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Although vibration monitoring is a popular method to monitor
and assess dynamic structures, quantification of linearity or
nonlinearity of the dynamic responses remains a challenging
problem. We investigate the delay vector variance (DVV)
method in this regard in a comprehensive manner to establish
the degree to which a change in signal nonlinearity can be
related to system nonlinearity and how a change in system
parameters affects the nonlinearity in the dynamic response
of the system. A wide range of theoretical situations are
considered in this regard using a single degree of freedom
(SDOF) system to obtain numerical benchmarks. A number of
experiments are then carried out using a physical SDOF model
in the laboratory. Finally, a composite wind turbine blade is
tested for different excitations and the dynamic responses are
measured at a number of points to extend the investigation to
continuum structures. The dynamic responses were measured
using accelerometers, strain gauges and a Laser Doppler
vibrometer. This comprehensive study creates a numerical and
experimental benchmark for structurally dynamical systems
where output-only information is typically available, especially
in the context of DVV. The study also allows for comparative
analysis between different systems driven by the similar input.

1. Introduction
Changes in mass, stiffness, natural frequency, etc., are often
indicators of structural damage [1]. However, the complex, new
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and ageing structures of different sizes are often too hard to model [2,3] in their operational conditions
and the excitations that they experience are immeasurable [4]. Therefore, various devices are employed
to record structural response signals in order to monitor structural health. Statistical analyses and
benchmarking of time or frequency domain dynamic responses of structures are popular in structural
health monitoring (SHM) [4–8]. Therefore, in signal analysis of dynamical systems, there is often a need to
assess and quantify the extent of nonlinearity in the response signal and possibly in the system [9]. In this
regard, a theoretically well-established technique for detecting the nature or nonlinearity of time series
is the surrogate data method [10], which was originally motivated by statistical hypothesis testing and
presents an indirect way of detecting nonlinearity in a signal [11]. In recent literature, there is extensive
research on signal linearity analysis based on surrogate data [12–14]. Failure to detect nonlinearity may
result from an inappropriate choice of test statistic and there are also problems with artefacts occurring
in the process of generating surrogate datasets [15]. Many non-parametric analysis techniques have been
developed for the detection of nonlinearity in the signal [16].

Gautama et al. [17] discuss several established nonlinearity analysis methods for comparing and
testing the degree of nonlinearity between populations of signals. They tested deterministic versus
stochastic (DVS) plots proposed by Casdagli [18], traditional nonlinearity metrics [19], i.e. the third-
order autocovariance (C3) and a measure of the deviation due to time reversibility, and the δ–ε

method proposed by Kaplan [20]. Gautama et al. [17] also presented a novel test statistic for detecting
the determinism and nonlinearity through a time series delay vector variance (DVV) method, which
characterizes a time series based upon its predictability and compares the results to those obtained for
linearized versions of the signal, i.e. surrogate data. The method is most similar to Kaplan’s δ–ε method
and the false nearest neighbours [21]. The comparison of the above-listed nonlinearity methods (DVS
method is excluded because it does not allow for a quantitative analysis) with DVV showed that only
the DVV method consistently detected nonlinear behaviour for higher slopes and for all noise levels.

The advance technique for nonlinear data analysis is also a recurrence plot (RP) based on Takens’
embedding theorem [22]. It can visualize the dynamics of phase-space trajectories [23]. However, the
RP is testing only for deterministic–stochastic behaviour, while DVV is testing deterministic–stochastic
and linear–nonlinear behaviour of a signal. The aim of the DVV method is to verify whether or not a
time series observed is generated by a linear stochastic system [24]. A DVV-based characterization does
not require prior knowledge about the signal and is considered to be robust to the presence of noise
and straightforward to interpret and visualize nonlinearity, while retaining superior performance over
many other available methods [17]. The DVV method has been successfully applied for characterization
of biomedical signals, such as functional magnetic resonance imaging [25,26] and heart rate variability
[27,28].

Although DVV assesses signal nonlinearity rather than system nonlinearity, it is sometimes possible
to attribute signal nonlinearity to system nonlinearity [25]. For example, when DVV has been applied in
diagnostic medicine the aim was to assess the presence or the absence of nonlinear behaviour within the
signal observed, as the linear or nonlinear nature of the signal conveys information concerning the health
condition of the subject [24,29]. The DVV method has also been used as an efficient tool for acquiring
the information on determinism and nonlinearity of response of mechanical systems [30]. A study on a
diesel engine vibration in different conditions found that the vibration signals have strong nonlinearity
and that nonlinearity gets stronger as a fault of a diesel engine becomes worse. The root mean square
deviation of the DVV scatter diagram from the bisector line was used for a quantitative analysis of the
fault state, which could be used to detect fault. Recently, DVV has been applied and tested in the field of
SHM of offshore floating foundations [31–33] and bridges [34]. These are big dynamical systems which,
due to their geometry and material complexity, are hard to model in a dynamically accurate manner since
many parameters influence their behaviour. Furthermore, the nature of excitation force, e.g. deterministic
or random, to these systems is in reality unknown and monitoring of the dynamic responses is only
remotely possible, because of the structure’s difficult accessibility, interruption to its operation, etc. On
the other hand, an understanding of the behaviour of floating platforms in normal or extreme weather
situations and bridges under the operational loads is crucial for their safe operation.

Existing applications of DVV indicate the significant possibility of employing this method for
assessing dynamical systems in relation to structural mechanics. However, no benchmark is present
in terms of how, for different dynamical systems, the signal nonlinearities are assessed and to what
extent. Our aim is to investigate, in detail, to what extent estimates of signal nonlinearity can distinguish
between different systems, the excitation to the systems and the different parameters that guide the
dynamics of the systems. In this regard, we have chosen a number of theoretical dynamical systems and
have carried out a range of experimental analyses. A single degree of freedom (SDOF) system and a wind
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turbine blade (WTB) have been considered representative of a lumped mass system and of a continuum,
respectively. The influences of measuring devices have also been considered, i.e. accelerometers, strain
gauges and a Laser Doppler vibrometer (LDV) have been used to obtain the dynamic responses of the
different experimental systems. This work attempts to create a comprehensive benchmark for dynamical
systems with different parameters, input ranges and experimental validations in relation to estimates of
nonlinearities computed from the dynamical system outputs using DVV.

2. Signal and system nonlinearity
The signal and system nonlinearity is defined as per Gautama et al. [26,28], i.e. a linear signal, x, is
generally defined as the output of a linear shift-invariant system that is driven by Gaussian white noise
[35]. However, in most cases, this definition has become flexible by allowing the probability distribution
of the signal values, i.e. the signal distribution, to deviate from the Gaussian. This can be interpreted as a
linear signal (following a strict definition) measured by a static (possibly nonlinear) observation function
[28]. Any signal that cannot be generated in such a way is generally referred to as a nonlinear signal [28].
The principle of temporal summation for analysing the nonlinearity of a system implies that input and
output time series can be measured simultaneously, while in typical real-world settings this is often not
possible [25,28]. The analysis of the nonlinearity of a signal can often provide information on the nature
of the underlying system. However, the assessment of nonlinearity within a signal does not necessarily
imply that the underlying signal generation system is nonlinear.

The input signal and system nonlinearities may be confounded [17] and care should be taken in the
interpretation of results. For example, if the input to the system is nonlinear and the system itself is linear,
the measured signal at the output would be nonlinear. Therefore, a straightforward conclusion cannot
be drawn from nonlinearity analysis of one signal for an underlying system, but this method allows for
comparative analysis between different systems, driven by the same input. It is important to know what
assumptions of nonlinearity analysis are so as not to confuse cause and effect [10].

3. Theoretical background
3.1. Delay vector variance
The DVV theory was initially introduced in Mandic & Chambers [36] and was further elaborated and
tested by Gautama et al. [17,28] and Mandic et al. [26]. A background to DVV theory and discussion on
embedded parameter choice methods is provided in the electronic supplementary material, appendix S1.

The DVV method is based on time delay embedding representation of a time series x(n), n =
1, 2, . . . , N. For a given embedding dimension m, the mean target variance, σ ∗2, is calculated over all
sets of ‘neighbouring’ delay vectors Ωk. A set Ωk is generated by grouping those DVs that are within
a certain distance to x(k), which is varied in a manner standardized with respect to the distribution of
pairwise distance between DVs. The DVV algorithm is given in this section for completeness and for
establishing the context of the study and can be summarized as follows [17,24,28]:

(1) Reconstruct the phase-space and obtain the set of DVs in phase space

x(k) = [xk−τm, . . . , xk−τ ]T, k = 1, . . . , N − m + 1, (3.1)

where N denotes the length of time series and τ denotes time delay.
(2) Compute the mean μd and standard deviation σd over all pairwise Euclidian distances between

DVs [25]
d(i, j) = ‖x(i) − x(j)‖, (i �= j). (3.2)

(3) The sets Ωk(rd) are generated so that

Ωk(rd) = {x(i)|‖x(k) − x(i)‖ ≤ rd}, (3.3)

i.e. sets that consist of all DVs that lie closer to x(k) than the certain distance rd calculated as:

rd(n) = μd − ndσd + (n − 1)
2ndσd

Ntv − 1
; n = 1, . . . , Ntv, (3.4)

where nd is a parameter controlling the span over which to perform the DVV analysis, usually
set to be 3 [37] and Ntv, number of target variance, indicates how fine the standardized distance
is uniformly spaced.
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(4) For each set Ωk(rd), the variance of the corresponding targets σ 2

k (rd) is computed. The average
over all sets Ωk(rd) normalized by the variance of the time series, σ 2

x , yields the measure of
unpredictability, ‘target variance’, σ ∗2(rd):

σ ∗2(rd) = (1/N)
∑N

k=1 σ 2
k (rd)

σ 2
x

. (3.5)

Jianjun et al. suggest that the set of Ωk(rd) should contain at least N0 = 30 DVs [38]. A sample of
30 data points for estimating mean or variance is the general rule-of-thumb [24,25,28].

The basis of the DVV method is that if two DVs of a predictable signal are close to one another
in terms of their Euclidean distance, they should have similar targets, i.e. the smaller the Euclidian
distance between them, the more similar targets they have. Hence, the presence of a strong deterministic
component within a signal will result in the smaller target variances for small spans rd [28,38]. The
minimal target variance σ ∗2

min = minrd [σ ∗2(rd)] represents the amount of noise present within the time
series (the prevalence of the stochastic component) and has an upper bound which is unity. The reason
for this lies in the fact that all DVs belong to the same set of Ωk(rd) when rd is sufficiently large. Therefore,
the variance of the corresponding target of those DVs will be almost equal to that of the original time
series. As a result of the standardization of the distance axes, the resulting DVV plots are straightforward
to interpret. The resulting DVV plots are presented with the standardized distance rd on the horizontal
axis and normalized variance σ ∗2 on the vertical axis (see the electronic supplementary material,
appendix S1). At the extreme right, DVV plots smoothly converge to unity, because for maximum spans
all DVs belong to the same set, and the variance of the targets is equal to the variance of the time series.
If this is not the case, the span parameter nd should be increased [17,24].

Performing DVV analysis on the original and a number of surrogate time series, a scatter diagram
can be produced. The DVV scatter diagram can characterize the linear or nonlinear nature of time series
using the optimal embedding dimension of the original time series. If the surrogate time series yield DVV
plots similar to the original time series, in which case the DVV scatter diagram coincides with the bisector
line, then the original time series is likely to be linear [17,26]. Thus, the deviation from the bisector line
is an indicator of nonlinearity of the original time series [17,28], i.e. the deviation from the bisector line
grows as nonlinearity of a response increases (see the electronic supplementary material, appendices S1
and S3–S5).

The deviation from the bisector line can be quantified by the root mean squared error (RMSE) between
the σ ∗2 values of the original time series and the σ ∗2 values averaged over the DVV plots of the
surrogate time series (when computing this average, as well as computing RMSE, only the valid variance
measurements,
e.g. if the set Ωk(rd) contains at least 30 DVs measurements, are taken into account [24]). Thus, a single
test statistic tDVV is calculated [24] as

tDVV =

√√√√√√
〈⎛
⎝σ ∗2(rd) −

∑Ns
i=1 σ ∗2

s,i (rd)

Ns

⎞
⎠

2〉
validrd

(3.6)

where σ ∗2
s,i (rd) is the target variance at the span rd for the ith surrogate, and the average is taken over all

spans rd that are valid in all surrogate and original DVV plots.
DVV toolbox for Matlab and related documentation are available from Mandic [39] and are used for

this work with little modification of DVV parameters.

3.2. Discussion on parameters
For a correct choice of embedding parameters, which might not be unique, the target variance, σ ∗2,
gives information regarding one of the fundamental properties of a signal, i.e. its predictability. Two
extreme cases correspond to a white noise (entirely unpredictable) and a deterministic signal (entirely
predictable). It is important to determine the embedding dimension and time lag correctly, since in
combination with the structured signal, similar delay vectors in terms of their Euclidian distance have
similar targets [40]. The embedding dimension m determines how many previous time samples are used
for examining the local predictability. We used and compared three different methods when adopting
the embedding dimension and time lag:
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Method 1. Differential Entropy Method, which determines the optimal embedding parameters of the

signal using a differential entropy method proposed by Gautama et al. [40]. The optimal m, and time lag,
τ , are simultaneously determined [25].

Method 2. Minimal Target Variance Method which determines optimal embedding dimension, m by
running a number of DVV analyses for different values of m and choosing the one for which the minimal
target variance, σ ∗2

min, is the lowest while time lag is set to unity [28].
Method 3. Manual Setting of Parameters, where the m is set manually, for within the context of

nonlinearity detection it is not considered critical [17]. Therefore, the embedding dimension was set to 3,
after observation of DVV plots of available experiments and the time lag is set to unity for convenience.

The background theory on these three methods is provided in the electronic supplementary material,
appendix S1.

The maximal span parameter, nd, determines the range of standardized distances to consider. It is
the parameter controlling the span over which to perform the DVV analyses. Visual inspection of the
convergence of DVV plot to unity should be used for setting this parameter, i.e. typically starting at
value nd = 2 and increasing it using unit steps until DVV plots converge to unity. We adopt nd = 3 in all
simulations in this paper when using this method. The number of standardized distances for which target
variances are computed, Ntv, has been set to 50. The number of reference DVs considered, Nsub, is 200 for
all simulations. Reducing the size of subset of DVs to which pairwise Euclidean distances are computed
significantly speeds up DVV analysis. For each of the time series, we perform a set of DVV-based
nonlinearity analyses for a range of parameter values using a set of Ns = 25 surrogates. Gautama et al. [28]
have analysed the sensitivity of the proposed DVV method to parameter settings for four different time
series, of which three were nonlinear. They found that the embedding dimension, m, and the maximal
span, nd, were the only parameters with a notable effect with respect to nonlinearity detection. They also
concluded that the effects were minor for reasonable parameter values, i.e. m ∈ [3, 10] and nd ≥ 1.

4. Simulated vibration problems for benchmarking delay vector variance
In order to establish benchmark values for the behaviour of mechanical systems using their dynamic
responses to different excitation, an SDOF has been chosen as a reference system. The length of the
time series analysed in every simulation is approximately 1000. The ‘RMSE’ indicates the RMSE of
DVV plots (original versus surrogate data) and is quantified as the deviation from the bisector line of
the DVV scatter plot. The differential equations describing the SDOF systems and its responses with
different parameters and input forces considered are given in the electronic supplementary material,
Appendix S2. DVV results of responses were compared considering two levels. The first level of DVV
analysis represents the choice of embedding parameters for DVV analysis), while the second level
refers to detection of the changes in observed system characteristics (electronic supplementary material,
appendix S3).

A number of observations are made from the simulations considered for different theoretical models.
Method 3, keeping m = 3 and τ = 1, shows the best consistency in interpretation of DVV method results
when SDOF parameter changes. The degree of nonlinearity of different SDOF systems response was
observed for variation of the following parameters: system mass, damping, driving frequency, natural
frequency and input force magnitude.

The results of analysis of undamped free oscillator and rotating imbalance shows that RMSE changes
negligibly with changing system mass. The results of all underdamped systems (ζ < 1) analysed are
summarized in table 1 and figure 1a. The results show that when damping ratio increases RMSE also
increases.

The RMSE values show almost the same results for three SDOF systems when exposed to harmonic
oscillation, to base excitation and for rotating imbalance, respectively. The curves asymptotically
approach RMSE of 0.180 for higher values of damping. However, for three other cases: free damped
oscillation, step response and square wave input, this is not the case and the values are much higher.
These phenomena may arise from the fact that the systems reach equilibrium quite fast and as a
consequence there are not sufficient data for analysis. For example, in the case of free vibrations, the
response quickly becomes virtually zero. This occurs within 10 s, even for a damping coefficient as small
as 0.05, and the RMSE obtained is the highest recorded for such condition. For overdamped (ζ > 1) and
critically damped (ζ = 1) systems analysed, when damping ratio decreases RMSE increases. Here as well,
the system reach equilibrium very fast; as a result DVV plots do not converge to unity as expected and
deviation from bisector line of the DVV scatter plot is high.
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Figure 1. RMSE dependency on: (a) SDOF damping, (b) driving frequency, (c) natural frequency and (d) input force magnitude increase.

Table 1. RMSE obtained using third approach on damped SDOF system.

RMSE third

system constants damping ratio approach

SDOF damped oscillation
mẋ + cẍ + kx = 0

natural frequencyωn = 7
initial displacement x0 = 3
initial velocity v0 = 1
time duration to test tf = 30 s

0.05 0.347
0.20 0.621
0.50 0.682

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SDOF harmonic damped
oscillation
mẍ + cẋ + kx =
F cos (ωt)

driving frequencyωdr = 3
natural frequencyωn = 3.5
force magnitude per unit mass f0 = 6
time duration to test tf = 30 s

0.05 0.155

0.20 0.162
0.50 0.166

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SDOF base excitation
mẍ + c(ẋ − ẏ) + k(x − y)= 0
y(t)= Y sin(ωbt)

base amplitude y0 = 3
base excitation frequencywb = 6
natural frequencyωn = 4
time duration to test tf = 10 s

0.05 0.151
0.10 0.156
0.30 0.172

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SDOF having a rotating
unbalance for zero initial
conditions

rotating massmo = 3
SDOF massm= 7
angular velocity of rot massωr = 4
natural frequencyωn = 12
time duration to test tf = 10 s
constant e= 0.1

0.05 0.170
0.10 0.174
0.30 0.175

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SDOF having a step response systemmassm= 1
natural frequencyωn = 12
time duration to test tf = 10 s
force magnitude Fm = 5
initial time to = 2

0.05 0.373
0.10 0.418
0.30 0.425

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SDOF having a square wave
input

systemmassm= 1
natural frequencyωn = 12
time duration to test tf = 10 s
force magnitude Fm = 7
wave starts at to = 0
wave stops at to = 3

0.05 0.189
0.10 0.254
0.30 0.341

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 1b shows that the RMSE increases with increasing driving frequency. For the case of resonance

RMSE is lower, while for beat phenomena RMSE has higher values when compared with the case when
natural frequency is not close or equal to driving frequency. Figure 1c shows the dependency of RMSE
on increasing natural frequency. In all observed cases of SDOF RMSE increases with increased natural
frequency, except in the case of a square pulse input, where it has steep decrease for low natural frequency
(3–6 Hz) and remains almost constant for higher frequencies. The curve for the case of the step response
gives visibly higher values of RMSE in comparison to the other cases observed. This is a result of system
fast return to static equilibrium as was the case with some underdamped systems observed earlier. The
increase in the base frequency for the SDOF system with base excitation results in almost constant value
of RMSE. Figure 1d shows that the change in the input force magnitude does not produce the change in
the RMSE. Note that the SDOF with the step response has the higher value of RMSE than the three other
cases observed; this is, again, the consequence of a ‘flat’ (equilibrium) part of the system response.

Therefore, the linearity or nonlinearity of the system response (signal) could be linked with the type of
the system in relative terms. Hence, if we have observed the system and have its response in its ‘original’
form, any kind of change to that system will produce the change in its response. By doing the DVV
analysis of ‘original’ and ‘new’ signal and comparing their RMSE (deviation from bisector line), we could
tell if some parameter influencing system response is changed. Following this conclusion, the series of
experiments on the SDOF system is performed, the responses recorded and DVV analysed. The aim is to
investigate to what extent response measuring devices can capture the change in system characteristics
using the DVV technique on recorded measurements to quantify that change. Hence, the discussion and
results on SDOF experiments are presented next.

5. Single degree of freedom car experiment
The vibration of a bilinear SDOF system exposed to known, dynamic input forces for a period of time
was recorded in a laboratory environment. The dynamic response of the SDOF system was measured
using a Polytec RSV-150 Remote Sensing Vibrometer and a MicroStrain G-Link Wireless Accelerometer
(mounted on the SDOF system). The accelerometer is a traditional and reliable tool for monitoring
structures adopted for laboratory and large-scale in situ measurements but the disadvantage is that they
have to be attached to the structure at all times during monitoring, which is not always possible. The
LDV is still a relatively new measurement tool but it allows for rapid, accurate, non-contact and long
distance measurement of vibrating structures [18,19].

5.1. Details of experiment
The SDOF model was made of a mass cart connected to fixed supports on either side through calibrated
springs (figure 2). The SDOF model was placed on a vibration bench and exposed to the external force.

The stiffness of the SDOF system is presented with the linear springs which are empirically calibrated
prior to the experiment under tensile static loading. The equivalent stiffness of the combined all
six springs for the first 10 experiments was k = 0.378 N mm−1 (higher stiffness). For the second part
of the experiment, two middle springs were removed and the system stiffness was reduced to k =
0.249 N mm−1 (lower stiffness). In one of the experiments, the sudden change of stiffness was simulated
by a sudden failure of the middle springs on either side during vibration measurements. For this
experiment, only the middle springs were attached to rigid support with adhesive with a lower strength
in order to simulate the spring failure/sudden stiffness change. The excitation force, the type of the
surface beneath the wheels of the SDOF car and the stiffness of the SDOF system were varied. For
all SDOF car experiments, the recorded responses are shown in the electronic supplementary material,
appendix S4. The forced vibration response of the system was considered.

The DVV analysis results are compared at three different levels here. The first level considered is
choice of DVV parameters using the three different methods for establishing embedding parameters;
the second level is comparison of DVV results due to change in system characteristics (e.g. input force,
surface roughness, stiffness change) and the third level is comparison of results obtained using two
instruments (3D accelerometer and LDV).

Methods 1 and 2 can be difficult to implement and computationally intensive for a large number of
data points, as was the case here. Segmentation of the responses can be effective in such circumstances.
In this paper, a segmentation length of 9000 data was adequate. The analysis of system response to white
noise shows that the parameters calculated using Methods 1 and 2 on segmented data applied on all
data gave almost the same RMSE. This was not the case with responses on sine sweep and increasing
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Figure 2. (a) Schematic diagram of SDOF car experiment and (b) experiment set-up.
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Figure 3. The example of RMSE obtained when using three methods for calculating embedding parameters.

frequency input. In general, Method 1 yields higher RMSE values than other approaches. This might be
due to the segmentation of the signal which leads to different parameter choice for each section of the
signal. Further, the parameter choice does not always fall within reasonable limits using this method [28].
When Methods 2 and 3 are applied on response data, RMSE values are close (or the same) in a majority
of cases. Values of optimum m, obtained by using Method 2, were higher for most analysed examples.
This is in agreement with the findings of Gautama et al. [28] that the effects with respect to nonlinearity
detection are minor for reasonable parameters values, i.e. m ∈ [3, 10] and nd ≥ 1. However, when results
of all three approaches are compared the trend is similar for RMSE values. Figure 3 shows the results
of DVV analysis using all three approaches in determination of optimal parameters for an SDOF car
connected with six springs, moving over a wooden surface excited by harmonic force. CH1, CH2 and
CH3 represent 3D Accelerometer Cartesian direction measurements recorded by Channel 1 (direction
of movement), Channel 2 (sidewise movement) and Channel 3 (vertical movement), while LDVg and
LDV1 represent Laser acceleration input and Laser response, respectively. The movement along CH1 is
prominent while small sidewise movement can still happen although there rails discourage the mass
cart from doing so. The vertical movement is expected to a minimum. The complexity and duration of
simulation indicates that Method 3 is easier to implement while obtaining accurate results. This approach
was shown to be consistent in application on a large set of data. Therefore, only the results obtained by
the third approach will be discussed.
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Figure 4. Effects of surface roughness on SDOF system (k = 0.378 N mm−1) exposed to (a) the increasing frequency external force,
(b) sine sweep and (c) white noise.

5.2. Results
Three different surface types made of plastic, wood and sand paper were used for experiments. This
section investigates the influence of these surface roughness types on the system response while
excitation force and system stiffness remain constant. First the SDOF car moving over three different
surfaces, exposed to one type of loading at the time, connected to the supports on each side by three
springs with higher stiffness, is observed. Figure 4a shows RMSE obtained using DVV analysis on
response of the system excited by the external force with increasing frequency for the three surfaces.
The input frequency was discretely increased from 2 to 10 Hz with an increment of 2 Hz at a time.

RMSE values for the measurements in the principal direction of vibration, CH1 and LDV1, do not have
a trend as surface roughness changes from good to poor. As observed earlier (figure 1), RMSE of modelled
SDOF system exposed to free damped oscillations increases with the increase in damping. However, the
results of the SDOF experiments are sometime insensitive to change in surface roughness which should
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result in variation in damping ratio of the system. Actually, analyses using both measurements give
close values of RMSE for different surfaces, which could indicate that the friction between the wheels
of the SDOF car and the surface was low enough to be neglected. RMSE of recorded responses by
both instruments is consistent, i.e. being higher for sand paper and lower for wood surface. However,
accelerometer measurements appear to be more sensitive to surface change since the difference in
the degree of nonlinearity is higher than for LDV measurements. This is might be above all due to
the sampling frequency of the accelerometer and the LDV, which were 128 and 830 Hz, respectively,
and to a lesser extent due to possible amplification of errors during the differentiation process being
applied on LDV velocity measurements when obtaining the acceleration. Further, the difference in
surface roughness is better detected with the lateral car movement as friction between the car wheels
and surfaces is more prominent. Hence, RMSE calculated for CH2 data (lateral direction to vibration)
increases with the decrease in surface roughness and the values are about twice that for the main
direction of vibration, i.e. the system response is less linear than in the main direction and therefore
more sensitive to change in surface roughness. This is explained as there the two rails in the experiment
providing a barrier against the mass cart from moving in the lateral direction.

A similar situation is observed when the excitation force is a sine sweep (figure 4b). The RMSE values
obtained by DVV analysis of accelerometer data and LDV data in the direction of main vibration are
very close for all surfaces tested. Here, the RMSE values for LDV are lower than in the case of harmonic
loading and almost constant. The RMSE calculated on CH1 data decrease with road surface change from
smooth to rough. RMSE values for the CH2 data are about twice higher than for CH1 data.

Figure 4c shows RMSE for experiments when the SDOF is exposed to white noise excitation. The
RMSE values obtained for CH1 data are lower while for LDV are higher than for the two other types of
loading. The results for the three types of surfaces are similar for both measuring devices in the main
direction, while in lateral direction the increase with the decrease of the quality in surface and the values
are almost four times greater than in the main direction.

Next, the set-up where two middle springs, one on each side of the car, are removed, i.e. reduced
stiffness, is observed. Figure 5a shows the RMSE for the system excited by external force with increasing
frequency. The results show that accelerometer measurements are more sensitive to stiffness change than
LDV, i.e. RMSE is higher for CH1. The reason is use of the higher sampling frequency and differentiation
of velocity measured with LDV in order to obtain acceleration, which tends to amplify any errors when
adjacent data points are quite similar in size as was the case here. By closer inspection of the recorded
data and their DVV plots (see the electronic supplementary material, appendix S4) for wood and sand
paper surface, irregularities are observed. The response output changes the amplitude quite irregularly
with high and low peaks, which is not the case in response with the plastic surface. The variation in
amplitude leads to higher values of RMSE for CH1 data and lower for LDV data, than expected. This
could be due to the change in stiffness combined with surface roughness or some external influence
on the system. To address this issue, sine sweep and white noise excitation force responses were also
investigated.

Figure 5b shows RMSE values for sine sweep loading. The RMSE values for principal direction of
each instrument are close for all surfaces. In comparison with the system with higher stiffness, the RMSE
values for CH1 data are slightly higher, while for CH2 and LDV data are notably lower, especially for
wood surface. The RMSE values for the system exposed to white noise while moving on different surfaces
are shown in figure 5c. The RMSE produced on recorded data by each instrument is very close in values
for all surfaces, as previously observed. The results of these experiments, in comparison with the ones
where the stiffness of the mechanical model was higher, give slightly higher RMSE values for CH1, while
they are lower for LDV data. Again, this could be attributed to sampling frequency and to differentiation
method being applied on the LDV velocity measurements.

Considering all of the RMSE values, it appears that the RMSE value for CH2 and LDV could be
the indicator of the change in surface roughness (table 2). RMSE values for CH1 data are relatively
insensitive to change in surface roughness. However, it must also be noted that in this experimental set-
up, surface roughness differences were relatively hard to detect using both instruments. Consequently,
for the dynamic responses along CH1, the surface roughness may be ignored and the results may be
interpreted to track changes in the excitation response or changes in the system.

In order to investigate sensitivity of the DVV analysis on system response due to the change in
excitation force, three different loads are used: (i) a harmonic load with discretely increasing frequency
of 2, 4, 6, 8 and 10 Hz, (ii) a gradual sine sweep from 3 to 5 Hz, and (iii) the responses to white noise
excitation. The results of DVV analysis on system response to these loads for a system moving over
plastic surfaces for the model of the SDOF car with higher and lower stiffness are shown in figure 6.
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Figure 5. Effects of surface roughness on SDOF system (k = 0.249 N mm−1) exposed to (a) increasing frequency, (b) sine sweep and
(c) white noise.

The RMSE values for CH1 differ for each type of loading. The highest value is for sine sweep and the
smallest for white noise. These values increase in the case of reduced stiffness. On the other hand, the
RMSE values calculated on CH2 and LDV recorded data are the highest for white noise loading for
the higher system stiffness. However, these values decrease for the lower system stiffness. RMSE for
CH2 and LDV negligibly differs for the harmonic and sine sweep loading for the higher system stiffness.
While calculated RMSE values on CH1 data increase, they decrease for CH2 and LDV. This decrease of
RMSE for reduced stiffness in the case of CH2 and LDV data is greater than the increase for CH1 data.

Figure 7 shows the RMSE results for the SDOF system, with higher and lower stiffness, on wood
surface exposed to three types of loads. The results for the system with higher stiffness (figure 7a) show
that the effects of change in the input force nature are successfully recorded by LDV and CH2. Here,
as for the plastic surface, the differences in RMSE for the harmonic and sine sweep loading are small.
However, the difference in values increases with the change of surface from plastic to wood. The results
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Figure 6. Effects of excitation force on the SDOF system on plastic surface with (a) k = 0.378 N mm−1 and (b) k = 0.249 N mm−1.

Table 2. Effects of surface roughness on RMSE calculated on CH2 (lateral movement direction) and LDV signals for SDOF system with
higher and lower stiffness exposed to different loading.

excitation force harmonic loading sine sweep white noise

stiffness higher lower higher lower higher lower

surface type plastic CH2 0.273 — 0.265 0.202 0.348 0.263
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDV 0.167 0.147 0.165 0.140 0.201 0.173
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wood CH2 0.318 0.376 0.334 0.287 0.379 0.331
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDV 0.172 0.091 0.165 0.139 0.204 0.170
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sand paper CH2 0.340 0.329 0.323 0.228 0.393 0.325
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDV 0.168 0.098 0.162 0.141 0.203 0.178
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for CH1 show that calculated RMSE for 2 Hz harmonic and white noise external force differ negligibly.
Figure 7b demonstrates that the 3D accelerometer and LDV successfully record the change in external
force when system stiffness is reduced. The values for CH1 decrease while for LDV they increase with
frequency, sine sweep and white noise force, respectively.

Figure 8a shows the results of three experiments performed on the SDOF system with higher stiffness
moving over a sand paper surface exposed to different forces. The RMSE calculated on CH1 data for
harmonic and sine sweep force differ negligibly while for white noise loading the RMSE value is lower.
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Figure 7. Effects of excitation force on the SDOF system on wood surface with (a) k = 0.378 N mm−1 and (b) k = 0.249 N mm−1.

The results for CH2 and LDV data also show that the RMSE for harmonic and sine sweep loading are
close, but the values are greater than that calculated for CH1 data. On the other hand, the RMSE of the
response to white noise is greater. Results of the experiment with same type of loading and surface as
the one just discussed but with reduced SDOF stiffness are shown in figure 7b. The RMSE values for this
system are higher for CH1 and lower for CH2 and LDV recorded data in comparison with the stiffer
system. It is interesting to point out that the trend in RMSE values from CH1, CH2 and LDV in this case
are the same for the model of the same stiffness moving on the wood surface. However, values of RMSE
for CH1 are lower while for CH2 and LDV are higher than those for the wood surface.

Table 3 summarizes the degree of nonlinearity change due to excitation force of the signals recorded
by CH1 and LDV for SDOF with higher and lower stiffness moving over different surface roughness.

Next, the possibility to detect sudden stiffness change was explored by introducing the failure of a
spring at a certain instance in time during a given period of forced vibration. The forced vibration on the
SDOF system was in the form of a white noise input. The stiffness of the system at the beginning of the
experiment was 0.378 N mm−1. The first spring was detached after 13 s, which reduced system stiffness
to k = 0.303 N mm−1, and the second one after 38 s, reducing stiffness further to k = 0.249 N mm−1.

Figure 9 compares RMSE values in relation to the SDOF car moving over a wooden surface, excited
by white noise, for different stiffness values and including a sudden change in stiffness. The results for
CH1 and LDV show the same pattern, i.e. the RMSE values for the system that suffered sudden change
of stiffness are lower than for the systems with constant stiffness. The reason for this could be the fact
that the system goes through change from a relatively linear system to a strongly bilinear system with
some lateral effects for a certain period of time and then returns to a relatively linear system, averaged
over time. The DVV method can be used to determine occurrence of sudden stiffness change but not the
exact time when the change happens.

The experimental study on the mass cart SDOF system can be summarized through a number of
observations. Only the forced vibration response of the system should be analysed. A close observation
of the response data is required prior to a DVV analysis, as irregularities in the response signal can
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Figure 8. Effects of excitation force on the SDOF system on sand paper surface with (a) k = 0.378 N mm−1 and (b) k = 0.249 N mm−1.

Table 3. Effects of different excitation force on RMSE calculated on CH1 and LDV signals for SDOF system with higher and lower stiffness
moving over different surface.

surface type plastic wood sand paper

stiffness higher lower higher lower higher lower

excitation force harmonic loading CH1 0.128 — 0.142 0.202 0.133 0.155
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDV 0.167 0.147 0.172 0.091 0.168 0.098
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sine sweep CH1 0.145 0.149 0.133 0.151 0.131 0.139
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDV 0.165 0.140 0.165 0.139 0.162 0.141
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

white noise CH1 0.101 0.112 0.114 0.114 0.096 0.106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDV 0.201 0.173 0.204 0.170 0.203 0.178
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lead to the unexpectedly higher or lower values of RMSE. These irregularities occur due to sensitivity of
measuring instruments to changes in experimental environment. Methods 1 and 2 have limitations when
analysing large sets of data while determining embedding parameter and time lag. Method 3 shows
the best efficiency and consistency in interpretation of DVV method results for the observed system.
The RMSE values calculated using measurement data in the main direction of vibration obtained by 3D
accelerometer and LDV are different in value and may have different trends. The recording parameters
within 3D accelerometer and LDV were fixed and for this reason different results can be attributed to
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different nature of data collected (acceleration and displacement), but also the sensitivity of instruments
to noise. The CH2 accelerometer data (lateral direction to vibration, horizontal plane) correspond to
RMSE values multiple times higher than for the main direction of vibration, i.e. the system response is
less linear than in the main direction. The DVV analysis of CH2 data shows that some changes could be
detected observing vibrations in lateral direction. The difference in calculated RMSE on DVV analysed
response data is hard to detect when surface roughness changes. The surrogate data deviation from
bisector line in DVV analysis shows almost the same nonlinearity for different surfaces. Therefore, for
this set up of the experiment, the friction between the wheels of the SDOF car and the surface is low
enough to be ignored. However, for the harmonic and white noise load on the SDOF system with higher
stiffness it seems that 3D accelerometer CH2 is able to pick up the change in surface roughness. Hence,
the nonlinearity of data increases as surface roughness changes from good to poor. The switch in the
stiffness of the observed system is recorded by both instruments. In the case of 3D accelerometer CH1, the
difference in RMSE is small and increases, while for CH2 and LDV the difference in RMSE is greater and
decreases with decrease in system stiffness. Therefore, the change in RMSE can be used to identify the
change in system stiffness. The occurrence of sudden stiffness change in the SDOF system can be detected
by the DVV method, but not the time of change. There is not enough information to assess if the DVV
method can consistently identify the extent of the change of stiffness. The difference in the nature of the
external force is recorded by both instruments. There are only few exceptions. For example, the difference
in RMSE values is negligible for harmonic and sine sweep loading in the case of a plastic surface for
response recorded by LDV regardless of the system stiffness. The same is observed for CH1 and LDV
data in the case where the surface is sand paper, but only for higher stiffness of the studied model. In
general, calculated RMSE values for CH1 are the highest for harmonic load with changing frequency and
the lowest for white noise load, while for LDV the opposite is the case: the RMSE values are the highest
for white noise load, and the lowest for harmonic load. The difference in loading is best represented in
cases when the surface is wood or sand paper while the observed model has lower stiffness. Therefore,
the combination of surface roughness and system stiffness could influence the success of the DVV model
in recognition of the type of excitation force.

The detailed analysis of the DVV results on responses of the SDOF system showed that the change of
some of the system characteristics are successfully identified by proposed signal processing technique.
Therefore, the next challenge represents analysis of more complex system response using the DVV
method. For that reason experiments are performed on a WTB (representing continuum) and responses
using three different instruments are analysed using the DVV technique. Here, as before, the results
of DVV analysis are compared on several levels, i.e. testing the sensitivity of the method on different
excitation force, locations of measurements and instrumentation sensitivity.

6. Experiments on a wind turbine blade
6.1. Experimental set-up and methodology
A 1.4 m long WTB of mass 1.7 kg, made from a polypropylene/glass fibre composite, was used for the
test. The instrumentation scheme is shown in figure 10. Base excitations were applied using a uniaxial
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Figure 10. WTB experiment set-up. Letters A–F indicate positions used for focusing the vibrometer during set-up of LDVwhile numbers
1–4 mark locations of strain gauges.

LDS electrodynamic shaker to which the excitation signal was input via an amplifier. The dynamic
response of a WTB was measured using a wireless MicroStrain G-Link Accelerometer and Polytec RSV-
150 Remote Sensing Vibrometer. The G-Link, located at 235 mm from the blade tip, collected acceleration
data in Cartesian coordinates. LDV focus points varied throughout experiments. For setting up LDV
focusing points A–F are used. The dynamic strain was measured at four different locations for the WTB.
The excitation forces included harmonic excitation, sine sweep and white noise. The harmonic excitations
were discretely increased corresponding to individual frequencies 2.0, 2.5, 3.0, 3.5, 4.0, 4.2, 4.3, 4.4, 4.5,
4.6, 5.0, 5.5, 6.0, 6.5 and 7.0 Hz. The sine sweep tests were carried out by gradually varying the frequency
from 3 to 5 Hz. The experiments were repeated four times, for each type of excitation force, while LDV
target changed, focusing on accelerometer and points A, C and E. Point E is very close to the base of the
turbine blade and thus this is not an appropriate measurement location for assessing the global dynamics
of the blade.

A comprehensive set of results is reported in the electronic supplementary material, appendix S5,
in relation to the measurements at this point as evidence of the inappropriateness of the location of
measurement. The electronic supplementary material, appendix S5 also contains the measurements and
DVV results of all other points measured. Previous experiments and modelling had established the
natural frequency of the WTB to be 4.38 Hz. Only forced vibration responses are considered for DVV
analysis. In this set-up, CH1 is the acceleration measured in the main direction of vibration, CH2 is
the acceleration measured laterally to the main direction of vibration (horizontal plane), CH3 is the
acceleration measured laterally to the main direction of vibration (vertical plane), LDVg is the Laser
acceleration input, while LDV1 and LDV2 are the displacement and velocity recorded by LDV. Strain 1 is
the strain gauge (SG) measurement at 415 mm (top SG); Strain 2 is the SG measurement at 835 mm; Strain
3 is the SG measurement at 1095 mm; and Strain 4 is the SG measurement at 1095 mm (bottom SG). The
recorded data were in most cases too long to be analysed by Method 1. The attempt to find optimal
embedding parameter using Method 1 was done by segmenting the response signal. The obtained
embedding parameters give different values of RMSE of response signal for the segmented section as
compared to the whole signal. The difference in RMSE values increases when embedding parameter
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Figure 11. Comparison of WTB results for different forces when LDV focused on: (a) the accelerometer, (b) the top of the WTB and
(c) the WTB mid-section.

is greater than 5 and time lag greater than 1. RMSE changes using Method 1 are representative of
changes within the signal but cannot be used to compare two or more different responses of the system
with consistent interpretation. Hence, Method 1 was observed to be time consuming and unreliable for
the large sets of data. It is hard to observe the time-series structure in phase space as a whole, and
therefore impossible to determine its clear minimum in order to find adequate parameters, m and τ ,
to represent the response signal, therefore this method is not adequate for the analysis [40]. A similar
situation is created for Method 2, where the long set of response data takes too long to be processed and
obtained values of embedding parameter are in most cases out of reasonable range m ∈ [3, 10] [26]. When
comparing the results obtained by analysis of one set of data by all three methods, the trend tends to
be similar, i.e. the values of RMSE for the measured data in general retain their relative relationship.
By closer inspection of the results obtained by the second and third methods, the calculated RMSE
are similar or even identical when embedding parameter chosen is less than 10. It is adequate to use
Method 3 for such a situation, as has been observed in the previous sections. The results of DVV analysis
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Figure 12. RMSE of DVV analysed (a) displacement and (b) velocity data at different LDV focus points.

obtained when using Method 3 are discussed here while results of all three methods are included in the
electronic supplementary material, appendix S5.

6.2. Results
The results of DVV analysis (in terms of calculated RMSE values) on response data for different loads are
shown in figure 11a. In these experiments, the focus of the LDV is at the location of the accelerometer.
The RMSE values for CH1, CH3 and LDV1 of the accelerometer show maximum values for sine sweep
and minimum values for white noise. The values for LDV2 are the highest for white noise and the lowest
for harmonic response.

Figure 11b shows the RMSE values on response data for different excitation forces when the target of
the LDV is at the top of the WTB. The RMSE values in connection with CH1 and CH3 show the same
trend as in previous experiments, with the maximum value observed for sine sweep and the minimum
value observed for white noise. LDV1 and LDV2 results keep the same trend as in figure 11a. LDV1
shows more nonlinearity for sine sweep loading response than for the other two types of excitation.
RMSE values for LDV2 show more nonlinearity of the response signal when the system is excited with
white noise than with the other type of loading.

The RMSE values in connection with different excitation forces are presented in figure 11c where
the LDV is focused at the midpoint of the WTB. Here, as in previous examples, the relative pattern of the
response nonlinearity is retained. Still, there is visible discrepancy in RMSE of acceleration data when the
system is exposed to harmonic force in comparison with previous calculations. This is due to the length
of recorded data, i.e. total response is not recorded. The irregularity in LDV recorded data when the WTB
is exposed to sine sweep is reflected in calculated RMSE values, resulting in much greater nonlinearity
of the signal from what was observed in previous examples. The irregularities in recorded signal are
referred to here as unexpected rear peaks within the signals, which are possible due to instrument
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Figure 13. The effects of (a) harmonic force, (b) sine sweep force and (c) white noise force on linearity of response measurements.

sensitivity to the environmental vibration changes or disturbances. The results that are affected by this
phenomenon are highlighted in the following figures and are not considered in the analysis.

In general, displacement data show high nonlinearity when the system is exposed to sine sweep and
the smallest nonlinearity for white noise loading, regardless of the target focus of the LDV (figure 12a).
The velocity shows the greatest nonlinearity when WTB is excited by white noise, and the smallest for
harmonic loading (figure 12b). The acceleration data recorded are descriptors of responses to the given
loading only at one location, i.e. the location of the accelerometer at the top of the WTB. Therefore, the
range of RMSE for acceleration measured when the system is exposed to different forces as well as the
range and trend of RMSE values of strain data along the WTB is investigated next.

Figure 13a shows RMSE values obtained as result of DVV analysis when the WTB was exposed to
harmonic force. The range of RMSE for CH1 data is relatively wide, at accelerometer location and WTB
top. On the other hand, the nonlinearity of response signal recorded by CH2 and CH3 are about the same
for measurements at these two locations with CH3 representing a greater degree of nonlinearity. LDV
measurements show increase in nonlinearity of displacement and decrease in nonlinearity of velocity
signal from top to middle of WTB. The results for measured strain at four different locations show the
tendency of the recorded signal to exhibit a greater nonlinearity closer to the base. RMSE values obtained
from sine sweep response data are presented in figure 13b. The RMSE values are greater for this type of
loading than for harmonic loading in the case of acceleration measurements. This would mean that the
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Figure 14. Comparison of DVV analysis results (RMSE) for 3D accelerometer measurements.

measured acceleration signal shows higher nonlinearity in the case of sine sweep loading. Further, LDV
measurements show a greater nonlinearity for sine sweep loading than when the system is exposed to
harmonic loading with an increasing trend. The RMSE values calculated on strain data are in general
higher than for the previous loading observed. Figure 13c shows the results of DVV analysis of WTB
recorded responses when the excitation force is a white noise. The results for acceleration data, CH1
and CH3, show less nonlinearity than for the other types of loadings observed. The DVV analysis of
LDV measurements shows greater nonlinearity for velocity than for displacement data. The results show
that measured displacement is more linear, while velocity is less linear when compared with the results
obtained for harmonic and sine sweep loading measurements.

WTB responses to the external excitation were measured by different instruments using a 3D
accelerometer, an LDV and strain gauges. DVV analysis results for measurements performed by each
instrument are presented next.

The 3D accelerometer recorded the acceleration in three different directions (CH1, CH2 and CH3) at
the top (free end) of the WTB. Figure 14 shows the DVV results on data recorded by the three channels.
The horizontal axis represents the different individual tests carried out. The results summarize all three
types of loading applied. The data recorded by CH1 and CH3 show the highest nonlinearity of the signal
when WTB is exposed to sine sweep and the lowest when exposed to white noise. Sine sweep loading
corresponds to less nonlinearity than white noise for acceleration measured by CH2. The LDV recorded
measurements of displacement, LDV1, and velocity, LDV2, at four different locations for WTB exposed
to three different excitation forces.

Figure 15 shows the results of DVV analysis of the LDV data. The displacement measurements show
the highest nonlinearity for sine sweep load, and the lowest for white noise. In the case of velocity,
white noise corresponds to the highest nonlinearity and harmonic loading to the lowest nonlinearity. The
nonlinearity of the displacement data slightly increases, while the nonlinearity of velocity data slightly
decreases in the case when excitation is harmonic from free to fixed end measurements.

Figure 16 shows RMSE results of the DVV analysis of SG recorded data at four different locations
for different loadings. The experiments were repeated four times for each load. The nonlinearity of
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Figure 16. Comparison of DVV analysis results (RMSE) for strain gauges measurements.

the strain data varies very little at observed points between experiments for all loads. The exception
is measurement, Strain 3 for sine sweep, where the RMSE values are high for irregularities in obtaining
some of the surrogates. In the case of white noise excitation, the nonlinearity of measurements decreases
from WTB top to its base.
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The experiments on WTB can be summarized through a number of observations. Methods 1 and 2 for

determining embedding parameter and time lag have limitations when analysing large sets of the forced
vibration data considered. Method 3 shows the best efficiency and consistency in the interpretation of
DVV method results for the observed system. The method is sensitive to rapid/unexpected change in
the recorded signal. The acceleration data recorded by CH1 and CH3 show the highest nonlinearity of the
signal when WTB is exposed to sine sweep and the lowest nonlinearity when WTB is exposed to white
noise. Sine sweep loading produces less nonlinearity than white noise for acceleration measured by CH2.
The sine sweep loading causes the greatest nonlinearity in acceleration measurements in comparison
with harmonic and white noise loading. The displacement measurements show the greatest nonlinearity
for sine sweep and the lowest nonlinearity for white noise loading, regardless of the LDV focus point.
The velocity measurements show the highest nonlinearity for white noise and the lowest for harmonic
loading, regardless of the LDV focus point. The nonlinearity of the strain data varies very little at
observed points between experiments in all load cases. This shows the stability of the instruments’
measurements. In the case of white noise, the nonlinearity of measurements decreases from WTB top
to its base. From the results, range of RMSE, it is possible to detect difference in the external force.

7. Conclusion
This paper has investigated the estimation, assessment and interpretation of signal nonlinearities of
mechanical dynamical systems from output-only conditions from a theoretical and experimental point
of view and has employed the DVV method in this regard. A comprehensive set of theoretical dynamical
systems and experiments on an SDOF system and a WTB have been carried out considering a wide
variation of excitation forces, including investigation into the measurement variables and measurement
devices. The practical implementation of the method for assessment of signal nonlinearities and potential
relationships with system nonlinearities and the associated limitations has been discussed. The DVV
method has been applied to analyse the response signals of one theoretical and two experimental models.
The first goal was to establish the best method of choosing the embedding parameters for DVV analysis.
The methods considered were differential entropy method, the minimal target variance method and
manually setting embedding dimensions. It has been found that manually setting embedding parameter,
for the observed set of data m = 3 and time lag τ = 1, gives reasonable and interpretable results in all
observed cases. The DVV method is sensitive to length of available data, as well as to existence of
any rapid (unexpected) change in recorded data. In the examples where the observed system reaches
equilibrium fast there is not a sufficient number of data for DVV analysis. Outcome of DVV analysis
on response signal is represented by a single number, RMSE value, which quantifies deviation of the
DVV scatter plot from the bisector line. The DVV analysis of the SDOF theoretical model exposed to
different types of oscillations has shown that the RMSE values are sensitive to some system parameters
and insensitive to others. The former group includes damping ratio, driving frequency and natural
frequency, while the latter group includes mass, base frequency and input force magnitude. The SDOF
car experiments show that the DVV method can be used in detection of change in the system stiffness
as well as change in the nature of excitation force. The change of the system stiffness is successfully
recorded by 3D accelerometer and LDV. The occurrence of sudden stiffness change in SDOF system can
be detected by the DVV method, but not the exact time or necessarily the extent of change. Further, three
different instruments, 3D accelerometer, LDV and strain gauges have been used to monitor responses
of the WTB system to vibration. All three instruments successfully record the changes in loading, but
with different sensitivities. For example, 3D accelerometer data recorded by CH1 and CH3 show the
highest nonlinearity of the signal when WTB is exposed to sine sweep and the lowest nonlinearity when
exposed to white noise. On the other hand, the sine sweep loading corresponds to less nonlinearity than
white noise for acceleration measured by CH2. The displacement shows the greatest nonlinearity for
sine sweep and the lowest nonlinearity for white noise loading, while the velocity exhibits the highest
nonlinearity for white noise and the lowest for harmonic loading, regardless of the LDV focus point. For
the same load, the nonlinearity of the strain data varies very little at observed points; this indicates the
stability of strain gauge measurements. The application of the DVV method on recorded responses of the
observed structural system can be useful for Level 1 damage detection [41] in the context of continuous
SHM.
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