routing address regarldess of exactly how many bits are required by

each switch on a given path. In a self-clocking switching element, a

'demand1 for a select address consists of a pulse train or burst clock

equal in length to the number of address bits required to select that

device. By maintaining the routing address in a shift register (or similar

device) at the source, this pulse train can be coupled to the shift

register clock input so that the required address component is

automatically extracted from the register. This will also align the

*

*

»

♦

remainder of the routing address at the 'front* of the register for

subsequent switches to clock out. Observe that:-

1. No synchronisation or control clock is required at the source. The

network itself provides the clocks required to control the

transmission of address bits from the source register.

2. The scheme functions independently of the size (which is bounded by

the length of the source address register) and topological

configuration of the network. Each switch 'knows* its own size and

can therefore provide the correct number of burst clock pulses.

3. In theory, only two wires are required to perform the address fetch

operation: one to transmit the pulse train back to the source, and one

to carry the select address back to the switch. After path set up,

the burst clock and select address transmission lines may be coupled

to the source and destination components to form a bidirectional (full

duplex) serial communication channel.

4. The resulting network is naturally asynchronous. No global control

clock is required, so the problems of exact phase and frequency

matching of the control clocks does not arise. Note that the

asynchrony is achieved with very modest overhead. The burst clock is

simple to implement and overcomes many of the problems associated with

asynchronous control.

In the next section, we clarify these ideas by describing an implementation

of a network based upon these design techniques. Note that serial

switching and self clocking design techniques may be readily applied to k-

channel and Lambda networks as described in Chapter 2. The description

which follows, however, assumes a conventional, single channel network

implementation since this configuration yields the minimal pin count per

package and results in the best performance/cost figures when compared to

the other two variations.

6 3

3*2.* Jhs. design _q£ the XS1 network switching deylgg
The XS1 was originally designed as a building block for a network used for

device interconnection in the prototype ALICE reduction machine [DaR8 l.l. A

schematic diagram of the machine architecture is shown in Figure 3-2. The

principle system components are reduction (processing) agents and

intelligent storage segments. Load sharing is done via a distribution

network which is ring based; agents and storage segments communicate via a

switching network which is composed of interconnected XS1 devices.

The characteristics of the network are summarised below:

1. The network employs serial switching and self-clocking protocols as

were described above.

2. The network is circuit switched, i.e. physical channels are

established through the network between the source of a request and

its designated destination. This enables arbitrary volumes of data to

be transferred through the network and also facilitates bidirectional

(full duplex) communication. The return channel can also be used for

concurrent error detection. The mechanisms for achieving this are

described in Chapter 4.

3. The network is asynchronous. There is no global clock to control

network operation. Source components may submit requests to the

network at any time convenient to them. Individual switches may

consequently receive requests on their input ports at any time. Each

switch in the network may, if necessary, operate at a different speed.

4. The network is arbitrarily expandable. Since all switches in the

network function asynchronously, there are no timing or

synchronisation problems associated with the expansion process. The

prototype ALICE implementation is based around a 64 port network

although systems of size 4 , 16, 64, 256 etc. are easily obtained.

Note that XS1 is a 4x4 switching element.

5. The resulting network design philosophy yields inherent structure

independence. This basically enables the system and network

components to function without knowledge of the topological structure

or size of the network. This is explained in more detail in section

3.2.4.

3.2.1 Descriptionthe XS1
The XS1 is a custom-designed self-clocking network switching device of

degree 4 fabricated in Emitter-Coupled-Logic (ECL) technology. The device

has no explicit data path, i.e. it is a serially switched device. The XS1

forms a building block to enable arbitrary sized interconnection networks

to be constructed.

F ig u re 3 - 2 : The ALICE M achine S c h e m a tic .

The XS1 has four upper (U) ports and four lower (L) ports, and functions to

enable a 1 :1 coupling to be achieved between any arbitrary pair of U and L

ports. At most one U port may be connected to a given L port at any time.

The device is logically divided into four slices labelled 0..3. Each slice

has associated with it one U port and one L port. Internally, each slice

is connected to all other slices in the device, i.e. Ui no ̂ necessarily

always coupled to L̂ . Figure 3-3(a) shows a schematic diagram of the XS1

and Figure 3-3(b) shows the control lines associated with each U and L

port. These consist of five wires labelled A, B, C, D and R. C, D and R

are forward-directed (i.e. from U to L); A and B run in the opposite

direction. In Figure 3-3» these control lines are tagged with I and 0, for

'input' and Output*, according to whether the line forms an input line or

an output line to the slice. These five wires are now described.

DI ■ C l , Rl ; AO, BO,
A A

V V *

S L I C E

7T

v V Y
DO, COf- RO, AI • B l,

(b)

*
Figure 3-3: XS1 Schematic

3.2.1.1. The D (Data) and C (Clock) lines

The D and C lines are path-matched data and clock lines which serve two

purposes. During path building these wires form part of the control path

of the XS1. The D wire carries the address bits required to select the

device. Since the XS1 is of degree this select address always consists

66

of two bits. However, to simplify the on-chip logic, a start bit is also

transmitted with each select address. Thus each time an XS1 is selected, a

three-bit packet is issued to the appropriate port of the device.

The C wire carries a clock signal which is one half cycle out of phase with

respect to the signals on the D wire. This enables the select address bits

to be clocked into the XS1 without the need for a data-synchroniser on

chip. This again simplifies the internal logic of the device.

Once a path has been established through the network the D and C lines form

a two-line matched-path communication channel between the source node and

the addressed destination node. Because the wires are delay-matched, they

can be used to transmit blocked* data through the network. Exactly how

these wires are used is dependent on the implementation.

3.2.1.2 J M R (Reset) Line

The reset line is used in much the same way as the request line in

conventional switch design, the only difference being that it is active

LOW. The RI input of an inactive U port is always HIGH, holding the port

in its reset state. The arrival of a request on that port is signalled by

a transition in the RI line to its set state (i.e. LOW); that port is then

enabled to receive select address bits on D and C. RI is held in this

state for as long as the source node requires the channel through the

network. The U port is released by setting the RI line back to its reset

state. The associated U port then remains inactive until RI is set LOW by

some subsequent request. Note that at anv time during the path building or

data transfer phases, the RI line may be set HIGH. That is, the XS1 allows

the asynchronous cancellation of requests.

3-2,1.3, The A (Address Valid) 11ns.
As with the D and C lines, the A line has a dual role. During path

67

building, the A line acts as an addressed value (or acknowledge) line which

is set HIGH when a select address has been clocked into the XS1 through the

D and C wires, and LOW when a path through the device has been successfully

established. The two select address bits transmitted to the XS1 on the D

wire denote the address of the L port through which the associated request

is to be steered. The A line is set LOW as soon as this L port becomes

free. In theory, this protocol alone (which we refer to as the A-protocol)

is sufficient for network control.

Once a path has been established through the network, the A wire provides a

return channel from the addressed destination node back to the source node.

3.2.1.4. The B (Burst) line

The B line provides the XS1 with the self-clocking properties which were

described earlier. When a U port is inactive, the associated BO line is

held in its passive state, which is LOW. When a request arrives on the U

port, the corresponding RI line transits from HIGH to LOW as already

described. This transition causes the XS1 to administer a three pulse

burst signal back to the source on the B wire. If the network routing

address is held in a shift register at source, then by coupling the BO wire

(at the topmost stage of the network) to the clock input of this shift

register, the required select address bits are automatically clocked out of

the register as and when the currently selected XS1 device is ready to

accept them. This protocol is referred to as the B-protocol. Note that a

three pulse signal is issued to enable the required start bit to be clocked

out as well. This assumes of course that the start bit(s) have already

been introduced into the network routing address. This is clearly awkward

to maintain, particularly if subsequent implementations allow hybrid

topologies to be used and arbitrarily changed according to the needs of the

system. So, the A and B protocols have been designed to allow Automatic*

start bit insertion which can be achieved by using both the A and B

protocols in conjunction. A simple extension to the source/network

interface enables the first pulse of each pulse train appearing on the B

wire to be 'picked off' and used to generate the required start bit. This

combined protocol (which we refer to as the C-protocol) is described more

fully section 3.2.5 on interface design.

To provide complete symmetry in the device, the A and B lines are also

delay-matched through the XS1. Consequently, once a path has been

established through the network, the A and B lines form an exact mirror of

the D and C lines, except that they run in the opposite direction, i.e.

from the destination to the source. Their use is, again, dependent on the

implementation.

By overlaying the data and control paths in this way we obtain optimal

utilisation of the available pins on the package. The XS1 is housed in a

single 48 pin DIL ceramic package.

#

♦

♦

3«2.2. The XS1 routing cycle

A regular interconnection network can be produced by interconnecting the U

and L ports of a number of XS1 devices according to one of the topological

rules described in Chapter 2. To obtain a single channel through such a

network from a source node (SCE), to some destination node (DST), exactly

one switch in each stage of the network must be selected. The XS1 routing

cycle describes the sequence of events which take place in order for a

coupling to be made between a U port and an L port of each switch on the

path between SCE and DST.

Consider now set-up depicted in Figure 3-4. Here, the network contains

three stages, S1, S2 and S3, labelled sequentially from top to bottom. The

three switches which occur on the path between SCE and DST are labelled X1,

X2 and X3 as shown.

69

#

Consider now the routing cycle of X2 in the diagram. Suppose that device

XI has just been selected and that the request from SCE has just arrived

at the inputs to X2. Assume that the U port on which the request arrives

is in slice i of X2, and that is to be coupled to Lj for some j.

Initially, the lines of port i are in their 'passive* states i.e.

RI^HIGH (Ui in reset state); DIi=HIGH (no select addresses have yet

reached X2); CI^rHIGH; BO^=LOW; AO^=LOW (U^ is ready to receive a

request) . ̂

Figure 3dLL Path Building

The routing cycle of X2 then proceeds as follows (Note that the discussion

assumes the use of the full self-clocking (C) protocol for network

control.):-

1. RI^->LOW. At this point X1 has become transparent and the output

signals on in the diagram are those present at SCE.

2. The transition in RI^ enables U^. The burst signal, BO^ is then

generated by the device. At SCE, the first pulse in BOjL is used to

generate a start bit (which is a 0); the remaining two pulses clock

 ̂ (The i subscript signifies that the control line is in slice i.)

70

select address bits from a shift register at SCE.

3. The burst clock is reflected back into the network on the C line at

the source together with the start bit, and select address bits from

the shift register on the D line. The leading edge of the burst

pulses clock out select address bits from SCE, while the falling edge

of the reflected burst pulses clock the address bits into X2.

4. The three bits arriving on DI^ of X2 are clocked into a three bit

internal register. The address valid (A) line is raised when

the start bit hits the end of the register.

5. now attempts to 'claim1 Lj (the address, j, is held in the

internal register). A global engaged status line Ej indicates the

current status of Lj. If Lj is currently engaged, i.e. if there exists

a request on some other U port of X2 which is currently coupled to L..,J
then the request on is blocked. When Lj is released, may

contend for it with other requests waiting on the release of L̂ . The

XS1 employs a dynamic-priority, starvation-free arbitration mechanism

which guarantees a maximum upper bound on the blockage time for a

given request if the request is held in the 'wait* state by SCE. This

is described below.

6. As soon as Ui successfully claims L-, E. is toggled marking L- as

'busy*. All lines on are then coupled to the corresponding lines

on Lj, i.e. RIi->ROj, DIi->D0j, CIjL->C0j, AIj->AOi and BIj->BO±.

Coupling AOj to AO^ causes a transition to be observed in the AO line

at source. This prepares SCE to generate a start bit on the first

pulse of the next burst clock (in this case from X3). Coupling RI^ to

ROj causes a transition in the RIm input to X3. X3 then undergoes a

similar routing cycle to that of X2. Note that X2 is now transparent.

71

1*2*2*. 1. The End-Of-Path Protocol

Once X3 has been selected, the R0n output line in the diagram (which is

linked directly to DST) makes a negative transition from HIGH to LOW. This

signals to DST the presence of a request at its associated network output

port. DST then responds by issuing a single pulse on the corresponding B

wire, whilst holding the A line LOW. This is observed back at SCE and

causes an interrupt to be issued (possibly to the source processor). SCE

and DST are now directly connected via the C and D lines in the forward

direction, and the A and B lines in the reverse direction. The network is

now transparent to both SCE and DST, and they may communicate freely in

both directions across the network.

The path through the network is held for as long as is required to complete

the conversation between SCE and DST. When this conversation has ceased,

SCE releases the path by setting the RI line HIGH back at X1. This

immediately disengages all the U/L couplings made by the request. L̂ , Lj

and Ln of X1, X2 and X3 respectively may then be fclaimedf by other

requests awaiting their release. SCE is then free to submit a further

request to the network and DST is free to receive further requests from the

network.

1*2.1. XS1 Logic
One of the major problems associated with the operation of the XS1 is

arbitration. Because the four U ports in the device operate asynchronously

there is the problem of two requests, on different U ports, both trying to

claim the same L port simultaneously. This is resolved by means of a

system of arbitration clocks which control the activities of each slice. A

single externally generated high speed clock, 0X, is driven on chip and

separated into four internal clocks, These clocks are arranged so

that 0if i=0..3, is HIGH on only one in every four cycles of 0X.

Furthermore, the clocks are phase shifted so that no two clock signals are

72

ever HIGH at the same time. This set up can be viewed abstractly as a

single *token* which is passed cyclically around the four slices in turn,

i.e. from slice 0 to slice 1 to slide 2 to slice 3 and then back to slice 0

again. The arbitration protocol is simple: All incoming requests are

synchronised with respect to 0X and the U port of slice i, i=0..3, may

only claim and release L ports when it has the token, that is, when is

HIGH. Both claiming and releasing of L ports is done on the rising edge of

* which has two important consequences:

1. Since the 0^ are distinct it is not possible for two U ports to claim

the same L port simultaneously.

2. The L port release timing guarantees that arbitration is starvation-

free. If Uj releases L- it can only do so if it has the token. When^ J

Lj has been released, the token is passed on to the neighbouring slice

of slice i in the chain. cannot now perform another claim

operation until it has the token again. Clearly, if other U ports

wish to claim L̂ , they are all guaranteed to be given the chance since

the token must flow through them before returning to slice i.

• The arbitration is said to have *dynamic priority* since an arriving

request can *jump the queue* for a busy, and already demanded, L port if

the U port on which it arrives happens to be *closer* in the token chain to

the current owner of Lj than any existing blocked requests for Lj. This

arbiter involves minimal on-chip logic complexity whilst still ensuring

stravation-free characteristics. Simulations have shown that the resulting

network throughput is indistinguishable from that which would be

experienced as a result of employing a more complex first-come-first-served

arbitration scheme. This is predictable since the arbiter is work

preserving in the queue-theoretic sense.

All incoming requests on a U port must be synchronised with respect to

these arbitration clocks. The arbitration clock generator circuit is shown

in Figure 3-5.

7 3

♦

0 x 00 01 02 03

♦

#

%

Figure 3-5: The Arbitration Clock Generator

A schematic diagram of one of the four slices of the XS1 is shown in

Figure 3-6. A slice contains four types of component each of whos*

operation is now described:-

Figure 3-6: XS1 Slice Schematic.

7H

3.2.3̂.1 -The Address .Generation .Unit, £
The RI, DI and Cl inputs to in the device are all inputs to the

corresponding G unit. The G unit is responsible for acquiring select

address bits from the source node. The burst clock generator is present in

G, as is the select address shift register. Figure 3-7 shows the logic

diagram for this unit. The burst signal is generated from the two

bistables and the four input OR gate at the top left of the diagram. The

OR gate shown, passes 0X for exactly three cycles after which it is

disabled by the (3 output of the second bistable. The three bistables in

the centre of the diagram form the select address (and start bit) shift

register. The two address bits, ADO and AD1 are further latched by the two

buffers shown at the top centre of the diagram. When loading the select

address, the arrival of the start bit (a zero) at the far end of the shift

register generates the address valid signal, ADVS which is ultimately

flDUSi

flDUSi.

Figure 3-7r The Address Generation Unit

routed back to the source on the AO wire. ADVS is also buffered. ADVS,

ADO and AD1 must be buffered in this way so as to enable a new set of

select address bits to be clocked into the device whilst the L port claimed

by a previous request is being released. A full description of the XS1

timing may be found in [CrF83J.

■̂2.3.2. The Arbitration Unit*. A
A schematic diagram of the arbitration unit is shown in Figure3-8. The

inputs to the arbitration unit are the external RI line, the ADVS, ADO and

AD1 lines generated by the G unit, and four L port engaged-status lines

Eq -.Ê which are global to all four slices. If Ej is HIGH, then Lj is

currently *busy' i.e. there exists some currently coupled to Lj.

*

*

Figure ^-8 ; The Arbitration Unit.

The arbitration unit simply examines the status of the addressed L port on

each arbitration clock edge, i.e. each time the * token* passes. If the

corresponding E line indicates that this port is free, then the port is

76

claimed, and the corresponding E line is set HIGH indicating to other

requests in the device that that port is now engaged. When this claim has

been successfully achieved, one of the select lines, Sq. ^ in the diagram,

is raised. This transition results in the lines on the U port being

coupled to the corresponding lines on the addressed L port. When this port

is eventually released, the coupling is broken and the arbitration unit

waits for the next appropriate arbitration clock edge (i.e. it waits for

the token) before lowering the relevant E line. Whilst this is being done,

another set of select address bits may be arriving in the G unit. The ADO,

AD1 and ADVS lines must be held stable during this time, hence the double

buffering in the G unit.

k

»

3«2i3.3«. The Pas3 (P) and Multiplexer (M) Units
The pass and multiplexer units contain the logic necessary to couple

together an arbitrary pair of U and L ports. The required couplings are

specified by the select lines generated by the arbitration unit. A HIGH

signal on causes the five wires associated with to be linked to the

corresponding wires of Lj. The multiplexer units here are 5 to 1

multiplexers. Before the device has been selected by a request, the

address valid and burst signals (internally - the ADVS and BRST signals)

must be propogated back to the source on the A and B wires respectively.

The extra input to these units enables this to be achieved whilst retaining

the delay-matched property of the A and B lines through the chip.

A more detailed description of the internal logic of the XS1 together with

timing diagrams explaining the interaction between the slice components and

other XS1 devices may be found in [CRF83].

Although we have adopted a very narrow data path for the device (two wires

in either direction), the routing cycle time (i.e. the time taken to

request a device, fetch the select address bits, perform arbitration and

77

achieve coupling between and U and L port) is extremely fast (85ns without

blocking). The A,B, C and D lines through an established channel each have

a bandwidth of approximately 150Mbits/sec. Because of the delay-matched

paths of C and D, and of A and B, this corresponds to a 150MHz self-clocked

data communication channel in each direction. Performance is covered in

more detail in 3.2.6. where the effects of blocking on the throughput of

the XS1 and similar devices is considered.

3.2.4. Serial Switching. Self Clocking and Structure Independence

An important feature of this approach to switch design is that the

surrounding system need not be aware of the size or topological structure

of the interconnection network. Consider now a self-clocking network whose

building block switches are of mixed degrees. We envisage providing a

suite of different sized switches, each designed with the same self­

clocking capabilities described above. All that is required to be known

about the network is its maximum potential size, i.e. we must know how

large to make the shift registers at the source nodes. Once this has been

established the network can be configured in any way which suits the

designer. As described in Chapter 2, large switches will generally be used

wherever possible, firstly to reduce contention and increase performance,

and secondly to reduce the total network chip count. If the requirements

of the machine are such that one or more stages of smaller switches are

desirable, however, then such switches can easily be introduced. Each

switch extracts from the source shift register only those bits required to

select it. Additionally, because he destination node provides an end of

path signal the network can have arbitrary depth; the network 'tells* the

source node when it has completed building the requested path.

Consequently, the system operates independently of the network size.

For example, in a hybrid network composed of one stage of 8x8 switches and

one stage of 2x2 switches the network routing address will be 'consumed1 in

the following way:-

Network routing address register

-> data out

consumed by consumed by
the 2x2 stage the 8x8 stage

Note that address bits are clocked out from the least significant end of

the network address. This is to preserve structure independence (the index

of the most significant used bit in the network address is dependent on the

network size).

Now suppose that a network of size 32 is required, possibly by making an

expansion to the existing network. This could either be achieved by using

an extra stage of 2x2 switches, or by replacing the existing 2x2 switches

by 4x4 switches and simply doubling the number of 8x8 switches in the

network. Consider the latter example. The fact that the 2x2 no longer

exist and the fact that the network is now twice its original size is of

importance to the system components or their interfaces. All that happens

now is that one extra bit is consumed from the network routing address

register, thus:-

Network routing address register

U N U S E D d4 d3 d2 <*1 dQ

consumed by consumed by
the 4x4 stage the 8x8 stage

-> data out

*

If a particular stage contains switches of varying degrees then the network

still operates correctly. This time, two requests may generate different

demand patterns if they are required to traverse different sized switches

in the same stage.

Structure independence significantly eases the task of network construction

and reconfiguration. The network now assumes the properties of a fblack

box’ which functions correctly and at its maximum speed irrespective of the

environment in which it is being used.

*

♦

%

3-2.5. Interface Design

The network controlling mechanisms may be viewed on two distinct flevelsf,

which we term level 0 and level 1, corresponding to the path building and

data transfer phases of a transaction. Level 1 provides mechanisms for

enabling data transfers between the source and destination components.

This level is dependent on the system components. Level 0 facilitates

control of the interconnection network. The design of the level 0 logic

concerns the interaction with the network via the self-clocking protocols

described above and is independent of the attached system components. This

section concentrates on level 0 since it is common to all interface

designs. Implementation-dependent level 1 designs have been explored

elsewhere for other networks, for example [WLL82].

3.2.5.1. XS1 Level 0 Interface Description.

In order to simplify the discussion of the XS1 interface logic, we consider

a particular implementation which demonstrates the minimal logic required

to control an XS1 network.

We consider an interfacing device whose role is to provide, as the result

of the path building process, a single bit-serial channel in each direction

8 0

through the network. In the example, the D and A wires from the XS1 have

been selected for this purpose although the choice is arbitrary.

In systems where the components have built-in serial communication channels

a level-0 design provides all the necessary logic to control network

operation. Such is the case with the ALICE machine where the systems

components are formed by interconnected INMOS Transputers [IMS84]. Level 1

corresponds to the Transputer serial link controller. The role of the

interconnection network is to provide a dynamic coupling between the serial

links of two independent Transputers.

The logic diagram for this interface is shown in Figure 3-9 . The

network routing address is supplied to the interface via a parallel

interface of arbitrary width. The serial input and output wires forming a

link are also supplied to the interface. When a path has been established

to the addressed destination Transputer, the interrupt (ATTN) line is

0 C 8 A 8

a
L HIGH

Figure 9: Level 0 Interface For Transputer/Transputer Interconnection

81

raised at which point the serial links of both source and destination

* Transputers are connected. The interface shown is a combined network

input/output interface. Thus two serial links are provided by each

Transputer to its corresponding interface. Each Transputer may then submit

requests to and receive requests from the network concurrently.

+ 3.2.5.2. Interface Operation.

When a (source) Transputer wishes to communicate with some other

(destination) Transputer in the system, it writes the address of the

destination Transputer to its associated interface. This write operation

automatically initiates the self-clocking protocols in the network. Path

building then proceeds automatically. The source Transputer waits for the

interrupt to occur on its ATTN input which is generated directly from the

end-of-path signal generated by the destination interface. At this point

the network (and the interface) is transparent and the two Transputers can

communicate as if they were hard-wired together. The established channel

4 through the network is released by performing a 'read' operation on the

interface register. This has the effect of resetting the XS1 request (R)

line thereby freeing the channel.

Viewing the Transputer/interface bus as an occam [IMS84] channel, the

following occam code is sufficient to control a network transaction:-

At the transmitting end:

PAR
— Any other activities..
SEQ

Parallel.Port ! Target.Node
ATTN ? ANY
Serial.Link ! <some data>
Serial.Link ? <possible reponse>
Parallel.Port ? ANY

— Any other activities..

— Write network address
— Wait for interrupt
— Send data
— Optional response
— Release network channel

8 2

At the receiver:

PAR
— Any other activities..
SEQ

Serial-Link ? <some data> — Input message
Serial-Link ! <possible response> — Optional response

— Any other activities..

Note that the NIC logic may be incorporated into a custom interfacing

device, although, it is easy to construct this using discrete logic. (The

interface shown in Figure 3-9 can be implemented using the equivalent of

five 7^-series TIL ICs.)

Observe that everything in the NIC is asynchronous; no control clocks or

synchronisations are required since all timing information is provided by

the network itself.

This defines the minimum interface required to be able to integrate an XS1

network into a parallel computer system. The speed (i.e. the eventual

throughput) of the network is dictated by the speed of the serial links.

The maximum speed attainable by this interface is the XS1 D/A wire

specification speed of 150 MHz. If the processor serial links are slower

than this, and greater bandwidth is required, then a separate high-speed

NIC with a parallel interface to the processor must be provided. This NIC

could simply provide the same (or similar) functions as are provided by the

Transputer serial links, only at higher speed (for example by exploiting

the fast off-chip serial communication capabilities of ECL, GaAS, etc.

technologies and by using the path-matched properties of D and C, and A and

B to self-clock the data through the network).

If only unidirectional block transfers are required (as is the case with

many declarative systems architectures), then the NIC could be buffered so

that the whole block is present in the NIC before the transaction is

initiated into the network. Then, once the channel is established between

the source and destination NICs, the block transfer can proceed at NIC

speeds. This minimises the Channel-hold’ time through the network and

therefore minimises overall network latency. In this mode, the network is

operating at its maximum speed, during both the path set up and data

transfer phases of the transaction. Multiple buffers can be included in

the NICs to enable the next transaction(s) to be assembled whilst the

previous one(s) are being completed. This minimises the delay between

successive transactions being initiated. The buffers in the NICs can be

filled (at the source end) and emptied (at the destination) by memory

mapping from the respective processors or, more appropriately, by DMA. The

problems of network interfacing are raised again in Chapter 4 where the

requirements of a fault-tolerant network interface are examined.

Note that because the XS1 allows the asynchronous cancellation of requests

it is possible for the interface to implement a timeout facility whereby

blocked requests are cancelled and later retried. This yields a marginal

performance improvement, as described below, but does not guarantee

starvation-free routing behaviour.

^-2.6 Performance

Analytical models for obtaining asynchronous network perfomance are still

being developed. At the present time, -the predictions of self­

clocking network performance have been achieved through simulation,

although single-switch configurations have been successfully analysed as

described in Chapter 2.) The following performance figures were obtained

from an interactive event-driven simulation program written in PASCAL and

developed primarily for the rapid acquisition of performance estimates for

arbitrary self-clocking networks through user interaction.

The operating environment is specified by the user and can be modified from

run to run. The list of system commands and alterable operating parameters

are given in Appendix 2.

The significant network operating parameters are:-

N - The size of the network

x - The degree of the network (only regular topologies are exmamined)

I- The mean time taken to present a new request to the network

following the completion of the previous request.

T - The mean time taken to complete a transaction after path

building.

The significant performance statistics referenced here are:-

BWfl - The normalised bandwidth, which is the proportion of the data

transmission clock frequency actually used for data transfer.

TTjj - The normalised mean transaction time, which is the mean

transaction time expressed in data transmission clock periods.

In each simulation run, the switch control clock, (0X in the XS1) is

assumed to operate at frequency f. This enables the performance metrics to

be expressed independently of the network clock frequency. Except for very

short transfers, the transaction time is dominated by the path set up and

data transfer times, so the switching speed (determined by 0X) does not

contribute significantly to the overall transaction time.

Figures 3-10(a) through 3-10(c) show the behaviour of BWjj and TTjj for:-

1. x=4, 1=0 (e.g. the XS1) with varying N and T.

2. x=4, N=1024 with varying I and T.

3. N=4096, 1=0 with varying T and x.

3.2.6.1. TiJaeouts

As described above, the XS1 allows the source node interface to

asynchronously cancel a request and then resubmit it. This mechanism can be

analysed by use of the SET V, SET Y and SET H options in the simulator (see

85

%

♦

*

4 16 64 256 1024 4096

Network Size

(a) XS1 Performance With Increasing Network Size And Transfer Length.

Mean Time Between Requests
(In clock periods)

(b) XS1 Performance With N=102H cont

1400

Transfer Time
(In clock periods)

(c) Network Performance With Varying Switch & Transfer Sizes.

Figure ?-1Q: Self Clocking Network Performance

Appendix 2). There appears to be no 'optimum* rule for establishing the

value of the V, Y and H parameters, particularly when the network transfers

are of varying size. However, by experimentation with the simulator it has

proven possible to enhance the network throughput by up to approximately

12$ for some configurations. It is questionable whether the additional

complexity in the interface required to implement the timeout scheme can be

justified with only comparatively little gain in performance at stake.

Also, in order to implement the scheme the minimum network path building

time must be known to the interface and the timeout parameters must be to

be re-programmed after a reconfiguration of the network so as to retain the

optimal performance.

3^2.7. Future Developments

* We conclude this chapter by describing two enhancements to the XS1 design

which may be incorporated into future self-clocking network implementations.

3..2.7.1. AgyQQhroflQus Burst Clock Generation

In the XS1 two synchronisations are required in order to select a switch in

^ the network. However, by extending the width of the data/control path, it

is possible to reduce this to just one synchronisation by having the burst

generator clock supplied externally and synchronised with respect to the

network Reset line. The extended six line interface would operate exactly

as before except that the negative transition in the network Reset line

corresponding to an arriving request need not now be synchronised with

respect to 0X to generate the burst clock. Instead the required number of

burst clock pulses supplied on the additional clock input (generated by the

previous stage) can be 'picked off1 and passed back to the source without

requiring synchronisation. This enhances the switching speed of the

network and reduces the probability of errors occurring due to (transient)

synchronisation failure prior to the generation of the burst clock.

3t2.7.2. Tri-Level Logic Implementations.

An obvious way to improve the current XS1 design is to further reduce the

width of the control/data path from five wires (six wires if the above
♦

enhancement is made) so as to further improve the ratio of switch size to

package size. As described earlier, self clocking techniques can be

implemented with just three wires: D and C can be contracted into a single

phase-encoded, or isochronous transmission line, and the A and B lines

reduced to just the burst signal, dispensing with the acknowledge line

altogether. However, by doing so, many of the attractive properties of the

self clocking scheme are lost. Phase encoding relies on some form of

phase-locked loop decoding on chip which is awkward to implement.

86

Transmission of data without including an explicit clock (isochronous

transfer) is less reliable and relies on an accurate matching of the source

and destination clocks to make it work. The lack of an acknowledge line in

the control path means that an end of path signal (easily generated in the

five wire configuration) requires more complex coding techniques which must

be adhered to by both the burst clock and acknowledge signal generators on

chip, and the end of path signal generator at the destination interface.

Finally, as a result of there being no explicit clock line in either the

forward or reverse data paths after path set up, the through-channel data

transmission speed is necessarily reduced (phase encoding, for example

requiring a channel bandwidth of 2f Hz in order to transmit data at a

rate of f Hz).

Despite this, however, a three line data/control path could be used by

employing tri-level logic to overcome all of the above problems, and

provide additional advantages over the XS1 design.

A tri-level logic implementation of the XS1 would employ only three

data/control wires at each switch port: a tri-level combined Reset/Burst

clock input line, R/0 with logic states LOW, MID and HIGH, say, a tri-level

unified data/clock (D/C) line, and similarly, a tri-level unified

burst/acknowledge (B/A) line. In the passive state, the R/0 line is in its

HIGH logic state. The conventional Reset signal is signalled by a

transition from the HIGH to MID logic state and this is then followed by a

continuous clock between the MID and LOW logic states. This clock is used

to generate the burst clock. For all data transmission on the A/B or C/D

lines, a MID->LOW transition is be interpreted as a 'clock data LOW1

signal, and a MID->HIGH transition as a 'clock data HIGH' signal.

Consequently the full bandwidth of the transmission line is made available

for data transfer.

Since the burst and acknowledge signals are mutually exclusive, the burst

clock could be generated using MID<->HIGH transitions on the A/B wire, and

• the acknowledge signals, by using MID<->LOW transitions, for example. The

end of path signal is then easily generated by, for example, issuing a

double pulse from MID->LOW on the A/B wire.

Using this technique, the full suite of self-clocking network protocols can

be implemented using only three wires per slice. This results in a pin

* count of only 6x+P+1 where x is the switch degree, P is the number of power

pins and the extra pin is for the arbitration clock input.

Reagrdless of whether the implementation uses a three, five or even six

wire control/data path, the use of self-clocking network principles results

in networks which are inherently smaller, cheaper, more cost-effective and

more reliable than equivalent conventional implementations.

m

88

CHAPTER 4
Fault Tolerance In Self-docking Networks

Despite the growing interest in interconnection networks in recent years,

^ comparatively little attention has been paid towards making these networks

fault tolerant. In this chapter, we consider this problem, and describe a

highly efficient means of obtaining fault tolerance which is particularly

appropriate to the asynchronous self-clocking networks which were

introduced in Chapter 3.

The fault problem in interconnection networks may be appreciated by

examining a. typical interconnection network, for example that shown in

Figure 2-1. For any pair of source and destination nodes there is only

one path through the network which links the two. If a (permanent) fault

is introduced anywhere in the switches or interconnections on this unique

* path, then the network ceases to provide complete inter connectivity. In

small systems, where the number of switches and the number of device

interconnections required in the network is comparatively small, the fault

problem is less significant. In highly parallel systems, however, a large

number of switches and an even larger number of interconnections are

* required. At this point the fault problem must be taken seriously if the

system is to operate without requiring frequent down time for repair. Note

that we consider here only the fault tolerance of the interconnection

network; fault tolerance within the components attached to the network is

not addressed.

4.1. Fault Models
An interconnection network may go wrong for a number of reasons; the types

89

of fault which may occur may be broadly categorised into transient and

permanent fault types.

4-1-1- PfliTangnt Fault3

4t1.1.1. *Stuck-at» Faults

The classical fault model for digital circuits is a single line stuck at

either a logical 0 or a logical 1 [Agr82]. The stuck-at fault model is

applicable to all digital systems and accounts for a majority of SSI and

MSI failures and is applicable to all VLSI systems even though transient

faults predominate here (see 4.1.2.1).

A stuck-at fault occurring in the control/data path terminals of a device

in an interconnection network will either cause:

1. A request to be stuck as the result of the inhibition of the self­

clocking protocol signals between the network an the interface

control logic.

2. The request to be steered to the wrong network output port.

3. Data to be corruped as it is transferred through an established

network channel.

Errors of type 1 may be caused by any stuck-at fault in the B or C

terminals of a switch, a stuck-at-one fault in the R terminal of a switch,

or a stuck-at fault in the A terminal of a switch (or interface) causing

the end of path protocol to be corrupted. Errors of type 2 may be caused

by a permanent stuck-at fault at one of the D-wire terminals of a switch or

by a stuck-at fault at an A terminal causing address bits to be clocked out

as start bits (if start bits are used). Errors of type 3 may be caused by

stuck-at faults in any of the A,B,C or D lines depending on the nature of

the communication through an established channel. Note that a stuck-at-

zero fault at an R terminal will effectively set up a permanent channel

from an internal switch of the network through to some destination

interface. Any information sent to the associated faulty switch port will

be immediately transmitted to this destination node. The request will then

fail because no end of path signal will be generated.

4.1.1.2. Permanent Link Faults

Permanent faults in the links of the interconnection network will produce

effects similar to those produced by stuck-at faults. The fault scenario

is as described above.

4.1.2. Transient Faults.

4.,1.2.1. Transient Switch Faults.

Although the stuck-at fault model is recognised as being applicable to SSI

and MSI technologies, field studies indicate that between 90 and 98$ of

all detected faults in VLSI are transient and are induced as the result of

interactions between adjacent elements in densely packed layouts over a

limited area [MST79]. Although the stuck-at fault model is still

significant, and must be considered, it would appear that transient errors

predominate. Transient (•soft1) errors in an interconnection network may

cause stuck requests, incorrect routing as a result of soft errors during

path set up, or data transfer errors as a results of soft errors occurring

during data transfer.

4«1.2.2. Transient Link Faults.

A majority of faults occuring in data transfer paths have been shown to be

unidirectional (either 1s becoming Os or Os becoming 1s) [CSS73]. Broken

connections, the shorting of signal lines to power or ground and the loss

of power all cause unidirectional errors during data transmission, be it

during the path set up or data transfer phases of a transaction.

4.1.2.3. Synchronisation Failure.

In any asynchronous system, the failure to synchronise two phase-

independent signals will cause undeterminable voltage signals to be

induced in the system ('metastability', 'glitching1, 'boggling' etc.).

Although the synchronisation failure probability can be reduced by the use

of high loop gain bistables (as in the XS1 device) and long settling

times, the possibility of failure still remains. In the XS1, for example,

synchronisation failure will cause one or more burst clock signals to be

lost resulting in the associated request becoming 'stuck' at the currently

selected switch.

In the proposed fault tolerant scheme we assume the following fault models

based upon the scenarios listed above:

1. Stuck-at faults at the terminals of any switch in the interconnection

network or at the terminals of the network interfaces which link into

the network.

2. 'Soft* faults within any switch in the network causing:

(a) The wrong switch output port to be selected during path

building.

(b) The (transient) corruption of a control signal during path

building causing a request to become 'stuck'.

(c) Unidirectional errors in the data as it is transferred through an

established network channel.

3. Either permanent faults in the links of the network (or links between

the network interfaces and the peripheral stages of the network), or

transient link faults causing unidirectional errors in data

transmission.

4. Synchronisation failure prior to the generation of the burst clock.1

 ̂ This can be eliminated as described in 3»2.7»

Note that bidirectional data transfer errors can be handled provided the

number of bits corrupted from 0 to 1 is different from the number of bits

corrupted from 1 to 0. Note also that faults present at the junctions or

links between the interfaces and the system components are not considered.

Existing Fault Tolerant Schemes
Before describing the proposed approach to fault tolerance we first comment

on related work in the area of fault tolerance network design.

HmZmI*. Self Testing Switches
In SIMD systems, the interconnection network is controlled synchronously.

In [LiW82], the synchronous property of such networks is used to

periodically perform *test cycles* on the network. In this test cycle each

switching element performs a self test operation in the network and if a

fault is recorded during this test, then backup logic within the device is

switched in. Multiplexers and demultiplexers are provided within the

switch to achieve this. After the test cycle, the network resumes normal

operation. All switches are, at that point, guaranteed to be fault free.

Whilst the test cycle correctly diagnoses any faults within the switches of

the network, there is no provision for fault handling during normal

operation. Additionally, the implementation of the scheme requires

considerable increase in the complexity of the switch. Most of the switch

logic is concerned with implementing the self test, i.e. generating test

patterns, detecting faults and performing recovery. It is questionable

whether this makes the switch any more reliable than before. The scheme

appears impractical for switches of degree larger than 2.

4.2.2̂ jBxfcca .Stags networks
An elegant scheme for enhancing network reliability has been proposed in

[AdS82] and elsewhere in [WLL82]. In these designs an extra stage of

switching elements are provided at the input side of the network.

Initially, the extra stage is enabled onto the network inputs by

demultiplexer units attached to each extra-stage switch, and the output

stage of the network is disabled via multiplexer units attached to each

switch. Faults detected in the internal stages of the network can be

bypassed by switching in the extra stage which yields a second (fault-free)

path between the source and destination. Faults in the topmost stage of

the network are bypassed by switching in the extra stage and switching out

the topmost stage. Complete connectivity is preserved at all times.

The 'extra-stage* approach is very economical, but relies on the ability to

detect errors to the level of individual switches so that the correct

choice of redundant paths can be made after reconfiguration. It is never

clear, though, whether a fault lies in output to a switch in some stage, S,

the input to a switch in stage S+1, or in the link between the two.

Furthermore, the scheme does not cater for multiple faults affecting the

same source/destination path, or faults in the terminals, links or

(de)multiplexers at the peripheral stages of the network.

4.2.3. Multiple Plane Networks

An obvious way of obtaining fault free paths in an interconnection network

is to have two or more independent networks and simply switch a new network

plane into operation whenever a fault is detected in the currently

operating plane [Agr79]. Multiplane networks of this sort are by default

fault tolerant. This is an effective, although not very economical means

of achieving fault tolerance since each redundant paths introduces only one

extra potential path between an arbitrary source and destination.

However, a method of exploiting multiplane networks in bit slice

configurations has been proposed in [LLY82]. Here, the network is assumed

to already exist in three dimensions: each word to be transferred across

the network is bit sliced into packets and these packets are passed through

♦ the network synchronously with each packet being submitted to an

independent data plane. Error correcting codes are used within each packet

to enable the destination node interfaces to perform automatic error

correction of the entire word transferred. An entire network plane can

fail without causing the network to fail, and can consequently be replaced

^ while the other planes continue to operate.

The scheme exploits the packet redundancy inherent when large words are

being transferred in bit slice fashion. The scheme is not applicable to

single plane systems, and is only suitable for synchronous network

implementati ons.

4.3. A Fault Tolerant Scheme For Self-Clocking Networks.

None of the existing approaches to achieving fault tolerance is suitable

for the class of networks which are of interest here, namely the

asynchronous serially-switched networks which were introduced in Chapter 3.

* The asynchronous nature of each switch in the network makes it impractical

to perform on line self testing (fault avoidance), whether by using self

testing switches, or *test stimuli* techniques as described in

[Agr82,WuF79]. *Extra-Stage* networks could be adapted for asynchronous

implementations, but these rely on exact fault location followed by a

• complete reconfiguration of the network. What is desirable is a

distributed error detection and isolation mechanism which can be exercised

by each system component independently of, and asynchronously with respect

to the other components in the system. In the following sections we

describe how error detection, fault avoidance and fault recovery can be

♦ provided in a self-clocking network, although many of the techniques may

applied to existing designs.

In a fully populated interconnection network, only one path exists between

95

a source node and an arbitrary destination node. (This is obvious since

the set of paths from a source node to the set of all destination nodes

forms an x-ary demultiplexor tree.) A failure in any switch or link

between switches in the network will prevent certain source/destination

couplings from being made. Consequently, a necessary condition for fault

tolerance is the presence of multiple paths between all source/destination

pairs. We now propose an extended network topology in which each system

component is allocated one or more additional links into the network. This

applies to both source and destination components. The number, k<xf of

network links at each component is termed the degree of fault tolerance.

The existance of k links at the source components results in there being

potentially k distinct paths between each source node and a given network

output port. However, since each destination component also links to k

independent network output ports, there are potentially a total of k^

distinct paths between each pair of source and destination nodes.

In this definition, two paths are said to be distinct if they share no

internal network links in common. Each link between the peripheral stages

of the network and the system components will be shared by k distinct

paths. In addition, two paths are said to be independent if they share

neither a common link nor a common switch in the network. A network is

defined to have the path independence property if for every possible path

from a source node to a given destination node there is at least one

additional and independent path between the same two nodes. The path

independence property thus guarantees the network to be fault tolerant in

the case of all single faults.

The problem is now to find a general interconnection rule which guarantees

this property regardless of the size or topology of the underlying network.

We choose as an example a network based upon the Generalised Cube topology

96

and consider the problem of providing dual-port fault tolerance i.e. k=2.

» We choose to discuss the Generalised Cube since the proofs for this

topology are slightly simpler than for other topologies. However, similar

properties can also be derived for non Cube-based topologies and for cases

with k>2. Initially, we shall consider only regular networks. Fault

tolerance in irregular networks is discussed in 4.3.3.

♦
4.3.1. Providing Multiple Path3.

4.3.1.1. Address Transformation

In a normal operating environment, a source node, s, obtains a channel

between itself and some destination node, d, by issuing the address of d to

its associated network interface. In the fault tolerant set up, the same

destination node can also now be reached by routing the request to the

other (generally, any of the other k) network output port(s) associated

with the destination node. With k=2, the alternative address, denoted by

d’, is obtained by a simple, and consistant transformation, T, on d, i.e.

d» = T(d) for all d.

Issuing either d or df to the source interface will steer the request

successfully to the destination node. Thus there are four ways to address

the network in order to provide a coupling between a source and a

destination node since either input port and either the transformed or

4 untransformed version of the destination address may be used. We now

demonstrate that there exists a topological rule which ensures that each of

the paths taken by these four methods is distinct and that the network as a

whole has the path indpendence property.

* 4.3.1.2. Extending The Cube.

The Generalised CUBE topology is similar to that of the CUBE topology

described in Chapter 2. We use the traditional definition of the topology

which assumes the stages of the network to be labelled such that stage 0

97

occurs at the output side of the network and stage n-1 at the input side of

the network. To simplify the proofs, we use the more convenient and

general notation for specifying the topology, as has been used in the

previous chapters. The permutation function for stage s we shall denote by

G_ and is defined as follows:

% ^s • ® s ^ ^ n - 1 * ^ n - 2 »’ *» ^ s +1» ^ s - 1 »• •»

*s-1^^n-1»Jn-2** *»Js+1*jo*^s-1»••» Ji»

In a normal operating environment no permutation is required at the output

side of the network, i.e. a routing address:

d = <dn-1»dn-2»••»d1»d0>

steers a request directly to the network output port labelled d. In the

fault tolerant system with k=2, there are two network ports associated with

each system component, thus there are additional permutations on both the

inputs and outputs of the network.

The fault tolerant topology is obtained by applying the same permutation

that occurs between the last two stages of the network between the source

components and the top level of switches in the network. Thus in this

example, we extend the Generalised Cube topology so that the G^ permutation

function is applied between the system source components and the top level
#

of switches. In the fault tolerant scheme, the bits of the destination

address are clocked out of the source NIC from the least significant end to

preserve structure independence. (This is discussed in 4.4.) Thus at the

output side of the network, a digit reversal permutation is applied to

*realign' the addresses.

The system components at the input and output sides of the nodes of the

system are now connected to the network via ad.laoent pairs of network links

98

♦

#

♦

respectively before and after the input (G^) and output (address bit

reversal) permutations have been applied. Thus, for example, input links:

, In—2 * * * * ̂1 * ̂*0̂ snd l̂fl_ i, 1 ^_2 »• •»1^» 1q * ̂ l^=0..x—1, i=1..n— 1

are both associated with the same input node, where 1q and Iq1 differ only

in their least significant bit. From here onwards the prime (*) may be

assumed to be the postfix operator meaning *invert least significant bit1.

We now demonstrate that using the above interconnections, the 4 (i.e. k̂)

possible paths between 2 arbitrary nodes in a network of arbitrary size and

degree each access independent subsets of the network switches, with the

exception of stages 0 and n-1 which must clearly be shared by 2 (i.e. k)

paths each.

Firstly, we must demonstrate that each system component is connected (via

its interfaces) to exactly 2 independent switches in stage 0 and

stage n-1.

T-Pimna 4-1: Each input node links to 2 independent top level (stage n-1)

switches.

Proof: Let <in-1 ,..,i1 ,iQ> and <in_1,..,i1 ,io*> be the two network links

associated with source node i. After applying the input permutation,

G-j, source node i links to inputs <in_̂ ,..,iQ,i-j> and <i n_ -j,.., ig1, i -j >

of the top level (stage n-1) of switches. These are associated

with the switches labelled <in_.j ,..,i2 »io> and <in_«j ,..,i2 >io’>

respectively. Since iQ^ig’, these switches are independent.

[]

Lp m m 4-2: A destination node d=<dn_p..,d^,dg> can be accessed from all

source nodes by supplying either the routing address d, or the address

d' =<dn_i t • •»d-| »^0 *

Proof: The generalised cube which clocks from the least significant end of

the routing address, steers a request with routing address d to

99

1

♦

network output <dQ,d-j,..,dn_-j>. After realignment, it is steered to

<dn-1 f»di»do>« Similarly, a request with routing address d1 will be

steered to ,..,d̂ ,dQ*> after realignment. Since adjacent pairs

of outputs are both connected to the same destination node, and since

dQ and d0* differ only in their least significant bit, both d and d*

will steer a request to the same destination node, d.
[]

Thus if path building to some target node fails with address d, an

alternative address can be derived by inverting the least significant bit

of the destination address. This defines the transformation function, T,

described in 4.3*1*1*

We must now demonstrate that for all possible transactions from a given

source node, s, the set of switches of stages 1 to n-1 which are accessed

by issuing a request on one input channel, is disjoint from those accessed

by issuing the same request on the other channel. This amounts to showing

that the set of switches in stages 1 to n-1 which are accessible from

either one of the network inputs of a given source node is disjoint from

that accessible from the other input.

Lemma 4-3: Let i=<in-1 ,..,i2,i1 > and j=<jn - 1 j2» j-j> be the two stage

n-1 switches to which with some arbitrary source node, i, is

connected. From Lemma 4-1, ik=jk, k=2..n-1; j^=i^'. Let Dk be the set

of all devices in stages n-1 through 1 which are accessible from

switch k of stage n-1, k=0..N/x-1.

Then, PI Dj = 0.

Proof: Denote by [s,w], switch w of stage s, s=0..n-1, w=0..N/x-1, and let

D^(s) be the set of switches of stage s satisfying:

[s ,w] e <=> [s ,w] € Dj^Cs).

(Note that Di(n-1) = {[n-1,i]} and D^CO) = I , the set of all switches

in stage 0 of the network.) may then be expressed as:
4

D± = D±(n— 1) U D±(n-2) U .. UD^I).

100

Now start with [n-1,i]. The output links associated with[n-1,i] are

those outputs of stage n-1 labelled <in_1 ,in_2, • •»i-j »®i>»

Now, applying G(n-1) to these we have that:

il,©1>, G.j=0..x-1

DiCn-2) = {[n-2, <0-j ,in_2 i..,ii>]}» et=0..x- 1

From the definition of G(n-2) we have that:

y=1..n-(s+1)

Therefore, since i ^ j p and since D^Cs) fl Dm (s+1) = 0 for all k,m it

follows that for all s=1..n-1, [s,d] e Di(s) => [s,d]^Dj(s) s=1..n-1,

Finally, we must demonstrate a similar result for the address

transformation scheme, i.e. that:

T-pimna 4-4: The set of switches of stages n-2 through 0 accessed by issuing

a routing address, d=<dn-1 ,..,d1,dQ> is disjoint from that accessed by

issuing the address df=<dn_̂ ,..,d-j ,dg*> from the same source node.

Pr.QQl1: Let the top level switch through which a request is issued be

labelled <in-1 ,..,i2,i1 >. The stage n-2 switch which is accessed by

supplying the routing address d is then given by <dQ,in_2 >~»i2»*i^‘

Similarly, <d0’,n_2»**»i2,i1 ̂ for the routinS address df. The proof

then follows similar lines as for Lemma 4-3. This time, the sets

corresponding to D. and of Lemma 4-3 are disjoint by virtue of the

fact that d0^d0f. []

Thus:

Theorem4-1: Thefour possible paths between any two nodes have no stage

2..n-2 switch in common.

hence, from
[]

Proof: FromLemma 4-3> no stage 2..n-1 switch accessible from one ofthe

input ports of a given source node is accessible from the other. From

Lerama4-4, no stage 2..n-1 switch traversed by issuing the routing

address, d, from a given network input is traversed by issuing the

address d* from the same input. Consequently, in these stages none of

the four paths have any switches in common.
[]

Hence,

Theorem 4-2: Each of the four possible paths from a given source node to a

given destination node is distinct and for each of these paths there

exists exactly one additional and independent path between the same

two nodes.

Proof: Follows directly from Theorem 4-1, and from Lemmas 4-2 and 4-4.

An example of a regular fault-tolerant network is shown in Figure 4-1.

This example shows an extended Generalised CUBE network of size 16 and

degree 2 with the additional permuatations for fault tolerance shown at the

peripheral stages of the network. The four paths from source node 4/5 to

destination node 8/9 are shown highlighted. This shows the four distinct

paths which consist of two pairs of independent paths.

4 . 3 . 1 . 3 . I r r e g u l a r T o p o lo g ie s

In the previous chapters we have stressed the benefits of hybrid or

irregular topologies which may contain stages of varying degrees. In the

proposed fault tolerant scheme the only problem presented by irregular

topologies is retaining the distinctive and independent properties of the

k^ paths through the network for each source /destination pair. However,

this is not hard to achieve and can be seen from, for example, Figure 4-1.

An irregular topology can be easily formed by replacing the switch arrays

within each broken box shown by switches of degree 4. If required, the

lower three stages could even be replaced by two switches of degree 8 in

102

SOURCE COMPONENTS

F ig u re 4 - 1 : A CUBE-Based F a u l t T o le r a n t N etw ork . N=32, x= 2 f k = 2 .

the obvious way. Four distinct paths are still retained, and each path has

an independent counterpart so that the path independence property still

holds. Provided the whole array is not replaced by just a single switch,

the systematic replacement of subparts of the network by larger single

switches will not affect the networks* ability to provide independent paths

between each pair of source and destination components.

3-2. Error Detection .And .Fault Avoidance
Because the enhanced interconection topology described above provides four

(generally k̂) mutually independent paths between any pair of source and

destination ndoes, a permanent fault anywhere in the interconnection

network can be avoided. The mechanisms for error detection and fault

avoidance with the proposed approach are now decribed by means of an

example of a fault tolerant network. The techniques for providing

permanent fault avoidance are indepedent of the mechanisms for error

detection and are described later.

• The example set up is shown in Figure 4-2. and considers a self clocking

network which is being used to transfer messages or blocks of data

unidirectionally from the source components (attached to the input side of

the network) to the destination components (attached to the output side of

the network). Each system component is shown to have a separate network

interfacing component (NIC) for each of its k (in this case 2) network

input or output ports. These may, however be combined, and even integrated

into the system components themselves. The blocks of data are assumed to

be buffered in source NICs before the transaction is initiated into the

network. Transferred blocks are further assumed to be buffered in the

^ destination NICs. This yields a guaranteed data transfer rate after path

set up which increases the network throughput. Multiple buffers could also

be provided so that buffer filling and buffer emptying within an NIC can

proceed concurrently. For simplicity, though, we consider only single

INTERCONNECTION NETWORK

Figure 4-2; Example Fault Tolerant Set up.

104

buffering. The protocols at the interface between the NIC and system

component are undefined, as is the logic required to perform the block

transfer.

4-.1*2*1*. Error D e te c t io n Mechanisms.

Error detection in an interconnection network must be performed at three

different levels corresponding to the path building, path verification and

data transfer phases of a transaction. Path building error detection and

path verification are invariant among different implementations. The

mechanisms described for error detection during data transfer are dependent

on the implementation of Figure 4-2 although they can be readily applied to

other set-ups.

4.3.2.1,1. .Path bnildinK Failure.
Stuck-at faults at a switch or interface terminals, permanent link faults,

transient faults in the switches or links of the network and

synchronisation failure will often cause a request to become stuck during

path building as a result of the corruption of the self-clocking network

control signals. Such errors are detected by a timeout mechanism

implemented by the source component. The timeout period is a function of

both the network size and the maximum network channel 'hold1 time and must

be greater than the maximum possible network transaction time. The maximum

time between initiating a transaction and completing the transaction is

equal to:

(N-1)s
T = ’max C4-1]

x— 1

which is the value of Tn_^ in the recurrence

max:+xW Ti = smax+xTl-1> i=1--"-1

maxHere s. is the maximum possible switching time through one switch of the

network (without blocking), N is the size of the network and tmax is the

maximum time taken between obtaining a path and completing the transfer of

the transmitted data. This is a pathological case since it relies on every

component trying to reach the same network output port at the same time.

However it defines the necessary minimum timeout period which must be set

when a transaction is initiated. In the event of a timeout occurring, the

partly1 claimed channel is cancelled and the request is later retried (see

below).

4 . 2 . 1 . 2 . A d d re s s in g F a i l u r e .

When an end of path signal is generated by a destination node interface,

there is no guarantee that the correct destination has been reached.

Certain faults in the network may cause a corruption of the routing address

information causing the request to be steered to the wrong output.

Consequently, immediately after path building is complete, the requested

and the obtained destination addresses are compared. The claimed channel

is released if any discrepency is observed, and status information is
A reported back to the source node indicating the nature of the failure.

4 . 2.1.3. Pata Transfer Error.
If the address check succeeds then control is passed to the data transfer

unit (level 1) in the interface where the block transfer proceeds.

* Regardless of any errors which may occur during data transfer, the entire

block is always transferred from the source NIC to the destination NIC.

Because the fault model assumes unidirectional faults in the data

transmission path, a Berger check [Ber6l] is performed on the data as it is

transmitted. The Berger checksum is simply the number of logical zeros

♦ within the data block and is optimalNin the sense that there is no

unidirectional error detecting code with fewer check bits for the same

number of data bits transferred. The Berger check has been proposed in

106

[FAH83] for interconnection networks with conventional control mechanisms

but it is particularly suitable for serially-switched networks since the

checksum can be accumulated 'on the fly' by means of a counter triggered by

the signals transmitted on the forward data/clock path (the D and C control

lines) through the network. The checksum logic required is thus very

simple. At the end of the block transfer, the received checksum is

compared with the transmitted checksum as described below. If the
♦ comparison fails then the network channel is released and a status word is

made available to the source node. If the comparison succeeds then the

transaction is complete and the claimed channel can be released normally.

Note that because data transfer errors are (hopefully) infrequent, the use

of continuous block transfer protocols, as opposed to handshaking

protocols, will, in the long run, yield higher overall throughput since no

redundancy is required. Additionally, block transfers require fewer (if

any) synchronisations between the sender and the receiver.

These mechanisms are explained more fully in the next section which

describes the operation of the fault tolerant network interfacing component

(or NIC).

NIC Operation.

The following discussion describes the operation of the NICs from the point

at which the buffer of the source NIC has been filled. There may be

additional buffers in the NIC which may be filled whilst the current buffer

is being emptied; indeed, the block transfer may be done directly from the

source main memory to the destination main memory via conventional DMA.

This is not important to the discussion. We merely consider the mechanisms

for error detection as the block is transferred from the source NIC to the

destination NIC.

The error detecting NIC may be viewed as containing three levels of network

107

control. Level 0 is exactly as described in Chapter 3 except that status

information is now maintained to assist the process of fault diagnosis.

(Fault location and fault repair are described in 4.3*3.) Level 0

contains the routing address register used by the self-clocking protocols.

Writing the destination address (possibly transformed) to this register

initiates the transaction by pulling the Reset line LOW into the network.

At this same time, the source component begins the timeout. The routing

address is also copied to an address comparison register located in the

intermediate level of the NIC shown in Figure 4-3.

From now on the self-clocking protocols take effect. Any fault in the

network causing the request to become stuck during path building is

detected by the timeout in the source node (although the timeout logic may

be included in the NIC). During path building the signals present on the A

(acknowledge) and B (Burst) lines from the network are monitored and counts

of the number of transitions occurring on these lines is maintained in the

form of a status register held within the NIC. Additional status

information is also held as described below. If the request times out then

the source component reads the contents of this register and passes it on

to a system monitor where it can be used to assist in fault location. The

A count indicates the number of stages traversed to date. The B count

should be consistant with the A count and indicates the total number of

burst clocks received by, i.e. the total number of address bits transmitted

from, the routing address register. Any discrepency in these two counts

may assist fault diagnosis.

If path building completes successfully, then an end of path signal is sent

by the destination NIC and the signal will be made available in the status

register. This signal disables level 0 of the source NIC and enables the

network A/B and C/D lines through to the intermediate level where path

verification is performed. Following the end of path signal, the

destination NIC immediately transmits its own address (which is written to

a register internal to the NIC during system initialisation) back to the

source node. The received address is loaded into the internal level of

the NIC where it is checked against the intended destination address which

was loaded when the transaction was initiated. If the two addresses differ

then an error has occurred either during path building or during the

transmission of the destination address. Both conditions are errors so in
+ the event, the established channel is released and an interrupt is sent to

the source component. The end of path signal and the result of the address

check are added to the status register so that appropriate actions for

recovery in the event of failure may be undertaken.

If the address check succeeds then control is transferred to the data

transmission logic (level 1 of the interface as defined in Chapter 3) and

the data is transmitted across the network. Regardless of any errors

which may occur during transmission, the entire block is always

transmitted. The block is transferred in Chunks* which may be bytes,

words etc., each chunk being preceded by a start bit of one. These are

serialised and self-clocked through the network on the C/D data path.

Error detection is performed at the source and is achieved by two 'dynamic*

Berger checksum counters maintained by level 1 of the source interface as

follows:

* When the destination address has been sent by the destination NIC for path

verification, the destination NIC is set to receive incoming data on C/D

and the data received (i.e. the data on D clocked by C) is then sent back

to the source node on the A wire. The network is thus configured so that

the source NIC receives all data it transmits. The two Berger

• checksum counters at the source NIC are triggered from the data transmitted

on the C/D data path and received back on the A wire. Thus each data bit

transferred makes a round trip from the source NIC through the network to

109

1

*

»

the destination NIC and then back to the source NIC. The last word of the

block is preceded by a start bit of zero. After this last word has been

transmitted, an additional *end of block* signal is transmitted whereby a

positive edge is provided on D whilst C is held HIGH. When the last word

has been received at the destination, the destination NIC is configured to

pass this end of block signal back to the source on the (as yet unused) B

wire. The receipt of this signal on B at the source end signals that the

Berger checksum counters are valid i.e. this mechanism preserves structure

independence since the network latency is unimportant. The output from

the comparitor is enabled onto the network D wire after the end of block

signal has been sent and the B wire is enabled onto the C wire. Thus the

received signal on B is immediately sent back to the destination.

Consequently at the destination the signal on the C wire will clock a one on

the D wire if the checksum succeeded and a zero if it failed. This signal

either enables or disables the buffered data according to the result of the

checksum.

Note that this scheme is very robust since it is impervious to both

permanent and transient faults before the final *buffer valid* signal is

generated. However, this final validation signal must be fault-free.

There is no way of guaranteeing a successful acknowledgement at the end of

a transaction.

A signal received on the B wire at the source end causes an interrupt to be

sent to the source component and, subsequently, the release of the channel.

If the B signal was received prematurely then a flag is set in the status

register indicating the fault. This aids the process of fault diagnosis.

In addition to the status register, the address validation register, the

two Berger checksum counters and the original routing address register can

also be accessed by the source component. A description of how this

information is used in the event of failure is given in 4.3.3* below.

110

Observe that:-

1. Once the block transfer is intiated, the communication is 'self-timed*

in the sense that no synchronisation is required in either the source

or destination NICs. Only two synchronisations are required in total:

one to transmit the destination address and one to begin the block

transfer, although if the extended protocol described in 3.2.7. is

used the first of these can be eliminated by using the burst generator

clock at the output of the last stage to clock out the destination

address.

2. The use of Berger checksums means that error detection is very simple

and fast. Because the checksums are generated 'on the fly1, the

comparison is made just two network delays after the last data bit has

been sent regardless of the size of the network. The Berger checksums

are not required to be transmitted through the network.

3. There is no data redundancy required since the source NIC re-recieves

all data that it transmits.

4.3.2.3. Finding Fault Free Paths

Under normal operation, both ports of the source and destination nodes can

be used. To even the load at the network outputs, alternative requests

submitted by the source nodes may use the transformed version of the

destination addresses. This, in theory, makes it possible for two

transactions to take place between the same source/destination pair

concurrrently.

If a fault is detected by the source node during path set-up, the immediate

effect will be for the source node to cancel the request (by reading the

NIC status register) and then to retry it an arbitrary number of times. If

the request now succeeds, then the error was transient. If the retry (or

retries) still fail then there is a permanent fault somewhere in the

network which must be avoided. It is an important property of the proposed

scheme that neither the location nor the cause of the fault need be known

by the source node. The fault may be local to a single slice of one

switch, or it may affect a whole (or several) switches, for example as a

result of power failure. Furthermore, the fault may lie in a link between

two switches or it could even lie in one of the network interfaces,

although this is not covered by the fault model.

To avoid a permanent fault, the source component first attempts to use the

address transformation to steer around the faulty part of the network. If

the failed request used an untransformed address then the request will be

retried using the transformed version of the address, and vice versa.

Using the transformed (or, correspondingly, untransformed) address causes

the request to take a distinct path to that taken by the original attempt,

although the request still passes through the same switch in the top stage

of the network as before. If this successfully steers the request to its

required destination node, i.e. if it successfully avoids the fault, then

all subsequent requests submitted to that port will use only transformed

(untransformed) versions of the required destination addresses. This is

balanced by now using only untransformed (transformed) addresses on the

other network port. Thus, even after a fault has arisen, it is still

possible for the network to provide two communication channels between all

pairs of source and destination nodes. (Compare this with multiple plane

networks where only one path would now exist). Note that:

1. Rather than restricting all subsequent transactions to using

transformed addresses, a table could be provided in the source node

indicating whether or not a transformation must be enforced in

communicating with a particular destination node, although this may

be costly to maintain.

2. If the fault lies in a switch in the last stage of the network or in

the link between the last stage of switches and the destination node

interface, then issuing the transformed (untransformed) version of the

destination address will cause an error to be detected regardless of

which source input port is used. In this case both source ports must

issue only untransformed (transformed) addresses in order to avoid the

fault.

If on the other hand the retry with (or without) transformation does not

successfully avoid the fault, then the transaction can only be completed by

using the other network input port associated with the source node. This

implies that the fault lies either at the source NIC or at the top level

switch to which the NIC is connected, or in the link between the two. By

using now the other port, the alternative path obtained is guaranteed to

avoid the fault.

Note that if an error status table is not used at the source node, then the

network input port on which the fault was detected cannot now be used at

all. Consequently, this port must be shut down until the failed device(s)

have been replaced (see H.3-3.).

4.S.2.4. Multiple Faults

Using the above scheme, all single faults in the network switches and

links can be tolerated. However, a substantial number of multiple faults

can also be tolerated. The only dual faults which cannot be catered for

are those which affect both switches (or interfaces) to which a source or

destination component are attached. That component then has no access to

the network at all. With k=2, the network will still function with up to

three permanent faults in the internal stages of the network in the worst

case. Many more failures can be tolerated provided they do not result in

113

all four distinct paths between any pair of source and destination nodes

being affected.

4.3*1* Coping With Permanent Faults.

In the previous discussions we have been concerned only with keeping the

network operational in the event of a network failure. Over a long period

of time, however, multiple errors in the network will make necessary some

form of repair.

One approach is to simply wait for multiple faults to cause the network to

fail and then instigate the repair by powering off the machine and

replacing the faulty switches or connections. However, a far more

desirable approach is to make these repairs fon the fly* i.e. whilst the

rest of the system remains operational. The network can then be maintained

to be far less susceptible to failure from multiple switch and

interconnection faults. In this section we describe a method for doing

this which is compatible with the fault tolerant scheme described above.

This process of maintainance is referred to as dynamic switch replacement.

4,3.3.1. .Eaulfc Location.
One of the benefits of the fault tolerant scheme from the point of view of

the systems components is that neither the nature of the failure nor the

exact location of the failed switch or interconnection need be known.

Thus ji2 fault location facilities need be provided by the components. In

order to carry out a repair this information is established by either

automatic or manual analysis of error reports transmitted by the components

to a central monitoring processor.

All network errors detected by the system components are logged in the form

of an error log table, which is transmitted to the central monitor for

statistics-gathering and for permanent fault location. The error log table

has the following format:

#

*

<Source Node Address>

<Intended Destination Node Address>

<Error Code>

<NIC Status At Time Of Error>

{ <Additional Information> }

The NIC status register has the format shown in Figure 4-3 below:-

|" ERR | PBS | WOP | CSE | EOP | A-COUNT | B-COUNT

I I I I I I I
I I I I I No. of Acks No. of Bursts
I I ! I I
I I I I I
| I | | ___ End Of Path Signal
i l l !
I | | ___ Checksum Error
I I I
j | ___ Wrong Output reached
i I
| ___ Premature end of block signal on B
I
___ Error present flag

Figure 4-3: NIC Status Register Format.

The error code denotes the type of error recorded i.e. transient,

permanent, incorrect routing, timeout etc. If the fault was permanent then

the additional information is a dump of all the other NIC registers at the

time of the error, together with the isolation mechanism which was used to

avoid the fault (address transformation or port closure). If the fault was

transient and resulted in the wrong output being reached then the

additional information is the address validation register. If the error

was a transient data transfer error then the additional information is the

contents of the checksum register(s).

If a stuck-at fault or permanent link fault in either of the C or D lines

is present between the last stage of switches and the destination node

115

interface then the block transfer checksum will fail on all requests

directed to that destination interface. Note that a received and incorrect

destination address of all Os or all 1s, or a failure to receive an end of

path signal when the A and B counts of the status register indicate that

path building was complete when a timeout occurred, suggests a permanent

fault in the A/B data path between the destination NIC and the last stage

of switches. Stuck-at faults or permanent link faults in a C line higher

in the network will cause path building failure and hence a timeout. A

permanent fault in the A line higher in the network may cause incorrect

routing if start bits are used by the self-clocking control protocols and

will also inhibit the transmission of the end of path signal which is,

again, detected by a timeout. The status register A-count field then

indicates the location of the fault. Faults in a D line occurring anywhere

other than at the outputs to the last stage will cause requests to be

steered to the wrong network output. This is detected by the path

verification logic. Permanent faults in the R line of the network will

cause a data transfer error if the fault occurred after path building and a

timeout error in all other cases.

Once the fault has been approximately located (observe that the exact

location of the fault is often not possible although at most two devices

(or their interconnections) will be candidates), the fault can be isolated

and subsequently rectified by manual replacement.

fr.̂.3,2. Isolating .Faulty Switches.
The problem of affecting a dynamic repair using the fault tolerant scheme

described above is that although one particular switch port (or subset of

switch ports) or the interconnections between two switch ports may have

become unusable, the rest of that switch may still be operational. A

partly faulty switch, therefore, might not be completely isolated. Before

any form of replacement can be undertaken, the switch must be made

inaccessible from all of the source components in the system.

Consider again the extended Generalised Cube network of degree x with k=2,

as described above. In this topology each source and destination component

has two links to the input and output ports of the network respectively, as

shown in Figure 4-1. Now label these two ports respectively the 'even' and

’odd' ports according to whether the corresponding network input (output)

port to which they are attached is even or odd numbered after the input

(before the output) permutation has been applied. Then:-

Leama 4-5: The source node ports to which an arbitrary switch in stage n-1

of the network is attached are all labelled either 'even1 ports or

•odd' ports.

Proof: Consider an even numbered switch <in„-j,**,i2 »ii>» *1 =<̂ x-1 »••»&!

b^ e [0,1], i=1..x-1, in stage n-1 of the network. The network input ports

associated with this are thus the <in_-j ,..,i2,î ,0>, 0=0..x-1. Now,

applying the inverse of the G 1 permutation function to the port addresses

maps them respectively onto the source inputs numbered <in__̂ ,..,i2 ,0,i<j>f

0=0..x-1. Since bQ of î is 0, these are all even. Similarly, if we

consider only odd numbered switches, then bg of î will be 1 and hence the

source output ports these switches connect to will all be odd.

[]

Lemma4-6: The destination node ports to which an arbitrary switch of

stage 0 of the network is attached are all labelled either ’even*

ports or 'odd* ports.

Proof: Is analagous to that of Lemma 4-5.
[]

We now wish to shaow that the set of switches of stages 1 to n-1

(inclusive) which can be accessed from the even ports of all the source

nodes is disjoint to that which can be accessed from all the odd ports.

Thus.- Leb Wa ike set if £>£ o~\ Lo k-e<(~h>-fr&vx
< r t p t t t j C t> o r < C k e 0 i t ^ e /'/w u 'tc L .'ttc ./v L - c - c ^ a p p l» « c O

Theorem 4-4 :f Let E and Ef be respectively the sets of all even and odd

ports. Let £ be the set of even numbered switches of stage n-1

and let £* be the set of odd numbered switches of stage n-1. Let

be the set of switches in stage 1 to n-1 which are accessible from

input port k (before the permutation is applied), and let Dk be

defined as in Lemma 4 -3 . Finally, let £ and £ * be given by:

£ = ?>e and i' = Ae»
e e E efeEf

Then: £ n £ ' - 0 .

Proof: For all j e E: j & j'e P* are both associated with the same source

node. From Lemma 4-5 , L(j) e £ , and L(j') € £ *. From Lemma 4-3 ,

Pj H /}j, = 0 . This implies that fl DL(j,) = 0 . Thus, since

6 fl £» = 0 it follows that Z f U ' = 0.
[]

And, similarly for address transformation:

Theorem 4-4: The set of switches of stages 0 to n-2 which are accessible

by issuing only even destination addresses from all the source nodes

is disjoint from that accessible by issuing only odd destination

addresses from all the source nodes.

Proof: The proof of this is analogous to that of Theorem 4 -3 , using

Lemma 4-3 and Lemma 4 -6 .
[]

Thus, by instructing all source nodes to either stop transmitting on their

even or odd ports, or to submit only even or odd destination addresses to

the network, any single fault in the network can be fully isolated and

therefore replaced.

♦

»

♦

The isolation mechanism is as follows:-

If the fault potentially lies in stage n-1 of the network (including the

links between stage n-1 and the source node interface, and between stage

n-1 and stage n-2) then either the even port or the odd port of each source

node must be temporarily shut down depending on whether the fault was

detected by an even or an odd port in the first place. This information is

held in the error log record transmitted at the time of the error was

detected. This caters for faults local to one slice (plus its

interconnections) of a switch in stage n-1 of the network which were

originally avoided by using address transformation. In all other cases,

address tranformation will have caused all subsequent requests submitted

from the failing source port to access a different subset of the switches

of stages 0 to n-2 to that which contained the fault. Thus, from Theorem

4-4, the fault can be made inaccessible from all the source nodes by having

each source node temporarily restrict the parity of all destination

addresses transmitted. The error log record indicates whether only even or

odd destination addresses should be used.

Note that if the fault is known to lie between stage 1 and stage n-1

(inclusive) then, from Theorem 4-3, either isolation mechanism can be used

to isolate the fault from all the source nodes. If port closure is to be

used, however, then the information on which port to shut down is not

available in the error log record since the fault will have been avoided

using address transformation. This information must be determined from the

location of the fault and from the network topology.

Note that when rectifying multiple faults in the network, it may be

necessary to perform the replacements in separate operations. There are

some cases where the isolation commands transmitted to each source node

119

will prevent a source/destination transfer from being performed during the

1 transplant. This occurs when, during the transplant, the only available

path from a source node to a destination node is via another faulty device

or interconnection which has already been made inaccessible from the source

node. In such cases the source node must idle until the repair is

complete. Of course, if the system is maintained so that only single

% faults are ever present then this situation will never arise!

4.^.3-^. Fault Repair.

The problems of physically accessing and replacing a faulty device in the

network is closely allied to the problems of packaging. The network cards

must have all their external connections provided by flexible cable to

allow the cards to be removed without affecting unisolated devices present

on the same card. Furthermore, power transistors must be provided for

each switch to enable individual switches to be powered off and replaced

independently of other switches on the same card. ZIF mounting of ICs is

also desirable. Because the devices are powered off when they are replaced,w
these interconnections can also be tested during the repair. The issues of

packaging are not covered further.

Once a repair has been made, a message can be sent from the system monitor

to all the system components instructing them to resume normal operation.

• At this point the network will function correctly and any restrictions

imposed on port use or destination address parity can be lifted, and the

default operation mode resumed.

*

120

*

4 .4 . .Snimnanv.

This chapter has been concerned with the problem of fault tolerance in

interconnection networks, with particular attention paid to self-clocking

network implementations. In the proposed scheme, fault tolerance is broken

down into three steps:-

1. Error detection

2. Fault Avoidance, and

3. Fault Repair.

Error detection in the network is performed by the system components

themselves (catering for ^tuck* requests), and by the network interfaces,

which are extended to include logic for path verification and dynamic

error detection during the data transfer phase of a transaction.

Fault avoidance is achieved by incorporating an extension to the original

network topology which guarantees the existance of multiple and independent

paths through the network between arbitrary pairs of source and destination

nodes. A novel feature of this scheme is that fault avoidance can be

achieved without requiring any knowledge as to the location or the nature

of the fault. The affected source component simply retries the request

using address transformation or using its additional network input links

(or both) until the request succeeds. In much the same way that self­

clocking protocols yield structure independence, so the fault tolerant

scheme suggests some notion of fault independence.

Indeed, structure independence can be preserved using the fault tolerant

scheme. The address transformation scheme described in 4.3.1.1. functions

by manipulating the lower end of the network routing addresses, the network

address bits are clocked out from the least significant end of the register

and the network implements the full suite of self-clocking protocols during

path building. The only network-dependent parameter required to be known

121

is the timeout period which is a function of both the network size and the

maximum data transfer time (tmax in equation 4-1).

A further important consequence of the fault tolerant scheme is that is

simple to implement in terms of hardware. The use of self-clocked data in

data transmission, and the use of twin dynamic Berger checksums makes the

error detection logic very simple, very fast, and very reliable! Finally,

the ability to dynamically replace faulty network components minimises the

networks susceptibility to unavoidable multiple faults and hence maximises

network availability.

£HAEXER 5.
Summarv And Conclusions

This thesis has examined how a class of dynamic multistage interconnection

networks may be employed to provide arbitrary communication in very large

parallel computer systems which may contain many hundreds, thousands or

even tens of thousands of component processors.

We have variously exmamined the issues of performance, network design and

integration, and network fault tolerance.

This work was primarily motivated by recent developments in so called

declarative language support architectures* which promise to offer not

only an improved programming environment, but also the ability to exploit

very high degrees of parallelism in execution. Despite this relatively new

approach to computation, many of the problems associated with conventional

parallel processing systems remain. This thesis has been concerned with

what is arguably the most critical aspect of these systems, namely that of

copmponent interconnection and communication.

Chapter 2 described the general characteristics of the class of dynamic

interconnection networks with which the thesis is concerned. This

included sections on network performance analysis and the performance of a

number of network configurations was investigated. A new class of

interconnection networks - Lambda networks - were introduced which provide

the same low cost global communication, as is provided by conventional

interconnection networks, yet which also offer the potential to exploit

locality of reference. From performance models of these and conventional

networks, we demonstrated that under a random addressing distribution the

123

performance of Lambda networks is superior to conventional interconnection

networks and that the performance increases in accordance with the degree

of locality which can be preserved in the addresing scheme. It remains to

be seen whether or not this locality can be effectively exploited by the

surrounding system. Considerable work has yet to be done in this area

which will involve a detailed study of 'typical' program behaviours, and

run-time load balancing and data distribution mechanisms.

Chapter 3 examined the issues of network design and integration. A number

of interconnection network designs have been offered in the literature, but

we have argued that these designs are only practical for small and medium-

scale parallel processing systems. Highly parallel systems containing very

large numbers of processing devices have been proposed based upon these

designs, but in reality these lead to unmanagable problems of cost, size,

construction and wiring complexity and, perhaps most significantly,

reliability. We believe that if interconnection networks are to be

practical in very large-scale systems, then the effort should be put into

reducing complexity rather than increasing it.

We proposed two design techniques aimed at overcoming the complexity of

existing designs:-

1. Serial switching, which ensures maximal utilisation of available

pins (which is the limiting factor in any switch design).

2. Self clocking of the network switches, which offers almost

unlimited flexibility in the choice of network topology, size and

configuration, and which overcomes the problems of bit-serial network

control and many of the problems associated with asynchrony.

Networks incorporating these principles are inherently smaller, cheaper,

more cost-effective and more reliable, and are naturally asynchronous so

that the problems of global clock distribution do not arise.

Despite the adoption of very narrow data paths through the proposed

network, very high performance can still be maintained. Chapter 3

described how future implementations based upon tri-level logic encoding

techniques can reduce the control/data path width to just three wires,

thereby allowing large switches to be built, and can maximise the serial

transmission rates by eliminating relative signal skewing. As device

speeds increase, skewing will become a limiting factor in performance. By

adopting ^elf-clocked1 single line data paths, the network performance is

limited only by technology rather than by the physics and practicalities of

providing matched transmission lines.

The self-clocking and serial-switching design techniques were substantiated

by describing an implementation of a network based around a custom-designed

network switching chip called the XS1. A network of XS1s is being used for

component interconnection in the ALICE graph reduction engine prototype

which has been developed at Imperial College.

In addition to network design, we also raised the issue of fault tolerance,

which to date has received comparatively little attention. We have stressed

that fault tolerance is vital in an interconnection network where very

large numbers of switching elements, and even larger numbers of network

interconnections are required. Despite a growing awareness of the need for

fault tolerance in interconnection networks, the existing proposals have

all been focused on synchronous network implementations, and most cover

only a subset of the fault models which are relevent to VLSI network

implementations.

In the proposed scheme, fault tolerance is viewed as consisting of three

stages: error detection, fault avoidance and fault repair. The error

125

detection mechanisms we have proposed are fast, simple, and effective and

are particularly well suited to serially-switched network implementations.

Fault avoidance is achieved by providing multiple paths between each pair

of source and destination nodes by means of an extension to the network

topology which exploits the general partitioning properties of

interconnection networks. The resulting fault tolerant topology

guarantees fault-free paths in the event of all single network failures and

a rich variety of multiple network failures. Furthermore, the fault

avoidance mechanisms require no knowledge of the nature or the location of

the fault. We argue that this is critical since in many cases the exact

location of a fault causing a permanent error condition cannot be

determined. Thus, in keeping with the ideas of structure independence

resulting from self-clocking techniques, the fault avoidance scheme may be

considered as being fault independent. The scheme has been tailored for

self clocking networks where the asynchrony of the network means that fault

avoidance must be achieved on a 'per-component* basis, i.e. independently

of other components in the system.

The fault tolerant interconnection topology also allows the dynamic on-line

replacement of permanently faulty switches and the repair of faulty

connections. We have described how by using status information from the

network interface a single permanently faulty switch or interconnection can

be located and then both electrically and logically isolated from the rest

of the network and replaced, without the need to power off the machine, or

destroy the full point to point interconnectivity of the remainder of the

network.

Research into parallel systems architecture indicates that interconnection

networks will have an important part to play in many future concurrent

Stjaftiyxs. HovOev-er, "there. \s <x ckt\n.ĉr -"the

diminishing fabrication costs of integrated ciruit components, the

interconnection network cost will eventually dominate the machine cost and

will contribute to a majority of the machines* bulk, manufacturing

complexity and operational unreliability. Unlike the system components

where progressively more of the interconnection can be placed in silicon,

the interconnection network benefits less from VLSI, primarily because the

number of I/O pins required to build a switch is directly proportional to

the degree of the switch. In this thesis, we have taken a more pragmatic

look at the feasibility of interconnection networks than has been done to

date. We conclude that although existing design techniques present

problems of unmanagable cost and complexity, there is still much that can

be done to bring this complexity under control. By adopting a very

different and more economical approach to switch design and by

incorporating modest and cost-effective extensions to the network to cater

for faults, it is possible to develop very large networks which are cheap

and compact, fast, highly reliable and which are well suited for

integration into many present and future concurrent processing systems.

»

127

REFERENCES

»

i

m

%

[ADI83] Arvind, M.L. Dertouzos, R.A. Iannucci, "A Multiprocessor Emulation
Family", Tech. Rep £ 302, MIT Lab. for Comp. Science, Sept. 1983.

[AdS82] G.B. Adams III & H.J. Siegal. "The Extra Stage Cube: A Fault
Tolerant Interconnection Network For Supersystems", IEEE Trans.
Comp. Vol. C-31 No.5 May 1982. pp 443-454.

[Agr82] D.P. Agrawal, "Testing and Fault Tolerance of Multistage
Interconnection Networks", IEEE Computer, April 1982, pp 41-53.

[Agr79] D.P. Agrawal, "A Duplex System With Improved Performance", Proc.
1979 Conf. Information Science & Systems, March 28-30, pp 333-
336.

[Bac77] J.F. Backus, "Can Programming Be Liberated From The von Neumann
Style?", ACM Turing Award Lecture, Comm. ACM 21 (8), 1977,
PP 613-641.

[Bar81] G.H. Barnes, "Design And Validation Of A Connection Network For
Many-Processor Multiprocessor Systems". Computer, Dec. 1981, pp
31-41.

[Ben65]V.E. Benes, "The Mathematical Theory Of Connecting Networks",
Academic Press, N.Y., 1965.

[Ber6l] J.M. Berger, "A Note On Error Detection Codes For Asymmetric
Channels", Information And Control, Vol. 4, March. 1961, pp 68-73.

[BhA82] L.N. Bhuyan & D.P. Agrawal, "A General Class Of Processor
Interconnection Strategies", 9th Ann. Symp. Comp. Arch., 1982, pp
90-98.

[BuD77] R.M. Burstall & John Darlington, "A Transformation System For
Developing Recursive Programs", JACM, 24, 1, 1977, PP 44-67.

[Bur75] W.H. Burge, "Recursive Programming Techniques", Addison-Wesley,
1975.

[BuS81] F.W. Burton & M.R. Sleep, "Towards A Zero-Assignment Parallel
Processor", 2nd Int'l Conf. on Dist'd Computing Systems, April
1981, pp 80-85.

[Clo53] C. Clos, "A Study Of Non-Blocking Switching Networks", Bell System
Technical Journal, Vol.32, 1953, PP 406-424.

[CrF83] M.D. Cripps & A.J. Field, "The MARCH HARE Network Switching
Device", Internal Report, Dept. Computing, Imperial College,
May 1983.

[CSS73] R.W. Cook, W.H. Sisson, T.G. Stoney & W.N. Toy, "Design Of Self-
Checking Microprogram Control", IEEE Trans. Comp., Vol.C-22,
No.3, March 1973, PP 255-262.

[DaR81] John Darlington & M.J. Reeve, "ALICE: A Multiprocessor
Reduction Machine For The Parallel Evaluation Of Applicative
Languages", Proc. 1981 ACM/MIT Conf. on Functional Programming &
Computer Architecture.

128

[Dar8l] John Darlington, "The Structured Description Of Algorithm
Derivations", Invited Paper, Int'l. Symp. on Algorithms, Amsterdam,
1981.

[DiJ8l] D.M. Dias & J.R. Jump, "Packet Switching Interconnection Networks
For Modular Systems", Computer, Dec.1981.

[DiJ82] D.M. Dias & J.R. Jump, "Augmented And Pruned N LOG N Multistage
Interconnection Networks: Topology And Performance", Proc. Int'l
Conf. on Parallel Processing, 1982, pp 10-12.

[FAH83] W.K. Fuchs, J.A. Abraham, K.H. Huang, "Concurrent Error Detection
In VLSI Interconnection Networks", Proc. 10th Int'l Symp. Comp.
Arch., 1983, PP 309-315.

[Fen73] T.Feng, "Parallel Processing Characteristics and Implementation of
Data Manipulating Functions", Rome Air Development Centre report,
RADC-TR-73-189, July 1973.

[Fen82] T. Feng, "A Survey Of Interconnection Networks", Computer , Dec.
1982, pp 12-27.

[FuH78] S.H. Fuller & S.P. Harbison, "The C.mmp Multiprocessor", Technical
Report No. CMU-CS-78-148, Dept. Computer Science, Carnegie-Mellon
University, 1978.

[G0I7 3] L.R. Goke & G.J. Lipovski, "Banyan Networks For Partitioning
Multiprocessor Systems", Proc. First Ann. Computer Architecture
Conf., Dec. 1973, PP 21-28.

[GWG80] J.R. Gurd, I.Watson & J.R.W Glauert, "A Multilayer Dataflow
Computer Architecture", Internal Report, Dept. Comp. Sci.,
Univ. Manchester, 1978.

[Har83] P.G. Harrison, "Lecture Notes: Performance Modelling", Dept.
Computing, Imperial College, 1984.

[Hen80] P. Henderson, "Functional Programming: Application And
Implementation", Prentice-Hall International, 1980.

[IMS84]INMOS Ltd., "The occam Programming Language" and "The T424
Transputer", INMOS Publications, 1984.

[JuD81] J.R. Jump & D.M. Dias, "Analysis And Simulation Of Buffered Delta
Networks", IEEE Trans. Comp., Vol. C-29, No. 9, Sept. 1980, pp
791-801 .

[KDJ83] M. Kumar, D.M. Dias & J.R. Jump, "Switching Strategies In A Class
Of Packet Switching Networks", Proc. 10th Int'l Symp. Comp. Arch.,
1983, PP 284-285.

[KeL78]R.M. Keller, G. Lindstrom & S. Patil, "An Architecture For A
Loosely-Coupled Parallel Processor", Technical Report, Dept. Comp.
Sci., Univ Utah, Tech. Rep. £ UUCS-78-105-1978.

[KiA78] L.L. Kinney & R.G. Arnold, "Analysis Of A Multiprocessor System
With A Shared Bus", CACM V. 21, No. 8, Aug. 1978.

[Kob78] H. Kobayashi, "Modeling and Analysis", Addison-Wesley Publishing
Co., 1978.

[Kuh80]R.H. Kuhn, "Efficient Mapping Of Algorithms To Single Stage
Interconnections", Proc. 7th Ann. Symp. Comp. Arch., 1980 pp 182-9.

[Lan76] T. Lang, "Interconnections Between Processors And Memory Modules
Using The Shuffle-Exchange Network", IEEE Trans. Comp., Vol. C-25,
No. 5, May 1976, pp. 496-503.

[LaR80] S. Lavenberg & M. Reiser, "Stationary State Probabilities at
Arrival Instants For Closed Queueing Networks With Multiple Types
Of Customers", Journal Applied Probability, 17* PP 1048-1061, 1980.

[LaS76] T. Lang & H.S. Stone, "A Shuffle-Exchange Network With
Simplified Control", IEEE Trans. Comp., Vol. C-25, No. 1, Jan.
1976. pp.55-65.

[LaV82] D.H. Lawrie & C.R. Vora. "The Prime Memory System For Array
Access", IEEE Trans. Comp.Vol., C-31 No.5 May 1982. pp 435-443.

[Law75] D.H. Lawrie, "Access And Alignment Of Data In An Array
Processor", IEEE Trans. Comp., Vol. C-24, No. 12, Dec. 1975. pp.
1145-1155

[Len78] J. Lenfant, "Parallel Permutations Of Data: A Benes network Control
Algorithm For Frequently Used Permutations", IEEE Trans. Comp. Vol
C-27, No. 7, July 1978, pp 637-647.

[LiW82] W. Lin & C.Wu, "Design of a 2x2 Fault-Tolerant Switching Element",
Proc. 9th Ann. Symp. Comp. Arch., 1982, pp 181—189.

[LLY82] J.E. Lilienkamp, D.H. Lawrie & P-C. Yew, "A Fault Tolerant
Interconnection Network Using Error Correcting Codes", Proc. 1982
Int'l Conf. on Parallel Processing, Aug. 1982, pp 123-125.

[LVA82] T. Lang, M. Valero & I. Alegre, "Bandwidth Of Crossbar And Multiple
Bus Conenctions For Mulitprocessors", IEEE Trans. Comp. Vol. C-31,
No. 12, Dec. 1982.

[Mag79]G.A. Mago, "A Network Of Microprocessors To Execute Reduction
Languages", Inti* Journal Of Comp. & Inf. Sciences, Vol.8, No.5,
1979.

[MAS81]R.J. McMillen, G.B. Adams & H.J. Siegal, "Performance And
Implementation Of 4x4 Switching Nodes In An Interconnection Network
For PASM", Proc. Int'l Conf. on Parallel Processing, 1981, pp 229-
234.

[MeC80] C. Mead & L. Conway, "Introduction To VLSI Systems", Addison-
Wesley, 1980.

[McS80] R.J. McMillen and H.J. Siegal, "MIMD Machine Communication Using
The Augmented Data Manipulator Network", Proc. 7th Ann. Symp.
Computer Architecture, June 1908, pp 51-58.

[MSi80] R.J. McMillen & H.J. Siegal, "The Hybrid Cube Network", Proc. Symp.
on Distfd Data Acquisition & Control, 1980, pp 11-22.

[McS81] R.J. McMillen & H.J. Siegal, "Dynamic Rerouting Tag Schemes For The
Augmented Data Manipulator Network", Proc. 8th Int'l Conf. Comp.
Arch., 1981, pp 505-516.

%

#

»

[MST79] S.R. McConnel, D.P. Siewiorek & M.M. Tsao, "The Measurement And
Analysis Of Transient Errors In Digital Computer Systems", Proc.
1979 Inti1 Symp. Fault Tolerant Computing. June 1979, PP 67-70.

[MuM82] T.N. Mudge & B.A. Makrucki, "Probabilistic Analysis Of A Crossbar
Switch", Proc. 9th Ann. Symp. Comp. Arch., 1982, pp 311-320.

[NaS80] D. Nassimi & S. Sahni, "A Self Routing Benes Network", Proc. 7th
Int'l Conf. Comp. Arch., 1980, pp 190-195.

[NaS82]D. Nassimi & S. Sahni, "Parallel Algorithms To Set Up The Benes
Permutation Network", Proc. Workshop on Interconnection Networks
for Parallel & Dist'd Processing, Wst. Laf. IN., 1980, pp 70-71.

[PaR82] D.S. Parker & C.S. Raghavendra, " The Gamma Network: A
Multiprocessor Interconnection Network With Redundant Paths",
Proc. 9th Int’l Conf. Comp. Arch., 1982, pp 73-80.

[Pat793 J.H. Patel, "Processor-Memory Interconnections For Multiprocessors"
Proc. Sixth Annual Syp. Computer Architecture, April 1979, PP
168-177.

[Pea77] M.C. Pease III, "The Indirect Binary n-Cube Microprocessor Array",
IEEE Trans. Comp., Vol. C-26, No. 5, May 1977. pp. 458-473.

[Sie79] H.J. Siegal, "Interconnection Networks For SIMD Machines",
Computer, Vol.12, No. 6, June 1979, PP 57-66.

[Sie80] H.J. Siegal, "The Theory Underlying The Partitioning Of Permutation
Networks", IEEE Trans. Comp., Vol C-29, No. 9, Sept. 1908.

[SiM8l] H.J. Siegel, R.J. McMillen, "The Multistage Cube: A Versatile
Interconnection Network", Computer Dec. 1981 pp 65-75.

[Sto71] H.S. Stone, "Parallel Processing With The Perfect Shuffle", IEEE
Trans. Comp., Vol. c-20, No.2, Feb. 1971, PP 153-161.

[Tho70] J.E. Thornton, "The Design Of A Computer: The Control Data 6600",
Scott, Foresman & Co., 1970.

[Wir83] N. Wirth, "Programming In Modula-2", Springer-Verlag 1983.

[WLL82] C-L Wu, W. Lin & M-C Lin, "Distributed Circuit Switching STARNET",
Proc. Int'l Conf. on Parallel Processing, 1982, pp 26-33.

[WuF79]C. W u , & T. Feng, "Fault Diagnosis For A Class Of Multistage
Interconnection Networks", Proc. 1979 Intfl Conf. Parallel
Processing, pp 269-278.

[WuF80] C. Wu & T. Feng, "On A Class On Multistage Interconnection
Networks", IEEE Trans. Comp., Vol. C-29, No. 8, Aug. 1980,
pp 694-702.

[WuF81]C. Wu, & T. Feng, "The Universality Of The Shuffle-Exchange
Network", IEEE Trans. Comp., Vol. C-30, No. 5, May 1981.

[YeL81]P-C. Yew & D.H. Lawrie, "An Easily Controlled Network For
Frequently Used Permutations", IEEE Trans. Comp., Vol. C-30, No. 4,
April 1981.

131

APPENDIX 1
A Routing in Lambda Networks.

Routing in a Lambda network is based upon relative addressing. The routing

addresses and control information supplied to the network is derived from

both the source and destination port addresses. This differs from

traditional networks where the destination address only is sufficient to

control network switching. Consequently, each source node may generate

different addressing information in order to steer to the same destination.

The following section describes a routing algorithm for Cube-based Lambda

networks based upon the self-clocking design techniques described in

Chapter 3.

It is the purpose of the routing algorithm to produce routing addresses for

both the upward and downward network traversals. The network control

information required to traverse a Lambda network is assumed to consist of

a (possibly empty) sequence of 1s (one for each upgoing stage traversed),

followed by a 0 (to denote fturn round here*)* and then a bit pattern

corresponding to the address required to steer the request down through the

network to its destination. As each stage is traversed going up,

successive bits of the routing address are picked off and supplied as

control information to the switches in the network. A 1 indicates that the

request should be steered upwards, and a 0, that it should pivot and begin

traversing the downward path. Once the pivot has occurred, the remaining

bits of the routing address represent the switch settings for the downward

path. For example, referring back to Figure 2-3, the path from source 001

to destination 110 is given by

1 1 1 0 1 1 0
a

go up 3 stages J select downward path with 110j
turn around

132

A Software Algorithm
The algorithm to generate this address string may be easily expressed as a

procedure which takes the source and destination addresses as inputs and

returns the necessary routing address, R.

To generate the routing address for a transaction between source

S=<sn-1 >sn-2»*,»s1 »s0> and a destination D=<dn_^ ,dn_2»*‘»di the
principle problem is to locate the stage at which the request pivots and

begins its downward path towards D. This is done by comparison of the

componentdigitsofS and D:-

If S=D, the network may be bypassed altogether. Here, S and D are said to

be in direct locality. If Ŝ D, then a number of upgoing traversals of the

network must be made in order to make D visible to S.

If si=di, i=1..n-1, s0^d0» then D must lie at one of the other x-1

downgoing outputs of the stage 0 switch to which S is attached. So, the

request can immediately fturn round* and be steered out through the

downgoing ouptut link, dQ, of this switch.

If Sj=d^ i=2..n-1, then traversing only one switch in the upward

direction is not sufficient to make D visible from S. Consequently, the

request must be steered further into the network by routing it up into one

of the (x) stage 1 switches attached to the stage 0 switch associated with

S. From this switch D is then visible. A downward path is then traversed

by selecting this stage 1 switch with d-j and the next (stage 0) switch

reached with dg-

Generally, if ŝ sd.̂ i=k..n-1, Sk_i^dk-1 » then the request must be passed

upwards k stages before being turned around, and the address digits

dk-i ,djc_2,..fd-j ,dQ supplied, in that order, to each switch on the downgoing

path as it is traversed. This is like routing through a subset of a

133

conventional interconnection network.

Note that if a request is ever required to traverse all n-1 stages of the

network in the upward direction, then D must lie in the opposite half of

the system to S. Consequently, upgoing paths out of the topmost stage of

the network have only to connect to anv of the topmost switches into the

opposite half of the network to complete the connectivity of the system.

The permutation given in 2.2.3.1. is one of many possible permutations.

A software algorithm for generating the routing control string in regular

Lambda networks when S/D is given below:-

Stack := 0
P := 0
y := log2X
Source » y
(Destination » y) -> Stack
WHILE Source^Destination

P PLUS 1
Source » y
(Destination » y) -> Stack

ENDWHILE
IF P=n THEN
Stack << 1
P MINUS 1

ELSE
0 - » Stack

TO P
1 - » Stack

END TO

nommf>nh » and « represent respectively right and left logical
shift operations.
(x » y) -> z results in x and z both being shifted right by
y places such that each bit shifted out of the least
significant end of x is subsequently shifted into the most
significant end of z.
x - » y causes bit x to be shifted into the most significant
end of y from the left.

hignr1 fctiM A1-1: Routing Address Generation in the Lambda Network.

Note that the resulting address is read left to right: the first control

bit is held in the most significant end of the stack. Table A1-1 below

shows the routing addresses generated for all destinations by source node 6

on a Lambda network of size 16 and degree 2.

«

*

#

Source=01102 2N=16

Destination Address Generated

0 0 0 0 1
1 1 1 0 0 0 0

0 0 0 1 1
1 1 1 0 0 0 1

0 0 1 0 1
1 1 1 0 0 1 0

0 0 1 1 1
1 1 1 0 0 1 1

0 1 0 0 1
1 1 0 0 0

0 1 0 1 1
1 1 0 0 1

0 1 1 0 1
1 —

0 1 1 1 1
1 01

1 0 0 0 1
1 1 1 1 0 0 0

1 0 0 1 1
1 1 1 1 0 0 1

1 0 1 0 1
1 1 1 1 0 1 0

1 0 1 1 1
1 1 1 1 0 1 1

1 1 0 0 1
1 1 1 1 1 0 0

1 1 0 1 1
1 1 1 1 1 0 1

1 1 1 0 1
1 1 1 1 1 1 0

1 1 1 1 1
1 1 1 1 1 1 1

{destination = source!}

Table A1-1. : Lambda Network Routing Addresses for All Paths From Source 6.

Note that it is possible to explicitly include the extra (virtual) stage of

switches absent in a Lambda network to form a Lambda* network which

provides the full x11 input/output ports. This, too, is controllable using

• the algorithm above. A simple modification to the algorithm makes it

suitable for controlling such a configuration. The only difference here is

that the 0 'pivot' bit is required in all control strings.

Implementation In Hardware
Although the algorithm given above can be used to generate the network

routing control string, its evaluation may incur a computation time

overhead which is significant relative to the total network transaction

time. The algorithm can, however, be implemented in hardware using the

self-clocking techniques described in Chapter 3:-

Figure A1-1 shows the structure of a self-clocking Lambda network switching

element. The switch is logically divided into upgoing (distribution) and

135

♦ F ig u re A 1-1: A Lanbda N etw ork S w itc h .

*

downgoing (concentration) logic. The distribution logic simply consists

of 1:2 demultiplexers: if a request arriving on pivots at the switch

then it is demultiplexed into the switch concentrator; if the request does

not pivot in the switch then it passed out on 0~ i where it ascends to a

switch in then next highest stage of the network. The concentrator is

similar to the crossbar matrix in a conventional network except that here

the matrix concentrates 2x input ports onto x output ports.

The algorithm given above may be easily implemented in hardware in the

network interface (or NIC). The NIC is required to contain three

registers, named S, D and K for Source, Destination and stacK. The S and

D registers are right-to-left shift registers and the K register is a two-

way shift register. Each switch port consists of five wires, A,B,C,D and

R which have the same meanings as for the XS1 described in Chapter 3-

At the start of a transaction the S register is loaded with the source

address automatically from a permanent holding register, and the D register

136

is loaded with the destination address via an interface to the source

♦

component intiating the transaction. The K register is zeroised. When the

registers have been loaded the interface lowers the R line into the

network. The (stage 0) switch to which the interfacing component is

attached responds by transmitting b burst clocks on the B line where b is

the logarithm (base 2) of the degree of the switch. This burst clock is

coupled to the clock inputs of the three registers. On each clock edge,

S, D and K are shifted rightwards one place such that each bit overflowing

from the least significant end of D is clocked into the most significant

end of K. Throughout the shifting process, the contents of the S and D

registers are compared. The output from the comparator is enabled onto the

network D wire and the incoming burst clock from the network is enabled

onto the C wire. When the final (bth) clock bit on C has been received at

the switch an acknowledge signal is issued back to the interface on the A

wire and the signal on the D wire is examined. This signal is:-

(s » b) = (d » b)

where s and d are respectively the source and destination addresses and

*M » n’ means shift M right n places.

If the S=D signal is HIGH then s and d differ only in their least

significant b bits. If this is the case then d is visible from the stage 0

switch attached to s and the request must pivot at stage 0. If S=D is LOW

then d is not yet visible from s and so must be fed higher into the

network.

The signal on the D wire after the receipt of the b burst clocks is thus

the ^ivot* signal; D=HIGH meaning 'pivot'. If the request is to pivot

then, since the switch itself provided the burst clock, the information now

held in K is sufficient to select the switch in the downward direction.

The distributor in the switch couples the five wires on its input to the

corresponding input of the concentrator. Thus the concentrator 'sees' a

137

♦

*

*

♦

*

transition on its R line and begins the normal self-clocking routing cycle

as described in Chapter 3» At the interface, the K register is now set up

to shift leftwards with the overflow from the most significant end of the

register being enabled onto the network D wire and the S and D registers

are disabled. The K register now behaves as the routing address register

and the interface functions exactly as would a normal self-clocking

controller.

If the request must be steered further into the network i.e. if the pivot

signal is LOW at the switch and interface, then the distributor simply

couples the fives wires (say on I j) to and the cycle repeats, this

time with the interface in communication with a switch in stage 1.

In a Lambda* implementation the S and D registers are bound to be equal at

some time since there can be a maximum of m burst clocks and since each

address is only m bits long. In a simple Lambda network, the interface

must detect if the topmost stage has been passed (i.e. this is an implicit

pivot). This could be done by simply inverting the acknowledge signal in

the normal self-clocking protocol. Then, when the top stage is selected

and the request is fed into a downgoing input link in the opposite half of

the network, a double acknowledge will be observed at source. This could

be used to indicate an implicit pivot. Alternatively, an extra contol line

could be provided which is set HIGH only when an implicit pivot occurs.

Observe that the routing mechanism preserves structure independence as

described in Chapter 3 since at each stage going up sufficient bits are

stacked in K to enable the network to be correctly addressed following the

pivot. However, the switches of a given degree must all be of fixed

degree.

138

APPESDIX 2
♦

Network Simulator Decription

A number of simulators have been written for verifying theoretical models

of network performance. The simulator described here is the largest of

this suite of simulators and has been used extensively for predicting

the performance of self-clocking networks with varying physical and

operational parameters.

♦

¥

The simulator is event driven and there is one event for each of the major

processes associated with network control and data transfer, as well as

additional ('snap-shot*) events solely responsible for accumulating

statistics. The simulator is designed to be run interactively although

a batch version exists for analysing very large network configurations.

When the simulator is run the initial network configuration is prompted

for. Once the operational parameters have been defined, a number of

optional commands can be issued to vary the degree of tracing and

statistics-gathering performed during a simulation run. Help information

is available on all commands. The simulator is begun by issuing the RUN

command followed by the number of requests to be passed before termination.

When this number of requests have been completed a results summary is

displayed and control returns to the command interpreter. Any of the

simulation parameters may be altered before re-running the simulator. The

list of available commands on the system is shown in Table A2-1 and the

list of alterable simulation parameters is shown in Table A2-2. In Table

A2-1, the minimum abbreviation for unique identification of each command is

shown in upper case. The simulation results displayed at the end of a run

are listed below:-

139

♦

♦

♦

*

♦

»

* The observed mean block size transferred in bits

* The observed mean time between arriving requests to each input port.

* The mean observed path set up time

* The mean observed total network transaction time

* The total time taken to pass the specified number of requests

* The observed request completion rate

* The total number of requests experiencing blockage

* The proportion of requests succeeding without blockage

* The maximum observed path set up time

* The maximum observed total trasnaction time

* The maximum number of requests blocked at a switch at any time

Plus, the following optional or simulation-dependent summaries

* The observed utilisation of links specified by the OBserve command

» The observed total transaction time for each transfer class specified

in the SET T V command

* The observed mean number of retries before holding the channel if

the timeout mechanisms are in use.

* A plot of the distribution of transaction times for all requests

passed.

* A plot of the distribution of network output port addresses (primarily

for analysing the effects of biassing).

* Tracing information recorded during the simulation run. This includes

the current simulated real time, the total number of requests passed,

the total number of requests blocked, the number of requests currently

blocked in the network, the number of requests in the system and, for

each stage in the network, the total number of links in use and the

mean stage utilisation.

1M0

* Command Name Parameters Description

Bias <output port>
<% bias>

Bias the given network output port by
given percentage. That port' is then
p£ more likely to be addressed than
unbiassed output.

BLip <request count> Causes simulated real time to be
displayed at the terminal every given
number of requests.

Debias Resets all biasses

Exit Exit simulation system

Help Displays help information

OBserve <stage number>
<link number>

Monitors the utilisation of the given
output link of the given stage.

* Output <file name> Redirects results summary to specified
results file.

PRintbias Displays current biasses

PLot <plot type code>
{<destination>}

Plot either output port address (code
A) or transaction time distribution
(code T). Destination V 1 forces plot
to terminal.

RESults {<destination>} (re)Display results of last simualtion
run. Destination */* forces output to
terminal rather than to results file.

RUn <no. requests> Run the simulator & pass given number
of requests.

REDefine Redefine all simulation parameters

%
SEt <parameter code>

<new value descr.>
Sets simulation parameter given by
parameter code to value given in
descriptor. (See Table A2-2).

STop Turns off link observation (see OB)

SYstem Display current simulator parameter
settings.

#

Trace {<interval>
{<file name>}}

Every n time units, given by interval,
causes trace information to be sent to
given file. No parameter => turn off
trace. New file name => redirect with
same interval.

TABLE A2-1: Simulation System Commands.

141

Parameter Parameter Value
Code Descriptor

N <inputs> No. of active network input ports.

M <outputs> No. of active network output ports.

W <width> Width of network, i.e. total number of
network input/output ports.

c <crossbar> Size of each component crossbar switch

I <1. A. T. >
{<dist. flag>}

Inter-arrival time. Distribution
flags’F* => fixed intervals; flags*E* =>
exponentially distributed inter-arrival
times.

L <low,limit> Transaction time histogram lower range
limit.

U <up limit> Transaction time histogram upper range
limit.

P <period> Data transmission clock period (in ATUs)

A <fetch time> Switch select address retrieval time.

T <trans.length>
(<dist flag>}

Total number of bits transferred across
established network channel.
Distribution flags»F* => fixed size
blocks; flags*E' => exponentially
distibuted block size; flag=*V* s>
variable block size: user is prompted
for block sizes i relative frequencies.

S <interval> Master statistics clock interrupt period.
Link observations & traces done after
interrupt (if set on).

V <timeout> Request timeout period. After timeout,
request is cancelled, delayed & retried.

Y <interval> Maximum timeout to retry interval. After
random backoff time (^interval) request
is retried.

H <timeout count> No. of retries before holding channel.
After given number of timeout/backoff/
retries, timeout is disabled. (Avoids
starvation>.

TABLE A?-?: Possible Arguments To SET Command

