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ABSTRACT

This thesis is concerned with the set covering problem,

(SCP), and in particular with the development of a new algorithm 

capable of solving large-scale SCPs of the kind found in real life 

situations.

The set covering problem has a wide variety of practical 

applications such as crew scheduling, vehicle dispatching, 

facility location, information retrieval, political districting, 

design of switching circuits and others. A common feature of most 

of these applications is that they yield large and sparse SCPs 

normally with hundreds of rows and thousands of columns.
Despite the large amount of research that has been done on 

the set covering problems in the last two decades, it was only 

recently that reasonably large SCPs have been solved. In this 

thesis we present an algorithm capable of solving problem of this 

size more efficiently, and a test problem with 400 rows and 4000 

columns is solved. This is by far the largest SCP reported solved 

in the literature.

The method developed in this thesis consists of a combination 

of decomposition and state space relaxation which is a technique 
recently developed for obtaining lower bounds on the dynamic program 

associated with a combinatorial optimization problem. The large 

size SCPs are decomposed into many smaller SCPs, which are then 
solved or appromixated by state space relaxation (SSR). Before 

using the decomposition and SSR, reductions both in the number of 

columns and the number of rows of the problem are made by applying 

a procedure combining preliminary tests, heuristic methods, 

lagrangean relaxation and linear programming.
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Chapter 1

INTRODUCTION

1.1 DEFINITIONS

Consider a set M={l,2,...,m} and a family of subsets of M, M=iMjCM, jcN}, with N a finite set. A 

subset N*CN is said to be a cover of M if UjtN.Mj=M. Let a cost C j > 0  be associated 

with every jeN and the total cost of the cover N* be ^j«N*Cj- The set covering problem, 

SCP, consists of finding the minimum cost cover for M and can be formulated as an integer 

program :

(SCP) min 2jeNCjXj

st. 2jtNaijXj> 1 (i«M)

Xj=0 or 1 C«N)

where ajj=l if ieMj; =0, otherwise.

A cover is said to be prime if does not contain properly any other cover. When the costs Cj 

are all equal to 1 the SCP is called the unicost set covering problem.

In this thesis we will identify the set covering problem with its matrix representation and, 

hence, the elements of M are designated rows while the elements of N are mentioned either 

as columns or as variables. The subset MjCM is identified as the index set of rows covered 

by column index j, ie. Mj=!ieM : a  ̂=  1}. For a particular row i, the set of column indices j that 

cover the row i, is denoted by Nit ie N ^ljeN  : ay=l}. The matrix A =[aSj],

(i=l,2,...,nrj=l,2,...,n), is called the constraint matrix with aj and aj representing, respectively,
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the ith row and jth column of A. Finally, we will designate by density of the SCP ; the 

ratio (Sijay)/(m*n).

A cover N* is a feasible solution to the integer program SCP, that is 2jeN.a;jXj^l for all 

ieM. When N* is a prime cover no variable Xj can be removed from N* without violating a 

constraint.

If a disjoint cover, or partition, N* (ie, for all j,keN*) is required, the problem is

designated the set partitioning problem, SPP. In this case, the inequalities are replaced by 

equalities in the integer programming formulation given above.

The SCP and SPP are closely related to each other and both have a wide field of 

applications. Surveys of the SCP are given in Garfinkel [75], Gondran [92] and Christofides 

and Korman [51]; a survey for the SPP is given in Balas and Padberg [16].

A list of applications of the SCP is given in the next section. There follows a discussion on 

the relation of the SCP to other mathematical problems, namely the SPP, the general integer 

program, the graph covering problem and other graph theory problems. Some theoretical 

results that have been obtained for the SCP are outlined in section 1.4. The final section in 

this Chapter is concerned with a brief survey of the algorithms developed for the SCP.

Chaptcr 1
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1.2 APPLICATIONS OF THE SCP

1.2.1 Airline Crew Scheduling

The idea of using set partitioning or set covering for crew scheduling goes back to at least 

1961 (Spitzer [163]). The airline crew scheduling problem consists of finding the cheapest 

crew schedule that covers all flight legs. Depending on whether or not crew members are 

allowed to be passengers on certain flights , optimal covers or partitions yield optimal 

schedules. The columns of the SCP or SPP represent sets of flight legs that can be done by 

a single crew with a cost Cj , and the rows stand for the flight legs (Arabeyre et al. [2], 

Baker et al. [4], Boder [40], Marstert et al. [130], Marsten and Shepardson [131], Rubin 

[153],[154]).

Other scheduling problems have been solved by using SCP’s, such as mass transit crew 

scheduling (Parker and Smith [140]), bus scheduling (Heurgon [104], Gavish et al. [80], 

Shepardson and Marsten [162]) and manpower scheduling (Tibrewala et al. [169]). A special 

type of SCP appears in some personnel scheduling problems (Baker [6],[7], Bartholdi [24], 

Bartholdi et al. [22]).

1.2.2 Vehicle Dispatching

The truck delivery problem was first formulated as a SPP by Balinski and Quandt [19]. 

Given a set of locations for the customers and a single depot it is required to find the 

minimal cost routing among the possible routes such that all customers are visited and the 

number of routes does not exceed the number of available vehicles. Hence, the rows in the 

SPP correspond to the customers and the columns stand for feasible routes starting and ending 

at the depot (Pierce [142], Christofides [49], Bodin et al. [41]).
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1.2.3 Location of Emergency Facilities

The unicost SCP has been used for solving the problem of locating the minimum number of 

emergency facilities (eg. fire stations, ambulances, police stations) such that they cover every 

point of a limited area within a fixed distance (or time). Columns of the SCP represent the 

feasible locations for the facilities and the rows correspond to the areas to be covered (Berlin 

and Liebman [36], Bilde and Krarup [39], Church and Revelle [53], Revelle et al. [147], 

[148], Revelle and Swain [146], Schreuder [159], Toregas and Revelle [172],[173], Toregas 

et al. [171], Walker [175]). A location problem using the SCP with additional constraints on 

the maximum number of facilities that can be located is given in Christofides [48]. A 

dynamic version of the SCP applied to facility location is discussed in Gunawardane [98].

Chapter 1

1.2.4 Information Retrieval

Consider the problem of retrieving information from n files where the jth file is of length Cj 

(j=  1.2,...n). Suppose that m requests for information are received with a ^ l  if the ith unit 

of information is in file index j. The optimal solution for the resulting SCP gives the 

minimum length set of libraries needed to access all the information (Day [59]).

1.2.5 Political Districting

Garfinkel and Nemhauser [77] used set partitioning for grouping basic population units (eg. 

counties) in order to form a fixed number of districts. Representing by I the set of basic 

population units, a subset Pj of I is a column of the SPP if the population units in Pj form a 

district that meets requirements on total population, contiguity, compactness, and so forth. If 

Cj is some measure of the unacceptability of district j then the optimal solution of the SPP 

with the additional constraint on the number of districts formed, gives an optimal districting 

plan.

A similar model for health district definition is given in Ghiggi et al. [85], and another
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application of partitioning in regional planning is presented by Corley and Roberts [55],

1.2.6 Minimising Boolean Expressions

One of the first formalizations of the SCP appears to have been made for finding minimal 

representation for logical functions related to the problem of designing optimal switching 

circuits (Breuer [43], Gimpel [86], Rutman [155], Steinberg [165]).

Given a logical expression E in a disjunctive form one need only consider the set P of prime 

implicants of E. A simplest form for E is obtained through the minimum cardinality set 

P*CP such that every term of E be implied at least by one prime implicant in P*. The 

optimal answer is given by a unicost set covering where the columns are elements of P and 

the rows stand for terms of E (Hammer and Rudeanu [100]).

1.2.7 Other Applications

Some other applications of the SCP or SPP reported in the literature include assembly line 

balancing (Freeman and Jucker [69], Salveson [157], Steinman and Schwin [166]), the 

calculation of bounds in general integer programs (Christofides [46]), network planning 

(Crowston [56]), network attack and defence (Bellmore et al. [32], Bellmore and Ratliff 

f33]).
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1.3 PROBLEMS RELATED TO THE SCP

1.3.1 SCP and SPP

The only difference between the SCP and the SPP is on the type of the constraints - 

inequalities for the SCP, equalities for the SPP. Moreover, the SPP can be converted into a 

SCP (Lemke et al. [126]), and, conversely, the SCP can be transformed into a SPP (Korman 

[123]). However these transformations are not symmetrical.

The SPP can be easily converted into a SCP without changing the constraint matrix. This can 

be done by adding slack variables ys (icM) with a suitable large cost L>2jtNCj and , then, 

the SPP becomes equivalent to :

(1.1) min Dĵ CjXj +  L*2itMyj

St- 2j<NaijXj - Yi =  1
Xj=0 or 1 

YifcO

Since L is chosen to be arbitrarily large , yj=0 (i«M) in the optimal solution of problem (1.1) 

which, therefore, is the optimal solution of the SPP. Now, using y i - 2j<Naijxfl> the problem

(1.1) is rewritten as :

(1.2) min 2jtN[(2i<Maij)*L+cj]xJ-L ^ m

st. 2jlNayXjSl (i«M)

Xj=0 or 1 (jeN)

which is a SCP with the same constraint matrix as the original SPP.

Transforming the SCP into a SPP needs modifications in the constraint matrix. Each column 

d} is split into #Mj columns, each one of them with the same cost Cj. The first generated 

column, a*fl, is equal to â ; the second, d}2 is equal to aj with the first 1 replaced by 0; the

Chapter 1

(icM)

G<N)
(ieM)
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rth column derived from column j is equal to aJ with the first (r-1) elements of aJ set equal

to 0. Hence, the modified matrix has columns which is the number of nonzero

entries in the original constraint matrix. The constraints are made equalities and then the 

resulting SPP is equivalent to the SCP from which it was derived.

Although some dominance tests (Garfinkel and Nemhauser [78]) can be applied to reduce the 

size of the resultant SPP, this is still too large for practical examples. In fact, it is not clear 

when these transformations are worthwhile and in practice this method has not been used.

1.3.2 The SCP and the general Integer Program

Zorvchta [185] shows that a 0-1 integer program can be converted to a SCP in a number of 

steps proportional to mn2, where m and n are respectively the number of rows and the 

number of columns for the original problems.

Consider the 0-1 linear integer programming problem, BLP, defined as follows :

(BLP) min 2jtNCjXj

with Cj>0, ajj>0 and b;>0 for all ieM and jeN. Note that any integer program can be 

transformed into a BLP.

Firstly, an integer program is easily converted to a 0-1 problem doing the following 

substitution :

(ieM)

X:=0 or 1 0'«N)

(1.3) xj =  2 ^ ? k*1xf (jeN)

with Xj=0 or 1 and s(j) the least integer such that 2ŝ );>Uj, Uj an upper bound on the
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value of Xj.

Next, if there exists a negative coefficient, say a;j<0 , then replacing Xj by 1-yj in the 

constraint, the equality can be rewritten as :

(1.4) - k9tjaikxk +  ayd-yj) =  b, > 0

- k * j a ikx k +  (-a ij)yj =  b i*a ij— 0

“'k=?*ja ikXk +  aV j  =  bj > 0

where a '^ - a ^ X )  and b j^b j-a^O . Also, an additional constraint Xj+yj=l has to be added 

to the set of constraints for the integer program.

Example 1.1

We will illustrate the above transformations for the integer program : 
min 2xj- 3x2+  x3 
st. 2xj- x2+  x3 =  3 

-X!+ 2x2+  x3 =  0 
0 < x ,< 2  
0 < x 2,x3< l  
Xj,x2,x3 integers

First, the problem is transformed into a 0-1 integer problem replacing x, by x{+2xf :

min 2x}+ 4x,-’3x2+  x3 
st. 2x}+ 4xf- x2+  x3 =  3 

-x{- 2xj+  2x2+  x3 =  0 
x},Xj,x2,x3= 0  or 1

Now, the coefficients are all made non-negative by introducing the complementary variables y

min 2x}+ +4xJ+  +3y2+x3-3
st. 2x,+  + 4 x j+  +  y2+ x 3=4

y{+ +2y]+2x2+  + x 3=3
x>+ yj =1

x j+  yf =1

x 2+  y  2 = 1

x!*y! *y?-x2*y2-x3 “  0 or 1
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Simplifying the notation (by setting Zj=x{, z2=y{, z3=xf, z4=yj, z5= x 2, z6= y 2, z7= x 3), 
the original problem is equivalent to :

min 2z,+  -f4z34* + 3 z6+ z7 -3
st. 2zj+ + 4 z3+  +  Z6 +  Z7

+  z2+  + 2 z4 +  2z5+  + z7 =3
z, +  z2 =1

z3+ z 4 =1
z5 +  z6 =1

z] ,z2,z3,z4,z3,Zg,z7 0 or 1

In [185] it is shown that the BLP is equivalent to an unconstrained integer program, UIP, 

defined as follows :

(UIP) min 2jtNCjXj+

Xj=0 or 1

with the lq (i«M) chosen to be greater than a positive value k dependent on the original 

problem.

The objective function of UIP can then be rewritten as:

(1.5) min 2j<N[Cj+2itMki(afj-2biaij)]'Xj+ 22jtN2k>j(2itMkiaikaij)xkXj +  2 i{Mkibf 

Now, performing the substitution :

(1.6) xkj= xkxj for (k,j)eU=!(p,q) : p*<jand 2itMkiaipaiq>0}

one obtains a new BLP which is proved in [185] to be equivalent to UIP :

(1.7) min 2j€Ndjxj +  22jfN2k>jwkjxkj

st. xk+X j-l<xkj ((k,j)eU)

xkj =  0 or 1

Xj = 0  or 1

((kj)eU)

G«N)
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where

(1.8) dj- c j+ 2 i,Mkj(a?r 2b1alj)

Finally, the substitution

(1.9) x]=l-xj O'eN)

yields the SCP :

((kJ)eU)

m m
O’eN)

Hence, the general integer program is equivalent to a SCP with a particular constraint matrix 

structure. The matrix of the inequalities is of the form M =(S,I) where S (corresponding to 

the variables x], j«N), is a matrix with exactly two entries in each row and I is a unit matrix 

corresponding to the variables xkj, (kj)eU. The number of rows in M is equal to the number 

of elements in the set U and, therefore, is at most equal to n(n-l)/2, with n the number of 

columns of the original problem. The number of columns of the resulting SCP is exactly equal 

to the number of rows plus n.

Example 1.2

For the 0-1 problem obtained from the integer linear program of example 1.1, the equivalent 

UIP is :

(1.10) min 2jtNdjXj +  S(kJ)<uwkjXy 

s t  x£+Xj+xkj> l  

xkj= 0  or 1 

xj=0 or 1

.nin (2-12k1-k3) Z1 + (-5k2-k3) z2 + (4-16ki-k4) z3 +
+ (-Sk2 - k )̂ + (-Skj-kg) z3 + (3-7kj-k3) zg +
+ (l-15ki - 8k2) Z7 + 2k3 zi z2 + 16 k̂  z\ z3 +
+ 4ki zj zg + 4kj Z7 + k4 k2 z2 z3 +
+ 2 k2 z2 z7 + 2k4 z3 z4 + Ski z3 zg + 8’*! z3 z7 + 8k2 z4 z5 + 
+ 4k2 Z4 z-j + 4k2 Z5 z-j + 2k3 z\ zg + 2!<i zg z7 -
- 16kj - 9k2 - k3 -k4 -k3

zj = 0 or 1 (j=l,2,...,7)
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Setting k j= l, i=l,2,...,5, the SCP which is equivalent to the BLP is then :
. min 1 lz ,+ 6 z2+ 13z3 +  9z4+ 9 z5 +  5z6+ 2 z12+16z13+ 4 z16+ 4 z17 

4z24 4- 4z25 4" 2z27 4* 2z34 4" 8z3g 4* 8z37 4* 8z43 4* 4z47 4- 4z37 
2 z 5 6 " ^ 2 z 67 

st. z124-z,4-z2>1 
(...)
z67 4-z64-z7>1
Z12.... Z67= 0  or 1
z,,...,z7= 0  or 1

The optimal solution for the SCP is z2= z 3= z 5= z 16,z17= z 47= z67=  1 which corresponds to 
the solution y}=xf=x2=  1, that is Xj =  2 and x2= l  in the original problem.

1.3.3 The SCP and the Graph Covering Problem

The graph covering problem, GCP, is a special case of SCP in which each column has at 

most two non-zero entries (Christofides [47]). A graph G is a collection of vertices v,,v2,...,vn 

(denoted by the set V) and a collection of edges e,,e2,...,em (denoted by the set E), each

edge joining two vertices. A vertex-edge incidence matrix A = [a ]̂ ( i= l,2 .... n;j= l,2,...,m),

associated with the graph G is defined by :

(1.11) if the edge ej connects the vertices Vj and vk then 

a jj= a^= l and a^= 0  for l^ i,k

A cost Cj>0 is associated with each edge e-} (je E). The GCP consists of finding the least cost 

set of edges such that each vertex is incident with at least one edge in the set. This is a 

particular case of SCP with at most two l ’s per column.

The GCP is closely related to another graph theoretical problem, the maximum matching 

problem (Balinski [18], Edmonds [62]). This problem consists of finding the maximum cost 

subset M CE such that no two edges of M meet at a commmon vertex. The maximum 

matching problem is a well solvable problem (Edmonds [63],[64]) and matching techniques
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are used to solve in polynomial time the GCP .

1.3.4 The SCP and other Graph Theory Problems

A large nunmber of problems in graph theory can be formulated as SCP’s although many of 

these problems could be solved more efficiently by specific graph-theoretic techniques . In this 

section, we briefly review some of those problems and outline the way they are related to the 

SCP :

1.3.4.1 The Minimum Dominating Vertex Set

A subset D of the vertex set V is said to be a dominant vertex set (or an externally stable
v±

set) if for every vertexMiot in D there exists an edge from a vertex in D to Vj. The problem 

of finding the minimum dominating vertex set of a graph is a unicost SCP. The sets N and 

M of the SCP are identical and the constraint matrix is defined by :

1.3.4.2 The Maximum Independent Vertex Set

A subset I of the vertex set V is said to be an independent set (or an internally stable set) if 

there is no edge in E linking any two vertices of I. The problem of obtaining the maximum 

independent set of a graph G is closely related to the SCP where the columns represent the 

vertices of G and the rows stand for the edges. The constraint matrix is the vertex-edge 

incidence matrix defined by (1.11).

In fact, if we define the variable Xj=l if the vertex Vj is in I, Xj=0 otherwise, then the

( 1.12)

0 otherwise

if i= j or there is an edge linking v; and Vj
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maximum independent vertex set is given by the optimal solution of the integer program :

(1.13) max 2jtVXj

st. £j(VajjXj<l (ieE)

Xj=0 or 1 (jcV)

Considering the variables yj=l-Xj (jeV) the objective function in (1.13) can be rewritten as :

(1.14) 2jtVXj =  2jtV(l-yj) =  §V - 2-vyj

and the constraints in (1.13) become for each edge ej :

(1.15) xk +  x, <  1 vk and v, are the terminal

(l-yk) +  (l-yi) — 1 vertices of

-yk -y, < - l  

yk + y, ̂  i 
yk.yi=o or l

-from
Finally, apartYthe constant value #V, (1.13) is equivalent to the SCP :

(1.16) min 2j{Vyj

st- ^ijyj^1 <ieE)
yj=0 or 1 G«V)

1.3.4.3 Graph Colouring Problem

The graph colouring problem consists of determining the minimum number of colours that can 

be assigned to each vertex of the graph such that no two adjacent vertices have the same 

colour. The graph colouring problem can be formulated as a SPP (Korman [123]).
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Suppose all independent sets I,,I2,...,It of a graph G have been enumerated and define the 0- 

1 integer variables Xj as follows :

f 1 if the set Ij represents all vertices with a certain colour

(1.17) xj =  \

|  0 otherwise

Consider now the vertices of G and define :

(1.18)

f 1 if vertex Vj is in Ij 

0 otherwise

Then, the graph colouring problem is equivalent to the following SPP :

(1.19) min 2j_, Xj

st. 2j_, ajjXj =  1 (ieV)

Xj=0 or 1 (j=  l,2,...,t)

Considering inequalities instead the equalities for the constraints 2j_j â Xj =  1, does not alter 

the solution of the graph colouring problem. Hence, the problem can be considered as a SCP 

where the inequalities correspond to possible over-colourings. That implies alternative solutions 

to the graph colouring problem.

Naturally, it would be surprising if the best way of solving the graph colouring problem was 

to convert it into a less structured problem such as the SCP, especially since the intermediate 

step involved the enumeration of all independent sets - itself a hard problem. This also applies 

to the other problems mentioned above. . . However, the fact that so many well

known problems can be formulated as a SCP emphasizes the central role of the SCP in 

combinatorial optimisation. At the same time, the possibility exists that an efficient technique 

for solving the SCP can be adapted to one or more of these problems.
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1.4 THEORETICAL RESULTS FOR THE SCP

1.4.1 Complexity

Let n be a measure of the size of a problem. If the time required by an algorithm to solve 

the problem is a polynomial function of n, the algorithm is said to be a polynomial time 

algorithm. Otherwise, the algorithm requires exponential time, ie the time required by the 

algorithm to solve the problem can be bounded below by an exponential function ( Horowitz 

and Sahni [111], Garey and Johnson [74]).

A problem for which a polynomial time algorithm exists is called a well solved problem; in 

contrast, if no known polynomial time algorithm exists, the problem is said to be hard. The 

reason for this differentiation is that if the algorithm requires exponential time, the increase in 

the amount of time required is explosive compared to the increase in n. This drastically 

affects the size of the largest problems that can be solved.

The SCP is well known as an NP-complete problem which means that it belongs to a wide 

class of problems which have the property that if one problem in this class can be solved in 

polynomial time then all NP-complete problems can be solved in polynomial time. In view of 

the amount of work done on some of the problems in this class (such as the travelling 

salesman problem), it seems unlikely that any polynomial time algorithm for them can be 

found; at the very least, this will require a major breakthrough.

The above means, in practical terms, that a tree search scheme is required to obtain the 

optimal solution to the SCP. This increases significantly the importance of the lower bound 

techniques and the heuristics developed for the SCP.

One of the best known procedures for obtaining a cover that approximates the optimum of a 

SCP is the greedy heuristic, which consists of a sequence of steps, each of which includes in 

the cover a variable j wkich covers the maximum number of additional rows. The worst 

case performance of this greedy for the unicost SCP was shown by Johnson [116] and Lovasz
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[127] to be limited by the relation :

(1.20) Zy <: (2f_, l/j)*v(LP)

where is the value of the greedy cover, v(LP) is the optimal value of the linear program 

obtained (To»n the SCP dropping the integrality constraints, and

(1.21) d =  maxjtN

This result is easily extended to the optimal value of the SCP, v(SCP), since v(LP)<v(SCP) :

(1.22) Zjj S  (2j_, l/j)*v(SCP)

This relation was shown by Chvatal [54] to be valid for the general SCP with arbitrary

positive costs when the greedy heuristic assigns a value 1 at step s to a variable Xj which 

maximizes kj(s)/cj (kj(s) is the number of new rows covered at step s by Xj). Furthermore, 

Ho [107] has shown that the same result (1.20) applies for any greedy heuristic that includes 

in the cover, at step s, the variable Xj such that maximizes any arbitrary function f(Cj,kj(s)).

A natural conclusion from the exposition above is that a different approach is needed in order 

to find a heuristic that gives a better worst case perfomance. Neverthelui,greedy heuristics 

have perfomed better than theoretically expected for many test problems, giving in general an 

upper bound within 10% of the optimum.

A further improvement has been obtained with another class of heuristics which generate a 

cover using the information - reduced costs - provided by a dual feasible solution for the 

linear program obtained from the SCP (Balas and Ho [11]). This class of heuristics consists 

of finding a dual feasible solution first and then starts introducing into the cover variables Xj 

whose reduced cost is positive. This is done in order of increasing values of a function

f(Cj,kj(s)) and then, in order to keep the cover prime, variables are removed by decreasing

value of reduced cost. A discussion of bounds for this heuristic is presented in Hochbaum

[109] but no worst case bound better than (1.20) is obtained.

Chapter 1
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A variant of this consists of using the reduced costs provided by lagrangean relaxation 

(Geoffrion [81]). Variables Xj are set equal to 1 if the reduced cost Sj is 2ev<>; otherwise, 

Xj=0. The resulting set S={xj€N : Xj= ll is either a cover, or if a row (say i) is not covered, then Sj>0 

for all jeN;. Therefore, the variable xk such that sk=minjtN Sj is introduced into the cover 

and the reduced costs are updated. This continues until every row is covered after which 

variables are removed in order to generate a prime cover. Computational experience reported 

in Balas and Ho [11] shows that this heuristic produces consistently better upper bounds than 

the those mentioned above. This is confirmed by the computational results presented in this 

thesis.

1.4.2 Relaxations of the SCP

1.4.2.1 LP Relaxation

From (1.20) and taking into account that .2 .J  is an upfer boundon v(SCP), it is 

straightforward that :

(1.23) v(SCP) <  (2j_, l/j)*v(LP)

Hence, the same worst case applies to the lower W*w| approximation provided by the

linear programming relaxation of the SCP as to the upper bound approximation provided by 

the greedy heuristic. For the unicost SCP it was shown by Ho [108] that :

(1.24) v(SCP) <  (l/n )(n + l/2 )2*v(LP)

where n is the cardinality of N. In [108] it is. also shown that for every n>20 there are 

problems for which the bound on the ratio v(SCP)/v(LP) is about 2/5 of the bound of the 

ratio ^/vfSCP).
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An important question is to know when the solution to the LP relaxation of the SCP has an 

integer solution. Although much work has been done on this question no necessary and 

sufficient conditions yet exist for guaranteeing the integrality of the LP solution. For general 

integer programming problems some conditions have been derived in relation to the structure 

of the matrix A.

A first matricial characterization for problems such that all extreme points are integer is given 

by unimodularity. The constraint matrix A is said to be totally unimodular if the determinant 

of every square submatrix of A has value 0 ,+  l or -1. Considering a matrix of integers 

A=[ajj](i=l,2,...,m;j =  l,2,...,n) and an m-dimensional integer vector b, we define P(A,b) as the 

region P(A,b)={x : Ax>b, x>0h In these conditions, it is well known that for each integer b the 

region P(A,b) has only integer extreme points if the matrix A is totally

unimodular. The transportation problem, the maximum flow problem and the shortest path 

problem are examples of problems with totally unimodular constraint matrices (Garfinkel and 

Nemhauser [78]).

In contrast to the examples mentioned above the SCP polyhedron may have non-integer 

extreme points as will be seen later in this Chapter. Therefore, total unimodularity applies 

only as a sufficient condition for the LP relaxation to have an integer solution. A necessary 

condition for A to be totally unimodular is that a^=0, -H1 or -1 for all i and j. However, in 

general, is not easy to tell whether a matrix consisting only of that type of coefficient is 

totally unimodular (Werra [177]). A useful sufficient condition for assuring the total 

unimodularity of a matrix A is :

(i) no more than two nonzero elements appear in each column 

and

(ii) the rows can be partitioned into two subsets Qj and Q2 such that

(a) if a column contains two nonzero elements with the same sign 

one element is in each of the subsets

(b) if a column contains two nonzero elements of opposite sign, 

both elements are in the same subset

Chapter 1
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If the SCP constraint matrix satisfies the condition above then the SCP is a GCP in a 

bipartite graph, which is a well solved problem.

The LP solution of a SCP is also integer if the constraint matrix is balanced. A matrix of 

zero and ones is said to be balanced if it does not contain any odd submatrix with row sums 

and column sums equal to 2 (Berge [35]). A connected graph with a balanced vertex-edge 

incidence matrix is a tree and, thus, the SCP with a balanced constraint matrix is equivalent 

to a GCP in a tree. This is a trivial problem with little practical interest.

Chapter 1

1.4.2.2 Lagrangean Relaxation

Other relaxations of a SCP, i.e.easier problems whose feasible region contains the region of 

the feasible solutions for the SCP, have been tried in order to obtain a lower bound to the 

optimal value v(SCP). Those relaxations include either well solvable problems such as the 

graph covering problem and the minimum cost network problem, or problems for which, 

although hard problems, there exist very efficient algorithms. One such case is the simplex 

method for linear programming, which has been shown to have exponential time complexity 

{Klee and Minty [122], Zadeh [184]), which has an impressive record of running quickly in 

practice. Likewise, some algorithms for the knapsack problem {Balas and Zemel [17]) have 

been so successful that many people consider it a “well solved” problem, even though these 

algorithms also have exponential time complexity (Garey and Johnson [74]).

Now, let us consider a general integer linear problem of the form :

(IP) ' min 2jtNCjXj

st. 2 jfNaijxj> b i (ieM,) 

x=(Xj)«S

where S= i x : ^jeNgyXj> hj (ieM2), Xj>0 and integer}.

h a la t tv a  ^o a  oL tm j l ip l t a rA  v— J
A lagrangean relaxation of IP {Geoffrion [81]) is the problem :



-20-

Chapter 1

(LIP\) min Sj{NCjXj “I- S^^^X^bj-Sjjj^ajjXj) 

st. xeS

The objective of this relaxation is that LIPX be an easier problem than the IP to solve with 

the optimal value to LIPX giving a good lower bound on v(IP). If a solution x(X) to the 

relaxation LIPX satisfies 2j{MtXi(bj-2jtNaijXj(X))=0 and is a feasible solution for IP, then 

x(X) is optimal to IP. The best lower bound obtainable from- such a lagrangean relaxation is 

given by the optimal solution of the lagrangean dual problem :

(DLIP) maxx>0 v(LIPx)

One method of solving the lagrangean dual is to use subgradient optimization (Held and Karp 

1102], Held et al. [103]) which consists of an iterative method to update the lagrangean 

multipliers, X; (ieM,), based on subgradient properties for the objective function of DLIP 

(Geoffrion [81], Bazaraa and Shetty [23]).

A simple lagrangean relaxation of the SCP is obtained by relaxing all the constraints 

Sj^ajjXj^l (i«M), in order to get the following integer program :

(1.25) min 2jeN(Cj-2itMaijXi) Xj +  Si{MXj 

st. Xj=0 or 1 (jeN)

The optimal solution to (1.25) is easily obtained by :

(1.26)

r 1 if Cj-2i,Ma«*i^0

0 otherwise

di>ove
We use the'lagrangean relaxation embedded in a ’preliminary’ procedure to compute

bounds on v(SCP) and at the same time performing reductions in the dimensions of the 

problem. This will be described in Chapter 2 with more detail.
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Lagrangean relaxation has been used for the SCP by Etchberry [66], Balas and Ho [11], 

Hey [105] and Beasley [25]. The first author used a tighter variation of (1.25) by finding a 

maximal subset M2CM such that :

(1.27) N jnN k= $  for i,keM2

and then relaxing all the constraints corresponding to i«M,=M-M2. The resulting problem is :

(1.28) min 2)jlN(Cj-2ifÎ ajjXj) +  2itMjXj

st. Sj.M’agXj^l (ifM2)

Xj=0 or 1 (j«N)

Denoting by Sj the reduced cost a ijXj, the optimal solution of (1.28) is given by :

{1 if Sj<0

1 if sj=minktNisk, ieM2 

0 otherwise

Balas and Ho [11] tightened this last relaxation by adding an extra inequality which is the 

sum of the relaxed constraints :

(1.30) min 2j{N(Cj-2j(MaijXi)Xj +  2itMXj

st. 2j€NayXj>l (i«M2)

^ i fM ^ jtN ^ jX j— # M ,

Xj=0 or 1 (j«N)

Solving (1.30) is not as easy as it is for (1.28) or (1.25), and an heuristic procedure was used 

in [11] to approximate the optimum of (1.30). Beasley [25] used the lagrangean relaxation

(1.25) both as way of obtaining a lower bound to the SCP and in performing test reductions.

Hey [105] used a graph covering relaxation for the SCP. First, the SCP was formulated as a



-  22-

graph covering problem with additional constraints. Then, relaxing these constraints, the 

resulting lagrangean relaxation is solved by an exact algorithm. A network flow relaxation 

produced in a similar way to the above was also used in [105].

Chapter 1

1.4.2.3 Surrogate Relaxation

Surrogate relaxation is another general relaxation technique which has been used for obtaining 

lower bounds to the optimal solution of an integer program (Glover [88], Greenberg and 

Pierskala [95]). The surrogate relaxation of an integer problem IP associated with any is

(SIP„) min 2jtNCjXj

s t - ^i«M ( 2 jeNa ijX j)/ii>  S iiM Mj k

x«S

The optimal value v(SIPM) gives a lower bound on the optimal value to IP and the best value 

of such a bound is achieved by the surrogate dual :

(DSIP) maxM>o v(SIPM)

Recent research has produced a number of procedures to solve DSIP (Dyer [61], Karwan and 

Rardin [119]). Also, some empirical results have suggested that surrogate duals may close a 

significant fraction of the gap between the optimum of a lagrangean dual and the optimal 

value to IP.

A simple surrogate constraint relaxation for the SCP gives a knapsack type problem :

(1.31) min 2jfNCjXj

Xj=0 or 1 (jeN)

St.
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The extra inequality added to (1.28) in order to produce the relaxed problem (1.30) is, in 

fact, a surrogate type constraint. A disadvantage of this inclusion is, as is mentioned by the 

authors in [11], that it made more difficult and therefore computationally more expensive, the 

calculation of reduced costs. In this thesis we present and develop a dynamic programming 

relaxation for the SCP which is equivalent to the surrogate relaxation and provides reduced 

costs for the variables in a straightforward way.

1.4.2.4 State Space Relaxation

Many combinatorial optimization problems can be formulated as a dynamic program but only 

a few of those problems can be solved efficiently by dynamic programming alone, since the 

dimension of the state space is enormous even for small size problems (Bellman [27],[28], 

Dreyfus and Law [60]). A general relaxation procedure for the state space associated with a 

given dynamic programming recursion was recently presented by Christofides et al. [52] and 

has been named state space relaxation.

Consider a multistage discrete system where S =  U^jSj is the state space and let the stage 

be represented by i. Defining F0i(S0,S), for SeSj, as the least cost of changing the state of 

the system from S0 at stage 0 to a state SeSj at stage i, the general forward dynamic 

programming recursion for such system is :

where Aj(S’) is defined as the set of all possible states SeSj that can result from S’eSj.,, and 

Vj(S\S) is the minimum cost of changing the system from state S’eSj., to state SeSj.

for i=l,2,...,m  and SeSj

with,

Fo.o(So,S0)=0
v,(S0,S) =  co if S^A,(S0)
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The usual computational problem that one encounters when applying DP to a combinatorial 

problem is the large dimension of Sj (i=l,2,...,m). This is particularly true for problems such 

as the travelling salesman problem or vehicle routing problem where S; involves all subsets of 

a given set.

A state space relaxation for DP is obtained by defining a mapping function g,from S to a 

lower dimensional new vector domain Q, and a set function fl such that the following 

condition is satisfied :

(1.32) if S’€AJ*(S) then gfS’Jeflj^S)

The relaxed dynamic programming recursion is written as :

(SSR) f0i(t0.t) =  min ( f p ^ V ’) +  V;(t\t))

for i=l,2,...,m  and t€g(Sj)

with,

to~8(So)
W W * 0
vi(t’,t) =  min {v;(S\S) : g(S’) = t ’ and g(S)=t)

As will be shown in Chapter 3 of this thesis, the optimal value to SSR is a lower bound to 

DP and, more generally, that :

(1.33) f0i(t0,g(S))<F0i(S0,S) for all i and S

The choice of g plays a major role in state space relaxation since to make the relaxation 

useful g must be such that (Christofides et al. [53]) :

(i) S2j' can be easily computed 

and

(ii) the optimization of SSR is over a small domain

Chapter 1
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oH
or a good lower bound V;(t,g(S)) can be obtained

These aspects will be seen in more detail in Chapter 3 where we apply SSR to a dynamic 

programming formulation to the SCP. Different expressions for g are presented, and 

subgradient optimization and state space ascent are used as methods for maximizing the bounds 

given by SSR.

As will be illustrated later, state space relaxation in dynamic programming is analogous to 

lagrangean relaxation in integer programming and the effectivness, or otherwise, of a SSR in 

producing bounds is relative to the specific dynamic program adopted for the problem. We 

also show that surrogate relaxation in integer programming is equivalent to a particular case 

of SSR.

1.4.3 The Set Covering Polyhedron

The characteristics of the feasible region of a SCP have been extensively studied mainly with 

a view to finding good rules for generating cutting planes (Balas and Padberg [ l2],[IS]). 

However, this approach has not been very successful in practice and it was only recently that 

Balas and Ho [11] presented an effective algorithm for large SCP’s based on a special type 

of cutting planes.

The convex hull of all feasible solutions to the SCP defines a polyhedron P. Once 

characterized, the facets of P can be used to generate cuts and thus improve the lower bound 

available so far. Let us consider an example.

Example 1.1 : min x, +  x2+ x 3
st. x ,+ x 2 >1

X2 +  X3> 1
x, + x 3> l  

x,,x2,x3= 0  or 1

The feasible region for this problem is R = l(l, 1,0),(1,0,1),(0,1,1),(1,1,1)1 which is graphically 
represented in Figure 1.1 by a small circle in each feasible point.
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The convex hull of the feasible region R is composed of all the points on the faces or in the 
interior of the triangular pyramid shown in Fig. 1.1. The optimal solution of the LP relaxation 
is x ,= x2= x 3= l / 2  giving a lower bound z, =  3/2. Now, cutting the feasible solution of the 
LP relaxation (represented by dotted lines in Fig. 1.1) with the facet defined by points (1,1,0), 
(1,0,1) and (0,1,1) we would get a new value for the lower bound. In fact, this facet is 
analytically defined by x ,+ x 2+ x 3 =  2, so the cut x ,+ x 2+ x 3> 2  can be added to the original 
constraints. Solving the LP again z, becomes equal to 2, the optimal value for the SCP of 
example 1.1.

Figure 1.1

Convex hull of the feasible region for the example 1.1

Unfortunately this way of generating cuts is not a practical approach. Neither are the 

approaches based on adjacency in polyhedra (Hausman and Korte [101/), which, for the SCP, 

consist of considering a feasible vertex and then finding all adjacent vertices; if none of the 

latter vertices have a better value than the given vertex this is the optimum.

A complete characterization of all facets of an integer program is only known for a few 

special cases. For the SCP, Fulkerson [71] has shown that if the constraint matrix has no 

rows i and k such that NjCNk, then the inequalities 2jtNajjXj>l (i«M) define all facets of
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the form x x > l where tt is a 0-1 vector. However, as is illustrated by example 1.1, not all 

facets of a SCP polyhedron are of this form.

Chapter 1

1.4.4 Integer Duality

Recently a duality theory for integer programming has been developed in a way analogous to 

linear programming (Burdet and Johnson [44], Jeroslow [115], Wolsey [183]). Let us consider 

the integer linear program :

(LIP) min 2j{NCjXj

st. Zj^aijXj^bj (itM)

Xj=0 or 1 (jeN)

where a  ̂ (ieM;jeN) and b; (i«M) are integers.

The dual of the problem LIP can be defined as follows (Jeroslow [115]) :

(DIP) max F(b)

st. F(aj)<Cj (jcN)

F is a subadditive and nondecreasing function

where b is the vector (bj)itM and j  represents the jth column of the constraint matrix 

A=[ajj], (ieM;jeN). A function F is said to be subadditive if F(a+b)<F(a) +  F(b).

A review of the results relating the LIP and the DIP is presented in Wolsey [183] and here 

we only outline the two main general duality properties. The weak duality relation is stated 

for any primal feasible solution x and any dual feasible function F such that F(0)=0, as 

follows :

(1.34) ZjtNCjXj >: F(b)

The above is an immediate consequence of the dual feasibility of F
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(1.35) ■'j«NCjXj 2jtNF(aJ)Xj (Xj>0 and Cj>F(aJ)

>  2jtNF(alXj) ( X j - 0  or 1 and F(0)=0)

>  F(2jtNalXj ) (F is subadditive)

>  F(b) (F is nondecreasing)

It is obvious that :

(1.36) minx wj{NCjXj >  maxF F(b)

and the strong duality property establishes that if either LIP or DIP has a finite optimal 

value then the equality holds in (1.36).

Finding dual feasible functions is not an easy task without using branch-and-bound, cutting 

planes, dynamic programming or any other technique for integer programming. However, 

instead of calculating the exact function F another function f, in general not subadditive,can 

be used such that f(a^)<F(a!) provides a lower bound to the value of DIP and, therefore, a 

lower bound on the optimal value for LIP. In this thesis we show how state space relaxation 

can be used in getting those lower bound solutions.

Finally, let us remark that the value Sj=Cj-F(al) is a reduced cost for the variable _Xj. If 

F^J+Sj^z,, (Zy an upper bound on the optimal value v(LIP)), then Xj is equal to 0 for any 

solution with a better value than zu. In fact, fixing Xj= 1 the remaining integer program is :

(LIPj) min 2k ĵCkxk

st. S ^ a ^ x ^ b j-a y  (icM)

xk= 0  or 1 (k«N and k ^ j)

If F is dual feasible for the LIP then it is dual feasible for LIPj and F(b-aj) is a lower 

bound on the optimal value of LIPj, v(LIPj). Hence,

(1.37) Cj +  v(LIPj) >  Cj+F(b-aj)

>  Cj+F(b)-F(aj) (F is subadditive)
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1.5 ALGORITHMS FOR THE SCP

For the last 10-15 years several algorithms have been proposed for solving the SCP but only 

recently could large size problems be solved consistently. The most successful algorithms 

combine a tree-search procedure with one or more techniques for obtaining bounds to the 

problem - heuristics, linear programming, lagrangean relaxation, cutting planes, etc.

A computational survey on different methods for solving the SCP is given in Christofides and 

Korman [51] and more recent algorithms have been presented by Etchberry [66], Balas and 

Ho [11] and Beasley [25]. A tree search procedure was first presented for the SPP (Pierce 

[141], Garfinkel and Nemhauser [76]) and later adapted and improved for the SCP (Pierce 

and Lasky [143], Christofides and Korman [51]). The process was based on the idea of 

partitioning the constraint matrix into blocks Aj such that any column in Aj has no entry for 

a row k< j. During the course of the algorithm, blocks are searched sequentially, with blocks 

Aj not being searched unless all rows i such that lS i- jj - l  have already been covered. The 

tree search procedure corresponds to the sequential covering of blocks and a variety of tests 

were incorporated by Christofides and Korman [51] who report the solution of unicost 

problems involving up to 35 rows, 1075 columns and 20% density.

An LP-directed tree search for the SCP was presented in Lemke et al. [126]. A linear

program is solved at any node of the search tree giving a lower bound for the optimal

completion of the node. At same time, the LP solution is used in determining the next 

forward tree branching from the current node. For such a method a high processing time per 

node searched must be expected, and then the process is unlikely to be computationally 

efficient if the LP lower bound is not very close to the optimal solution. In this case it seems 

to be worthwhile to try any cutting plane technique before starting the branching.

A cutting plane approach seems to have been first used for the SCP by House et al. [112].

The method presented by them involves solving a sequence of problems, each one of them

being obtained from the previous one by considering an additional constraint or cut, which is 

still a SCP type constraint. Bellmore and Ratliff [34] describe one method for generating 

cutting constraints similar to the one mentioned above but making use of the optimal solution
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for the LP relaxation of the SCP. Traditional cutting plane strategies for integer programs 

have been used for the SCP by Salkin and Koncal [156] who applied Gomory ([91J) cuts. 

Martin [132] also used a cutting plane algorithm based on Gomory cuts but with additional 

effort put in to enforce integrality of the simplex tableau.

Another cutting plane approach based on disjunctive cuts was proposed by Balas [10] and 

later led to an algorithm capable of solving some large size problems (Balas and Ho [11]). 

The central idea of that approach is to derive valid inequalities for the SCP from conditional 

lower bounds.

A conditional lower bound of an integer program is a number which would be a valid lower 

bound if the constraint set were amended by certain inequalities which are also called 

conditional. If such a conditional lower bound exceeds some known upper bound, then every 

solution better than the one corresponding to the upper bound violates at least one of the 

conditional inequalities. This yields a valid disjunction that can be used to derive valid cutting 

planes which, in the case of the SCP, are themselves inequalities of the set covering type. 

Balas [10] showed that this family of cuts includes the Bellmore and Ratliff ([34]) 

inequalities.

Balas and Ho [11] presented an algorithm for solving the SCP based on the family of cutting 

planes generated from conditional bounds. The algorithm uses a set of heuristics for finding 

prime covers, another set of heuristics to obtain dual feasible solutions, and subgradient 

optimization to find lower bounds. Computational results are shown for a set of test problems 

with up to 200 constraints and 2000 variables. The authors in [11] conclude from their 

computational experience that the algorithm was more reliable and efficient than earlier 

procedures on large and sparse SCP’s. However, they also point out that as problem density 

increases the strength of the cuts diminishes and so does the efficiency of the algorithm.

In fact, the algorithm failed to solve within 30 minutes on a DEC2050 computer, 3 out of 5 

test problems with 200 rows, 1000 columns, 5% density and costs for the variables randomnly 

generated from the range [1,100]. Better computational results are presented for sparser 

problems (2% density) with 200 rows, 2000 columns and the same sort of costs. For these
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problems the authors conclude that there is a high positive correlation between the number of 

variables left before one has to branch and the number of the nodes in the search tree. This 

underlines the need of obtaining reduced costs for the variables of good quality but 

computationally not expensive. At the same time a tight upper bound is of major importance 

both for removing variables and fathoming nodes in a branch bound scheme.

Before the algorithm mentioned above was presented, Etchberry [66J had reported 

computational results for an algorithm based on lagrangean relaxation and capable of solving 

unicost SCP’s involving 50 rows, 100 columns and densities from 6% to 21%. In [66] a 

branching strategy is presented for the tree search procedure, which we use in this thesis, 

consisting of picking two rows i and k and splitting the current problem into two new 

subproblems as follows :

(i) replacing the constraints 1 and 2jtNKXj^l by

the constraint 2j{N. nNkXj>l 

or,

(ii) replacing the constraint 2JlN.Xj>l by 2jtN.Xj>l

and the constraint by ĵ«N£Xj“  I

where N*=Nj-NjnNk and N k= N k-N jnN k

In other words, (i) represents the case where i and k have a common column in the optimal 

solution and (ii) represents the opposite case.

Recently Beasley [25] presented an algorithm for the SCP based on a lagrangean relaxation 

of the covering constraints, and making use of problem reductions tests and linear 

programming. Computational results are shown for large size test problems involving up to 300 

rows, 3000 columns, 5% density and the costs randomnly generated from the range [1,100]. 

The author in [25] used a binary depth-first tree search procedure computing at each tree 

node a lower bound for the optimal completion of the node using the lagrangean relaxation 

(1.25). Several reduction tests are done at the initial tree node - column domination, row 

domination, row redundancy, row splitting, dual ascent penalties - and the LP relaxation is 

used to compute the optimal multipliers for the lagrangean relaxation. At the other nodes of
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the tree the lagrangean lower bound is calculated and reduction tests related to lagrangean 

penalties and column inclusion are performed.

The great achievement of this algorithm for the test problems reported in [25] seems to be 

the enormous number of variables removed before starting the branching and even before 

solving the LP relaxation. For test problems with 200 rows, 2000 columns and 5% density the 

algorithm is reported to have reduced the number of variables to only 74 before the LP being 

solved. However, it seems natural that this perfomance depends very much on the quality of 

the upper bound produced by the greedy heuristic and is also greatly dependent on other 

problem data. In fact, the sort of reduction mentioned above is presented for test problems for 

which the initial upper bound is equal to the optimal value, while for the worst case shown 

for the same type of test problems (the upper bound differs to the optimum in 2.4%) the 

number of effective variables is 181. The LP is thus computationaly more expensive and the 

tree needs a much larger number of nodes to be completed.
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1.6 CONCLUSIONS

In this Chapter we outlined the main aspects of the SCP and from the exposition the 

following conclusions can be drawn :

(i) The SCP is a combinatorial optimization problem with a large variety of practical

applications. A common feature of these applications is that real life situations 

lead to large size and sparse SCP’s with hundreds of rows and thousands of 

columns. In some cases, although these figures are not achieved, the structure of 

the SCP makes it difficult to solve (eg. unicost SCP’s).

(ii) Any integer linear program can be converted to a set covering problem. The SCP

has particularly strong links with other combinatorial problems, especially with 

several graph theoretic problems. This emphasizes the central role of the SCP in 

combinatorial optimization and maintains the possibility that an efficient technique 

for solving the SCP can be adapted to one or more of those problems.

(iii) The SCP is a NP-complete problem, that is a tree search scheme is theoretically

required to obtain the optimal solution. This increases significantly the importance

of the lower bound techniques and the heuristics developed for the SCP.

(iv) Greedy heuristics have been established as a way of generating feasible solutions 

to the SCP. Although having a poor worst case perfomance these heuristics have 

produced reasonable results for many test problems and it is worthwhile to use 

them as a first attempt to approximate the optimum.

(v) When the greedy upper bound is not very close to the optimum, further 

improvements have been possible using another class of heuristics which generate 

a cover to the SCP based on reduced costs for the variables. These reduced costs 

may be provided either by a dual feasible solution for the LP relaxation of the 

SCP, by lagrangean relaxation or, as will be seen in this thesis, by state space 

relaxation. However, no better worst case perfomance has been proved for this 

last class of heuristics either. Hence, a different approach is still needed in order 

to find a heuristic that gives a better worst case perfomance. In this thesis we 

present a different way of generating covers for the SCP based on a 

decomposition technique which produced in some cases an improvement on the
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upper bound value obtained by the two classes of heuristics mentioned above.

(vi) Relaxation techniques have been widely used to obtain lower bounds for the SCP. 

In particular, LP and lagrangean relaxations have proved to be very helpful in 

providing good approximations below to the optimal value.

(vii) Some examples exist where the LP produces the optimum for the SCP but this 

can not be predicted except in very special cases. Not only to deal with this 

situation but also because the optimal dual variables provide good initial 

information for other relaxations, it seems advisable to make use of linear 

programming together with any other techniques. Since large and sparse linear 

programs can take too long to be solved it is useful to try reductions on the size 

of the problems involved before utilizing the LP.

(viii) Lagrangean relaxation has proved extremely useful for many combinatorial 

problems. In particular, for the SCP it was successfully used for large size 

SCP’s. Besides, lagrangean relaxation can be used to perform test reductions both 

on the number of the rows and the number of variables of the original problem.

(ix) For general integer programs, some experimental results have suggested that 

surrogate relaxation can be used to close a significant proportion of the gap 

between the lagrangean lower bound and the optimal value of the problem. For 

the SCP this idea was implicitly used yielding an improvement on the value 

obtained from a lagrangean relaxation of the SCP.

(x) State space relaxation (SSR) is a recently introduced lower bound technique in 

dynamic programming, and can be applied for many combinatorial problems that 

can be formulated as dynamic programs. As will be seen later the SCP is in this 

category and we will apply SSR to the SCP, developing a particular case which 

is equivalent to surrogate relaxation. One of the advantages of this technique 

comes from the easy way the reduced costs for the variables can be computed. It 

suggests also a different approach for solving the surrogate dual.

(xi) Cutting plane strategies have also been used for solving the SCP. However, 

cutting planes based on the LP are unlikely to be computationally efficient if the 

LP bound is not very close to the optimal solution. Recently, a different class of 

cutting planes, generated from conditional bounds, have been used in solving large 

size SCP’s. Reduced costs play a major role in obtaining those cuts and this
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maintains the possibility of making use of this cutting plane strategy when good 

quality reduced costs are obtainable.

(xii) Several algorithms have been proposed to solve the SCP and this has corresponded 

to the aim of solving larger and larger problems related to real life situations. 

The most successful algorithms so far combine different lower bound techniques, 

embedding them in a tree search procedure to solve optimally the SCP. 

Removing the maximum number of variables before starting the branching has 

proved vital for the efficiency of the algorithms in solving large test problems. 

Hence, test reductions both in rows and columns appear as a useful first step in 

any algorithm for large size SCP’s. In this thesis we present and apply an 

algorithm for large size SCP’s based on a decomposition technique. Large size 

SCP’s are decomposed into many smaller sub-problems each one of them still 

being a SCP. The sub-problems are then solved or approximated by a suitable 

technique whose main characteristics must be speed, accuracy and utility for the 

general problem. This last requirement means, for instance, that information (eg. 

reduced costs) for a sub-problem should be used in the general problem. We 

show that state space has these characteristics and couples well with the 

decomposition technique.

Before applying the decomposition, we perform reductions in the number of rows 

and columns of the SCP making use of a procedure which combines preliminary 

reductions, heuristics, lagrangean relaxation and linear programming. At the same 

time, bounds, both^below and above, are obtained for the optimal value of the 

problem. This procedure is described in detail in Chapter 2 where computational 

experience with different types of SCP , is reported.

In Chapter 3, we develop the application of state space relaxation for the SCP. 

Some theoretical results are presented and two different relaxations are studied in 

detail. Computational results are given either for comparing the two relaxations 

between themselfes and also to compare the SSR bound with the LP relaxation 

bound.

The decomposition technique is presented in Chapter 4 with special focus on its 

relation with state space relaxation. Computational results are also shown for 

large scale problems and for the unicost SCP.
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Finally, in Chapter 5, we describe a tree-search scheme making use of the 

techniques mentioned above. The complete procedure depends on the structure of 

the problem, with all techniques being used for solving large size SCPs. Full 

computational results for problems with up to 400 rows and 4000 columns are 

given in this Chapter.
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REDUCTIONS FOR LARGE SIZE 
SET COVERING PROBLEMS

2.1 INTRODUCTION

In this Chapter, a procedure to perform reductions on the number of columns and rows of 

large size SCPs is presented. The method consists of a combined utilisation of preliminary 

reductions, heuristics, lagrangean relaxation and linear programming. Each one of these 

techniques is discussed for the particular case of the SCP and reduction tests are derived. 

Then, the general procedure is described and an example taken from the literature is worked 

out to illustrate the method. Computational results are shown for three different classes of test 

problems and some conclusions are given at the end of the Chapter.

2.2 PRELIMINARY REDUCTIONS

Before using an algorithm for solving the SCP, a number of preliminary reductions can be 

made both on the columns and the rows of the problem. They can be listed ( as in 

Garfinkel and Nemhauser [78] ) as follows :

Reduction 2.1 : nonpositive costs

If a cost Cj is negative then Xj is, necessarily, equal to 1 in any optimal 

solution and all rows ie Mj can be removed. Clearly, if Cj =  0 then Xj can be 

included in any solution without changing its value and the same reduction 

applies.
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Reduction 2.2 : null row

If for a particular ieM then there is no feasible solution to the

problem.

Reduction 2.3 : single 1 in a row

If any row ieM has just one non-zero element a ,̂ say Nj={ j } , then Xj must be 

equal to 1 and all rows keMj may be deleted.

Reduction 2.4 : row dominance

For some i and 1 in M if NjCN, then 1 can be deleted since any cover for i 

is a cover for 1.

Reduction 2.5 : column dominance

For a subset S of columns and a single column k if 2jeSC j-cic with Cj> 0

(jeS) and MkC UJ4S Mj then column xk can be removed.

For a practical SCP, reductions 2.1 to 2.3 are unlikely to be useful, but if the problem occurs 

as a sub-problem of some other SCP, namely in a tree-search procedure or using any sort of 

relaxation, then negative costs for columns and null or single 1 rows may occur. For 

randomnly generated problems in which the coefficients a;j are independent random variables 

with a fixed probability that ay =  1, reduction 2.4 may be useful when the number of 

variables is large. Finally, reduction 2.5 although useful for several practical examples implies 

an expensive computational effort in terms of time . A computationally effective version, not 

covering all the possibilities, is given in Beasley [25] and stated here as :

Reduction 2.5’: minimum cost per row test

For a single column keN such that #Mk> l  if ck> 2 i<M̂dj with 

dj =  minj(NiCj then k can be removed.

If #Mk=  1, say Mk=i i 1, and there exists another column leN; and such that c,<ck, 

then k can be deleted.
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This reduction is very efficient for large size • problems with random coefficients Cj ranging 

between 1 and 99 but it is not useful when Cj =  l for all jeN or Cj is proportional to the 

number of l ’s in column j. As it will be seen in the following sections, reduced costs can also 

be used instead of real costs in reduction 2.5.

Chapter 2

2.3 LP RELAXATION AND DUAL FEASIBLE SOLUTIONS

The linear programming relaxation of the SCP is the linear program obtained by dropping the 

integrality constraint Xj=0 or 1 for jeN :

(LP) min 2j(N CjXj

st. 2jeNiXj> 1 (ieM)

0<Xj<1 (jeN)

Obviously, v(LP)<v(SCP) and if the LP solution is integer then it is the optimal solution to 

the SCP. An algorithm for solving the SCP based on the LP relaxation is presented in Lemke 

et al. [126].

The dual linear problem, DLP, associated with the SCP is then :

(DLP) max 2ieM U;

st- 2 itMjUi <  Cj (jeN)

Uj>0 (ieM)

Two well-known results for general linear programming duality can be summarised for the 

particular case of the set covering problem as follows :
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Proposition 2.6 : Let u = ( U j) itM be a dual feasible solution for the SCP, that is, a feasible 

solution to (DLP).Then :

(a) z,(u)=Si4Mui is a lower bound on v(SCP)

(b) for some column k and a known upper bound ,z„ , to the SCP if

z1(u) +  (ck-SieMkui)> zu 

then xk can be deleted.

Chapter 2

Corollary 2.7 : Let u = ( U j) itM be a dual feasible solution to the SCP. If there exists a row, 

say UM, such that :

d,= minjtNi (cj-2ifMjUi)> 0

then the lower bound Zj(u) can be increased to z,(u) +  d,.

Proof : this is an immediate consequence of the previous proposition since 

u’ =  (uj)itM defined as follows :

' U, , i * l
u =■

Uj +  d, , i= l

is a dual feasible solution with value z,(u)+d,.

A further result connecting Reduction 2.5 and the above proposition can be stated as follows :

Proposition 2.8 : For a single column k and a subset SCN  satisfying the conditions of

Reduction 2.5 there exists a dual feasible solution u and an upper-bound 

on v(SCP), zu, such that

Ck +  ̂ i«M-Mku i— ^

if v(SC?k) - v(DLPk) < Ck - Ij«s Cj
where:

(SCPk) ninZ_j=k cj xj

sc- 2-jeS -,*k} xj > 1 (i£
xj = 0 or I (j^k)

and the corresponding dual linear problem:

(DLPk) maxZ£tu_v{K u£

sc- -i* Mj »»i i cj 
ui > 0

(jfk) 
(i£M-Mk)
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Proof : the proof is immediate since if u^ is the optimal

solution for DLP, then : k

,  f  u i  - l t H - \ui '
0 •

is feasible for the dual linear problem of the 

initial SCP. Hence, it follows from 

VCSCP^) -v(DLPk> S.c]c- Z j4S cj 
that :

ck c. +v(DLP. ) ± 2 -  c + V (SCF. )&v(SC?) 
K K j K.

The practical importance of Proposition 2.8 is that given any dual feasible solution to the SCP 

it can be used to scan variables for which Reduction 2.5 applies. The procedure is 

computationally cheaper than reduction 2.5 and can be repeated for several different dual 

feasible solutions.
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2.4 HEURISTICS FOR OBTAINING UPPER AND LOWER BOUNDS TO THE SCP

Heuristic algorithms can be used to obtain both upper and lower bounds on the optimal value, 

v(SCP), for a SCP. Tight upper bounds are important in removing variables from reduced 

costs analysis, and also in fathoming tests when a tree-search procedure is being used to solve 

the problem.

A particular type of heuristics to obtain upper bounds to the SCP have been studied in detail 

by Balas and Ho [11]. They are of the ’greedy’ type in the sense that a cover to the 

problem is generated sequentially by selecting, at each step, a variable Xj (to enter the cover) 

that minimizes a certain function of the coefficients of Xj. The general form of this function 

is f(C j,nij) where Cj is the cost of variable Xj and m j denotes the number of positive 

coefficients of Xj in those rows not yet covered.

The heuristic procedures presented in [11] differ in the particular form of function f, and five 

expressions were considered :

(2.1) (i) flCj.mp—Cj

(ii) f(cj,mj) =  cj/mj

(iii) f(cj,mj)= c j/log2mj

(iv) f(cj,mj)= c j/mjlog2mj

(v) f(cj,mj)= cj/mjln mj

Case (ii) is the greedy heuristic shown by Chvatal [5b] to have the worst case bound given 

by :

(2.2) zht„r== (2 ji, l/j)*v(SCP)

where zheur is the value of a solution found using the heuristic and d=maXjcN#Mj . Chvatal 

[5b] proved that this was the best possible bound and Ho [107] has shown that there is no 

better bound with the other different expressions mentioned above for function f.
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Although these greedy-type heuristics have a theoretically poor worst case perfomance, they 

have proved reasonably effective for many test problems. Balas and Ho [11J suggest the 

intermitent use of several functions f rather than a single function since in computational 

experiments no one function f has been found to uniformly dominate the others.

Chapter 2

We used expressions (i) , (iii) and a slightly different version of (ii) to compute upper 

bounds to the SCP. The evaluation of function f(Cj,mj) is restricted to the set N * = U itM. Nj 

where iM*={icM : #Nj=k} with k the minimum cardinality of any row. When using function (iii) we 

consider f(Cj,mj)=Cj for m j= l. Ties in evaluating f are broken by the value of nij (the 

maximum deciding which variable is chosen) or, if there still is a tie , by #Mj (the maximum 

cardinality variable is chosen).

The modified version for (ii) we used is

(2.3) f(cj,mj)= sj/mj

where Sj is the reduced cost instead of the initial cost for variable Xj. This enables us to 

obtain , at the same time, a lower-bound to the SCP corresponding to a dual feasible solution 

constructed in the procedure. This is done by assigning, at each iteration, the value f(sj,mj) to 

all rows which are not yet covered with an entry for the selected variable.

The general procedure is described next with fk, k=  1,2,3 , denoting, respectively, functions 

(iii),(i) and the modified (ii).
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Procedure 2.9 . Computes upper and lower bounds to the SCP 
Step 0 . initialisation

Chapter 2

Step 1 .

k = l  
zu= + -  
go to 1

. selection function fk 
R=M
s=i

Step 2 .

mj=#Mj 0'«N) 
Sj=Cj G«N)
Uj=0 (i«M) 
go to 2

.‘obtaining sets M* and N* 
M* = $

Step 3 .

for all ieR if #Nj=minkeR #Nk then M*=M*Ulil 
N * = U itM. Nj, 
go to 3

. selecting variable j* 
choose j* such that

f*=fj.(Sj.,mj.)=minjlN.f(s jtmj)
if k=3 go to 4 
otherwise go to 5

Step 4 .. constructing a dual feasible solution 
for all ieM* do u^U j+f*

and for all jeM; 
do Sj=Sj-f*

go to 5
Step 5 .. updating sets and values

s - s u { j* (
R =R  - Mj.
mj=mj-l GfNjiicMj.) 
if R = § g o  to 2
otherwise go to 6

Step 6 . generating a prime cover
consider the elements jeS in order and 
if S-ljl is still a cover then set S=S-ljl 
go to 7

Step 7 . computing and z, 
zu=min (z^Sj^Cj) 
if k=3 then and stop
otherwise, set k = k + l  and go to 1
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After using procedure 2.9 the reduced costs Sj(jeN) can be used to remove variables by 

applying the test of Proposition 2.6(b).

2.5 LAGRANGEAN RELAXATION

(Geoffrion [81],[82], Fisher et al. [68], Shapiro [161]). The list of applications of lagrangean 

relaxation has grown over the last decade to include a wide variety of combinatorial problems 

such as the travelling salesman problem, facility location, scheduling, the generalized 

assignment problem and the set-covering problem.

Etchberry [66] used this approach for the SCP in which a subset of covering constraints is 

relaxed and subgradient optimization is used to improve the corresponding lower bound. This 

relaxation was also used in the cutting-plane algorithm presented by Balas and Ho [11]. 

Network flow and graph covering relaxations for the SCP have been studied by Hey and 

Christofides [106].

In this thesis we use the simplest version of Etchberry’s relaxation for the SCP in order to 

improve the initial heuristic lower bound obtained by procedure 2.9 and also to perform 

preliminary reductions on the SCP as described earlier. The method consists of relaxing all 

the constraints and, for a particular set of multipliers X=(Xj)itM >  0, solve the problem :

Lagrangean relaxation has been widely used to analyse discrete optimization problems

(LSCPX) min 2j(N(Cj-2ieMjX;)Xj +  2 ilMXj 

st. X:=0 or 1 (jeN)

The optimal solution to LSCPX is trivial :

(2.4) X: =

0 otherwise
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and, v(LSCPx) is a lower bound to the SCP. Subgradient optimization is then used to modify 

the multipliers XitM (ieM) in order to improve the lower bound. Applying the results of [bl] 

to the particular case of LSCPX we state two propositions :

Proposition 2.10 : If X* (i«M) is the set of Lagrange multipliers that maximizes v(LSCPx) 

then

Chapter 2

v(LSCPx.)= maxXs.0v(LSCPx)= v(DLP)

and Xf=u* (ieM) where uf are the optimal dual variables for the LP 

. relaxation of the SCP.

In practice only a fixed number of iterations is performed in order to obtain the best 

lagrangean multipliers. From the above proposition , this means that the lower bound 

corresponding to LSCPX is no beUer than the LP bound. But, on the other hand, it is much 

faster for large problems and produces immediately reduced costs to the variables which can 

then be used to remove variables and also generate a cover to the problem. Moreover, 

lagrangean relaxation and LP can be combined in order to improve the final lagrangean lower 

bound without consuming much more time. In the next section we will discus this combined 

procedure in some detail.

Proposition 2.11 : Let v(LSCPx) be the optimal value to (LSCPX) for some X=(Xi)itM 

and be an upper bound to the SCP. The following are valid :

(a) if for some variable xk the value sk= c k-2itMkXi> 0  is such that 

sk+v(LSCPx)> zu then xk can be removed

(b) if for some row 1 the value d j^ m in ^  Sj is positive

then the lower bound v(LSCPx) can be increased by d( and 

the reduced costs updated to 

f Sj-d, if jcN,

sj -

Sj otherwise
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The above proposition gives a way of slightly improving the lagrangean lower bound and at 

the same time generating a new cover to the problem. In fact, this can be done by procedure

2.9 with k set equal to 3 and the following initial values in step 1 :

S = N (X )

M (X )= UjtN(X)Mj 

R =M -M (X )

sj=max(0,cj-2itMjnM(X)Xi )

ITlj= 1

where N(X) is the index set of the optimal variables for LSCPX. Also, in step 4 we only 

update the dual variable relative to the particular row ieM* for which j* is chosen.

Chapter 2

2.6 COMBINING LP AND LAGRANGEAN RELAXATION

Let us suppose now that a subset of columns N0 is used for the LP relaxation of the SCP 

instead of the complete set N. Then, the restricted linear program which we denote by LP0 

gives a value v(LP0) greater than or equal to v(LP) and could be even greater than the 

optimal solution v(SCP). Neverthless, if v(LP0) is close to v(LP) then the optimal dual 

variables to LP0 can be used as a good approximation of the optimal dual variables to LP. 

Hence, the lagrangean multipliers in LSCPX may be initialised to those values and the 

lagrangean lower bound improved to a value close to v(DLP). The connection between v(LP0) 

and v(LP) is stated in the next proposition where DLP0 designates the dual linear problem 

associated with LP0.

Proposition 2.12 : If u0= (u ^ itM is an optimal solution to (DLP0), then :

(2.5) v(LP0)+Ao <  v(LP) <  v(LP0)

where Aq =  2jtN.N0min (0,cr ZitMj u?)

Proof : first,it is obvious that v(LP)<v(LP0). On the other if the values u°

are assigned to the respective lagrangean multipliers X; in (LSCPX) it 

yields :



- 4 8 -

Chapter 2

v(LP)>v(LSCPx)=A0+ S ieMUi= Ao+v(LP0)

The value A0 is then a good measure of the quality of the approximation v(LP0) produced by 

N0. This subset must be chosen as the smallest cardinality subset of N that gives a value to 

Aq within a desired limit. From computational experience we take N0 as composed of :

(i) the variables Xj such that CpS-I<Mj X5 <  0 for some X=(Xj)itM in a 

fixed number of iterations for (LSCPX)

and

(ii) the variables of the best cover produced by procedure 2.9

2.7 COMBINED PROCEDURE

The general procedure that we used for reducing the number of rows and columns of a SCP 

is then summarised as follows :

Procedure 2.13 . Computes lower and upper bounds for the SCP
and performs reductions on the columns and rows

Step 1 . .do preliminary reductions
Step 2 . do procedure 2.9 computing an upper bound and a lower bound zheur; 

obtain also a cover S and a dual feasible solution u{, (ieM). 
set : z,=zhcur

Xj=Uj (ieM)
N0 =  S 
nk=nkj 
k =  1

=. i.
Step 3 . solve (LSCPX) and obtain zlagr . Try to improve

this value and generate a new cover with value z
Set N(X) as the index set of the optimal variables to (LSCPX).
Update : N0 =  N0UN(X)

Zj= max ( z ^ ^ )  
z„= min (z^z) 
k =  k+1 

If k<nk go to 3 
if il=2 go to 5 
go to 4
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CJ
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1

2 1 1

2 1 1
3 1 1
3 1 1

3 1 1 1
3 1 1 1 1 1
4 1 1 1

4 1 1 1

4 1 1 1

4 1 1 1 1 1

5 1 1 1 1 1 1

5 1 1 1 1 1

5 1 1 1 1 1

6 1 1 1 1

6 1 1 1 1

6 1 1 1

7 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1

Tableau II. 1
Input data for the SC P of example 2.14 ( L e m k e  el  al. [ 1 2 6 ] )
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Step 4 . solve (LP0) and obtain the optimal dual solution u 
set : Xj =  Uj (i«M) 

k =  1 
nk =  nk2 
il =  2 

go to 2
Step 5 . do Reduction 2.4 

stop

Chapter 2

Example 2.14

We illustrate the application of procedure 2.13 for a well known test problem from the 
literature (Lemke et al.fl26J), whose input data is shown in Tableau II.1.

STEP 1 . Preliminary Reductions
. Reduction 2.1 - there are no negative costs 
. Reduction 2.2 - there is no null row
. Reduction 2.3 - there is no row with a single 1
. Reduction 2.4 - there is no row dominating another row
. Reduction 2.5’- for each row, the minimum cost of covering it is given below :

x13,x17,x27 ,X2 9  - and so are the ones such that 
pj =  0 and #Mj> 1 - Xi2,x20,x21.x28.

At the end of this step of procedure 2.13 the number of variables for the 
problem has been reduced to 24 columns. No rows were removed.

STEP 2 . Procedure 2.9 
step 0 . k =  1

Z =  o o
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step 1 . S=4>
R =  tl,2 15}
Uj =  0 (i=  1,2 15)

j 1 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32
s
jm
j

1 1 1 11 1 1 1 1 2 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9
1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 5 3 5 6 5 5 7 8  10

step 2 . M* =  i 3 1

N *=l 4,25,32 }
step 3 . min ( 1 , 5/log-,5 , 9/log: 10 ) =  1

j* =  4

go to 5
step 5 . S =  { 4 }

R =  R - M4 =  I 1,2,3,5,6,7,8,9,10,11.12.13,14,15 !’

J | l 2 3 4 5 6

00 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32
s
jm
j

11 1 1 1 1 1 1 1 2 2 2 2 2  3 3 3 4 4 5 5  5 7 8 9
I1
I

1 1 - 1 1 1 2 2 2 2 2 2 2  3 5 3 5 6 4 5 7 8 9

step 2 M* = { 7,8,10,13,14 1
N* =  ! 7,8,10.11,16,18,23.24,25,30,31,32 '

step 3 . there is a tie between x7 and x8 for the minimum of f(C:,m
The variable x8 is selected since it covers more rows, than
j* = 8

step 5 . S = 1 4,8 f
R == R - M8 =  { 1.2,3,5,7,10,11.12,1,3.14,15 I

J 11 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32
s
jm
j

|1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9
h 1 1 - 1 1 1 - 2 2 2 1 2 2 3 5 3 4 5 4 4 6 7 8

step 2 . M* =  { 7,10,13.14 !
N* =  ! 7,10,11,16,18,23,25,30.31,32 I 

step 3 . j* =  7 
step 5 . S =  '• 4,8,7 1

R =  R - M7 =  \ 1.2,3,5,6,10.11.12,13.14.15 }

j |l 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32
s
jm
J

h 1 1 1 1 1 1 1 2  2 2 2 2 3 3 3 4 4 5 5 5 7 8 9
!
n 1 1 - 1 1 - - 2 2 2 1 2 2 3 5 3 4 5 3 4 5 6 8
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step 2 . M* =  I 10,13,14 }
N* =  { 10,11,16,19,23,25,30,31,32 } 

step 3 . j* =  19 
step 5 . S =  f 4,8,7,19 }

R =  R - M19 =  { 5,6,10,11,13,15 1

j 1 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32

s
jm
J

1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9

- - - -  1 1 - - 1  1 2 1  1 1 2 - 1 2 4 2 2 3 3 4

step 2 . M * = l  10,13 }

N *= {  10,11,25,30.31,32 }

step 3 . j * = l l
step 5 . S =  { 4,8,7,19,11 1

R  =  { 6,10,11,15 }

j 1 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32

s
Jm
J

1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9

- - - -  - 1 - - 1  1 - 1  1 - 2 -  -  1 3 1  2 2 2 4

step 2 . M *= {  10 (

N * = l  10,25,31,32 1

step 3 . j* =  10
step 5 . S =  { 4,8,7,19,11,10 }

R  =  { 6,11,15 }

J 1 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32

s 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9
J

m
j

- - - -  - 1 - - 1 - - 1 1 - 2 - - 1 3 - 2 2 1 3

step 2 . M * = i  6 }

N * = !  6,24,26,30 (

step 3 . j* =  6
step 5 . S =  ( 4,8,7,19,11,10,6 }

R =  1 11,15 (

j 1 2 3 4 5 6 7 8 9 10 11 14 15 16 18 19 22 23 24 25 26 30 31 32

s 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9
J

m
J

- - - -  - — — — 1 — — 1 1 — 2 — — 1 2 — 1 1 1 2

step 2 . M*=! 15 }
N *=l 9,18,24,26,31,32 1
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step 3 . j* =  9
step 5 ,. S =  { 4,8,7,19.11,10,6,9 !

R =  1 11 1
step 2 . M*='! 11 1

N*=! 14,15,18.23,24,30,32 1
step 3 .. j* =  15
step 5 .. S =  i 4.8,7.19,11.10,6,9,15 1

R =  $
step 6 . S is a prime cover - zu=15.0

For k =  2 the procedure generates exactly the same prime cover although some variables
enter into S in a different order from before.
For k=3. the procedure produces a different cover - S =  (5,7,8.19,32 i - but still with the 
same value. The dual feasible solution obtained at the end is :

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

u
i

0.9 0.9 0.9 0.9 1.0 0.9 1.0 0.9 0.1 0.9 0.9 0.15 0.9 0.15 0.9

and the corresponding lower bound is z, =  11.4 .
The corresponding reduced costs for the variables are shown in the following tableau :

j 1 2 3 4 5 6 7 8 9 10 11 14

SJ
0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.2 0.2 0.1 1.0

J 15 16 18 19 22 23 24 25 26 30 31 32

s 0.2 1.85 1.05 0.0 1.95 0.15 0.45 0.4 2.05 1.4 2.9 0.0
j

Since z1+ s3! =  11.4 +  2.9= 14.3>  14, then x3I is equal to 0 for any solution bette'r than 
Zu =  15 and can be removed from the problem (applying proposition 2.6 and taking into 
account that all the costs are integer values).
At the end of this step for procedure 2.13 the number of variables has been reduced to 
23 and the bounds are Z|= 11.4 and zu=15:0 . Now, setting nkl=3  and Aj =  Uj 
(i =  1..... 15). we enter the next step.

STEP 3 . Lagrangean Relaxation (I)
. iteration 1

N(A) =  > 5,7,8.19.32 }
N(A) is already a prime cover with value c[N(A)] =  15.0 

the multipliers are then updated by subgradient optimization : 
Xi =  X; +  «*(zu-zl)(l-2j,Naijxj) /  C^fl-Z^ajjXj)2) 
if the resulting value for Aj is negative then Aj=0
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Setting a= 2 .0  the new multipliers are given in the tableau :

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0 0.0 0.0 0.9 1.0 0.9 1.0 0.0 0.1 0.9 0.9 0.15 0.9 0.15 0.9

The corresponding reduced costs for the variables are :

J 1 2 3 4 5 6 7 8 9 10 11 14
s
J

1.0 1.0 1.0 0.1 0.0 0.1 0.0 0.9 1.1 1.1 0.1 1.0

J 15 16 18 19 22 23 24 25 26 30 32
s
j

1.1 1.85 1.05 2.7 2.85 1.95 2.15 1.3 2.95 3.2 3.6

. iteration 2 

Zlagr= 7 ; 8

N(X)=f 5,7 !

Now, a cover is generated from N(\) using the procedure 2.9 
with the following initial values :

S =  N(X)
M(\) =  M5 U M7 =  { 5.7 I 
R =  I 1,2.3,4,6,8,9,10,11,12.13,14.15 }

Sj given by the tableau above ; m j=l,(j =  l .... 32) : ui=Xi,(i= 1.....15)
call procedure 2.9 
step 2 . M* =  l 4 }

N*=! 4,25.32 !
step 3 . min (0.1.1.3.3.6) =  0.1 then j*=4 
step 4 . u4=1.0 and s4 =  0.0.525= 1 *2,s32 =  3.5 
step 5 . S =  i 5,7,4 i

R =  I 1,2,3,6,8,9,10,11,12,13,14,15 I 

step 2 . M *=l 10,14 i
N*=! 10.16,19,23,25,32 }

step 3 . min( 1.1,1.85,2.7,1.95,1.2,3.5)= 1.1 then j*=10 
step 4 . ulo=2.0 and s10=0.0,s25=0.1.s32 =  3.4 
step 5 . S =  I 5,7.4,10 f

R =  i 1.2,6,8,9,11.12,13.14,15 f 
step 2 . M* =  i 14 !'

N * = i  16,19,23 \
step 3 . min(l.85.2.7,1.95)= 1.85 then j*=16 
step 4 . u14 =  2.0 and s16 =  0.0,s19 =  0.85,s23 =  0.1 
step 5 . S = i 5,7,4,10,16 f

R =  !< 1,2,6.8.9,11.12,13.15 !'
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step 2 . M*={ 8,9,13 }
N *= {  8,11,14,23,24,25,26,30,32 } 

step 3 . min(0.9,0.1,1.0,0.1,2.15,0.1,2.95,3.2,3.4)=0.1
j* =  23 (tie decided by the number of new rows covered) 

step 4 . u8=0.1 and s8=0.8,S2i=0.0,s32= 3 .3  
step 5 . S =  t 5,7,4,10,16,23 j 

R  =  { 6,9,12,3,15 I 

step 2 . M*={ 9,13 }
N *= {  8,11,14,25,26,30,32 }

step 3 . min(0.8,0.1,1.0,0.1,2.95,3.2,3.3)—0.1 then j* =  25 
step 4 . u13=1.0 and s, ,= 5 2 5  =  0 .0 ,530= 3 .1,832= 3 .2  

step 5 . S =  { 5,7,4,10,16,23,25 }
R  =  { 6,9,12,15 1

step 2 . M*={ 9 }
N *= {  8,14,26,30 }

step 3 . min(0.8,1.0,2.95,3.1)=0.8 then j* =  8
step 4 . u9=0.9 and s8=0.0,s14=0.2,S26=2.15,S30=2.3
step 5 . S =  I 5,7,4,10,16,23,25,8 }

R  =  { 6,12,15 1
step 2 . M*={ 6,12,15 }

N *= {  6,9,18,19,22,24,26,30,32 1

step 3 . min(0.1,1.1,1.05,0.85,2.85,2.15,2.05,2.3,3.2)=0.1 then j* =  6 

step 4 . u6=1.0 and s6=0.0,S24=2.05,S26=1.95,S30=2.2,s32 =  3.1 
step 5 . S =  { 5,7,4,10,16,23,25,8,6 1 

R =  { 12,15 }

step 2 . M*={ 12,15 }
N *= {  9,18,19,22,24,26,32 }

step 3 . min(l.1,1.05,0.85,2.85,2.05,1.95,3.1)=0.85 then j*=19 
step 4 . Uj2=  1.0 and s18=0.2,s19=0.0,S22=2.0,s24=  1.2 
step 5 . S =  I 5,7,4,10,16,23,25,8,6,19 }

R  =  1 15 }
step 2 . M*={ 15 }

N * = f  9,18,24,26,32 }

step 3 . min(l. 1,0.2,1.2,1.95,2.25)=0.2 then j*=18
step 4 . u, 5 =  1.1 and s9=0.9,s18=0.0,s24=  1.0,s26=  1.75,s32 =  2.05
step 5 . S =  I 5,7,4,10,16,23,25,8,6,19,18 }

R =  $

step 6 . a prime cover is obtained from S by removing redundant variables 
considered in decreasing order of the costs :
*x23‘xi6‘xio*x7‘x4‘ ar,d the resulting cover 

is S=1 5,6,8,18,19,25 1 with cost c(S)=14.0 
therefore, z„=I4.0 and z,=ZitMUj= 13.0 .
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Variables xj,x2,x3,x9,x14,x15,x22,x24,x26,x30 and x32 
are removed by reduced costs analysis.

. iteration 3
zlagr=7.562 and N(\)={ 4,5,6,7,8,10,11,18,19,23,25 } 

since nk l= 3  we go to next step of procedure 2.13.

At the end of this step for procedure 2.13 the number of variables has been reduced to
n=12 and the bounds are z,= 13.0 and zu=14.0

STEP 3 . Linear Programming
. N0={ 4,5,6,7,8,10,11,18,19,23,25 }

N-N0={ 16 }
The optimal value for LP0 is v(LP0)=14.0 and the optimal dual variables 
are u=(0.0,3.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,2.0,0.0,0.0,1.0,0.0,3.0)
Since c16-u5-u14=2.0 the value of Aq is 0 and then the
lower bound obtained at this step of the procedure is vCLPqJ+ A ^M .O
and the optimum for the problem has been found.

Remark 1 . Note that the problem has been reduced and then the value v(LP0)+A q 
may be greater than the linear programming relaxation of the original 
problem. In fact, the LP lower bound for the example above is 
equal to 13.4

Remark 2 . In the example only one variable was left out of N0. It is clear that
in such cases, where the number of variables left out is small, would be 
worthwhile to include them in N0. However, as will be seen later, this is 
not the situation for large SCP’s where, in general, the cardinality 
of N0 is small relative to N
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For computational tests of procedure 2.13, we considered three different classes of problems 

according to the coefficients of the variables in the objective function :

(I) costs Cj randomnly generated from the interval [1,99]

(II) costs C j = 1 . 0  (j«N)

(III) costs Cj proportional to the cardinality of Mj :

(i) Cj=#Mj

(ii) Cj =  3.0+#Mj

In class (I), two sets of test problems were considered :

(1.1) number of rows m=200

number of columns n=2000 

density d=5%

(1.2) number of rows m=300

number of columns n=3000 

density . d =  2%

The same set of test problems was tried out for classes (II) and (III) differing only on the 

costs :

(II)/(III) number of rows =50

number of columns =500 

density =  20%

Table II.2 summarises the computational results for the test problems in class (I). These are 

identified in column (i) by a general designation TmXk where m is the number of rows and k 

is the number given to the test problem . The initial dimensions of the problem are shown in 

columns (ii) and (iii) .

Chapter 2

2.8 COMPUTATIONAL RESULTS

Columns (iv) and (v) in Table II.2 give the dimensions of the test problem after doing the
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preliminary reductions corresponding to step 1 of procedure 2.13 . As expected for these very 

large problems with random costs, the reduction on the number of variables is quite significant 

mainly due to reduction 2.5’. For all test problems in Table II.2 the number of variables was 

reduced by more than 80% . However, the resulting reduced problem is still a very hard 

problem with the range of the costs much tighter.

Columns (vi) to (ix) in Table II.2 refer to the execution of step 2 in procedure 2.13 . The 

first two columns, (vi) and (vii), show respectively the values of the upper and the lower 

bounds obtained by procedure 2.9 . The other two columns, (viii) and (ix), give the dimensions 

after using the heuristic dual variables to remove variables by reduced costs ; this did not 

actually occur for any of the test problems . This is a consequence of the poor quality of the 

heuristic lower bound which, in fact, could be improved by applying complementary slackness 

tests ( Balas and Ho [11], Hey [105]). However, from computational experiments we found 

that not worthwhile, since the following steps in procedure 2.13 remove most of the variables 

that would be deleted by the heuristic tests. Besides, the heuristic dual variables proved to be 

good initial values for the first phase of the lagrangean relaxation in setting the set N0.

The computational results related to step 3 of procedure 2.13 are shown in columns (x) to 

(xiii) in Table II.2 . The value in column (x) is the best out of the upper bound obtained by 

procedure 2.9 ( column (vi) ) and the values of the covers generated from the solutions of 

LSCPX . The upper bound was improved for six of the test problems contained in Table II.2 

with the most significant decrease being achieved for test problem T300X4 . The lower bound

given by the first application of lagrangean relaxation ( column (xi) ) is naturally much better

than the heuristic lower bound . However, that did not imply any significant reduction in the 

dimensions of the problem as can be seen in columns (xii) and (xiii) .

Columns (xiv) to (xvii) in Table II.2 are related to the restricted linear program LP0 . The

value v(LP0) is shown in column (xv) while the corresponding lower bound to the SCP, 

v(LP0)+A0, is given in column (xiv) . This lower bound is again , for all test problems 

except T200X5 and T300X3, much better than the previous value (column (xi)). The value in 

column (xv) is an upper bound on the value of the LP relaxation for the SCP and in all 

cases but for the mentioned exceptions (T200X5,T300X3) is close to the value in column

Chapter 2



TABLE II.2
Bounds and reductions produced by procedure 2.13 for large scale SCPs

PROBLEM INITIAL PRELIMINARY GREEDY LAGRANGEAN LINEAR PROGRAMMING LAGRANGEAN
DIMENSIONS REDUCTIONS HEURISTICS RELAXATION (I) (RESTRICTED) RELAXATION (II)
m n m n Z A m n ZM z % m n ZA m n Z AK Z K m n

(i) (ii) (iii) (iv) (v) (vi) (vii) (viiil Cixl u ; (xij ( x n ) TxxTTr (Xiv) ( xv ) (xvi) TxvTT) (xvin Mxix; ;xx; (xx x)

T200X1 200 2000 200 349 96.0 53.0 200 349 94.0 65.67 200 344 86.84 87.60 200 154 92.0 87.12 200 146
T200X2 200 2000 200 263 77.0 31.0 200 263 77.0 53.07 200 263 64.35 67.47 200 245 74.0 66.35 199 178
T200X3 200 2000 200 381 104.0 62.0 200 381 103.0 78.53 200 380 87.84 91.66 200 354 96.0 90.72 200 176
T200X4 200 2000 200 290 74.0 40.0 200 290 74.0 54.73 200 290 69.19 69.85 200 155 74.0 69.35 199 150
T200X5 200 2000 200 281 60.0 34.0 200 281 60.0 43.19 200 279 44.53 58.25 180 278 60.0 56.16 186 125
T300X1 300 3000 300 325 227.0 141.0 300 325 227.0 188.08 299 325 214.0 215.0 299 111 215.0 215.0 - -

T300X2 300 3000 300 307 152.0 91.0 300 307 150.0 115.05 300 307 136.79 140.3 300 306 147.0 138.4 300 287
T300X3 300 3000 300 348 228.0 138.0 300 348 223.0 200.34 300 348 184.53 217.0 300 346 223.0 211.8 300 333
T300X4 300 3000 300 482 277.0 169.0 300 482 263.0 209.50 300 482 238.8 245.5 300 477 258.0 243.0 300 444
T30005 300 3000 300 324 203.0 130.0 300 324 199.0 161.61 291 323 184.6 192.0 291 292 192.0 187.7 250 224
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(xiv). Further reduction in the dimensions is achieved for most of the problems using the dual 

feasible solution for reduced cost analysis. As is shown in column (xvi), the number of rows is 

reduced for test problems T200X5, T300X1 and T300X5 while the number the columns ( 

(xvii) in Table II.2) decreases for all the test problems.

Finally, columns (xviii) to (xxi) show the outcome of the second phase application of 

lagrangean relaxation. The lower bound (column (xix) ) is still better for all problems and an 

improvement on the upper bound (column (xviii)) is obtained for all except test problems 

T200X4 and T200X5. As a result of this the dimension of the problems is quite significantly 

reduced and for test problem T300X1 the optimal value is obtained.

The reduced size test problems still have the same density and , in order to obtain the 

optimal solution for them , a tree-search procedure must be used as will be seen in Chapter 

5. Before that a combination of a decomposition technique and state space relaxation for the 

SCP will be developed in order to improve the lower bound obtained at the end of procedure 

2.13 . The results shown Table II.2 confirm what has been said about the heuristic procedures 

for the SCP. Table II.3 summarizes the information relative • to upper bounds which is 

contained in Table II.2. From there it is evident that the greedy heuristic managed to produce 

a bound very close to the optimal value only in two cases (T200X4 and T200X5). The 

’greedy’ upper bound for test problem T200X5 is equal to the optimum while the bound for 

test problem T200X4 is only 1.3% above the optimal value. In this case, the heuristic based 

on the lagrangean reduced costs failed to improve the upper bound obtained by the greedy 

heuristic. The opposite occurred for all the other test problems with the gap being reduced, 

for all the problems, to less than 5% of the optimum. Neverthless, as can be seen in Table 

II.4, the greedy heuristic only takes a small part of the computational time required for 

performing the procedure for the test problems that we have considered. Hence, it seems 

acceptable to try even more expressions than the three different ones we used for the greedy 

selection function.

Table II.4 shows the computational times of each step of procedure 2.13 forthe test problems 

TmXk (m =  200,300;k=l,...,5). For solving the LPwe used the code named XMP (dual simplex 

algorithm) developed by Marsten [129], which has performed reasonably fast for many

Chapter 2
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TABLE II. 3
Evolution of the upper bound in procedure 2.13

PROBLEM GREEDY LAG RANGE AN LAGRANGEAN
HEURISTIC (I) (II)

zopt Z Z*w Z z«. %
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

T200X1 90. 96. 6.6 92. 2.2 92. 2.2
T200X2 71. 77. 8.4 77. 8.4 74. 4.2
T200X3 93. 104. 11.8 103. 10.7 96. 3.2
T200X4 73. 74. 1.3 74. 1.3 74. 1.3
T200X5 60. 60. - 60. - 60. -
T300X1 215. 227. 5.6 227. 5.6 215.
T300X2 141. 152. 7.8 150. 6.3 147. 4.2
T300X3 218. 228. 4.5 223. 2.3 223. 2.3
T300X4 247. 277. 12.1 263. 6.4 258. 4.4
T300X5 192. 203. 5.7 199. 3.6 192. —

TABLE II.4
Computing times for procedure 2.13

( C D  C ^ b O O  ; F T M  c o m p i l e r )

PROBLEM PRELIMINARY GREEDY LAGRANGEAN LINEAR LAGRANGEAN TOTALREDUCTIONS HEURISTIC RELAXATION PROGRAMMING RELAXATION
(i) (ii) (iii) (iv) (v) (vi) (vii)

T200X1 .49 .35 .94 4.22 .81 6.81T200X2 .48 .33 1.04 4.30 .93 7.08T200X3 .48 .36 1.05 5.40 .99 8.28T200X4 .48 .33 1.91 3.17 .71 6.60T200X5 .49 .31 .86 2.87 .75 5.28
T300X1 .45 .59 1.42 7.08 .52 10.06T300X2 .45 .48 1.34 6.33 1.03 9.63T300X3 .45 .50 1.52 6.90 1.50 10.87T300X4 .45 .40 1.39 10.16 1.27 13.67T300X5 .45 .54 1.29 4.20 1.05 7.53
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practical applications. However, it is clear from Table II.4 that a large part of the 

computational time of procedure 2.13 is spent obtaining the LP solution. This is a natural 

consequence of the few reductions achieved on the number of the rows, which drastically 

affects the time taken by the simplex method to solve an LP problem.

This is illustrated by Table II.5 where we present some information relative to problem LP0 

for each of the mentioned test problems. As can be seen from Table II.5, for problems with 

the same number of rows, the fewer the number of elements in N0 the less is the 

computational time required for solving LP0. But, this can strongly affect the quality of the 

bound (eg. test problem T300X3 for which Aq is very big). The difference between problems 

in terms of rows is not significant but, at least the tendency of the LP computational time to 

increase with m is illustrate for test problems T300X5 (m=291;n0=152;t=4.20), T300X2 

(m =  300;no=  150;t=6.33) and T300X3 (m=300;n0=147;t=6.90).

Hence, a further effort to reduce the number of rows of the the problem before calling the 

LP could pay off both in terms of the bound and the computing time. These further 

reductions might be achieved by using the sort of tests considered by Beasley [2S], namely 

the row redundancy and row splitting tests. Another possiblity consists of considering the ’core’ 

problem LP0 with a number of rows fewer than the LP and using an heuristic for completing 

the dual feasible solution needed for the second phase of the lagrangean relaxation. Although, 

we have no consistent computational experience on this last method it seems fairly reasonale 

in particular for very large problems for which the time spent solving the LP becomes very 

critical when applying procedure 2.13.

Refering again to Table II.4, note that the computational times corresponding to the 

lagrangean relaxation include the calculation of the cover generated from the lagrangean 

solution. Then, this time depends much on the number of effective variables in the problem 

and, therefore, the first phase of the lagrangean relaxation is more expensive. On the other 

hand, the covers produced by this method were, for the larger problems, consistently better 

than the ones obtained from the greedy heuristic (Table II.3).

Chapter 2

The computational results relative to the test problems of classes II and III are presented in
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TABLE 11.5

Dimension and computing times of the 
restricted LP relaxation of the SCP

PROBLEM
(i)

#M
(ii) (iii)

#N0
(iv)

Time
(v)

T200X1 200 344 120 4.22
T200X2 200 263 112 4.30
T200X3 200 380 101 5.40
T200X4 200 290 91 3.17
T200X5 200 279 79 2.87

T300X1 300 325 184 7.08
T300X2 300 307 150 6.33
T300X3 300 348 147 6.90
T300X4 300 482 185 10.11
T300X5 291 323 152 4.20



TABLE II.6
Bounds and reductions produced by procedure 2.13 for test problems of the classes II and III

PROBLEM INITIAL
DIMENSIONS
m n

PRELIMINARY
REDUCTIONS
m n z h

GREEDY
HEURISTICS

ZA m n ZM

LAGRANGEAN 
RELAXATION 

(I)
ZA m m

LINEAR PROGRAMMING 
(RESTRICTED)

Z£ z p iq n ZM

LAGRANGEAN 
RELAXATION 

(II) 
z« m n

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (*i*9 (xiv) (xv) (xvi) (xvii) (xviii) (xix) (xx) (xxi)
T50A1 50 500 50 493 5.0 2.816 50 493 5.0 2.86 50 493 2.43 3.31 50 493 5.0 3.14 50 493
T50A2 50 500 50 492 5.0 2.93 50 492 5.0 2.99 50 492 2.34 3.45 50 492 5.0 3.27 50 472
T50A3 50 500 50 490 5.0 3.00 50 490 5.0 3.00 50 490 2.13 3.47 50 490 5.0 3.25 50 485
T50B1 50 500 50 493 64.0 50.0 50 493 64.0 50.0 50 493 _ _ — _ — - - —

T50B2 50 500 50 491 65.0 50.0 50 493 65.0 50.0 50 491 - - - - - - - -

T50C1 50 500 50 491 103.0 58.39 50 491 103.0 58.39 50 491 56.37 60.4 491 103.0 58.66 50 491
T50C2 50 500 50 492 100.0 58.91 50 492 100.0 58.93 50 492
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Table II.6 which has the same entries as Table 11.2. We only show the computational results 

for a small set of test problems since the perfomance of the techniques described above is 

very similar for the different problems generated in those classes. As expected the preliminary 

reductions are not efficient for this type of problems and the other methods applied do not 

perform well either. For the proportional cost problems it so happens that the LP procedure 

took too long ( a limit of 100 seconds in the CDC 6500 was used ) and, hence, procedure 

2.13 is not completed for those problems. The same occured for test problem T50C2 .

Chapter 2

2.9 CONCLUSIONS

In this Chapter we presented a procedure to perform reductions in the dimensions of large 

size SCP’s. The method consists of preliminary reductions techniques, heuristics, lagrangean 

relaxation and linear programming, in such a way that:

(i) Large test problems with n=10*m (n-number of columns;m-number of rows), 

are reduced to problems with n-m but still with the same density as the 

original ones.

(ii) Lower and upper bounds are obtained with a gap in all cases less than or 

equal

to 10% of the value of the best solution available. For most of the test 

problems we tried out, this gap was below of 6% of the upper bound value.

(iii) For SCP’s with costs equal to 1.0 for all the variables, the procedure

fails to produce any significant reduction in the dimensions of the problems. 

This is even worse for the problems with costs proportional to the number of 

rows covered, for which the linear programming also can take too long to 

produce a lower bound.

It seems possible to achieve further improvements on this perfomance and the following 

conclusions may be taken into account in future research :

(iv) Although the quality of the greedy upper bound may be very poor it is 

worthwhile to use them to generate an initial feasible solution for the SCP.
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(v)

(vi)

(vii)

(viii)

(x)

Since only a small part of the computational time of the procedure is taken to 

generate the greedy cover, more and different selection functions might be 

used.

The initial lower bound obtained from the greedy heuristic has a poor quality 

and can be improved by simple methods. Although, from our experience, this 

did not affect very much the outcome of the procedure, the possibility of 

improving the perfomance of the subsequent lagrangean relaxation is an open 

question. Furthermore, if other types of reductions were considered (such as 

penalties or row splitting) then the quality of the greedy lower bound, and 

hence the quality of the first lagrangean relaxation bound, becomes important.

Increasing the number of iterations allowed for the first phase of the 

lagrangean

relaxation did not significantly increase the corresponding lower bound. 

However, there is the possiblity of finding better covers generated from the 

lagrangean solution. Later in this thesis we report improvements on the upper 

bound obtained from further iterations of the lagrangean relaxation (phase I), 

when solving problems with 400 rows and 4000 columns.

The ’core’ problem LP0 can possibly be reduced in terms of the number of 

rows without affecting the corresponding lower bound. Besides, the criterion for 

choosing the variables to'include in N0 has not been considered in depth and 

further research on this particular aspect must be carried out.

For the unicost SCP, it is worthwhile to solve the LP relaxation with 

N0= N  and then trying an improvement on this bound using lagrangean 

relaxation.

both for the unicost SCP and the proportional costs SCP, it is still 

possible that other reduction techniques may be useful. However, we will 

report later computational results derived from the application of decomposition 

and state space relaxation which are consistent by good for unicost SCPs.
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Chapter 3

STATE SPACE RELAXATION 
FOR THE SCP

3.1 INTRODUCTION

Dynamic programming can be used to solve the SCP but this requires, even for small size 

problems, too much storage and time to be useful in practice. In Hey [105], one way to

reduce the dimension of the state space of a dynamic program associated with the SCP is

presented. Instead of obtaining an optimal solution to the problem , a lower bound is

computed by solving dynamic programming recursions on a smaller set of states. This

corresponds to an idea recently developed and called “state space relaxation” (SSR) in

Christofides et al. [52] where it is used for the vehicle routing problem. State space

relaxation is a generalisation of lagrangean relaxation and, hence, can be embedded in a tree- 

search procedure in order to solve optimally the original problem.

In this Chapter the application of SSR to the SCP is developed and some results, both

theoretical and practical, are given. In particular, two different relaxations are presented and 

tested. One can be seen as an extended lagrangean relaxation while the other is equivalent to 

the surrogate constraint relaxation of a SCP. Different ways to perform the state space

modifications are studied and results from computational experience are shown. Also, the lower 

bound produced by SSR is compared with the linear programming relaxation bound for test 

problems whose dimension ranges from 10 to 50 rows and 100 to 500 columns, as well as test 

problems of the classes (II) and (III) considered in Chapter 2.
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3.2 DYNAMIC PROGRAMMING FORMULATION

3.2.1 Definition

Let us consider the SCP with b representing the m-dimensional array of Is in the right-hand- 

side of the constraints and with aj and aj representing, respectively , the ith row and jth 

column of the constraint matrix A = [aij],i= l,2„...,m j=!l,2,...,n . Let s be an m-dimensional 

0-1 vector representing a set of rows, k=/3(s) the index of the last 1 in s and F(s) be the 

least cost of covering the set represented by s. The recursive function F(s) is defined as 

follows :

(3.1) F(0)=0

(3.2) F(s)=minjtNk(F(s-aJ)+Cj)

for k=l,2,...,m and S€pl(k)

where Nk is the set of columns with an entry of 1 in row k and Cj is the cost of â  ,the jth 

column of the constraint matrix A=[ajj] .

Fm(b) is the optimal value of the SCP and the corresponding optimal solution is obtained by 

backtracking analysis in the final dynamic programming tableau. We will illustrate for the 

following example :

Example 3.1 : min 

st.

x, +  3x2 +  x3 +  2x4 +  2x5 

Xj +  x2 +  x3 >1

x2 +  +  x5 >1

x3 +  x4 >1

x, +  x2 +  x4 >1

x,,x2,x3,x4)x,=0 or 1
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The values for F( ) are given in Tableau III.l where , for instance , F(s6) with s6=(0,1,1,0) 

is computed as follows :

F(s6) =  minjtNi (F(s6-aJ)+Cj) =  min (F(s6-a3/+c3 , F(s6-a4)+ c4 ) =  

=  min (F(s2)+1 ,F(s2)+ 2  ) =  3

i Sj k F

0 (0,0,0,0) 0 0
1 ' (1.0,0,0) 1 1
2 (0,1,0,0) 2 2
3 (1,1.0,0) 2 3
4 (0.0,1,0) 3 1
5 (l.o,1,0) 3 1
6 (0,1,1,0) 3 3
7 (1,1,1,0) 3 3
8 (0,0,0,1) 4 1
9 (1,0,0,1) 4 2

10 (0,1,0,1) 4 3
11 (0,0,1,1) 4 1
12 (1,1,0,1) 4 4
13 (1,0,1,1) 4 2
14 (0,1,1,1) 4 3
15 (1,1,1,1) 4 4

Tableau III.l
Values of the dynamic programming recursion 
for the SCP of Example 3.1

Using the usual dynamic programming nomenclature , vectors s are called states and the 

vector domain S , on whieh the recursive function is defined, is designated the state space. 

The k values define the stages for the dynamic program and will be omitted when Sj is 

precisely identified.

The optimal value to the problem of example 1 is equal to 4 and two alternative optimal
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solutions exist - (x1= x 3= x 5= l )  and (x2= x 3 =  l). The dynamic process can be graphically 

displayed as in Fig. 3.1, where the values for F are within square brackets and an arrow from 

sp to s, means that F(s,) is obtained from F(sp) by fixing the variable indicated next to the 

arrow.

Chapter 3

k= 0  k = l  k=2 k=3 k=4

[4]

Figure 3.1

Dynamic process for solving the SCP of Example 3.1

As is suggested by Fig 3.1, the values F(s8) to F(s14) are not necessary, and only the state 

s15 =  b need be considered at the last stage .

Storage requirements and computational time are the disadvantages of dynamic programming 

in comparison with other approaches to the SCP. In fact, for each stage k the number of 

states is Sj J| =  2k'! vectors and the recursive function F has to be stored in an array 

with dimension 2m'1 +  l. In the worst case, the total number of comparisons necessary to solve 

the SCP using (3.1) and (3.2) is 2k™i 2*(#Nk -1) , Horowitz and Sahni f i l l ] .

In section 3.3 a state space relaxation technique for the dynamic program is used in order to 

reduce significantly both the state space dimension and the number of operations . However , 

a lower bound is obtained instead of the optimal solution to the SCP. This lower bound will
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then be imbedded in a branch-and-bound to solve the problem .

Next , a different ( but equivalent ) dynamic programming formulation to the one above is 

presented, and some properties of it are discussed which are related to the state space 

relaxation .

3.2.2 An Alternative Dynamic Programming Formulation

Let S be a set of rows , which can be represented by an m-dimensional 0-1 vector s and let 

M be the index set of all rows. The recursive function Fk(S) is defined as the minimum cost 

for covering the set S using the first k columns. That is,

Chapter 3

(3.3) Fk(S) -  minytf.(S) [Fk.,(S’) +  vk(S\S)]

for k=l,2,...,n and SCM

with initial values

( 0 if S=<f>

(3.4) F0(S) =

+  oo otherwise

and A*(S)= {S’ : S’CS} . The value vk(S\S) is the minimum additional cost for covering S 

with S’ already covered and considering only the column k :

(3.5) vk(S\S)=  l k

£Mk

where Mk is again the index set { i : aik= ll  and S-S’ is the normal set difference operation between

S and S’.
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Solving the dynamic program (3.3)-(3.5) the recursive function Fk(S) has to be computed for 

all sets SCM  , at each state k . Moreover, the computation of Fk(S) implies the comparison 

between 2#s values for k>m . However, these values can be significantly reduced as will be 

seen below.

Chapter 3

3.2.3 Properties

For each state S and at a fixed stage k the set A(S) is restricted as follows :

Property 3.2 : The set A^S) defined for a state S can , at each stage k, be reduced to :

(3.6) A jS) H S  , S-Mkl

and (3.3) is equivalent to

(3.7) Fk(S)= min [Fk.,(S) , Fk.,(S-Mk) +  ck]

for k=l,2,...,n ; SCM

The proof is immediate. Hence, the number of comparisons necessary to obtain , at each stage 

k, the value Fk(S) for a fixed S has been reduced to just one. A further improvement is 

possible by reducing the number of states S for which Fk must be calculated when k is fixed.

Property 3.3 : Let Fk(S) be defined as in (3.7) with initial values (3.4).

Fk is subadditive , that is :

(3.8) Fk(S’US”)< F k(S’) +  Fk(S”)

Proof : we prove the above statement by induction on k .

If k= 0  it is obvious, from (3.4), that (3.8) holds. Now , assuming that 

inequality (3.8) is valid for k let us show that the same is true for k+1 . By 

definition, there are four possible combinations of values to Fk+1(S’) and 

Fk+1(S") :

(1) Fk+,(S’)= F k(S’) and Fk+,(S”)= F k(S")

by hypothesis of induction
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Fk+1(S’) +  Fk+I(S") >  Fk(S’US”) 

and , by definition

Fk+1(S’) +  Fk+I(S") >  Fk+1(S’US”)

(2) Fk+1(S’)= F k(S’) and Fk+1(S”) =  Fk(S”-Mk)+ c k

Fk+1(S’) +  Fk+1(S”) =  Fk(S’) +  Fk(S”-Mk) +  ck

(by the induction hypothesis) >  Fk(S’U(S”-Mk))+  ck

(by definition ) >  Fk((S’US”)-Mk) +  ck

(by definition ) >  Fk+1(S’US”)

(3) Fk+,(S’)= Fk(S’-Mk)+ ck and Fk+1(S”)= F k(S”) 

the proof is identical to the previous one

(4) Fk+ j (S’)= Fk(S’-Mk)+ ck and Fk+1(S”)= F k(S”-Mk)+ ck 

again by hypothesis :

Fk+1(S’)+ F k+1(S”) >  Fk((S’-Mk) U (S”-Mk)) +  2*ck

>  Fk((S’US”)-Mk) +  2*ck

>  Fk((S’US”)-Mk) +  ck

>  Fk+1(S’US”)

If the SCP is feasible then for any SCM  a cover (xi(1),..M xi(s)) , with iO’J^iO’+ O  

(j=l,2,...,s-l), exists such that SC and Fs(S) =  Fs(Uj.s1Mi(j) ). Hence, at each stage

k the state space S can be reduced to

(3.9) Sk =  ISeS : S = U if k]Mi, 0 < k l< k 2 < k l

with M0= $

The maximum dimension of Sjj is given by :

(3.10) dim (Sk) <  2k for 1 < k < m

<  2m for m < k < n

and the maximum number of values F( ) to be computed is still exponentially dependent on 

the number of rows of the SCP.
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In spite of being more complex the dynamic programming formulation to the SCP defined by 

(3.4) and (3.7) is more suitable for SSR application than the formulation by (3.1) and (3.2). 

The dynamic programming recursion can be improved further by using the following property 

which is a direct consequence of (3.8).

Property 3.4 : Let Fk(S) be defined by (3.4) and (3.7).The following 

’a priori’ tests are valid :

(a) if Fk.,(Mk)< c k then Fk(S)=Fk.,(S)

for all SCM

(ie. column k is conceptually removed)

(b) denoting by d=minJ<N(Cj/#Mj) and ffM) 

an upper bound to Fn(M),

if Fk(S)+(m-#S)*d>F(M)

then Fk(S) can be ignored 6 -ts ho+ *Vore4.

The proof is immediate.

Chapter 3

3.2.4 The Dynamic Programming Procedure

The final dynamic programming recursion , DP .considered for the SCP is :

(3.11) Fk(SUMk) =  min [ Fk.,(SUMk) , Fk.,(S )+ck ] 

for k=2,...,n and SeS^j

where Fk is not computed if either the tests (a) or (b) of property 3.4 are effective, and 

Fk.[(SUMk) is only considered if (SUMk)eSk.1.

The family of sets Sk is computed recursively as :

(3-12) s k =  s k-i U f XUMk : XeSk.! } 

for k = 2 .... n
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with the initial values

(3.13) Sj =  { M„ $  1

F,(M,) =  C! and F,($) =  0

A description of a procedure based on (3.11)-(3.12) and (3.13) for solving the SCP, is given 

below. The corresponding flowchart is shown in Figure 3.2.

Chapter 3

Procedure 3.5 . 
Step 1

Dynamic programming procedure 
. initialisation 

k = l  
f= 2  
F($)=0 
F(Mj)=C j

H(S)=(0,0) for all S«S 
H(M,)=(1,1)

* 1 )-*
x (2)= m ,
S ,-  {x(1),x(2)}

Step 2 . next variable

Step 3

if k= n  go to 4 
k = k + l  
ne=JP 

Sk= Sk-i
. computing F,H and S 

for j = l  to JP do
Y =X (j)UMk 
if YtSk then

if F(Y)>F(X(j))+ c k then
F(Y) =  F(Xa))+ c k 
H(Y) =  (k,j)

endif
go to repeat 

else n e= n e+ l 

X(nc) -  Y
F(X(nc)) — F(X(j))+ ck 
H(X(ne)) =  (kj)
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first variable 
initial states 
number of states

K=1
Sl-< f,M i>
l =2

< T i s  K less than nr^> »»-----------------

-
yes

l
F(M) is the optimal | 
value; call procedure ! 
3.6 for obtaining the I

next variable : K=K+1 optimal solution |
initialise Sr : Sk=Sk -1  
number of elements in S?: ne3 ^

consider the elements X( j)tS^_i( j=l,..., A) 
start with j3l

I generate a state from X(j) with My: Y=X(j)UMy

no

go to a new element in : i=j+l

new element in : SU{Y> 
number of elements: ne3ne+l 
Xfnp)a Y

''
cost of Y: F(Y)3F(X(j ))+ck 
variable used and precedent 
state: H(Y)=(K,i)

Figure 3.2

Flow diagram for procedure 3.5
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Sk= SkU{X(ne)}
endif

repeat 
go to 2 
endif

Step 4 . obtaining the optimal solution 
F(M) is the optimal value 

call procedure 3.6 
stop

Chapter 3

Procedure 3.6 . Obtaining the optimal variables 
Step 1 . initialisation 

Z=4>

X =M
Step 2 . constructing the optimal solution 

(W) =  H(X)
z  = zu l'H

Step 3 . updating set X
if j =  l then go to step 4 
otherwise do X =  X(jland go to step 2 

Step 4 . optimal solution
Z is the index set of the optimal variables 
stop

Example 3.7
Tableau III.2 contains the values of F and H for the problem of example 3.1 . For each 

k=l,...,4 , the sets X^ S k are indicated with the corresponding values of F and H. For k=5 
only M is considered and the optimal value is F(M)=4.0 .

Using the procedure 3.5 to obtain the optimal solution :
. Z=4>

X=ll,2,3,4l
. (P,j) =  H(ll,2,3,4})=(3,3)

Z =  ZUf3}={3l 
. X={1,2,4}
. (P,j) =  H({ 1,2,4})=(l,i)

Z=ZU{2}={2,3}
. since j = l  the optimal solution is given by the set Z
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i.e., X2=X3=1

Cl =
k=l

=1 Mi=(l ,4> C2=3
k=2

M2=<1,2,4)

1 1 2 1 1 2 3
S <1,4> S * <1,4) <1,2,4)
F 0 1 F 0 1 3

H (0 .0 ) (l.D H (0 .0 ) (l.D (2 .1 )

C3=l
k=3

M3=<1,3)

1 1 2 3 4 5 6

S <1,4) <1,2,4) <1,3) <1,3,4) <1 ,2 ,3,4)
F 0 1 3 1 2 4
H (0 .0 ) (l.D (2 .1) (3.1) (3.2) (3.3)

04=2
k=4

M4 =<3,4)

1 1 2 3 4 5 6 7

S .f <1,4) <1,2,4) <1,3) <1,3,4) <1,2,3,4) <3.4)
F 0 1 3 1 2 4 2

H (0 .0 ) (l.D (2 .1) (3.1) (3.2) (3.3)

c5:
k=5

=2 M5=<2 >

1 6

S <1,2,3,4)
F 4
H (3.3)

Table III.2
Values of F,H and S when using procedure 3.5 

to solve the SCP of example 3.1
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3.3 STATE SPACE RELAXATION

3.3.1 Definition

In this section a relaxation method of the dynamic programming formulation for the SCP is 

presented in order to reduce the state space dimension of the dynamic program. Instead of an 

optimal solution for the SCP, a lower bound is obtained which can be improved either using 

penalties in a lagrangean fashion or using state space modifications. This bound is then to be 

embedded in a branch-and-bound scheme to solve the SCP.

Let us consider then the dynamic programming formulation for the SCP defined by (3.3),(3.4) 

and (3.5). Now, let g be a mapping function from the state space {S: SCMl to a lower dimensional 

vector domain Q and let Q be a set function such that :

(3.14) if S’cA''(S) then g(S’)eIT1(g(S))

A new dynamic program can be defined in Q as follows :

(3.15) fk(q)= min 1 fk.1(q’)+wk(q\q) 1 

the minimum is computed for q’cff^q) with k=l,2,...,n.

with initial values

(3.16) f,(q) =

f 0 if q=g($) 

c, if q=g(M j) 

oo if q>g(M ,)

and

(3.17) wk(q’iq)= min (vk(S\S) : g(S’)= q ’ , g(S)=q }
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with vk defined as in (3.5).

Property 3.8 : For any state SCM  and stage k

(3.18) fk(g(S))<Fk(S)

Proof : if k = l  the inequality is obvious. Now, let us assume that this is 

true for k and prove the same for k+1 :

fk+i(g(s )> “  minq’tcr'(g(S)) l W ) + w k+1(q’,g(S))]

(from (3.14)) <  mins. ^ (S) [ fk(g(S’))+wk+I(g(S’),g(S)) ]

(from hypothesis) <  m i n [ F k(S’)+wk+1(g(S’),g(S)) ]

(from (3.17)) <  mm?*'1®) I Fk(S)+vk+1(S’,S) ]

Corollary 3.9 : (a) f„(g(M)) is a lower bound to v(SCP) the optimal value to the SCP.

(b) fn is such that :

(3.19) fn(g(hj))<Cj, for all j =  l,2,...,n

Chapter 3

3.3.2 Properties of the Relaxed Recursion

The computation of wk(q\q) from (3.17) still requires the knowledge of vk(S\S) calculated in 

the original state space. This is overcome using (3.7) ia order to obtain the ’relaxed’ state 

space recursion corresponding to (3.8). In fact, the set function Q (as defined in (3.14)) can 

be restricted in a similar way to (3.7) to become :

(3.20) iri(q) =  U&8-<w  1 g(S) , g(S-Mk) I

and wk(q’,q) is then simplified to :

(3-21)

f 0
wk(q\q) = (

if q’=q=g(S) 

if q’=g(S-Mk)
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Therefore, the recursion in the relaxed space can be stated as :

(3.22) fk(q) =  m in ^ .^  [fk.,(q) , fk.,(g(S-Mk))+ ck ]

for k=l,2,...,n and q«Q

A  last link with the original state space remains through the determination of the sets S such 

that g(S)=q. However, subadditivity of g provides the way to obtain fk(q) without resorting to 

explicit computation of those sets. Thus,

Property 3.10 : If  g is a subadditive real function then

(3.23) fk(q) >  min [ fk.,(q) , fk.,(q-g(Mk))+ ck ]

where q-g(Mk)=max(0,q-g(Mk))

Proof : from subadditivity of g, 

g(S-Mk)>g(S)-g(M k)

>  q-g(Mk)

for all S C M  such that g(S)=q  and (3.23) comes as an immediate result.

Now, using expression (3.23) with the equality and the initial conditions (3.16), the final 

dynamic programming recursion, DPR, on the relaxed state space is defined as :

(3.24) fk(q + g (M k)) =  min [ fk.,(q+g(Mk)) , fk.,(q)+ck ]

for k=2,...,n and qcQ^,

where fk.](q+g(Mk)) is only considered if q + g (M k)eQk.,, with

(3.25) Qk =  Qk., U { q + g (M k) : qeQkJ  

and

(3.26) Q j=  1 g($) ,g(M,) }

fi(g(*) =  0 

f,(g(M,)) =  c,

Chapter 3
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Therefore, fn(g(M)) computed in the lower dimension state space Q is a lower bound to the 

SCP. Figures 3.3 and 3.4 illustrate the way state space relaxation operates.

Figure 3.3 shows the ’shrinking’ process of the original state space S= lS: S C M  } and the 

computation of fk(q), a lower bound to fk(g(S)) for g(S)=q, is graphically displayed in Fig. 3.4. 

The function p is defined by :

(3.27) p(q) =  { S C M  : g(S)>q 1

3.3.3 Forms of the Mapping Function g(.)

As is suggested by Figures 3.2 and 3.3 the state space relaxation is defined by g and

fi. The function g can take different expressions for the SCP, such as :

(3.28) (i) g(S) =  #S , the cardinality of S

(ii) g(S) =  S itSq; , qj is a non-negative integer weight

associated with ith row of M

(iii) g(S) — /3S ,. index of the last row in S

(iv) g(S) =  as , index of the first row in S

(v) g(S) =  (a,,a2 ar) , where ak =  # (SH A k)

for AkC M  and 1 < k < r < m

Several other expressions can be stated for g, in particular any combination of the previous 

ones. For instance, in Hey [105] the following two expressions were considered for g :

(vi) g(S) =  (#S,0s) , /8S given as in (iii)

(vii) g(S) =  (#S,as,/Ss) , as and /8S given as before

Case (i) corresponds to the ’knapsack type’ relaxation for the SCP and case (ii) is equivalent 

to the surrogate constraint relaxation.
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Figure 3.3
"Shrinking" effect of the mapping function g

Graphical representation of state space relaxation process
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Example 3.11

Let us work out the problem of example 3.1 and using the weighted knapsack relaxation 

((3.28)-(ii)). Consider q i==q3==q4= l and q2= 2  as the weights for the relaxation mapping 

function for the initial problem formulated as in (3.5M3.6) and (3.7). The values of fk(q) for 

q=0,l,...,5 and k— • 1,...,5 are shown in the Tableau III.3 where, for instance :

• W  =  f i ( 0 ) + c 2 “  0.0+3.0 =  3.0 

f2(5) =  fj(l)+ c2 =  1.0+3.0 =  4.0 

. f3(4) =  min (f2(4),f2(2)+c3) =min (3.0,2.0) =  2.0 

. fj(5) -  min (f4(5),f4(3)+c5) =  min(4.0,4.0) =  4.0

k q 0 i 2 3 4 5

1 0 l i

2 0 l l 3 3 4
3 0 i l 2 2 4
4 0 l i 2 2 4
5 0 l l 2 2 4

Tableau III.3

Values of fk(q) for the SCP of example 3.1 
using the dynamic programming formulation 
given by (3.5)-(3.6) and (3.7)

Since the solution corresponding to the lower bound fs(5), (Xj=x3=x2= l )  obtained by 

backtracking analysis, is feasible the optimal value to problem is v(SCP)=f5(5)=4. Now, let 

us consider the same relaxation mapping function but with the dynamic programming 

formulation defined by (3.1) and (3.2). In this case the relaxed recursion is :

(3.29) fk(q)= minjfNj< (fk.(q-g(Mj)+Cj) 

for 1 < k ’< k

with initial values given by (3.16). Tableau III.4 contains the values of fk(q) for the example 

with, for instance,

. f,(4) =  c2 =  3.0
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. f2(5) =  minj_w (f^S-gCM^ +  Cj) =  min (^ (0  +  3.0,f,(3) +  2.0) =  4.0 

. f3(5) =  minj_34 (f2(3)+c3,f,(3)+c4) =  3.0

k q 0 1 2 3 4 5

1 0 1 1 3 3
2 0 1 1 2 2 4
3 0 1 1 2 2 3
4 0 1 1 2 2 3

Tableau III.4

Values of fk(q) for the SCP of example 3.1 
using the dynamic programming formulation 
given by (3.1) and (3.2)

The lower bound f4(g(S4)) =  3 is worse than that obtained from the relaxation of a more 

complex initial dynamic programming formulation. In fact, this example shows that the 

effectiveness, or otherwise, of the state space relaxation in producing bounds is, for the same 

mapping function, dependent on the dynamic programming formulation. The same occurs with 

lagrangean relaxation relative to the integer programmming formulation of the problem being 

solved.

3.3.4 Subadditivity and Reduced Costs

The recursive function fn( ) is not necessarily subadditive onto the relaxed state space Q. For 

instance, we have f5(2) +  f5(3)<f5(5) in the example above . The subadditivity of Fn( ) 

defined on the original state space S can be violated because of the relaxation, but reduced 

costs for the variables can be obtained using fn( ). In fact, from the definition, the cost of 

imposing the variable Xj in the solution is

(3.30) tj= Cj+ fn(g(M-Mj))

If zu is a known upper bound and tj>z„ then Xj is equal to 0 for any feasible solution better
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than Zy. Therefore, the reduced cost of variable Xj given by fn( ), computed in the lower 

dimension state space, is :

(3.31) Sj-  max [0,c, +  f,(g(M.M|)Kn(g(M))]

The next result is a general duality theory property that applies for the state space relaxation:

Property 3.12 : (a) If a row i exists such that

(3.32) dj= minjtNiSj>0

then the lower bound can be increased to

zrW M H+dj

(b) let S be an index row subset of M and C be 

the family of all covers C(S) to S. Then :

(3.33) v(SCP)>minC(S)<c [2JtC(S)Cj +  fn(g(M-MC(S))] 

where MC(S)=  UjtC(S)Mj

(c) if d5= 0  for all i=l,2,...,m  then X=lxj : Sj=0l is 

a feasible solution to the SCP

Proof : (a) an immediate proof comes from the inclusion in the SCP of the 

redundant constraint :

(A) row i is covered

The mapping function is restricted to :

g(S) =  (g(S),5j) ($i= 1 if i«S; 5j=0 otherwise)

Hence,

v(SCP) >  fn(*M)) >  minj(Ni [cj+ fn(g(M-Mj))]

^  fB(g (M ))+ ..^ ,ltC»jl
>  fn(g(M)) +  di

The proofs for (b) and (c) are immediate

Chapter 3
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In spite of requiring some computational effort because of the inspection of all possible 

combination of columns covering the row set S, result (b) of property 3.12 is worthwhile for 

the cases where #S =  2. This will be illustrated later in the present Chapter.

3.3.5 State Space Ascent

State space relaxation can be thought of a& generalisation of lagrangean relaxation in integer 

programming. Constraints in integer programming appear as state variables in dynamic 

programming recursions and, hence, constraint relaxation in integer programs is equivalent to 

state space relaxation in dynamic programs. The generalisation comes from the possibility of 

using non-linear mapping functions, such as the cardinality of a set or the index of a 

particular row. Moreover, two different procedures can be used to increase the lower bound 

obtained by state space relaxation :

(i) using penalties in a lagrangean fashion

(ii) using state space modifications

In both cases the objective is to force the solution of the relaxed problem closer to feasiblity 

and, naturally, improve the lower bound. Two different mapping functions are considered and 

the respective state space relaxations will be studied in detail :

(SSR1) g(S)=(#S,a,/3)

where #S is the cardinality of S 

a is the index of the first row in S 

0 is the index of the last row in S

and

(SSR2) g(S)=2itSqj

where q; is a non-negative weight chosen to be associated with row i

Chapter 3

Penalties and subgradient optimization are used for SSR1 in order to produce a better state
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space ascent. On the other hand, state space modifications are adopted for SSR2.

3.4 RELAXAT IO N  SSR1

3.4.1 Recursion

Considering the dynamic programming formulation to the SCP defined by (3.11),(3.12) and 

(3.13), with the mapping function SSR1, the relaxed recursions corresponding to (3.24),(3.25) 

and (3.26) are given as :

(3.34) fk((s,a,/3)©(sk,ak,/3k)) =  min ifk.1((s,a,£)-©(sk,ak,0k)) , fk.,(s,or,/3)+ck }

for k=2,...,n and (s,a,/3)eQk.,

where(3.35) Qk=Qk-iu Ks,a,jS)®(sk,ak,0k) : (s,a,/3)€Qk.,}
sk=#M k

ak is the index of the first row in Mk 

/?k is the index of the last row in Mk 

with initial values :

(3.36) Q, ={g($),g(M1)M (0 ,m +  l,0),(#M1,a„j81)} 

fi(g(*))-0  

f,(g(MI) ) - c 1

We define g(4>)=s(0 ,m +1,0) in order to be consistent with the operation © which is defined in 

the following way :

(3.37)

where

(3.38)

(s,a,/3)©(sk,ak,jSk) =  (s+sk-2y«jj , min(a,ak) , max(/3,/3k))

1 if i= j

for i=a,/5 ; j = a k,/3k

V.
0 otherwise
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k 1 s .a 0 f

1 1 0 5 0 0
1 2 2 1 4 . 1

2 3 0 5 0 0
2 4 2 1 4 1
2 5 3 1 4 3

3 6 0 5 0 0
3 7 2 1 4 1
3 8 3 1 4 2
3 9 2 1 3 1
3 10 4 1 4 4

4 11 0 5 0 0
4 12 2 1 4 1
4 13 3 1 4 2
4 14 2 1 3 1
4 15 4 1 4 4

5 16 0 5 0 0
5 17 2 1 4 1
5 18 3 1 4 2
5 19 2 1 3 1
5 20 4 1 4 4
5 21 1 2 2 2
5 22 3 1 3 3

Tableau III.5
Values ft(s,aj3) for the state space relaxation 

SSR1 of example 3.1

Example 3.13 :

Let us illustrate the use of (3.37) and (3.38) for the problem of example 3.1 for the cases : 

• f3(3,l,4)
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(2.1.4) ©(2,1,3)=(3,1,4)

f3(3,l,4) =  min {f2(3,l,4) , f2(2,l,4)+c3}=min (3 , 2}=2 

. f3(4,l,4)

(3.1.4) ffi(2,l,3)=(4,l,4) 

f3(4,l,4) =  f2(3,l,4)+c3= 4

Tableau III.5 gives the complete list of values fk(s,a,/3) obtained from (3.37) and (3.38) for 

the SCP of the example 3.1.

3.4.2 Procedure SSR1

Next, we describe a procedure based on (3.34)-(3.35) and (3.36) for obtaining a lower bound 

for the SCP. The flowchart for this procedure is shown in Figure 3.5.

Procedure 3.14 . Computing a lower bound to the SCP using SSR1 
input . m - number of rows

n - number of columns 
ck - cost of variable index k (k=l,2,...,n) 
ak - index of the first row in Mk (k= l,2,...,n) 
/3k - index of the last row in Mk (k=l,2,...,n) 
sk - cardinality of Mk (k=l,2,...,n) 

step 1 . initialisation 
k = l  
1=2
s(l)= (0 ,m +l,0 )
f( l)= 0
h(l)=(0,0)
s(2)=(#M 1,a1,^j)©s(l) 
f(2)=c, +  f(l) 
h (2 )= (l,l) 

step 2 . next variable
if k = n  then go to 6 
k = k + l

j - 1
ne=I

step 3 . merging
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(s,a,/3)= s(j)+ (sk,ak,0k)
for i equal to 1 to $ do

if (s,a,/S)=/5(i) go to repeat 
if f(i)> f(j)+ck then

f(i) =  f(j)+ck 
h(i)=(k,j)

endif 
go to 4

repeat
n e= n e+ l
s(ne)=(s,a,/S)
f(ne)=f(j)+ck
h(ne)=(kj)

step 4 . new element in Q 
j = j + l
if j <P then go to 3 
else go to 5

step 5. updating the state space dimension 
_P=ne 
go to 2

step 6 . lower bound
for i equal 1 to ne do

if sCO^niJ.m) go to repeat 
f(i) is a lower bound to the SCP 
z,=f(i) 
go to 7

repeat
step 7 . lower bound solution

j =  i
S = 4 >

while j not equal 1 do 
(k,j) =  h(j)
S=SU{k)

repeat
S is the index set of the lower bound variables

stop
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Figure 3.5

Flow diagram for procedure 3.14
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The lower bound solution given by the set S in procedure 3.14 can, naturally, be infeasible 

for the original SCP. Computing penalties X; (i=  l,2,...,m) in a normal lagrangean fashion and 

updating subsequently the costs ck, a new lower bound is obtained using procedure 3.14 again.

In fact, consider the SCP with the redundant constraints :

(3.39) H — { x : 2kI‘1Skxk> m  , a=m ink a k=  1 , /3=maxk /3k=m  }

where sk,ak and /Jk are defined as before. Now, proceeding with the lagrangean relaxation of

the row covering constraints the following relaxed problem is obtained :

(SSR1X) min 2 k̂ (ck-2i<M.Xj)xk +  

subject to H

For each value of X a lower bound fx(m,l,m) is computed by procedure 3.14 and, hence, 

normal subgradient methods are used to solve the problem :

(DSSR1) maxx>0 fx(m,l,m)

Subgradient optimisation was used with the penalties being computed at iteration number } as 

follows :

(3.40) Xf -  max ( 0 , Xp> +  T*[(VZ|)*U-2k.Ni*i)] /  Pi(l-2k,N,*i)2] )

The parameter y  is initially set equal to 2.0, being reduced to half of its value whenever the

procedure fails to improve the bound after a fixed number of consecutive iterations. We set 

the initial values for the multipliers equal to U; (i=l,2,...,m), the dual feasible solution 

obtained by the greedy heuristic described in Chapter 2.

Chapter 3

3.4.3 Subgradient Optimization
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Consider the following index sets computed at iteration $ :

(3.41) NJ =  { keN : cJ=ck-Si{MfcX?<0 }

N } =  { k«N : c£>0 }

Obviously, xk= l  for kcNJ and lagrangean relaxation optimal value

at iteration }. Therefore, the lower bound given by SSR1 is at least as good as the lower 

bound produced by the lagrangean relaxation LSCPX described in Chapter 2. On the other 

hand, procedure 3.14 takes longer than the lagrangean procedure to perform the same number 

of iterations. A better procedure in terms of both value of the lower bound and computational 

time required, can be achieved by combining those two aspects of each method.

With the modified costs cj[ produced during the lagrangean iterations, and which can be also 

negative, the initial state s(l) in step 1 of procedure 3.14 is not (0,m+l,0) but :

(3.42) s(l) =  © (sk,ak,/3k) — (s0,a0,^0)
j«NJ

Hence

(3.43) f(l) = + 2,2#

is the corresponding lagrangean relaxation value. Then, a decision is taken whether to carry on 

with procedure 3.11 or to consider f(l) as the lower bound obtained at iteration X and update 

the multipliers for iteration J + l .

A decision rule that performed reasonably well for the test problems was - if s0>(2/3)*m 

then the state space relaxation procedure is completed. If not, the procedure is stopped and 

the lagrangean bound is considered.

Chapter 3

3.4.4 Improving the Bound
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Applying (3.27) to SSR1 the following value, computed at each iteration JP, is a lower bound 

to the objective function when the variable xk is fixed equal to 1 :

(3.44) tf =  cf +  minQtTk f(Q)

where TkCQ is the subspace IQtQ: Q©g(Mk)=(m,l.m)i. The variable xk is removed if t£>zu. with 

zu a nown upper bound to the SCP.

Performing the computation of (3.44) for all the variables consumes an amount of time which 

is too large. Then, instead of the exact value t£ we use a lower bound given by :

(3.45) t£ =  max [ fj(m.l.m) , cj[+fj(m-#Mk,l,m)]

Chapter 3

3.4.5 Removing Variables

3.4.6 Example
Let us consider the same example we used to illustrate procedure 2.13 in Chapter 2. Applying 
procedure 2.9, an upper bound zu=15.0, a lower bound Z ] = 1 1 . 4  and a dual feasible solution 
are available. The variables x12,x13,x17,x20,x21,x27,x28,x29 and x31 have been removed from 
the problem. We then apply procedure SSR1 (with the lagrangean improvement) to the 
following reduced problem :

k 1 2 3 4 5 6 7 8 9 10 11 14

e. 1 1 1 1 1 1 1 1 2 2 2 2
k

1 2 3 4 5 6 7 8 1 3 5 9

K 1 2 3 4 5 6 7 9 15 10 13 11
' k 
s 1 1 1 1 1 1 1 2 2 2 2 2
k

k 15 16 18 19 22 23 24 25 26 30 32

c 2 3 3 3 4 4 5 5 5 7 9
K

2 5 11 1 1 2 3 1 3 2 1
k

Pk
11 14 15 14 12 14 15 13 15 13 15

s 2 2 3 5 3 5 6 5 5 7 10
k

The lagrangean multipliers are set equal to the dual variables obtained from the greedy
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heuristic:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9 0.9 0.9 0.9 1.0 0.9 1.0 0.9 0.1 0.9 0.9 0.15 0.9 0.15 0.9

and the corresponding reduced cost for the variables are :

k 1 2 3 4 5 6 7 8 9 10 11 14 15

Sk
0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.2 0.2 0.1 1.0 0.2

k 16 18 19 22 23 24 25 26 30 32

Sk
1.85 1.05 0.0 1.95 0.15 0.45 0.4 2.05 1.4 0.0

Now. as the first step for SSR1 we compute :
.s(l)=g(M 5)©g(M7)©g(M8)©g(M19)©g(M32) =

=  (1,5,5)©(1,7,7)©(2.8,9)©(5.1,14)©(10,1.15) =
=  (2,5,7)©(2,8,9)©(5,1,14)©(10,1,15) =
=  (4,5,9)©(5,1,14)©(10,1,15) =  (9,1.9)©(10,1,15) =  (15,1,15) 

f(l) =  2ii 5,\i =  11.4
Since s(l) =  g(M)=(15,l,15), this iteration of the state space relaxation is completed Since 
s(l)=g(M ) =  (15,l,15), this iteration for the state space relaxation is completed and 
subgradient optimization is used for computing the new multipliers. The values are naturally 
the same as the ones obtained at iteration 2 of Step 2 in example 2.14, i.e. :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0 0.0 0.0 0.9 1.0 0.9 1.0 0.0 0.1 0.9 0.9 0.15 0.9 0.15 0.9

The new costs are then :

k 1 2 3 4 5 6 7 8 9 10 11 14 15

Sk
1.0 1.0 1.0 0.1 0.0 0.1 0.0 0.9 1.1 1.1 0.1 1.0 1.1

k 16 18 19 22 23 24 25 26 30 32

3‘

1.® 1.05 2.7 2.85 1.95 2.15 1.3 2.95 3.2 3.6

The variables are considered by increasing value of the reduced costs and the first step 
consists of computing :

. s( 1)=g(M 5)©g(M7) =  (1.5.5)©( 1.7,7) =  (2.5,7)
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r ( l ) - S i,ty i+<5,+ c ;-7 .8
Proceeding with the state space relaxation procedure, the variable x4 is considered :

. s(2)=g(M4)©(2,5,7)=(3,4,7) 
f(2) =  0.1+7.8 =  7.9

The following variable to be considered (by increasing order of cost c'), is x6 :
• s(3)=g(M6)©s( 1 ) =  ( 1,6.6)©(2,5,7) =  (3.5,7) 

f(3) =  O.H-7.8 =  7.9
. s(4)=g(M6)©s(2) =  (l,6.6)©(3,4,7) =  (4.4,7) 

f(4)=0.1 +7.9 =  8.0
Continuing the process for all the variables, a final number of 204 states is obtained with the 
final lower bound - f( 15,1.15)= 11.25 . In the next tableau we show the values for the states 
S such that as = l  and /?s =15, which are used in the computation of the values tk (see 
(3.45V) :

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

XOS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
f 7.8 7.8 7.9 8.9 9.0 9.1 9.1 9.2 10.0 10.1 10.25 10.35 10.35 10.45 11.2

Applying (3.45), we obtain the following values tk for the variables :

k 1 2 3 4 5 6 7 8 9 10 11 14
t
k

11.45 11.45 11.45 11.25 11.25 11.25 11.25 11.25 11.45 11.45 11.25 11.35

k 15 16 18 19 22 23 24 25 26 30 32
11.45 12.2 11.4 12.8 13.2 12.05 12.15 11.4 13.05 12.4 12.6

Note that for row 14 (N]4=i 16.19.23!) :
. minjtN14 =  min (12.2,12.8,12.05) =  12.05

and this means that the lower bound is increased to the value 7 =12.05. Also, new costs tk 
can be computed for the variables. For example :

. t , =  minj= i6.19.23[cj +  c] +  fx(m-(M, U Mj), 1 ,m)
Hence.
j =  16 . g(M, U M16)=g(l 1.5.14r) =  (3.1.14)

CJ -h c'i6 f(12,1. i 5) =  13.20 
j =  19 . g(M, U M19) =  gO 1.2,3,12,14() =  (5,1.14) 

c;+c'19 +  f(10.1.15)=13.80 
j =  23 . g(M, UM23)= g (: 1.2,5,8,11.14!) =  (6.1,14) 

c j+ c^  +  R9.! .15)= 12.95
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Doing the same for all the other variables, we obtain :

k l  2 3  4 5 6 7 8 9 10 11 14
t 12.95 13.05 12.95 12.05 12.05 12.05 12.05 12.95 12.25 12.25 12.05 12.85 k

I k 15 16 18 19 22 23 24 25 26 30 32
j t 13.20 12.20 12.20 12.80 14.00 12.05 13.10 12.25 13.90 14.15 13.45 
: k

Since d9 =  min(t8,t14,t26,t30)=  12.85. the lower bound is further improved to z,= 12.85 and 
the variable x30 is removed from the problem (zu =  15.0).

If we generate a cover from the lagrangean solution as we did for this problem in Chapter 2, 
then a new upper bound is obtained (zu=14.0) and the variables x2,x,J,X22*x24,x26.x32 are 
also removed from the problem. Then, a new iteration of the state space relaxation would be 
initiated and the process continued until either (i) a fixed number of iterations have been 
performed, or (ii) the lower bound has not increased for a fixed number of iterations, or (iii)

the optimal solution is achieved (z,>zu-1.0).

3.4.7 Computational Results for SSR1

Table III.6 presents the computational results obtained using SSR1 for a set of test problems

randomnly generated with the cost of the variables in the interval [1,99] and the number of

variables nr10*m (m= 10.20,30.40 and 50). For each value of m, five different problems were 

generated which are identified in Table III.6 by Pm.k, where m is the number of rows and k 

a number assigned to the test problem. All of the test problems have an average of 3.5 

entries per column: which means that the average density ranges from 35% for the ten row 

problems (P10.1-P10.5) to 7% for the fifty row problems (P50.1-P50.5).

The first five columns in Table III.6 give details about the test problems. These details 

include : designation, number of rows (m), number of columns (n), density (d) and the

optimal value (zopt). Lower bound information is given in columns (vi) to (ix). Columns (vi)
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TABLE III.6
Comparison between the state space relaxation SSRl and 

a combination of this with lagrangean relaxation

i-----------
PROBLEM j SSRl LSCPl/SSRl

r 1
1
1

m
1
1 n 
|

d
1
1
1

z o p t j z?
1
1
1

t  | Z% t

1 ( i ) 1 C ii) 1 ( i i i ) ( iv ) 1 (v ) 1 ( v i ) 1 ( v i i )  | ( v i i i ) ( ix )

I P10.1
1
1 10

l
1 99 3 4 .4

1
1 2 I 2 .0 *

1
1 .056 I 2 .0 * .054

I P10.2 1 10 1 98 4 0 .0 1 12 I 12 .0* 1 .092 | 12 .0* .092
I P10.3 1 10 I 98 3 6 .2 1 18 1 15.96 1 1.343 | 8 .0 1 .209
I P10.4 1 10 I 100 3 3 .7 1 17 | 17 .0* 1 .110 | 17 .0* .114
I P10.5 1

1
10 | 100 3 7 .3 1

1
4 I 4 .0 * 1

1
.080 | 4 .0 * .081

I P20.1
1
1 20 I 198 17.3

1
1 40 I 35 .24

1
1 8.777  | 33 .14 3 .630

I P20.2 1 20 I 197 17 .7 1 31 I 3 1 .0 * 1 .373 | 3 1 .0 * .367
I P20.3 1 20 1 191 17.6 1 22 | 2 2 .0 * 1 .222 | 2 2 .0 * .228
I P20.4 1 20 I 195 18 .2 1 45 I 39 .94 1 10.440 | 39 .72 2.725
1 P20.5 1

1
20 1 198 17 .6 1

1
40 | 38 .55 1

1
9.454  | 38 .69 2 .336

1 P30.1
1
1 30 I 291 11.9

1
1 23 | 21 .00

1
1 2.961  I 22 .06 2 .993

1 P30.2 1 30 | 289 11 .9 1 52 | 48 .62 1 4 9 .908  | 4 6 .02 2 .872
I P30.3 1 30 1 291 11.7 1 31 | 3 1 .0 * 1 12.206 | 3 1 .0 * 5 .185
1 P30.4 1 30 1 293 11 .9 1 52 I 4 6 .02 1 + | 51 .68 7.041
I P30.5 1

1
30 I 297 11.5 1

1
66 | 50 .54 1

I
17.353 | 55 .67 10.012

| P40.1
1
1 40 I 391 8 .8

1
1 84 | 66.63

1
I + | 82 .92 9.396

I P40.2 1 40 | 389 8 .9 1 54 I 46 .45 1 + | 5 4 .0 * 2 .030
| P40.3 1 40 1 392 8 .8 1 56 | 4 8 .84 1 13.040 | 55.21 7.662
I P40.4 1 40 I 385 8 .9 1 64 I 57.85 1 34,530  | 60 .59 8 .988
I P40.5 11

40 I 390
i

9 .0 1
1

49 I 43 .22 1
1

49 .813  | 47 .45 7 .506

1 P50.1
1
1 50

1
| 487 7 .1

1
1 61 I 52.90

1
1 + | 55 .73 13.997

I P50.2 1 50 I 491 7 .1 1 68 ! 55.43 1 + | 6 8 .0 * 4 .811
I P50.3 1 50 I 492 6 .9 1 76 I 65 .48 1 20.717 | 74.31 8 .308
I P50.4 1 50 I 486 7 .1 1 71 I 62.92 1 9.956  | 69 .35 11.440
I P50.5 1

1
50 I 489 

1
7 .2 1

1
80 | 68 .14 1

1
17.415 | 74.41 10.130

MNF5 C om piler 
CDC 6500 dd<oheU
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and (vii) refer to procedure 3.14 with initial values for Xj equal to the dual feasible solution 

produced by the greedy heuristic described in Chapter 2. Columns (viii) and (ix) correspond 

to the combined lagrangean and state space relaxation with the same initial values for the 

multipliers.

A maximum number of 25 iterations and a time limit of approximately 10 seconds 

(CDC6500;MNF5 compiler) were imposed. The only exception to those limits is for the first 

two iterations which could take as long as 50 seconds in order to assure that a minimum of 

two iterations would be performed. Even so, iteration number two couldn’t be completed for 5 

problems which are labelled with (+ ) in column (vii) giving the time required to compute the 

lower bound shown in column (vi). Column (ix) presents the time corresponding to the lower 

bound values given in column (viii). A label (*) in column (vi) and/or (viii) means that the 

respective lower bound is optimal.

Apart from problems P10.3,P20.1 and P30.2 the lower bound in column (viii) is always 

greater than or equal to the value shown in (vi). The larger the size of the problem the 

greater is the difference between the values in those columns. Furthermore, the time taken to 

obtain the lower bound z1 using the lagrangean-state space combination is for all cases (except 

P50.4), at least as good as the corresponding value in column (vii).

Therefore, the combination of lagrangean and state space relaxation proves to be more 

efficient in both the lower bound value and the time consumed. A more sophisticated 

“decision rule” than that mentioned in 3.4.4 could lead to even better results.

Chapter 3
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3.5 RELAXATIO N  SSR2

3.5.1 Definition

Applying SSR2 to the dynamic programming formulation for the SCP given by (3.11),(3.12) 

and (3.13) the recursions on the relaxed state space are of the form (see (3.24H3.25M3.26)) :

(3.46) fk(q + q k) — min ( f^ fo + q 1') , f ^ q H ^  )
for k=2,...,n and q€Qk.,

where qk= 2 i<Mk q; and f^ fq + q 1) is only considered if q+ qk«Qt l . The sets Qk 

(K = l,2,...,n) are defined recursively by :

(3.47) Qk -  Qk.j U { q+qk : qeQk., } (k=2,...,n)

and the initial values are set as follows :

(3.48) Q, -  f g (* )-0  , g(q‘) )

f,(g(*))=f,(0)=0

f,(g(M,))=c,

SSR2 corresponds to the “knapsack-type” relaxation of the SCP in integer programming and 

the procedure described in the next section is a straightforward adaptation of a dynamic 

programming procedure for the 0-1 knapsack problem presented in Horowitz and Sahni [111] 

(Chpt. 5).

3.5.2 Procedure SSR2

A procedure for obtaining a lower bound to the SCP, based on (3.46H3.47) and (3.48), is 

described next. The flowchart for this procedure is presented in Figure 3.6.
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Procedure 3.15 . Computing a lower bound to the SCP using SSR2 
input . m - number of rows

n - number of columns
- cost of variable index k (k= l,2,...,n) 

qk - weight of variable index k (k=l,2,...,n)
Q(M) - total weight of the rows (SitMqj) 

step 1 . initialisation 
k = l  
il =  1 
i2=2 
q ( l ) - 0  
f ( l ) - 0  
q(2)=q1 
f(2)=c, 
h ( l ) - 2

step 2 . iteration k 
k = k + l
if k greater than n go to 6 
otherwise do

i= il
i2

h(k)-Jt
for j equal il to i2 do 

mk=j
qq=q(j)+qk
if qq less than Q(M) go to 
else go to 3

repeat
step 3 . obtaining Qk

for j equal i to mk do
q q = q (j)+ q k
ff=fO')+ck
if i< i2  and f(i)<ff do

q(l)=q(i) 
f«) =  f(i) 
i = i+ l  
J-l+1
go to repeat

elseif i< i2 and f(i)=ff then 
qq= max (q(i),qq) 
go to repeat

repeat
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endif
if qq>q(f-l) then 

q(J)=qq 
f(l)=ff 
1= 1+1

endif
while i< i2  and q(i)<q(P-l) do i= i+ l

repeat
step 4 . merge in remaining terms from Qk., 

while i<i2 do
q(f)=q(i)
f(0= f(O
i = i + l
JH+i

repeat
step 5 . initialise for Qk+1 

i l= i2 + l  
i2=JP 
go to 2

step 6 . obtain the solution
qq=q(D
ff=f(l)
ns=0 
il =h(n)
for k equal n-1 to 1 do 

i2= il-l 
il =h(k)
for j equal il to i2 do

if q(j)=Aiq lhen go to repeat 
else ns =  n s + 1 
S(ns) =  k

qq=qq-qk
ff=ff-ck 
go to repeat

repeat
repeat
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Figure 3.6

Flow diagram for procedure 3.15
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3.5.3 Improving the Lower Bound

Applying (3.27) to SSR2, a lower bound for the value of the objective function when the 

variable xk is fixed equal to 1 is given by :

(3.49) tk =  ck +  f(Q-2iiMkqj)

The variable xk is then removed if tk>z„, with a known upper bound. From property 

3.12-(a), if there exists a row i such that :

(3.50) d; -  minktN (tk-f(Q)) > 0

then the lower bound can be improved to f(Q)+dj. A further attempt to improve this value 

can be made using the result (b) of property 3.12. That is, if there exist two rows, say i and 

1, such that :

(3.51) du =  min (cj+5jkck+f(Q-g(Mj UMk))-f(Q))>0
(j,k)fNjj

then the lower bound can be improved to the value f(Q)+djj. The set is the product set 

of Nj and Nlt i.e. Njj={(j,k): jeN;, keN,}, and the coefficient 5jk is equal to 1 if k ^ j, otherwise is 

0.

This last result is illustrated in Figure 3.7 for the example used in Chapter 2, (Lemke et al. 

[126]). Iterations are indicated on the horizontal and correspond to different values of qs 

(i=l,2,...,m) chosen in a manner that will be discussed in the next section. The value of f(Q) 

are represented on the vertical. The points joined by a dotted line are the lower bounds 

computed by procedure 3.15 while the points connected by a plain line correspond to the 

lower bound after test (3.51). As can be seen this test is very useful for the first iteration 

and gives an improvement on the bound until iteration number 5 (inclusive). Finally, at 

iteration 18 the value of z, becomes, after (3.51), equal to the optimal value for the SCP.

Chapter 3



improved SSR bound (3.51)

Figure 3.7
Improvement on the lower bound from (3.51) for the SCP of example 2.14
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3.5.4 State Space Modifications

The example considered in the previous section and represented in Figure 3.7 also shows how 

modifications on the values q{ (i«M) may yield improvements to the lower bound. In fact, the 

best choice for the qj would be such that the original state space is mapped onto the relaxed
/V

space as uniformly as possible but not exceeding the maximum dimensionality, let us say Q 

Denoting by fq(Q) the lower bound produced by SSR2 for a particular vector q=(qj), the 

new problem to be dealt with is :

(DSSR2 ) maxq=>0 fq(Q)
st- Q= 2i«Mqi ^  Q

Since SSR2 is equivalent to the surrogate constraint relaxation in integer programming, the 

related techniques can be used for solving DSSR2. A subgradient optimization type method 

presented in Dyer [61] to solve surrogate dual problems was adapted for the DSSR2. This 

method is compared with two other procedures which are based on the simple idea of 

increasing the weight for non-covered rows and reducing it for the overcovered ones.

From the general surrogate duality theory a good choice for the initial values for the weights 

qs would be the optimal dual variables for the LP relaxation' of the SCP.However, solving the 

linear program may increase the computing time and storage requirements with no special 

benefits, and an alternative which is adopted consists of using a dual feasible solution given 

by the greedy heuristic described in Chapter 2. Since only integer values are considered for 

the weights, the initial values are given by :

(3.52) q, =  tT*UiJ (i«M)

where iaj means the maximum integer value less than or equal to a; 7  is a positive factor

dependent on the values Uj (ieM) and used to approximately maintain the proportionality
A/

betwween the dual values. A final remark about DSSR2 concerns the constraint 2 j{Mqj <  Q 

When computing new values of qs there is the possiblity of violating that constraint. A

straightforward way to overcome this would be to divide all the q( by the same factor, say d.

Chapter 3
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But, then, some of the qj/d values will be non-integer and [q;/dj must be used. Another way, 

which proved to be better over several tests, is to share the difference 2UMqi-Q,(l-ar), 

0< a< 0 .5 , among the values q; as follows :

(3.53) % -  q, - [(2„Mq,-(l-a )Q)>(qi/Q)]

Different values of a were tested and the value a =0.25 was chosen.

Chapter 3

3.5.5 Modification of the weights q(

A. Procedure A

Let x=(xj) be an optimal solution to the relaxed dynamic program. If x is feasible for the 

original SCP then the problem has been solved; if not a straightforward way to perform state 

space modifications is to increase the value of the q; corresponding to uncovered rows and, at 

the same time, decrease the weight for the overcovered ones, ie. :

(3.54) qj =  max ( 0 , qi+(l-2j(NlXj)*h )

where h is an integer step length. The • choice h =  1 produced good results for medium size 

problems.

B. Dual type Procedure (Procedure B)

Let us consider again the optimal solution x=(xj) to the relaxed dynamic program and let i 

be the index of a row not covered by x. Our aim is to increase the value q; by an amount 

Aj>0 such that :

(3.55) f(Q+Aj) >  minj(Nitj



- 1 0 9 -

Chapter 3

where tj is given by expression (3.49). Hence, a reasonable choice for is the minimum 

integer value satisfying :

(3.56) f(Aj) >  minjtNi(tr f(Q)) =  di

with d; obtained as in (3.50).

If i is the index of a oversatisfied row then the respective weight can be decreased by an 

amount Aj>0 such that :

(3.57) minjeNi tj>f(Q-Aj)

and, again, (3.55) truncated is a possible choice for Aj as the minimum integer value that

satisfies it. Hence, the weights can be updated as follows :

(3.58) q, =  q .+ r'fd^d-S j.M  Xj)

where

(3.59) f'(dj) =  min { q : 0 < q < Q  and f(q)>dj }

For dj=0, we consider F ^ d ^ l .

C. Subgradient Type Procedure (Procedure Q

As mentioned above, SSR2 is equivalent to the surrogate constraint relaxation for the SCP. 

Hence, the techniques developed for solving the dual surrogate problem may be used as a 

procedure to perform state space modifications. In particular, a subgradient type procedure 

presented in Dyer [61] was tested imposing additional restrictions relative to the integrality of
V

the weights qj and the maximum available dimension Q .
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Before describing the procedure let us point out that as has been shown ( Karwan and Rardin 

1120]) the subgradient methods used in many lagrangean approaches are inappropriate in the 

surrogate case. In fact, the objective function for the dual surrogate problem is, in general, 

not suitable for those techniques because of the possiblity of having no subgradients at some 

points. The concept of “quasi-subgradients” presented in Greenberg and Pierskalla [96] was 

used by Dyer [61] to construct a “quasi-subgradient” method which we adapted in the 

following way :

(3.60) (i) normalize the weights : q ^q i/^M q r
(ii) compute for the lower '

bound solution di= r i-(-itMqiri)*qi

d i= d ;/- i(M(d;)2

(iii) update the weigths ^ qi=cii+T*di

qi=lqiJ

(iv) impose the additional 1 qi=qr(Q-d-«)OyQ)

restrictions J qi=[qil

The parameter r is the step size at each iteration and is initially set equal to 2.0, being 

halved whenever the procedure fails to improve the lower bound after a number of consecutive 

iterations.

3.5.6 Example

Let us consider again the example from Lemke et al. [126], in the situation immediately after 

using the greedy heuristic procedure. Then, the problem has been reduced to 23 effective 

variables and the bounds are : z,= 11.4 and zu=15.0. The dual feasible variables obtained 

from the greedy heuristic are used for setting the initial weights for SSR2 by using (3.52) 

with 7 = 1 0  :

i 1 2 3 h 5 6 7 8 9 10 11 12 13 14 15

' qi 9 9 9 9 10 9 10 9 1 9 9 1 9 1 9
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Q =  2iI5|qi=  113 and the values Cj and qj for the variables are :

Chapter 3

j 1 2 3 4 5 6 7 8 9 10 11 14 15
I
I C 

! q J

1.0 1.0 1.0 1

qo
•

o

1.0 1.0 2.0 2.0 2.0 2.0 2.0

9 9 9 9 10 9 10 10 18 18 19 10 18

! J 16 18 19 22 23 24 25 26 30 32

i c 
; J 
! q

3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 7.0 9.0

11 19 29 20 38 46 46 29 56 90

Applying the procedure SSR2, the final dynamic programming tableau is :

10 20 30 39 49 58 67 76 85 94 104 113

1 2 3 4 5 6 7 8 9 10 11 12

The lower bound is then f( 113) =12.0 corresponding to the solution 
x1= x ; =x 3= x 5 =  x7 =  x8= x 1I= x 23= l  and the values tj for the variables are :

j 1 2 3 4 5 6 7 8 9 10 11 14 15
i t  
j J

12 12 12 12 12 12 12 12 12 12 12 13 13

! J 16 18 19 22 23 24 25 26 30 32

11 
! j 
l___

14 13 12 13 12 12 12 14 13 12

All dj (i =  1,...,15), computed by using (3.50), are equal to 0 and then no improvement on the 
bound is possible. The weights of the rows are updated using procedure B :

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

qi
___

9 8 9 10 8 10 10 8 1 10 9 2 9 1 10

For this iteration of the dynamic programming procedure, the bound obtained is 
f(-ji,5fli) =  f(l 14)= 12.0. Again, no improvement on the lower bound is achieved. Then, a new 
iteration is initiated with the weights modified to :

I i  | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 j

i q ! 9 8 9 9 9 9 10 8 2 10 9 3 9 2 1o|
i 1 I I

I j  ; 1 2 3 4 5 6 7 8 9 10 11 14 15

I c. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0

q3 9 8 9 9 9 9 9 10 19 19 18 11 17

16 18 19 22 23 24 25 26 30 32

3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 7.0 9.0

11 22 31 21 36 48 47 33 56 90
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The final tableau, obtained using the recursion (3.46)-(3.47)-(3.48). is given below :

q
0 10 19 31 m 50 60 69 79 90 100 109 116

1

0 1 2 3 4 5 6 7 8 9 10 11 12

The corresponding tj for the variables (using (3.49)) are :

J ~ T 2 3 4 5 6 7 8 9 10 11 14 15

t
j

12 12 12 12 12 12 12 12 12 12 12 13 12

j 16 18 19 22 23 24 25 26 30 32

t
j

14 13 12 14 13 12 12 14 13 12

us apply (3.51) for rows 14 and 11 . The minimum cost of covering these two rows is

^14.11 =  min <ck +  cj+f(116-2i(MjuMkqi) : j = 16,19,23 k= 14,15,18.23.24.32!
Since t16,t23.t,4,t18>  13.0, we only need to consider the cases where j =  19 and k=  15,24,32. 
Computing the expression above with one of the variables x)4,x16.x18,x23 variables shows that 
du l I >13.0. Let us then see the three remaining possible cases :

• ci9 +  ci5 +  fU 16-(qi+q2 +  q3+ q 1I +  q12 +  qI4)) =  5 +  f(76)=13.0
c,9 +  c24 +  f(116-(q1+q2+q3 +  q6 +  q8 +  qn+ qi2+cli4"i"cli5)) =  8 +  f(49)==13-0 
c,9 +  c32 +  f(27)=15.0

Hence, the lower bound is increased to 13.0 and also the values tj can be updated for all the 
variables by computing :

• tj=  mink_ 16 19 23[Cj +  ck +  f(l 16-Ii<MjuMkqj)], j r  16,19,23 
The new values are :

j 1 2 3 4 5 6 7 8 9 10 11 14 15
I t  
! J

13 14 13 12 12 12 12 12 13 13 12 13 13

! J 16 18 19 22 23 24 25 26 30 32
t 14 13 12 16 13 13 14 14 14 15

The variables x22 and x32 are removed from the problem. Also, a cover can be generated by 
selecting first the variables with minimum tj :

. S ='4,5,6,7,8,11,19'’
R = 10,11.15!

and then completing the cover in the same way as we did for obtaining covers from the 
lagrangean solution. That is,

. M *= 10:
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min (ti0,t25)=== 13-0 and since N,0n R  =  N25n R  =  tlOi 
the variable xI0 is chosen because it is the cheapest.

. SH4.5.6,7.8,11,19,10}
R =il 1.151 

. 15 }
min (t9.tjg.t24.t25)=  13.0 
x18 is the selected variable 

. S=>4,5,6,7.8 ,1 1,19.10.181 
R=4>

. a prime cover is obtained from S by removing x5 

S=i4,6,7,8 ,1 0 , 1 1,18,191 with cost c(S)=14.0
Thus, the variables X2.Xj5.X25.X25 and x30 are removed from the problem. The SCP has been 
reduced in such way that, now, the rows indexed 7,10 and 13 have only one effective variable 
covering each one of them. Hence, the corresponding variables - x7,x10 and Xj3 - are fixed 
equal to 1; after this, x3 and x5 become redundant and are removed.
The state space procedure is resumed considering only weights for the rows of the reduced 
problem :

HT1 i I  3 5 5 6 7 8 9 10 ii i i  13 14 ii~~
i q i 9 8 - 9 - 9 - 8 2 - 9 3 - 2  10

and the values for the effective columns are :

j  j 1 4 6 8 9 14 15 18 19 23 24
i c ; 1 ,0  1 .0  

qJ 9 9

1.0
9

1.0 2. 0 2. 0 2. 0 3. 0 3. 0 4. 0 5.0 
10 19 11 17 22 22 21 41

The bound obtained from SSR2 is then f(69) =  9.0 which added to the value of the fixed 

variables gives z,= 14.0, the optimal solution.

3.5.7 Computational Results for SSR2

Table III.7 gives computational results using procedure SSR2 with the three types of state 

space modifications described above. The same set of test problems described in 3.4.6 was 

considered with a maximum number of iterations fixed at 25 and a time limit of 

approximately 10 seconds (CDC6500). The number of rows, number of columns and density



Table I I I . 7
Comparisons between the  procedures  f o r  m odi fy in g  the  w e i g h t s  o f  the  v a l u e  i n  SSR2

PROBLEM Procedure A Procedure B Procedure  C

( i )  1
z opt
( i i )

1
Z« 1 

( i i i )  1
I

( i v )

1  r
1 t |
1 ( v )  I

t f
( v i )

1
z * 1 

( v i i )  I

i r
I 1 t | 

( v i i i )  ( i x )  |
t f

(x )

r
z * | 

( x i )  1
I

( x i i )

1
| t 
| ( x i i i )

1
1
1

t f
( x i v )

P10.1 1 2
------ r

2 . 0 *  | 1
i ------------ r
1 . 0 5 6  | .056

r
2 . 0 *  | 1

1 1 
| . 056  | .056

r
2 . 0 *  | 1

1
1 .0 60

1
1 .060

P10.2 | 12 1 2 . 0 *  | 1 I .099  | .099 1 2 .0 *  | 1 I . 090  | .090 1 2 .0 *  | 1 1 .099 1 .099
P10.3  | 18 1 8 . 0 *  | 2 1 .245  | .245 1 8 . 0 *  | 2 I . 246  | .246 1 7 .0  | 3 1 .34 8 I 1 .761
P10.4 1 17 1 7 . 0 *  1 1 1 .125  | .125 1 7 . 0 *  | 1 1 .120  | .120 1 7 .0 *  j 1 I .117 1 .117
P10.5 | 4 4 . 0 *  | 

1
1 I .081  |

i i
.081 4 . 0 *  | 

1
1 | . 080  | 

1 |
.080 4 . 0 *  j 

1
1 I .080  

1
1
1

.080

P20.1 | 40
1

3 9 . 0  | 18
1 1 
| 2 . 6 3 6  | 3 .431

1
4 0 .0 +  | 23

1 1 
| 3 . 4 4 9  | 3 .5 87

1
3 6 . 0  | 17

1
I 2 . 8 0 2

1
1 3. 795

P20.2 j 31 3 1 . 0 *  | 1 1 . 355  | .355 3 1 . 0 *  | 1 | .365  | .365 3 1 . 0 *  j 1 1 .336 1 .336
P20.3  | 22 2 2 . 0 *  1 1 1 . 2 4 6  | .246 2 2 . 0 *  | 1 1 .245  | .245 2 2 . 0 *  j 1 I .255 1 .255
P20.4  | 45 4 5 .0 +  | 19 | 3 . 9 0 8  | 4 . 9 2 8 4 5 .0 +  | 19 I 3 . 9 5 9  I 4 .9 4 7 4 3 . 0  | 12 1 3 .0 4 2 1 5.921
P20.5  | 40 3 9 . 0  | 

1
4 I . 644  |

1 i
2 .6 6 2 3 9 . 0  | 

1
4 1 .645  | 2 . 697 3 8 . 0  |

i
3 1 .546

I
1
I

3 . 050

P30.1 | 23
1

2 2 . 0  | 7
1 1 
| 1 . 5 3 3  | 1 .889

1
2 2 . 0  | 21

1 1 
I 3 . 4 6 0 | 3 . 84 3

1
2 1 . 0  | 21

1
I 3 . 6 6 7

1
1 4 . 1 4 6

P30.2  1 52 52.0 +  | 15 1 3 .2 7 7  | 4 . 9 1 6 52.0+  | 18 | 3 . 7 6 8  | 4 . 6 5 5 5 1 . 0  | 7 I 2 .0 7 3 1 5 .7 06
P30.3  | 31 3 1 . 0 *  j 2 I . 729  | .729 3 1 . 0 *  j 2 I .7 0 8  | .708 2 2 . 0 *  j 4 1 .859 1 .859
P30.4  | 52 4 9 . 0  | 7 I 3 . 3 4 5  | 10 .395 4 9 . 0  | 7 | 3 .2 1 1  | 10 .083 4 6 . 0  | 7 | 3 . 5 0 0 1 10.144
P30.5 j 58 5 6 . 0  | 

1
21 I 8 . 2 5 2  | 9 . 3 6 8 5 6 . 0  | 

1
21 | 8 . 2 1 4  I 

1 |
9 . 331 4 8 . 0  | 

1
1 1 .905

I
1
1

10.022

P40.1 | 84
1

8 0 . 0  | 12
1 1 
I 6 .7 5 3  | 10 .403

1
8 2 . 0  | 16

1 1 
| 8 . 3 7 8  | 10 .220

1
6 6 . 0  | 2

1
1 2 . 1 9 0

1
1 10.450

P40.2 | 54 5 4 . 0 *  j 7 | 2 . 0 0 7  | 2 .0 0 7 5 4 . 0 *  j 7 I 2 .0 6 1  | 2 .0 6 8 5 4 . 0 *  | 11 | 3 . 7 0 0 1 3 .7 0 0
P40.3 | 56 56 .0 +  | 18 I 3 . 2 4 7  | 3 .8 9 3 5 5 . 0  | 5 | 1 . 8 0 0  | 3 .8 7 8 4 9 . 0  1 11 1 4 . 3 6 4 1 7.837
P40.4 | 64 6 4 . 0 *  | 16 I 6 .5 6 5  | 6 .5 6 5 64.0+ | 14 | 6 .1 1 2  | 9 . 8 8 8 5 8 . 0  | 5 I 3 .0 8 0 1 10.200
P40.5  j 49 4 9 .0 +  | 

1
22 1 9 . 7 2 0  | 10 .037 4 9 .0 +  | 

1
8 I 5 . 5 4 0 | 10 .03 0 4 1 . 0  j 

1
1 j 1 .1 7 6  

1
1
1

10.059

P50.1 | 61
1

5 8 . 0  | 11
1 1 
I 7 . 7 5 4  | 10 .257

1
6 0 . 0  | 15

1 1 
| 10 .2 6 8  | 10 .272

1
5 2 . 0  | 2

1
I 2 .3 1 3

1
1 10.630

P50.2  | 68 6 7 . 0  j 15 I 5 . 1 0 9  | 5 .9 7 5 6 6 . 0  | 8 I 4 . 2 9 9  | 6 .5 2 6 5 5 . 0  | 2 1 2 . 1 1 6 1 10.202
P50.3  j 76 7 3 . 0  | 19 I 9 .9 2 5  | 10.431 7 4 .0  | 18 j 9 . 3 2 0  j 10 . 160 6 5 . 0  j 4 j 3 .1 7 8 1 10.382
P50.4  | 71 6 9 . 0  | 16 | 8 .1 1 7  | 10 .358 6 9 . 0  | 16 1 8 . 1 6 3  | 1 0 .3 98 6 1 . 0  j 2 I 1 . 8 5 8 1 10.093
P50.5 j 80 7 8 . 0  | 10 | 5 . 8 6 8  | 

1 1
10 .137 7 8 .0  j 

1
10 I 5 . 8 9 9  | 

1 1
10 .086 6 5 . 0  | 

1
1 1 1 .389  

1
1
1

10.039

Mra*S comber 
CDC 65*00

-1
1

4
-
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are omitted from Table III.7. There are four entry columns for each state space modification 

technique. The first column gives the best lower bound z^fCQ); the second, the number of 

iterations needed to compute z,, with the corresponding computational time (t) in the next 

column. Finally, the fourth entry column for each method shows the total time (tf) spent at 

the end of all iterations. Whenever the state space relaxation procedure managed to identify 

the optimal solution a star (*) is added to the value of zv When the lower bound is equal to 

the optimal solution but the procedure fails to identify the optimality of the bound we put a 

plus mark (+ )  rather than (*).

From Table III.7 it is clear that all the techniques perform very well for the 10 row 

problems. The quality of the bound decreases with the dimension of the problems. However, 

for the 50 row problems the best out of the three values is always within 3% of the optimal 

solution.

The subgradient type method fails to achieve a reasonable lower bound value for most of the 

problems with more than 20 rows. For procedure (C), it is significant that for the problems 

with 50 rows the best value is obtained at the first iteration and the method fails to improve 

it after either 25 iterations or 10 seconds.

The procedure A  and the dual type procedure B perform in a very similar way. The latter 

gives better lower bound values for problems P20.1,P30.1,P50.1 and P50.3, while the other 

only produces a better bound for P50.2. A  combination of these two procedures is presented 

in the next section and the corresponding lower bound is compared with the (LSCPX/SSR1) 

and the LP relaxation bounds.

Chapter 3
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Chapter 3

3.6 SSR AND LP RELAXATION

3.6.1 Improving SSR2

After updating the weights qj for all the rows, an upper bound to the value z,=f(Q) can be 

computed. If that upper bound, say Zp is less than or equal to z* the best lower bound 

obtained so far, then new weights must be calculated and the iteration need not to be 

performed. An easy way of computing Zp is given by the next procedure.

Procedure 3.16 . Computes an upper bound on the value f(Q) 
step 1 . initialisation 

S = $
L = N

Q = ̂ieM̂i 2̂ =0
step 2 . choosing a variable 

find j* such that 
Cj./qj =  minjtL fcj/qj } 
go to 3 

step 3 . updating

h=%+cr "
S =S  U { j* }
L=L-{ j* }

Q=Q-qj’
if Q >0 go to 2 
if Q =0 go to 5 
otherwise go to 4

step 4 . removing redundant columns from S
Q=-Q
for j«S do

if q^<Q then
S=S-( j } 
Q =  Q-qj 

V* ̂ "CJ
endif

repeat 
go to 5

step 5 . upper bound
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Figure 3.8

Flow diagram for the final version of SSR2
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Chapter 3

Zp is an upper bound on f(Q)
S is the index set of the variables corresponding to zz 

stop

Using this upper bound a new method to perform the state space modifications to SSR2 was 

produced combining the procedures A and B. The scheme of this method is shown in Figure 

3.8.

3.6.2 Computational Results

Table III.8 compares the perfomances of :

(i) SSR1 (with the lagrangean improvement) 

and

(ii) SSR2 (with the upper bound test)

for the same set of test problems which was previously considered.

A maximum number of 25 iterations and a time limit of 10 seconds were imposed again for 

both state space relaxations. Columns (i),(ii) and (iii) in Table III.8 refer to the problem 

showing, respectively, the designation of the test problem, the optimal value (zopt) and the 

greedy upper bound (z j. The lower bound obtained using SSR1 is shown in column (iv) with 

the respective computational time given in column (v). The corresponding information for 

SSR2 is presented in columns (vi) and (vii). Again, a plus mark ( +  ) next to a lower bound 

value means that this is equal to optimal value but the procedure failed to recognize it. A 

star (*) means that the optimality of the lower bound was identified.

From Table III.8 it is clear that SSR2 performs, in general, better and faster than SSR1; the 

only exception is problem P30.4. The gap between the lower bounds is quite large for some 

test problems such as P20.4, P30.2 and P50.1 for which is about 10% of the optimal value.

For comparing SSR2 and the LP relaxation of the SCP we considered a different set of test
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TABLE III. 8

Comparison between the final versions of SSRl and SSR2

PROBLEM SSRl SSR2

1
11 zopt ZM

1
zi { time z*

1
11

time

(i) 1 (ii) (iii) (iv) | (v) (vi) 1 (vii)

P10.1
1
1 2 2

I
2.* | .054 2.*

1
1 .060

P10.2 1 12 12 12.* | .092 12.* 1 .092
P10.3 1 18 19 18.* | 1.209 18.* 1 .242
P10.4 1 17 17 17.* | .114 17.* 1 .118
P10.5 11 4 4 4.* |1 .081 4.* 11 .081

P20.1
1
1 40 45

1
33.14 | 2.037 39.

1
1 1.493

P20.2 1 31 31 31. | .367 31.* 1 .337
P20.3 1 22 22 22. | .228 22.* 1 .234
P20.4 1 45 55 39.72 1 2.476 45.+ 1 3.574
P20.5 11 40 44 31.69 1 2.119 40.* 11 2.195

P30.1
1
1 23 25 22.82 | 2.993 23.+

1
1 3.374

P30.2 1 52 58 46.07 | 2.868 52.+ 1 2.893
P30.3 1 31 31 31.* | 5.180 31.* 1 .774
P30.4 1 52 61 51.08 | 7.048 51.* i 8.995
P30.5 I1 58 66 55.67 |1 9.788 57. 11 6.867

P40.1
1
1 84 86

1
82.92 | 9.391 83.

1
1 9.067

P40.2 1 54 54 54.* | 2.030 54.* 1 1.920
P40.3 1 56 58 55.21 | 7.662 56.* 1 2.021
P40.4 1 64 66 60.59 1 8.988 64.* 1 3.338
P40.5 1I 49 57 47.45 1 1 6.818 49.+ 11 5.540

P50.1
1
1 61 66

1
55.27 | 2.629 61.+

1
1 8.772

P50.2 1 68 61 68.* | 4.839 68.* 1 3.544
P50.3 1 76 79 74.31 1 7.618 75 1 6.478
P50.4 1 71 77 69.35 1 11.436 70 1 9.153
P50.5 1

1
80 82 74.41 |

L '
10.170 79 1

1
7.112

C S C  6 5 6 0
coYnJallef-
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problems. In fact, since our main objective is to use state space relaxation in a general 

decomposition procedure for large size SCPs, the interval from which the cost of the variables 

were randomnly generated was reduced to [1,20]. This is consistent with the results shown in 

the previous Chapter where most of the variables with large costs were removed and the 

resulting SCP is a harder problem in the sense that much more effort has to be done to 

produce further reductions. Also, we tried out a set of random diagonal-band problems which 

are difficult for the LP to solve. Finally, the problems of the classes (III) considered in 2.9 

were tried out for SSR2.

Table III.9 reports the computational results obtained with test problems for comparing SSR2 

and LP. The first four columns in the table refer to the test problem - (i) identification,

(ii) number of rows, (iii) number of columns and density. Columns (v) and (viii) are relative 

to the bound provided by SSR2 and the respective computing time. The final lower bound 

and computational time for SSR2 are given in columns (vii) and (viii), respectively. Whenever 

the state space procedure took longer than the LP, we present in column (v) the best bound 

produced during the execution of SSR2 until approximately the time taken by the LP. In 

column (vi) is given the exact time when the first value was produced by SSR2.

Table III.9 is also divided into two parts. The top one refers to problems randomnly generated 

with no special structure and with integer costs from the interval [1,20]. For these test 

problems, both SSR2 and LP produce good bounds but the linear programme takes longer for 

the majority of the cases (the XMP code was used to solve the LP and the time spent in 

processing the data for this code is not included). For all the cases except P50.8 the bound in 

column (vii) is better than the one in column (ix), and it is significant that the LP produced 

an integer solution only in 3 cases. Although the bound can be rounded up (since the costs 

are integer values) to the nearest integer, still some additional effort is required to identify the 

optimal value. Moreover, as will be seen in the next Chapter the sub-SCPs produced by the 

decomposition technique that we used, have no integer costs and for them the rounding up 

does not apply.

The bottom part of Table III.9 refers to computational results for test problems randomnly 

generated with a partial band-diagonal structure. That is, the constraint matrix has a

Chapter 3
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TABLE I I I .  9

Comparison between s t a t e  sp ace  r e l a x a t i o n  and l i n e a r  programming 
r e l a x a t i o n  f o r  the  SCP

PROBLEM SSR2 LP

m
T
1
i

n
T

1
i

d ZI
1
1
|

t '  1 ZA
T
1
|

t
r

z % I t

( i )  1 ( i i )
i
1 ( i i i )

i
1 ( i v ) ( v )

1
1 ( v i )  | ( v i i )

1
1 ( v i i i ) ( i x )  | (x )

P1 0 .6  | 10
I
1 100

1
1 50%

1
1 3 . 0

1
1 .139

1
3 . 0 -  | .6 56

P10.7  | 10 1 100 1 42% 1 2 . 0 * 1 .112 2 . 0 *  | .553
P 10. 8  | 10 1

i
100 1

i
36% 1

I
5 . 0 * 1

I
.160 5 . 0 *  | 

1
.529

P 20. 6  I 20
i
1 200

i
1 44%

1
1 4 . 0 *

1
1 2 . 2 6 9

1
4 . 0 *  | 2 . 2 6 6

P 20 .7  | 20 1 200 1 40% 1 5 . 0 * 1 2 . 4 0 9 4 . 6  | 2 . 1 6 3
P 20. 8  | 20 1

i
200 1

i
33% 1

I
5 . 0 1

1
1 .4 5 2 4 . 5  | 

1
2 . 3 5 6

P3 0 .6  | 30
i
1 300

i
1 39%

1
1 4 . 0

1
1 2 . 7 4 7

1
3 . 8  | 6 . 1 8 3

P3 0 .7  | 30 1 300 1 33% 1 6 . 0 * 1 5 . 2 5 2 5 . 3 +  | 5 . 1 8 6
P 3 0 .8  | 30 1

i
300 1

i
30% 1

1
7 . 0 1

1
4 . 6 6 9 6 . 9  |

1
5 .6 0 1

P 40. 6  | 40
i
1 400

i
1 33%

1
1 5 . 0 *

1
1 4 . 2 6 0

1
5 . 0 +  | 8 .1 3 7

P4 0 .7  | 40 1 400 1 25% 1 7 . 0 * 1 4 . 7 7 9 6 .1  | 8 .4 0 1
P4 0 .8  | 40 1

i
400 1

i
21% 1

1
1 0 . 0 * 1

1
13 .8 1 7 9 . 4 +  I

1
16 .17 1

P5 0 .6  I 50
i
1 500

1
1 22%

1
1 8 . 0

1
1 10 .5 1 1 7 . 9  | 23 .1 81

P5 0 .7  | 50 1 500 1 21% 1 9 . 0 1 1 5 .8 6 5 8 . 6  | 15 .69 1
P5 0 .8  | 50 1

1
500 1

1
21% 1

1
9 . 0 1

1
1 3 .1 7 3 9 . 6  | 

1
15 .1 0 8

P1 0 .9  I 10
1
1 100

1
1 50%

1
1 1 3 . 0 *

1
1 .289

1
1 2 .3 +  | .852

P10.1 0  | 10 1 100 1 50% 1 1 0 . 0 * 1 .132 1 0 . 0 *  | .705
P10.11  | 10 1 100 1 27% 1 2 2 . 0 * 1 .112 2 2 . 0 *  | .543
P10. 12  | 10 1 100 1 22% 1 4 1 . 0 * 1 .078 3 4 . 3  | .531
P1 0 .1 3  I 10 1

i
100 1

i
15% 1

1
6 1 . 0 * 1

1
.1 1 8 4 7 . 6  | 

1
.461

P2 0 .9  I 20
i
1 200

i
1 50%

1
1 1 2 . 0 *

1
1 1 .7 7 7

1
1 1 . 0  | 2 . 8 5 8

P20.1 0  | 20 1 200 1 23% 5 5 . 0 I 1 . 1 0 0  I 5 8 . 0 I 6 . 4 4 8 4 6 . 3  | 1 . 9 7 4
P 2 0 . l l  | 20 1 200 1 20% 1 1 6 . 0 * 1 .603 1 4 .3  j 1 . 309
P20.1 2  | 20 1 200 1 19% 1 5 6 . 0 * 1 .228 5 6 . 0  | 1 .6 96
P20.1 3  I 20 1

i
200 1

i
15% 1

1
7 5 . 0 * 1

1
.703 6 8 .5  | 

1
1. 41 9

P30.9  | 30
i
1 300

i
1 50%

1
1 2 1 . 0

1
1 2 . 4 8 3

1
2 0 .1  | 9 .1 3 5

P30.1 0  | 30 1 300 1 50% l  l . o 1 2 . 4 2 1  1 2 2 . 0 * 1 2 7 . 7 7 2 1 9 .6  | 12 .6 96
P 3 0 . l l  | 30 1 300 1 30% 1 1 5 6 . 0 * 1 .705 5 1 . 3  | 2 . 1 4 8
P30. 12  I 30 1 300 1 20% I 7 2 . 0 1 1 . 3 8 2 6 1 . 0  | 2 . 3 8 6
P30.13  | 30 1

i
300 1

i
10% 1

1
1 0 1 . 0 * 1

1
.269 100 .3 +  |

1
2 . 1 8 2

P40.9  1 40
i
1 400

i
1 25%

1
1 1 4 . 0

1
1 2 . 0 4 4

1
1 3 .6  | 11 .5 9 4

P4 0 .1 0  | 40 1 400 1 21% 3 1 . 0 1 1 .1 9 0  | 3 2 . 0 1 11 .6 9 3 2 5 . 3  | 5 .5 4 0
P 4 0 . l l  1 40 1 400 1 18% 4 1 . 0 1 1 .146  | 4 3 . 0 1 4 . 3 7 0 3 8 . 6  | 3 .6 8 0
P40.12  I 40 1 400 1 18% 1 3 5 . 0 * 1 1 .4 5 7 3 1 . 6  | 3 .5 3 9
P40.1 3  I 40 1

i
400 1

i
17% 1

1
7 0 . 0 * 1

1
1 . 1 3 0 6 3 . 3  | 

1
3 . 5 3 0

P5 0 .9  1 50
i
1 500

i
1 18%

l
1 3 1 . 0

1
1 2 . 0 6 2

1
2 8 . 3  | 1 2 .7 6 6

P50.1 0  | 50 1 500 1 17% 1 3 5 . 0 1 4 . 5 9 4 3 2 . 5  | 4 . 8 8 7
P 5 0 . l l  1 50 1 500 1 17% 1 5 1 . 0 1 1 2 .7 1 9 4 6 . 7  | 16 .4 0 0
P50.1 2  I 50 1 500 1 16% 3 3 . 0 1 3 .604  | 3 5 . 0 1 5 .3 8 1 3 3 . 0  I 4 .8 5 1
P50.13  1 50 1

1
500 1

1
16% 1

1
6 5 . 0 1

1
1 .9 3 5 6 4 .4

1
1 1 . 7 5 7

CbC 65o0 secohtl* 
c o m p i l e r
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submatrix with the ones concentrated near the main diagonal. This makes the problems 

particularly difficult for the LP and, in fact, the results shown in Table III.9 confirm it. For 

all of the test problems, the bound obtained from SSR2 is better than the LP bound and in 

many cases the gap is quite significant - P10.12, P10.13, P20.10, P20.13, P30.12, P40.10, 

P40.13. Also, the computing time for SSR2 is, in general, much less than the corresponding 

LP time. When the SSR2 procedure took longer than the LP, the bound shown in column (v) 

is always greater than the LP bound, except for P50.2 where they are equal.

Finally, test problems in classes (II) and (III) considered in Chapter 2 (section 2.9) were also 

tried using SSR2. Table III. 10 shows the corresponding computational results, with columns (i) 

to (iii) giving information about the test problem. Columns (iv) and (v) in the table show, 

respectively, the lower and upper bounds obtained from procedure 2.13 ( described in Chapter 

2) for the test problems. Column (vi) give the state space relaxation bound and the 

corresponding computational time is presented in column (vii). Columns (viii) and (ix) show 

the same information relative to the LP.

For the unicost problems, the bound produced by SSR2 is consistently better than the LP 

bound but the reverse occurs for the test problem T50C2. In this case the state space 

relaxation bound is even less than the lower bound produced by procedure 2.13. No 

improvement in this bound is obtained from SSR2 for the test problem T50B1 either. 

However, the test cases presented the computing time of SSR2 is much less than the 

corresponding computational time taken by the LP.

Chapter 3
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Table III.10

Comparison betwen SSR2 and LP relaxation 
for the test problems of classes II and III

PROBLEM SSR2 LP

1
1|

r
n | cj

1
ZM ZA t z*

1
1
1

t

(i) 1 (ii) 1 (iii) (iv) (v) (vi) (vii) (viii) | (ix)

T50A1
1
1 500 | 1.0 3.14 5.0 4.0 16.198 3.30

1
1 50.823

T50A2 1 500 | 1.0 3.27 5.0 4.0 18.823 3.33 1 49.577
T50A3 11 500 | 1.0 3.25 5.0 4.0 18.991 3.38 11 51.847

T50B1
1
11 500 | #Mj 50.0 64.0 50.0 1.334 -

1

1
>150.0

T50C2
1
1
1

500 | 3+#Mj 58.66 103.0 57.0 8.683 60.2
1
1
1

86.926

C D C - 6 5 0 0  SecovicU 

hN Fif commie*



- 1 2 4 -

3.7 CONCLUSIONS

In this Chapter we studied the application of the state space relaxation technique to the SCP.

Some results, both theoretical and practical, were given showing that :

(i) SSR performs reasonably well for medium and small size SCPs even in the cases 

where the problems have a particularly hard structure or the costs are equal to 1.0 

for all the variables. The exception seems to be the problems with costs proportional 

to the number of rows covered by the column, which are not easily solved by any 

other known algorithm.

(ii) apart from the lower bound value other useful information for the problem is

obtainable from SSR2. In particular, reduced costs (in the form of a minimum cost 

for the objective function when a variable is forced in the solution), are produced 

and can be used either to improve the lower bound, or to remove variables from the 

problem, or also or generate a new cover for the SCP. The reduced costs are also 

used in performing state space modifications.

(iii) SSR is a lower bound technique in dynamic programming which is equivalent to

lagrangean relaxation in integer programming. Hence, SSR may be applied for other 

combinatorial optimization problems in particular for special versions of the SCP such 

as the - cardinality constrained SCP (used in facility location), the cyclic constraint 

SCP (appearing in some personnel scheduling problems), and the dynamic SCP 

(facility location).

(iv) the quality of the bound obtained from SSR for large unicost SCPs opens the 

possiblity of developing an algorithm for this type of problems and making use of the 

additional information provided by the method.

Chapter 3
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Chapter 4

DECOMPOSITION
AND

STATE SPACE RELAXATION FOR THE SCP

4.1 INTODUCTION

A method for finding lower bounds to the SCP combining decomposition and state space 

relaxation is described in this Chapter. Large size problems are decomposed into many smaller 

sub-problems which are solved or approximated using state space relaxation SSR2. Also, the 

heuristic procedure described in Chapter 2 is used for finding the initial values of the weights 

in SSR2 and, at the same time, obtaining a dual feasible solution which can lead to an 

improvement of the lower bound. Good reduced costs are obtained from the combination of 

state space relaxation and decomposition making possible further reductions on the number of 

variables. Subgradient optimization is used to update the decomposed costs in a lagrangean 

fashion.

The example which we have been using (Lemke et al. [126]), is worked out through the 

Chapter illustrating the procedure. Computational results are presented for the large scale test 

problems and for the unicost SCPs considered in Chapter 2.
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Chapter 4

4.2 DECOMPOSITION OF THE SCP

4.2.1 Definition

The set M of constraints of the SCP is partitioned into r disjoint subsets, Rj.R^,...,!^ Thus 

the constraint matrix is given by :

(4.1)

2̂
(...)

A,

Whenever aj, the jth column of Aj,(I=l,2,...,r), is non-zero a variable y| is defined with a cost 

d | such that :

(4.2) 2;<T.d* =  Cj

where Tj is the index set of the submatrices Aj for which variable Xj generates a decomposed 

variable y^

Example 4.1
Let us apply the decomposition process to the example taken from Lemke et al. [126], which 
data we rewrite in Tableau IV. 1 considering the reductions produced by the greedy heuristic 
(see Chapter 2). Consider r= 3  with A,,A2 and A3 the matrices obtained from the constraint 
matrix corresponding to, respectively, the first, second and third sets of 5 rows. The sets Tj 
0 =  1,2,...,23) and the variables y{ (t«Tj ; j =  l,2,...,23), are given in Tableau IV.2 where a 1 in 
the column relative to y],(t =  1,2,3), means that the variable is defined.
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Tableau IV.l
Input data for the SCP of example 4.1 (Lem ke et al. [126])

A possible choice for d{ is :

(4.3) d{ =  (flM jnR J * Cj)/#Mj

which, applied to the example, yields the decomposed costs shown also in Tableau IV.2 .
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j Ti y{ yi yi dl di

1 111 1 1

2 111 1 1

3 111 1 1

4 111 1 1

5 111 1 1

6 (21 1 1
7 12! 1 1
8 12! 1 1
9 11,31 1 1 1 1

10 11,21 1 1 1 1
11 11,31 1 1 1 1
12 12,31 1 1 1 1
13 11,31 1 1 1 1
14 12,31 1 1 3/2 3/2
15 131 1 3
16 11,31 1 1 9/5 6/5
17 11,31 1 1 8/3 4/3
18 11,2,31 1 1 1 8/5 4/5 8/5
19 11,2,31 1 1 1 5/6 5/3 5/2
20 11,2,31 1 1 1 2 2 1
21 11,2,3! 1 1 1 1 2 2
22 11,2,3! 1 1 1 2 3 3
23 11,2,31 1 1 1 18/5 27/10 27/10

Tableau IV.2
’Decomposed’ variables and costs for the SCP in example 4.1

Finally, we denote by Aj the set of indices jeA, for which the decomposed variable y] is 
defined. For the example being considered :

A; =  11,2,3,4,5,9,10,11,13,14,16,17,18,19,20,21,22,231 
Aj =  (6,7,8,10,12,18,19,20,21,22,23}
A3 =  {9,11,12,13,14,15,16,17,18,19,20,21,22,23}

The general SCP can then be reformulated as the problem :
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(SCP(d)) min 2j<N2 ^d |y j

st. 2jtA', y{>l (i«Ri)

ĵtA2 Vi— * (i£R2)
(4.4) • (...)

^ • • y i > l (i«R,)

(4.5) 3i-(SuijyD/#rj • (PeTj’jeN)

(4.6) yj=0 or 1

The constraints (4.5) assure that all the decomposed variables yj relative to the same original 

Xj have the same value in the optimal solution, ie. if one of them is equal to 1 then all the 

other ones must be equal to 1 too. Relaxing these constraints, (4.5), a new SCP is obtained :

(RSCP^j) min Sj<NSJfeTjdjyj +  2j4N2jeTjij[y| - (2uTjyj)/#Tj] —

=  2jeN̂ Tj[dj[+ 4  - 2 uT/;/#T j] >i

st. y}^1 (ieRfl=l,2.... r)

yj=0 or 1 (fcTpeN)

Now, problem RSCP(d̂  is separable in r subproblems RSCP(d̂ ,(J=l,2,...,r), which are also 

set covering problems :

(RSCP(d̂ )  min 2 -^ d j  +  4  +  ( 2 , ^ / ^ =

st. 2jt̂  y j> l (ieR̂ ) 

yj=0 or 1 G<Aj)

where
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(4.7) dj=dj +  ij - (2uTj4)/#Tj (jeAj;|=l,2,...,r)

Taking into consideration the results on lagrangean relaxation mentioned in the first two 

Chapters, it comes from above that the following relation is valid :

(4.8) v(SCP) >v(RSCP(<w) =  v(RSCP((UJD)

and naturally :

(4.9) v(SCP)>max„ v(RSCP(<W))

Hence, a lower bound to the SCP is obtained solving the r subproblems (R SCP^^) and 

subgradient optimization can be used to update the decomposed costs in order to improve that 

value.

Chapter 4

4.2.2 Initial Values

If Xj, (ieM), are the optimal lagrangean multipliers for the lagrangean relaxation of the SCP 

defined in Chapter 2 as LSCPX, then the initial values for dj (jeN;JeTj), can be set as follows:

(4.10) dj =  Cj/#Tj 

and

(4.11) 4 = 2 i<iynMjXi

These initial values guarantee that the bound obtained from the relaxation RSCP(dj() is at 

least as good as the one produced by LSCPX and, therefore, the LP bound. This is stated by 

the following property :
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Property 4.1 : v(RSCP(<w)>  v (uscpa  ̂ =. v (UP)

Proof : let us consider d| and (JeTj ; j«N),

Chapter 4

given by (4.10) and (4.11) with (i«M), the optimal lagrangean multipliers 

to LSCPX. Then, the coefficient 4  for the variable 4  in the objective 

function of RSCP((W is :

(4.12) 4 = 4  +  ^  - ( 2 ^ / f T j  -

=  cj /  #Tj+ 2 itRj n MjXj - ( 2 uTj2 jlRtnMj X j)/#Tj

The condition (4.2) is satisfied :

2* T $ =2*Tjcj /# T j +

**" ^jfTj^itR|nMj \  • f T j^ ^ T j^ R tn M jX i/ f T j l^ C j  •

(4.13)

From definition : 

and

(RInM j)n(R 1nM j)= $  for jE^t 

yielding :

(4.14) ^uTj^ieRt n  Mj^i=  2 uM j\

(4.15)

Hence, (4.12) takes the following expression :

4 =  (cr2itMĵ )/#Tj+

and the objective function of RSCP(d̂  becomes :

(4.16) 2jtN^Tjt(cj‘2itMj î)/#Tj

Now, if we relax the constraints of RSCP(d̂  and associate with each row i 

the same multiplier Xj, the following problem is obtained :

(P) min 2  j{N2^Tj[(Cj-2i<MjXi) / #Tj +  SieF̂ nMj X j ] +

+ 2^_, 2URjXj( 1 -2jtNiyi) 

st. y |=0 or 1 (jcN^eTj)

Rewritting the objective function of P we obtain :
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min [(Cj-2-ltMj\j)/#Tj]y| ♦ £  •, ^  ̂•

st. y| = 0  or 1 (jcNtBeTj)

which optimal solution is given by :

1 if Cj-2 itMjXi

4 -  '
(JeTj) ^ 0 otherwise

with the same value as the optimal value of LSCPX. 

Therefore, v(RSCP(d̂ ) > ^ Ay\> ov (lS6PX)= v(^P)

4.2.3 Updating the Costs

Subgradient optimization can be used to update the decomposed costs for RSCP(d̂ . A 

solution yj[ is obtained for each subproblem R SC P^^ and feasibility to RSCP(d̂  is tested 

by checking the constraints (4.5T). Then, the multipliers v—^ )  (ieM), are updated as follows :

PW4-

(4.18) 4 = 4 +  /  Pj(#Tr Pj)

where Pj=Zh,Tjyi

(4.17) 4 = 4 +  a(vz,)*(40SllTp-j/ifiTp

which can be simplified to :

The iterative process stops when either a feasible solution to SCI}d) is obtained, the bound 

v(RSCP(d„))> z u-l (if the costs are integer), or the bound has not increased for several 

iterations.

4.2.4 Reduced. Costs

Let Xj be a variable in the original SCP and yj, JeTj, the corresponding variables in 

subproblems (RSCP((W)), l=l,2,...,r. A subadditive function fj .̂) can be defined in each
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subproblcm for all jcA| by :

(4.19) f/aj) =  min

st- («Rj)
y£=0 or 1 (k«A|)

It is clear that dj-f^aj) is the reduced cost of variable y[ in the subproblem RSCP(d̂  and, 

from the subadditivity of fy, an upper bound for covering the column a* of the original SCP 

is given by 2j_,fj(aj). Therefore, the reduced cost of the jth column of the total SCP is 

given by :

(4.20) Sj=max [O.Cj-Zj^fyaj)] 

and Xj can be fixed equal to 0 if :

(4.21) Sj> V 2}-,v(RSCP(d̂ )

Obtaining ijQ from (4.IS) implies solving a set covering problem for all yj, jeAĵ  which is 

impractical even for small size problems. Hence, an upper bound fj(.) is used instead of fy(.), 

leading to a lower bound on the reduced cost Sj given by :

(4.22) Sj=max [O .c ^ r /a j ) ]

Now, if Uj£ is a dual feasible solution to the subproblem RSCP(d̂ ,  obtained by using one 

of the heuristics described in Chapter 2, then :

(4.23) sj = - £  ieMjr R, «i '

is a reduced cost associated with the lower bound

which corresponds to a dual feasible solution for the total

problem RSCP(d

In fact, setting u ^uy , (i«Rj), for the total problem RSCP(d̂ , the dual feasibility of 

u =  (u1....,um) is an immediate consequence of (4.2). Thus,

Chapter 4
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(4.24) 2i(MjUi— 

and, therefore :

(4.25) 2 itMjui< 2^ 1[d i+ ‘i- (SttXjv|)/ #Tj] =  2jj_,d£= Cj

Another way of obtaining a lower bound on the reduced costs for the variables in the total 

SCP is provided by state space relaxation as it will be seen in the next section.

4.2.5 Generating a new Cover

If y(B, i= l,...,r , are the optimal solutions for respectively the subprolblems R SC P^^, 

1=1,...,r, then a cover S can be generated for the total SCP by setting :

(4.26) S={jeN : max^y^ }

The set S is then reduced to a prime cover by sequentially removing the redundant variables, 

i.e. the keS such that 2j€Saijxj—2 for ieMk. These variables are considered by decreasing 

order of the costs.

4.3 STATE SPACE RELAXATION AND DECOMPOSITION

4.3.1 Introduction

Instead of obtaining the optimal value for each subproblem RSCP(d̂ ,  a lower bound on 

that value, v(RSCP(dj,j)), can be used with a corresponding lower bound to the original SCP 

given by 2j[_ ,v(RSCP(dj,^). Any lower bound technique for the SCP may then be applied 

but, naturally, the quality of this bound, both in value and computing time, plays an
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important role.

As it was seen in Chapter 3, state space relaxation (SSR) performs reasonably well for small 

size SCPs. Furthermore, the reduced costs provided by SSR for each sbproblem can be used 

as a reduction test on the number of variables of the total SCP.

Since an upper bound for each problem is needed, a heuristic of the greedy type described in 

Chapter 2 is used also. Hence, we use a two step procedure for each subproblem RSCP((W!):

Procedure 4.2 . obtaining a lower bound for subproblem Jl

Step 1 . an upper bound z£, a lower bound zfb and reduced 

costs U;̂  are obtained using the greedy heuristic.

If zfb= z j then zfb is optimal and the subproblem 

RSCP(d̂ ,0 has been solved.

If not go to 2.

Step 2 . using the values U;j for setting the initial weights of the rows, 

a fixed number of iterations is performed to the state space 

relaxation of the dynamic programming formulation for subproblem 

RSCP((UJD. A lower bound is given by f^Q) (Q = 2 i(RJfr), 

computed at each iteration and the value zfb is updated 

to zfb=max(zfb,fj[(Q)).

4.3.2 Reduced Costs from SSR

Let us consider a subproblem RSCP(d̂  for which the state space ralaxation SSR2 is 

applied. Denoting by (ieR )̂ the corresponding weights, it follows from (3.27) that

(4.27) t[ =  dj +  f^Q ^p

is a lower bound on the value of the JEth subproblem when the variable Xj is fixed equal to 1. 

The values and q£ are defined as follows :
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(4.28) Cfy =  Zw tfu

Now, consider the whole problem RSCP(d̂  and the following state space mapping function :

(4.29) g(S) =  (ZifS<iu.... 2 itSciitr) , 5 ^  6 n ^ A l JM

Applying again (3.27), the value

(4.30) tj =  Cj +  f(Q,-qj,...,Qr-qi)

is a lower bound on the value of RSCP(d̂  when the variable Xj is forced to be equal to 1 

(f is the recursive function relative to the relaxation (4.29)). Thus,

(4.31) f(Q1-q{,...,Qr-q|)>2:^_1f/Qjrq]i) 

and, hence :

(4.32) Cj +  f(Qr q},...,Qr-qj)>Cj +  2J_1f£QJfq|)

where we consider dj=0 and qj=0 for #Tj. Therefore, a lower bound on the value tj is given 

by :

(4.33) t| -  2 j.,(d i+ fJ(Qr qp)

Note that if several iterations, say nk, are performed for the decomposition, then we can keep 

the maximum tj out of the nk values obtained to the variable Xj. That is, we take :

(4.34) t j  -  max [ t J ^ j ^ + f / Q f c j ) ]

with t* initially set equal to 0 .
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4.3.3 Generating Covers

Since for some J, the partial solution y(l) considered in 4.2.5 could be not feasible for the 

subproblem R S C P ^ jj, the set S obtained by (4.26) may be not a cover for the total SCP. 

In this case new variables are added to S being chosed by a proccess similar to the greedy 

heuristic.

A different cover can be also generated making use of the information relative to the reduced 

cost obtained from SSR and the decomposition. This is done in a way completely similar to 

the proccess of generating covers from the lagrangean relaxation reduced costs. That is, the 

variables for which the reduced costs

(4.35) 3  =  max ( O j ^ f / Q j ) )

is equal to 0 enter the set S. If there is a row, say indexed i, such that is not covered, then 

the variable jeNj with minimum enters the set S which is then reduced to a prime cover. 

This is done by removing redundant variables considerd in decreasing order of the original 

costs.

Chapter 4

4.4 DECOMPOSITION PROCEDURE

A general procedure based on decomposition and state space relaxation for the SCP can be 

described as follows :

Procedure 4.3 . obtaining a lower bound for the SCP
Input . zIb (lower bound), (upper bound) and (i«M)

(lagrangean multipliers corresponding to zlb), obtained 
from procedure 2.13. 
dsub - dimension for the subproblems 
nsub - number of subproblems 
nk - number of iterations for the decomposition 
ns - number of iterations for the state space relaxation 

Step 1 . initialisation
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Step 2

Step 3

Step 4

Step 5

Step 6

k = l
compute the initial values for the decomposed costs, by using (4.8)-(4.9) 

iteration k 
for J?=*l to nsub

do procedure 4.2
obtaining zfb (lower bound for 1th subproblem)
Xj={j€N:y| (partial solution) 
t} OeTjdcA'j)

repeat

zlb=max(zlb,2r| i b1zfb)
if Zjb> z u-1 (integer costs) go to 7 
otherwise go to 3 

generating a cover 
S =  UjSJfXj 
R =  M - UjiSMj
if complete the cover using a greedy function
reduce S to a prime cover and set zu=min(zu, 2 j<scj) 

computing the costs t̂  
for j =  1 to n do

if Tj>zu-1 remove j from the problem
repeat
try to improve the lower bound by doing : 

smax=0 .0  

for i=  1 to m do
dj minJ<N tj
if dj>smax then smax=d;

repeat
zlb= max(Z|b,smax) 
if zlb> z u-l go to 7

. obtaining a prime cover from the costs tj 
S =

for j=  1 to n do
if 7j-2£abz{b then S =  S U {j}

repeat
for j«S if S-{jl is still a cover then remove j from S 
Zy =  min (zu,2j(SCj) 

updating the decomposed costs 
k = k + 1

if k>nk go to 8

otherwise update the lagrangean multipliers using (4.17) and go to 2 
if the solution is feasible for (4.4) and the all the partial
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solutions are optimal, then 7^=1^ and go to 7 
Step 7 . optimal solution

the current upper bound is the optimal value 
stop

Step 8 . lower bound value
zlb is the lower bound value obtained from the decomposition 

stop

Chapter 4

4.5 SORTING THE MATRIX

Nothing has been said so far about the structure of the constraint matrix A =  [a^] of the 

original SCP. However, if the matrix A is almost in block diagonal form when the 

decomposition is used, then the number of generated variables y{ (teTj) is smaller and so it is 

less likely that constraints (4.5) will be violated. Also, the computing time is likely to be 

reduced with a more structured data for the problem.

We used a heuristic procedure developed by Nakornchai [135] which sorts the matrix into 

blocks by tries to cluster the non-zero elements near the diagonal. This procedure sorts 

alternately the columns and rows of the matrix until no further improvement is made. For 

large-scale SCPs, this procedure proved quite useful by reducing the number of decomposed 

variables in more then 10% and so enabling to a much faster computation of the lower bound.

Although the example which we have been using {Lemke et al. [126]), is not the best one to 

illustrate the sorting we show next how an improvement on an available lower bound is 

possible by using the decomposition for the mentioned example.

In Tableau IV.3 we show the matrix after being sorted by the heuristic procedure. As it can 

be seen, the number of variables yj, (leTjyeN), was reduced from 43 to 38, that is, more than 

1 0% which is significant for a small problem with no structure.

Example 4.4
Let us then consider the example we have been using after being reduced to a 15 row and 23 
column SCP. We also consider the sorted matrix as is shown in Tableau IV.3. In order to
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j
23

19 

22
20 

21 

16 

18 

15 

17

8

9

10

11
12
13

14 

1 

2

3

4

5

6 

7

1 1 2 3 4 5 

(3) (11) (15) (2) (6)

6 7 8 9 10 

(1) (7) (13) (4) (10)

11 12 13 14 15 

(12) (9) (8) (14) (5)

CJ
9 1 1 1 1 1 1 1 1 1 1

5 1 1 1  1 1 1

7 1 1  1 1 1 1 1

5 1 1 1 1 1

5 1 1 1 1 1

3 1 1 1 1 1

4 1 1 1 1 1

3 1 1 1

4 1 1 1

1 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

Tableau IV.3
Sorted matrix for the SCP of example 4.1 

( (i) - previous index of row i )
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facilitate the computations we use a dual feasible solution different from the fractional one 
provided by the greedy heuristic. The dual feasible solution we use to derive the decomposed 
costs was taken from Balas and Ho {[11]), where it is used as a first lower lower bound 
approximation for the same example. Now, we apply the decomposition with :

. dsub=5 
nsub =  3 
nk= 1 
ns= 1 
Z.-15.0 
Zm-12.0
u =  (0 ,0 ,2 ,0 ,1,0 ,1,2 ,1,1,0 ,1,0,3,0)

STEP 1 . the initial decomposed costs are computed using (4.12) with (4.8) and (4.9):

j 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 22 23
d

1
d2

1 1 1 2 1/2 1/2 2 5/2 0 1/2 4 7/2 5/3 11/3

1 1 1 0 3/2 2 0 2 5 11/3 14/3

d3
1 1 0 3/2 3 1/2 3 2 7/2 1 3/2 5/3 2/3

STEP 2 . iteration 1 for the decomposition 

. subproblem 1

Following the procedure strictly, we would use the greedy heuristic to obtain a 
dual feasible solution for the subproblem and then initialise the weights from 
that. To avoid too many computations in the example, the weights are set from 
the dual feasible solution for the total problem :

i 1 2 3 4 5
Q,
3

qi
0 0 2 0 1

Then, the data for the SSR of the subproblem is :

J 2 3 6 9 10 12 13 15 16 18 19 21 22 23
1
1

*1

1 1 1 2 1/2 1/2 2 5/2 0 1/2 4 7/2 5/3 11/3
0 0 1 2 0 0 0 2 0 0 3 3 1 3

Naturally the variable x, 6 is included into the partial solution set X, and the 
rows index 1 and 4 are covered with a cost 0.0 in the subproblem. Therefore, 
x2,x3,x,0 and x16 have a reduced cost equal to the corresponding decomposed
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cost in the subproblem and need not to be considered in the SSR procedure. 
The final tableau for this procedure is :

q 0 1 2 3

f
i

0 1 2 3

which corresponds to the solution X, =  {16,6,9} with a value z}b=3 and yielding the 
following values for t] (jeA|) •

j 2 3 6 9 10 12 13 15 16 18 19 21 22 23
4 4 3 3 7/2 7/2 5 7/2 3 7/2 4 7/2 11/3 11/3

X, is not feasible and d2—min(t}2,tj3,t}5,t}8,t}9,tf2,tf3) =  7/2. Therefore, the 
lower bound is improved to z}b= 7/2 and the tj are updated to :

J 2 3 6 9 10 12 13 15 16 18 19 21 22 23

fci
9/2 9/2 7/2 7/2 4 7/2 5 7/2 7/2 7/2 4 4 11/3 11/3

Note that, for instance, t}° is obtained as follows : 
tj0 =  minj_1213 15J 8.19.22.23 [d|0 +  dj +  f(Q,-2)jnM10uMjqj)] 
The solution 16,9,12,16} is optimal with value z}b=7/2.

. subproblem 2
Again, we set the weights from the available dual feasible solution :

i 6 7 8 9 10 q2
0 1 2 1 1

C.
5

and the input data relative to the SSR for the subproblem is :

j 1 4 7 9 10 11 16 17 20 22 23
d

1

qi

1 1 1 0 3/2 2 0 2 5 11/3 14/3
0 1 1 0 1 2 0 0 5 3 4

variables x9 and x16 are included in the solution set X2 and the variables 
x„x9,x16 and x17 have reduced costs equal to the respective decomposed costs. 
Now, solving the dynamic program we get the following final tableau :
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q 0 1 2  3 4 5

f  0 1 2 3 4 5

corresponding to the solution X2={9,16,20} which is feasible, therefore optimal for the 
subproblem. The values 4  (jfA2) are :

j 1 4 7 9 10 11 16 17 20 22 23

fc2
6 5 5 5 11/2 5 5 7 5 17/3 17/3

. subproblem 3
The weights for the rows are :

i 11 12 13 14 15 0,

qi
0 1 0 3 0 43

and the subsequent input data for the SSR variables is :

J 5 8 11 12 14 15 16 17 18 19 21 22 23

d. 1 1 0 3/2 3 1/2 3 2 7/2 1 3/2 5/3 2/3J
*3

0 1 0 1 3 0 3 0 3 0 1 0 0

Initially, X3= ll l l  and the final dynamic tableau is :

q 0 1 2 3 4

f 0 1 5/2 3 4
3

The partial solution is X3=fl 1,8,14} which is not feasible. However, changing x14 with 
x16 the solution becomes feasible. The t  ̂ (jeA3) are:

j 5 8 11 12 14 15 16 17 18 19 21 22 23

S 5 4 4 9/2 4 9/2 4 6 9/2 5 9/2 17/3 14/3

The lower bound obtained at the end of this step is then 
z,b=3.5 +  5.0+4.0= 12.5> 12.0, the previous value.
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STEP 3 . generating a cover from the partial solution
S =  X,UX2UX3 =  {6,9,12,16}UI9,16,20}U{8,11,16( =  16,8,9,11,12,16,20} 
which is a cover with no redundant variables and cost c(S)=16.0; hence, no 
better upper bound value has been found.

STEP 4 . computing the values tj

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t
1

3.5 4.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 3.5 3.5 5.0 3.5
6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.0 5.0 5.0 5.0

4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.0 4.0

t 3
J

13.5 13.5 13.5 12.5 13.5 12.5 12.5 12.5 12.5 12.5 13.5 12.5 13.0 14.0 12.5

j 15 16 17 LO~- XI l l 13
t

1
t 5

3.5 3.5 3.5 3.5 4.0 3.5 4.0 11/3 11/3
5.0 5.0 7.0 5.0 5.0 5.0 5.0 17/3 17/3£

t 4.5 4.0 6.0 4.5 5.0 4.0 4.5 17/3 14/3
l 13.0 12.5 16.5 13,0 14.0 H . s r . J3.:5 15.0 14.0

The variables x,7 and x22 are removed from the problem. Also, since 
smax=d2 =  min(t12,t13,t13,t18,t19,t23) =  13.0, the lower bound is further
improved to zlb=13.0

STEP 5 . obtaining a cover from the values tj
S =  {j«N : tj< zlb} =  14,6,7,8,9,11,12,14,15,16,18,20}
which generates the prime cover S =  {6,9,12,14,16,20} with cost c(S)=16.0.

STEP 6 . updating the decomposed costs
The constraints (4.5) are not satisfied for x,, and x12 since y21=0 and y31 =  l, 
y |2= l  and y32=0. Then, the respective decomposed costs are updated using 
(4.18) with a=1 .0  :
dj*= 2.0 +  (1/2)*(15.0-13.0)*(-l) =  1.0 
d31= 0.0 +  (1/2)*(15.0-13.0)*(2-1) =  1.0 
dj2=  (1/2) +  (l/2)*(2.0)*(2-l) =  3/2 
d‘2=  (3/2) +  (l/2)*(2.0)*(-l) =  1/2

The costs for the new iteration of the decomposition procedure are :

J 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 22 23

di
d2

11 1 2 1/2 3/2 2 5/2 0 1/2 4 7/2 5/3 11/3

1 1 1 0  3/2 1 0 2 5 11/3 14/3

d3
1 1 1 1/2 3 1/2 3 2 7/2 1 3/2 5/3 2/3
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STEP 2 . solving the subproblems 
. subproblem 1

For this subproblem, the SSR provides the lower bound zjb=3.5 corresponding 
to the solution set X! ={6,15,16}.

. subproblem 2
The lower bound obtained from the SSR is zfb=4.5 with the solution set 
X2={4,7,9,10,1 l,16l.
. subproblem 3

The solution for this subproblem is X3 =  {8,14} with the lower bound value z]b=4.0 
(obtained after reduced cost analysis) .
Therefore, the lower bound obtained for the total problem is then zlb=12.0.

STEP 3 . generating a cover from the partial solution
S={6,15,16}ul4,7,9,10,ll,16luf8,14f =  {4,6,7,8,9,10,11,14,15,16}
which is reduced to a prime cover by removing x19 and x14 (in this order),
resulting S=l4,6,7,8,10,11,15,16} with cost c(S)=14.0.
Hence, the upper bound has been improved to z^M .O  .

STEP 4 . the values tj corresponding to this iteration of the decomposition are :

Chapter 4

j 1 2 3 4 5 6 7 8 9 10 11 12 13
t

1
t o

3.5 4.5 4.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 3.5 4.5 5.0

5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

t 4.0 4.0 4.0 4.0

o=TO
•

=ro
•

in 4.0 4.0 4.0 5.0 4.0 4.0

t 3
j

13.0 13.0 13.0 12.0 13.0 12.0 12.0 12.0 12.0 12.5 13.0 13.0 13.5

j 14 15 16 18 19 20 21 23

s
t o

3.5 3.5 3.5 3.5 4.0 3.5 4.0 11/3

4.5 4.5 4.5 4.5 4.5 5.0 4.5 17/3
c.

t 4.0 4.5 4.0 4.0 5.0 4.0 5.0 14/2

t 3
j

12.0 12.5 12.0 12.0 13.5 12.5 13.5 14.0

Applying (4.34) we remove Xj,x2,x3,x5,x10,x13,x19,x21 and x23 from the 
problem. The resulting SCP is easily shown to have a lower bound z,>15.0 and 
therefore the optimal value is zu=14.0 (note that the lower bound exceeds \  
because x10 has been removed and then x20 is fixed equal to 1, since it is the 
only effective column for row 10).
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4.6 COMPUTATIONAL RESULTS

The method described in this Chapter was tested for the large size test problems of Chapter 

2, considered after the reductions produced by procedure 2.13. Also, unicost SCPs with 50 

rows, 500 columns and 20% density were used in testing the decomposition technique.

Table IV.4 shows the value of the lower bound obtained after 10 iterations of the the 

decomposition procedure for test problem T200X2 (m=199;n=178;d=5.4%) with four different 

dimensions for the subproblems - 7,10,13 and 17 rows. Limits on the number of iterations and 

maximum computing time for the subproblems were imposed to assure a total time similar for 

all the different ’decompositions’. Tables IV.5 and IV.6 give the same information relatively to 

test problems T200X3 (m=200;n= 176;d=5.4%) and T200X5 (m= 186;n= 124;d=5.3%).

Column (i) of Tables IV.4 to IV.6 refers the iteration number for the decomposition procedure 

with the corresponding lower bound and accumulated computing time given in columns (ii) to 

(ix) corresponding to each one of the four different dimensions considered for the subproblems. 

The computational times are given for the CDC 7600 computer using the FTN compiler.

From the results shown in Tables IV.4 to IV.6, it seems that there is little to choose from the 

four different subproblem sizes tested. In fact, either the lower bound value or the 

corresponding computing time do not vary much with the size of the subproblems. Thus, we 

are going to make an arbitrary decision and choose to decompose the SCP into 10-row 

subproblems for the large SCPs.

The lower bound increases slowly with the value obtained at the first iteration being one of 

the best out of the ten values. This suggests the possibility of subgradient optimization not 

being as efficient in this application as it is for many other relaxations and, at least, other 

techniques may be tried to compute the multipliers v. However, the decomposition lower bound 

was always better than the one obtained after using procedure 2.13. Also, it enabled further 

reductions in the number of variables of the problem by performing reduced cost analysis with 

the values tj (4.32)-(4.34).

This is shown in Table IV.7 where we present the bounds obtained for the test problems 

TmXk (m =  200 and 300;k= 1,...,5), when using the decomposition technique after procedure

Chapter 4
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TABLE IV. 4

Comparison of four different dimensions for the subproblems 
in the decomposition (T200X2)

7 10 13 17

z a
r
i
i

t ZA
T
1
1

t zii
T
1
l

t ZA
1
1
1

t

(i) (ii) i aii) (iv)
i
1 (v) (vi) 1 (vii) (viii) 1 (ix)

1 66.38
i
i .155 66.45

1
1 .140 66.40

1
1 .139 66.40

1
1 .224

2 66.37 i 1.152 66.34 1 1.087 66.39 1 1.016 66.37 1 1.147
3 66.35 i 1.447 66.33 1 1.433 66.32 1 1.364 66.32 1 1.592
4 66.31 i 1.817 66.37 1 1.820 66.34 1 1.771 66.39 1 1.990
5 66.31 i 2.168 66.40 1 2.184 66.36 1 2.134 66.36 1 2.476
6 66.32 i 2.513 66.43 1 2.539 66.37 1 2.448 66.32 1 2.979
7 66.35 i 2.900 66.38 1 2.915 66.41 1 2.945 66.36 1 3.518
8 66.37 i 3.268 66.39 1 3.313 66.41 1 3.211 66.31 14.086
9 66.38 i 3.638 66.39 1 3.707 66.45 1 3.583 66.31 14.666
10 66.38 i

i
4.003 66.39 1

1
4.098 66.58 1

1
3.865 66.30 1

1
5.306

CDC 7 6 0 0  
^  T N  CoVn^i’ le'T

TABLE IV.5

Comparison of four different dimensions for the subproblems 
in the decomposition (T200X3)

7 10 13 17

z i
1
| t
j z %

T
1
1

t
1
1
1

t ZA
1
1
1

t

(i) (ii) 1 (iii) (iv) 1 (v) (vi) 1 (vii) (viii) 1 (ix)

1 90.85
1
1 .136 91.03

1
1 .132 90.92

I
1 .125 90.94

1
1 .211

2 90.88 1 .894 91.07 1 .872 90.95 1 .835 90.88 1 1.056
3 90.87 1 1.131 91.05 1 1.103 90.85 11.129 90.92 1 1.468
4 90.89 1 1.385 91.07 11.392 90.85 11.371 90.89 1 1.690
5 90.92 1 1.644 91.11 1 1.611 90.85 11.719 90.82 1 2.024
6 90.94 I 1.809 91.06 1 1.876 90.85 1 2.042 90.91 1 2.847
7 90.91 1 2.166 91.07 12.195 90.76 12.414 90.90 1 2.975
8 90.91 1 2.424 91.00 12.490 90.81 12.917 90.93 1 3.387
9 90.83 1 2.719 91.86 12.841 90.81 13.339 90.97 1 3.803

10 90.92 1 2.973 
1

91.84 1
1
3.112 90.88

1
3.710 90.93 1

1
4.202

6 D C  7 6 0 0
cornel Uv*



- 1 4 8 -

TABLE IV. 6
Comparison of four different dimensions for the 

subproblems in the decomposition (T200X5)

7 10 13 17
i

zi | t za
11 tj 2S

1| tj
r

z* !
t

(i) (ii) 1 (iii) (iv) 1 (v) (vi) 1 (vii) (viii) | (ix)
1 156.60 | .112 56.77

1
1 .098 56.66

"I
1 .179

1
56.22 | .283

2 56.60 J .543 56.74 1 .472 56.67 J .630 56.13 J .934
3 56.57 | .755 56.80 1 .669 56.54 I 1.055 56.11 | 1.421
4 56.55 | 1.971 56.74 1 .931 56.48 1 1.547 56.21 | 1.909
5 56.59 | 1.201 56.76 1 1.178 56.57 1 1.954 56.25 | 2.407
6 56.61 | 1.410 56.67 1 1.566 56.54 1 2.392 56.29 1 2.918
7 56.61 | 1.677 56.71 I 1.920 56.64 1 2.264 56.32 | 3.413
8 56.64 | 1.903 56.69 1 2.277 56.57 I 3.211 56.18 | 4.041
9 56.66 | 2.167 56.79 1 2.584 56.65 I 3.660 56.21 | 4.758
10 56.68 | 

1
2.335 56.78 1 2.931

1
56.60 1 4.089

1
56.18 |

1
5.472

CX>C 7600  
fTt'l cornjjiltr
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2.13. Columns (ii) to (v) in Table IV.7 remind the outcome of this procedure given in detail 

in Chapter 2 while the columns (vi) to (ix) give information about the bounds and reductions 

produced after 5 iterations of the decomposition procedure.

The final lower and upper bounds obtained from procedure 2.13 are shown in columns (ii) and

(iii) of the table, with the number of effective rows and columns for the problem given in 

entries (iv) and (v), respectively. The corresponding values for the decomposition are presented

in columns (vi) - lower bound, (vii) - upper bound, (viii) -number of rows, and (ix) - number

of columns. From the Table IV.7 it is clear that, although the improvement on the lower 

bound was not large (but effective for the test problems), the number of variables was

reduced in all cases. This reduction is significant for test problems T200X2, T200X4 and

T300X1 for which a new upper bound was obtained from the decomposition procedure. Also 

for problems T200X3 and T300X5 more than 10% of the variables were removed by reduced 

cost analysis even with the upper bound value not being tightened.

The perfomance of the decomposition procedure is also illustrated in Table IV.8. There, we 

present the computational results relative to the unicost test problems T50A1 

(m=50;n=500;d =  20%) when using the decomposition with two different sizes for the 

subproblems. Column (i) in Table IV.8 refers to the iteration number and columns (ii) and (v) 

give the corresponding lower bounds for the two decompositions. The cumulative number of 

variables removed is shown in columns (iv) and (vii) respectively for each decomposition. The 

significance of these figures comes from the fact that the LP relaxation for this problem gives 

a lower bound z,=3.31 with no variables being removed. Hence, in either of the 

decompositions the lower bound is improved over 4% and some variables are removed.

The computing times given in columns (iii) and (vi), which are expressed in Cyber 170/855 

seconds, show that the better quality of the bound produced from the 7-subproblem 

decomposition is paid in terms of time. Furthermore, as will be seen in next Chapter, the 10- 

subproblem decomposition (subproblems with 5 rows each one) proves better when the 

decomposition procedure is imbedded in a tree-search scheme for solving the problem.

Chapter 4
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TABLE IV. 7

Computational results from the decomposition for 
the large scale test problems

PROBLEM PROCEDURE 2.13 DECOMPOSITION

z l
1
11

r
ZM |

1
m |

j
n

1
z* ! ZM j m n

(i) (ii)
i
1 (iii) 1 (iv) 1 (v) (vi) 1 (vii) | (viii) (ix)

T200X1 87.11
1
1

1
92.0 |

1
200 | 148

r
87.36 | 92.0 | 200 138

T200X2 66.35 1 74.0 | 199 | 178 66.45 | 72.0 | 199 146
T200X3 90.72 I 96.0 | 200 | 176 91.11 | 96.0 | 200 152
T200X4 69.35 1 74.0 | 199 | 150 69.61 | 73.0 | 199 125
T200X5 56.16 11 60.0 j 1 186 | 1 125 56.80 |1 60.0 | 185 116

T300X1 215.00
1
1

1
215.0 |

1 — 1 — 1 — —
T300X2 138.41 1 147.0 | 300 | 287 138.89 1 142.0 | 201 175
T300X3 211.83 1223.0 j 300 | 333 213.87 |223.0 | 300 323
T300X4 243.03 1258.0 | 300 | 444 243.87 |258.0 | 300 437
T300X5 187.70 i

i
192.0 | 

1
250 | 

1
224 188.85 1192.0 | 212 192

TABLE IV.8

Lower bounds and computing times from the 
decomposition of a unicost SCP with two different 

dimensions for the subproblems
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4.7 CONCLUSIONS

In this Chapter we presented and developed a procedure based on decomposition and state 

space relaxation for large size SCPs. From the exposition, we outline the following :

(i) The decomposition method, in which the SCP is divided into many smaller SCPs,

is shown to produce improvements on the LP relaxation bound (if the dual optimal 

variables are available), or on the bound obtained from the lagrangean relaxation 

used for the SCP in this thesis (using the best lagrangean multipliers). This 

theoretical result was confirmed by the practical experience reported in this thesis.

(ii) State space relaxation couples well with the decomposition, both giving good

approximations to the optimal values for the subproblems and providing reduced costs 

(in the form of a minimum value for the objective function when a particular 

variable is forced in the solution), which can be used in the total problem.

(iii) large size SCPs may then be further reduced using the decomposition method

after procedure 2.13 has been completed. For some test problems, the decomposition 

also produced an improvement on the upper bound value.

(iv) The method also applies for the unicost SCP and seems possible that hard 

structure problems may be sucessfully tackled by combined use of decomposition and 

state space relaxation.

(v) A further step towards this consists of choosing carefully the partitions

having different sizes for the subproblems or sorting the matrix. We sucessfully used 

a heuristic for sorting the constraint matrix into an almost block diagonal matrix.

(vi) Other techniques rather than subgradient optimization may be more efficient

in computing the lagrange multipliers associated with the decomposition constraints 

(4.5) and further research on this topic could be worthwhile.

Chapter 4
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Chapter 5

TREE-SEARCH PROCEDURE FOR SOLVING THE SCP

5.1 INTRO DU CTIO N

In this Chapter, a branch-and-bound algorithm for obtaining the optimal solution for a SCP is 

presented. The procedure combines the different techniques described in the previous Chapters 

- preliminary reductions, heuristic methods, lagrangean relaxation, linear programming, state 

space relaxation and decomposition - imbedding them in a tree-search scheme.

The utilisation of all these methods or only part of them, depends on the characteristics of 

the SCP being solved. For instance, all the techniques mentioned above are used in solving 

randomnly generated large size problems. For unicost SCPs, only heuristics, linear 

programming, state space relaxation and decomposition are used.

The tree search procedure is of the depth-first type with the branching rule chosen to take 

advantage of the decomposition by generating subproblems in the tree either with fewer 

number of rows or with sparser constraint matrix. The criterion for choosing the rows to 

branch, depends again on the type of the problem, as will be seen later.

At each node of the tree, a lower bound for the completion of the node is computed and a 

cover is generated from the corresponding solution. Also, reduced costs are obtained and used 

to remove temporarily variables from the problem.

The example from Lemke et al. [126] will be used again for illustrating the tree search 

procedure. Finally, computational results are shown for large scale SCPs with up to 400 rows
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and 4000 columns, and for unicost SCPs with 50 rows, 500 columns and 20% density.

5.2 D ESCR IPT IO N  OF T H E  TREE

5.2.1 Root Node

At the root node of the tree we make use of the techniques described in Chapter 2 in order 

to reduce both the number of columns and the number of rows of the SCP. Also, a lower 

and an upper bound are obtained. All steps in procedure 2.13 are performed for randomnly 

generated large size problems. For the unicost SCPs, the greedy heuristic to compute an upper 

bound to the problem is used and then the LP lower bound is obtained using all the effective 

variables for the problem.

The next step consists of applying the procedure 4.3 relative to the decomposition method 

making use of the best lagrangean multipliers (case of large SCPs), or the optimal dual 

variables (unicost SCPs). The original SCP is, hence, split into many smaller and each one of 

these is solved or approximated by using procedure 4.2. Reduced costs (in the form of 

minimum value for the SCP when a variable is fixed equal to 1), are obtained and used to 

remove variables from the problem. If any number of variables is removed then reductions 2.2 

and 2.3 (Chapter 2) are performed.

5.2.2 Branching

In case of further analysis on the current subproblem in the tree is required, then a branching 

occurs in the tree. This is done by making use of a branching strategy presented by Etchberry 

[66J  which can be stated as :
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Branching strategy 5.1 :

Let i and 1 be the indices of two distinct rows of a SCP. Either

(i) i and 1 have a common variable, say jeN; D N,,

in the optimal solution 

or

(ii) i and 1 have no common covering variable in the

optimal solution

This implies that :

(5.1) in case (i) the set N{ is restricted to NjflN, and

the row 1 is temporarily removed from the problem 

or,

(5.2) in case (ii) the sets Nj and Nj are restricted to

Ni= N r (Nln N l) and N ^ N ^ N jflN ,) 

respectively

This branching strategy is very suitable for the decomposition technique. In fact, in case (i) 

one row is deleted (row indexed 1) and the other one (row i) has a reduced number of non­

zero entries. Therefore, the number of rows and the density are both lower than in the 

previous node in the tree. On the other hand, for case (ii) all variables common to rows i and 

1, are removed and then the subproblem in the tree is sparser.

For choosing the rows i and 1 we adopted the following :

Rule 5.2 . Choosing the rows for branching

Step 1 . obtain i as the index of the row with maximum marginal cost for the 

problem under consideration, i.e. Sj =  smax = r 2f€MSm with 

sm=rninj<NmtJ (obtained from (4.^4))

Step 2 . select the variable such that ^ .“ S^minj^tj*

Step 3 . if Mj.={ i } then go to step 4.

otherwise, choose 1 as the index of the row with maximum cardinality 

cardinality and different from i :

Chapter 5
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#N, = ( m*i )

Step 4 . since Mj.={ i }, pick the column in N; with 

the next least cost tj* and go to step 3.

If there is no variable left to be inspected in N; that means 

that the one with minimum original cost must be fixed equal to 1 

and so row i is covered. Then, go to step 1.

For the unicost SCPs, we choose the row index i as the minimum cardinality row instead of 

the one with the maximum value ss. Since the difference between the values sm (meM) is 

rather small for this type of problem, it is reasonable to adopt a criterion based on the 

cardinality of the sets Mj in order to reduce the number of nodes in the tree. As will be seen 

later this is confirmed by computational experience.

5.2.3 Intermediate Node

At each intermediate tree node we perform 20 iterations for the lagrangean relaxation 

(LSCPX) of the problem under consideration. The initial values for the multipliers are the 

ones associated with the best lower bound obtained at the previous node. Hence, a first lower 

bound is computed for the optimal completion of the node and the corresponding multipliers 

are used to compute the decomposed costs by using (4.10), (4.11) and (4.12).

Since from the computational experience reported in the previous Chapter, the lower bound 

provided by the decomposition method at the first iteration is always better than the 

lagrangean bound and then increases very slowly from there, only one iteration is performed at 

each intermediate node.

Prime covers are generated from the partial solution sets and also from the values tj as was 

seen in Chapter 4. Variables are temporarily removed from the problem if the corresponding 

value tj for the current problem exceeds the value of the best upper bound, zu. If the original 

costs of the variables are all integer then we can use z„-1.0 instead.
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5.2.4 Backtracking on the Tree

Backtracking on the search tree occurs when :

(i) the lower bound obtained at the current node (zlb) is greater than

or equal to upper bound value (z j,  i.e. zlb> z u-l (integer costs), 

or,

(ii) there is no feasible solution for the completion of the tree node.

When the bactracking occurs, the columns and rows removed during the analysis of 

the current node, are retrieved to the problem.

Chapter 5

5.3 EXAMPLE

Let us consider the problem which we have been using as an example (Lemke et al. [126]),

and for better illustrating the branch-and-bound we start branching at the end of the first

iteration for the decomposition procedure (see.example 4.4). Applying the rule 5.2 : 
step 1 . s2=smax=maxTn_ 1 j 5sm=13.0 
step 2 . t12= t 15= t 18 =  13.0 and we arbitrarily choose j*=12 
step 3 . M12=i2,12l and row 12 is obviously chosen

Then, two new nodes are generated in the search tree :

NODE 2 : node 2 is the first one to analyse. First, row 12 is temporarily removed
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from the problem and N2={ 12 } which means that x12 must be in the optimal solution 
of the problem corresponding to node. Hence, also row 2 is temporarily removed and 
a fixed cost equal to 2.0 must be added to any bound obtained.

Now, a fixed number of iterations for the lagrangean relaxation would be performed. 
However, to avoid too many computations for the example, we consider the same 
dual feasible solution we used in example 4.4. That is, 
u = (0,0,2,0,1,0,1,2,1,1,0,1,0,3,0), and the decomposed costs are computed as before :

J 1 2 3 4 5 6 7 8 9 10 11 14

4 1 1 1 2 1/2 -

4 1 1 1 0 3/2 2 -

4 1 1 0 -

20 21 23
4 11/3

5 14/3
1 2/3

j 15 16 18 19

4 5/2 0 1/2 4

4 0

4 1/2 3 7/2 1

. START SOLVING THE SUBPROBLEMS 

. subproblem 1

i  1 2 3 4 5 Q
0 - 2 0 1 3

j 2 3 6 9 10 13 15 16 18 19 21 23

4 1 1 1 2 1/2 2 5/2 0 1/2 4 4 11/3

Qi 0 0 1 2 0 0 2 0 0 3 3 3

4 4 4 3 3 7/2 5 7/2 3 7/2 4 4 11/3

The optimal solution is provided by SSR with value z}b= 3.0 . The partial solution set is 
Xj ={16,6,9} and the values tj (jeA’j) are- given in the bottom line of the tableau 
above.

. subproblem 2

i  6 7 8 9 10 Q
0 1 2 1 1 5
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j 1 4 7 9 10 11 16 20 23

<4 1 1 1 0 3/2 2 0 5 14/3

0 1 1 0 1 2 0 5 4

t] 6 5 5 5 11/2 5 5 5 17/3

The optimal solution is again obtained from the SSR - X2=ll6,20! - with value z2lb=5.0 
and the corresponding t̂  (j€A’2) are given in the tableau above.

. subproblem 3

1 11 12 13 14 15 Q

Qi 0 0 3 0 3

J 5 8 11 14 15 16 18 19 21 23
1 1 0 3 1/2 3 7/2 1 1 2/3

<4 0 0 0 3 0 3 3 0 1 0

tj 4 4 3 3 7/2 3 7/2 4 4 11/3

The solution provided by the SSR is X3={l 1,14}, which is not feasible. The lower bound is 
z3b=3.0 with the subsequent t| 0eA’3) given in the tableau above.
Since, d13=min(t3,t38,t23) =  3.5 the lower bound is further improved to z3b=3.5.
The new values for the tj are

5 8 11 14 15 16 18 19 21 23
4.5 4.5 3.5 3.5 3.5 3.5 3.5 4 4 11/3

Hence, the lower bound obtained so 
zlb= l  1.5 +  2.0=13.5  and the costs tj are

far for the completion

j 1 2 3 4 5 6 7 8 9 10 11 12

3 4 4 3 3 3 3 3 3 7/2 -

tJ2 6 5 5 5 5 5 5 5 5 11/2 5 -

tj 7/2 7/2 7/2 7/2 9/2 7/2 7/2 9/2 7/2 7/2 7/2 -

14.5 14.5 14.5 13.5 14.5 13.5 13.5 14.5 13.5 14.5 13.5 “

j 13 14 15 16 18 19 20 21 23
5 3 7/2 3 7/2 4 3 7/2 11/3

t] 5 5 5 5 5 5 5 5 17/3

ti 7/2 7/2 7/2 7/2 7/2 4 7/2 4 11/3
15.5 13.5 14.5 13.5 14.0 15.0 13.5 15.5 15.0
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Then x,,x2,x3,x5,x8,x,0,x13,x19.x21 and x^ are temporarily removed from the problem, 
since ^ > ^-1  for these variables. The resulting problem is further reduced by 
applying reduction 2.3 (single 1 in a row) :

Then, the variables x15,x16,x,8 and x20 are fixed equal to 1, which means that the 
fixed valye for the lower bound goes up to 17.0. Therefore, the analysis of the node 
is completed and, since zIb> z 11-l, a backtrack on the tree occurs :

NODE 3
z = 15.0 u
z^ = 13.0

NODE 3 : all variables removed except x17 and x22 are retrieved and the same 
occurs for the rows.
At this node of the tree, the sets N2 and N 12 are restricted to :

N2=ll3,15,18,19,23>
N12=l8,2lJ

and this means that x12=0. Using again the same dual feasible solution for 
generating the decomposed costs, we start the decomposition procedure with the 
same values as at the root node. Doing the computations, we get the same lower
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bounds for the subproblems as at the root node (first iteration of the decomposition 
in example 4.4). Also the values tj are the same and this means that row 2 is again 
chosen for the branching, .nl The selected variable is now j*=15 and from 
Mj, =■{2,3*11} is row indexed 3 is the second row for the branching :

NODE 4 : at node 4, we replace N2 by N2flN 3={ 15,19,23} and row indexed 3 is 
temporarily removed from the problem. Recomputing the decomposed costs :

. subproblem 1

1 1 2 3 4 5 Q
0 0 -  0 1 0
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j 2 3 6 9 10 13 15 16 18 19 21 23

d 1 1 1 -  1 /2 2 3 /2 0 1 /2 3 3 7 /3

q 0 0 0 0 0 0 0 0 1 1 1

t 1 0 /3 1 0 /3 1 0 /3 -  1 7 /6 1 3 /3 2 3 /6 7 /3 1 7 /6 3 3 7 /3

zjb= 7/3  ; X, ={16,23}

. subproblem 2

i 6 7 8 9 10 Q
0 1 2  1 1 5

j 1 4 7 9 10 11 16 20 23

d 1 1 1 2 3 /2 2 0 5 1 6 /3

q 0 1 1 0 1 2 0 5 4
t 6 5 5 7 1 1 /2 5 5 5 1 9 /3

zfb=5, X2={ 16,20}

. subproblem 3

Zjb=4.0 ; X3={ll,8,16l
The lower bound obtained at the end of this iteration for the decomposition is 
zlb=7/3  +  5+ 4= 34/3 . However, from the analysis of the values tj the lower bound 
is increased to zlb=14.0 [= s2=min(t15,t19,t23)].
This time, a cover with better cost is obtained from the set :
S={ Xj : tj< z lb }
Removing the redundant variables by decreasing order of the costs, one obtains : 
S={4,7,8,9,10,11,13,16}
with cost c(S)=14.0 Therefore, a backtrack on the tree occurs, since 
zlb= zu=14.0 at node 4.
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NODE 5 : the variable x15 is retrieved to the problem and so is the row indexed 
3.
Now, the sets N2 and N3 are restricted to N2=ll3,18} and N3={9,2l). The matrix of the 
SCP corresponding to node 5 is then :

and the decomposed costs are :

2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 19 20 21 23
1 1 1 2 1/2 2 0 1/2 5/2 7/2 7/3

1 1 0 3/2 2 0 16/3
1 1 0 3 3 3 7/2 3/2 3/2 4/3

Solving again the three subproblems we would get the initial lower bound zIb=  12.5 which is 
increased to 13.0 by reduced cost analysis. The variables Xj,x2,x3,x5,x,3,x15,x19 and 
x23 are temporarily removed from the problem. The variable x18 is fixed equal to 1 
(since N2=!l8} by the removing of x13).
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New branching now occurs in the tree. There is a tie for choosing the row i, since 
d2=smax and row indexed 2 has been covered by x18. Then a decision is taken 
picking the least cardinality row with minimum index - row 3, with j* =  9 and 1=6.

NODE 6 : solving the SCP corresponding to node 6 one would get a lower bound 
zlb=16.0 and, therefore, a backtrack occurs on the tree.

NODE 7 : finally, for node 7, another feasible solution with value equal to 14.0 is 
obtained - X = il 8,20.2 ll.
The tree search is now over ( see Figure 5.1), and the optimal value for the 
example is 14.0 .

Figure 5.1
Complete search tree for the SCP in example <5.3)
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5.4 COMPUTATIONAL RESULTS

Table V.l shows the complete computational results for the test problems of class (I) 

considered in Chapter 2. Note that the first set of problems, T200Xk (k=l,..,5), are 5% 

density problems with 200 rows and 2000 columns. The other set, T300Xk (k=l,...,5), is 

composed by problems with 300 rows, 3000 columns and 2% density. For both sets of 

problems, the costs of the variables are randomnly generated from the range [1,99].

As can be seen, all problems are solved using a CDC 7600 computer. This occurs in spite of 

the upper bound at the beginning of the tree being more than 3% far from the optimal for 

problems T200X2 (4.2%), T200X3 (3.2%), T300X2 (3.1%) and T300X4 (4.4%). In all cases 

the number of nodes generated in the tree was less than 100.

The capability of the method to solve large size SCPs is illustrated in Table V.2 where we 

show the computational results relative to a test problem with 400 rows, 4000 columns, 2% 

density and costs generated from the range [1,99]. This problem was solved on a CYBER 

170/855 which is slightly faster than the CDC 6600 (and therefore slower than the CDC 

7600 used to solve the other test problems mentioned above). The computing times given in 

Table V.2 were obtained by using the command -INFORM,JOBCOST- right before and after 

running each one of the parts into which we split the computer code.

Unicost test problems with 50 rows, 500 columns and 20% density, were also solved using the 

algorithm with the variations adopted for this type of SCP. That is, the greedy heuristic was 

first used to obtain an upper bound and then the complete LP relaxation was solved. The 

optimal dual variables were used to set the initial decomposed costs and the tree search 

procedure was performed.

Table V.3 shows the computational results for five test problems solved on a CYBER 170/855 

computer. The first column in Table V.3, (i), refers to the designation of the problem and the 

following ones give the information relative to each one of the three phases described above - 

column (ii) shows the upper bound value obtained from the greedy heuristic; column (iv) gives 

the LP lower bound; (vi), the optimal value for the problem and (viii) the number of nodes

Chapter 5
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TABLE V.l

Final computational results for large scale SCPs

PROBLEM PROCEDURE 2.13 TREE SEARCH

1
Z5Z !

r
Zu 1 m

I
i

i
n | time z * \ n

I
1

1
time | total

1 1 1 1 1 | time
(i) (ii) 1 (iii) 1 (iv) | (v) | (vi) (vii) | (viii) 1 (ix) 1 (x)

T200X1
1

87.12 |
1

92.0 |200
1
1

1
146 | 6.81

r
90.0 | 15

1
1

I
7.96 | 14.77

T200X2 66.35 | 74.0 | 199 1178 | 7.08 71.0 | 73 128.69 | 35.77
T200X3 90.72 | 96.0 |200 1176 | 8.28 93.0 | 41 117.07 | 25.35
T200X4 69.35 | 94.0 |199 1 150 | 6.60 73.0 | 77 125.22 | 31.82
T200X5 66.16 | 1 60.0 | 1186 11125 | 1 5.28 60.0 |1 37 1

|
9.75 | 15.03 1

T300X1
1

215.0 |
1

215.0 | —

1
1

1
10.06

1
215. | —

1
1

1
- | 10.06

T300X2 138.4 1 147.0 |300 1287 | 9.63 141. | 20 115.02 | 24.65
T300X3 2 1 1 .8  j 223.0 |300 1 333 | 10.87 218. | 56 121.50 | 32.37
T300X4 243.0 | 258.0 | 300 1444 | 13.87 247. | 17 128.96 | 42.63
T300X5 187.2 | 

1
192.0 | 

1
250 1

1
224 | 

1
7.53 192. | 

1
30 1

1
18.98 | 26.51 

1
6DC 7600 
f T nJ Ootnpiler
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TABLE V.2

Computational results for a SCP with 400 rows, 

4000 columns and 2% density

PRELIMINARY REDUCTIONS TIME

m | n | |
I I I
I I I 

400 | 619 I 1 
1 1 1

GREEDY HEURISTIC

zl I zu | m | n  
1 1 1
1 1 1 

147. | 251. 1 400. | 619. 
1 1 1

LAGRANGEAN RELAXATION (I)

zl 1 zu | m | n  
1 1 1
I i i

207.4 1 230. | 400 | 618 
1 1 1

10.367

LINEAR PROGRAMMING

zl 1 zlp I m | n 
1 1 1
1 1 1 

206.86 | 227.05 | 400 | 617 
1 1 1

35.799

LAGRANGEAN RELAXATION (II)

zl 1 zy 1 m I n  
1 1 1
1 1 1 

218.60 | 230.0 | 400 | 524 
1 1 1

7.151

TREE SEARCH

z O D t  1 nodes I | 
P 1 1 1

1 1 1 
»0. 1 131 | |

1 1 1

560.584

613.901
1 7 0 / & S S  

PT jv] Ootnpiijcr
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generated. Columns (iii), (v) and (viii) give the partial computing times in Cyber 855 seconds 

whose total is shown in column (ix). The figures giving computational times include input and 

output time since they were obtained by using the command -INFORM,JOBCOST- right 

before and after running the code. Therefore, they are not accurate but they are overestimates 

of the real computing time in the mentioned machine.

The unicost SCPs were decomposed into 10 subproblems and the choice of the branching rows 

was made with respect to cardinality, instead of the cost d; (i«M). It is significant to mention 

that for problem T50A3, Rule 5.2 was tried out and generated a tree with as much as twice 

the number of the nodes generated by the version adopted.

Chapter 5

TABLE V.3

Computational results for the unicost SCPs

(i)

GREEDY
HEURISTIC

LINEAR
PROGRAMMING

TREE
SEARCH

TIME

(ix)

1
2U 1 
(ii) 1

t

(iii)
zi
(iv)

1
| t 
1
1 (v)

zopt
(vi)

n

(vii)

t

(viii)

T50A1
1

5.0 I 1.21 3.30
l
1 5.83 5.0 167 278.23 285.28

T50A2 5.0 | 1.42 3.40 I 3.66 5.0 140 252.98 258.06
T50A3 5.0 | 1.51 3.47 I 5.20 5.0 191 323.87 330.58
T50A4 5.0 | 1.28 3.35 1 5.99 5.0 190 313.68 320.95
T50A5 5.0 | 

1
1.47 3.39 1 6.09 

1
5.0 166 301.50 309.06

Cybev* \7 0  l  iS5"S' 
FT Nt CSV**j»»’ lev*
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5.5 CONCLUSIONS

In this Chapter we concluded the description of an algorithm for large scale SCPs based on 

decomposition and state space relaxation. From the final computational results, it is possible to 

say that :

(i) The algorithm is capable of solving large size SCPs and, in particular,

a test problem with 400 rows, 4000 columns and 2% density was solved. This is by 

far the largest SCP reported solved in the literature.

(ii) The algorithm with a few variations solves unicost SCPs with 50 rows,

500 columns and 20% density which are the largest dimensions for this type of 

problem that have been reported solved.

Taking into account the conclusions and suggestions for future research formulated in the 

previous Chapters, one may say that further improvements are likely to be produced by :

(iii) Improving the procedure used to obtain bounds on the optimal value and

perform reductions in both the number of the rows and the number of the columns. 

This can possibly be done by trying more heuristics for generating covers, performing 

different types of reduction tests (based on lagrangean penalties) or producing an 

even more reduced LP restricted relaxation but with good accuracy.

(iv) Producing a better decomposition depending on the structure of the problem

and allowing variable sizes for the subproblems. Also, other techniques rather than 

subgradient optimisation may be more suitable for computing the lagrangean 

multipliers associated with the decomposition constraints.

Chapter 5
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