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ABSTRACT

The properties expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are
investigated using hydrodynamic modeling tools, including a two-fluid development of the EBTEL
code. Here we study a single nanoflare and show that while simple models predict an emission measure
distribution extending well above 10 MK that is consistent with cooling by thermal conduction,
many other effects are likely to limit the existence and detectability of such plasmas. These include:
differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares,
the time taken for the coronal density to increase. The most useful temperature range to look for this
plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures
of the actual heating may be detectable in some instances.
Keywords: Sun:corona, plasmas, hydrodynamics

1. INTRODUCTION

Observations of the magnetically closed solar corona
from the Hinode (Kosugi et al. 2007) and Solar Dynam-
ics Observatory (SDO) (Pesnell et al. 2012) spacecraft
have led, for the first time, to quantitative studies of the
distribution of coronal plasma as a function of tempera-
ture, and preliminary deductions about the heating pro-
cess (see papers in De Moortel & Browning 2015). The
key to this has been the ability to make measurements
of the corona over a wide range of temperatures from
the EUV Imaging Spectrometer (EIS) (Culhane et al.
2007) and X-Ray Telescope (XRT) (Golub et al. 2007)
instruments on Hinode, and the Atmospheric Imaging
Assembly (AIA) (Lemen et al. 2012) on SDO. Underpin-
ning this work is the concept of nanoflare heating of the
corona. Nanoflares (e.g. Parker 1988) are small bursts
of energy release, which, despite the implication in their
name, have unknown magnitude and duration. While
commonly attributed to small-scale magnetic reconnec-
tion, nanoflares can occur in other heating scenarios (e.g.
Ofman et al. 1998).

One example of this approach has been studies of ac-
tive region (AR) core loops (Warren et al. 2011, 2012;
Winebarger et al. 2011; Tripathi et al. 2011; Schmelz &
Pathak 2012; Bradshaw et al. 2012; Reep et al. 2013;
Del Zanna et al. 2015). These are the brightest struc-
tures in ARs, spanning the magnetic polarity line, and
are observed over a wide range of temperatures. An im-
portant result has been the determination of the emis-
sion measure distribution as a function of temperature
(EM(T ) ∼ n2dh) along a line of sight. These workers
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showed that the emission measure peaked at T = Tm =
106.5 – 106.6 K with EM(Tm) of order 1027 – 1028 cm−5.
Below Tm a relation of the form EM ∝ T a was found,
with 2 < a < 5. This distribution can be understood by
a combination of radiative cooling of the corona to space
and an enthalpy flux to the transition region (TR) (e.g.
Bradshaw & Cargill 2010a,b) and and has significant im-
plications for nanoflare heating. Defining low and high
frequency (LF and HF) nanoflares by the ratio of the
average time between nanoflares on a magnetic strand
or sub-loop (〈tN 〉) to the plasma cooling time from the
peak emission measure (τcool), LF (HF) nanoflares have
〈tN 〉 > (<)τcool respectively. LF nanoflares have a ∼ 2 -
3 and thus do not account for many of the observations.
In fact, Cargill (2014) argued that these results implied
a heating mechanism with 〈tN 〉 of order 1000 - 2000 s
between nanoflares, with the value of tN associated with
each nanoflare being proportional to its energy. Such
intermediate frequency (IF) nanoflares have different en-
ergy build-up requirements from the commonly assumed
LF scenario (Cargill 2014).

A second outcome of AR studies is the detection of
a “hot” non-flaring coronal component characterised by
plasma with T > Tm, a long-predicted consequence of
nanoflare heating (Cargill 1994, 1995). This has been
identified from Hinode and SDO data (Reale et al. 2009;
Schmelz et al. 2009; Testa & Reale 2012), and retrospec-
tively from data obtained by the X-Ray Polychrometer
(XRP) instrument flown on the Solar Maximum Mission
(Del Zanna & Mason 2014). While characterising this
emission is difficult (e.g. Testa et al. 2011; Winebarger
et al. 2012), a similar scaling, EM ∝ T−b has been
claimed (e.g. Warren et al. 2012), with b of order 7 –
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10, though Del Zanna & Mason find larger values. War-
ren et al. quote typical errors of ± 2.5 - 3 on these
values due to the very limited data available above Tm
and Winebarger et al. have noted that the paucity of
data from Hinode at these temperatures could be miss-
ing significant quantities of plasma with T > Tm.

In an effort to diminish uncertainty in this high tem-
perature “blind spot” in EM(T ), Petralia et al. (2014)
analyzed an AR core by supplementing EIS spectral ob-
servations with broadband AIA and XRT measurements.
By using concurrent observations from the 94 Å channel
of AIA and the Ti poly filter of XRT, the authors showed
that the EM(T ) peaked near Tm = 106.6 and had a weak,
hot component. Additionally, Miceli et al. (2012), using
the SphinX instrument (Sylwester et al. 2008; Gburek
et al. 2011), analyzed full-disk X-ray spectra integrated
over 17 days, during which time two prominent ARs were
present. These authors found that a two-temperature
model was needed to fit the resulting spectrum, a strong
3 MK component and a much weaker 7 MK component.

More recent data has come from rocket flights. The
Focusing Optics X-ray Solar Imager (FOXSI) (Krucker
et al. 2013) first flew in November 2012 and observed an
AR. A joint study with EIS and XRT by Ishikawa et al.
(2014) suggested that while hot plasma existed up to 10
MK, the Hinode instruments over-estimated the amount
of plasma there. A rocket flight reported by Brosius et al.
(2014) identified emission in an Fe XIX line with peak
formation temperature of 106.95 K and reported an emis-
sion measure that was 0.59 times the emission formed at
106.2 K. More recently, a pair of rocket flights gave ob-
servations from the Amptek X123-SDD soft X-ray spec-
trometer (Caspi et al. 2015). This provided comprehen-
sive coverage of the 3 - 60 Å wavelength range. Caspi
et al. demonstrated that the emission in this range could
be fit by an emission measure with a power-law distri-
bution slope of roughly b = 6. While all of these ob-
servations are very suggestive of nanoflare heat-
ing, it should also be noted that pixel-averaging,
long time averages and/or inadequate instrument
spatial resolution may lead to contamination of
the DEM by multiple structures along the line of
sight. It is desirable to obtain future measure-
ments of plasma emission at T > Tm from a single
structure, such as a core active region loop, along
the line of sight.

Several other workers have combined model results
with observations in an effort to better elucidate
nanoflare signatures. Using a hydrodynamic loop model,
Reale et al. (2011) showed that emission from impul-
sively heated subarcsecond strands is finely structured
and that this predicted structure can also be found in
AR core emission as observed by the 94 Å channel of
AIA. Most recently, Tajfirouze et al. (2016b), using a 0D
hydrodynamic model, explored a large parameter space
in event energy distribution, pulse duration, and number
of loops. Using a probabilistic neural network, the au-
thors compared their many forward-modeled light curves
to 94 Å AIA observations of a “hot” AR core. They
found that the observed light curves were most consis-
tent with a pulse duration of 50 s and a shallow event
energy distribution, suggestive of nanoflare heating.

While the distributions of temperature and density

above Tm are likely to be determined by nanoflare heat-
ing and conductive cooling, there are several complica-
tions arising from the low density and high temperature
present there. These are (i) the breakdown of the usual
Spitzer description of thermal conduction which leads to
slower conductive cooling, (ii) recognition that in cases
of heating in a weakly collisional or collisionless plasma,
electrons and ions need not have the same temperature
since when one is heated preferentially the time for the
temperature to equilibrate is longer than the electron
conductive cooling time, and (iii) a lack of ionization
equilibrium that can underestimate the quantity of the
plasma with a given electron temperature.

Thus the aim of the present and following paper,
Barnes et al. (2016, in preparation) (Paper II, hereafter),
is to investigate this high temperature regime from a
modeling viewpoint with the aim of obtaining informa-
tion that can be of use in the interpretation of present
and future observations. In this paper we focus on single-
nanoflare simulations and build up an understanding of
the role of the different pieces of physics. Paper II ad-
dresses the properties of nanoflare trains. Given the limi-
tations of present observations, the results of both papers
are in part predictive for a future generation of instru-
ments. Section 2 addresses our methodology, including
simple outlines of the physics expected from conductive
cooling, the preferred heating of different species, and
ionization non-equilibrium. Section 3 shows results for
our single- and two-fluid models, and Section 4 provides
discussion of the main points of our results.

2. SUMMARY OF RELEVANT PHYSICS

We begin by considering the situation when a coronal
loop (or sub-loop) cools in response to a nanoflare by
the evolution of a single-fluid plasma (Te = Ti) along a
magnetic field line. We deal with the case of electron-ion
non-equilibrium in Section 2.2. The energy equation is,

∂E

∂t
= − ∂

∂s
[v(E + P )]− ∂Fc

∂s
+Q− n2Λ(T ), (1)

where v is the velocity, E = p/(γ − 1) + ρv2/2, Fc =
−κ0T 5/2∂T/∂s is the heat flux, Q is a heating function
that includes both steady and time-dependent compo-
nents, Λ(T ) = χTα is the radiative loss function in an
optically thin plasma (e.g. Klimchuk et al. 2008) and s is
a spatial coordinate along the magnetic field. In addition
the equations of mass and momentum conservation are
solved. These equations are closed by p = 2nkBT , the
equation of state. For a given initial state and Q, the
plasma evolution can then be followed.

In this paper, two approaches are used to solve Equa-
tion 1. One uses the HYDRAD code (Bradshaw &
Cargill 2013) which solves the full field-aligned hydrody-
namic two-fluid equations. The second develops further
the zero-dimensional Enthalpy Based Thermal Evolution
of Loops (EBTEL) approach which solves for average
coronal plasma quantities (Klimchuk et al. 2008; Cargill
et al. 2012a,b, 2015). In this paper we compare the HY-
DRAD and EBTEL results and outline some restrictions
that apply to the use of EBTEL when modeling the hot
coronal component. However, the value of the EBTEL
approach lies in its simplicity and computational speed,
and the consequent ability to model the corona as a mul-
tiplicity of thin loops for long times, as we do in Paper
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II. Such calculations remain challenging for field-aligned
hydrodynamic models.

The derivation of the single-fluid EBTEL equations
can be found in (Klimchuk et al. 2008; Cargill et al.
2012a). We assume subsonic flows, and Equation 1 and
the equation of mass conservation are solved for nanoflare
energy input. EBTEL treats the corona and TR as sepa-
rate regions, matched at the top of the TR by continuity
of conductive and enthalpy fluxes. It produces spatially-
averaged, time-dependent quantities (e.g. T̄ (t), n̄(t)) in
the corona and can also compute quantities at the loop
apex and the corona/TR boundary. The single-fluid
EBTEL equations are,

1

γ − 1

dp̄

dt
= Q̄− 1

L
(RC +RTR), (2)

γ

γ − 1
(pv)0 + Fc,0 +RTR = 0, (3)

dn̄

dt
=− c2(γ − 1)

2c3γLkBT̄
(Fc,0 +RTR). (4)

Here an overbar denotes a coronal average, Fc,0 =

−(2/7)κ0T
7/2
a /L is the heat flux at the top of the TR

(see also Section 2.1), RC = n̄2Λ(T̄ )L, is the integrated
coronal radiation, RTR is the integrated TR radiation,
and L is the loop half-length. The subscript “0” denotes
a quantity at the top of the TR and “a” denotes a quan-
tity at the loop apex. Solving this set of equations re-
quires the specification of three (semi-)constants that are
defined by c1 = RTR/RC , c2 = T̄ /Ta and c3 = T0/Ta.
c2 and c3 can be taken as constant, with values of 0.9 and
0.6 respectively. Cargill et al. (2012a) discuss the full im-
plementation of c1 = c1(Ta, L). Appendix A provides
a detailed discussion of the additional corrections
we have applied to c1 in order to ensure better
agreement with HYDRAD for impulsive heating
scenarios. Equation 2 is a statement of energy conser-
vation in the combined corona and TR. Equation 3 is
the TR energy equation: if the heat flux into the TR
is greater (smaller) than its ability to radiate then there
is an enthalpy flux into (from) the corona. Equation 4
combines Equation 3 with that of mass conservation.

2.1. Heat Flux Limiters

It is well known that thermal conduction deviates
from the familiar Spitzer-Härm formula (Spitzer & Härm
1953) at high temperatures (e.g. Ljepojevic & MacNe-
ice 1989). There is a firm upper limit on the heat flux:
the free-streaming limit, Fs = (1/2)fnkBTVe, where
Ve is the electron thermal speed and f , a dimension-
less constant, is determined from a combination of lab
experiments, theory, and numerical models. The free-
streaming flux is included in EBTEL and HYDRAD by
a simple modification (Klimchuk et al. 2008),

Fc,0 =
FcFs√
F 2
c + F 2

s

, (5)

where Fc is the Spitzer-Härm heat flux. Smaller val-
ues of f limit the heat flux to a greater degree. There
is some disagreement on the optimal value of f .
Luciani et al. (1983) use f = 0.1 while Karpen &
DeVore (1987) use f = 0.53, and Patsourakos &

Klimchuk (2005) choose f = 1/6. Unless explic-
itly stated otherwise, we use f = 1 in order to
compare EBTEL results with those of HYDRAD
(see appendix of Bradshaw & Cargill 2013). The
main aspect of inclusion of a free-streaming limit is to
slow down conductive cooling. We do not consider here
other conduction models (e.g. the non-local model dis-
cussed in the coronal context by Karpen & DeVore 1987;
Ciaravella et al. 1991; West et al. 2008) since they lead
to similar generic results.

2.2. Two-fluid Modeling

In some parameter regimes nanoflare heating can
also induce electron-ion non-equilibrium if the heating
timescale is shorter than the electron-ion equilibration
timescale. Interactions between electrons and ions in a
fully-ionized hydrogen plasma like the solar corona are
governed by binary Coulomb collisions. Thus, the equil-
bration timescale is τei = 1/νei, where νei is the collision
frequency and is given by,

νei =
16
√
π

3

e4

memi

(
2kBTe
me

)−3/2
n ln Λ, (6)

where Te is the electron temperature, me,mi are the elec-
tron and ion masses respectively and ln Λ is the Coulomb
logarithm (see both Eq. 2.5e and Section 3 of Braginskii
1965). For n ∼ 109 cm−3 and Te ∼ 107 K, parame-
ters typical of nanoflare heating, τei ≈ 800 s. Thus,
any heating that occurs on a timescale less than 800 s,
such as a nanoflare with a duration of τ ≤ 100 s, will
result in electron-ion non-equilibrium. While chromo-
spheric evaporation during and after the nanoflare will
increase n and thus decrease νei, we argue that during
the early heating phase, τei � τ , with 800 s being an
upper bound on τei.

While it is often assumed that the electrons are the re-
cipients of the prescribed coronal heating function, ion
heating in the solar corona should not be discounted
since the exact mechanism behind coronal heating is still
unknown. For example, ions may be heated via ion-
cyclotron wave resonances (Markovskii & Hollweg 2004)
or magnetic reconnection (Ono et al. 1996; Drake & Swis-
dak 2014). To address this possibility and include effects
due to electron-ion non-equilibrium, we have applied the
EBTEL analysis outlined in Klimchuk et al. (2008) to
the two-fluid hydrodynamic equations in the form given
in the appendix of Bradshaw & Cargill (2013). Such an
approach allows us to efficiently model a two-component
impulsively-heated coronal plasma, and will be used ex-
tensively in Paper II.

The two-fluid EBTEL equations are derived fully in
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Appendix B and are,

d

dt
p̄e =

γ − 1

L
[ψTR − (RTR +RC)]+

kBn̄νei(T̄i − T̄e) + (γ − 1)Q̄e, (7)

d

dt
p̄i = −γ − 1

L
ψTR + kBn̄νei(T̄e − T̄i)+

(γ − 1)Q̄i, (8)

d

dt
n̄ =

c2(γ − 1)

c3γLkBT̄e
(ψTR − Fce,0 −RTR). (9)

This set of equations is closed by the equations of state
pe = kBnTe and pi = kBnTi. While the notation above is
largely self-evident, we draw attention to the additional
term ψTR which originates in the need to maintain charge
and current neutrality and is defined by Equation B23.
Additionally, in both the single- and two-fluid versions
of EBTEL used here, we have implemented an adaptive
time-stepping routine to ensure that we are correctly re-
solving the thermal conduction timescale.

2.3. Ionization Non-equilibrium

Ionization non-equilibrium has long been known to be
an issue in the interpretation of data from the impulsive
phase of flares, and more recently it has been discussed
in the context of nanoflares (Bradshaw & Cargill 2006;
Reale & Orlando 2008). The main issue is that when
a tenuous plasma is heated rapidly, it takes a certain
time to reach ionization equilibrium so that the ioniza-
tion states present do not reflect the actual (electron)
temperature, assuming that the heating occurs mainly to
electrons (see Section 2.2 and Section 3.2) rather than the
heavier ions such as Fe that contribute to the observed
radiation. If the heating is sustained, then eventually
ionization equilibrium will be reached, and this may oc-
cur in moderate to large flares. However, for nanoflares
that may last for anywhere between a few seconds and a
few minutes, a different scenario arises in which on ter-
mination of heating, rapid conductive cooling arises, so
that the high ionization states may never be attained.

Bradshaw & Cargill (2006), Reale & Orlando (2008)
and Bradshaw (2009) have all addressed this point us-
ing slightly different approaches, but with similar con-
clusions, namely that short nanoflares in a low-density
plasma are unlikely to be detectable. We now develop
this work further to assess how the results in the first
parts of Section 3 are altered. We follow these au-
thors and calculate an “effective temperature” (Teff ) as
a proxy for the deviation from ionization equilibrium.
This involves taking a time-series of T and n (e.g. from
EBTEL) and using the numerical code1 described in
Bradshaw (2009) to calculate the fractional ionization
of as many states of various elements as needed, and in
turn this calculates Teff , a temperature that would be
measured based on the actual ionization states. We pri-
marily consider Fe between Fe IX and Fe XXVII, though
Ca has also been calculated as a check on these results.

1 The numerical code used here has been made freely avail-
able by the author and is available at https://github.com/
rice-solar-physics/IonPopSolver.

The feature that will prove of great relevance in our
results is that despite the different nanoflare durations,
Teff does not exceed 10 MK. There is also an “over-
shoot” of Teff when it reaches its maximum value: this
is saying that collisions are still not strong enough for the
adjustment of the ionization state to be instantaneous.

3. RESULTS

We now show a series of simulations of a single
nanoflare with our zero-dimensional single- and two-fluid
hydrodynamic EBTEL models, and the HYDRAD code.
Paper II discusses long trains of multiple nanoflares of
varying frequency in multiple loops. All results were pro-
cessed using the IPython ecosystem (Pérez & Granger
2007) and the NumPy scientific computing package
(van der Walt et al. 2011). All plots were produced using
the matplotlib graphics environment (Hunter 2007).

An important output of all these models is the coro-
nal emission measure. In EBTEL the emission measure
for the entire coronal part of the loop is calculated us-
ing the familiar expression EM = n2(2L), where L is the
loop half-length. We consider a temperature range of
4.0 ≤ log T ≤ 8.5 with bin sizes of ∆ log T = 0.01. At
each time ti, the coronal temperature range [T0, Ta] is
calculated from T̄ (T̄e for the two-fluid model). For each
bin that falls within [T0, Ta], n̄2i (2L) is added to that bin,
where n̄i is the spatially-averaged number density at ti.
The emission measure in each bin is then averaged over
the entire simulation period. When measured observa-
tionally, EM(T ) is a line-of-sight quantity. Assuming an
aspect ratio (i.e. ratio of loop length to loop width) of
10, we apply a correction factor 1/10 to all calculated
EM curves. The emission measure from HYDRAD is
calculated using quantities averaged over the upper 80%
of the loop which corresponds to the coronal portion of
the loop.

3.1. Single-fluid Parameter Variations

3.1.1. Varying Pulse Duration

In the first set of results we assume the plasma behaves
as a single fluid, use a flux limiter of f = 1, and ignore
ionization non-equilibrium. The solid curves in Figure 1
show average temperature (upper left panel) and den-
sity (lower left panel) as a function of time for a single
nanoflare in a loop with 2L = 80 Mm where the EBTEL
approach is used. The heating function takes the form of
a triangular pulse for four different pulse durations, τ =
20, 40, 200, and 500 s, as indicated by the legend in the
right panel. The peak heating rate is varied such that the
total energy input is 10 ergs cm−3 for all cases. These
parameters correspond roughly to bright AR core loops
(Warren et al. 2012). In order to ensure that the temper-
ature and density do not become negative, a small back-
ground heating of magnitude Hbg = 3.5×10−5 ergs cm−3

s−1 is enforced at all times. It can be seen that shorter
pulses give higher temperatures, as expected. Further-
more, in this early heating phase, one would expect the

maximum temperature to scale roughly as H
2/7
0 (where

H0 is the peak heating rate); this is approximately what
is found. On the other hand, the different pulse durations
give approximately the same maximum density, with the
shortest pulse reaching its peak value roughly 200 s be-
fore the longest.

https://github.com/rice-solar-physics/IonPopSolver.
https://github.com/rice-solar-physics/IonPopSolver.
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Figure 1. Left: Temperature (upper panel) and density (lower panel) profiles for a loop with 2L = 80 Mm. Each heating profile is
triangular in shape with a steady background heating of Hbg = 3.5 × 10−5 ergs cm−3 s−1. The duration of the heating pulse is varied
according to τ = 20, 40, 200, 500 s, with each value of τ indicated by a different color, as shown in the right panel. The total energy
injected into the loop is fixed at 10 ergs cm−3. Note that time is shown on a log scale to emphasize the behavior of the heating phase.
Right: Corresponding EM(T ) for each pulse duration τ . The relevant parameters and associated colors are shown in the legend. EM(T ) is
calculated according to the procedure outlined in the beginning of Section 3. In all panels, the solid (dotted) lines show the corresponding
EBTEL (HYDRAD) results (see Section 3.1.2).

The solid lines in the right panel of Figure 1 show the
corresponding EBTEL emission measure distributions,
EM(T ). The temperature of maximum emission (Tm)
and the peak emission measure (EM(Tm))are the same
in all cases and are consistent with those found in the
studies of AR core loops (e.g. Warren et al. 2012). While
shorter pulses lead to higher initial temperatures, the
shape of the emission measure below Tm is independent
of the properties of the heating pulse, indicating that this
part of the emission measure distribution cannot provide
information about the actual nanoflare duration or in-
tensity. All cases show evidence of the heating phase,
namely the bump on EM(T ) at log (T ) = 6.85, 7, 7.2
and 7.3. Below these bumps to just above T = Tm,
EM(T ) scales as T−5 − T−5.5 for all cases, again indi-
cating that information about the heating process is lost
at these temperatures. However, detection of emission
above Tm in a single structure would still be evidence
for nanoflare heating, though of undetermined duration.

For integration over the lifetime of unresolved struc-
tures lying transverse to the line of sight, one can write
down an expression EM(T ) ∼ n2τcool(n, T ) which sim-
ply states that what matters for determining EM(T ) is
how long the plasma spends at any given temperature
(e.g. Cargill 1994; Cargill & Klimchuk 2004). For an an-
alytic solution for the cooling, one can formally define
τcool(n, T ) = (T/(dT/dt)). In the absence of a formal
solution, order of magnitude scalings can be used: the
difference with analytic solutions being a numerical fac-
tor. To obtain an expression EM(T ) ∝ T−b, one needs
to provide a relation between T and n. For conductive
cooling of the corona, one can write τcool ∼ nL2T−5/2,
giving EM ∼ n3L2T−5/2. In determining the relation-

ship between T and n, two limits are those of constant
density and constant pressure. The former gives static
conductive cooling (e.g. Antiochos & Sturrock 1976) and
the latter evaporative cooling with constant thermal en-
ergy (e.g. Antiochos & Sturrock 1978), which then lead
to b = 5/2 and 11/2 respectively. Fitting the EBTEL
EM(T ) results for τ ≤ 200 s (see right panel of Fig-
ure 1) to T−b on 106.8 < T < 107 K yields b ∼ 4.5−5
which are more consistent with the latter.

3.1.2. HYDRAD Comparison

We now compare EBTEL and HYDRAD results for the
different values of τ . The dotted lines in all three panels
of Figure 1 show the corresponding HYDRAD results,
where averaging is over the upper 80% of the loop. The
background heating in the two codes has been adjusted
to ensure that EBTEL and HYDRAD start with the the
same initial density since the initial temperature rise will
depend on the assumed background density.

There is good agreement between the HYDRAD and
EBTEL results for τ ≥ 200 s with the well-documented
result that EBTEL gives somewhat higher density max-
ima than HYDRAD (see Cargill et al. 2012a). For
τ = 20, 40 s, while the peak temperatures are at a level of
agreement consistent with previous work (Cargill et al.
2012a), there are notable differences in the initial temper-
ature decay from the maximum in the upper left panel
of Figure 1 due to the difference in the initial density
response.

It can be seen that the EBTEL density begins to rise
almost immediately following the onset of heating, while
there is a lag in the HYDRAD density. This is due to a
delay in the upflow of material from the TR because a
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finite time is required to get material moving up the loop,
an effect absent from 0D models. The slower density
rise seen with HYDRAD leads to the faster conductive
cooling. Another feature of the short pulses is the very
spiky density profile as a function of time. This is a well-
known effect, particularly in flare simulations, and is due
to pairs of oppositely-directed flows colliding at the loop
top, and subsequently bouncing back and forth.

As a result of this discrepancy in the density behavior,
while the emission measure calculated from the EBTEL
model “sees” temperatures well in excess of 10 MK for
short pulses, in the HYDRAD model this will not be
the case. This is evident from the short pulses in the
right panel of Figure 1: the emission above 10 MK pre-
dicted by EBTEL is not present in the HYDRAD runs,
the emission cutting off just above 107 K. For the longer
pulses, EBTEL still shows emission at higher tempera-
tures, but the difference with HYDRAD is evident now
over a smaller temperature range. Also, the character-
istic bumps on the emission measure seen with EBTEL
are largely eliminated in the HYDRAD runs.

This regime of short heating pulses was not consid-
ered in our earlier work using EBTEL, and the associ-
ated comparisons with field-aligned hydrodynamic codes
(Klimchuk et al. 2008; Cargill et al. 2012a), where pulses
of order 200 s or greater were considered. Other workers
have used short pulses with EBTEL, albeit much less in-
tense (Tajfirouze et al. 2016a,b). Clearly the more gentle
the heating profile used, the slower the rise in the EBTEL
density, leading to results closer to those found using
HYDRAD. Thus it appears that caution is warranted in
the use of approximate models for short, intense heating
pulses. This restriction only applies to the high temper-
ature regime: as can be seen from Figure 1, the emission
measure profiles below 106.8 are not affected. Nonethe-
less, the absence of emission near 10 MK for short pulses
constitutes one of many obstacles to quantifying any hot
plasma component due to nanoflares.

3.1.3. Heat Flux Limiter

Figure 2 shows the effect of using a flux limiter ver-
sus Spitzer conduction on the emission measure distribu-
tion. Five different values of f are shown: 1 (blue,
Bradshaw & Cargill 2013, consistent with HY-
DRAD), 0.53 (green, Karpen & DeVore 1987),
1/6 (red, Patsourakos & Klimchuk 2005), 0.1
(purple, Luciani et al. 1983), and 1/30 (yellow).
The pulse duration is 200 s and only the EBTEL results
are shown. Note that for this pulse length, the HYDRAD
results are expected to be similar.

As expected, inclusion of a limiter extends EM(T ) to
higher temperatures, though this is only notable above 10
MK. As the temperature falls to this value, evaporative
upflows have increased the coronal density so that the
Spitzer description is recovered. Above 10 MK flux lim-
iting gradually becomes important, albeit with a small
emission measure. Using f = 0.53, 1 yield EM(T ) that
are not discernibly different from that produced
by pure Spitzer conduction while f = 1/6, 0.1 ex-
tend EM(T ) to significantly hotter temperatures.
f = 1/30, the most extreme flux limiter, yields
an emission well above 107.5 K. Note that for
all cases, EM(T ) converges to the same value for
T ≤ 10 MK.

107
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1024
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1028

E
M

(c
m
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)

f=1

f=0. 53

f=1/6

f=0. 1

f=1/30

Spitzer

Figure 2. EM(T ) calculated from the single-fluid EBTEL model
when only pure Spitzer conduction is used (turquoise, dashed) and
when a flux limiter is imposed according to Section 2.1. In the free-
streaming limit, five different values of f are considered (see
legend). The pulse duration is τ = 200 s. All other parameters
are the same as those discussed in Section 3.1.1. Note that here
we only show EM(T ) for T > Tm as the cool side of EM(T ) is
unaffected by our choice of f .

For flux-limited thermal conduction, τcool ∼ LT−1/2 so
that the parameter b lies between 1/2 and 5/2, depend-
ing on the assumption about n. For f = 1/30, b = 5/2
is found in Figure 2 by fitting EM(T ) to T−b on
107 ≤ T ≤ 107.5 K. Since the free-streaming limit slows
conduction cooling relative to that given by Spitzer, the
plasma will spend more time at any given temperature,
leading to smaller values of b. Similar conclusions hold
for other conduction models (e.g. the non-local model
discussed in the coronal context by Karpen & DeVore
1987; West et al. 2008) since they all inhibit conduction.
While limiting of conduction is often regarded as an im-
portant process in coronal cooling, these results suggest
that for nanoflare heating it may not be that important
unless extreme values of the limiting parameter are used.

3.2. Two-fluid Effects

3.2.1. Electron Heating

We now use our two-fluid model to consider the role of
separate electron or ion heating, focusing on cases when
only the electrons or ions are heated in order to highlight
the essential difference between the two scenarios. Inter-
mediate cases of energy distribution will be considered
in subsequent papers. The solid lines in the left panels
of Figure 3 show the electron temperature (upper panel),
ion temperature (middle panel) and density (lower panel)
as a function of time from the two-fluid EBTEL model
for τ = 20, 40, 200, 500 s for electron heating. The dot-
ted lines show the corresponding HYDRAD results and
are discussed in Section 3.2.3 The electrons now cool by
a combination of thermal conduction and temperature
equilibration, the latter becoming significant at 150 (450)
s for short (long) pulses. The ions thus heat rather slowly,
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Figure 3. Two-fluid EBTEL simulations for τ = 20, 40, 200, 500 s in which only the electrons are heated. Left: Electron temperature
(upper panel), ion temperature (middle panel), and density (lower panel). Right: Corresponding EM(T ) calculated according to Section 3.
The pulse durations and associated colors for all panels are shown on the right. All parameters are the same as those discussed in
Section 3.1.1. In all panels, the solid (dotted) lines show the corresponding EBTEL (HYDRAD) results.

reaching a peak temperature of 5 MK, which overshoots
the electron temperature at that time. The ions then
cool via ion thermal conduction and equilibration, with
Te ≈ Ti after typically a few hundred seconds.

The solid lines in the right panel of Figure 3 show the
resulting EM(T ). In the case of electron heating and
τ < 500 s, the emission measure slope over the tem-
perature interval log TM < log T < 6.8 is considerably
steeper compared to the single-fluid case. Recall that in
the single-fluid case we assume that conduction is the
only relevant cooling mechanism prior to the onset of
radiative cooling such that under the assumption of con-
stant pressure, EM ∝ T−11/2 (see Section 3.1). When we
allow for electron-ion non-equilibrium and heat only the
electrons, both of these assumptions break down. Fol-
lowing the onset of conductive cooling, Te � Ti, but the
loop has now begun to fill. The equilibration term plays
the part of a cooling term so long as Te > Ti and is the
dominant cooling mechanism for several hundred seconds
in between the peak electron temperature and the peak
density (see Figure 8). Thus, our expression for τcool
should include some contribution from the equilibration
term in this temperature regime.

Figure 4 shows pressure (blue lines) and density (red
lines) as a function of temperature for the τ = 200
s case; both the single-fluid case and the case where
only the electrons are heated are shown. While pe + pi
(blue dotted line), the total pressure, like the single-fluid
pressure p (blue solid line) is constant over the interval
106.65 < T < 106.8, the electron pressure, pe (blue dashed
line) is not, meaning n ∝ T−1e is not a valid scaling law
in the two-fluid, electron-heating case. Comparing the
two-fluid density (dashed red line) and the single-fluid
density (solid red line) easily confirms this. To derive
a emission measure slope for the case in which only the
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Figure 4. Pressure (left axis, blue lines) and density (right axis,
red lines) as a function of temperature for the τ = 200 s case. All
parameters are the same as those discussed in Section 3.1.1. The
single-fluid pressure p and density n are denoted by the solid blue
and red lines, respectively. The two-fluid total pressure, pe + pi,
electron pressure, pe, and ion pressure, pi, are denoted by the dot-
ted, dashed, and dot-dashed blue lines respectively. The two-fluid
density is represented by the dashed red line. Pressure, density,
and temperature are all shown on a log scale.

electrons are heated, these effects must be accounted for
in the EM(T ) ∼ n2τcool(n, T ) scaling. Thus, while a
power-law b may be calculated by fitting the hot
part of the EM(T ) to T−b, it is difficult to gain any
physical insight from such a fit using the scaling
discussed in Section 3.1.1.
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3.2.2. Ion Heating

Figure 5 shows the electron temperature (upper left
panel), ion temperature (middle left panel), density
(lower left panel) and the corresponding emission mea-
sure (right panel) for τ = 20, 40, 200, 500 s when only
the ions are heated. The solid lines show the two-fluid
EBTEL results while the dotted lines show the corre-
sponding HYDRAD results (see Section 3.2.3). Ion heat-
ing leads to significantly higher temperatures due to the
relative weakness of ion thermal conduction, consistent
with the expected enhancement of (κ0,e/κ0,i)

2/7. The
hot ions cool by a combination of weak ion thermal con-
duction and temperature equilibration. However, be-
cause the Coulomb coupling timescale during the early
heating phase (when Ti � Te and the density is low) is
much larger than the ion thermal conduction timescale,
by the time the electrons can “see” the ions, they have
cooled far below their peak temperature. The peak elec-
tron temperature in all cases lies below 10 MK. Because
EM(T ) is constructed from the electron temperature, the
emission measure never sees T ≥ 107 K, with EM(T ) be-
ing truncated sharply near 106.9 K for all values of τ .

The reason for slower equilibration for ion heating can
be seen by comparing the density plots in the lower left
panels of Figure 3 and Figure 5. These show that while
the peak values of the density are similar for both heat-
ing mechanisms, the temporal behavior differs for ion
heating with shorts pulses: for these cases, the density
takes considerably longer to reach the maximum value.
This can be attributed to the relative weakness of ion
thermal conduction. Examination of Equation B18 and
Equation B23 shows that an upward enthalpy flux can
only be effective for ion heating once temperature equili-
bration has become significant and an electron heat flux
is established. In turn, once the upflow begins, the coro-
nal density increases, making equilibration more effec-
tive. Thus, once temperature equilibration starts to be
effective, these processes combine to give a rapid increase
in density, as shown.

In the case where the heating pulse duration is long,
τ = 500 s, the difference between the two-fluid and
single-fluid emission measure distributions is diminished.
Because the electrons are heated slowly, they do not have
much time to evolve out of equilibrium with the ions.
This in turn heavily dampens the Coulomb exchange
term, allowing the two populations to evolve together
as a single fluid.

3.2.3. HYDRAD Comparison

The dotted lines in all panels of Figure 3 and
Figure 5 show the corresponding HYDRAD re-
sults for both electron and ion heating, respec-
tively. As in Section 3.1.2, the averaging is done
over the upper 80% of the loop and the back-
ground heating has been adjusted appropriately.
For τ ≥ 200 s, we find acceptable agreement in n,
Te, and EM(T ).

For τ = 20, 40 s, the upper and lower panels of
Figure 3 show discrepancies in Te and n similar
to those discussed in Section 3.1.2. The initial
decay from the peak electron temperature is not-
icably different in the EBTEL runs compared to
the corresponding HYDRAD runs, again due to

the difference in the initial density response. The
discrepancies in the density are exacerbated in
the electron heating case (compared to the single-
fluid case) since all of the energy is partitioned to
the electrons, resulting in a stronger electron heat
flux and a subsequently stronger upflow. The
right panel of Figure 3 shows the effect of this
premature rise in the density on EM(T ) for these
short pulses: while EBTEL predicts significant
emission above 10 MK, the emission in the HY-
DRAD runs cuts off just below 106.9 K.

In the ion heating case, we find acceptable
agreement in Te and EM(T ) despite similar dis-
crepancies in n for the shortest heating pulses,
τ = 20, 40 s. Because no heat is supplied to the
electrons directly, the electron heating timescale
is set by the Coulomb collision frequency (see
Equation 6), meaning energy is deposited to the
electrons over a timescale much longer than 20
or 40 s. The resulting slow evolution of Te leads
to subsequently weaker upflows. Because of the
much more gentle rise in density, the electrons are
not able to “see” the ions until they have cooled
well below 10 MK (see Section 3.2.2)..

In the middle panels on the left-hand side of
Figure 3 and Figure 5, the ion temperature in
HYDRAD is greater than that of EBTEL by a
factor of ∼ 3 − 4 in the late heating/early con-
ductive cooling phase. These spikes in Ti are
due to steep velocity gradients that heat the ions
through compressive heating and viscosity, two
pieces of physics that are not included in EBTEL.
Because ion thermal conduction is comparatively
very weak, these sharp features in Ti are not as
efficiently smoothed out. While these differences
in Ti are more prominent when τ = 20, 40 s, they
still persist for τ ≥ 200 s.

3.3. Ionization Non-equilibrium

The final set of results includes our approximate treat-
ment of non-equilibrium ionization, again using the
EBTEL approach. The red curves in the left (right)
panel of Figure 6 show Teff for τ = 20 (500) s for the
single-fluid, electron heating, and ion heating cases. For
comparison, equivalent results for T (single-fluid) and Te
(two-fluid) that assume ionization equilibrium are shown.
For all cases, Teff never rises above 10 MK for the short
pulse and 8 MK for the long pulse. Thus, for the short
pulse, because a sufficiently long time is required to ionize
the plasma, the hottest electron temperatures are never
likely to be detectable. For the longer pulse, the slow
heating gives the ionization states the opportunity to
“catch up”; thus Teff is a reasonable reflection of the
actual plasma state.

The red curves in Figure 7 show the corresponding
EM(Teff ). The effect of ionization non-equilibrium is to
truncate EM around or below 10 MK. The bump on the
distribution characteristic of the heating phase is also re-
located to lower temperatures. This confirms the earlier
comment that, at least for short pulses, the hot electron
plasma above 10 MK is undetectable. While the heat-
ing signature is shifted to smaller values of Teff , one
has no way of knowing the duration of the pulse that
generates it. Thus it seems as if the temperature range
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where only the electrons (dashed) or only the ions (dot-dashed) are heated. T (t) profiles (i.e. assuming ionization equilibrium) for τ = 20
s (blue lines) and τ = 500 s (purple lines) for all three heating scenarios are repeated here for comparison purposes.

Tm < T < 10 MK is the optimal one for searching for
this hot component as well as direct signatures of the
heating. However, it is difficult to “map” what would be
seen in such a state of ionization non-equilibrium back
to the real system.

4. DISCUSSION

This paper has begun to address signatures of the so-
called “hot” plasma component in the non-flaring corona,
especially ARs, that is perceived as providing essential
evidence for the existence of nanoflares. In this first pa-
per in a series, we have used zero-dimensional and field-
aligned single- and two-fluid modeling to examine the
possible signatures of a single nanoflare occuring in a low-

density plasma. This corresponds to the simplest case of
so-called “low frequency” (LF) nanoflares, where a coro-
nal loop is heated by many events with the same energy
and with a time between events longer than the charac-
teristic cooling time such that the plasma is allowed cool
significantly before being reenergized.

When an approximate single-fluid model assuming ion-
ization equilibrium is used, the expected signatures of
conductive cooling appear in the distribution of plasma
as a function of temperature, as described by the emis-
sion measure. In particular, short nanoflares with dura-
tion under 100 sec should have a significant plasma com-
ponent well above 10 MK, and for longer duration events,
significant plasma between the temperature of the max-
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imum emission measure and 10 MK. However, inclusion
of several pieces of additional physics modifies this result
considerably, in each case making it much less likely that
any plasma that is above 10 MK can be detected.

For short nanoflares, the time taken for conductively-
heated chromospheric plasma to move into the coronal
part of a loop is sufficiently long that the initial hot
coronal plasma cools rapidly, contributing little to the
emission measure such that, once the coronal density has
increased, its temperature is below 10 MK. This effect is
less important for long duration nanoflares. Consider-
ation of separate electron and ion heating shows that,
while electron heating leads to similar results to the sin-
gle fluid case, ion heating results in no emission measure
at 10 MK due to the principal electron heating mecha-
nism being a relatively slow collisional process. Finally,
relaxing the assumption of ionization equilibrium leads
to a truncation of the emission measure below 10 MK,
since the time needed to create highly ionized states such
as Fe XXI is longer than any relevant cooling time. In
all cases the hot plasma, while still in the corona, is ef-
fectively “dark”. In addition, characteristic structures in
the emission measure profile that are a signature of the
heating itself in simple models are all but eliminated.

These results suggest that while showing that such a
“hot” plasma should exist in principle may not be diffi-
cult, characterizing the heating process from its observed
properties may be a lot harder. Of course we have lim-

ited ourselves to the LF nanoflares here, and we showed
(Cargill 2014) that the intermediate frequency nanoflare
regime does have significant differences, in large part due
to the range of densities that the nanoflares occur in.
This will be addressed fully, along with other parameter
variations, in Paper II, though it is difficult to see how a
component hotter than 10 MK can be resurrected. Note
though that the results of Caspi et al. (2015) pose a chal-
lenge for our scenario unless an undetected microflare or
small flare occurred during the observations.

The observational aspects of this work will be ad-
dressed more fully in Paper II. However, one can conclude
(i) present day observations do not seem capable of mak-
ing quantitative statements about the “hot” component,
though they are highly suggestive of its existence and
(ii) future measurements should be concentrated in the
temperature regime 106.6 – 107 K rather than at higher
temperatures. The MaGIXS instrument, due to fly in
2017, is well positioned to do this.

WTB was provided travel support to the Coronal
Loops Workshop VII held in Cambridge, UK, July 21-
23, 2015, at which a preiliminary version of this work was
presented, by NSF award number 1536094. We thank the
anonymous referee whose comments helped to improve
the final draft of this paper.

APPENDIX

MODIFICATIONS TO C1 DURING THE CONDUCTIVE COOLING PHASE

In Section 3 of Cargill et al. (2012a) we assumed that the parameter c1 decreased from its equilibrium value at the
time of maximum density, to that commensurate with radiative/enthalpy cooling as the loop drained. This was defined
in terms of the ratio n/neq, where neq was the loop density that would exist for the calculated temperature were the
loop to be in static equilibrium (Equation 17 of Cargill et al. 2012a). In this radiative phase, n > neq. On the other
hand, when n < neq, we assumed c1 took on its equilibrium value, c1,eq. Defining ∆ ≡ (nEBTEL−nHYDRAD)/nHYDRAD,
this gave ∆ . 0.2, acceptable errors in the EBTEL value of n, as shown in the figures in Cargill et al. (2012a), in
particular for the mild nanoflares we considered.

It is now clear that a modified description of c1 for n < neq is needed for many of the examples discussed in the
present paper. Specifically, for intense heating events, the coronal density calculated by the version of EBTEL in
Cargill et al. (2012a) is unacceptably high when compared to results from the HYDRAD code. Quantitatively, we
find ∆ & 0.3 at nmax. While this may seem to be reasonable for an aproximate model, the high EBTEL density is a
systematic feature, and requires further investigation.
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Table 1
Comparison between HYDRAD and EBTEL with c1 = 2 and c1 given by Equation A1, for

n < neq . The first three columns show the full loop length, heating pulse duration, and maximum
heating rate. The last three columns show nmax for the three models. Only nmax is shown as
Tmax is relatively insensitive to the value of c1. The first two rows correspond to the τ = 200, 500
s cases considered in this paper. The next four rows are the four cases shown in Table 2 of Cargill
et al. (2012a). The last two rows are cases 6 and 11 from Table 1 of Bradshaw & Cargill (2013).

2L τ H0 nmax, HYDRAD nmax, EBTEL nmax, EBTEL (Eq. A1)
(Mm) (s) (erg cm−3 s−1) (108 cm−3) (108 cm−3) (108 cm−3)

80 200 0.1 37.6 44.2 39.6
80 500 0.04 37.7 44.1 39.3
150 500 0.0015 3.7 3.8 3.4
50 200 0.01 10.7 11.3 10.1
50 200 2 339.0 391.8 351.0
50 200 0.01 15.5 16.3 14.3
40 600 0.8 350.0 452.9 391.0
160 600 0.005 10.0 10.2 9.1

Examination of the HYDRAD results shows that EBTEL significantly underestimates the TR radiative losses during
the heating and conductive cooling phases. At this time, the loop is under-dense (e.g. Cargill & Klimchuk 2004), so
that an excess of the conducted energy goes into evaporating TR material. We have modified c1 as follows for n < neq,

c1 =
2c1,eq + c1,cond((neq/n)2 − 1)

1 + (neq/n)2
, (A1)

as a direct analogy to Eq. 18 of Cargill et al. (2012a). In the early phases of an event, n� neq, so that c1 ≈ c1,cond.
When n = neq, c1 = c1,eq. After some experimentation, we have settled on a choice of c1,cond = 6 since that gives
reasonable agreement between EBTEL and HYDRAD. There is no impact on the solution for n > neq.

Table 1 shows a set of runs we have carried out to compare the results from HYDRAD and EBTEL with c1 = c1,eq = 2
(fifth column) and with c1 given by Equation A1 (sixth column), when n < neq. We find that using the modification
in Equation A1 gives, for the more intense heating cases with τ ≥ 200 s, ∆ ∼ 0.1 at nmax. For the more gentle heating
profiles of Cargill et al. (2012a) and Bradshaw & Cargill (2013) (i.e. rows 3, 4, 6, and 8 of Table 1), we continue to
find ∆ . 0.2, confirming that the modification proposed here is applicable to a wide range of heating scenarios. For
short, intense pulses like the τ = 20, 40 s cases addressed in this paper, we still find ∆ > 0.2. We have addressed the
limitations of such cases in Section 3.1.2.

Equation A1 is motivated by simplicity while including the essential physics. Alternative, more complex determina-
tions of c1 have been considered, but involve limitations on how EBTEL can be used both now and in the future.

DERIVATION OF THE TWO-FLUID EBTEL EQUATIONS

The two-fluid field-aligned hydrodynamic mass and energy equations, as given by Bradshaw & Cargill (2013), are:

∂ρ

∂t
= −∂(ρv)

∂s
(B1)

∂Ee
∂t

+
∂

∂s
[(Ee + pe)v] = v

∂pe
∂s
− ∂Fce

∂s
+

1

γ − 1
kBnνei(Ti − Te)− n2Λ(Te) +Qe, (B2)

∂Ei
∂t

+
∂

∂s
[(Ei + pi)v] = −v ∂pe

∂s
− ∂Fci

∂s
+

1

γ − 1
kBnνei(Te − Ti) +

∂

∂s

(
4

3
µiv

∂v

∂s

)
+ ρvg‖ +Qi, (B3)

where,

Ee =
pe

γ − 1
, (B4)

Ei =
pi

γ − 1
+
ρv2

2
, (B5)

and we assume closure through the ideal gas law, pe = kBnTe, pi = kBnTi. Note that we have assumed quasi-neutrality
such that ne = ni = n and ve = vi = v. It then follows that ρ = mene +mini ≈ min.

Note the right-hand side of Equation B2 and Equation B3: the first term represents the energy loss or gain as the
fluids move through the electric field that maintains quasi-neutrality, given by E = −(1/ne)∂pe/∂s; the third term
models the exhange of energy between the electron and ion populations via binary Coulomb collisions and is attributed
to Braginskii (1965). Though the expression presented here differs by a factor of 2 compared to that of Braginskii, we
maintain that the electron-ion equilibration time is not significantly changed by this relatively small numerical factor.

Plugging in these expressions for Ee and Ei and using the assumptions of sub-sonic flows (v < Cs) and loops shorter
than a gravitational scale height (L < 150 Mm) as outlined in Klimchuk et al. (2008), the two-fluid field-aligned
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hydrodynamic energy equations can be written,

1

γ − 1

∂pe
∂t

+
γ

γ − 1

∂

∂s
(pev) = v

∂pe
∂s
− ∂Fce

∂s
+

1

γ − 1
kBnνei(Ti − Te)− n2Λ(Te) +Qe, (B6)

1

γ − 1

∂pi
∂t

+
γ

γ − 1

∂

∂s
(piv) = −v ∂pe

∂s
− ∂Fci

∂s
+

1

γ − 1
kBnνei(Te − Ti) +Qi. (B7)

Notice that we have dropped the ion viscous and gravitational terms from Equation B3 as well as the kinetic energy
term from Equation B5. Qe and Qi represent the electron and ion heating terms, respectively. Fce and Fci are the
electron and ion heat flux terms, respectively. In the case of Spitzer conduction, κ0,e = 7.8×10−7 and κ0,i = 3.2×10−8.

The analysis now follows that of Klimchuk et al. (2008) and Cargill et al. (2012a). Assuming symmetry about the
loop apex, we integrate Equation B6 and Equation B7 over the coronal loop half-length L,

L

γ − 1

dp̄e
dt

=
γ

γ − 1
(pev)0 + Fce,0 + ψC −RC + LQ̄e, (B8)

L

γ − 1

dp̄i
dt

=
γ

γ − 1
(piv)0 + Fci,0 − ψC + LQ̄i, (B9)

where we have assumed the enthalpy flux and heat flux go to zero at the loop apex, RC =
∫
C

ds n2Λ(Te) and,

ψC =

∫
C

ds v
∂pe
∂s

+

∫
C

ds
kB
γ − 1

nνei(Ti − Te). (B10)

Similarly, integrating over the TR portion of the loop of thickness `, we obtain,

γ

γ − 1
(pev)0 = −Fce,0 + ψTR −RTR, (B11)

γ

γ − 1
(piv)0 = −Fci,0 − ψTR, (B12)

where several terms are neglected because ` � L (Klimchuk et al. 2008). Additionally, we have assumed that the
enthalpy flux and heat flux go to zero at the top of the chromosphere, RTR =

∫
TR

ds n2Λ(Te) and

ψTR =

∫
TR

ds v
∂pe
∂s

+

∫
TR

ds
kB
γ − 1

nνei(Ti − Te). (B13)

The second term in this expression is usually small, but is retained for completeness. Plugging Equation B11 (Equa-
tion B12) into Equation B8 (Equation B9),

L

γ − 1

dp̄e
dt

=ψTR + ψC − (RC +RTR) + LQ̄e, (B14)

L

γ − 1

dp̄i
dt

=− (ψC + ψTR) + LQ̄i. (B15)

Note that adding Equation B14 and Equation B15 gives the correct single-fluid EBTEL model (i.e. Equation 2).
As in the single-fluid case, we find that the spatially-integrated coronal density evolution is described by,

L
dn̄

dt
= (nv)0. (B16)

Using Equation B11 and the equation of state for pe, the above equation can be written as

(nv)0 =
(pev)0
kBTe,0

=
c2(γ − 1)

c3γkBT̄e
(−Fce,0 −RTR + ψTR), (B17)

L
dn̄

dt
=
c2(γ − 1)

c3γkBT̄e
(−Fce,0 −RTR + ψTR). (B18)

To obtain Equation 7, Equation 8, and Equation 9, we need to find expressions for ψC and ψTR. Recall that ψC
and ψTR are comprised of terms associated with the quasi-neutral electric field and temperature equilibration. The
integral of the former can be considered as the gain or loss of energy associated with plasma motion through the net
electric potential. Consider the first integral in the definition of ψC . Using integration by parts,∫

C

ds v
∂pe
∂s

= (pev)
∣∣∣“a”
“0”
−
∫
C

dv pe = −(pev)0 −
∫
C

dv pe ≈ −(pev)0 − p̄e
∫
C

dv = −(pev)0 + p̄ev0 ≈ 0. (B19)



“Hot” Non-flaring Plasmas I. Single Nanoflares 13

100 101 102 103

t (s)

−0.016

−0.008

0.000

∆
Ē
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Figure 8. Energy loss and gain mechanisms arising from a nanoflare with τ = 200 s and electron heating only. The various curves
correspond to the terms in the EBTEL two-fluid electron energy equation (Equation B24). Electron and ion thermal conduction, radiation,
binary Coulomb interactions, and ψTR are shown. The loop parameters are as in Section 3.

Thus, we can express ψC as

ψC ≈
kBL

γ − 1
n̄νei(T̄i − T̄e), (B20)

where νei = νei(T̄e, n̄). To find an expression for ψTR, we first note that, using the equation of state for both the
electrons and the ions and the quasi-neutrality condition (ne = ni),

pev

piv
=
Te
Ti
. (B21)

Evaluating this expression at the TR/corona interface (denoted by “0”), plugging in Equation B11 and Equation B12,

−Fce,0 + ψTR −RTR
−Fci,0 − ψTR

= ξ, (B22)

where ξ ≡ Te,0/Ti,0. Solving for ψTR, we find,

ψTR =
1

1 + ξ
(Fce,0 +RTR − ξFci,0). (B23)

Plugging Equation B20 and Equation B23 into Equation B14, Equation B15, and Equation B18 gives us our set of
two-fluid EBTEL equations as given in Equation 7, Equation 8, and Equation 9. The prescription for c1, c2, and c3 is
the same as the single-fluid version of EBTEL. As discussed in Cargill et al. (2012a), these play little role in the early
heating phase when two-fluid effects are important.

Plugging Equation B23 into Equation 7, the electron energy evolution equation can be written,

1

γ − 1

dp̄e
dt

=
1

L(1 + ξ)
Fce,0 −

ξ

L(1 + ξ)
Fci,0 −

ξ(c1 + 1) + 1

L(1 + ξ)
RC +

kB
γ − 1

n̄νei(T̄i − T̄e) + Q̄e, (B24)

where the first two terms on the right-hand side represent the contributions from electron and ion thermal conduction,
the third term represents losses from radiation, and the last two terms are as before. Figure 8 shows the contribution
of each term, with the exception of the heating term, Q̄e. As expected, (electron) thermal conduction dominates
during the early heating and cooling phase and losses from radiation takeover in the late draining and cooling stage.
Between these two phases, energy exchange between the two species is important to the evolution of the electron
energy. ψTR, indicated by the black dotted line, is included to show its importance in the formation of the two-fluid
EBTEL equations.

REFERENCES

Antiochos, S. K., & Sturrock, P. A. 1976, SoPh, 49, 359
—. 1978, ApJ, 220, 1137
Barnes, W. T., Cargill, P. J., & Bradshaw, S. J. 2016, in

preparation
Bradshaw, S. J. 2009, A&A, 502, 409
Bradshaw, S. J., & Cargill, P. J. 2006, A&A, 458, 987
—. 2010a, ApJ, 717, 163
—. 2010b, ApJL, 710, L39
—. 2013, ApJ, 770, 12
Bradshaw, S. J., Klimchuk, J. A., & Reep, J. W. 2012, ApJ, 758,

53
Braginskii, S. I. 1965, RvPP, 1, 205

Brosius, J. W., Daw, A. N., & Rabin, D. M. 2014, ApJ, 790, 112
Cargill, P. J. 1994, ApJ, 422, 381
Cargill, P. J. 1995, in Proceedings of the 15th National Solar

Observatory/Sacramento Peak Summer Workshop (Sunspot,
New Mexico, USA: World Scientific), 17

—. 2014, ApJ, 784, 49
Cargill, P. J., Bradshaw, S. J., & Klimchuk, J. A. 2012a, ApJ,

752, 161
—. 2012b, ApJ, 758, 5
Cargill, P. J., & Klimchuk, J. A. 2004, ApJ, 605, 911
Cargill, P. J., Warren, H. P., & Bradshaw, S. J. 2015, RSPTA,

373, 20140260
Caspi, A., Woods, T. N., & Warren, H. P. 2015, ApJL, 802, L2
Ciaravella, A., Peres, G., & Serio, S. 1991, SoPh, 132, 279



14 Barnes, Cargill, and Bradshaw

Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, SoPh,
243, 19

De Moortel, I., & Browning, P. 2015, RSPTA, 373, 40269
Del Zanna, G., & Mason, H. E. 2014, A&A, 565, A14
Del Zanna, G., Tripathi, D., Mason, H., Subramanian, S., &

O’Dwyer, B. 2015, A&A, 573, A104
Drake, J. F., & Swisdak, M. 2014, PhPl, 21, 072903
Gburek, S., Sylwester, J., Kowalinski, M., et al. 2011, SoSyR, 45,

189
Golub, L., Deluca, E., Austin, G., et al. 2007, SoPh, 243, 63
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Ishikawa, S.-n., Glesener, L., Christe, S., et al. 2014, PASJ, 66,

S15
Karpen, J. T., & DeVore, C. R. 1987, ApJ, 320, 904
Klimchuk, J. A., Patsourakos, S., & Cargill, P. J. 2008, ApJ, 682,

1351
Kosugi, T., Matsuzaki, K., Sakao, T., et al. 2007, SoPh, 243, 3
Krucker, S., Christe, S., Glesener, L., et al. 2013, in Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, Vol. 8862 (San Diego, California, USA: SPIE), 88620R

Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17
Ljepojevic, N. N., & MacNeice, P. 1989, PhRvA, 40, 981
Luciani, J. F., Mora, P., & Virmont, J. 1983, PhRvL, 51, 1664
Markovskii, S. A., & Hollweg, J. V. 2004, ApJ, 609, 1112
Miceli, M., Reale, F., Gburek, S., et al. 2012, A&A, 544, A139
Ofman, L., Klimchuk, J. A., & Davila, J. M. 1998, ApJ, 493, 474
Ono, Y., Yamada, M., Akao, T., Tajima, T., & Matsumoto, R.

1996, PhRvL, 76, 3328
Parker, E. N. 1988, ApJ, 330, 474
Patsourakos, S., & Klimchuk, J. A. 2005, ApJ, 628, 1023
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012,

SoPh, 275, 3
Petralia, A., Reale, F., Testa, P., & Del Zanna, G. 2014, A&A,

564, A3
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