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ABSTRACT

In this thesis we present algorithms for solving several
optimal control problems for systems expressed in terms of a
general nonlinear delay-differential equation with control term.
The first control problem considered, Problem P1l, involves only
control constraints and its solution 1is determined wusing an
algorithm permitting strong variations in contrel. By enlarging
the set of controls on which Pl is defined to relaxed controls we
assure that minimising solutions exist. This together with the
"linear" nature of relaxed controls, simpliify many of the
difficulties associated with proving convergence. Indeed, this is
shown by designing an algorithm which solves Pl over the set of
relaxed controls, denoted G , and obtaining its convergence
properties. These are much simpler and readily obtained than
the strong wvariational algorithms which uses ordinary controls.
Next, the computationally expensive problem of simulating
measure valued relaxed controls 1is tackled. It is shown that
relaxed controls can be approximated te any degree of accuracy
using only ordinary controls. An algorithm where this is done is
investigated and results show that, if the degree of approxima-
tion is kept constant at some chosen wvalue, all limit points
generated satisfy optimality conditions to within "delta". On the
other hand, if the approximation accuracy is 1increased
indefinitely as the algorithm proceeds, it is shown that limit
points then satisfy optimality conditions '"exactly'. Terminal
equality constraints are then added to Pl to give a more general
problem, denoted Problem P2. An algorithm which solves P2 is

obtained. This uses an exXact penalty function to eliminate the



terminal equality constraints and handles the control constraints
by minimising an 1intermediate subproblem over the feasible
control set G . A test function which determines the value of the
penalty parameter (guaranteed to be finite) needed to ensure
feasibility is also included. The last problem considered in this
thesis 1is that obtained by replacing the terminal equality
constraints in P2 by a general nonlinear state constraint and is
dencted as Problem P3. Two algorithms, one conceptual and the
other implementable, which soclve P3 are presented. Both these
use a method similar to the one used in solving P2. However, a
different method of updating the penalty parameter K, which does
not require a test function is presented. This method relies on
keeping K larger than the multipliers at the solutions to the
intermediate problems at each stage of the algorithms. The
existence of a finite K which gives feasibility is guaranteed by

considering calm problems.
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CHAPTER 1

FUNDAMENTAL PRELIMINARIES

Introduction

In this chapter we supply the necessary mathematical
background and the basic results needed for the remainder of the
thesis. It is intended primarily for reference and readers with a
grounding in elementary Functional Analysis and Optimal Control
Theory will loose nothing by proceeding directly to Chapter 2
after perhaps a glance at the Maximum Principles for delay
problems and the section on Relaxed Controls.

For the most part, we shall confine ourselves to stating
definitions and theorems, and because of this, the material in
this chapter is sketchy at best and in many cases the results
are not presented in their full generality. We shall, however,
cite references which contain the necessary proofs and details
throughout the chapter (and thesis} so that the interested reader
may consult the literature available. It is hoped that even in
this scanty form, this chapter will provide a wvaluable insight to
readers who are new to the area of optimal control and to make
the thesis somewhat self-contained.

The chapter 1is divided into two parts, Section A and
Section B. Section A contains the basic definitions for sets,
topeological spaces, duals, etc. Extensive discussion of most of
this material can be found in Luenberger {LU1], Kingman and
Taylor (K1 I, Warga [W3] and Sutherland [ SUl]. Section B

contains an introduction to optimal <control theory and the
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existence of minimising solutions. Necessary conditions of
optimality for the problems considered later in the thesis are
also presented. These are essentially adaptations of the results
of Huang [HUl1] to a form which is applicable here. The
existence of minimising solutions 1is guaranteed by considering
solutions which are relaxed controls - see Warga | W3] and

Young [Y1 ]

Section A

Al. Sets and Functions

We denote sets (also called collections, families and
classes) by capital letters (Latin, script or Greek) and the
empty set by . x€A signifies that x is a member (synonomously
element, point) of the set A, i.e. A contains x. If the set A is
defined to be all members of the set A having a certain property

P{x), then we write
A= {x€A: P(x) }

We also write IX, yX, ,uuenn } for the set with elements
X, X gyennnn , or as {xi} or {xi:iefN} where N = {1,2,3,....}
is the set of all positive integers (or some indexing set). At
little risk of ambiguity sequences of points x,,X,,..... in a set
B are also denoted { Xi} or {Xi }i:o or as '"'an infinite sequence

{xi} € B" with each xieB.

Given two sets A and B, then

(i) the union of A and B, written A U B, comprises of

all elements in A or B

11



(ii) the intersection of A and B, written A M B, comprises

of all elements in A and B

(iii) the difference of A and B, written AN B, comprises of
all elements in A not in B, similarly the difference
of B and A, written B \ A, comprises of all elements

in B not in A

The concept of union and intersection generalizes to apply
to families of sets {A;1}. Here ikeJN A; (or li A; for short) is
the set of all points lying in at least one member of the family
{a;}  and QENAi (or Q A{) is the set of points lying in
every Aj . A family of sets {A;} has the [finite intersection
property 1if given any finite subset M of the index set N , then
iQM A; 1s non-empty. Sets with empty intersection are called
disjoint.

A is a subset of & if each member of the set A is also a
member of the set A, symbolically we write this as AC A ., If A
and A are not the same, we say A is a strict subset of A . A
set is called countable if it can be put into a one-to-one
correspondence with the set of positive integers.

Let A, B be two sets. Then a function (alternatively called
map, mapping, operator, transformation} f:A—B (or simply f
when A and B are understood) is a rule which assigns to any
element x € A an element f(x) €B. If the element b& B is assigned
to the element a € A, we say that b is the image of a wunder f

(or f takes the value b at a), and write b = f(a). If DCA, then

f(D), defined by

f(D) 2 {beB : b = f(d) for some d& D }

12



is called the image of the set D (under f}). If ECB, then f~ '(E),

defined by
f~YE) & {agA : fla)e E}

is called the pre-image of the set E (under f}. A is called the
domain of f and B 1is <called the co-domain of f. The set
{be B : b = fla) for some a € Al is called the range of the map
f (written R(f)). In the case when R(f) coincides with the co-
domain of f, we say that f maps A onto B (or briefly that f is
onto). The function f is one-to-one, if for each peint b€ R(f) the
set £~ '(b) contains only one point. In this case, the operation
f= ' (.) defines a function from R(f) onto A. This function is
called the inverse of f.

Suppose again that A, B are sets and D C A. Let f be a
function from A onto B and let g be a function from D onto B. In
the case when d € D implies f(d) = g(d), we say that g is the

restriction of f to D. Conversely, we say f is an extension of g

to A.

A2. Real Numbers

If a and b are real numbers with b greater than a
{written b>a, or a less than b which we wfite as a<b), then
la,b] denotes the set of real numbers x satisfying a< x<b. A
round bracket denotes strict inequality in the definition. Hence
(a,b] denotes all x with a <x <b.

Let S be a set of real numbers bounded from above, then

there is an x, € S which satisfies x,2> x for all x€ S. The number

13



x, 1is called the supremum of S and is denoted sup { x : x€ S} or

sup {x }. If S is not bounded from above we write sup {x} = =,

x€ S X€ S

Similarly if S is bounded from below we say x* = inf {x} or
xe s

x* = inf {x : x€5 }.
Let {x-l} be an infinite sequence of real numbers. Then we

A . ] ~
say that x is the limit superior of {x; } and write x =

1=0

lim sup {x;} if, given any € >0,

(i) there exists some positive integer i~ such that for

. 0 -~
all i>1,, Xj<x+e;

A~
(ii) for any positive integer j,, x;>x-¢ for some i>j,

~

x is the limit 1inferior of {xi}.m , written X =

lim inf {xi} if X = -lim sup 1 -x, } . If lim inf{xi}

lim sup {xi }= x*, we say x¥ is the limit of {xi }imo and write

x* = lim {xi}
We denote by IR the real line £ (-= ,«= ) and by [R™ the

extended real line & [-=, =1].

A3. Vector Spaces

A vector space X 1is a set of elements called vectors {one of
which is the null element @) and two operations, namely addition
and multiplication by a real scalar. The set X and these two
Operations are assumed to satisfy a number of axions which ensure
that wvector spaces possess many of the features of elementary
vector algebra (see for example Luenberger [LU1l ] ).

[Note: we shall only be concerned with vector spaces defined on
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the field of real numbers. }

A subspace S of X is a subset of X closed under addition
and scalar multiplication, t.e. if x,y € S then ax+8y € S for any
real numbers o, B8.

If M,N are subspaces of X, we define the sum of M and N

to be

M+N = {(x€X : x = m+n, some m& M, some neN }
Similarly we define the difference of M and N by

M-N ={x€X : X = m-n, some m&€M, some n&el 1}

A linear. variety V in X 1is defined to be a subset of X
which can be expressed as V = x,+M, where x, 1is some fixed
element in X and M is a subspace of X. If VsX, then we say V
is a strict linear variety.

A set K in X is said to be convex if for all x,, x;,€ K, we
have that all points of the form x = ex, + (l-a)x, for all
«€{0,1] are in K.

Let S be an arbitrary set in X. The convex hull of S,
denoted co(S), is the smallest convex subset in X containing S.

Let X,Y be two vector spaces. We say X and Y are
isomorphic 1if there exists a linear operator T with domain X,

range all of Y, and for which the inverse T~' exists {a map

f:X—Y is linear if for any real e, e¢,and x,,x:€ X we have

flo,x,+0,x,) = & fix )+e,f(x,))

15



A4. Topological Spaces

A collection gof subsets of a set X is a topeology in X if

W o, xcI
(i1} the union of any number of sets in gbelongs to g'

(iii) the intersection of a finite number of sets in g

belongs to g'

The couple (X,QO]-) is called a topological space. A topology
g? is weaker than a topology g: (or {OZ is stronger than 9'1)
ud ..

A common method of defining a topolegy on a set X is by
means of a "base". If @/ is a collection of subsets of X, then
there exists a wunique topology g(@/) in X containing %and
weaker than any other topeology containing @/; g(@/) is

constructed by first forming AV(Q[) defined as follows:

yA5/%

HE

Q : KG.IN,AJ.COZZ}

and then defining g(%) as the set of the unions of all sub-
collections of HV( %). In this case 02/15 called a subbase of
9702/) and a base of a topology gis any collection/‘VC gsuch

that every element of gis a union of some subcollection of
/‘V(thuan(%)is a base of?]‘(OZ[)).

Elements of a topology are the open sets of a topological
space (X,g). Any open set containing a point x € X is a
neighbourhood of x. A subset Y of X 1is termed closed if its
complement {(i.e. X\Y) is open.

Given a subset Y of X:

16



(i) the closure of Y, written Y, is defined to be the

intersection of all closed sets containing Y

(ii) the interior of Y, written int Y, is defined to be the

union of all open sets contained in Y

(iii) the boundary of Y, written 3Y, is defined to be

Y \int Y

Y is a dense sub.set of X if YCXCY. A topological space
(X,g) is separable if X contains a finite or countable dense
subset,

We now introduce the important concept of compactness, but
before doing so we give a preliminary definition:

In a topological space (X, O-v) a subcollection “V of ,_6]- is

an open covering of a set BCX if B € U V. If%CW and

VC
both % and Ware both open coverings of a set B, theno)yL is
a subcovering of@k

Definition

A set B CX is compact if every open covering /'Vof B has a
finite subcovering.

Now suppose that f is a function from X into Y, where X
and Y both have topologies defined on them. We say that [ is
continuous at the point x,€ X if for each neighbourhood V of
f(x ,) there exists a neighbourhood U of x, such that f(U)C V. We
say that f is continuous if it is continuous at all points x & X.

Let {x.,} be a sequence of elements in X. We say that the

1

sequence converges to a limit x* if, given any neighbourhood P of

17



he

x* there exists some integer i such that xieP for all i2 1
(for a given sequence X* may not be unique).
Finally we mention three important classes of topological

spaces:

1. A Hausdorff space is a topological space with the
property that, given any distinct points x,, x. in the
space, there exist disjoint neighbourhoods U, U2 of
X, , X

, respectively (hence converging sequences in

Hausdorff spaces have unique limits).

2. A topological vector space (X, g) is a vector space

with a Hausdorff topology such that the functions

(x,y) —x+y : XxX—X and (a,x)—ax : [RxX—X are
continuous
3. A locally convex space 1is a topological space whose

topology is generated by a base composed of convex sets

A.5 Normed Linear Spaces

A normed linear space is a vector space X together with an
operator called a norm. The norm is a real-valued function on

the linear space and we denote its value at the point x by

Il x ||. The norm is assumed to satisfy the following axioms:
(i) Il x || 20 for all x&€X, ||x || = 0 iff x =
(ii) Hox+y |1 < x|+ |l yll for all x,y & X (the triangle
inequality}
(iii) [ ex |} = 1ol l§x || for all scalars a, xeg X.

18



[ Note we have only considered real normed linear spaces |

The set B(x,a) 2 {ye X : ||x-y||<atl is an open ball with
centre X and radius a, with a > o, and the set Bc(x,a) & {yge X :
I x-y Il £ al is a closed ball with centre x and radius a, with
a >o. The topology on X generated by the base consisting of all
open balls in X is the usual topology on a normed vector space.
To distinguish it from other topologies on X it is called the
strong topology. Other topologies which are of interest are the
weak topology and the weak™ topology, see Luenb-erger [LUL] or
Warga [W3 ).

Unless otherwise stated we assume for the remainder of
this section that X is equipped with its strong topology.

It is thus clear that a set A in X is open if for each
x € A there exists some open sphere 5 with x€ 5CA; and also if
x,€ X is disjoint from a closed subset A, C X, there exists some
open sphere 5, disjoint from A, with x, € §

A very convenient feature of normed linear spaces is
that many of the topological properties introduced in section A4
can be equivalently expressed in terms of sequences. Letting X

and Y be normed linear spaces we have:

a. A point x lies in the closure of a subset S of X if
there exists some sequence in S converging to the

limit x

b. The function f:X—=Y 1is continucus if for every

convergent sequence { X},
i

lim {f(x )} = f{x*) where x* = lim %}

1+ 1re

19



¢c. A set S in X 1is compact iff every sequence in S
contains a subsequence converging to some point in S,
i.e. if we have an infinite sequence {xi} in §, then
there exists a subsequence indexed by K< {1,2,3,...1

and an x*€ S such that lim {xi} = xX*

1+

igek
. K -
We denote this as Xy xX*
A function f : X— R is upper semicontinuous at x* if
lim sup f(x) = f(x*) and lower semicontinuous at x* if
X —x¥*
lim inf f(x) = f(x*). We say that f 1is upper semicontinuous

X——rX ¥

(lower semicontinucus) if it is upper semicontinuous (lower
semicontinuous) at x* for every x* & X. f is continuous if it is
both upper and lower semicontinuous.

[f X is any set, Y a normed linear space, fi:X—*Y, ie N,

and f : X——Y, then lim fi (.} = f(.) uniformly or,
i
equivalently lim f (x) = f(x) uniformly for x & X, if for every
i
€ >0 there exists an integer il )& N such that || fi {x) -

f(x) ]l ge for all xe X and all iz i(e).
Two normed linear spaces X,Y are termed isometrically
isomorphic if there exists a one-to-cone transformation T : X—Y

onto Y such that ITx |l= Ixl.

A6. Product Spaces

Let X,, X, be sets. Then the product set X xX, is defined
to be the set of all ordered pairs (x, ,x,) where x, € X, ,
x,€ X,. When X ,X, are topological spaces, there is a standard

way of assigning a topology to X,xX,
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Let ,% be the family of all subsets of X xX, of the form
T,xT, where T,,T, are open sets in X,,X, respectively, then
take gto be the topology generated byg_%). (O]'is called the
product topelogy on X ,xX ,.

When X, and X, are normed linear spaces then the product
space XQ}(lxXz_ with the norm defined by |I(x,,x,) || &1x,II +lIx,i
is also a normed linear space.

The product spaces X = Xlxxzx....xxn of the n topological
vector (normed) spaces as well as the product topology (norm)

on X are defined in an analogus manner.

A7. Banach Spaces

To state the definition of a Banach space we need to
introduce Cauchy sequences. A sequence {x;, 1} 1in a normed

linear space X is called a Cauchy sequence if

||><i - xj | — 0 as i, j— =, i.e. given any
e >0, there exists an integer i, such that || X, - xj [| £ € for
all i, j>1i,. Then we say that a normed linear space X is
complete if every Cauchy sequence {x,!} in X converges to a
limit in X. A Banach space is defined to be a complete normed
linear space.

It is shown in Sutherland [ SUl] that not all normed linear

spaces are complete. Some examples of Banach spaces which we

shall be using are:

1. The space CI[T; IR] of real continuous functions on

the interval T 2 [ 0,1] together with the norm,

21



IIx || = sup [x(t)]
O<tsl

The space 113’ l<pg =
The space 11‘), l<p <= consists of all sequences of

scalars {a,,a,,.... } for which

Z
1=

la, | P <=
1 i

together with the norm of an element x = {a,} in IF'J-

being defined by

I x |l

M
—~
o~

—_
)

P i= i
The space 1 consists of bounded sequences with the

norm of an element x = ta, € 1 being defined by

Il x i, =  essential;supremum |a, |

had 1

ess, Sup | a5 |

The space Lp [0,1] , 1<pg=, f(or Lp) where Lp’ lep< =
consists of the space of functions x on [ 0,1] for
which |x(t) | is Lebesgue integrable and the norm is
defined by
1
) /
Ix Il = 4 §x(o)[Par ) P

The space L_[ 0,1] is the space of all Lebesgue
measurable functions on [ 0,1 ] which are bounded
except on a set of measure zero, and the norm of an

element x(t)eLw is defined as

I x | = ess sup | x(t) |

oo
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A8. Measures, Measurable Functions and Integrals

To define a measure on an arbitrary set $ we need to
introduce o-fields. A family X of subsets of S is a o-field (or

algebra) if

(1) the empty set @CX

(ii) ACY —=> its complement in S, i.e. S\A (denoted

A c X
Gii) A, C X, i=1,2,3,..... implies 181 AC 2 and
0 A2

A measure on S is then a function uw:ZXZ—— [R7 satisfying:

a. w(J)=0
b. u(M A,) = ' u(A,) whenever A,.C I and A,  1is
i=1 "1 i=1 i i R

disjoint from Aj for i=£j

We refer to the couple (S,X ) as a measurable space and
to the triple (S, £, u) as a measure space f{or just S as a
measure space if Z and u are understcod).

If  w®(S) = 1 then wu 1is called a probability measure. A
measure u:2 — RY is supported on A (or has its support in A)
if n(B) = 0 whenever ANB = @ for all BC X .

Let (S, X ), (T, A) be measurable spaces. Then a function
£:5—T is measurable if f~ (A)C I for all A CA.

‘We can associate with a measurable function f, a real

number, the integral of f over S5, written

S fdu
S

23



The values * = are allowed for the integral. The functions
g for which J;Ig | dp <= are called integrable. We shall be
using Lebesgue integrals where the integration 1is taken with
respect to the Lebesgue measure on the real line.

Due to the lack of space this section is very brief indeed
and many results which we use in the main text are omitted. For
a more fuller discussion see Kingman and Taylor [Kl1], Royden

[RO1l ], Rudin [RU1], Warga [W3 ]

A9. Hilbert Spaces

With the aim to define a Hilbert space we first give a
definition of a pre-Hilbert space, which is a linear vector space
X together with an operation called an inner product. The inner
product is a function from XxX into the real line, whose wvalue

satisfies the

at (xl,xz) for X, ,X, & X, written as <X, ,X,2

following axioms:

(1) <X1,Xz> = <x2,xl>
{i1) QU X L, K, > = <x,,X,>+<x, ,x,> for all x. € X
1 2 3 1 3 2 3 3
(iii) <axX,,X,> = a<X,,Xx,> for all a real
1 2 1 2
(iv) <x ,%x > 2> 0 and <x ,x >» =0 iff x. = 0.
1 1 1 77 1

[ Note we only consider real linear vector spaces. ]

Since the real-valued function <x,x?> : on X has the
properties (i)-(iii) in section A5, it is called the induced norm
on X and is written || x || . We can define open spheres, strong
topologies, Cauchy sequences, etc. in terms of this norm.

A Hilbert space is a complete pre-Hilbert space. Hence a

24



Hilbert space is a Banach space equipped with an inner product
which induces the norm. R™, 1., L, [0,1] are all Hilbert

spaces.

Al0. Dual Spaces and Hyperplanes

Let X be a normed linear space. Then the space of all
bounded linear functicnals on X is called the normed dual of X

and is denoted by X*. If x*&€ X* then we represent its value at

x € X by <x,x*> and the norm of || x* || 1is defined by
I x* || = sup <x,x*>
x|} £1

Thus X* is also a normed linear space.

Some common duals are

(a) R"” (the n-dimensional Euchidean space) is its own
dual

(b} The dual of lp, 1 <p <= is 1q where l/p _,.l/q = 1,
if p =1 take @ = =

(c) The dual of Lp, 1 £p<e is Lq where again l/P +1/Cl=
1

(d) By the Riesz Representation Theorem it is possible to
deduce that the dual of C [ T; [R] 1is the space of
functions on [ 0,1 ] of bounded wvariation. However,
to get a unique representation of the dual we define
the normalized space of functions of Tbounded
variation, denoted NBV [ T; IR], which consists of all

functions of bounded wvariation on [ 0,1 ] which

vanish at t = 0 and which are continucus from the
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right on (0,1). The norm of an element v in this
space is ||v || = Total Variation ( v (t))
= T.V. (v)

(e)  The dual of any Hilbert space is itself.

Due to the lack of space we cannot go into more detail
about dual spaces but the interested reader may consult the
following references for further information, Warga [ W3 ],
Dunford and Schwartz [ DUl ], Luenberger [LUl]. We however

state two definitions:

A vector x*€ X* is said to be aligned with a vector x&€X
if <x,x*¥> = ||x*|| | x || and the wvector x&€X and x*€ X* are
orthogonal if <x,x*> = 0 and xX*,x are non zero.

We now turn to the notion of hyperplanes. A hyperplane H
in a linear vector space X is a strict linear wvariety with ‘the
property that if V is any linear variety containing H, then
either V = X or V = H. It can be shown (see Luenberger
[LUL1 ]} that the subset H of a topological vector space X is a

closed hyperplane iff

H = {x: <x,x*> = ¢} for some non-zero x*& X* and some
real c¢. In this case x* is called the normal of the hyperplane
H. It is obvious from this that there is a wunique correspond-

ence between elements in X* and closed hyperplanes in X.

The sets
(i) {x: <x,x*> <c } ; (ii) {x:<x,x*>>c }
(iii) {x1<x,x*> €¢} ; (iv) {x:<x,x*>2c }
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are the half spaces generated by the hyperplane H. The sets (i)
and (ii} are open and (iii) and (iv) are closed. (iii) and (iv)
are called complementary closed half spaces determined by H.

We now introduce a geometric concept of a hyperplane
separating two disjoint nonempty convex sets. First, however,

we give a definition:

A closed hyperplane H in a normed space X is said to be a
support for a convex set K if K 1is contained in one of the
closed half spaces determined by H, and H contains a point of

K.

Eidelheit Separation Theorem

Let K, and K, be two convex sets in X such that K, has
interior points and K, contains no interior point of K,. Then
there exists a closed hyperplane H separating K, and K,, i.e.
there exists an x*e& X* such that

sup <x,x*?> < inf <x,x* >

xe K, xeK
2
This 1is an 1important result which 1is used throughout the

fields of optimization and optimal control theory to obtain

necessary conditions of optimality.

Section B

Bl. Optimization

The concept of optimization is well established as a

methodology in the study of many complex decision or allocation
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problems. For example when tackling a difficult decision
problem, which involves selecting several interrelated variables,
a sound mathematical principle for analysing and determining
its solution is obtained by using optimization techniques. These
inveolve formulating the problem under study into a mathematical
setting. A single objective function 1is constructed to give a
measure of the performance depending on a particular decision.
To achieve optimality this objective functioin is maximised (or
minimised depending on the formulation) subject to certain
constraints which restrict the decision making process.

Throughout this thesis we will assume that the problems
under study have been formulated into a mathematical model and
it is these models with which we concern ourselves.

A wvast amount of literature in the general field of optimiza-
tion is available but the following are of particular significance,
(BL1], [C1], [Dp1x], [¥1], (HEL], [HES1], [ HES2], [HUL],
[11], [Jj1 ], [LEL), (rir), f{rutr), fruzl, (M1l (N1, [ N2,
[N4& ], [P1], [PSH2 ], [wW3 ], [Yl]. Due to the shortage of space
we cannot go into the details of the many different methods of
achieving optimality but the interested reader may consult the
above references which cover the area quite comprehensively. We
only state some of the results which are quite standard and
which we shall be requiring in the remainder of the thesis.

First we consider finite dimensional problems (where the
optimization is performed over a finite dimensional space) even
though most of this thesis considers the infinite dimensional case
(commonly referred to as the calculus of wvariations). These

problems are not only of great interest in themselves, but they
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afford an excellent introduction to more complicated situations
that arise when the dimension is infinite.

Consider the problem of minimising a function [ defined on
an open set D C R™ (this is known as an unconstrained optimiza-

tion problem). A point x*€ D is a solution if
f(x*) < f(x} for all xeD.

Now consider a more general problem:

Problem 1: Min f(x)
s.t gi(x) <0 i=1,2,..... .1
‘nj {x} =0 i =1,2,..... ,r

for f, g 's, hj ‘s all defined on D € R"™ for all i, j. This is
referred to as a constrained optimization problem with the gi’s
being called the inequality constraints and h. 's the equality
constraints. If all f, g;'ss hj 's are linear, Problem 1 is kn?wn
as a linear programming problem and if any of the functions is
nonlinear it is referred to as a nonlinear programming problem.
Other terms such' as convex, concave, quadratic, etc. alsoc exist
if the functions have these properties.

We define the Lagrangian g(x,l, a ) associated with

Problem 1 by

m r
A
g(x, A, a) 2 f(x) + 1.-Elkig.l(x) + jz=l ajhj(x)
where A = (?\1,)\2,...., Am) and a = (al, A, yaenny ar). This

function plays a very important role in optimization theory as
shown 1in most of the articles cited above. We state a few

results from Fiacco and McCormick [F1] applicable to Problem 1:
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B2. First Order Necessary Conditions

If the problem functions are once differentiable on D and

x*g D, then the first order necessary conditions for x* to be
a local minimum of Problem 1 are that there exist numbers
A i*, aj* (called Lagrange multipliers, multipliers, Green

functions, etc.) satisfying:

(i) Aiz 0 fori=1,2,..... ,m (1)
(it) 7 xx,ax,0%) = 0 (2)
(iii) Aigi(x*) =0 fori=1,2,....,m (3)

where Vg(-) denotes the derivative of the Lagrangian w.r.t.

the x argument and A* = (X *, A, *...0,n %), e* = (o %,
az‘hs- ,‘3;'.)

B2 1is a '"first-order' characterization of local minima in
that it only involves the first order partial derivatives of the
problem functions. It does not take into account the curvature
of the problem, this being measured by the second partial
derivatives. Thus BZ just gives the conditions which have to be
satisfied by a point for it to be a candidate for a local
minimum, it does not say x* is a local minimum. Conditions

which state this result are of second order.

B3. Second Order Necessary and Sufficient Conditions

1If the problem functions are twice differentiable on D and
x*&€ D, then the second order necessary and sufficient conditions
for x* to be an isolated local minimum of Problem 1 is that
there exist multipliers Ai*, i=1,2,....,m, % J=1,2,..0.,1 such

]
that (1)-(3) above hold and for every non-zero vector vy
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satisfying

(a) yT Vgi(x*) = 0 for all iei, where I is defined as

i Q{i:xi* >0, i=1,2,...,m }

(b) yT Vg,(x*)20 for all ie I-T where I is defined as

—
i}

2 (i:g;(x*) =0, i=1,2,....,m }
(¢) yTth(X*) = 0 for j=1,2,....,r we have that
T 2 o e e b
ST Pt r e any > 0

where VZQ(.) is the second derivative of the

Lagrangian w.r.t. X

For more information on finite dimensional optimization,
see Fiacco and McCormick [F1 ], Hestenes [ HES2 ], Mangasarian

[ML1].

B4. Optimal Control Theory

We now turn to infinite dimensional problems. These arise
in situations where the dynamics of the system under considera-
tion have to be added as a constraint in the form of a differ-
ential equation. This equation must be satisfied for all time (in
some interval of interest), and hence arises the above mentioned
infinite dimensional nature. The response of the system depends
on the evolution of the state (which defines the internal
behaviour of the system), and this in turn depends on the
control variable (which is the input to the system). The objective

function may be a function of the state or control or both and
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has to be minimised (or maximised) subject to the system
dynamics plus any other constraints present in the problem. T his
will become clear in the remainder of the text. Throughout this
thesis the control function will be denoted by u(.) and the state
by x(.). The dimensions of u and x will be R™ and R" respect-
ively. Also the time interval of interest T will be [0,1].

The dynamics of the system may involve a linear or
nonlinear relationship between the state and c¢ontrol. The linear

version is commonly written as

x(t) = Ax(t) + Bu(t) for a.a. t€T

x(o) = X

where a.a. denotes almost all, and Ac R™xR" and Bc R"x R™
are matrices which may also be time varying. The nonlinear

relationship is usually written as

fix(t),u(t),t) for a.a.teT

e
—
-
—
1]

x(o) = X

n m , ,
where f: R"x IR™T— IR™, We will concentrate on the nonlinear
case.

Consider a simple optimal control problem of minimising

rlx(t),ult),t)dt subject to the above nonlinear dynamics.

¢
Problems of this sort have been studied extensively in the litera-
ture but effective sufficient conditions for optimality have as yet
not been obtained except for a few special classes of control
problems  (quadratic cost and linear dynamics). Necessary

conditions for optimality (known as the Maximum Principle or

Minimum Principle according to formulation) were, however
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obtained by Pontryagin and his associates Boltanskii, Gamkre-
lidze and Mischenko (see Pontryagin et al [PON1] ) over twenty
years ago. Many other Maximum Principles have appeared over
the vyears addressing various problems and making various
assumptions. There are too many of these for us to state them all
here but the bibliography at the end of the thesis contains many
such results, and the interested reader 1is invited to consult
them. We only present a few of these Maximum Principles which
will be of direct use to us in the remainder of this thesis. All
of these restrict attention to systems which are governed by
difference-differential equations. We first consider the following

problem:

B5. Problem Pl
Min £, 1(x(t),x(t=1),u(t),t)dt
s.t. %(t) = f{x(t),x(t—=<),u(t),t) for a.a.teT
x(t) = ¢(t) for all tel -1,0]

ueG
where 7 is a real number, strictly greater than zero and

G &4 tueLlio,1] : u(t)EQ for a.a.teT} for Q compact
and  convex subset of R™.

Assume the control u* € G is optimal for Problem P1 and
x*{t) 1is the corresponding state trajectory (we refer to such a
pair as "(x*,u*) is an optimal pair"). Then using results in
Huang [HU1!l, Conner [ CON1] or following the methodology in

Appendix C, it is straightforward to deduce the following:
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Maximum Principle 1

Assume that the following hypothesis hold

(i) The functions f: |R™x IRnx Q xT— R® and 1: R™x R%x
QxT— |R" and their partial derivatives fx’ f .,
f and 1_, 1 , 1 (i.e. derivatives w.r.t. x(t),
u X y u

x{t- t) and wuflt) respectively) exist and are conti-

n n
nuous on IR x [R"'x QxT.

(ii) There exists an Me (0, = ) such that || f(x,y,u,t) ||
<M {{Ix |+ llyll +1} for all x,ye R", all ue G, all
te T
and
It f{xiysu,t) = f(x?,y?,u,t) ] e M (]x '=x?||+]ly' -y?i] }
for all x!yix%y’e IR, all u€G and all tgT.

(iii) The 1initial function ¢ 1is absolutely continuous and

bounded on [-t,0].

[Remark:

Throughout this thesis we will be using the argument y(t)
in place of x(t- 1) when it 1is convenient to do so. Also the
dependence on t will not always be shown explicitly, i.e. we
will denote f(x(t},x(t-7},u(t),t) = f{x,y,u,t). This should cause
no confusion.]

If (x*,u*) is an optimal pair for Problem P1l, then there
exists an absolutely continuous function A (t):T— IR® which is

the solution of

AT () = —AT(t)fX(x""(t),x*(t—T),u*(t),t)—lx(x*(t),x"\'(t—‘f),u*(t),t)

—AT(t+T)fy(x*(t+ T),X""'(t),u"“(t-l-T),t+T)—1y(X""‘(t+T),x"”(t),
sUH(t+ 1), t+7)

for a.a. te [0,1-1]
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A1) = Tl g, (e (1), x% (1-1) ,u* (1), 1)-1 (5% (1), x* (1=1) ,u* (1), 1)
for a.a.t e [1-1,1]
AT(1) = 0

such that

DO (8), 3% (=) us (£, O+1(x* (1), x* (1) ,ur (1), 1) ] dt
= max ,rol{AT(t)f(x*(t),x*(t-r),v(t),t)+1(x*(t),x*(t-1),v(t),t)]dt
veG
where aT denotes the transpose of a.
This is known as the Maximum Principle in integral form.
The last relation given above may be represented more strongly

by stating that the maximum is achieved pointwise, i.e. we have

AT F(x* (1), x% (1= T, u* (1), 1)+1{x* (1), X*(t=1) ,u* (1), 1)

T

= max 2 {t)f(x*(t),x*(t—1),v{t),t)+1(x*{(t),x*(t-1),v(t),t) }

ves
a.e. in T

where a.e. denotes almost everywhere. This can be obtained as
follows:
Suppose that u* does not satisfy the Maximum Principle in

pointwise form. Then there exists a control u€ G such that

e (s, y o, us, 04100, yo,ur,1) < ATEGor, ye T, 041027, 7%, T, 1)

on a measurable subset EC T of measure strictly greater than

zero. Now define a control U as follows

a(t) ult) for t€E

= u*(t) for te TNE

This is obviously in G. Then by substituting this 1in the

Maximum Principle in integral form we get
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f: [ fo(x*,y"-‘,u*,t)—o-l(x"-‘,y*,u*,t) dt

< ful [le(X“"‘,y*,ﬁ,t)+1(x*,y‘—'~‘,ﬁ,t) dt

This contradicts the above. Hence the Maximum Principle in

pointwise form holds.

We now consider a more general problem in that terminal

equality constraints are present.

B6. Problem P2
Min  h°(x (1))
s.t. x(t) = f{x(t),x(t-1),u(t),t) for a.a.t&€T
x(t) = ¢ (t) for all te[ -=,0]1
R (x(1)) = 0 i=1,2,0 0.0,

ue G

where G is as for Problem Pl. The functions f and ¢ are assumed to
satisfy the same hypothesis as above 'and the functions
hj: |Rn+|R, j=0,1,...,r and their partial derivatives hi exist
and are continuous on R".

The following result can be deduced using the procedure in

Appendix C:

Maximum Principle 2

If (x*,u*) is an optimal pair for Problem P2 then there
exists an absolutely continuous function ¥ :T— IR” and numbers

“a,“uaz,----,ur with @, £ 0 such that .
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—

—

—
1]

=0T ek (1), (1-1) u* (1), 1)
~1laT(t+-r)fy(x*(t“‘),x*(t),u*‘“(t+“f),t+"f)

for a.a.te[O,l—T i

T (1) = —‘IJT(t)fx(x*(t),x"“(t—T),u‘f"(t),t) for a.a.te[1-7,1]
T
_ j T
() = B ) (xrn)
such that

1

5 e T F(x* (), x* (1= 1), u* (1) ,t) 1dt

T(t

= max £ [¥ (DF(x*(0),x*(t=1),v(t},1)]dt

ve G

As in Maximum Principle 1 we can write the above in

pointwise form:

v (t(x*,y*,u¥,t) = max {‘DT(t)f(x*,y*,v,t)} for a.a.teT
veEG

Problems Pl and P2 are considered in Chapters 2-4

although the control set is different in Chapters 3 and 4 (this

is discussed below). In Chapter 5 we encounter the most

difficult problem in this thesis, namely that 1in which state

constraints are present. The Maximum Principle which applies in

this situation is stated and derived in detail in Appendix C.

B7. Existence of Minimising Controls

Although the algorithm presented in Chapter 2 is designed
to obtain contrels satisfying necessary conditions of optimality,

i.e. the Maximum Principle (in fact so are all the algorithms in
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this thesis), it is shown in Warga [ W3 ] that, with the above
choice for the control set G (termed ordinary measurable controls
in a sense which will become clear later in this chapter), it is
not always possible to assure that such optimising controls

exist. For example consider the following problem:

Problem A

with Q= [-1,1le R

ueG

We shall show that Problem A has no minimising solution.
Since uf{t) € [ -1,1] for all te& T hence (u(t))? <1 for all ue G,
te T and g(x,u) ={l{(x(t))2—(u(t))2} dt 2 -1 for all x,u.

If jeN (the natural numbers), and we define u, (1) to
be equal to +1 and -1 on alternate successive subintervals of
length 1/2j of T. Then setting x (1) = ftu}.(s)ds for all teT

1)
t
we get J uj(s)ds < 1/2j and the cost satisfies

(2)7 7 -1 > g(xj,u.) > -1

]
Thus lim g(xj,uj) = -1 is the minimum cost for Problem A.
j+cn
However, if there exists a u*€ G and x*(t) = J‘fu*(s)ds all
t € T such that g{x¥*,u*) = -1 then lu*(t)| =1 a.e. in [0,1],

t
and x*(t) = J u*(s)ds = 0 for all te[0,1].

]

The second relationship vyields that u*(t) = 0 a.e. in
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i0,1] contradicting the first relation. Thus Problem A does not
have its minimising selution.

However, by embedding G in a larger topological space G
of which G 1is a dense subset and then extending all the

functions defining the problem to G, it is possible to guarantee

A
w

the existence of a minimising relaxed soh;tion (x¥ ;u*). The
procedure as to how this is done is presented in Warga [ W3 ]
and we refer the reader to Warga's book for full details. We
will, however, present a brief overview of the essential ideas

and the importance of relaxed control problems.

BR8. Relaxed Control Problems

We have seen above in Problem A that the minimising
control sequence {uj } contains controls of a highly oscillatory
nature and in the limit as j = =, u_~ may be thought of as
spending equal amounts of time at +1 and -1, i.e. it is "half at
+1 and half at -1". In more complicated situations there is no
reason why uj cannot take on several, or infinitely many values
in this fashion on any iﬁterval of T. Then it can easily be
shown that by defining a space of all probability measures on
Q any relaxed control can be represented. For example, in
Problem A the limiting control can be represented as

1i}'nuj = 386, ® 18
J

where 67: is the Dirac measure concentrated at r . This,
infact, is the solution to Problem A.

[ Remark: We will use the notation @( © )when we mean that two
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controls (relaxed or ordinary) are added (sbtrmacted) in a relaxed fashion.
Also for any control with the symbol "." we mean it is a
relaxed control. ]

For more complicated cases it 1is necessary to integrate
w.r.t. the probability measure. Letting Y be the space of all

probability measures on {0, then any relaxed control u(t) has

the representation

u(t) = Jg’_)u(t) d(v(t))(u) for some probability measures
v{t)eV at each teT

-~

i.e. a relaxed control is any function u : [ 0,1 ]— V.

Concerning relaxed controls we observe the following (see

for example Warga [W3], Young [Y1]):

1. For any continuous function ¢ : [R"x Q xT— IRP the
corresponding relaxed function ¢r: |RanxT—-+ IRP (called

the extension of ¢ to the relaxed controls) is defined
by

¢r(x,g,t) = deJ(x,u,t)dg(u)

2. For any function X : IR™V-— IR®, relaxed controls act
in a '"linear" fashion in that if u(t) = au (t) @

(1-a)u,(t) for all o€ [0,1] , then

X(x,u) = «a X(x,ul) +(1-a} X(X,l;lz) for all xe IR™

3. A relaxed control is said to be measurable if for any
polynomial p(u} in (the components of) u, the function

& :T— IR defined by

is measurable..
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We define G to be the space of all measurable relaxed

~

control functions.

Definition B8.1

We shall say that an infinite sequence fu.} . g of relaxed
controls in G converges to u*€ G in the sense of control measures
(i.s.c.m.) if, for every continuous function ¢: QxT~ IR and every

subinterval A of T

!y cpr(gi(t),t)dt —— !ﬁ¢r(1~1*(t),t)dt

as 1— =,

Now it is shown in Warga [W3] that G is a subset of the
space L' [T,C(Q) 1* where Ll[T,C(Q)] is the set of all (equiva-
lence classes of) measurable functions Vv :T—C(€) such that
.!'u1 [v(t) tdt < = and C(€Q) is the normed vector space of all
bounded continuocus functions on {2 into the reals with sup norm.

It turns out that the definition of convergence i.s.c.m. is
precisely equivalent to the definition of convergence w.r.t. the

e
W

weak star topology of L'[T,C(E)]1” (see Warga [W3])).

It is worth noting at this stage that G can be embedded
into G by identifying with each u € G the Dirac measures
au(t )(.), 0<£t=l, and that G 1is dense in G. Infact G is the
closure of G. With this property and the fact that G is compact
it is possible to obtain the existence of a relaxed minimising
solution (providing of course if ''feasible'" controls exist). Then,
using the convexity of G it is also possible to derive necessary

conditions of optimality for a relaxed solution. These are similar

to the ones given above for the case when only ordinary controls

are considered.
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We now state the Maximum Principle for Problem Pl when G
is extended to G - Pl is then referred to as a relaxed control
problem and the Maximum Principle 1 in section B5 becomes the
Relaxed Maximum Principle 1. The details are omitted since these
are similar to the ones used in Appendix C where the necessary
conditions for optimality are obtained for the state constrained

optimal control problem.

Relaxed Maximum Principle 1

Assume the same hypothesis as in the Maximum Principle 1
hold and that (x 2 ,u*) is an optimal pair for the relaxed
Problem P1l. Then there exists an absclutely continuous function

»:T— IR™ which is the solution of

v e

AT 0= 2T (7 (0, x5 (=1, 0k (0,01 68T (0,37 (t0),ux (0, 1)

L

AT (s IE (x T (1) 2T () ut (e t) T

7 ks
-1y(x‘5*(t+ U, x5 (1), (t+1),t+T)

for a.a.t € [O,I—T]

* % u*

o=l G270, 22 (-0, ux (0, 0-1 637 (0,3 (-1, ux (1), 0)

for a.a.tell-7,1]

A1) =0
such that
1 S e *
I [AT(t)f( s ,y]"l- yut, t)+1(x ,yg ,u*,t) ldt
0
T u.’l‘. J“ ata Pt
= max s [A{Df(x= L,y v, t)+l{x= ,y= ,v,t) ]dt

Note: the subscript "r' has been omitted.
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A similar extension to the results presented above also
holds for Problem PZ2.

Pointwise Relaxed Maximum Principles may also be obtained
using the fact that G is dense in G and u*(t) is supported on
Q almost everywhere in T. Then the above Relaxed Maximum

Principle in integral form may be written as:

T L ke e
L 3 Gl
u

A F(x® ,yl-}n,g*,t)+l(>cLl , Y™ ,u*,t)

L

* * *
= max {ATf(xl—% ,yE ,w,‘c)+1(>(l~'1*,y~h-1 ,w,t) }
weQ

a.e. in T

We again stress the point that the concept of relaxed
controls has only been described wvery briefly and for full
details and discussions see Warga [W3], Young [ Y1], McShane

{M“1], (M2 ), Lee and Markus [LE1].

43



CHAPTER 2

A STRONG VARIATIONAL ALGORITHM

2.1 Introduction

When solving optimal control problems wusing classical
methods such as steepest descent, the new control u is

a

constructed from the old control u in the following fashion:

u, = utas (1.1)

where o is the step length and s is the search direction. For
small values of step lengths u ~ is "close" to u for all time,
i.e. as o ——0, we have U, u uniformly in t. However, in
jacobson and Mayne []1} a new class of algorithm was
presented. This class contained algorithms, now referred to as
strong variational algorithms, which generate the new control

u, from the control u using the following formula:

ua(t)

u(t) for all tel (1.2)

u(t) otherwise

where U minimises a Hamiltonian function defined by (2.6), and
I, 1s & subset of the time interval [0,1] having total length
¢, It is easy to see that u  can differ appreciably from u for
some t even when o is small, hence the term, 'strong variations
in control”.

These new strong variational algorithms were found to be

very effective computationally, hence it was necessary that they

be studied theoretically and proofs of convergence obtained. The
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only procedures available at the time were the ones used in
proving convergence of <classical algorithms (e.g. steepest
descent), where, when the new control uOl defined by (1.1) is
used in place of u in the cost function, the estimated change in
cost has a linear relationship with «. This makes converéence
proofs for these algorithms relatively straightforward. For
strong variational algorithms however, this is not the case.
When an estimate of the change in cost when the new control
u, defined by (1.2) is used in place of u in the cost function
[see (2.11) below ] is obtained (using the method described in
Jacobson and Mayne []J1]), it is found to be a nonlinear
function of <« . Hence standard procedures for proving conver-
gence for algorithms based on classical methods cannot be used
and a new approach is required.

In [J1], the interval Iau was set to be [ 1-a,1], but
attempts to prove convergence for this choice failed because a
reduction in cost could not be guaranteed for small values of a.
Mayne and Polak [MAP1] modified their choice of I,, so that
the general convergence theorems of Polak [P1] could be used to
ensure convergence. Essentially Mayne and Polak's method was
that Iau was chosen so that the estimate in the change of cost
8V, of using u, in place of u, is bounded above by a6{u)
where 6(u} <0 is defined by (2.13). Thus although AV is not a
linear function of «, it is bounded above by a linear function
and this makes a proof of convergence possible.

Mayne and Polak [ MAPl1] present two algorithms (one
conceptual and the other implementable) with convergence proofs
for optimal control problems with the control constrained, and in

this chapter we extend these results to cover delay systems.
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Only the conceptual version of the strong variational algorithm
will be presented since it will be obvious from this and Mayne
and Polak's implementable algorithm how the implementable
version for time delay systems can be obtained. An integral cost
as in | MAP1] 1is considered, but we also assume it to be
dependent on x(t-t} as well as x(t), u(t) and t, so that it can
be shown how a delayed argument in the cost is handled. Mayne
and Polak also consider a terminal payoff, but we assume,

without loss of generality, that this is absent in our problem.

2.2 Problem Formulation

Unless otherwise stated, all the control problems considered
in this thesis will be assumed to be governed by the following

nonlinear delay-differential equation:

x(t) = f(x(t),x(t=1),ult),t) for a.a.te T (2.1}

x{t) = ¢(t) for all te(-1,0] {2.2)

where T is a positive real number and T is the compact interval
(0,1]. The function ¢:[-7,0] *'_IRr‘L is assumed to be bounded,
continuous and to ©possess a continuous derivative for all
tel-1,0] x(t) & [R? is the state and u(t) € IR™ is the control.

We let x" denote the solution of the delay differential

equation (2.1) due to control u and initial conditien (2.2), and

denote by G the space of admissible controls defined by:
A m
G S{uel [0,1] : ul)e€Q for all teT)

where Q is a compact and convex subset of [R™ with
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max {]][v]|] :veQ } < r

The cost functional V:G— IR which we want to minimise is

defined by

Via) & 7 10 M), xMt— 1), ult) 1) dt (2.3)

0

We restate the above as our first problem:

Problem P1

Min £ 1(x(1),x(t=1),u(t),t)dt

9

u
s.t, %(t) = flx{t),x{t-1),u(t),t) for a.a.t€T
x{t) = o(t) . for all te[-1,0]
ueas

We make the following assumptions:

Assumption 1

The functions

f: R™ R™ R™xT — IR"® and

1 : R™ IR™x R™xT— IR

and their partial derivatives f_, f__, f , f_, f , f ., f
X XX v vy u uu

s L and 1 (i.e. all
yu Xy

xu’

£, f
yu Xy

partial derivatives with respect to x,y,u of all orders upte and

’ 1 ’
X

including 2) exist and are continuous for all x,y & IR", all

u€G, all te&T, where y denotes the delayed argument x{t-t).

Assumption 2

There exists an M& (0, =) such that
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| f0x,y,u,t} <M Cllx |l +1lyll, +11
for all x,y @ R®, all ueG, all teT

and

Il £y u, t)-f(x?,y2,u, ) Il € M1 [Ix -x2 1, +1ly' —y? I,

for all x,y;x*,y’ e R™, all ueG

and for all teT

Where |l.[l, 1is used to denote the L, norm defined by

A 1
luall, = J'°||u(t) || dt
[Note: In the sequal L will denote Lrln [0,1] or Lr:‘ [ 0,1]
according to context . ]

We define the metric d:GxG + R by

. :
dlu ,u,) 2 7|l uft)- uft) [ldt (2.4)
i.e. d(u,,u,) is the distance between any two controls
u 1,UIZEG.
Let 1 < T be defined by
u.,u,
1 § tteTiu, (t)sku,(0) } (2.5)
u,,u, ,
i.e. Iu u is the subset of T on which u, does not equal to u,.
1o 2

Letting n(I) denote the Lebesgue measure of interval 1CT

we have, for all u ,u,€ G that

.d(ul,uz) <2 (Iul,u 2)1‘
Let us define the Hamiltonian function H: IR™x IR"x IR™xIR™T

+ IR by

Hix,y,u,h,t) & ATE(x,y,u,t)+l(x,y,u,t) (2.6)
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where » = A%, T— |Rn, the costate function, is the solution of

-~ A () = Hx(xu(t),xu(t—f),u(t), A (t),t) (2.7)
+H$(xu(t+1),xu(t),u(t+t), X (t+t),t+ 1)
for a.a.t g [0,1-1]
- A0 = HLGM (), x™M (-0, u(t), A (1),t) for a.a.t&[l-t,1]
(2.8)
A (1) =0 (2.9)

Throughout this thesis, when no confusion can arise we
; ; : . *
will let x' = x"1i, b % xx o Y7, etc.
It has been shown in Mayne and Polak [MAPl], in the

case when delays are absent, that for any u,, u, € G, a first

order estimate of

AV(u,,u,) & Viu,)-Viu,) (2.10)

is obtained by calculating

~

2V, ,u,) 87 [H (0),x 0,0, (1), 2k, 0) (2.11)

“Hix (1), x (t=1),u, (£), A'(t),t)]dt

The estimate of 2V(u,,u,) given by (2.11) is valid in the

sense that there exists a finite constant C such that

~

|| aV(u ,,u,)- aV(u,,u,) {| & Cld(u,,u,)]?

We prove in Proposition 5.4 that this approximation holds
for our problem as well, hence the estimate will be good if
u, and u, are ''close".

1t will become apparent in the exposition that the following

proposition is required to ensure the algorithm is well defined:
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Propositien 3

For all ue G there exists a U € G which satisfies

Y(t) = arg min H(xu(t),xu(t-r),m,Au(t),t) for a.a.teT
we€ Q)

In Mayne and Polak [ MAP1] the above result was intro-
duced as an assumption, but this was unnecessary since, due to
the Weierstrass Theorem (see Luenberger [LUl]), a minimising
w (not necessarily unique) exists for each t & T because of the
compact nature of €. Now as a consequence of the McShane-
Warfield Halfway Principle [ Y1 ] there exists a measurable
control U € G which has the desired properties. Since more than
one such u may exist, we denote by U(u) the set of all controls
v€ G which satisfy

v(t) = arg min H(x(t),x (t-7),w, » }(t),t) for a.a.t €T
w€ Q

We let H(u,t):GxT + IR be defined by

H(u,t)? ménQH(xu(t),xu(t—‘f),w,lu(t),t) for a.a.te€T (2.12)
W

and we define ¢:G +~ [R by

(=3
2>
£¢
o

8 (u)
1

£ LR, O-Hx (), xP (-0, ult),a M), 0 1dt (2.13)

U=

where U € U(u). Since u is the minimising control, the integrand
in (2.13) is nonpositive for all t € T, hence 6 (u}) < 0. 8 (u) is
in fact the estimated change of cost if the minimising control u
is used in place of the old control u.

We show that in the event that the algorithm for solving

Problem Pl generates an accumulation point u*€ G, u* satisfies

8(u*) =0 (2.14)
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Hence we show that u*, if not an optimal control is at least a
likely candidate since it satisfies the necessary conditions of
optimality in the form of the Maximum Principle (see section BS

in Chapter 1).

2.3 Discussion of Algorithm

We will now briefly discuss Jacobson and Mayne's
{J1] method for defining Iau and show why they could not prove
convergence. Their new control u_is defined as in (1.2) and
the interval Iau is set to be [ 1-a,1]. This is shown digrama-

tically in Fig. 3.1.

- \J
uCl.
J 1
.——-‘_“'\
~
~ PN
Y -
N\ //
N 7
\ 4 1 —>
Ut N - au
~_ -
Fig. 3.1

As shown in [ J1] the estimate in the change in cost when

u, is used instead of u is given by
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AV(u yu) = IHH), x50 0 (0 A (1), 0)
— Hix"(1),xU(t= 0, ult), » %) ;1) 1dt

= 7 (HET),xT -0, a2 (10),1)
au

- HixMt),x M- v, ult),x (1) ,t) ]dt

To guarantee convergence it must be shown that if
algorithm is at an undesirable control then a reduction in
cost can be obtained for all step lengths & € [0,1]. This
however, not the case for Jacobson and Mayne's method since

following may occur:

the

the

is

the

Supposing that the algorithm is at a nonoptimal control u,

then we must have 8(u) < 0. If aV(u_,u) is plotted against the

step length « the situation shown in Fig. 3.2 may occur:

~

AV is tangential to a axis for
small values of o

Fig. 3.2

-~

 9(u)<0

where AV(uu,u) is tangential to the o axis for small step lengths.

This means that a reduction in cost cannot be guaranteed for
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small o, even though the present control is known to be non-
optimal. Hence convergence proofs cannot be given for this

particular choice of 1 This is because if the above situation

au’
arose in an algorithm based on choosing Iau = [l1-a,1], and the
algorithm generated a small enough step length a, there would
be no reduction in the cost and the algorithm would jam up at
an undesirable control.

Mayne and Polak [MAP1] present an alternative method for
determining Iuu which allows the general convergence theorems
of Polak [P1] to be used for proving convergence for their own
algorithm. This method will be described in detail here since we
will be using it when stating the sirong wvariational algorithm
for delay systems.

First, however, we describe an algorithm model proposed
by Polak [ Pl ] suitable for solving problem Pl. This model
makes use of a set valued search function A which maps G into
G

the set of all nonempty subsets of G (we write this as A:G—27)

and a stopping rule V:G— IR, and is of the following form:

3.0 Algorithm Model 1

Step 0 u, € G

Step 1 Set i = 0

Step 2 Compute a veA(ui)
Step 3 If V(v)> V(u.) stop

1

Else continue

Step 4 Set u; , =V
Set i = i+l and go to Step 2

The following result is established in [Pl ] for the
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algorithm model:

Theorem 3.1

Suppose that

(i)  V(.) is either continuous at all undesirable controls
ue€e G, or else V(u) is bounded from below for all

ue G

(ii) For every u € G which is not desirable, there exists

an e(ui20 and a 6{u)<0 such that

Viu ) - V(ul)ié(u)*‘O s

2

for all u, € G such that [lu,-ull < ) and for all

U.zGA(u1)

Then, either the sequence {ui } constructed by the algo-
rithm model 1 1is finite, in which case its last element is
desirable, orrelse it is infinite and every accumulation point of
{ui} is desirable.

We provide a proof of Theorem 3.1 for completeness:

If u*e G is desirable it follows from above that condition
(ii) in Theorem 3.1 does not hold for any e(u}, &(u), U, u,.
In particular taking e(u) = 0, we get u = u*. Hence we have

if u* is desirable that
Viu )-V{u*) <0 for all u,€ A(u¥*)
is NOT true. This means we have

V(iu }-V(u*) >0 for some u, € A{u¥)
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Hence (ii) implies that if V(u)2 V{u*) for at least one
ue A(u*) then u* is desirable.

We will now prove the theorem.

Suppose firstly that the sequence {ui} is finite, 1i.e.

{ui} = {un,ul,....,uk L Then by Step 3 we must have had

V(V)ZV(uk) for vEA(uk)

for the algorithm to have stopped. Hence from above we deduce
that u is desirable.

Now suppose that the seguence {ui} is infinite and that it
has a subsequence indexed by KC {0,1,2,....} which converges
to u*. We assume u* is not desirable and attempt to obtain a
contradiction.

Since u* 1is not desirable, there exists an e>0 and a

5§<0 and a ke K such that for all ik, i€k

L

Ilui—u" SE

o

and V(u)—V(ui)s 8§ for all ue A(ui).
Hence, for any two consecutive elements ui , ui+. of the

subsequence with i >k, we must have

Now, for i€ K, the monotonically decreasing sequence V(ui)

must converge, either because V(.) is continuous at u*, or else
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because V(u) is bounded from below on G. But this contradicts
the above deduction that V(ui) is not a Cauchy sequence for
ig K, and hence the theorem must be true, i.e. u¥* is desirable.

The strong variational algorithm presented in section 2.4 is
based on this model and Theorem 3.1 is used to prove its
convergence.

We now discuss Mayne and Polak's [ MAP1] method for
choosing Iau and it will become apparent in the exposition why
this choice enables Polak's convergence results to be used.

Suppose the algorithm is at an undesirable control u. The
control U which minimises the Hamiltonian is found and @ (u),
the average value of [H(u(t),t)-H(xu(t),xu(t—r),u(t),xu(t),t)]
for te€ [0,1], as defined by (2.13), is calculated. Then the set

Iuc T defined by

12 (teT:Hult), -Hx"(1),x" (t=1),ult),2%(t),t) 8 (W} (3.1)
is found. Iu is the subset of T for which the integrand in
(2.13) has a value which is more negative than the average
value 8(u) [see Fig. 3.3 |]. Since any closed interval is a
countable union of disjoint closed intervals, the set Iu consists
of the union of at most a countable number of disjoint intervals.

We now define the subset Iau of T which defines the new
control u . The total length of Iau is a. If a 1is less than
u(Iu) then it is required that Iau be chosen to be a subset of
Iu s¢ that the estimate AAV(uu ,u) of the change of cost due to
using u_ in place of u is bounded above by «e#8 (u). This can

be done by defining Iau’ as a increases, to be the subset of Iu

which covers Iu from the left. Then to define 1,, completely, when Iu is
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B T T T TN T T/ Fe(u) = average
value of
integrand
(2.13)

H(u,t) - H(xu,yu,u,xu,t }

Fig. 3.3

completely covered, 'I‘\Iu is covered from the left as well as
a is further increased. Thus for o € [ 0,1], Mayne and Polak

[ MAP1 ] define Iau to be the subset of T having the following

properties:
(1) w{l, ) = @ (3.2)
(ii) if ae[O,u(Iu)], then IauCIu {3.3)
(iii) if ae(u(lu),l], then IUCIau (3.4)

(iv) for all a€ [0,u(l }], the following holds

{tGIu, SEIGU.’ t<s } = {tEIau} (3.5)
(v) for all a&(u(l),1],
{teT, sel N1, t<s} = (tel } (3.6)
au u o u

These properties can be seen more clearly in Fig. 3.4.

Hence for any nondesirable control u € G, we have defined



/' a increasing

all 1 for
au

different
values of a

Fig. 3.4

a method for constructing the new control u [ as defined by
(1.2) ] for «¢€[0,1]. To complete the description for determining
the new control a rule for choosing the step length a« is needed.
For this purpose we will make use of a function ¢:[0,1]xG—IR

defined by

A

¢ Coyu) 27y [AG(), O-Hx (0, x" (t-0),u(t) 2% (0,0 ] dt (3.7)

ay

Note that for any u  defined by (1.2) we have
A’\\f(ua,u) = ¢(a,u)

Thus ¢ (e,u) is the estimated change of cost due to using the
new control u_  in place of the old control u.
To find the step length we propose (as in Mayne and Polak

[MAP1 ]) to set it to be the largest «€&€[0,1] such that
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A?f(uu,u)
AV(u ,u) ¢ ——
o 2

is satisfied. Now with Iau as just described we have that
AV(ua,u) < a6 (u) [see Lemma 6.1 below], so for convenience we

define the step length @:GxG+ IR by

a(u,u) &

max {eg[0,1] : AV(ud,u) < ab (u)/2y (3.8)
i.e. the step length is a function of not only u but also U(t)
the minimising control in U(u) that is used in defining u -

We are now in a position to present the strong variational

algorithm for delay systems.

2.4 Algorithm for Solving Problem P1 (Algorithm 1)

Step 0 : Select a u, €6
Step 1 ¢ Set i =0
Step 2 : Compute xi(t) by solving (2.1) and (2.2)
Step 3 : Compute Al (t), first over t € [1-1,1] and then
over [0,1-1] by solving (2.7), (2.8) and (2.9)
Step 4 : Compute a Gie l\j(ui)
Step 5 : Compute 8(u.) = AAV(fii,ui) using (2.13)
If e(ui) = 0 stop
Otherwise continue

Step 6 : Compute the set I, using (3.1) and define |

having properties (3.2)-(3.6) for oe[0,1]

Define u _(t) u(t) for tel
o a

u
= ult) otherwise

Step 7 : Compute a, = u(ui’ai) by using (3.8)

=qQ



1
o

Step 8 : Set B
Set i = i+l

Goto Step 2

Algorithm 1 has the following property:
Theorem 1

Suppose Assumptions 1 and 2 are satisfied and that
Algorithm 1 generates a sequence {u.!}. Then this sequence is
eith.er finite, in which case the last control is desirable, or it
is infinite and every limit point in G, with respect to the metric
d, is desirable.

The proof of Theorem 1 is given in section 2.6.

Remark

it should be noted that Theorem 1 does not say that limit
points exist. The theorem merely states that if any limit points
exist, they will be desirable. To guarantee existence of accumu-
lation points requires additional assumptions (see for example
Polak [ P1]). One such assumption is that G has a certain
compactness property so that for any infinite_sequence in G, a
convergent subsequence always exists. This will be further

discussed in Chapter 3.

2.5 Basic Results

Proposition 5.1

For all u € G, there exists a unique absolutely continuous

solution x7(.) to (2.1) and satisfying (2.2).
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Proof

This is a standard result which relies on finding a fixed
point in a contraction mapping (this always exists due to
Schauder's fixed point theorem), see for example Hale [HALL},

Bellman and Cooke [BC1], Oguztdreli [O0Gl].

Proposition 5.2

There exists a de€ (0,») such that for all u€ G we have

1) Ix"w) o« d
(it) ATyl ¢ d for all teT
[Note: Throughout this thesis we will make use of finite

constants M1 ,Mz....,d ,d

. ., etc., which do not depend on

* .
2’

the data. !
Proof
(i) Since x"(.) is the solution of (2.1) and (2.2) we
have that
x1(t) = ¢(0)+J‘:f(xu(s),xu(5—r),u(s),s)ds for all teT

e, | XY 1< 0] 00N+ F(x M (s), x% (5= ), uls),s)ds ||

<11 6 O+ £ E(xY(s),x"(s=1),uls),s)||ds

for all te T

By Assumption 2 and boundedness of ¢, we have by letting

Il (0)|]] = M, € (0,=) that
leu(t)ll < M1+ J‘tM{qu(s)ll + ] xu(s—r)ll +1}ds for all te T
]

Loew [1x%(0) 11 <M, +M sEIx™(s) [1dseM s XM (s=7)lids  for all teT
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1
letting s = s—71 in second integral we get

ds' = ds, and when s

il
—
n
il
—+

|
A

s =0, 5 =-1

Therefore

()] < M, +M ffllx“(s) | ds+M 75T x%6s") ] ds' all teT

-1
But for se [-71,0], x(s) = ¢(s)

Hence

(0 1M oM 5 S xP () ldseM £, x " (s) [1ds+M 7 l(e (s)l] ds

=T

for all teT

xO1 <M +M 58 [1x%(s)llds+M 7 [ 1Fx"(s)ilds  for all t&T

since J'to-T||xu(s)||dsS.J'otllxu(s)llds and ¢{s) is bounded for
se[-1,0].

Hence we have

") 11 < MM 2 1 x(s) || ds for all t&T

Now by an application of Gronwall's inequaltiy (see Halkin

{HAK1] or Oéuzté’reh [0G1]) we get
I|x™t) || < M,exp Mt < M,exp M, for all t&T

Hence Nx% ()| <d for all te T where d = M,exp M,

(ii) From equations (2.7)—(2.9.) we have

T

X

A (1) = I;H (x"(s),x%(s-7),uls),»%(s),s)ds

for ail te[1-1,1]

and
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Wi(t) = Igﬂz(xu(s),xu(s—T),u(s),lu(s),s)ds

I:THg(xu(s+ T),Xu(S),U(S+T),Xu(S+T),S+T yds

for all te [0,1-1]

Using equation (2.6) we have

W) = f;[fz(xu(s),xu(s—r),u(s),s)lu(s)+1£(xu(s),xu(s—T),u(s),s)]ds
for all te [1-1,1]
and
At = J';[f;r((xu(s),xu(s—r),u(s),s)Au(s)
. 1i(xu(s),x (s—1),uls),s)]ds
+J‘1—T[f$(xu(s+r),xu(s),u(s+r),s+r)xu(s+r)
t

+1£(xu(s+t),xu(s),u(s+r },s+ 1) ]ds

for all te& [0,1- 1]

Considering only the case t € [1l-t,1] we have

1A% 1< £ L (x"(s),x" (s=7),uls), sl ds

o 2 E M (s),x Y (s= ) uls),8) 11 1A% s)Ilds

for all teg {1-1,1]

Since || x"(t)|] ¢ d for all ue G, all te T and lx and fx are

both continuous on B, xB, x QxT, where B 1is defined as

B = {xe R® : |Ix |1 <« d1,

1 —_—

then lx and fx are bounded continuous functionals on

leleQxT. Thus there exists constants d,, d,€ (0,=») such that
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1
Ny sd1+dzftllku(s)|| ds for all te[l-1,1 ]

By an application of Gronwall's inequality we get the

required result for t& [1-1,1].

The case for [0,1-t] follows similarly. Hence the required

results hold.

Proposition 5.3

There exists a ¢ & (0,«) such that for all u , u,e€ G we

have

(1) [ x Mt)-x*{(t) ||

fA

ccl(u1 ,uz)

(i1)  1F AT (£)=A2 (1) ]

IA

cd(u_,u )
1 2

for all teT

Proof

(1) Since x(t) 1is the solution of (2.1) and (2.2) we get

x'(0) = x*(0) and
X(1)-x? ()= 7 IE(x(s), XM= 1), u(s),5)
—f(x¥{s),x*(s-1),u,is),s)lds for all teT

By adding and subtracting terms and taking the

modulus we have

1 x(t)-x? (£) 1] Sitllf(xl(s),xl(s—‘f ),ufs),s)
—f(x*(s),x{s-1),uls),s)llds

+fnt||f(x2(s),x1(s—r),u1(s),s)
-f{x?(s),x* (s-=1),ufs),s)llds
+ 1N (%2 (s),x2 (s=1),u, (s),s)

-f(x*(s),x*{s=1),u, (s),s)llds

for all t€T



By the continuity of f, fy and f on B, xB, x Q xT there

exist finite constants c¢,,c,,c, such that

=2 (1) |} <c, £ H1R(s)=x? (s) ]
r 2l R(s= 1-x? (5-1) |Ids
+c3f:||ul (s)-u_(s)|lds for all t&T
i.e.
e Te)-x? (1) | < ¢, 7l x ' (s)-x*(s)|ds +c d(u,,u,)

for all te€T

by the definition of the metric d.

By an application of Gronwall's inequality we get

lx (t)—x2 (¢) |l icsexp ¢ d(ul,uz) for all t €T

i.e.

lIx *(t)=-x*{t) || £ ¢ dlu,,u,) for all t€T as required

Using equations (2.7)-(2.9) we have

M (-1 (1) =L HD (M (), x (s=1)u, (), 01 (s),8)

—Hi(xz(s),xz(s—T),uz(s),lz(s),s)]ds

for all te[ 1-t,1]

and
A2 (t)=at(t) = J“t[H;r((xi(s),xl(s—T),ul(s),kl (s),s)

—HL (x(s), %% (s=7),u,(s),A 7 (s),8) ]ds

1T T

- I [Hy(x‘(s+r),x‘(s),u1(5+r),xl(s+r),s+r)

—Hi(xz(sﬂ),xz(s),U2(5+T),12(s+T },s+1)]ds

for all te [0,1- 1]
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Consider the case te[1-1,1].
As in (i) by adding and subtracting terms and taking the

modulus of both sides we have

12 ()= 2 1(0) 1€ 7EIHL (¢ Hs),x M (s=1),u,(8), 4" (s),8)

SHLGE (5),x H(s=1),u,(s), 3 (s),8) I} ds
+I€ilH§(x2(s),xl(s—T),ul(s), A (s),s)
-H;I;(xz(s),xz(s—f),u, (s),2'(s),s) [ ds

+.r,é|tH;l;(1-c2(s),xz(s—'f),u1 (s),x*(s),s)

T

—H_(x*(s),x*(s-7),u, (s),x' (s),s) |l ds

I IHE(x? (8),%7 (5-1) (), (s),5)
xX 2

-Hz(xz(s),xz(s—r),u (s),2%(s),s)]| ds

2

for all t g[1-1,1)]

Since the functions H , H , H , H are continuous on
XX Xy xXu XA

B, xB % Q xB1 xT, there exists finite constants ¢, , ¢, , ¢,

¢, such that
A t)=22(t)]] < CII; [l x "(s)-x*(s) || ds +c, flt I| x' (s=1)-x*{s-t )]|ds
e, S AN )2t (s) [l ds +e, Fillu,(s)-u, ()i ds
for all te[1-1,1]

By definition of metric d and part (i) of Proposition 5.3,

we deduce that there exists finite c., C, such that

ate)=2(t) || £ ¢ d(u,,u,) +c

- S

I,E [IAs)=2%(s) || ds

)

for all te[1-1,1]
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The desired result now follows by an application of
Gronwall's inequality.

The case for tg[0,1-1] follows by a similar procedure.

Proposition 5.4

There exists a ¢ €& (0,=) such that, for all u,, u, € G we

have

o viu,,u)- &u,,u)ll < cfdlu ,u)]?

Proof

1

Since V(u ) = 4 l(x'(t),x' (t-1),u

(t),t)dt

Then we have that for any u,, u,€6G

1

aV(u,,u) = [UEE(), %% (t-1),u, (0], t)=10x "(t),x ' (t=7),u, (1), t) ] dt

2 1

By adding and subtracting terms we get

AV(u ,,u,) = LT (), x? (t=1),u, (t),1)-1(x " (1), x" (t-7),u (t),t)]dt

]

+ 1M [F0E (0, %7 (1) (0, 0-F0x (1), (=) ,u (0, 1) dt

T [ R ()% (o) ] dt

Q

From (2.6} we have

Hix (1), x % (= 1), u(t) A %), 0= %) Trx (1), x % (t=1 ), ult), t)
F10eM ), x M (e=1),ult), t)
where M3(.) is the solution to {(2.7)-(2.9)

Therefore

AV(u ,u )= 5 [HOE (8), %2 (t=1),u, (1),

2

-Hix (1), x* (t=1),u
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- A T (2 ()-% (1) dt

Integrating the second integral by parts we get

1

s T 2 ()= ())at = [T ) (2 (1)-x (1))}

il
I
N
>

since 2{1) = 0 and x*(o) = x' (o)

Hence the above becomes

aV(u,,u,) = 3[H(x?,y*,u,, At t)-H{x',y ,u,, 2%, t)]dt

+J’,,'?Iu‘T(x2—x‘)dt
where y denotes the delayed argument, i.e. x(t-t) = y(t), and

the dependence of the functions x, y, u,* on t is not shown for
convenience of notation. This will be done throughout this thesis
and should not cause any confusion.

Using Taylor series to expand H(x*,y*,u,, »',t) about
H(x*',y!',u,, A*,t) to second approximation with remainder term we

have

2 _x1)

H(x?,y*,u, a%t) = Hix',y ' u,, att)+H (xhy fu, ot thix
+Hy(x1,y l,uz, ki’t)(yz_y 1)+ny(xejyeyu2’)\l?t).

(x-x ) y*-y 1)

+Hxx(x€!ye!u 2 7\).!t)(xz_x 1)2

2

£ E 1 2_ 1y2
+ Hyy(x Y U,y At (yi-y )

2



where x® = (l-elx'+ex® for some ¢ € (0,1) and y° is similarly

defined.

Also since A?! is the solution to (2.7)-(2.9) we have
J'JilT(t)(xz(t)—x‘(t))dt=—fole(x'(t),x’(t—t),ul(t),ll(t),t)(xz(t)—xl(t))dt

- f;-THy(x'(tH),x‘(t),ul(tﬂ),ll(t-t-"f),t+r)-

S (t)-x Mt))dt

== S (1), R(t=1) ,uft) 2 ), 1) (x* (1)-2(t) ) dt
- II_THy(X‘(tﬁ-T),Xl(t),ul(t+1),)\l(t-i-'l') ,t4T)
-T

(% (t)-x'(t))dt

since x*(t) = x'(t) for t € [-1,0] and second integrand is

identically zero. Also using a change of variable we have

73 i‘T(x2—X‘)dt=-&‘Uix(X‘,y‘,u.,k‘,t)(xz—x ‘)+Hy(x‘,y‘,ux.A‘,t)(y’—y‘)]dt

Using this and the definition of aViu,,u;) [ see (2.11)] we

have

~

AV{u ,,u ,)-AV(u,,u,) = Q[Hx(x}y}uvlﬂt)—Hx(xkyﬁmﬂ‘,t)](xz—xﬂdt

+1} [Hy(x',y‘,uz. A‘,t)—Hy(f,y',Ul,Al,t)] (y*-y)dt

E E
U H Ly ue AL (8 -x )

2

+ I-Iyy(xE ,yE,uz, A (yioy )2




, H in B, xB, x{2xB,xT and the

By the continuity. of Hx yu

u

boundedness of H , H , H for all x,y,x» €B,, all u&gG, for
XX vy Xy )

all t €T there exist finite constants ¢,, ¢,, ¢, ¢,, ¢s such that

-~

[| AV(u,,u,)-aV(u,,u )|l € oy K| u,-u, || || x?-x! [ dt

+C, S lugmu o [ly? =yt Il dtse, 4YIx*-xf dt

+¢, S yi-yi2dtrey LX) [ly®-y* lldt

AV(u,,u,)-aViu,,w)|| < cg ftllu,-u, || ||x*-xY|dt+c, sl x*-x*|} 2dt
for some c,, c, € (0, =).
Making wuse of Proposition 5.3 and the definition of the

metric d we get

2

|aV(u,,u,)-aV(u,,u,) || ¢ c[d(u,,u,)] as required.

2.6 Proof of Theorem 1

As mentioned previously in the thesis, Theorem 1 will be
proved using the convergence properties of the algorithm model
(3.0) stated in section 2.3. However, before we can use these
results we must show that Algorithm 1 has the properties desired
of it, i.e. it satisfies the conditions of Theorem 3.1.

We shall need the following results:

Lemma 6.1
For all ¢ €[ 0,1], for all u €G we have
#la,u) < o o{u)

We have by (3.7} and (2.13) that

olesw) = s [Ala(e),0-H6y e 0 ]ar
a



and

6(u) = /£ [A(ult),t)-H{x",y%u A% t)]dt

Now ¢(0,u) = 0 and $(1,u) = 8{(u) and 8 (u) 1is the

average value of

[H(u(t),t)-H{x " (t),x Ht-1),ul(t), » *(1),t) ]. By the definition of

Iu [see (3.1)] if teIu, we have
Hix™(1),x% (1= 9, 0(t), A2 t), ) -H(x"(t), x% (t- 1), ult), A% (t),t) < o (u)

Now by the way Iau is defined, we have that IauC Iu if

“E{O,H(Iu)] and so

¢ (a,u) < ab(u) for o &[0,u(1,)]

For o € (u(1,),1] we have that I,C 1, and
[H(u(t),t)-H(x" (1), x (=), u0), 2% (0,00 ] > 6 (u) if teTN
Hence

s [A(ut),t)-Hix",y% upt,t) ldt > (1-a) 6 (u)

T-1 sy

Now from (2.13) we have

; [H(ult), )-H(x", vy, ua ', t) )dt
T-1
ol — u _u u
+4  [H(u(t),t)-H(x",y ,u,x ,t)idt = 8(u)
luU.
Therefore

(1-a) 8(ul+ 9(a,u) < o{u)
and hence ¢({o,u) < ad{u) for a & (u(l ),1 ].

Combining the above results we get

¢ (a,u) £ ad(u) for all o & [0,1].
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Corollary 6.2

For all o« € {0,1], for all u e G, with u_as defined in

Algorithm 1, we have

AV(uu,u) < as(ul+cal

for some finite c.

Proof

From Proposition 5.4, we have for all u,, u, €G that

-~

|aV(u,,u )-aV{u,,u,)ll £ ¢, (dlu,,u,)]?

for some ¢, € (0,=)

Hence

Il aV(u ,u)= aViu ,u) Il € e [dlu,u)]?

Now from Lemma 6.1

~

AV(ua,u) = ¢({a,u)

A
Q
@
=

for all « € [0,1]

Also d(ua,u) < 2ry (Iau) = 2ra

Therefore
| .8V(u_,u)-s(a,u) || < c,bria?

u) < a8 (u)+rce® as required.

Corollary 6.3

Let A:G—2C

be the map defined by Algorithm 1 and let
a:GxG— [ 0,1] be as defined in (3.8). Then there exists some

¢ € (0,*) such that
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(1) AV(v,u} £ for all ve A(u)

4e
(ii) o > & =6(u) for all ¢« € {a(u,0):UEG}
2c¢
Proof
From Corollary 6.2 we have
aV(u _,u) < w6 (u)+c a?
and by (3.8}
. ' a 8 (u)
a(u,u} = max {e € [0,1] : AV(ua,u)f_ e}
2
Therefore the maximum ¢« &[0,1] such that
a 8 (u)}
a 8{u)+ca? <
2
occurs at the non zero root of
ad{u)
a8 (u) + ca? =
2
_ - 8 (u)
1. a =
2¢c
and we have that
a8 {u) _
a8(ul+ca? g ——  for all a € [ 0,0 ]
2

Therefore o{u,u) is not smaller than ¢ as asserted in (ii).

Using this we have
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o 8(u) for all v €A(u)

2

- [8(uw)]?
Hence AV{(v,u) = — - for all ve Al(u)
4
This proves (i) .

All  the above relations can be seen more clearly in

Fig. 6.1,

a8 (u)+ca’

Lemma 6.4
The function 8:G— IR 1is continuous with respect to the

metric d.

Proof

From Proposition 5.3, there exists a ¢ € (0,=) such that for
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all u,v e G satisfying d(u,v) £¢, for some € > 0, we have

sup Il x¥V(t)=x"(t} I < cce
teT
sup I V(-2 Il £ ce
te T

Let n: R™x R"x IR"xT + IR be defined by

Note that n(x"(t),x%{t=1), 2" (t),t) = H(ult),t)

We recall a theorem from Polak [ P1].

Theorem B3.20

Let ¥(.,:) be a contimuous function from RPx IRY into IR

and let S be a compact subset of IRY, Then the function

X : IRP -~ R defined by

X(z) = min {¢¥(z,h):h&€sS }

is also continuous.

Using this and the uniform continuity of H on the compact

set B,xB,x QxB ,xT we deduce that n is uniformly continuous on

B ,xB,xB,xT.

Returning to the proof of lemma 6.4 we have by the

definition of & that

s (v)-o(u) = 5 [n(x"(t),x" (t=1), 2 (t),)-H{x"(t),x" (t=1),v(t),n V(t)t)]dt

=2 (), x P (= ), B ) =H O (), x P (=) ule) B (), 1)) dt

= nxY Ly Yo nenkt vy At o Jat

14

v u

- II[H(Xv;yV:V!A

0 ,t)—H(Xu,yu,uyl

,t) ]dt

75



By the continuity of n and H the following holds

(1) £ [nlxY,y" a Y, t-n(xt yY a0 de

0

€/2

A

for all u,v € G such that d(u,v) < §,
This can be shown by adding and subtracting terms
as in the proofs of Proposition 5.3 and using Proposi-

tion 5.3

(ii) There exists a & € (0,6,] such that for all u,veG

with d(u,v)< § we have

THY, vy v o-Hix vy uatt) ¢ (2

Therefore for all € » 0, there exists a 6§20 such that

lfe{v)-6(u) || < e for all u,v€G which satisfy d(u,v) <3.

Hence 8 1is continuous with respect to the metric d, in fact
the proof shows that it is uniformly continuous.
We are now 1in a position to prove Theorem 1 which we

restate here for convenience.

Theorem 1

Suppose Assumptions 1 and 2 are satisfied and that
Algorithm 1 generates a sequence {ui} . Then this sequence is
either finite, in which case the last control is desirable, or it is
infinite and every limit point in G, with respect to the metric d,

is desiréble.

Proof

If Algorithm 1 generates a finite sequence of controls, i.e.
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{u;b o= {ug,uy, vy 1, it is obvious that the algorithm stops

at Step 5 when the last element w  satisfies

9 (uk) = 0, i.e. Uy is desirable

Now assume that Algorithm 1 'generates an infinite sequence
{ui }i:O . We will use Theorem 3.1 to prove Theorem 1.

By our assumptions on 1, V(.) is continuous and bounded
from below on G, hence assumption (i) of Theorem 3.1 is
satisfied. Now it will be shown that assumption {ii) in Theorem
3.1 is also satisfied. Assume that Algorithm 1 is at an undesir-
able control ue G, i.e. 8 (u) = &< 0.

Then by the continuity of 8, there exists an € > O such

that for all v €G satisfying d(u,v)<e we have

- [e(v) ] < - [B(u)]z/z

Now since Algorithm 1 produces

AV(A(u),u) = aV(u ,u) < ~ [o(u)]®

o
4e

[using Corollary 6.3 ], we have that for all v € G satisfying

diu,v) < ¢ ,

[
<!
o=
<
<
N

1A

i.e. for any undesirable u€ G, Algorithm 1 has the property that
V(A(v))-V(v) £ §(u) for all ve G

satisfying d(u,v) < e, where 8(u) = <0
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This shows that Algorithm 1 satisfies assumption (ii) of
Theorem 3.1, therefore we can use it to prove convergence of our
algorithm.

Hence from Theorem 3.1 we have that every accumulation

- -]

point u*€ G of the sequence (W} ;_g must satisfy
V(u)-V(u*) > 0 for all ue A(u*)
But from Corollory 6.3

- [ofu*)]?
sV{u,u*) ¢ —M for all u€ A{u¥)
4Le

This is only possible if 8 (u*) = 0, i.e. if u* is desirable.

This proves Theorem 1.
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CHAPTER 3

STEEPEST DESCENT ALGORITHMS WITH RELAXED CONTROLS

3.1 Introduction

In Chapter 2 it was shown that any L1 accumulation points
of a sequence of controls generated by Algorithm 1 were desirable
(i.e. satisfied a necessary condition of optimality), although
existence of such limit controls could not be guaranteed. In this
chapter we present two algorithms for solving a relaxed version
of Problem Pl (defined below), both of which circumvent this
problem.

The first of these, (Algorithm 2) presents an analysis
using a more abstract but also, in a sense, more natural setting
than that of Chapter 1. Here our analysis is based on conver-
gence in the sense of control measures. The reason for turning to

[-:]

relaxed controls 1is that, unlike in L,, a sequence {Bi }i= 0"
of bounded relaxed controls always has accumulation points.
Furthermore these accumulation points (in the sense of control
measures) satisfy an appropriate optimality condition for the
relaxed control problem defined in section 2.

Because of the ™"linear" nature of relaxed controls the new

control u, can be constructed as

u (1) = (l-a)ult) @ e ult) (1.1)

~ -~

where @ 1is in the relaxed sense [ see section B8 in Chapter 1],
u is the old control, 1:1 is a control which minimises a Hamilto-
nian, and o € [0,1] is the step length. We will say that gu(t) is

a relaxed convex combination of the controls u{t) and il(t) when

79



(1.1) is true.

Both u and i:x' may be relaxed controls, although if E(‘t) =
Su(t) and L\i(t) = 5a(t), i.e. they have their probability measures
concentrated at the ordinary controls u(t) and u(t) respectively,
u_ defined by (1.1) would still be relaxed, having its probabi-
lity measures concentrated at the two ordinary controls u and U
in the ratio (l-a):a for «€ (0,1). Obviously u, reduces to just u
or u when « =0 or 1 respectively.

With u, defined as in (1.1), the strong variations in
control as discussed in Chapter 2 are meaningless since g, has
some finite probability measure concentrated at both the controls
E(t) and r_g(t) for all t€ T and for all a&(0,1). However, it can
be seen this definition of u, s closer to classical methods of
defining new control than the strong variational approach
presented in Chapter 2. For example in steepest descent the new

control would be defined by

ya(t) = u(t) + as(t)

where s{(t) is the search direction and can be set to (a(t)—u(t)),

-~

~

with u(t) obtained by, say, minimising a Hamiltonian. Hence

~

U would be defined by
u (1) = (1-a)u(t) + ault) (1.2)

Comparing (1.1) and (1.2) above, the similarity is very
clear, the only difference being that a relaxed convex combina-
tion of u and t:é is taken in (1.1), whereas a standard convex
combination is taken in the steepest descent method. Because of
this strong similarity we will call this approach (defined by

(1.1)) relaxed steepest descent, or, steepest descent with relaxed
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controls (see Warga [W1]).

This similarity is further strengthened when an estimate of
the change in cost when u = ([as defined by (1.1)] 1is wused in
place of the old control u. This estimate [see Lemma 4.1 below],
as for ordinary steepest descent methods, is found to be a linear
function of the step length a . As will be seen, this makes
proving convergence very much simpler than was for the strong
variational approach. One of the advantages is that there is no
need to define the interval Iau as in Chapter 2, although the
relatively straightforward method for choosing the step length can
still be used.

The second of the algorithms presented in this chapter
(Algorithm 3) is an attempt to make Algorithm 2 implementable in
that all the relaxed controls are approximated using ordinary
controls to any required degree of accuracy. If this is done at
each 1iteration we show that all limit points satisfy optimality
conditions to within "delta”. Also we show that if the accuracy of
the approximations 1is increased indefinitely then 1limit points
satisfy optimality conditions "exactly". For both of these cases
limit points always exist due to the compactness property of the
set of relaxed controls and the fact that the space of ordinary

controls is dense in it.

3.2 Relaxed Control Problem

Let us recall Problem Pl in Chapter 2,
Problem P1:

Min S 'l{x(t),x(t-t},ult),t}dt
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s.t x(t) = f(x(t),x{t-1),ult),t) for a.a.teT
x(t) = ¢o(t) for all te[-1,0]
ue G

where G = {u€LT0,1]: u(t)€ Q for all t€T} and all the other
objects are the same as in Chapter 2.

To define the relaxed control problem for Problem Pl we
first need to state a few definitions and results which are
standard in the relaxed control literature [ see Section B8 in
Chapter 1 ].

Let V be the set of probability measures on Q, so that if

veyV, then
J’Qdy(u) =1. For any continuous function
o: IR"xQ x T—— IRP, the corresponding relaxed function

¢ IRanxT—-* IRP is defined by

4
o (x,v,t) 2 5? (x,u,t)dv(u) (2.1)
Let G denote the set of measurable relaxed controls.

Then the relaxed control problem Rl corresponding to

problem Pl is

Problem RI1
Min  V(w) =41 (x(t),x(t-),u(t),1)dt (2.2)
u
s.t. %x(t) = fr(x(t),x(t—f),g(t),t) for a.a.t&T (2.3)
x(t) = ¢ (t) for all te [-1,0] (2.4)
ue s
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Remark

For any control with the symbol " . " we mean that it is a
relaxed control and an element of G. Also unless otherwise
stated, for all relaxed functions ¢ as defined by (2.1), the
subscript r will be omitted since it will be apparent from the text
whether it 1is the original function or its relaxed extension that
is being considered.

We define AT — IR , the extension of the costate

function, as the solution of

(1) = HL R0, x %=1, u (), A (1), 1) (2.5)
+H§(xg(t+r),xg(t),g(t+t),x(t+'c),t+1)
for a.a.te| 0,1-1]
i) = HL (R0, %% (-0, u(0) 4 (1,0 for a.a.t & [1-t,1] (2.6)
A (1) =0 (2.7)

H(xg,yl‘},g,xg,t) = A7 f(xg,yg,y,t)ﬂ(xg,yg,g,t) (2.8)

is the extension of the Hamiltonian function defined in Chapter 2
to the set G.

We assume that Assumptions 1 and 2 in Chapter 2 hold in
the following exposition.

We will need the following resuits:

Proposition 2.1

For any u € G, there exists absolutely continuous functions

u u
x~ and A *, where
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(i} x%(.) is the unique solution of (2.3) and (2.4)

(ii) *Y¥(.) is the unique solution of (2.5), (2.6) and (2.7)

For a proof of this standard result see Young [Yl], where
it is given for the delay-free case. These results can be easily
extended using methods in Hale [HALLl] or Bellman and Cooke
[BC1] to cover our delayed case.

As in Chapter 2, we can show quite easily that for any

two relaxed controls 4. 4. € G we have that

~

AV(u ,u )

~ 2 -l

LTHGE M, XY M=), u, (0 A% (0,0 (2.9)
SHOx® (1), x¥ H{t=1),u, (1),2 3 (1), 1) ]dt

1
Fy H(x®2 1), %8 Wt-1),u ,(0)Qut),» T2 (1), t)dt

f

is a first order estimate of
) & V(u )-V(u ) (2.10)

As in Chapter 2 the following proposition which is an
extension of Proposition 2.1 in Chapter 2 will be needed for our

algorithm to be well defined.

Proposition 2.2

For any u & G there exists a measurable control function

i__'ieg which satisfies

u(t) = arg min H(x=(t),x(t-1),u,2%(t),t) (2.11)
@ eV
for a.a.t€T

Note: U can always be chosen an ordinary control, see Warga [W3]
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Such a 1:1 exists due to similar results as discussed in
Chapter 2. We also define by 12(1;1) the set of all controls v &G

which satisfy

v(t) = arg min H(x3(t),x(t-1),0,1%(t),t) for a.a.te&T
v L W

As in Chapter 2, we define 8.:G— [R to be the extension

of & to G by

which has the following property:

Proposition 2.3

The relaxed function 9 :G— IR (ignoring the subscript r)
is sequentially continuous in the sense of control measures

{i.s.c.m.}.

Proof

(==
Suppose we have an infinite sequence tu;},_ € G converg-

ing i.s.¢.m. to u*€G, i.e.

Then we need to show that

6(91) = 0 (u¥)
i-h o
i,e. lim lle(gi) - o(u*) || = 0
i+
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From the definition of ¢ [see (2.12)] we have

1
9(u) = min f [H(xg-,y‘-l-,v,ky‘,t)-—H(xg,yg,u,)«H,t)]dt

VEG'

For all u€ G let n(u) denote the set of v& G which solves

the above equation [note that n(u) =

1«

(9) ], so that

1

efu) = 5, [H(xE,y2, 0% 0-Hx%, y?, 00,0 1dt

teo <

Hence we have for the above mentioned sequence that

t N . ~ N A . .
o (u,) = J [H(xgl,yg‘-,gi,kEl,t)—H(xg‘-,ygl,gi,kgl,t)]dt
for all Qie n(gi), for all i
and
1 * * * * g% %
u u u u u '*',)ta- ,t)]dt

for all d* g n{u*)

Hence we have

H * * . * * * *
G(g*)~9(g1) 5 IU[H(XE ’yg' ’Lii! )\1':'1 ,t)—H(XE ;YH 11:1*5A1:1 ,t)]dt
t . P . . - .
- [H(Xgl,y%1,L}_i,lgl,t)-—H(X91,ygl,}-li,l}‘ll,t)]dt
for all ﬁie n(ui), for all 1
and
1 - oa e * a
o (u*)-olu)z s [HOF T, y® 05 s - H(X®,yY Luxa~ ,t)jdt
1 . . . . . .
-7 [H(xg‘-,yg1,13*,lg-1,t)-H(x91,y91,gi,lg‘-,t)]dt

for all 1.:1* € nlu*) for all i

As shown in Appendix A we have

e
¥

x=1 () x% (t) in Lo uniformly in t€ T
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Also using a similar procedure as in Appendix A we can

show that

Ui u* . . ,
AL(t) ———— a7 (1) in Lo uniformly in t€T

Now by making use of arguments similar to those employed

in Appendix A, we deduce that:

lim sup [ & (u*)—e(ui) I = 0
i1i— > - ~
i.e. B(‘ii) —— o {u*), and so & is sequentially
-‘L—)- [--3

continuous i.s.c.m. This proves the proposition.

The purpose of the algorithms presented in this chapter
will be to generate controls u* € G which satisfy necessary
conditions of optimality for the relaxed control problem. It can
be shown quite easily from the above discussion that a control

u*€ G is optimal for R1 if it satisfies
O (u*) = 0 (2.13)

As in Chapter 2 such a u* also satisfies Pontryagin's
Maximum Principle stated in Chapter 1.

We will essentially retrace the L  analysis in Chapter 2 to
show that accumulation peoints (at least one exists) generated by
Algorithm 2 are desirable. The major difference in the two set of
results is that we do not possess a metric for G.

We will need the following results which are extensions of

results in Section 5 in Chapter 2.
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Proposition 2.4

Proof

(a)

There exists a d & (0,=) such that for all ueG

(1) || x4 | d

| A

(i) 1 2B |

(A

d

for all t€T

If {gi}is an infinite sequence in G which converges
to u*€ G i.s.c.m. then
(1) xF(t) ————— X (1)

(i1) A ¥i(p) ———— ¥ (1)

uniformly in T

(a)d) Il x 5{t)|} £ d can be deduced as in Chapter 2 using

(ii)

the fact that

Hfr(sts':!’t)” ”"er(x,qurt) dg(u)“

[1aY

MO x [T+ Hy !l +1) J’ng(u) [

Ml xi+llyll +11}

[}

Using this bound on x%(.) we can use the same

procedure as in Proposition 5.2 in Chapter 2 to show

that

A% < d for all v€G, all t&T

(bXi) See Appendix A

Proof of (ii) follows using the same procedure.

88



Proposition 2.5

For all u, v€ G, all « €[0,1] and with u defined as the

relaxed convex combination of u and v, i.e.
ga(t) = (l-a)ult) @ ay(t) we have
[t x¥e (0—x2(t) || < deo for all t€T

for some d €(0Q,=}.

Proof

By definition of x(.) we have

x 290y -2 (1) = £t (F(x%%(s),x %% (s- 1), u_(s),s)

~

(s=t),uls),s)]ds for all te&.T

Expanding f(xg“,y}}“,g,s) and f(xg“,yg‘“,y,s) about x2(s),

x2(s— 1) we get to 'first order"

u

xPo(t)x¥(t) = s Haltx¥,y¥, v, 8)-1(x%,y%,u,8) ]

+(1=@)f (x7,y%,u,8) (x= 0x?)

+(1—a)fy(xg,yg,g,s)(yg“—yg)

u _u u u
+afx(x~,y~,y,s)(x~“-x~)

+ny(xg,y1"‘1,y,s)(yg“—-yy)}ds for all t€T

By Assumption 2 and boundedness of f’fx’fy on B, xB, xVxT,

where B, = (x&€R" : [l x i < 4y,
# The development here 1is not entirely rigorous since we have
omitted the '"remainder term'; it can be made so by arguments

similar to those used in Proposition 5.4 in Chapter 2.
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there exist d,,d, € (0, »}) such that

I x2e ()P0 1 2 4Td,eds +d, 001 x¥%s)x2(s) I ds

By an application of Gronwall's inequality we get

I <2 ()—x¥(t) || € da for all teT

as required.
We now present Algorithm 2 which is also based on the

algorithm model in section 3 in Chapter 2.

3.3 Algorithm 2 (For Solving Problem R1)

Step 0 : Select a y, € G

Step 1 : Set i=0

Step 2 : Compute x~1(.) by solving (2.3) and (2.4)
Step Compute ATl by solving (2.5)-(2.7)

Step Compute a _Zlie ﬁ(g )

i

W N W

Step Compute e(gi) using (2.12)
1f e(gi) = 0 Stop,
Else continue

Step 6 : Define ga(.) as

u, (1) & (1-du.(t) @ au, (1)

<
AV(L-}al'E]_) -

Step 7 :  Set Uil = Yoy
Set i = i+l

Goto Step 2
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Remark
1. The step length o, defined in Step 6 is a function of

v
and u.

; as in Chapter 2 but we do not state this

u.
~1

explicitly for convenience

2. The interval Iau in Chapter 2 is not needed since the
linear nature of relaxed controls allow a descent
property at each nondesirable u.

This will become apparent in the following Theorem
which is the main result in this section and states the

convergence properties of Algorithm 2.

Theorem 2

Suppose Assumptions 1 and 2 in Chapter 2 hold and that
Algorithm 2 generates a sequence of (relaxed) controls {lji }
This sequence is either finite, in which case the last control is

desirable, or it is infinite and every limit point, u* in the

sense of control measures (at least one exists), is desirable.

3.4 Proof of Theorem 2

The proof of Theorem 2 will be obtained using the same
procedure as in proving Theorem 1 in Chapter 2. We will need

the following:

Lemma 4.1

For all «€[0,1], for all g,ﬁeg such that ﬁefj(g) we have

~

AV(I_._la,u) = a8 (13)

~

where u_ is as defined above.
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Proof

By definition [see (1.1) and (2.9)] we have

u (t) = (1-a)u(t) @ ault) for ag[0,1], all teT

-~

and

- 1
AV(u ,u) = [ [H(xg,yg,ya, A, t)-H(xS, v, 0, 1) 1dt

o~ 1 o
ie. AV(u_,u) = J, [(1-a)H(xY, vy, 00 ¥ tsal(x®,y%, 0,05, 1)
-H(x%, y¥,u,r %, 0) 1 dt
Therefore

~ 1
AV(ygg,u) =of, [H(x%,y2, 8, A%, 1)-H(x¥,y=,u,2%,t) 1t

-~

~

AV{u ,u) = ad(u)

-

by (2.12) as required.

Remark
Note that as in «classical methods the estimate of the
change in cost when the old control is replaced by the new

control is a linear function of the step length «.

Lemma 4.2

For all =€ ([0,1], for all

ic
FF it

€ G such that l}eg(g) we have

I aV(u,, )-8V (uyu) |l da?

A

for some de& (0,=).

Procf

By definition

AV(u_,u) = Jy MixYe (), x¥ o(t-1),u_(t),1)-1(x"(t),x2 (t-1),ult),t) ] dt
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Adding and subtracting terms we get by the definition

the Hamiltonian [ see (2.8)]

AV(u ) = g, [H(xBa,yRe,u a0 HGH, vy, un ¥, 0 1de
Yoou, T u LU
- o A%{t)" [ xFo({t)-x~(t) ] dt

Integrating last term by parts we get the following

'ouT u uT u u ' ‘ouT
fo A0 (kP kTt = AR (0 (xRe()-xF (1)) ] - A3 ¥7(0) Fe-xF)dt

A(1) = 0 and x%%(0) = x2(0)

Also wusing Taylor series to expand the Hamiltonian

"first approximation' we get (see footnote on page 89):

AV(g, ,u) = Iol[l-l(xg,y‘g,ga,kE,‘E)+Hx(xg,yg,ga,lg,t)(xg"—-xg)
+Hy(xg,yg,ga,Ag,t)(yga—yg)—H(xg,yg,E,X ¥4
8T Be_ Uy 4,

Using u = (1-aju @ Gl‘é and the definition of A¥ we have that

aVig ,u) = J 1{(l—oL)H(x}‘l,yl"l,l;l,)\l‘l,t)+0tI-i(x’l“l,yu,L;i,k’é,t)

—H(xg,yg,g,kg,t)
+(1- a)Hx(xg,yE,x&,kg«,t)(xg“—xg)a-aHx(x%,yB,\é, A )
o (xHo_x®)

2

u

A4
u
% ,Bsx’“

+(1—a)Hy(xE,yg,9,Rg,t)(ygu—yg)mHy(x i)
¢ (yRa_yd)
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As in the proof of Proposition 5.4 in Chapter 2 we have

1— 1

’, Hy(x‘i(tﬂ),xg(t),g(tﬂ),A‘ictm,m)(xga(t)-xg(t))d—t

=I:Hy(xgtﬂ,xg(tvﬂ,g(ﬂ,kE(tht)(xga(bﬁ)—xg(t—ﬂ)dt

Hence we get

1

AV(EG‘,EL) = a.f'u [H(Xg,yg,}:lsAy,t)—H(Xg,yg,E,Xg,t)]dt

1 v
vaf, [H (% yR, 00 ¥, 0-0 (%, v, 008, 0] (x¥e )t

1 w
+af° [Hy(xg!yl‘%7grlg,t)—Hy(Xg,yE,g,A1;1,1:) ] (ygﬂ._yg)dt

Using the definition of & we have

‘ ~
av (g ow)-ae(wll <o f IIH (x%,y%, 0,05, 0-H (x2,y%,0,25%,0) || -

Il xFa-x= | dt

,t)-Hy(XB,yB,g,AB,tN|nyEG-yP|sdt

Using Lemma 4.1 we get

~

! u_ ug v
||AV(ga,g)—AV(ga,g)||sa fﬂ {||Hx(x YT UL A

=

o | u u
U [+ ] B (x5, v, 0, =, ) 3

Il x¥e_x® | dt

1 [V
‘o I, u|Hy<x9,y9,g,x9,t)1|+|1Hy(x9,y9,g,x2,tn}-
- || y¥e-y® || dt

Since Hx and Hy are bounded on the cempact set

B, xB,xVxT, there exist constants d,,d.€(0,=) such that

~

1
18V(uqu)-aV(y_,wll € 20d, 4, |1 x2 ()= (1) 1] dt

t
+2ad, g, Il x¥e(t-t)-x"(t-1) || dt
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i.e. we have

~ 1
I8V ,w-aVin ,u) | <d, a4 |lxa(t)-x¥(t) || dt

for some finite d,

From Proposition 2.5 we have

AN

) xFe () x¥(t) ]l < d, e for all t €T

for some d, € (0, =)

Hence we deduce that

”~

I aVig,w)-8Viug,ulll < do?

as required.

Note

Again using Lemma 4.1 this givesus

aV(g,,u) < ed{y) +de’

This 1is precisely the inequality obtained in Chapter 2,
where a complicated procedure was needed tc define the special
interval Iﬂu which guaranteed convergence of Algorithm 1.

Using the same procedures as in Chapter 2 we can deduce

the following result:

Corollary 4.3

Let 1}:@—*29 be the map defined by Algorithm 2, then for

all u €G there exists a ¢ € (0,=) such that:

(i) av(v,u) < -[e(u)]*/dc for all ve&A(u)
8

(ii) a2 - (u) where @. is the step length defined in
2c¢

Step 6 of Algorithm 2
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Remark

From Corollary 4.3 we deduce that Algorithm 2 is well
defined in that if it is at an undesirable control u (i.e.
8 (u) <0) a descent property exists and it can move towards a
"better" control.

We now prove Theorem 2, which we restate here for

convenience.

Theorem 2

Suppose Assumptions 1 and 2 in Chapter 2 hold and that
Algorithm 2 generates a sequence of (relaxed) controls {u; }.
This sequence is either finite, in which case the last element is
desirable, or it is infinite and every limit point, u* in the

sense of control measures({at least one exists), is desirable.

Proof

If Algorithm 2 generates a finite sequence of controls it is
trivally seen from Step 5 of the algorithm that the last element,

LR satisfies e(gk) = 0 since algorithm terminates. Hence Y is

desirable.

Now assume that Algorithm 2 generates an infinite sequence

oo

{ul

I By our results in Appendix A we have that this

sequence has at least one accumulation point u*€ G; i.e. there

exists a subsequence indexed by Ke€10,1,2,...1 such that

u . ux i.s.c.m

By the sequential continuity of ¢ we have

K

8(y,) — 8 (u*)
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Assume to the contrary that &(uy*) = -§<0. Then there

exists an ic| such that

a(u,) < 2P sy for all i2i,, i€k
~i 2 2

By Corollary 4.3 we have

1 z _
i.e.  V(u*) V(glu) S jex Vi, )-Viu)
i2i,
_ z
= {ex AV(}_lui,u )
i1,
2
<z - 2
i€k 16¢
i>i,
but  {V(u,; I} is a bounded monotonically decreasing

sequence which converges to V(u*). This contradicts the above
result. Hence assumption & (u*)<0 is false and so we must have

8({u*) = 0, i.e. u* is desirable.

3.5 Approximation to Relaxed Control Problem

The main objection to Algorithms 1 and 2 1is that they
require exact minimization of a Hamiltonian at an infinite
number of points at each iteration. This can be overcome wusing

the methods in Mayne and Polak [MAP1] to derive an implement-
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able algorithm for our delay cases. However, in Algorithm 2 a
further complication is quite evident, viz., relaxed controls have
to be programmed, and these by there nature (measures at
different controls for all t &€ T) can be very expensive to
represent on a computer. We propose here to approximate the
relaxed controls (to any required accuracy) using ordinary
controls, which are much easier to simulate, and hence make
Algorithm 2 more implementable. This approximation will be
performed using the method proposed by Gamkrelidze [ Gl ] where
the time interval is partitioned into disjoint segments
Ii’ i = 1,2,3,.... and assigning the new control to be the old
control u for part of the interval Ii for each 1, and for the
rest letting it be the minimising control uU. It will become
obvious that in this case the new control ua(e,t) is not only
dependent on the step length o, as before, but also on the
accuracy of the approximation ¢, i.e. the partition size. The
ratio as to how each interval Ii is subdivided is dependent on
the step length.

Approximating the relaxed <controls, together with a
slightly different method for choosing the step length will give
Algorithm 3. A different method is used to determine o so that
it can be seen that a choice as to how certain operations are
performed does exist as long as the overall algorithm fits the
model on which it is based.

We will now describe how the new control u (e,t) is

generated from an old control u, which we assume is not optimal.

Note

We can assume, without loss 1in generality, that the old
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control uf{t) is an ordinary control. This is because the space of
ordinary controls G is dense in the space of relaxed controls G.
Therefore any control u(t) € G can be approximated to any degree
of accuracy using an ordinary control u(t) €G. [See Warga [W3]l.

The control u€ G which solves

u(t) = min  H(x"(0),x"(t-1),w,2"(t),t)  for a.a. teT

weY
is found. This can be approximated by u € G to give &y (1)
which minimises the Hamiltonian, where 5‘{1(t) is the Dirac
measures concentrated at U € G for all t € T. The relaxed control
u, for «e&[0,1] is defined as the relaxed convex combination

of the controls u and 4, i.e.
u, (t) = (l-c)ult) @ au(t) (5.1)

Then the step length o«f{u,u) & [0,1] 1is determined by

minimising the cost function

Via ) = 1, 1x3e(e), x%a(t- 1, u,(1), 0)dt

~ rLa

over e .

Where x%%:T — IR™ is the solution of the delay-differential

equation:

e
—_
—+
—
[}

{l-a)f(x(t),x{t- 1),ult),t)+af(x(t),x(t-1),0(t),t)
for a.a.teT

x(t) = ¢(t) for t€[-1,0 ]

Thus having obtained the relaxed control ua(u,i’l) (written
u, for convenience), an approximation (to any degree of

accuracy} to it 1is made incorporating only ordinary controls,
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Gamkrelidze

[G1].
We now present the method (subﬁrocedure A)  which
describes how the relaxed control is approximated.
Subprocedure A
A number >0 is chosen depending on the required
accuracy.

Now for any €>0,

an integer N is defined which equals the
smallest number of disjoint intervals of T such that conditions
(5.3)-(5.4)

stated Dbelow hold.

For further details see also
Lemma (7.1).
Once N has been defined,

partition the time
disjoint segments

interval 1into
Ii’ i=1,2,..... ,N. Then further subdivide each
segment 1. into the ratio (l1-a): e and denote the respective
sections as [, and Ii for i=1,2,..... .N.
r 1 ’
Now “(Ii,q) = IIi(l—-a)dt = (1-4a) |Ii;
and “(Ii,z) = fli“dt —a|Ii|
Then define the approximation, uu( €], to the relaxed
control v by
u fe,t) = u(t) for tEli,1 (5.2)
= u(t) for tEIi, ,
for i=1,2,..... » N

. Note that the approximation is dependent on the chosen accuracy.]

This is a valid approximation if the trajectories x &
and x2o(t),

() vy
due to the ordinary approximating control and the
actual relaxed control respectively, approach one another
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uniformly over all u, e G, for all t€ T and for all a g [0,1] as
the partition fineness 1is increased towards infinity. This is
proved to be true in Lemma 7.1.

A method for determining the integer N (the number of
partitions necessary to obtain the accuracy required) is still

needed. This can be obtained using the following method:

Given an € >0 the time interval T is divided into disjoint

segments Ii’ i=1,2,3,...,N such that
| f{x,y,u,t') - fix,y,u,t*)}l <« (5.3)
for all t!', t? in the same interval Ii and for all

x,y € B, and for all u€Gg,

and

! M {Hx|l+lyll+l ¥dt < ¢ (5.4)

i

From Assumptions 1 and 2 the above are easily seen to
hold, and N can be easily determined (see also Lemma 7.1).

This completes the description of subprocedure A, and we
are now in a position to present Algorithm 3. Before doing so,
however, it is worth mentioning that if the above approximating
method 1is wused 1in any algorithm, two cases of interest arise

straight away, i.e.

1. Once N has been found (depending on the e chosen) it
can be kept constant throughout the implementation of
the algorithm. If this is done, the best one can hope
for 1is that any accumulation points generated will
satisfy optimality conditions to within "delta", where

§ will be dependent on the e chosen.



For the second case, N can be initially set at N  as
for Case 1, but it is increased at each iteration of the
algorithm and 1is therefore a monotonically increasing
sequence {Nj }j=0 (e.g. such a sequence can be
generated by Nj+l = Nj+w, w>0 or Nj+1= WNj’ w>1).
This means as the algorithm proceeds the approxima-
tions to the relaxed controls become more and more
refined, and hence epsilon approaches zero, i.e. as
N——=, the partition size becomes infinitely small and
e —0,

In this case one would hope that the limit points
satisfy optimality conditions "exactly', 1i.e. any limit

control u* should satisfy @8(u*) = 0 in the limit as

N—e,

Both of the above cases will be studied and it is shown

that the above conjectures do n fact hold.

3.6 Algorithm 3

Step
Step

Step
'Step

Step

Step

0 : Select a u,€G, >0

1 : Seti=20

2 : Compute x () by solving (2.1) and (2.2) in
Chapter 2

3 :+ Compute 1) by solving (2.7)-(2.9) in Chapter
2

4+ Compute a 5{1 (t)EQ( ui(t)) [ see text]

i
5 : Compute 8(uj) using (2.13) in Chapter 2

If 8(uj) 2 --e¢ Stop
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Else continue

Step 6 : Define for « €{0,1] the control u, by

u, (1) = (l-o)uft) @ sult)
Compute o, € [ 0,1] which minimises V(y_ ) and calcu-
late the new relaxed control Yaj-

Step 7 : Compute the ordinary control uai(e,t) which
approximates Ug. by using subprocedure A with the
degree of accuracy set at e.

Step 8 : Set u, , = uai(e)
Set i = i+l

Goto Step 2

Algorithm 3, above is for case 1 described in the preceding
section where the partition mesh 1is kept constant at a chosen
value. The algorithm can be medified very easily to incorporate

case 2. We will briefly state the changes which are required to

make this modification.

In Step O instead of needing a e >0, a monotone
decreasing sequence { €4 I i- 0 is required, where e,>0,
€, 7€ %€ 40nn. and h_m Ei = 0.

i
The stopping condition in Step 5 should be modified to

Stop if e(ui) = 0, Else continue.

In Step 7 the degree of accuracy will be dependent on
si(i.e. the number of the partitioning increases as the

algorithm proceeds), and the ¢; has to be updated to €..p D
Step 8 at each iteration.

The convergence properties of Algorithm 3 will now be

stated. We will consider case 1 and case 2 separately and show
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that Algorithm 3 has the following properties.

Theorem 3
Let Assumptions 1 and 2 in Chapter 2 be satisfied and

suppose Algorithm 3 generates a sequence {u.} of ({ordinary)

controls. Then we have:

Case 1

Given any >0, N (ad hence ¢>0) may be chosen such that the sequence
is either finite, in which case the last element is desirabie to
within "delta", or it is infinite and every accumulation point u¥*
generated by the algorithm satisfies an optimality condition to

within "delta", i.e. 8{u*)>-48.

Case 2
That the sequence is either finite, in which case the last
element is desirable (exactly), or it 1is infinite and every

e

accumulation point u* satisfies optimality conditions '"exactly",

Remark
For both cases, since the optimization is still being done

over the space of relaxed controls the existence of accumulation

points is guaranteed.

3.7 Proof of Theorem 3

Before we can attempt to prove any property that Algorithm
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3 might have we must show that the approximation described by
subprocedure A 1is wvalid in some sense. For this reason we

present the following:

Lemma 7.1
. X u (¢) u : .

The trajectories x @ (t) and x<~%(t), due to the ordinary
control u,(e,t) [as defined by (5.2)] and the relaxed controly,
{as defined by ({(5.1) ] respectively, approach one another
uniformly over all u,u € G, for all te&T and all o« & [0,1] as

the partition fineness is increased towards infinity, i.e.

sup I el ) ) x¥a () []— 0
u,iesG _
«€[0,] uniformly in t€T as ¢ —0

Proof

(E:)(.)

Since X @ is the solution of the delay-differential

equation
x(t) = f(x(t),x(t-1), ua( € ,t),t) for a.a.t €T
x(t) = & (t) for all t € [~1,0 ]
we get
el S () < o0y + £trxel Ty, xal N ien)u (e ,5),00ds

for all te T

Similarly we get
x¥e(t) = ¢(0) + £ tf(xg“(s),xga(s—t),ga(s),s) ds for all teT
Therefore we get

UQ( e )(

[flx s),X

—f(xg“(s),xg“(s—r},ga(s),s)]ds for all teT
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i.e

I x1,10‘( € )(t)—xya(t) i< 'rot [f(xua( € )(s),xua( € )(5_1—),ua(s ,5),8)

x5y 530S ooy y (9),5) 1ds |

+ ] It[f(xu“( € )(s),xua( ¢ )(s—r),ga(s),s)

~f(x®a(s),xPe(s-1) u (s),s)]ds ||

,'\-

Now by Assumption 2 we have

u_(¢)

b e e

(s},x"e (s—},u, (s),s)

—t(x¥e(s),x2%s-7),u, (s),s)]ds ||
M £ttt E Dy xBa ey 4 e 08 ) (son)
—x%e{s—1) || } ds
< 4,rt 1x%aC e ) x8a(s) |1ds for all tE€T

for some d, & (0, =).

We will now estimate the term

gt exets Yy x8e e N gn) u (e L), 0)

~f(xal e )iy cuale )

s), s—r),gu(s),s)]ds I

using arguments essentially due to Gamkrelidze [Gl] .

By Assumption 1 and 2, we have that for a given e >0,
there exists an integer N, equal to the smallest number of
disjoint intervals Ii, i=1,2,...,N, which is a subdivision of the

time interval [0,1 ], such that
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| f(X;y’U’tL) - f{x,y,u,t) || < e

I E(x,y, 0ty ) ~ f(x,y,0,t ) || <e

for all t;t" and all t ,t, in the same interval Ii for all

u,EEG and for all x,y EBl and

fiGGy,wtdt <5y MAUIx I+ ly I +1) dt <e
i i

We will start by estimating

L
LRSS

[f(xuﬁl(E)(s),xuﬂ(E Ns—r),u (e ,s),s)
i=1 i @

—f(xuc‘(€ )(s),xu“(a )(s—r) u (s),s)]ds ||

L~

for some integer L

We will use the fact that

I f(xu“(E Ms),xu“(s Ns-r),ﬁ(SLSst

for each i

Therefore we get

1 [ex et iy, el = ooy u (e ,s),9)

0
!
A

¢

(s),s)ds
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—fl [(1—a)f(xu°‘( £ )(s),xuc“(E )(s—r),u(s),s)
i

raf(xBel s gy yuabe D oy Yie),s) 1ds |

Let £, (x,y,s) = f(xel €)(g), xMale )

s-t),uls),s)

£, (x,y,8) = £(x"e0e gy xele )i oy vis),s)
o, = (l-«a)
and @, = @&

Then the above becomes

y8) +a f (x,y,s)]ds ||

I _fj(x,y,s)ds -1

a.f.(x,y,s)ds ||
1 'i,j ij=1

1 ]

Let t; be any point in Ii’ i=1,2,...,N and denote fj(x,y,ti) by

fij (x,y)
Then
2 2
J'Ii jil ajf.j(x,y)ds = f:lfij(x’w J‘11 o:J ds
2
- Jilfij(x,y) p (Ii,])
2
= jil fli’jfij(x,y}ds
Hence we have
2 2
[| jil fIi,j[ fj(x,y,s)—fij(x,y)]ds+fIi jzzla]. [fi].(x,y)—fj(x,y,s)]ds [l

108



[[Ic N o* ]

< _ fI. _||fj(x,y,s)—fij(x,y)llds
j=1 i,j
2
+ J’Ii jilajll fi].(x,y)—fj(x,y,s)llds
2 2
< I € II ds + ¢ II I o. ds from above
. : o - ]
j=1 i,j i j=1
= 2e u(Ii)
Therefore we have that
L 2 5
RO T TN )ds = /. L af )ds ||
i=1 _]=1 I,J ] X,y,s5)ds - IJ J=1 jj(X9Ys5 S
L
< I 2¢ewu(l.)
. i
i=1

Therefore for every t € T, there exists an integer Lo and
some IB (the interval left at end of segment [0,t] € T in the

partitioning procedure} such that

2
[l J’ot[f(x,y,s)—}: a.f.(x,y,s)]ds ||
j=1 13

L 2
< zollfl[f(x,y,s)—z a].fj(x,y,s)]ds \
i .

i’—‘-l J:l
2

+ llJ’IB[ flx,y,s)- jzzlujfj‘(x,y,s)]ds I

where we use

f(x,y,s} = f(xua( : )(s),xu“( = }(s—r),ua( €,5),s)

109



This gives

¢ 2 L,
Il 57 [flx,y,s) = ¢ af(x,y,s)lds|l £ 2¢ 2 (L)
j=1 3 i=1
+2J’I M{|l x|l +]] yIl +1}ds
B
LU
< 2¢ 1 p(Ii) + 2 ¢
i=1
< 4L €
L,
since I op{l,) <u(T) =1
i=1

Hence using the above results we get

I x%e T )aRarn) ) ca £ ke E ) (6) xR (s)llds + 4e
for all t €T

By an application of Gronwall's Inequality we get

_x}.l a

[ KUal ® )(t) (Il 24 e exp J'ot d,ds

I Xua( € )(t)_xg-ﬂ(t) Il <4 ¢ exp (d t) for all t&T

Now as the integer N 1is increased the partition gets finer
and as N —=, p(Ii })—0 for i=1,2,....,N and & —0.

This means that in the limit (i.e. as N =+= ) we have

lim sup I x" al € )(t)—-xg“(t) [l = 0 uniformly for all teT
N—= u,ueG
a € [0,1]

This proves the lemma and hence the approximation is wvalid.
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Most of the results which were given to prove convergence
of Algorithms 1 and 2 also hold for Algorithm 3 as well, with a
few obvious modifications. However, some results are quite
different, and so we present them here since they will be needed

in studying the convergence properties of Algorithm 3.

Proposition 7.2

There exists a d € (0,=) such that for all u,u €G, all
a €{0,1], given e 20 and with u, {e,1) as defined in

subprocedure A, then:

1x%el S ) - %) | < da for all teT

Proof

By definition of x{.) we have
el =) (o) = s rcetE Vo), xMele Dein)u (e ,s),s)
s-1),uls),s) ]ds for every t€T
Using Taylor expansion on first term in integrand we get

to 'first approximation" (see footnote on page 89)

f(xu“( © ),yu“( € ),ua( £),s) =f(xu,yu,u,s)+fx(xu,yu,u,s)(xu“( Flox

+fy(xu,yu,u,s)(yu -y

+fu(xu,yu,u,s}(u (e )-u)

Therefore we get
e a1 et e oty i 1 xPetF ) as

UQ(E

t
+ 1 ny(xu.yu,u,SII Iy )—yu||ds

+ futilfu(xu,yu,u,s)n lu (e)-ujjds for all t&T
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By the boundedness of fx’fy’fu on B xB x QxT there exist

finite d,,d,,d, such that

(e )

1x%eE 0axo) 1) < dar iRt e)xs) 1] ds

ed, £ X0 ) (sm )P (son) 1] ds
+d, J'ot Hua( e,s)-u(s) || ds for all teT
< a1 x%et © N s)-x%(s) || ds

+d3J'°t ||ua( e,s)-uls)||ds for all te T

for some d, €(0,=).

By the definition of u_( e€,s) [see Subprocedure A] we have

t Ilua( e,s)-ufl{s)|| ds < J'O‘l! ua( e ,s)-uls) |{ds

N

= 'Z II.“ uu( e ,s5)-uls)]||ds
i=1 i
N

= I Jy [| G{t)-u(t)|| dt
i=l i,

since ua( e,t) = u(t} for teIi . for each i.

By the boundedness of 2 (see Chapter 2) we have

N alo-ult || <l +[Jult)|j ¢ 2r

Hence

o lu ( e,8)=u(s}||ds
0 a

A
N
=

I
[y
[
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Assume for convenience that when the partitioning is done

that the time interval is divided into N equal subdivisions.
_ 1

Hence w(I.) = /N

Therefore

fot ||Ua( e,s)-uls) ||ds < 2ra

because of the ratios of Ii , to 1, s {1-a):e substituting in
' L

above we get

u.(e)

el M x o) cd P x%l® o)x®(s) |1 ds + 2rde

for all teT

By an application of Gronwall's Inequality we deduce that
Il xUel e )(t)—xu(t) It < 2rd, o exp d t for all teT

i.e.

Il x9al )y Uy )

A
[a¥)
Q

for.all te€T

as required.

Lemma 7.3
For all o« €[0,1], for all u €G, given e 20, there exists

an integer N as defined in subprocedure A such that
av(iu (e ),u) < o8lu) + ¢

{ Note: The same problem as in Jacobson and Mayne [ J1 ] (see
Chapter 1) of not being able to guarantee a descent property for
some cases may occur if the approximation is not fine enough.

This can be seen as follows:
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If the approximation is very coarse, i.e. & 1is quite large

and for
AV(ua( e),u) £ ad{u) +¢

the right hand side may be greater than zero for small a.
Hence the partition size might have to be increased as algorithm
progresses if a small step length is generated and the above
mentioned situation arises so that a descent property is

maintained. ]

Proof of Lemma 7.3

By definition we have

AV(u (=),u) =f [H(x™M1),x%(t=1),u (e ,1),2%(1),1)
o Q o

~HxP), xM (=), ule),a M), 1) 1dt

where u (e ,t) = ult) for teIi .

s

= ul(t) for teIi

12

for i=1,2,....,N

Therefore

~ 1

MV(u (e dyu) = £ [HxTy u Ce ) o-Hx",y% 0 %0 ] at

1 .

+ J, [H(xu,yu,gu,Au,t)—H(xu,yu,u,Au,t) ] dt

where u = (l-a)u @ au . as before

i.e.

~ N -

8V(u,( e)yu) =2 (/] Hix",y",u, A ) dtr S H(xZ,yY, 0,2, 1) dt
i=l i i,z
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1

+f [(1—a)H(xu,yu,u, xu,t)+aH(xu,yu,G,xu,t)
1}

~H(x",y",u, 2%, 1) 14t

Letting Hl(x,y,x,t) = H(xu,yu,u,}\u,t)
HZ(X!Y) lyt) = H(Xu’yu’a’lu’t)
a = (1-a)
and a, = @
Then we get
~ N 2 2
aViu (=),u) = 1 {1 [ H.(x,y,x,t)dt—fI z o H (x,y,x,t)dt}
i=1 j=1 "i,j ! i j=1 7

1 v

+od [HxY v, 0 0-HxY, y Y ua ) Jae

By using a similar procedure as in the proof of Lemma 7.1

we can show that given ¢ 20, there exists a partition N of
[0,1] such that
2

i) H.(x,y,%,t)dt-/ e H.(x,y,Mt)dt || £«
1 Ly L 5o1 33

Il
Lo

N ™=
[ (]

i
This together with the definition of & gives

AV(ua( e J,u) < ad{u) + =

as required.

Lemma 7.4

For all o & [0,1], for all u& G, given ¢ >0, there exists

an integer N (partition fineness) as before such that

< ab(u) + da? + ¢

for some finite d.
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Proof

By definition
aV(u (e ),u} = Vlu (e ))-V(u)

- s xtelE ’,yua( ¢ ),ua( e ),t)-1{x",y",u,t)]dt

T
+folxu [f(xua( © ),yu“( : ),ua( e),t)-f(x", y%, u,t))dt

1, T
-8 et e

Using the same procedure as before we get

' (e),yua(e )

aV(u, (e ),u)= £ {H({x"e su, (e ), A 0-H(xY, vy u, A, 0] de

Adding and subtracting terms again we get

AV{u (e ),u) = J'0 [H(xu“( ¢ ),yuc"(E ),ua( e ),2%,1)

—H(Xua( E),yua(E ),U. ,l ,t)]dt

+ [H(xu“( © ),yua( ¢ ),ga,Au,t)—H(xu,yu,u,Au,t)]dt
0

T
+ .r:xu (xuﬁ( £ )—xu)dt

Substituting for * and using Taylor expansion to'first order" we

get (see footnote on page 89)

il
o'
ey
“
o)
2.
m
~—
~
i
Q
m
=
2
m
'>‘

Av(u ( 4 )ru)

o

1
+ J‘D [H(Xu,yu,}ga, ku,t)+HX(xu,yu,ga,Au,t)(xua( € )_XU)

+Hy(xu,yu,ga,xu,t)(yu“( = ) _yWiH(xY, v, ua Y, 0] at

(e ) u)

1
I [Hx(xu‘,yu,u,lu,t)(xu<JL -x
[1]

+Hy(xu,yu,u,ku;ﬂ(yu“( =)y dt

11A



By definition of u and & we get

av(ug (e hou) = [HGx (50 y2ale )y ey

o
_H(XUQ(E )’yUa(E ),u ,lu,t)]dt
+a0{u)
t u _u u u _u u
+4 (R Gy AT, t-H (X y Shu, A, 1]
--(xu“( € )—xu) dt
! u_u u u u u .
s [Hy(x AN I .t)-Hy(x sy un ) ]

‘(yu“( ¢ )—yu)dt

1
+G.fu ||HX(Xuiyuyu!Auyt)-Hx(xusyuruy Aust) ” .

o xua(“: )-xulldt
1
+af [[H (x%y™, U, 2% 0=H (x%, vy unat o) -
afll yx y »u y ¥ ]

cpytete gt ar

Using the same procedure as in Lemma 7.1 we can deduce

that

Y A tldt || <.
for N large enough.

Also by the boundedness of H, 2 and H, on leleQxB1 xT,

Y
there exist constants dl,cl2 € (0,=) such that

117



1 8V(u (e ) u)-as(u)ll < c+2d, a £ || «Uab € ) B ) ) a

(e)

1
+2d,0 5 | xa (t-1)-x"(t=1) || dt

€ )

< e+ d af°‘||x“u( (t)-x2(t) || dt

for some finite cl3

Now by Proposition 7.2, there exists a d & (0,=) such that

1<% Mo || < d a for all tET

Hence

I aV(u_(e ),u)-a8(u) || <e+ d, da?

aVlu (e),u) < as(u)+da’+ ¢

as required.

Lemma 7.5
For all u € G, the step length @ found by Algorithm 3

satisfies

for some finite d.

Proof

In the statement of the algorithm, the step length a is
found by minimising the cost function V(u_ ) at each iteration,
where u is defined by u_ = {(1-aJu ® al, i.e. 3 €(0,1] is

found such that

1
~

V(g ) = 7 [(1-a)l(x¥a,y%e,u, Oral(x=e, y=o,§,1) Jdt
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is minimised. It 1is quite straightforward to see that the above
function is continuous with respect to a.
Hence differentiating with respect to a we get

1

d viu ) _ /, {(1-q) [1X (xu,yu,u,t) (U, a,t)+ 1y(xu,yu,u,t)6y(u,a 1) ]

—— "'a 3
da +af 1x(xu,yu,ﬁ,t)6x(ma,t)+1y(xu,yu,ﬁ,t)6 y(u,a,t)]
+1(xu,yu,G,t)—l(xu,yu,u,t) rdt (A)
for « € (0,1)
where éy(u,a,t) = é%x(u,e,t-1), and &x (u,e,t} is determined as
follows:
x<4(t) = x(u,q,t) is the solution of
x(t) = fx(t),x(t-1),u ,t) for a.a.t €T
x(t) = ¢(t) for all t € [-1,0]
i.e. xX(u,a,t) = (1-af(x(u, ot),x(u,a,t~7),ult),t)

W

+af (x(u,a,t),x(u,a,t-1},ul(t),t) for a.a.t&€T

x(t) = o¢f(t) for all t & [-1,0]
Differentiating this w.r.t a we get

5)‘((u,a,t)=(1—a)[fx(xu,yu,u,t)éx(u,u,t)+fy(xu,yu,u,t)ay(u,a,t)]
+a [fx(xu,yu,ﬁ',t)Gx(u,a,t)-;-fy{xu,yu,fl,t)dy(u,cx,t) ]
+ EB(x%, vy, 0, 0)-f(x%, vy, u,t) (B)

sx(t) = 0 t <0

which has as its solution éx(u, o,t)
Therefore to minimise V{(u ) at each iteration equate (A) to
zero.

By adding and subtracting terms we get
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1 v
I {l(xu,yu,u,t)-l(xu,yu,u,t)
]
+(1-a) [1x(xu,yu,u,t) 6x(u,a,t)+1y(xu,yu,u,t)Gy(u,u,t) ]
rafl (x%,y% 0,0 ax(u,a,t)+1y(x“,y“,5,t)5y(u,a )]
uT u _u ” u _u
+ A {f(X ,y 5u’t)—f(X 1y ,U.,t)

+(1-a) Efx(xu,yu,u,t)ex(u,u,t)+fy(xu,yu,u,t)5y(u,a )]

+a [fx(xu,yu,u,t)dX(u,a,t)+fy(xu,yu,ﬁ,t)6y(u,u 1))}

uT _,
-2 &x(u,a,t) ¥y dt =0

By the definition of the Hamiltonian we have

I [H(xu,yu,u,Au,t)—H(xu,yu,u, x,t) jdt

0

t

+f (l-a) [Hx(xu,yu.u,ku,t)6x(u,a,t)+Hy(xu,yu,u,Au,t)6y (u,a,t)]dt
]

1 ~ w
+ f a[Hx(xu,yu,u,lu,t)sx(u,a,t)+Hy(xu,yu,u,xu,t)6y(u,a,t)]dt
0
tuT .
-J, v {t)ex(u, a,t)dt = 0
Integrating last term by parts we get

1 T . uT L I-UT
S a7 s%x(u, e,t)dt = [ A (t)ax(u,u,t)]u—m (tyex(u,a,t)dt
o ']

.

= - IOJ\ (tisx{u,a,t)dt

since A(l) = 0 and 6§x{u,a,0) = O.
Using this and substituting for A" from (2.7)-(2.9) in
Chapter 2, and using the definition of @& we get that

1
8 {u)+ s (l-a) [Hx(xu,yu,u,Au,t)Gx(u,ﬂ,t)+Hy(xu,yu,u,Au,t)-'
1}

Sy (u, a,t)]dt
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1 ~
. a[HX(xu,yu,u,Au,t) <sx(u,a,t)+Hy(xu,yu,ﬁ,xu.t)5y (4,a,t)]dt
0
1
~ 7 [Hx(xu,yu,u,xu,t)ax(u,a,t)+Hy(xu,yu,u,x,t)dy(u,a,t)]dt
9

=0

i.e. we have

1 ~
8 (u)+ af [thxu,yu,ugku,t)"Hx(Xu’yu’u!Au!t) } 8% (uyﬂ ,t)dt
]

1

+alf [Hy(xu,yu,a,ku,t)—Hy(xu,yu,u,xu,t)]sy(u,a,t)dt
o

=0

Now [Hx(xu,yu,ﬁ, Au,t)—Hx(xu,yu,u,xu,t)] is not identi-

cally equal to zero if uf(t)s u(t) and the function H  is bounded
on B xB x QxBixT. Similar properties hold for[Hy(xu , yu, u,a%t)
“Hix %y u, A% 0],

Also, &l(u, o,t) is the solution of (B) which exists and is
unique. It is not identically zero if u(t)s£ 4(t) and is bounded.

Hence there exists some finite d, so that the above

equation becomes

8{u) + da > 0

—6{(u)
d

i.e. @ 2 as required

We are now in a position to prove Theorem 3 which we

restate here for convenience.

Theorem 3
Let Assumptions 1 and 2 in Chapter 2 be satisfied and

suppose that Algorithm 3 generates a sequence {ui} of (ordinary)

conirols. Then we have:
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Case 1

Given any &>0, N {and hence e>0) may be chosen such that
the sequence is either finite, in which case the last element is
desirable to within delta, or it is infinite and every accumula-
tion point u* generated by the algorithm satisfies an optimality

condition to within delta, i.e. & (u¥*)>-s,

Case 2
That the sequence 1is either finite, in which case the last
element is desirable (exactly), or it is infinite and every

accumulation point u* satisfies optimality conditions exactly,

i.e. 8 {u*} = 0.

Proof

For both cases 1if the sequence is finite, the last element
Uy trivally satisfies the optimality conditions required, hence we
ony need to consider the case where Algorithm 3 generates an

infinite sequence of controls.

Case 1
Assume that an infinite sequence {u !} in G is generated
by Algrorithm 3, and suppose that u* 1is an accumulation

control of this sequence,

i.e, u

+
o
2

By Lemma 7.4 we have that

AV(uu( e),u)<ad(u)+de’+re

i.e. AViu, ,,u.) <ab (u,)+de+e for all i
i+1’ 71 i
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Since the cost functional is assumed to be bounded on the

compact convex set G we must have that

lim aAV(u ) =0

1

ir1? %

that is AV(\.P'C‘;l { e),u*) =0

Therefore we get from above that

ab{u*) + da? + €20

a(u=)
d,

From Lemma 7.5 we have that the step length a2-

Hence we have

2 * 2 *
_ 8 tur) g 8% (u¥) >0
d, d}
(d-d ) 8% (u*) 2 —€
df
i.e (d,—=d)e?(u*) < dle
2
= e%(u*) < d” e
d-d
1
Hence plu*) > - &
2
where § = 9—1—5—
d,- d

Since 8 1is negative semi definite,
Hence the 1limit point satisfies optimality conditions to

within delta as required.
Case 2

Here the fineness of the partitions, denoted by the integer

N, is increased to infinity. The proof is exactly along the lines
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of Case 1 except that “(Ii)’ the measure of the intervals

L., i=1,2,...N, approaches zero and e—— 0 as N-—=» ., Hence

the inequality

L\.V(uz (e),u*) <a 6 (u*)+da’+ ¢
above in Case 1 reduces to

aV(u* (0),u*) < a9 (u*)+da’

Therefore AV(uf;(O),u*) = 0 < e8(u*)+de? and we deduce

that

i.e. 8 (u*) = 0 as required.
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CHAPTER 4

AN EXACT PENALTY FUNCTION ALGORITHM FOR

TERMINAL EQUALITY CONSTRAINED CONTROL PROBLEMS

4.1 Introduction

So far in this thesis, problems invelving only control
constraints have been investigafed and it has been shown how
these can be dealt with, i.e. by optimising a subproblem over
the permissible controls to obtain a descent property. In this
chapter we study problems which are more complex in that they
also include a finite number of terminal constraints. To be
specific the problems under consideration will be '"Optimal Control
Problems with Control and Terminal Equality Constraints" (see
Mayne and Polak [MAP2 ] and Problem P2 below). Mayne and
Polak [ MAP2 ] present an algorithm which solves these problems
using an exact penalty function and we extend their results to
cover delay systems. This extension also includes some crucial
differences from the approach taken in [ MAP2 ]. One of these is
that we construct a sequence of relaxed controls, rather than of
ordinary controls as in [ MAP2 ]. Both our algorithm and that in
MAP2 generate a (possibly) relaxed control in the limit,
satisfying first order optimality conditions. However  the
advantage of our approach appears to be that the construction of
the sequence of relaxed controls is much simpler than that of the
ordinary controls. The price paid is that we must introduce the
sophisticated notion of ‘'relaxed controls' but Mayne and Polak
have to do this anyway to study the convergence properties of

their algorithm.
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Another  distinction 1is that the new control, - U
constructed by our algorithm is a relaxed convex combination
of the old control u and another control y found by sclving a
subproblem, i.e. Yow = (l-a)y @ oy, where o may be thought
of as the step length. This is in contrast to the classical
method used in [ MAP2] where the new control is determined by
the wusual search direction, step length method. Our different
method of defining the new control gives a further important
difference from the approach taken by Mayne and Polak - they
linearize their intermediate problem about the control variable u
as well as the state wvariable x, whereas we only need to
linearize about x. Th_is linearization in u is required by Mayne
and Polak to guarantee certain results needed 1in proving
convergence of their algorithm. However we show below that,
because of the way we define our new control, these results can
be obtained using other methods, namely via the linear nature of
relaxed controls (see section B8 in Chapter 1), and hence the
differentiation w.r.t u 1is not required. Because of this our
procedure presented in this chapter gives, in a sense, better
approximations (to the nonlinear problem at each iteration) than
does the method by Mayne and Polak. 1t therefore seems
plausible to expect our procedure to perform better than Mayne
and Polak's when the two schemes are implemented.

Apart from these significant differences the procedure for
solving Problem P2 (the delayed problem) and the scheme in
[ MAP2 ] is quite similar and we present it here because it forms
a convenient stepping stone to solving one of the most difficult

problems encountered in optimal contrel. This is known as 'The

State Constrained Control Problem'" and we consider it in Chapter
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5 where it is solved using an exact penalty function method.
Mayne and Polak present two algorithms for solving their
problem, one conceptual and. the other implementable. We,

however, will only present the conceptual algorithm.

4.2 Problem Statement

We will briefly state the problem which will be under
investigation in this chapter using the same notation and
terminology as in earlier chapters. The optimal control problem

under consideration will be the following:
Min (g%(w) : glw) =0 , j=1,2,..... T, UEG)

where gj (g)=hj(xg(1)) for j=0,1,2,..... ;v and x%:T — IR? is the

solution of the delay-differential equation

=
pay
1—1'
—
1]

fix(t),x(t=1), ult),t) for a.a.t €T

x(t) = ¢(1) for all t € [ -7,0]

as in Chapter 3, and G 1is the space of measurable relaxed

controls. The foliowing hypothesis is assumed to hold:

Assumption 1

The - function f : RP°xR" xVxT— R™  and its partial
derivatives £ , £ , f , f , f and the functions hi: IR? — IR,
Tk Ty Txx! yy! xy

j=0,1,2.,.‘...,r and their partial derivatives h)jc, hix exist and
are continuous (on their domains) [ Note the differentiability

w.r.t. u, hypothesized in [ MAP2], is not required].
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Assumption 2

There exists an M€ (0,») such that

|| £, y,u,t) ] < M (x| + ]y |} +1} for all x,y € IR™,

all geg, all t €T

and
I flxy b, t)=f(x?,y?,u,t) ] < M{[|x'=x* || + || y'=y* || }
for all x*, y!, x*, y* € IR®, all ueG, all t €T.

We restate the abowve as Problem P2:

Min h® (x(1}) (2.1)

u

s.t x(t)=f{x{t),x(t- D,ult),t) for a.a t €T (2.2)
x(t)=4(t)} for all t€[-r,0] (2.3)
h(x(1)) = 0 21,2, . enn r (2.4)
ueG (2.5)

Note

An objective functional of the form (2.1} 1is called a
terminal payoff since it only depends on the final state x(1).
Problems of this kind are more general than they appear at
first glance. Let us suppose that instead of (2.1), we have the

optimal control problem with integral cost of the form

1

Min 7o I{x(t),u(t),t) dt (+)

subject to the constraints (2.2)-(2.5}. This can be easily

transformed to the form (2.1) by defining a new state variable

x,{t), say, by the following relationship
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]

L(x(t),u(t),t) for a.a t€T

Then (%) can be written as

Min  x,(1)

b
which is a simple terminal payoff. Hence terminal cost problems
are equivalent to integral cost problems.

Let R & {xg(l):g € G} denote the reachable set of our
system. Before we discuss our penalty function approach for
solving Problem P2 we present some basic resuits which we will
make use of:

For all u, v €G, let z%%. 7 IR® denote the solution of

3Ht) = AR(Dz(1)+B2(Dz(t— )+ 4 fly,u) (2.6)
for a.a t€T

z(t) =0 for t €[ -1,0] (2.7)
where

AR(t) = fx(x‘é(t), x2(t-1), ul(t),t) 2.8

BY(1) = fy(x‘é(t), x2(t-1), ult),t)
and  af(v,u) = £(x%(1), x2(t-1), v(t),t)-fF(x5(t),x%(t=7),ult),t)

= f(x%(1),x% (- v,v (1) © ult),t) (2.9)

z=' Y may be regarded as a first order estimate of x~-x<  for

u,v € G, i.e. (2.6) and (2.7) is in effect obtained by linearizing
the nonlinear system defined by (2.2) and (2.3) about the

control u.

For all u € G let R{u) denote the reachable set of this

linearized system, i.e.
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R(u) = (z'¥(1) : veG }

Then we have the following result:

Proposition 2.1

For all u€ G, the set R{y) is convex and compact.

Proof
Easily deduced from Corollary 37.9 in Young ([Y1] using
results from Bellman and Cooke [ BCl], Oguzt8reli [OGl].

The adjoint functions x :T— IR" are defined as follows:

Definition 2.2

For all u €G, Al-].-l(t), j=0,1,....,r is the solution of
i (t) = A}‘(t)Ag(t) + AJT.(t+T)B9(t+r) (2.10)
for a.a t€{0,1-1]
SO xJT(t)AE(t) for a.a t€[1-1,1] (2.11)
Ao (1) = WadanT (2.12)
j X '

where A%, BY are defined in (2.8).

Proposition 2.3

For all u € G, there exist absolutely continuous functions
x~, x5, 31=0,1,2,....,r which are unique solutions of (2.2), (2.3)
and {(2.10)-(2.12) respectively.

Furthermore for all u,v € G there exists an absoliutely

. . u,v . . . . .
continuous function z '~ which 1is the unique solution of (2.6),

(2.7).
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For a proof of this standard result see Young [ Yl ] where
it is given for the delay free case. This result can be easily
extended using methods in Hale { HAL1 ], Bellman and Cooke

[BC1] and Oéuztb'reli{ OG1] te cover our delay case.

Proposition 2.4

For all u €G, for all t €T,

(1) Il x%(t) || <d

(ii) IIA?(t)II <d for j=0,1,2,...,T

for some finite d.

The proof of this is a straightforward application of the
Gronwall Inequality as in Chapters 2 and 3.

Since [ x ¥ Il , £d for all u E(} we need only consider
(x,y,u,t) lying in the compact set B xB xGxT where we define

B, (as before) by
B, 2(xeR™ : |} x|l<d }

Hence terms like ¥, fx, fxx’ etc. are uniformly continuous
on B,xB,xGxT.
Now using the properties possessed by relaxed controls

(see sections B7 and B8 in Chapter 1) we can prove the following:

Proposition 2.5

-] . -
For all sequences {gi} ico € G converging i.s.c.m. to

- ui,v u®,v . .
u* €G we have z*~_,z~ ’~ in L_ uniformly in v €G,
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Proof

For ail u, v € G we have from (2.6), (2.7}, 2% Y is the

solution of

2(1)=A% (1) 2(t)+B=(t)z(t- 1)+ af(v,u) for a.a.t €T

z(t)=0 for t€[ -1,01

2% (1) = N ¢9(s,t) af(v,u)ds for all t €T

where ¢~ is the state transition matrix which satisfies

S4(s,t) = —¢(s,t)Al~l(s)—¢(s+r,t)BB(s+r) for a.a.s €[0,t ]
8s

@(t,t) = I
and ¢(s,t) =0 for s>t

For any sequence = u* i.s.c.m. it can be shown using

a similar procedure as in Appendix A that ' (s,t) converges to
¢$*(s,t) uniformly in s,t € T, where c::l and ¢* satisfy the above
adjoint relations with u replaced by ¥y and u* respectively.

Then for all U,V € G

MYy = £ el(s,n) afly,y;)ds for all t&T

Adding and subtracting terms we get

zx b Y(t) = Iot {9%(s,t) aflv,u¥)-0*(s,t) & flv,u*)

+8 ' (s,1) A f(g,ui) +¢*(s,t)Af(V,L_3i)

~

-¢*(s,t)Af(y,u,) } ds for all t€T

Then we have
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t

= S ¢*(s,t)af(v,u*)ds

+I°t o *(s,t) [Af(y,gi)-af(y,g*)]ds
+ fut[‘t’i(s,t)—fb*(s,t)]Af(__,};li)ds for all t€[0,T!}

By the uniform continuity of f and ¢, we deduce that as

; %
221 V(1) — 2z ¥ 'Y (1) uniformly in t €T and

=

.—u* i.s.c.m,

1

€G, where

(X

297 %) = 1, tex(s,1) a fly,ut)ds for all t&T

This proves the Proposition.

Proposition 2.6

For all « €[ 0,1], all u,v €G we have

Q!Y(

az t) = z%' %a(t) for all t €T

where u, = (l-2) u @ av.
Proof
From (2.6) z2'Y is the solution of

2(t) = AR (D)z(0)+BY¥ (Dz(t- D+ (x5, v%, v © u, t)

for a.a. t€T

i.e. we have

Multiplying throughout by a« € [0,1] we get

az® (1) =A% (0 a0 2PV (0)+BR () ea 2 Y (t- )+ of (xR, y5, v © u,t)
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Similarly z%¥’%a is the solution of

u

2(t)=A% (1)2(1)+B® (1)z(t- D+ (x5, y¥,u © u,t) a.e in T

Substituting for u and using the '"linear" nature of relaxed

controls we get

2()=A%(t)z(t)+BR (t)z(t-T)4af(x,y%, v © u,t) for a.a. t €T

.4

o ¥a()=A% () 2P Re(0)+B¥ (1) 2P Yo (i t)rof (%P, ¥R, v © u,t )

for a.a t €T (B}

Comparing the itwo delay-differential equations (A) and (B)

u,v u,u s
for az~"~ and z~’~% we deduce the required result.

Proposition 2.7

For all u, v €G, «€{0,1] we have
Il (xMat)-x? (1)) - 2% ¥e(t) || < da®

for some d €(0,=) where g, 1s as in Proposition 2.6.
Let e(t)=(x*e(t)-x*(1))-z% ¥ (1)

Then we have that

E(t)= fot{f(xga,yga:QG’S)—f(XB,YBsE,S)

~A%(5)227 7 (s)-BR(s)z~" 2 %(s=1)-af(@ u) }ds  for all t €T

Expanding f(x? “,ygu,ga,s) using Taylor series to second order

with remainder term we get
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e(t)= J‘ut{f(xl'%,ygﬂ,g_a,s)+fx(x9,yg,ga ,5)()(9&_}(9)

+i’y(xg,yy,ga,s)(3,r9‘1—y]’~1)+fx (x¥e,yRe,u,,8) (xFex?) (yda_y?)

Y

MU A MLkt TG At UL e AL

2 2

—fx(xg,yy,g,s)zg’g0(5)—fy(xg,yg,g,s)zg’g &(s—1)

~f(x%,y%,uOu,s) 1ds for all t €T

where x%¢ & (1-e¢)x® + ex®e  for some ¢ €(0,1) and YEE is

similiarly defined.

Remark
Throughout this thesis we write expressions involving
multiplications between matrices, vectors, etc. in a form that is

most convenient. For example, in the above equation we have

written
(Xga_xggffm(xee Jy2e g ,s) (P ox¥)
2
as
fxx(x~€,y~5,ga,s)(x~°‘—xg’)2
2

etc. These two expressions are equivalent when their modulii is
taken. This should cause no confusion.

Adding and subtracting terms
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e{t)= Iot{fx(xg,yg,g,s)e(shf (xg,yg,g,s)e(s-—r)

Yy
+[E (xR, yRuy,8)-f (x%,y%,u,8) (xF e x¥)
+[fy(xg,yg,ga,s)—fy(xg,yg,g,s)](yg"—yg)
+fxy(>-c1~1 E,y*E,Qa,s)(x~°‘—x~)(yg“—y~)
u 4 u Uy2 u u u Wy2
L B (X8, 77,0, s) (%) foy(XT €, y7 om hs)ly™e-y )}ds
2 2
for all t €T
Since y, = (l-a)u @ oy we get
t
e(t)= J, {fx(g)e(s)+fy(g)e(s——r)
+afx(x%,yl“',g_e_g, s){x¥a_x¥)
+afy(xL~l,yE,ye!é,5)(yE“—y9)
+fxy(x~5,y~€,ua,s)(xﬂ—xg)(ygﬂ—yg)
Re He Uy M2 U. U U, Uy
. fxx(x Yo, ,8) (x7-x~) . fyy(x Sy S, sy T)}ds
2 2
u _u
where fx(g) = fx(x~,y~,u,s)
and fy(g) = fy(xg,yg,u,s)

By the uniform boundedness of f , f , f , f , f |, there
x’ Txx y vy Xy

exist finite constants d,, d., d:, d,, ds, ds, d; such that
t t
[l e(t) |l<d, S, 1l els)|! ds+d, £, || el(s=x) || ds
+ad, J‘ot ||xg“(s)—xg(s) [ +c::d‘,.r0t legﬂ(s*r)—xg(s—r)j] ds

rody st e (s)—x® s) 1| xR (s-tx® (s=1) | ds

+ dg fot N x2(s)x2(s) || 2ds+d, J’Dt x99 (s—1h-x¥(s=1) || 2ds

for all t €T
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i.e. we have
et || <d, 5" llels) || dsed,ar, © || x¥e(s)-x¥(s) || ds

Ay fo0 |l xFe(s)-x2(s) ||%ds for all t €T

for some ds, do, dis € (0, =).

Using Proposition 2.5 in Chapter 3 we have that
u

[ xTe(t)-x2(t) || <d,a for all t €T

for some finite d; .

Hence the above becomes
[l e(t) || €ds &']lel(s)]|| ds+d,, a? for all t €T

for some f{inite d,, .

By Gronwall inequality we have

|| e(t) || <d,, a«? exp d, for all t €T
Hence we have

I (x2% (1)=x2 () )=z 2230 (1) | < d «o? for all t €T

as required.

4.3 The Exact Penalty Function

The two types of contraints, (2.4) and (2.5), make it very
difficult to obtain efficient algorithms. Of course, algorithms of
the standard penalty type are easily developed, but these are
usually computationally expensive and lead to ill-conditioning as
the penalty term approaches infinity (see Appendix B). The

non-differentiability of the control constraints (in the space of
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contrel functions) make it wvery difficult to extend finite
dimensional algorithms {e.g. gradient projection algorithms or
multiplier methods) to cover our infinite dimensional case.

Therefore we ©present a different approach for solving
Problem P2. We propose, as in Mayne and Polak [MAP2], to solve
P2 by solving an equivalent unconstrained problem PZC defined
below. This method uses an exact penalty function to handle the
cost and terminal constraints and wuses the control constraints to
define the space of permissible search directions. The penalty
parameter ¢ will be adjusted automatically to ensure equivalence
of the two problems. A finite ¢ will achieve this equivalence.

We will now formulate the equivalent wunconstrained
problem P2c which will be easier to solve than P2. For this

purpose we define y:G— IR as follows

vy (u) = max {Igj(g) | }

j=1-r
where j=1-r denotes j €{1,2,....,r }
i.e. «y(u) = max {gj(g)} (3.1)
j=1-2r

where gJ(l_g) for j=1-r is defined by

]«H‘.‘(

g u) = —gj(g)

For all ¢>0, we define ?C:§—> IR by

Then we define Problem PZC by:
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Problem P2 c

Min Yc(L.f)
u
s.t u €G
A suitable, finite wvalue of ¢ (which guarantees

equivalence) will be determined by Algorithm 4.

Problem ch could have been defined using a different
form, e.g. ?C(E)=g°(g)+c y(u) instead of (3.2) as discussed in
Appendix B, but we use (3.2) to follow the methodology proposed
by Mayne and Polak. The different method will be used to solve
the state constrained control problem in Chapter 5.

To solve problem PZC we need to know whether y and/or
?c can be reduced at each u € G. For this purpose we define

8:G— IR and §c:§—~ IR (which may be regarded as estimates of

the maximum reduction in ¥ and :;c respectively) by:

®{u)=min max {hj(xg(l))+<hi(xg(l)),29’y(l)>}-Y(Ll) (3.3}
veG j=iar

h;(xklm)

§ (u)=min max Chl(x®(1))+ <

+ hd(x%(1)),2% Y (1) > }
c YE.C..; j=1—2r c x .

~v(u) (3.4)

where <+, *> denotes the usual scalar product, i.e. <x,y>=xTy.
Since G 1is compact, 6 (u) and §c(u) and their
corresponding minimising controls in ggek'ist for all u €G.

We will need the following properties for the functions

8 and IR
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Proposition 3.1

The functions 8, 3_ (for all c € (0,=)) are sequentially

continuous i.s.c.m.

Proof

Consider an infinite sequence {ui . € G converging

i.s.c.m. to u*€G, i.e. we have

ui - U= i.s.c.m.

Then we need to show that as i— =, we have

and 8(u.) ——— s lu*)

Consider §C .

For all ¢ >0 we define v _:Gx R —~IR by

. h'(x¥(1))
¥ {u,z}= max thiGB e « X2

. + h}j{(xg(l)),z > }—y(}g)

j=1-2r c
Since hJ) and g—>hi(xg(1)), j=0,1,....,2r are sequen-
tially continuous i.s.c.m., and vy is the maximum of continuous

functions, we must have that q;c is continuous in u, z.
Hence 5 (u) = min ¥ {(u,z%'Y(1))
C ~ C o~
vEeS

For each u € G, let n(u) denote the set of v € G which

solve the above equation, (the set n{u) is non-empty) so that

w

3 - Ui Yy I
ec(gi}—wc(gi,z (1)} for all giEn(gi)
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and similarly we have

5 (u¥) = v _(u*,z~ "5 (1)) for all u* € n(u*)
Hence we have that
3 *)_3 * g*!gi - ‘:.l.ifgi '
8 (u*)-8 (u,)<v (u*,z (1))-v _{y,,z (1))
for all 4, € n(y, )
and
3 *)_F % g*,ﬁ* _ gi!Té*
8 (u*)-8_ (u)2p (u*,z (1)) ﬂ:c(gi,z )
for all G* € n(u*)
Now since gi——ru* i.s.c.m. we have by Proposition 2.5
that
zei ¥ LY in Ly uniformly in v €G.
Hence || wc(gfe,z‘}"’l’(1))_4,(:(91’291'1{(1))”__..0 uniformly

in veG as i —=,

Hence || §C(g*)— 5C(gi) || —0 as i—= = ,
Hence & (u.)——8& (u¥*).
c'= c' <

Therefore is sequentially continuous i.s.c.m.

DY s
0

The sequential continuity of & can be obtained in a

similar fashion.

4.4 The Constraint Qualification

Before proceeding any further it 1is necessary to make
further assumptions concerning Problem  P2. These  extra
assumptions, which constitute a constraint qualification, are
needed, firstly, to ensure certain conditions of optimality and

secondly to ensure that the algorithm does not jam up at
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undesirable points.
This can be further explained by considering the following

nonlinear programming problem:
Min {g°(x) : gJ(x) =0, j=1,2,...,5 }.

It is well known (see Chapter 1) that a first order
necessary condition for x* to be optimal 1is that there exist
: S

multipliers M, j=0,1,..,s, nat all zero, such shat jEO

assumption that {gi(x*), j=1,2,...,5} be a set of linearly

gl (x*)=0. The

ndependent vectors ensures that X°+# 0 in which case it may be
normalized to unity. A further assumption that the set
{gi(x), j=1,2,...,5 } be linearly independent for all x ensures
that given any non-feasible x, it is possible to generate a new
point 'closer" to the feasible region.

We will now state the constraint qualifications in a form
applicable to Problem P2. To ensure that the algorithm generates
desirable limit points, we need that for each u € G which is not
feasible for P2 (i.e. ¥(u)>0), we can reduce yv(u). Now v{u) can
be reduced if #(u)<0. Therefore our first constraint qualification
is that 8(u)<0 for all u €G such that v(u)>0.

Another property required is that for any u* which is a
global or local minima for Problem P2, then there exists a finite
¢ such that u* is also a solution for PZC (i.e. which makes P2
and PZC equivalent). As stated in Mayne and Polak [ MAP2}, the
essence of this is that for each u €G such that v(u)=0, the point

0 € JRT is in the interior of the set

u,v

{(<h>1((x15(1)),z~ Yi1)>, <h*(x%(1)),z8¥(1)>, .....

< hi(xR(1)),29 N (1)>) v €6 )
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To formulate this into a constraint qualification we will
use the methodology in [MAP2]. Although this procedure is quite
long and complicated, we use it here because we want to deviate
as little as possible from Mayne and Polak's original method for
solving the delay free version of Problem P2. However in Chapter
5 we present a much neater method where we only consider
"calm" problems.

For the case of only one terminal equality constraint the

constraint qualification may be stated as

min < h'(x2(1)), 2¥¥(1) > < 0

veG
and min < h2(x2(1)),z%'¥(1) > =min {-<n}(x2(1)),2%'Y(1)> 1< 0O
ves % veg ¥
for all u Eg with Y(g) = 0 (this means O € IR is in the interior

of the set

{<h}‘((xg(l)),zg’~(l)> : vE€G } ).

To deal with the general case (r > 1, terminal equality
constraints) we need to define a few terms. Let 1., Iz,....,Izr_

denote the following sets

I, = {1,2,3,.c.00...., , T2, r=1, r }

I, = 1,2,3,cceeveren. , =2, r-1, 2r }

I, = {1,2,3,...00uvnnn y, T=2, 2r-1, r 1}

I, = {1,2,3,000iuinn.. , r-2, 2r-1, 2r} {£.1)
12r = {r+1, r+2, r+3, cicie.... 2r-2, 2r-1, 2r 1}
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These sets have the property that if j EIi’ j<r then

j+r§1.. Define ] by

(1 ¢ = 1,2,....,25

—
] =4

Then for each 1€] let ¢I:G—-*|R be defined by

o'w & min max <hlF()),2Y0) > (4.2)
vEG jel

Proposition 4.1

For each 1 CJ, the function ¢I is sequentially continuous

i.s.c.m.

The proof is similar to the proof of sequential continuity

i.s.c.m. of §C and 9,

We now state our constraint qualification.

Assumption 3

(a) 1If v(u)>0, u €G, then 8(u)<0

(b) If v(u) = 0, u€G, then o(u) <0 for all 1C]

We are now in a position to state some consequences of

Assumption 3. The first is that the set W(u) defined by

Wlu) & fho(x®(1) ),h (xR(1),..... T (x%(1))):u €6 y e RTH

is not tangential to the cost axis at u* (a minimising solution),

see Fig. 4.1 where the case of one terminal equality constraint

is shown.
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~<1
rrj
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Cz

This shows the set W of values attained by (g°(u),g!(u})
as u ranges over the constraint set. Obviously a*=(aa*,a;*)=
(g®lu*),g *(u*))=(g(u*),0) is the optimal point and so u* is the
solution to P2. Two sets of constant cost contours of ?c are

shown for c¢=c¢, and c,, c,>c,. Clearly the solution of P
2

min {?C = %l +a, : a€W } is also the solution of
2 -2
P2. On the other hand, min {??C = %"— +a,:a €W} occurs at  a
1 13

which does not satisfy the equality constraint. Clearly the
minimum value of ¢ required to guarantee equivalence is given
by the slope of the supporting hyperplane to W passing through
a*. This is obviously finite if W is not tangential to the cost
axis at u* as stated above.

The second consequence of Assumption 3 gives us a

necessary condition of optimality and is stated in the following

1/.9




proposition:

Proposition 4.2

Let u* € G be optimal for P2. Then there exist multipliers

~

', ¥2,...., v '€IR such that

ala

ota r . . ko
z, vnd (x27(1)),22 Y (1)> 2 0 (4.3)

u*
<h)°((x~ (1)) +J=1

for all v €G

Proof

We define the cone C(u*) as follows

A
Cl{u*) = {az{l):iz €R(u*),a 20 1}

%
= { z2 ’L"l-a(l):VEG, a>0 1}

for u, = (1-(1)9"’" @ av

Since R(E*),= {zlélﬂ’y(l):zr €G 1}

we have R(L&*) CC(E*).

Let ﬁc(u*) denote the compact set

{ xS(-xF"(1):veG 1

We intend to show that C(u*) is a canonical approximation
of the second kind (defined below) to ﬁc at the origin and then
use Theorem 12 in Canon, Cullum and Polak [Cl] to invoke the
Proposition. However before we do so we present for the sake of

completeness a definition given in Canon et al [Cl ]:

Definition 4

Given a subset o € IR", then a convex cone cf{z, 2 )CIR® is
called a canonical approximation of the second kind to the set

 at z € 2 if for any collection{azl,Gzz,....,azk} of linearly
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independent vectors in ¢(Z, @) there exists an e >0, possibly
depending on Z, 8z,, 8Z,,...., §Z,, and a continuous map £(.)

from co{2,2+er5zl,ﬁ+eazz,....,§+eazk} into 9 such that

£(2+62z) = Z+8z+0(5 z)

where lim M— =0
It z[|+0 flez |l
Let z ., Zz,0004, zq be any finite collection of linearly
independent vectors in C(E""') and let Viy Vaseens, yqeg be the

corresponding set of generating controls, i.e. we have

zZ. = zg*"ﬁ(l) i=1,2,....,9

q
Then consider any peoint z=.Z;, u,;(z)z; in the convex hull

of {O,zl,zz,....,zq}, so that . (z)20, i=1,2,..... ,q and
i=§ll U i(z) <ls z and its barycentric co-ordinates i(z) , 1=1,2,...,q
are related by z= Z u(z) where Z denotes ‘the non-singular
matrix with columns z,,z,,....,2_ and u(2)=(pfz),nfz),..... , bz}

q

As z—+ 0, 50 does O’(Z)=i§1pi(2) and o¢(z) €{ 0,1] for all

z €co{0,z ,,2 ,;,....,Z ' }. Now any z €co {O,zl,zz,....,zq}may be

q
written in the form z= I, Xi(Z)U(Z)Zi = oz} Z x(z) where
ui(z)
X (z)= i=1,2,....,9q, so that
oz}

q

x,(z) 20 for all i=1,2,....,q and iZy xi(z)=1

Now define the map éx: co{ O,zl,,,,,,zq }— R (E*) by

y*(Z)(l) u-"(l)

sx(z) = x -x =
where Y*(z) = (1—0(2))3* ® o{z)v(z)
and v(z) = Xf{z)v; @ x:(z)v, @ ® x (z)v



Since the map z—ul(z), co{O,zl,....,zq}——qu is continuous
so are the maps z —ol(z), co{O,zl,....,zq}——> R and z—y(2),
co{O,zl,....,zq}-'-qu. Hence the map z—-»y(z),co{O,z,,....,zq}-—*_C}
is sequentially continuous i.s.c.m., and so is the map z—ésx(z),
co{O,zl,....,zq }—hﬁc(g*).

Now any point z in co {O,zl,zz,....,zq} may be expressed

as

z =z
q
where y*(z) = (1- £1 xi(z)c(z))u* @ x,(Z)U(Z)};’l @
@ x.(z)olz)y, @ @ Xq(z)c(z)yq
i.e v*(z) = (l-a(z))u* @ o(z)v(z) where
viz) = w2l @ X(2)y, @ ..... ® Xq(2)~q

Hence from above, for any zEco{O,zl....,zq} we get
I x(z}l-z || < d, [o (z))?

—-1
Since uf{z)= Z z, it follows from above that o(z)=|| u(z)|,

< d,!l zi] for some d, € (0,«»), and therefore

[l 8 x{z)-z || = 0([lz I
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where o |lz |[}})— 0 as z——=0

Z

Hence it follows from Definition 4 (by setting 2=0,
52, =2, i=1,2,....,9, € =1) that C(u¥*) is a canonical approxima-
tion of the second kind to ﬁc at the origin. Hence by Canon,
Cullum and Polak [C1l] (Theorem 12 on page 27) we have that if
u* € G is optimal for Problem P2, then there exist multipliers

Vo wl,....,\prEIR, not all zero such that

< P, hx(x (1)) + j>:=1 xp].hx(x (),z> >0
for all z €C(u*)
and therefore for all z €R(u*)

i.e.

oL Lo
3

r .
o B I ] a= u=,y > >
<wohx(x (1)) + 35 ‘l’jhx (x~ (1)),z (1) 20

for all v €G

Assume that v, =0, then not all the multipliers

L lb,_,....,lbr are zero and

r

5L wjh)j( G aNTATYW) 20 for all ves (1)

But by Assumption 3, since u* is optimal for P2 we have

Y(u*)=0, and

¢I(u*) = max <h>j((x}-1*(l)),z}-l*’

i €1

<l

>

< 0 for all T¢]
where feg is any minimising control for qal(g*).

Hence there exists an 1&] such that



If max <\bjhi(xg*(1)),zu"’y(l) > <0, then all
j=1-r

e
riy

<y hx% (n,22 Y1) > <o

]
] X

This contradicts (1). Hence ¢, % 0 and may be normalised

to unity.

Remark

The results of Proposition 4.2 can be stated in the
(equivalent) form of a Maximum Principle (see Chapter 1 and
Appendix C).

As a consequence of Proposition 4.2 we have the following

corollaries whose proofs are obvious:

Coroliary 4.3

If u*€G is optimal for P2 then

* u* x

min{<h;((x9 (1,227 Y1) » :<hi(xg*(l)),zl~l 'Y(1)5=0,j=1,2,..sr, VEG}

Corollary 4.4

if g* GQ is optimal for P2, then the ray {¢(-1,0,0,...0):

e

¢>01 €IRT*!  and the set W(ux)2 {(<h;(x9*(1)3,z‘-%"’l’(1)>,

.....

e

...,<h;(xg*(1)),z‘:¥"’ Y(1)>)iv e G}t in R¥*! are strictly linearly
separated.

We are now in a position to define the desirable sets for
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Problems P2 and PZC. It is obvious from the text that the

desirable set, 4, for P2 is defined by
A4 {u*€G : v(u*) = 0 and (4.3) is satisfied } (4.4)

We assume that the set 4 is not empty. This essentially

means that there exists at least one feasible control u €G, i.e.
h(x2(1)) = 0 j=1,2,....,r.

For Problem PZC we have by a straightforward generaliza-
tion of Theorem (2.1) in Dem'yanov and Malozemov [DEM1], that

if u* is optimal for P2C then

u* . * -
max < h;(x~ (b ¥ h}JC(xg (1)),z28 ¥ (1) 2 0

j=1-2r c

for all v E§

From the definition of §Cwe obtain:

Proposition 4.5

Suppose u¥* is optimal for problem PZC, c¢>0, then 'éc(g*):O.
Hence we define the set A of desirable points for Problem

PZC, c>0 by:

We need the following result to make the two problems

equivalent:

Proposition 4.6

Suppose that u* € A (i.e. u* is desirable for P2), then

there exists a ¢*>0 such that §C(u"-')=0 for all c>c*,

-~
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Proof

Since u* € A, then the ray L={O’(—1’O,_.,O):Q>O}CIRr+]‘ and

* * 1%
the set W(u*)= {(<h® (x5 (1)),z¥7Y (1)>,....,<n) (x¥ (1)),
,zg*’ Y(1)»>:v €Gle |RH1 are strictly linearly separated, i.e.

r

there exists a v =(1,4'9%...,9 ) € IRrJrl such that

< Y,y>20 for all y € W(u*) and

< P,y><0 for all ye€L

Consider now W € IRT*!, ¢>0 defined by W & {(vSyi....v5):
. y WA lyly y

v
c

. 0 .

+yJ< O,yc— —yJ<O, j=1,2,...,r L W. is a convex cone with its
apex at 0 and having L in its interior. As c¢ increases, W
becomes more and more acute and there exists a c¢*<~ such that

for all c2c*, W, N W(u*)=@. Indeed for all y €V_, |yj|<|an| for
all j=l-r, so if we set c¥*=2 jgzl lv I |2 0, then for all c»>c*,
y € W_ implies <y ,y><0, where y =(1,4%,...," ) is specified in
Proposition 4.2. This is because for y EWC we have

r
L

<P,y> = y°+ J:l ‘DJY‘]

< v+ B |¢j||yj|
- ]=1

; a
<yes Bl

: 0
since |yJ | < | :cLl for all j&1,2,...,r, i.e.

<1’l" > < ﬂl a T j
'Y y' o Iy A e

< v+ |% | for all c>c*
< ¥ <o
i.e. <v,y> <0 for all c>c=*.
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However for y € W(u*) we have from Proposition 4.2 that
<¢,y> 20, so we have W(u*) and WC are disjoint for oc¥*.

We now use this to show that u* is desirable for P2c for

8

c>c*. Suppose contrary to what is to be proven that u* & L

i.e. é'c (u*) = -5<0.

Now because
. h® (x37 (1)) .
% %« *
'éc(g*)zmin max {h (x¥ () )4<=vnu & h}]{(XB (1,28 " X(1) >}
vEG j=1-2T c

we have since u* € A that Y(g*):O, therefore hj (xE* {1))=0 for

j=1-2T, hence

] (u*)= min max < —— 4 hj(xl}-(l)),zgd’y(l)>
vE€G j=l-2r c X

¢ : ] :
= min max {X—+yJ, L—yJ ¥
y €Wlu*) j=1-r ¢

But 5C(g*)=—6<0 implies there exists a y & W(u*} such that

1] : 0 3
% + yJ < 0 and LC— —y3<0 for all j€1,2,...,r, which contradicts
disjointness of W(u*) and WC for ¢>c¢c*. Hence §C(u‘f'-'):0 for all

oL

czc™ .

4.5 The Algorithm Model

The basic procedure we plan to undertake is to first solve
Problem P2c and then find a finite ¢ which makes it equal to
Problem P2, thus solving P2. Finding such a ¢ 1is quite a
difficult task and is somewhat neglected in the literature. It is
not sufficient to establish the existence of a finite ¢ to

guarantee equivalence, a means to increase ¢ to a suitable
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value is necessary. An ad hoc procedure of increasing c at each
iteration is not satisfactory as it would get excessively large
and lead to computational difficulties that occur 1in ordinary
penalty methods. Hence a method for increasing c¢ if some test,
depending on the control u, is satisfied is obviously required.
This test may be of the form t_(u) > 0.

An algorithm model which uses a test function in this way
is stated in Polak [P2 ] and we base our algorithm for solving
Problem P2 on a generalised version of it. The model consists of

two main components, which are:

(1) an algorithm (defined by a point-to-set map A _:G — 29)
for solving Problem PZC for all ¢>0.
(i) a test function t _:G — R for deciding when ¢ should be
increased.
A monotonically increasing sequence {cj}jfo is also

required for the model to be well defined. We now present

the model on which Algorithm 4 (for solving P2) will be
based:

Algorithm Model 2

Step 0 : Select y, EQ, {cj } §=0

Step 1 1 get i=0

Set j=0

Step 2 @ If tcj(gi)>0, set j=j+1 and repeat Step 2
Else proceed to Step 3

Step 3 : If BiEACj stop

Else compute a QEACj(gi)

154



Step 4 : Set 4 1=
Set i=i+l

Goto Step 2

The following result is presented in Polak [ P2 ] for the

Algorithm Model 2:

Theorem 5.1

1f
(i) For each j, ch is such that any accumulation point

u* € G i.s.c.m. of an infinite sequence {w,} in G with

-~

Usig EAC_(gi) for all i, satisfies u*€ ch .
(ii) For each j, if Ut i:0 i5 any sequence in G converging

to u¥ i.s.c.m., then tc.(l;li) converges to t..(u*), i.e.

- ~

tcj is sequentially continuous i.s.c.m.

(iii) For each j, if u*EACj and tcj(u*)_<_0, then u* € a
(iv) For every u* € G, there exists an integer j* such that if
{gi }1._0 is a sequence in G converging i.s.c.m. to u¥,

then there exists an integer i, such that

tcj(gi)sO for all i >1,, all j> j*

Then the algeorithm either constructs a finite sequence, in
which case the last control is desirable for Problem P2, or it
constructs an infinite sequence and every limit point (at least
one exists) is desirable for PZ2.

The proof is given in Polak [ P2] but we also give it here

for completeness.
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If the algorithm generates a finite sequence {u,,Y;,....,W4}

then it is obvious from Step 2 and 3 that tcj(g k)_<_O and

-

ecj(gk)=0 for the procedure to stop. By the definition of a_,

then from ({iii} in Theorem 5.1, u, €4,

k
Now suppose that the algorithm generates an infinite
sequence {gi }i:no . By compactness of the relaxed control

problem, there exists a subsequence indexed by K €{0,1,2,....1}

and a u* eg such that

K

s

ux i.s.c.m.

(0, ) —2 s 1o (u)

1 ]
conditions (i), (iii) and (iv) imply that there exists a c¢* such

Condition (ii) in Theorem 5.1 implies th
that t _{u*)<0 and that u* € s, for all cxc*. Hence we again
have that u*€a, i.e. u* is desirable for PZ2.

We will now construct Algorithm 4 using the above model.
To do this we will need to construct the map Ac and the test

function tc so that they have the properties required of them.

4.6 Construction of Algorithm 4

We will first present an algorithm for solving Problem 132C
and establish its convergence, i.e. show that condition (i) of
Theorem 5.1 is satisfied. In the subalgorithm described below the

map AC is defined in Steps 2 to 5.

Subalgorithm for Scolving P2

Step 0 : Select a u, €3G, <¢>0
Step ! : Set i=0

Step 2 : Compute x=1 by solving (2.2), (2.3)
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Step 3 : Compute §C(gi) and find a control Llii € G which
achieves the minimum

Step 4 : If §C(gi)=0 stop

Else define g“i =(1—ai)gi ® a; v, where aie[O,l) is
the largest number which satisfies

. . ad§ (u)
¥ (u, )-¥ (u)s L= "0
2

Step 5 : Set gi+1=gai

Set i=1+1

Goto Step 2

Remark

5C(gi) in Step 3 may be computed using a method similar
to Procedure W in Chapter 5 or to the one used by Mayne and
Polak [ MAP2].

1f the algorithm is at a non-optimal control for P2C (i.e.

.§C(}_1)<O) we will need, for the subalgorithm to be well defined,
the step length a, to be strictly greater than zero so that a
descent property exists. This will be deduced when proving

Theorem 6.1 which states the convergence properties of the

subalgorithm.

Theorem 6.1

Suppeose all the assumptions stated 1in the text are
satisfied, then the subalgorithm for solving PZC either generates
a finite sequence of controls, in which case the last element is
desirable, or it generates an infinite sequence and every

accumulation point i.s.c.m. is in A

1C7



Before we prove Theorem 6.1, we state a few results which

we will need:

Proposition 6.2

For all u €G, all ag[0,1], all ¢c>0, we have
av fu u) <o (w)

where u_  is defined in Step 4 of subalgorithm and Aﬂ‘rc(y,g) is
the first order estimate of the change in the penalised cost
resulting from using the control v in place of u (this approxima-

tion will be made more precise in the following discussion).

Proof

By definition we have

R h? (x¥(1)) _— .
Ayc(ga,tg)’é max { hi(x®(1))+ < + hl(x%(1)),z¥ " Ya(1) >
_']=1-—-2r C X
=Y (u)
where u, = (l-a)u @ au

and z%'%a(1) is the solution of

u,

=

22 R (1)= AR (D)2 P e (4B (1) 297 % (1-1)+F(x7,y7 , u Ou, t)]dt

ice. z%Y¥e(1) = ane(1,0)f(x¥,y3 00 u,t)dt

where ¢ (1,t) is the transiticn matrix (see section 5.1 in

Appendix C). Now using this and the definition of xj we get

<h) (x%(1)),25°%2(1) > =a st <l (1), o(1,0)(x%, y¥ T ©u,t)> dt

T

—a L A3 1 E(xY, vy 0 Qu, tidt

where Aj:T———»o IRn, j=0,1,....,2r is the adjoint variable which
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satisfies (2.10)-(2.12). Hence using this in the above we get

)T

. [+ - ~
8y _(u,,u)= max (R (x¥ (1)) 0 gt (22U +A](t)T)f(xg,Yg,H@}},t)dt }

j=1-2r c

-y (u)
= max { (h3(x5¥{1))-v{u))
j=1-2r -
0 T ] T -
+ ufo‘(—lc—(t) () )f()("'u,y"‘l,g@}:l,t)dt}

Now since Y(u) 2 hj(xy(l)) j=1,2,...,2r we have

hJ(x%(1))-¥{u)<0 for all j €1,2,....,2r. Hence for all a €[0,1]

alhd (x#(1))=v(w)} 2 hI (x2(1))=v ()

Hence we have by using this in above

2y (u ,u) < max talhd (x%(1))-v(w) ]
¢ Te T ja-or -
0T LT 5
+ G-"o‘(A ()" A () )f(x-‘-l,yg,geg,t)dt}
c

Now by definition é'c(g) equals

. h;((xkl(l)) _— L
§ (u) = max { hi(x%(1))+e X shd (2 (1)), 2z 2 () =Y ()
C ~ . p4 ~
jsl -2r c
where Z_l

€G is a minimising control for §C(g).

Using the same procedure as above we deduce that

5 (W= max ([hI(x2(1))-7(u)]
¢~ jd-or
T

A1) v
+A](t)T)f(x—g,yE,ueu,t)dt}

c

+'r01{

Therefore substituting for §_(u) above we get
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~

AYC(QG,Q) < ad (u)
as required.
Proposition 6.3
For all ¢>0, a€[0,1], for all u €G there exists a finite
d such that
- N ,
[ Ayc(ga,g)—avc(ga,g) I| € da

where u _is again as in Step 4 of subalgorithm and

defined to be the ch

u is replaced by v a

Proof

~

A‘rc(v,u)

-

is
ange in the cost function ;c when the control

nd AYC is as in Proposition 6.2

By definition (3.2) we have

-~ ~ u Il u
Y olu -y () = Biix=o(l) h *(x~(1))
C ~q C o~
C c
+ max {hj(an(l))} _Y(E)
j=l -2r

Expanding h®(x %%(1)) and R (x Be(1)) by Taylor series we get

~

h(!

u u
(XE(I))+ X~ (1}=x~(1)}

by (ug,ul=

] u ju} u
he (x¥e (DI (1) ¥ (1)) )
2¢c c
max  ThI(x%(1))+h) 1)) (x¥2(1)-x%(1))
= -2r x
h! (xBenx¥a(1)-x¥(1))?
KX
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where x%88(1-e)x%+ex%¥%  for some e €(0,1).

Adding and subtracting A"Yc(ua,u) we get

By (ugu) = 8% (ug,0)
_— h;(xE(l)) -
- max {hI(x%¥(1))+ < + hI(x¥(1)),2% Y (1) 5y
j=1-2r c
) ne (x2 (1) T (xa(1)-x2(1)) ) h! (x 32 (1)x%a (1)-x¥(1))?
C 2c

+ max
j1-2r
. h) (x®e(IxRe(1)-x%(1))*
2
l1.e.
. . he (2T (e (1) (1)-z%"Ya (1))
avolu u) cay fu ,ul+
C ~a o c

+ max
j=l -2r 2

By the boundedness of hJ;(, h:?(x j=0,1,...,2r for all u €G

and all finite ¢>0, there exist finite constants d,, d, such that
. _a% < Ua_ Uy U,
||AYE(§G,E) Avc(ga,g)ll <d, Il (=®-x~)-z [l
+d, || x¥e x% || ?
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By Proposition 2.7 in section 2

-x~)-z~'~%|| < d,a® for some finite ds, and by
Proposition 2.5 in Chapter 3 || x o _x ¥ || < d,a for some d.,.e (0,=).

Hence we deduce that

- ~

- < 2
[ AYC(BG,U) A*t(Ea’B) | £ da

-~

as required.

Note that from Proposition 6.2

Hence Mc(ua’u) 3u§c(u)+daz for all « €[0,1].

-

Proposition 6.4

For all u €G which are not optimal for P2_, i.e. § (uko0,

c
we have that the step length « determined in Step 4 of the

subalgorithm is strictly greater than zero.

Proof

From above we have

Hence forallg EQ such that ac(g)<0 we have that
N - ad (u)
volu ) -y (u) <
2
8 (u)

for all a<min{l, -

}as shown in Mayne and Polak [ MAP2].
2d
Therefore the a chosen by the subalgorithm is the maximum

o which satisfies the above relation
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é‘c(U)
i.e. max a2 min {1, - =

1> 0 when 'é'c(u) < Q.
2d -

Hence a found in Step 4 of subalgorithm is strictly
greater than zero when at a non-optimal control. Hence the

subalgorithm is well defined.

Proof of Theorem 6.1

If a finite sequence is constructed the last control 9,

trivially satisfies ukE Ac since the subalgorithm terminated.
Now suppose that the subalgorithm generates an infinite

sequence  {u, }ic_no in G. Then there exists (by the results in

Appendix A) a convergent subsequence indexed by K € (0,1,2,...}
and a u* € G such that ui—Kv u¥ i,s.c.m.

We need to prove that é’c(u*):O. Assume contrary to what

m~

is to be proven that é'c(uf-'):— §<0.

~

From Step 4 of the subalgorithm we have vy _(u, , )-¥_(u,)
a8 (u. ) €Tk <
< L C T for all i for all c>0.
2

As Yy ——K——-——+g* i.s.c.m. we have by the sequential

continuity i.s.c.m. of & _ that

Hence there exists an integer i such that

8(u=
] (u.)gd——e(u o2 for all iz i,, i €K
c i

2 2
Now from Proposition 6.4

§.(u.)
@, 2 min (1,- }  for all i
2d
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and hence a.>a (u*)=min {1, - -~ - }>0
1 ~
2d
for all izi,, ie€K.
. - § (u¥)
Hence Yc(gi+1 )—Yc(gi)SG(g") ;

for all i2i,, 1 €K
Therefore we have

-~ -~

*)_ = I —v (u.
v (u¥) Yc(gio) i ek Yc(gi+1) v (8))
ixi,
*idx Yool
ix>1,
£ I ¥ )-¥ _(u.)
ieK ¢ ~i+l c ~i
ix1,
é"c(u"")
< I a(u*) = i
1€K - 4
i1,
But {;C(ui )} is a bounded monotonically decreasing
sequence which converges to :}C(u*) since ¥ (ui)A K- ?};:(u*).

This contradicts above. Hence assamption §C(u*)<0 is false and so
we must have "e'c(u*)=0, i.e. u* € Ac.
This proves Theorem 6.1 and shows that the map AC has the

properties desired of it in Theorem 5.1 (i).

The Test Function t_

We turn our attention now to finding a suitable test
function which will satisfy conditions (ii)-(iv) of Theorem 5.1.

Finding such functions is quite a difficult task as mentioned by
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Mayne and Polak [ MAP2], but we are fortunate that the test
function used in [MAP2] 1is also valid for our delay case. We

propose for our test function tc:G—r IR the following

The following lemmas show that this choice for t. does

indeed satisfy the conditions (ii)-(iv) of Theorem 5.1.

Lemma 6.5

For all ¢>0, tc is sequentially continuous i.s.c.m.

Proof

o~

From Proposition 3.1, 8. is sequentially continuous

i.s.c.m. The sequential continuity i.s.c.m. of

7(1;1) = max {hj(xg(l)}
j=1-2r

follows from the sequential continuity of the map u— x2(1) and

the continuity of hJ, j=1,2,...,2r.

Lemma 6.6

For all ¢>0, if u€a_and tc(g)s,O, then u €A.

Proof
Now since geac, we have §C(u)=0 and since tc{u)=
§C(g)+ L(Cu—) , therefore if t _(u)<0 and §c(g)=0 we have y(u)< 0.

But v (u) is positive definite, hence v{u)=0 for all ¢>0, i.e. u is

feasible for Problem P2.



Now we must show that 4.3 is true for u to be in &, i.e.

we must show that there exist multipliers v%v*,....4T €IR  such
that

r A -
<he (x%(1)) + o oI (x®(1)),2%¥()> > 0 for all y &G

Assume contrary to what is to be proven that u QA, then

from the definition of a, we have, for each nm zero ¥*,¥%.. JTER

r ..
<h;<(x‘3(1)) vz m]hi(xlé(l)),zg’y(l)> <0

for some v &€ §

Hence for all ¢>0 we have

he(x2(1)) .
P S h}l{(x‘a‘(l)),zg’l’(l)> <0
C

for some v€G, for all j=1,2,...,2r.

But from the definition of 'éc we have

h;(xg(l)) i, u u,v
min max {<—— e h)J((x~(1)),z~’~(l) > 1
ve€G j=LkZr c

P
—
o

—
1l

c -

1)
o

from above.

This gives a contradiction, and therefore we must have u€a as

required.

Lemma 6.7
For any u* € G, there exists a c*>0, such that for any
infinite sequence {u, }:0 in G converging to u* i.s.c.m., there

exists an integer i such that
0



t_(u,)<0 for all izi,

for all c>c*

Proof

There are two cases to be considered, which are

(i) Y(_g*)>0

(ii)  v{u*)=0

Case (i) : Y(u#*)>0
Here the limit point is not feasible for P2. By Assumption

3, we have

8(u*)=-6<0. Now by the definition of 5": (see (3.4)) we
have that

8§ (u.) = min max {hj(x}—li(l))-!- <
z j=1-2r c

for all i
Now by the boundedness of h:( and z (1) for all u,v €G

there exists a finite d, such that

d‘l . :
§C(ui) <— + min max { hI(x¥i(1))+< hi(xgi(l)),zyi’y(l)ﬂ
” ¢ ve&G j=1-2r .
-v(u)
Using the definition of 8 (see (3.3)) we get
6. (u;) < —c+ 6(u,)

Also by the boundedness of v in G we have y{u)<d for all
~ ~ 2z

u€G, for some finite d,. Let d=max {d,,d.}.

~
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Then since tc(l.l.i )= ec(l‘li I+

for all ¢ 0, all i

we get by substituting for 'é'c and using the bound on ¥

2d
tc(t}_i) ie(yi)+ —

c

Now since ©(u*)=-6<0, we have by the sequential continuity

of & that there exists an integer i, such that

*
6(y,) < olyt) __ 8 for all i>1i,
2 2
Hencet(u.)g——ﬁ +£ for all i>1i,
c =i
2 c
sd,
Let ¢* = —— , then we have
C

+ for all i>i,

c ~1 2 L

for all c>c*

8 C s
Hence tc(ui) ¢ - —<0 for all i>i,, c>c*.

4

Case (ii) :  y(u*}=0

By Assumption 3 we have

pl(u*) = -5<0 for all 1€ ].

-~

From equation (4.2) we recall that for any 1C]

¢ (u*) = min max <h>j((x"]’1*(1)),z >
z€R(u*) jel

We define :T:i:g—» IR for all ¢>0, all 1C]J by

h;(x"—{(l)) -
min max {€ —m — h)J((x~(1)),z >}
z€R(u) jel c

©
g
ue-

168

(6.2}



From the boundedness of h:c and z%'¥Y(1) for all u,v €G,

there exists a constant M € (0, =) such that

]

+ min max <hj(xe(1)),z>
z €R(u) je€1

Using definition of ¢I we have

+ ¢ (u) for all u €G,all ¢>0, and for all

1C]

Since U, ——=—u* 1i.s.c.m., we have by the sequential
~ 1

continuity of ¢I that

y,) — ol (y¥) for all 1€]

Then there exists an integer i, such that

1 "
Twy <& ™)

¢ Yy 5

=_7‘3 for all i> i,

Using this in above we get

EG. for all ixi,

Let ¢, satisfy c, = 4M
[}
Then we have

~ 8
¢i(gi) £ -7 for all i>i,,all c>c,

Now for all ¢>0 we have

N _— R (x~1(1)) o
8 (u)=min max {(hM(x=1(1))+ < Z— thl(x21 (1)), 251 -y (u,)
~1 . x ~1
z j=1-2r c

=min max {max | hj(xgi(l))—\'(
z jel

e
o

1AQ



po X T, h)j((xgi(l)),z>] }

for all 1C]J
where 1° denotes the complement of 1 in (1,2,....,271}.

Let Z; ER(gi) denote any minimising z in the definition of
0. (u.) (see (6.2)).

Since R(gi) is convex and compact (and contains the
origin 1in iIR™) we have that €z, ER(\_._li) for all ee€{0,1].
Substituting £z, for z in the above equation we get, recalling
the definition of 5& and noting that hj(xgi(l))—‘r(gi)io for all
j=1,2,...,2r that

§ (u,} ¢ min  max {eF;i(ui), max [hj(xl-'}i(l))—v(uih eb iy (6.3)
e€[0,1] el ~

where b€(0, =) is defined by

||h;(x‘5 i

b=sup {{ +IRJGEIANN T, 1z 0f su, €6

c

c>c j=1,2,...,2r }

1?

Now for any u &€ G let J{u) € ] denote the class of sets
{1 C]:hj(xg-(l))z.O, j €1t. Hence if 1€J(u) then hj(xg(l))so for
all j € 1°. Since (6.3) holds for all [ €], it also holds for all
IC](Ei)’ so that

N . ~1

§ (u, ) & min max {e3_(u.), -y(u,)+eb}

c =i c€l0,1] =i i

since max Rl (x%1(1))=0 for T€J{u,)
el T

This holds for all c>c,, IC](ui).



Hence from the above we have
§ (u,) < min max {- 64—6 R —Y(ui)+eb }
ce€[0,1] ”

for all i>i,, c2c,

Y(u)

Since t_(u) = B (ul)+ ——c-—ﬁ-— we get
Y{u,)
t.{u;) < min  max { e » —v{u)(1- -i—)+eb } (6.4)
e €[0,1] C 4
for all i»i,, c2c,
The first term on the right side of (6.4) is negative if
4yly,) Y(gi)(l—l/c )
E:>El(gi)= and the secad is negative if e<e, (u,)= ————=
co . ~1 b
Clearly el(gi) < 52(~1) if
1
(1-=)
4« <
c$ b
i.e ifc 21+ 4b
Hence tc(gi)ﬁ 0 for all izi, and for all c>crd max { c,, 1+-[’?;9 ]} .

Since all the conditions in Theorem 5.1 are satisfied with
the above choices for the map Ac and the test function tc’ we
can now present the complete algorithm for solving Problem P2

via an exact penalty function method.

4.7 Algorithm 4

Data : B“EE}’ O<cy<e <onen lf.m C.= =
Step O i Set i=0 :
Set j=0
Step 1 : Compute x¥1 by solving (2.2}, (2.3)

Compute x”j‘li by solving (2.10)-(2.12) for j=0,1,2,...,21
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Compute hj(xl‘li(l)), hg(xgi(l)) for j=0,1,2,....2r,
and Y(u.)

Step 2 : Compute Ecj (u,) (see (3.4)) and the minimising

control i_:li €0
Step 3 : Compute tcj(gi)

If tcj(ui)>0 set C.‘i = Cj+1

set j = j=1
and goto Step 2

Else proceed to Step 4

-

Step 4 : If Bcj(}_li)=0 stop
Else proceed to Step 5

Step 5 : Define Yo =(l-oJu; @ «; u; where o; €[0,1] is the

largest number which satisfies

. = ' .
Y., (ga_) wc_(gl} <

] 1 ] 2
Step 6 : Set w; , = Bui
Set i=i+l
Goto Step 1

Since Algorithm 4 satisfies all the hypothesis in Theorem

5.1 we deduce the following convergence properties for it:

Theorem 4
Suppose the assumptions stated in the text are satisfied
and that Algorithm 4 generates a sequence of controls tu 1. Then

k
(i} This sequence 1is finite ({u. Yoo » In which case c. is

increased only a finite number of times as well, and the

last control is desirable for P2, i.e. uke A



(ii) The sequence 1is infinite tu,!l :_O and there exists a

st

j* <= such that j<j* throughout the computation (i.e. <5 is
still only increased a finite number of times and then
remains constant at cj *) and every limit point u* i.s.c.m.

of this sequence (at least one always exists) is desirable

for Problem P2.

Remark

In this chapter we reduce a certain class of '"smooth"
control  problems to problems in which the data is not
continucusly differentiable in the x wvariable by introduction of
exact penalty functions. It is possible that the reduced problem
can be tackled by means of recently developed algorithms for
non-smooth mathematical programming problems (see for example
Mifflin [ MI1 ], [ MI2]). However, our more ad hoc approach in
which we devise local approximations to the special non-smooth

functions which we encounter are quite adequate for our purposes.
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CHAPTER 5

THE STATE CONSTRAINED CONTROL PROBLEM

5.1 Introduction

In this chapter we deal with the most difficult problem
considered in this thesis. This problem is known as the state
constrained control problem (SCCP) and the reasons as to why it
is so difficult to solve (and analyse!) will become quite
apparent during the course of this chapter. The need for
investigation of SCCP's is very important since it is well known
that most practical control problems do have the state constrained
in some way - for example in management problems, inventories
cannot be negative, in forestery we cannot harvest non-existent
trees and in engineering problems, operating conditions 7of
various devices need to be kept in certain regions for correct
functioning or to prevent damage. Hence it seems reasonable that
when a control problem is being formulated these constraints on
the state be included and handled in some desirable way.

A typical state constrained control problem is stated below

Min J{x,u)
s.t x(t) = f(x,g,t) for a.a.t €T
x(0) = %,
g(x{t),t) <0 for every t
4E€C
where g:IR"xT — IR specifies the state constraint. Since this

constraint must be specified for each t € T we essentially have
an infinite dimensional problem (due to the system dynamics)

subject to an infinite number of constraints. It seems quite a
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formidable task to tackle such a problem at first sight, and
indeed, as shown 1in numerous articles, e.g. Neustadt ([N2],
Gamkrelidze and Kharatishvili [GK1l ], loffe and Tihomirov [I1],
Warga [W3 ], that trying to find solutions to SCCP's leads to
certain difficulties. These can be explained by considering what
happens to the state when it strikes the constraint boundary.
After the point of impact the state is not free to proceed in its
previous course (unless of course if it approaches the constraint
tangentially), and hence there is an abrupt change in the state
velocity (it is useful to think of the physical analogy of a
ball following a trajectory that strikes a wall). When the
Maximum Principle is formulated for SCCP's it has been shown
(see for example [N2], [I1]) that these abrupt changes cause
the adjoint wvariable to have discontinuities (jumps), and it is
working with such nonsmooth functions that cause the above

mentioned difficulties.

5.2 Literature Review on SCCP

State constrained control problems have been investigated
thoroughly from a theoretical viewpoint and certain necessary
conditions of optimality have been obtained, e.g. Ioffe and
Tihomirov [11}, Neustadt [Ni], [ N2], [ N4], Gamkrelidze and
Kharatishvili [GKI1 ], Warga [ W3 ]. The conditions are in the form
of a Maximum Principle (or Minimum Principle depending on
formulation) where <certain approximations are made. These are
obtained by approximating non-convex sets by convex ones and
non-linearized functions by linear ones. Then by showing

disjointness of two «convex sets (one which has non-empty
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interior) it is possible to assure the existence of a hyperplane
which separates the two sets. In state constrained control
problems these sets turn out to be in the space of continuous
functions, and so the hyperplane which defines the multipliers
and hence the Maximum Principle, is in the dual of such spaces,
namely in the space of all functions of bounded variation.

Appendix C shows one particular method for obtaining
necessary conditions of optimality and it is obvious to see there
that the procedure is quite complicated.

Now although these conditions of optimality reveal the
structure of optimal controls, these are of little or no use at
all for actually solving a practical problem. What is required is
a computational procedure fo'r numerically solving SCCP's.
Because of the above mentioned difficulties (notably ccawrence of
jumps in the adjoint wvariable) these are few and far
between. The few methods that are available are quite restric-
tive to the type of problem they address or the assumptions
made are quite severe.

One of the first algorithmic methods for solving a SCCP was
presented by Hager [ Hl1], where a quadratic cost, linear system
dynamics and 1linear state constraints were considered (the
added complexity of linear control constraints is also included;.
By defining a dual function and then a dual problem, which is
solved using the Ritz-Trefftz method (where the dual wvariables
are approximated by finite element subspaces}, Hager arrives at
a solution for the original problem. The same method has been
extended to cover a general convex problem, see Hager [H2 L.

A semi-dual method has also been developed by Hager (see

Hager and lanculescu [HAl], [ IAl]) in which only the dynamics
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of the system are included in the dual functional and the state
constraints are handled explicitly.' The error estimates of the
solutions found at each iteration, however, rely on regularity
results for the full dual and so the two methods are closely
related. Both the dual and semi-dual methods have no exten-
sion to solve the general nonlinear SCCP since the methods
require that the dual functional be convex in its arguments.
This is not the case when nonlinear dynamics are considered
since the reachable set is generally not convex.

Lasiecka in [L1] considers a SCCP with delay wvery similar
to our own [ Problem P3 defined below ]. She formulates a
discrete control problem wusing finite difference methods and
approximates the feasible set in such a way that the discrete
control obtained from solving the finite dimensional approxima-
tion produces feasible trajectories for the original problem. No
method is given for solving either problem but the error between
solutions of the continuous and discrete problems is estimated.

Warga [ W2 ] has recently developed an interative scheme
which can handle nonlinear SCCP's. He ©proposes a feasible
directions method which extends Mayne and Polak's [ MAP3].
procedure to cover an infinite number of constraints. The method
requires a feasible 1initial point and all subsequent points
generated by the algorithm remain feasible. The procedure can
be programmed quite easily but the necessity for a feasible
starting point {s quite restrictive since no method of obtaining
such a point is given.

A feasible control may be obtained by a standard
technique of operating on the constraint and introducing slack

variables, see for example Polak [Pl], Zountendijk [ Z1 I,
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Luenberger [ LU2 ], Canon, Cullum and Polak [Cl]. The precise

method is as follows:

Introduce the slack variable a> 0 and consider the following
problem in IR xG

Min «
@,u

-

s.t.  —a.l+g(x?(1),1)20 for all t

where g: R"xT— IR is the state constraint and o.l denotes a
constant function of value o for all t.

This can be solved using Warga's iterative method. An
initial feasible point for this problem { a,,u,) may be chosen by

selecting any u € G and setting a, = max {g(xy",t),O}.
O<t<l

If «@,= 0 then we already have a feasible control for the
original problem and hence Warga's scheme may be applied to
solve it.

If a, >0, then Warga's scheme produces a sequence {ai,gi}
when solving the above problem in IR x G. Because of the
convergence properties proved in { W2 ] we must have ¢ 0 and
gi—*g EQ, with g(xg,t)so for all t, i.e. § is feasible for the
original problem.

However, the main disadvantage of this scheme is that in
general, a feasible point is guaranteed only after an infinite
number of iterations. This is somewhat of a drawback since it
may be required to perform an infinite number of iterations
before an attempt to solving the original problem can be made.

We propose to solve the state contrained control problem

[Problem P3 defined below ] using an Exact Penalty Function

method for which the foundations have been laid in Chapter 4,
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although a more usual penalty term will be used as discussed
in Appendix B. Our method, we believe, improves the approach
taken by Warga [ W2 ] since it will function for any initial point
regardless of being feasible or not. Also the procedure allows
for points outside of the feasible region to be generated as long
as a descent in the objective functional justifies it.

Before we proceed any further with our discussion we

formulate our SCCP and state the basic hypothesis assumed.

5.3 Problem Statement
In this chapter we will be considering the following non-

linear state constrained optimal control problem with delay:

Problem P3
1
Min s 1{x(t),u(t),t)dt (3.1)
by
s.t. X(t) = flx(t)},x{t-7),ult),t) for a.a.t€T (3.2}
x(t) = ¢(t) for all te[-1,0] (3.3)
glx(t),t) <0 for every t €T (3.4)
ueg
where G is the space of measurable relaxed controls. ¢ is as

before and the same terminology and notation as in previous
chapters is adhered to.

We make the following assumptions on the functions 1,f and
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Assumption 1

The functicons
f: R™ IR®x R™XT — R
1 : R%% R™xT — R

g : RPxT — IR

and their partial derivatives f_,f I ,f . f ,1 .1 18y 18
XXX VyTUyy T xy TTx’ xx =x

exist and are continuous on their respective domains.

Assumption 2

There exists an M € (0,=) such that

I fix,y,u,t) 1 =M {fIx ||+ [y [1+1}

for all x,y €R", all u€G and for all teT

and

Hfxhy bu, t)=-f0, y? o u, ) [ e M (L X" =X [+ ||y =y* ]}

for all x°* % l,xz,y'zEan, for all geg and for all teT.

5.4.1 Penalised Problem and Intermediate Problem

As in the last chapter we will use a penalty function to

formulate an equivalent problem. To do this we define Y:G— R by

vy(w) & max {g(x%(t),t),0} (4.1)
0<t<l
and for all K> 0 we define YK:9—~ R by
Lu
Y (w) & 13 (t),ult),t)dt + Ky(w) (4.2)

Now we define the following problem for all K> 0,
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Problem P3, : Min {vyy(u):u€G}

This will be referred to as the penalised problem.

Certain assumptions have to be made to ensure that
Problem P3 1is equivalent to Problem PSK (for some finite K).
These will be fully discussed later but for the moment we will
assume that the two problems are equivalent and try to solve
P3x using a similar method as in Chapter 4 (with some modifica-
tions so that the state constraint can be handled). For this

reason we define 5K:G—* R by

-~

8 (u) Bmin £, 1. (uw) z=Y(t)+allv,u) ]dt
K5 veg " X i
+K max {g(xg,t)+gx(xl‘l,t)zg’y(t),0 }
O=<tel
where lx(g) = 1x(x9,g,t)
Allv,u) = L{x%,v,t)-1({x%,u,t)
and z7'Y:T-— IR%is the solution of
z(t) = Ay(t)z(t)+B§(t)z(t—~c)+Af(\£,L~1) for a.a.t €T (4.4)
z(t) = 0 for all t € {-1,0 ] (4.5)
where AR(t) = fx(xg,yg,g,t) {4.6)
B2(t) = f_(x%,y%,u,t) (4.7)
8f(v,u) = F(xS,y%,v, 0-f(x%,y%,u,t) (4.8)

As shown 1in previous chapters =z LY is a first order
. v = .
estimate of x~-x~, and BK (u) can be thought of as being an

estimate of the maximum reduction in YK(Q).
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When solving P3y, é'K has to be determined at each
iteration. For this reason we refer to the problem of obtaining
é'K as the intermediate problem for PSK, denoted as Problem
P3K INT °

Now a method for solving P3KINT at each iteration is
required if PSK (and hence the original problem) is to be
solved. P3K,y. in the form described by (4.3) is very difficult
to solve because of the maximum being taken over an infinite
number of points. Therefore we propose to reformulate it using

the method proposed by Warga [ W4 ], into the following equiva-

lent form:

Problem PSK(g) :

1
Min  f, (1 (Wz2%(1)+alv,u)ldt + K8 — Ky (u)
x - e ~ -
y €6
8 E€IR
s.t. g(xg,t)+gx(xg,t)zg’y(t)—8.1£O for every t €T

g8 20

where B.l1 means a constant function of value g for all t€T.

This 1is similar to the linearized version of the original
problem P3, (which Warga [ W2 ] considers and solves),. but
because of the penalty term K8, our method does not require the
necessity to start (or stay) in the feasible region. This is the
essential difference in the approach taken by Warga and ours.

However, we will use a method very similar to Warga's to solve

P3K[‘;1)-
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5.4.2 Equivalence of Problems P3KINT and PSK(Q)

Before we proceed any further with presenting our method
for solving PSK(LI) we prove that Problems P3K1NT and P3K(g)

are equivalent as stated.

The two problems can be written as follows:

PSKINT :Min L(g) + Klb(}_f) -Kv(u)
v E€C

P3K(L_{) : Min L(‘f.) + KB -Ky(u)

veg
B€IR
s.t. V¥ly) &8
! u,v
where L(v) = j [lx(g)z~’~(t)+él{y,g)]dt
and p(v) = max {g(xg,t)+g (x®,0)z%¥(1),0 3
O<t <l X

Then we have for each ve G

L{v)+Ky(v) < L{v}+Ks

if B> !lJ(y). Therefore the solution of PSKINT, written inf (PSKINT h

is less (or equal) to the solution of P3K(}_l) [ denoted as inf (P3cw))].

) <& inf (PSK(.L})) (A)

i.e. inf (PSKINT

We also have for all v&G

L{v}+Kv(v) = L(v)+K8

where B(24(v)) is defined by B = ¥(v)

This implies that

inf (P3K(E)) < inf (P3KINT) (B)
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From (A) and (B) we deduce that the two problems have

the same solution, and are therefore equivalent.

5.5 Solution of Problem P3K(g)

5.5.1 Conceptual Procedure for Solving PSK(E)

OQur method for solving Problem PSK(g) is based closely on
the method proposed by Warga [W2 ] and we will discuss this
procedure fully.

Solving P3i(u)  essentially involves determining the

(B*,y*)ElR x G which minimizes

sl (w)z®” ¥(t)+a1ly,u) ] dr+Kg Ky (u)

ol 'x
over the set S(u), where we define S$(u) by
S(u) = {(8Yy) :820, selR,

g(xg,t)+gx(xg,t)zg’y(t )-g.1<0 allt, vEG }

This as we show below is a special case of problem II in

Warga [ W2 ] which we restate here for convenience:

Problem 11 in [W2]

Let H be a real Hilbert space, %= IRxH, the corresponding

Hilbert space with inner product
(a,x).(B,y) = aB+x.y

and let A be a closed, convex bounded subset of % Then

Problem 11 is

Min ({8 : (B,8)eA }
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We now show that Problem P3, (u) is a special case of the

above problem:

Let T & [0,1] and let ||. ||, be the usual norm of the
Hilbert space L*[ T,IR ]. It is easily seen that any compact
subset P of (C{T; IR 1, || 1 sup) is also a compact subset of
(L2 [T, IR 1, |1 - II,) and that in P, || . ”sup —-convergence and

Il . |I,-convergence are equivalent.
We also have by our assumptions of boundedness that there
exists a finite d such that

L

£y 11 (w)z% %481(v,u) Jdt+Ka-v(u) 2 -d

g(x%,t)eg (x7,t)z" 7.1 >-d all t,for all u,v €G, and

finite B8

This bound d will be dependent on the control u about
which the problem has been linearized.

Now for any u € G we define the following set A(u) by

1
Alw) = (s (1 (Wz" %+ a4y, u) ) dteKe ~K¥(u),

,g(xg,t)+gx(x9,t)zg’\f—;a.lnu(t)):
ve€EG , v €L’ [T,R],v €l 0,d(u)]a.e. in T,

g€ [0,d{u) ] 1

Then A{u) is a convex, closed and bounded subset of the

Hilbert space IR xL? (T, IR ]. It is clear (c.f. Warga [ W2]) that

1
Min (S, [1 (w)z="¥+ally,u)]dt+Ka-Kv(u) : (8,y) €S(u)}
V.8

~

z min (o : {a,0)€A(u))

where @ is the function which is identically zero. Thus P3.(u)
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is a special case of Problem Il above, and hence any method
which solves 1l may be applied to solve P?’K(E)' Solving Problem
P3y (u) involves determining the point (a*,§) € IRxL*{ T, IR ] as

shown in Fig 5.1.-

L? [T, IR]
A(u)
(a%@) a
R
Fig 5.1
Problem P3, {(u) always has a solution since yv = u and
B = Y(u) € S(u), in which case z = 0 for all t, setting

v(t) = g{x¥,t) all t we obtain (0,8) € A{u) for all nw€G.

We propose to use an iterative scheme similar to that
presented in Warga [ W2 ], but modified in such a way so that it
can be applied to solve P3K(y). This procedure which we refer to
as Procedure W will require finding a point nearest to the
convex bounded set over which the problem is defined {i.e. the
set A(u)) at each stage. We will determine such a point by an
application of another iterative scheme (referred to as Procedure
Y) which is nested inside Procedure W. The precise method for

solving PSK(Q) will now be presented.
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Procedure W

Step O :

Step 1

Step 2

A point x=(a,x(.)) € A(u) is required (this may be
chosen as (0, #) as discussed above), as well as a

g, <%, a* is the optimal cost for P3K(g)

Set a, = (o, ,8) elRxL*[T, IR ]

Set i = 0

Compute the point sfa,) = (s°(ai),s‘(ai)) in A{uw)

which minimises the distance to a;

j » together with the

control {f;._ and B, which achieve it, i.e.

i
s°(@)= A1 (wz ¥l u) ]dt + K8 -Kv(y)

- u u Wi g
and s‘(ai)(t)—g(x ytl+g (k= 1)z 8;-1

This is done by using the following Procedure Y:

Procedure Y

Step A : Set y, = x
Set j = 0

Step B: Compute Ty = (hj,nj(t)) € A(u) which satisfies

(yj—ai).rj S(Yj—ai).r for all r & A(u)
together with the Vi and Bj which achieve

it. The symbol "." denotes the inner product

in IR xL?[T, IR] by

(a,,b,(t)).{a,,b,(t)) = a,a,+4 b, (t)b,(t)dt

for all a,,a, €IR and b,,b, € L*[T, IR]

i.e. (y; -a;) is an inner normal to A{u) at

TS (see Warga [W2 ])

187



If r,=y., set =y., v,=v. and B8,= B, for
P73 17 1 175

1>} and return to Procedure W. Else continue

Step C: Choose A]. as any closed convex subset of
A(y) containing Y and £ (let Aj be the

segment joining yJ. and rj)

Step D: Compute qj as the point in Aj which

minimises the distance to ay

Step E: Set vy. 1= 4

I+ ]
Set j = j+1
Goto Step B
Having obtained y_=s(a,), Ei = _, —Bi =8_
return to Procedure W
Step 3 : If s°(a;) -0, <0, set o/=0, v, =y, 8,=8 for all

1>1i and terminate Procedure W. Else proceed to Step 4

- 1
Step 4 : Set o, , =s°(a,)+(s°(a;)=0. )7 4 [ s(a,) (1) || *dt
Set a; = (o5, @)
Set i = i+l
Goto Step 2

This algorithm is illustrated in Figs 5.2 and 5.3. Fig 5.2
shows how the shortest distance from a; to Alu) is determined at

each stage and Fig 5.3 shows how the solution to Problem P3y (u)

4=

is found.
It is proved in Warga [W2 | that if Procedure Y constructs

points y ., ¥ ,»¥,++-.., then lim y. = s(ai) for each i.

j—»m
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L* [T, IR}

L*[T,IR]

Fig. 5.2 Procedure Y

solution={g*,d)

Fig.5.3 Procedure W




It is not difficult now to show that v, —Y, i.s.c.m. and

sj——v-Ei are the values of (v,B8) which achieve s(ai).

Also, procedure W has the following convergence properties

(again proved in [W2 ]).

Theorem 5.1

Let o0,,0,,9,,.... be constructed by Procedure W. Then

g. < o* i=0,1,2,...
i i+l
and lim a. = lim s(ai) = (a*,d)
{—+m i—+ew

However, before Procedures W and Y can actually be

applied to obtain the solution to P3K(g) a number of difficulties

must still be overcome. These are:

1. The bound d(u) € (0, =) which satisfies

1

711wz ¥ )+ ally,u) Atk 8K v (u) 2 —d(u)

g(xg,t)+gx(x‘5,t)z9’ Lt)-gl> -d(y) all teT

for all v € G is required.

2. The starting point ¢ which is less or equal to a* is

required, i.e. the starting point must be to the left of

the set A(u) on the cost axis.

3. At step B of Procedure Y we must find a point

r. € A(u) which satisfies (yJ. -a;).r. < {y.-a;).r for all

J 177
r € A(u) for a given yj » a;. This means for a given
p=(pip?(t)) € RxL*[T,IR ] = we need to find

r(p) € A(u) such that

p.rip) < p.r for all r € A(u)
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At step D the point qj € Aj which minimises the
distance to a; is required.
We will now show how these problems are dealt with.

a. The constant d(u) may be set to be

d(u)=—inf K 8-Kv(y),g(x%,t)-8.1, te€T

8€(0,d,(u)]?
-inf{d ,(u),d, (t); t €T}

where d,(u)= max g(xE,t)+gx(xE,t)zg’E(t),O}
O<t<l
VES

There is no need to consider B greater than this

since the larger the g the greater the contribution

to the cost.

Also d,(u) = f min [lx(u)zl-‘-l’\5+51(v,u)]dt
"veg 77 T
d,(t) =  min g (¥, t)2%% (1) teT
veG

This just gives the lowest value that any

point in A(u) can take.

b. o, may be chosen as -d(u}, hence it can at most

be on the boundary of A(u).

For any p=(p,p’(t)) € Rx L?[T, IR], we need to

find r{p) € A{u) which solves min p.r
r €Au)

Now since

1 . u,v u
Alu)= (s [1x(u)z~’~+A1(v,u) Jdt+KB8 Ky (u),gix~,t)
b \ b il b

+gx(xg,t)zg’y—8.l+v(t)) :
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:ve€G, 8€(0,d,(w)},vel?[T, R],

v(t) € [0,d(u)]a.e. in T }

the above problem reduces to

in (pIp¥t)). (4, T (w28 Y aly,u) 1t s K v(y),

< mid g

—
—+

] g(xg,t)+gx(xl~1,t)zg~’\f--8.1+v(t))
u)] a.e. in T

1
= min pY/ [1X(E)ZL“1’Y+AI(\£,Q)]dt+KB-Ky(l;1)}
a

+ S, 1p2 (t). (g(xg,t)+gx(xg,t)zg’Y—B.l.w {t))dt

1
= min (Kp- £ p? (t)dt) 8+ 4 p (t) wlt)dt
Y_,B,U 1

+py [1 (w)z% %4 8l(y,u) 1dt ~pKy(u)

1

+ 5, p* (1) (g(xg,t)+gx(xg,t)zg":)dt

This gives the solutions to B and v to be

™

—_
ol

<
1}

0 or dl(g)

<
d
-
i

0 or d(u) for every t €T

depending on the sign of their respective coefficients.

Hence it remains to solve

1
min P‘fu [lx(g)zg!\i+al(!,g) ]dt+fu pZ (t)gx(xg,t)zl_]’! dt

where z>'- is the solution to the difference-
differential equation defined by (4.4),(4.5).

Using the Maximum Principle for delay systems
and the properties of relaxed controls (see Chapter
1) it is quite easy to show that a minimising
control v (p) €G can be obtained by setting v (p)=§

w

(measure concentrated at a single ordinary control
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w(t) where for each t €T, v(t)=w(t) maximises
b0 T2, y2,80u(t), 1) + p'1(x¥,8Qu(t), 1)
and Vy:T—— R is the solution of

\PT(t) = fl ‘EJT(S)AE(S) + ¢’T(S+T)BB(S+T)

1

+5, [p'1 (W+p*(s)g (x%,5)]ds

for all s €[0,1- 1]

oTt) = 1. 9 (s)A%(s) ds

+ 5 [p‘lx(gh-p2 (s)gx(xg,s) ]ds

for all t €[1-1,1]
v(l) =0
Thus the necessary point r(p) € A(u) is given by
ripl= {5 [1 (u)zli".’.(p)(t)-mlfy(p),g)]dHKB(p)-KY(g),

g(x, t+g (x2,02% YP e 4 (o). Levip) (1))

The point q, € A. which minimises the distance to a;

can be obtained as follows:

Defining A . to be the segment joining yj and rj we
have the situation as shown in Fig. 5.4.
Now any point in the segment RY (i.e. the set

Aj) can be expressed as

q = (1_6)yj + srj for 6§ €[0,1]
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and q yj when §= 0

rj when §=1

We want to calculate &= 8.in S° that q minimises the
distance AQ . By the projection theorem, see Luen-
berger [LUl], this occurs when the inner product of
AQ is orthogonal to RY, i.e. § is determined by

solving the following:

(a;- [(1—_6)y].+ 6rj] ).(r].-q].) =0

Now if a,=(s, @), yj=(a,x(t)) and rj=(h,n(t)) we get

({o, @)~ 1{1-8) (e, x(tH+3(h,n(t))}).((h,n{t))~(a,x(t))=0

([o-(1-8}a=3h ],{-1+8)x (t)-8n(t)). (h-a,n (t)—x(t))=0

Using the inner product in the * Hilbert space

RxL?*[T, IR) as defined above we get

1Q/4




[6-(1-8)a-8h J(h—oa)=((1-3)x (t)+3 n{t}). ( n{t)-%x (t))=0
i.e.

[0 —a=F (h= o) 1(h= &= fo (x ()+F(n(t)=x(1)) (n ()= x(t))dt=0

(0 - o (hea)=(h=0)2 o 3 (t) (n (t)=x(t))dt
T 5y (nlt)= x(1))?dt=0

Therefore

= . {9-)(h- @)= 4 X(£) (n (D)-x(t))at
(h=0)?+ £t )-x(t))2dt

Thus we get

5 . = 0 if & <0

min
= & if § € (0,1)
= 1 if §>1

This determines the required point q]. at each stage.

5.5.2 Implementable Procedure for Solving Problem PSK(g)

Although Preocedure W can be used to solve Problem PSK(Q),
it is quite obvious that the method 1is conceptual since it may
require an infinite number of iterations to obtain s(ai) for each
i. We therefore present now an implementable version (Procedure
W, ) of the scheme where the (infinite) Procedure Y is truncated
after a finite number of steps according to a specific test.
Before we present the implementable procedure we need to say a
few words about the terminology which we will be using. For

any point a € IR x L ?{T, IR], Procedure Y, starting from any
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point y € A(u), constructs a sequence te, (a,yl} € Alu)

converging to s{a), and when stating Procedure W we shall

1

refer to such sequences directly.

Procedure W,

Step 1 : The following data is required:
A point x,= (“a’xu(')) € A(u) together with the v,

B, which achieve it, o¢,< a*, a number M €(0,1)

Stepl : Set a,= (¢ ,,0) € Rx L *[T,IR]
Set i=0
. : _ o 4t — _
Step 2 : Define Ay = ().i,xi(t)) = X;-a,
] - o
1f Apo< 0, set p; = ( A ) A and compute

bi= (b"i,b; (t)) € A(u) which satisfies

P;-b;<p by for all b€ A(u)

together with the ¥(p,), 3(p,) which achieve it (this
can be obtained by the method described in the last
section). Then goto Step 3.

Otherwise proceed to Step 4.

Step 3 : 1f }‘;<O and pi.biz_ci+M|Ai|
set o,y = PBbysagy =00
Tivl X4
Yiel 7Y
Bl T8y

set 1 = i+l and goto Step 2

Otherwise proceed to Step 4.

Step 4 : Determine Ej{ai,xi) for j=1,2,....
1f for some integer j, the conditions in Step 3 are

satisfied with X replaced by Ej (ai,xi) terminate
. 3
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this internal iteration and set o . =g

i+l i
Xio1 = &y, ey
set v . and B8, as those that achieve
~ i+l i+l

Eju (ai’xi) in A(u)

set i = i+1 and goto Step 2

We shall say that Procedure W, stops at N if GStep 4
applies for i=N and a j, does not exist.
It is shown in Warga [ W2 ] that Procedure W has the

following properties.

Theorem 5.2

Since Problem P3,(u) has a solution Procedure W, does not

stop at any j and lim ©¢,=@* and lim x; = (x*,g)
1 i
Remark 5.3
The above theorem shows that since X; = (ai,xi_(t))

converges to (a*, @) we must have that for any s > 0, there

exists an i, such that

-a* || =6

and Hxi(t) I < 8 for all i21i,.

L.,
This property will be referred to directly when we present

our implementable procedure for solving the original Problem P3.
Hence using either one of the two Procedures W or W, we

.

can obtain v*, g* which solve the intermediate problem P3K (u)

~

together with the optimal cost a* = GK{u).
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5.6 Equivalence of Problem P3 and P3x

Before we can proceed any further to solve P3 we need to
present some hypothesis which will make our procedure well
defined. These are analogous to the ''constraint qualifications"
in Chapter 4, which, in our opinion, are somewhat awkward
even in problems with a finite number of constraints.

We propose a different line of attack which will guarantee
that Problems P23 and PSK are equivalent for all K >K* for some
K*, This is achieved by imposing a certain calmness condition
on P3. This hypothesis although wvery simple at first sight has
profound consequences as we shall shortly show.

First, however, for purposes of motivation, we consider a
finite dimensional optimization problem subject to an inequality

constraint, i.e. consider

Problem F Min g°(x)

where X CIR™ is closed and g’:x— IR , j=0,1.
We define a family of optimization problems by
n(e)? min{g’(x):igi(x) < a } (6.1)
It is obvious from the definition of n that it is monotone
decreasing with increasing a, i.e. n{0)2> n{a) for o > O.

Suppose n(0) is finite and that there exists a finite ¥ > 0

such that
n{a) = n{Q) - Ka for all a (6.2)

This is true if n is bounded from below for all o, see Fig 6.1.
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n{a)
n(a)
’ N\n(0)-K o & ——
Fig 6.1
Now we consider the following problem:
Problem F

K
Min g°(x) + K ¥(x) for K 20

where ¥(x) = max {g'(x), 0 } .

Now choose a R>K and let x minimise
x——g "(x) + K v(x)
The following inequality holds
g (X)+Rv(X) 2 min {g'(x):g* (x)<¥(x)} &Y (%)

This is because we have

from the fact that for x=x equality is achieved. Hence the
minimum on the right hand side is at most equal to g°(x), and
another x, € X may exist which does minimise g® (x) and also

satisfies the constraint g'(x,) <y (x). Hence we have
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-~

g (X)+Kv(X) 2 n(y (X} )+K¥(X)
From above we have n(a)2 n(0)-Ke for all e, i.e. we have
n{y (X)) 2 n(0)-Ky (%)

Therefore

~

g ((F)+R 1T 2 n(0)+(R=K) v(X) (6.3)
Also since X minimises x—g°(x)+Ky(x) we have

n(0) = min {g°(x):g*(x)<0} > g (X)&Kv(X) (6.4)

This is because for any feasible x on the left hand side of

inequality, i.e. any x such that g'(x) 20, we have
g *(x) = g (x)+K¥(x) 2 g (X)+Kv(x)  for all x s.t. g'(x)k0

Hence we have

But from (6.3) we have

Hence we deduce that
n{0) 2 n(0) + K-K)v(x)
i.e. (K-K) v(X) <0

Since K>K we must have v(x)<0, but Y is non-negative by
definition and hence ¥{X)=0, i.e. X is feasible for problem F.

Therefore from (6.3) we get, by letting v(X) = O that
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But (6.4) gives n(0) 2 g° (%)
Hence g *(X) = n(0)
i.e. x is the solution for problem F.

T herefore we deduce that by choosing K sufficiently large
(K>K as shown above), we can solve problem FK by selving the
unconstrained problem FK’ i.e. FK is equivalent to F for K>K.

Now we consider the real problem in question and derive

conditions to 1impose on it so that P3K is equivalent to P3.

Problem P3 is

min fo‘l(xg,g,t)dt
4 €5 u
s.t. glx®,t) <0 for every t

where x¥T—IR" is the solution to the delay-differential equation

x(t) = f(x,y,u,t) a.a.teT

x(t) = o(t) for every te€[-1,0]

We start by defining the following family of optimal control

problems:

min {f'1(x%,u,t)dt : gx5,t)<a,teT}

Obviously problem P3 is embedded in this family and solving P3

may be regarded as determining the value x(0)

He-

Letting 1(u) J'O‘l(xg,g,t)dt

and v(y) & max {g(x%,t), 0}
0=2t<l
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The following assumptions are made on X.

Assumption 3

x{e)-x(0)

(i) lim inf { &————— } = -K,
a +0 @
for some K , € (0, =) (6.5)
(ii) x(0) is finite (6.6)

This assumption is known as calmness as defined by Clarke
[CL1 ] and basically means that the rate of change of minimum
cost at a=0 is not infinite for the problem in which g{(x(t),t)< o
for all t&T replaces g(x(t),t) <0 for all t €T.

As proposed in the text we intend to solve P3 by solving
Problem P3K defined by

min  {1(u)+Kv(u}? forK > 0

u €G

Hence it is necessary to select K sufficiently large so that

a solution that minimises u— 1{u)+KY(u) is also a solution to
x(0) = min {1(u) : Y(g)< 01}

We will first show that the family of problems X
defined above need only be considered for o € (0, o, ) for some
,>0 for K sufficiently large. For example consider a sequence

of problems:

Pe = min {1{u) + Kj y (u) 1}
) 4
where KJ.—-—*m as j— » . Then we claim that the penalty

T(gj)———'o as j—= for the minimising control g for each fj.
To prove this, we assume to the contrary that as K].————-\-m,

Y(L_l_j)—“—"r5> 0 then
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lim inf {1(u )—kK—jY(g)}

j-—-tm

Now from (6.4) by wusing the same arguments as for

Problems F and FK we deduce that

x(0) = l(gj)+KjY(gj) for all j
Taking limits of both sides we get

x(0) 2 =

But x(0) is finite from (6.6), hence we get a contradiction

and so we must have Y(}_l )——0 as KJ.—-—* = and attention can

be limited to arbitrary small e when studying the family x

provided K is large enough. Now we show that for K=K> K, ,
there exists an «,>90 such that
X(a)-X(0) > -K for all o« €& (0,a,] (6.7)
a

To prove this we assume this is not true and obtain a

contradiction, i.e. we have sequences {Kj Y, {uj} , Kj> Ky all j

and KJ.—-H», ch.—*O as j—= such that

x( a}-x{0) < -Kj for all « € (O,Gj]

a

Taking infimal limits of both sides we get

lim inf ¢ xlet=x(Q)

j— a

< 11m inf (—K]) = —m

j—»m

This gives

lim inf {
a + 0 o
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This contradicts (6.5), hence hypothesis (6.7) must hold.

Now as we have shown that by choosing K sufficiently
large we can restrict attention to small enough ¢ and exactly
the same procedure as for Problems F and FK gives the required
result that solving P3K gives a solution for P3. The only

difference in the arguments is that for Problems F’FK

n{a) 2 n(0)-Ka holds for all @ but under our assumption

(6.5) for the control problem P3 we only have
X(a)-X(0) 2> -Ka holding for «€(0,a,]

This does not change the results since for K large enough
then Y(l_._lj) is arbitrarly small and the same formulae hold for
both cases. This 1is shown diagrammatically in Fig 6.2. The
essence of the diagram 1is that from (6.5) the slope of ¥
approaches -K, as a+ 0 (i.e. a decreases to zero). Therefore if
a line of greater slope (K >K,) is drawn at X(0) then the graph
X will lie above X(0)-Kao for o € (0,a,] for some o, > 0. This

is clear from Fig 6.2.

X{a)
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Therefore Assumption 3 guarantees the equivalence of
Problems P3 and P3y for K zK* for some K* € (0, =).

However the problem of obtaining K* still remains. K * can
be determined in principle by obtaining necessary conditions of

optimality for Problems P3 and PSK and comparing the results.

This is done in Appendix D.

5.7 Desirable Sets for Problems P3 and PSK

Our algorithm for solving Problem P3 will find controls
u* € G satisfying Y(Lj*)=0 and the Maximum Principle in Appendix
C. This states that if u* € G is optimal for P3, then there exists
a scaler 1,40 and a function »€NBV[T; IR], not both zero such

that

L o

Ao fnl[lx(u*)z‘i‘"'Y(t)m(v,u*)]dt+ fg‘gx(X*,t)zg' Y (1)da(t) < O

-~

for all v €G

with A nonincreasing and constant for t € I, where 14 (t e T:
g(x*,t) <0 }. We will only consider normal problems, i.e. ones
with 1,<0 in which case it may be normalized to -1. This can

be done by making the following hypothesis:

Assumption 4§

For all u €G there exists a controlv € G such that

g(xg,t)+gx(x9,t)zt~1’1’(t) <0 for all teT

We prove that with this assumption r,= 0. Assume to the

contrary that A,=0. Then » is nonzero and we have
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L

ot g (x*,0)z8 X (t)dA(t) <0 for all v €G
Since A is constant for t €1 we have

* u*:v
J'% gx(x",t)r' “(t)da(t) < O for all ve€G

where 1 = TA\I.

Let ¥* be the control that satisfies

-t
*,!..

g(X*,t)+gx(x*,t)zg (t) <O for all tE€T

such a V* exists due to Assumption 4. Then for tel (i.e. when

g(x*,t) = 0) we have

% !Y.*

g (x*,t)z8 =T (1) <0

Hence since X is nonincreasing we must have

* u*,v*
LI. g (x*,thz (t)da(t) > O

This contradicts the Maximum Principle. Therefore A1, & 0

and may be normalized to -1.

In view of the above discussion we define the desirable set

of Problem P3 as follows

& = {u*e€G: yv(u*) = 0 and u* satisfies the State

Constrained Maximum Princple } (7.1)

As in Chapter 4 we assume A is nonempty.
Similarly for the family of Problems P‘?k’ K20 we define the

corresponding desirable sets by

€G : 8§, () =0 ) (7.2)

[
ne-
i

o
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From Appendix D if 1€ G is optimal for P3K then

)zl:lsy

No L1 (R, Gt +81(v,0) Jdt+ 4, 'g (%(t), 1)z ¥ da(t) <0

for all v&€G
where T.V(x) < -3, K
and A 1is non increasing
g,

Let J(v) € T be defined by J(v) & (t€T:g (&,)2~"7(1)<0} and let

J(w & T\](V)
i.e. j'(y)'g {t ET:gx(Q,t)zg’!(t)ZO }

Then the above becomes

1,,!0[1x(§)zg’!+al(v,§)]dt+ s g (&,0)z= Z(0)dx (1)
Tn]
+ 4 (% t)zﬁ“’!(t)dk(t) <0 for all v €G
Tn]gx ’ ~ o2
Since * 1is non increasing
s g, (%, 025 (DdA(t) 2 0

TN (V)

Therefore we get

1=

A Jrol[]- (Q)Z ¥

5 vy (2. 1),0Y
< +A1(y,g)]dt+ITn]gx(x,t)z {t)da(t) < O

for all v E.S%

-

This can be written as

Ao 1 lx(ﬁ)zg’y+al(\_{,§)]dt+fo Imax { gx(i,t)zg’\'{(t),o 1 da (£)<0
t

for all v Eg

Now [/, max { gx(ﬁ,t)zg’y(t),o Tda(t)
t ~
cmax  {g_(%0z0(0,0 1 41da(t)]
0<txl X

It follows from this inequality that
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~

LD YL@ Tt max (g, (.02
stel

e

W(t),0 3 TVGR ) <0

for all v€G

Substituting for T.V(A) and using the fact that A, =-1 for normal
problems we get

~

M1 ()28 Y l(v,0) 1dt+ K max (g (%,1)2%°7(1),0 320

O=st<l
for all v €G (7.3)
where equality holds for v=i
Now
3.(8) = min 4 [ (D25 ¥(1)+al(y, B)]dt
- X ~ - -~
LEG .
_+ K max | g(ﬁ,t)+gx(§<,t)zg’!,0} -Kv (1)
0=st=l
< min 4 'L @)z % (0)+alh, D) ]dt
vee «
+ K max {gx(ﬁ,t)zg’y(t),o }
O0s<t 21

It is thus clear that _@EAK.

We alsc have the following result.

Proposition 7.1

Suppose u* € A& then there exists a K* € [ 0, ) such that
é'K(u*)=0 for all K >K=,

~

Proof

Since u* € 4, we must have Yy (u*)=0 and there exist 2,

»

A in the Maximum principle such that

o
i

Y . Y
Moot (w2 L aly  ue) Tdee g i (xx 1) 2% Y

(t)da(t) <0

for all ve€G
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Since Jf,g{x*,t)dr(t)=0 we have

xuf,,l[1x(g*)z‘%*'l’+a1(g,g*) ]dt+ful[g(x*,t)+gx(x*,t)z}f"'-Ym]cu (t)< O

for all v eg

Using a similar procedure as above we deduce that

I o‘[lx(g*)zg'*’-}; al(v,u*) ldt+T. V(x ). max {g(x*,t)+gx(x*,t)29*’\i,0 }

Ost<l
20 for all v €G (7.4)
Now by definition we have
§K(u*) = min J‘u‘[lx(g*)zg"’Y—(t)+A1(\_{,9*)]dt

VEG

s K max { glx*,t)+g_(x*,1)2% 7¥,01 (7.5)
0<t<l x

since y(u*)=0. It is clear from (7.4), (7.5) and the results in

Appendix D that, if K>T.V(a), then

i.e. for K* = T.V(a) we have that

Q*EAK for all K>K* as required.

5.8 Algorithms for Solving P3,and P3

An algorithm for solving PSK based on the Algorithm N"Iodel
1 in Chapter 2 will be presented in this section. After proving
convergence we shall modify it so that it can be used to solve
Problem P3. This will be done by adding a rule which increases

the penalty parameter K if certain conditions are satisfied.
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5.8.1 Conceptual Algorithm for Solving P3x

Step 0 : Select a u,€ G,K »0

Step 1 : Set i=0

Step 2 : Formulate Problem PSK (gi ) and solve it using
procedure W to obtain its solution (Bi s Yy ) e 5(}_11)
together with the cost ny

Step 3 : 1If ni=0, set gj=gi for j>i and stop
Else continue

Step 4 : If n; <0, define for « €[0,1] the control ug(l-du, @ ov,

Step 5 : Compute o € [0,1] which is the largest number which

satisfies
& m,
ii
YK(l:l_ai) - YK(gi) < >
Step 6 : Set u, ., = Y,
Set i = i+l
Goto Step 2

The above algorithm has the following convergence properties.

Theorem 8.1

Assume all the hypothesis stated above are satisfied, then
Algorithm 5.8.1 generates a finite sequence of controls, in which
case the last element is desirable, or it generates an infinite
seqﬁence and every accumulation point i.s.c.m. is in AK .

The proof 1is similar to the ones given for earlier
algorithms in this thesis so we do not go into too much detail
when presenting it below.

To prove Theorem 8.1 we will require the following results:

Proposition 8.2

The function §K (for all X>0) is sequentially continuous



i.s.Cc.m.

Proof
Consider an infinite sequence {u, }1:0 € G converging

i.s.c.m. to u*e€gG, i.e. we have

Then we need to show that as i + =

5 () ————— §_ (u*)

K'<i K
Define for all K>0, by 1GxG— R by

vl ) = ML (w2 e iy, w) ldt

+ K  max {g(xg,t)+gx(xg,t)zg’y(t),O}—KY(Q)
Ostsl

Using results in Chapter 4 and Appendix A we deduce that

u . . . .
u —— x~ 1is sequentially continuocus, hence 1, 1x’ g, g, s

sequentially continuous in u and z is sequentially continuous in

(l;l,y). Therefore ¥ (u,v) is sequentially continuous (in (u,v)).

K

But ] (1:1) = min ¥ (g,v)

The rest of the proof that §K(B) is sequentially continuous

i.s.c.m. follows exactly as in Proposition 3.1 in Chapter 4.

Proposition 8.3

For all ve G, all «€[0,1], K>0, with u as defined in

Step 4 of algorithm 5.8.1 we have

Ayelug,u) < a By (u)

211



where we define AAYK:QXQ — IR by

-

85, (wu) 2 51 (W2 ¥+ a1y, w)deK max  Tg{xt,thg (x¥,1)29Y,0}
K== X" T o<t x

-Ky (u)

Proof

By definition we have

¥y (uu) =5t {1 (2% ¥ o (0)+81y ,u)]dt

+ K max  {g(x=,t)leg (x7,t)z7'7e(1),0} K (u)
0 <t<l B

Now from Proposition 2.6 in Chapter 4

az% "5 (t) = zn7Re(t) for all 1 €T
where u, = (l-¢) U @ av

Hence we have

Yy ) =o k1 (W25 Yl (g, u) ] dt

+ K max {g(xg,t)-Y(u)mgx(xg,t)zy’Y'(t),—Y(u)}
O<t<l

Now for all «&([0,1 ]

Using this and substituting for &g (u) we get

8y (u s u) 2 asp ()

as required.



Proposition 8.4

For all u ,v €6, all « € (0,1}, K >0, such that

u, = (l-a)u @ oV we have

I 8yl u) - % (u_,u) ] do’

7

for some d € (0,=)
where ANYK:QXQ——* IR is defined by

I}
<
-~
<
|
-
=
=

Proof

ave(ww) = A LR,y L 1)-1(x%, g, 1) Tdt

Adding and subtracting A?K(ga,g) on right hand side and
expanding 1(x 2¢ U o,t) and g(x¥e ,t) by Taylor series about

u .
X~ and rearranging we get

"=
c

A"YK(Q_-G‘,Q) < A,}YK(

+ fo‘{lx(g)(x~ —X~—z~ '~

+ K max - {g_(x%,t)(x5%-x2-z% ¥y o

O<tel
u U2
+ K max g (x<§t)(x=%x=)
0<tgl T IXX » 0%
2
where x2e8(1-e)x%ex¥%  for some €€(0,1).



By boundedness of 1x’ 1 for all u, vy €G, all

xx’ Sx* Bxx
finite x we have that there exist finite constants d,, d,, d,,d,,

d; such that

~ ~ u u _u,u
[l AYK(QG,QG)—AYK(QG,Q) [| € JoMd, || x*%—x<—z="=%]

+do | XM x® {2had s B XM Y 4at

+ K max 4, || xg’“—xg—zg’gﬂn
O<t<l

+ K max ds || x¥e_x3 |2
O0=<t<l

Now from Proposition 2.5 in Chapter 3 and Proposition 2.7

in Chapter 4,
I x¥* (1)-x2(t) | < dea
I xFo()-xR () -z2 %) ] < d, o?

for all u, v €G, o € [0,1] for all t€&€T
for some finite ds, d,.
Hence we deduce

-~

-~ 2
Ilavy (u )=y (u Wl <dao

for some de&g (0,=)

Note wusing Proposition 8.3, if v 1is a minimising control in

6k (as in algorithm) we have

Ay, {u_,u) < a8 (u)+d ol for all « € [ 0,1]

Proposition 8.5

For all u€ G which are not optimal for PSK (i.e. 5K(},1)<0)

the step length o, defined in Step 5 of the algorithm is
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strictly greater than zero.

The proof of this is exactly the same as for Proposition 6.4
in Chapter 4.

We deduce Theorem 8.1 from Propositions 8.4 and 8.5 by the
procedure used in proving Theorem 6.1 in Chapter 4.

We see that Algorithm 5.8.1 produces controls u* € G which
are desirable for problem P3,, i.e. EK(E*)=O. We modify this

algorithm now so that it may be applied to solve the original

SCCP P3.

5.8.2 Algorithm 5: Conceptual Algorithm for Solving Problem P3

Data T U, €G, 0<K,<K;<..... lim K, = =
= 2 ; ]
Step O : Set i=0
Set j=0
Step 1 : Formulate Problem PSK. (Ei) and solve it using

J
Procedure W to obtain its solution (Eii , Vi) ES(ui)

together with the optimal cost 5K (u.}

]

Step 2 : (1) Lf (21)20 and Y(gi)=0

8
K.
J
set Uy = u, for 1>1 and stop
Else continue

(11) If 'éKj(gi)ZO and Y(gi)>0

set K. = K,
J j+1

set j = j+l1

and goto Step 1

Else continue
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Step 3 : Define for ¢€[0,1] the control
Uy = (-ey; @ oy,

Step 4 : Compute @, as the largest number in [ 0,1} which

satisfies

v (g Do () < ey B (uy)/2

q.ui

Step 5 : Set Yiq = gai

Set 1 = i+l

Goto Step 1

We now come to Theorem 5 which states the convergence
properties of Algorithm 5 and is, we judge, the central result

in this thesis.

Theorem 5

Suppose all the assumptions in the text are satisfied and
that every 'linearized problem" is calm# {c.f. Assumption 3 and
succeeding remarks) with a common constant K, . If Algorithm 5

generates a sequence of controls {u, 1} in G then we have the

~

following: either

# By the "linearized problem'" we mean Problem P3 linearized
about some control u €G, andis the following:
Min  £[1 (Wz2'Y(t) + al{v,u)]dt
X< P

vEG u u u,v
T s.t g(x~,t)+gx(x~,t)z~’~(t)<_0 for every teT
where z ~'% is the solution of (4.4), (4.5) and everything
else is as in the text.

The assumption that this problem 1is calm for all u€G

essentially means that the problem PSK('L:‘}) has 8=0 as its
solution for K>K,, K finite.
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a. The sequence 1is finite (in which case the sequence
{Kj } 1is also finite, and the penalty parameter remains

finite) and the last control is desirable for problem P3.

or

b. The sequence {u;} is infinite and the following holds:

(1) The algorithm constructs only a finite sequence

{Kj}jEO i.e. Kj is only increased a finite

number of times after which it remains constant

at K N<=ﬂ.

(ii) Every accumulation point u* € G i.s.c.m. of the

sequence {L_;i }i—O (at least one exists due to
results in Appendix A) 1is desirable for Problem

P3, i.e. u*€4.

Before we present the proof of Theorem 5 we state a result

we will need:

Lemma 8.6

For all K20 if u*€4, and Y(u*)=0 then u* €&,

K

Proof

Since Y{u*)=0 it satisfies the first condition for u* to be
in A. Now since we alsc have u*EAK, i.e. u* is desirable for
Problem P3 . :ﬁ»eK(E‘"):O.

Then from Appendix D (the Maximum Principle for Problem

P3..) there exist x»,€IR, A €NBV[T, |R] such that

K
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e
u~
~

Mld [ 1 (u%)z ’Y(t)+nl(~,y*)]dt+f3gx(x*,t)zy*’y(t)dx(t)gO

for all vE€G

where 1,<0, X} non increasing and constant on t €I 4 {tEeT:
g(x*,t) < 03.

These are precisely the necessary conditions of optimality
for Problem P3 (as mentioned in Appendix D). The only
difference 1is that here there is no statement which says u* is
feasible for P3. But from the hypothesis in Lemma 8.6 this is
assumed to be true,.

Therefore 13* €A,

Proof of Theorem 5

a. Suppose Algorithm 5 generates a finite sequence of
controls {Ei }irilo . Then the iterative procedure can only
terminate if condition I in Step 2 1is satisfied, i.e.

-~

BK(gm):O and Y(gm)=0. This means u_is feasible for P3
and by Lemma 8.6 we have that it is also desirable
for P3.

Now we assume that Algorithm 5 generates an infinite
sequence {gi}i:o € G. Then by the compactness results
in Appendix A there exists controls u* &€ G (at least one
exists) and a subsequence of {Lli} i:() indexed by
MC{0,1,2,... } such that

g* i.s.c.m.

We will prove that all such limit points are
desirable for Problem P3, but first we show that the

sequence {Kj} of penalty parameters remains finite,
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i.e. Kj is only increased a finite number of times. To
do this we only need to show that there exist some
finite K*<= such that for all K2K#* the condition which
requires K]. to be increased is never satisfied, i.e. in

Step 211 of algorithm.

The penalty parameter needs to be increased if the U 's
are converging to a control which is not feasible for Problem P3.
This just implies that the Kj is not large enough to satisfy the

calmness hypothesis.

What 1is required at any point where §K (ui) > 0 and

J
Y(ui )>0 is that a descent direction exists, i.e. the value of the
penalised cost can be reduced. We show that this is indeed the

case.

Assume (B8., v. ) €5(u.) is the solution to &, {(u.) and
i ~1 ~1 K. ~1

Y(gi)= §>0. We can assume that Bi=0 since it can be made to be

so by choosing Kj to be large enough (see footnote on page 216).

Then we have

' 4i»Vi _
L1 (u)z +8l(v.,u,)]dt K820

1

. U;: ,Vs: _
Let J, [1x(lfi)z"’1 ~14+8l(v,,u ) ]dt = d

and suppose we have
dl—Kj6=d,_ for d, >0

(d,~d,)

Then for K> (u,} <0.

we have §
eK <1

§

Hence  since éK is an estimate of the maximum reduction of the
penalised <cost, a descent direction exists if the penalty
parameter is made large enough.

We have just shown that Algorithm 5 generates a finite



sequence {Kj } N after which stage B =0 and condition 2II is

=0

never satisfied —— so K]. is never updated. Then Algorithm 5

reduces to the subalgorithm for solving Problem PSKN. This we

have shown converges to a control y* € G satisfying EKN (u*)=0.

Since as mentioned above we never have §KN(gi)=O and Y(gi)>0-
we must have v(u*)=0.
Therefore again using Lemma 8.6 we deduce that this limit

control u* is desirable for P3, i.e. u* €4,

5.8.3 Implementable Algorithm for Solving Problem P3

It is quite obvious that Algorithm 5 cannot be implemented
on any computer since each iteration requires exact solution of
an intermediate problem. This in turn may require an infinite
number of iterations to compute and hence some modifications to
Algorithm 5 are required if the method is to be used to solve
any problem numerically.

In this section we present such modifications and obtain
an implementable version of Algorithm 5 where the intermediate
problems are only solved approximately. These approximations
are increased indefinitely to ensure convergence to desirable
points for P3. The procedure obtained is still conceptual since
exact integration of delay-differential equations is assumed but
the computation is reduced drastically since a finite number of
iterations are required to solve the intermediate problem rather

than an infinite number.

Algorithm 6
Data : U, € G, 0<K <K,..... 1i]m K.==
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Step O
Step 1
Step 2
Step 3
Step 4

Set i = 0
Set j =0
Formulate Problem P3¢ (gi) and solve it using
procedure W, to obta:;in its approximate solution

(B , v,) €S(u,) and approximate cost n, 1in the

sense that

[| w8
1

g e =

]

Il x (Ol <8,

where xi(1:)=g(xl,t)+gx()~c1,t)zgi DAY Bi.l+vi(t)

{(This as shown in section 5.5.2 is achieved after a

finite number of iterations.)
> ¢ >

If My 51 and Y\}_Ji) 0

Set K.=K.
j i+l

Set j=j+l

and goto Step 1

Else continue

Define for 2 €[ 0,1] the control

u, = (I-ely, @y,

Compute @, as the largest number in [0,1] which

satisfies
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Step 5 : Set u,

Goto Step 1

It is quite obvious that Algorithm 6 is a general case of
Algorithm 5. We assume that Algorithm 6 generates an infinite

[--]

sequence of controls fu, }iZO and approximate costs tuydy -0
(filling in with the terminating point if need be}. Then it can
easily be proved that lim Wy =0 using a method similar to the
ones used in proving cc:nvergence of algorithms presented earlier
in the thesis.

Also as for Algorithm 35, Kj is 1increased only a finite
number of times and then remains fixed. Hence as for Algorithm 5

we must have all limit points of the sequence {g_i} to be

1:0
desirable for Problem P3.

Proof of the above properties for Algorithm 6 is very
similar to the proofs for Algorithm 5. The only difference is that
Algorithm 6 solves the intermediate problems to an approximate
degree defined by 8; which decreases to 0 as i— =  whereas
Algorithm 5 solves these problems exactly throughout the scheme.
Hence in the limit as i—— = the two methods are identical and

the same results as for Algorithm § (for case b) hold for

Algorithm 6 as well.
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5.9 Numerical Experience

A number of state constrained examples were programmed
using the procedure presented in this chapter to show how the
method behaves on actual test problems. The numerical results
for these problems are presented in this section.

The test problems considered are restricted to systems
governed by ordinary-differential equations because it was felt
there was no advantage in considering more difficult cases - all
that is required is that the state be calculated by solving the
dynamical equation and this can be done in any problem,
delayed or otherwise. So although the theory presented in this
chapter does cover the more general case our examples do not
mainly for making the task of obtaining the state easier to
compute. Also only scaler problems are considered - again this is
so that the computing is easier and operations such as inversion
of matrices, etc. do not have to be performed. Obviously
multivariable examples can also be solved by incorporating the
extra software.

All the following results were obtained by partitioning the

time interval into 50 disjoint segments.

Problem 1

The first problem considered was the following:

Min - J'x(t) dt
u
s.t. *(t) = ul(t) a.a. t&€T
x(0) = -3
x(t) <« 0 for every t

Q=({-1,1) €l

T

€6



This is a very simple example where the solution can be

obtained very easily by hand. By inspection the solution is the

following:
ur{t) = +1 for all te[0,3)
= 0 for all tel $,11
x*{t) = -3+t for all t€[0,% 1]
= 0 for all t&l %,1 ]

and the optimal cost is 0.125.

Since Problem 1 1is already linear there 1is no need to
linearize it. Hence when it is formulated into the form P3K(g) it
will infact be the penalised version of Problem 1 - a solution at
Step 1 will give a solution to Problem 1, i.e. the solution will
be obtained in one iteration of the algorithm.

The numerical results are shown in Figs 8.1-8.4 and
compare well with the ones given above. It should be noted that
Fig 8.1-8.4 show the stages to finding the solution to PSK(Q)
which is an internal iterative process. Once this has been done a
solution to Problem 1 has been obtained. The primal functional
for Problem 1 1is also shown in Fig 8.5 to show that the

calmness hypothesis is satisfied.

Problem 2

The second problem considered was obtained from
lanculescu and Hager [IAl] and so our results will be compared
with the ones given by them. The problem is a little bit more
difficult than Problem 1 in that it involves a quadratic cost but

the dynamics are still linear. In fact the problem is the following:
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FoxP(t) + wi(t) Y dt

(S

Min

e

s.t. x(t) = ult) for a.a.t €T
X(O) - - (Se+3)
4L{e-1)
x(t} +h £0 for every t , h = e
(e-1)
Q= [-1,1]
4€G

Because of the nonlinear nature of the cost functional when
solving P3, it has to be linearized and solutions to PSK(gi)
found. This gives a descent property for the original problem
and a new (better) control can be found. Repetition of the
procedure vyields a sequence of controls with accumulation points
that are ‘'desirable" controls. Figs 8.6-8.9 show the results
obtained numerically and they are seen to be very close to the
ones presented by lanculescu and Hager.

Again, Dby changing the state constraint the primal

functional was obtained. This is shown in Fig 8.10 and calmness
2/€
(e~ 1)

is again satisfied at h =

Problem 3

The third problem considered is the following

Min s Hx? (t)+u?(t) } dt
u

s.t. x(t) = x(tyu(t) a.a.t€T

for every t , h=2



A theoretical solution was not available for comparison
with the numerical results obtained. However the limit control
generated by the algorithm 1is feasible and, from an intuitive
viewpoint, a plausible candidate to be the optimal solution of
Problem 3. Numerical results for Problem 3 are shown in Figs

8.11-8.14.
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CHAPTER 6

CONCLUSIONS

In this chapter we state the main contributions of this
thesis and the further work it suggests. It is believed that each
chapter (with the exception of Chapter 1) 1is self-contained and
can stand on its own merit, but also that the whole thesis has a
sense of continuity 1in that the problems tackled in it get
progressively more complicated and difficult to solve with each
chapter.

We now go through the thesis in a little meore detail and
outline what we believe are the main contributions.

Section A in Chapter 1 contains no new material as it is
meant to be of an introductory nature. Section B presents
necessary conditions of optimality relating directly to the
problems considered in Chapters 2-4. These extend results
obtained by Huang to cover relaxed control problems.

Chapter 2 addrésses an optimal control problem with control
constraints only (referred to as Problem Pl). An algorithm
encerporating st-rong variations in the controls together with its
convergence results is presented. This is an extension of Mayne
and Polak's [MAPl] work to delay systems. Although the results
are similar to the ones in [ MAP1l } the approach needed in
obtaining them is quite different. This is because the Differen-
tial bynamic Programming techniques on which Mayne and Polak
base their appreoachare not applicable to delay systems.

Although in Chapter 2 we present an algorithm which
constructs a sequence with all limit points satisfying the

necessary conditions of optimality, it is not assured that such
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accumulation points exist. Because of this we turn to relaxed
controls which ©possess a certain compactness property (see
Appendix A) and hence limit points are guaranteed. An algorithm
(Algorithm 2) which solves Problem Pl over the space of relaxed
controls together with its convergence properties is presented in
Chapter 3. It is shown that each limit point (at least one
exists) satisfies the necessary conditions of optimality. A
further, quite novel, algorithm (Algorithm 3} where all relaxed
controls are approximated using ordinary controls is also given.
This algorithm is an attempt to make Algorithm 2 implementable
since the approximating ordinary controls require much less
computer time to simulate than a measure value control (a
relaxed control). It is shown that if these approximations are
made at each iteration then the algorithm produces limit points
(controls) which satisfy optimality conditiens to within '"delta".
Also if the accuracy of the approximations is increased indefin-
itely then limit points satisfy optimality conditions "exactly".
Algorithm 3 is a new method for which minimising solutions are
guaranteed as well as convergence to these solutions.

In Chapter 4 an optimal control problem with terminal
equality and control constraints, {Problem P2) is considered. An
algorithm (Algorithm 4), using an Exact Penalty Function method
(see Appendix B), which solves P2 together with its convergence
results is presented. This woric is an extension, together with
some modifications and improvements, of the work done by Mayne
and Polak [ MAP2 ] to delay systems. The problem is not linear-
ized w.r.t the control argument as done in [MAPZ ], therefore we
can expect our approximations to be better than those of Mayne

and Peolak. However we still deduce similar results as in



[MAP2 ] but we do so by a completely different method, namely by
using the "linear" nature of relaxed controls.

In Chapter 5 a general nonlinear state constrained control
problem with delay, (Problem P3), is examined and solved using
an Exact Penalty Function method. The existence of a finite
penalty parameter K which makes Problem P3 and its penalised
counterpart (Problem PSK) equivalent is deduced by imposing a
calmness hypothesis. This is a new method of guaranteeing
exactness of a penalty method and is much neater than existing
schemes (see for example Mayne and Polak [ MAP2]). Theoretical
conditions for finding such a K also exist and these are derived
in Appendix D.

A conceptual algorith (Algorithm 5) which solves Problem P3
together with its convergence results 1is presented. This is
basically a method which solves Problem PBK and includes a rule
for increasing K whenever necessary to guarantee equivalence.
Solving Problem PSK invelves solving intermediate problems
P3K(.':1)’ which are linearized versions of PSK at every stage.
These are solved wusing an internal procedure, in the main
algorithm, based on the method presented by Warga [ W2].

In an attempt to make Algorithm 5 implementable we also
present Algorithm 6 which only sclves the intermediate problems
approximately. This is done by truncating the internal procedure
for solving PSK(‘;I) when the required approximation is reached.
Obviously the accuracy of the approximations 1is increased to

€nsure convergence.
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It is shown that both algorithms generate controls which
satisfy necessary conditions for optimality for Problem P3 (these
are presented in Appendix C). Again the minimisation 1is done
over the space of relaxed controls to guarantee existence of
minimising solutions.

Except for the few test examples stated in Chapter 5, we
have not had the opportunity to investigate the performance of
Algorithms 1-6 for a large number of practical problems. It
would be wuseful to do this and compare the numerical results
with existing methods.

A problem werth investigating is to see if the procedure of
approximating relaxed controls presented in Chapter 3 can be
used in Algorithms 4-6 (or in any general algorithm which uses
relaxed controls), i.e. so that limit points satisfy optimality
conditions to "delta" and &§-— 0 as the accuracy 1is increased
indefinitely. It seems quite plausible this is indeed the case. If
so, it would be possible to save much computer time if these
approximations are used when the algorithms are implemented.

In Chapters 4 and 5 we reduce 'smooth" problems to
"nonsmooth'" ones and use the structure of the problems to obtain
local approximations and hence their solutions. It would be
useful to investigate if the nonsmooth problems can be solved
directly by the methods proposed by Mifflin [MI2] and, if so,

how the two methods compare practically.
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Appendix A

Compactness Results for the Relaxed Control Problem with Delay

Most optimal control algorithms construct a sequence of
controls  whose  corresponding costs form a  monotonically
decreasing, converging sequence. Because of this it suffices to
require that the sequence of controls have at least one accumula-
tion point and that any limit point of this sequence satisfies an
optimality condition, rather than to require that it converges.
If the sequence of controls is constructed so that it remains in a
compact subset of an, existence of an accumulation point is
guaranteed. However, many optimal control algorithms are
constructed to generate a sequence of controls which remain in
L_- bounded sets and to show that any L,- accumulation point
satisfies some necessary condition of optimality. Unfortunately,
there is no mathematical basis for assuming that a sequence of
controls in an L _-bounded set has an L, -accumulation point.
This has been the main reason for investigation of the relaxed
control problem.

In this Appendix we present a theory which extends the
compactness results of Williamson and Polak [ WIL1] for the
Relaxed Control Problem to cover delay systems.

The problems under consideration will be of the feollowing
form although extra constraints (state, terminal, etc.) may be
added without changing the results presented below {the same

notation and terminology as in the text is used).
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Problem P Min  h{x%(1)) (1)
1

subject to %(t) = f(x(t),x(t-1),ult),t) for a.a teT (2)

x{t) = o(t) for all t € [-1,0] (3)

Problem P will be termed original in a sense which will
become clear later on in our discussion.

The following assumptions are made.

Assumption A

The function f: IR%®x R"x IR®xT— IR" and its partial

, . ) , n n_ pm
derivatives f_, fy exist and are continuous on IR"x |IR'x IR"xT.
The function h: IR" — IR and its derivative h, exist and are

. n
continuous on IR

Assumption B

There exists an M €(0,=) such that
[l flx,y,u,t) |l sM{illx il + [l y !l +11

for all x,y € IRn, ue |Rm, teT
and
— l. — —
[l f(xiyt,u,t) f(xgyz,u,t)h < M{ ] X; lel + 1 A y2|| }

for all xl,xz,yl,yze‘;an, ue R™ all teT.

Everything else is exactly the same as defined in the text.
With G denoting the space of measurable relaxed controls we
define the relaxed control Problem P by extending h and f to G

as follows:




Problem P Min  h (x¥(1)) (5)

u
s.t. x(t) = f(x(t),x(t-1),ult),t) for a.a.teT (6)
x(t) = o(t) for all te[-1,0] (7)
uEG (8)

The existence and uniqueness of an absolutely continuous
function x(t) which satisfies (2), (3) or (6), (7) [i.e. when the
control is an ordinary measurable one, or a relaxed measurable
one | follows by writing f(x{t),x{t-1),t) for f(x{t),x(t—t),ul{t),t)
or f(x{t),x(t- v ),u(t),t) respectively and appealing to the

following standard result:

Lemma 1

Suppose that Assumptions A and B are satisfied. Then for
any ordinary control u& G or any relaxed control u € G and any
initial condition p{t) for all t €[ -t ,0], there e;xists. an
absolutely continuous function x%(t) or x%(t) for all teT, that is
the unique solution to (2) or (6) respectively.

The proof of Lemma 1 1is a standard result - see for
example Hale [HAL1], Bellman and Cooke [BCl], or Oguztdreli
[0G1 1.

We now recall a definition from Chapter 1.

Definition B8.1

A sequence {gi}i=0

u*e G in the sense of control measures (i.s.c.m.) if, for every

of relaxed controls in G converges to

continuous function ¢: QxT— IR and every interval & of T



Iyolu (), thdt ——— 7, 6 (u*(t),t)dt

A

as i-—dvtn

We are now in a position to state our first compactness

results, whose proof is given in Young [Y1].

Theorem 1
Let {gi }i= 0 be an infinite sequence in G. Then {gi} P20
has an accumulation point u* € G i.s.c.m, i.e. there exists an

infinite subsequence indexed by K< {0,1,2,....} such that

— u* {.s.c.m.

Our second compactness result will be established as a

consequence of the following Lemmas.

Lemma 2

Let B,, Q be compact sets in R™ and R™ respectively
(as in text). Let x'(t) and x*(t) be continuous functions from T
to B, such that xi(t) converges to x*(t) uniformly in T. Also,

let {u;} i:O be a sequence of relaxed controls that converge

i.s.c.m. to u¥. Then for each subinterval a of T we have

£ ), x (1= 1),y (1), 0 dt —— £ B (1), x % (t-1),u* (1), 1) dt

Proof

This follows directly from Definition B8.1 and the uniform
continuity of f on B,xB,x QxT.
Before the next Lemma can be presented we need to say a

few words about the terminology we will be using. When we wish



to stress the dependence on the function f(x{t),x(t-1),u(t),t)
subject to Assumptions A and B of the trajectories determined by
(6), (7) we shall term them f-trajectories. Then we shall
compare them  with r-trajectories which will be similarly
determined when f(x,y,g,t) is replaced by a continuous function
of the form r(u(t),t) {(for a "fixed” x and y which has been
absorbed into the t-dependence of r). This will be done
using the next key Lemma stated in Young [ Y1 ] for ordinary

differential equations, and which we extend to cover our delay case.

Lemma 3
% * E
Let r{u(t),t) = f(x 2 (t),x ® (t-t),ul(t),t) where x° (t) is
continuous on T 'e¢ T and for i=1,2,3,.... let xi(t) and E;i(t),

for t & T' denote relaxed f- and r-trajectories determined by the
same 1initial condition ¢(t) for all t € [-1,0] and the same
relaxed controls 1Y (t). Then as { —— =, x i(t) tends uniformly

e r
in T' to x* (t) if and only if £'(t) does so.

Proof

We may suppose by subdivision that the length | T' | of

T' is < Y2M, where M,1is the finite constant defined below.

We write

a, = sup <) - x5 |
te T!

b, = sup 11& - x* (0l
te T!

By our assumptions we have that
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I £, x (1), (8, 0127 (0,38 (1= ), (1),0) )

. N . N

< M sup {|Ix"(t)=x¥ (L) ]| + || x*(t-1)=x% (t-=1) 1]}
teT!

< M, sup ||:«:i(1:)-*xu (t) || for some finite M,
teT!

= M, a; for all teT?

Now since

xH1)-g (1) = 55 (x}(s),x}(s- )4, (5),8)
0
—f(xg“(s),xgﬂ(s—r),gi(s),S) ] ds
for all teT'
It follows quite easily that
I x =g ) 1 s M 7 g % s)-x2 () || + 1] x (s=t)=x" (s=7) || } ds
i u*
< M, sup ||x (t)=x~ (t)|| s_, ds
for all teT1
. i i ' &4
fee. Ixt)-g (1)) <M, &, | T |} £ —
for all tgT!
so that we have
i i 3
1l a;-b; || ¢ sup || x (ty-¢ (t}]|| <—
teT! 2

i.e. 1/2 a. < b, 53/2. a;

This situation is shown in the diagram overleaf.
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i . 1
— f — ]
1 |
0 a; a; 33,
2 2
. . i . u* :
Hence if b—0, i.e. ¢ (t) tends uniformly to x  (t) in
T', we must have a,—0, i.e. x'(t) also tends uniformly to

-

x"7(t) in T,
Using Lemmas 2 and 3 we will now deduce our second

compactness result.

Theorem 2

Let B, and € be arbitrary compact sets in R" and

IR" respectively. If {u x 1)

s i= 0 is an infinite sequence of

relaxed controls and their corresponding trajectories such that

{Lli} Eg and {xi} € B, with {gi}i:o converging to u*€ G

. i
i.s.c.m. and {x}

i-mO converging to x* uniformly, then x*(t) =

x® (1), i.e. the limiting trajectory is the trajectory due to the

limiting control.

Furthermore, given a sequence {L_}i, xi }.1:0 such that
{gi} € G then there always exists a subsequence that satisfies
the above hypothesis and conclusions.

That is we have

%

i u . . :
X (t) ———x< (t} uniformly in T as W,/ u* i.s.c.m.

Proof

By Thecrem 1 there always exists a subsequence indexed

(=]

by K C1{0,1,2,....} of an infinite sequence {u} -0 of relaxed



controls in G such that ui—Lg* i.s.c.m. for some u* e G.
Let the corresponding trajectories be x ' (t). Since u* e G,

then by Lemma 1 there exists a unique solution x~ (t) which

satisfies the delay-differential equation

x(t) flx(t),x(t=1),u*(t),t) for a.a.teT

x(t) $(t) for all t € [ -1,0]

As in Lemma 3, let Ei(t) be the r-trajectory for control
u. where r(g'i(t),t) = flx ¥ (t),xg"(t-r),ui(t),t) and let x “(t)
be the f-trajectory for the same conirol 4. and the same initial

conditions, i.e. we have

Ei(t) = ¢{0)+ Iﬂtf(xg*(s),xg*(s—'f),gi(s),s) ds

and xi(t) = ¢(0)+ fatf(xi(s),xi(s-r),gi(s),s) ds for all t €T

K

Now as y; u* i.s.c.m. suppose that £ (1)

£x(t)

uniformly in T. Then using Lemma 2 we get

ke

£ (t) = #(0)+ J;tf(xg*(s),xg (s-1),u*(s),s) ds for all t€T

u*
= (

= X t)

K x27(t) uniformly in T as u. K

-~

i.e. we have 51(‘[)

i.s.c.m.

Hence using Lemma 3 we get that x' (t) ———0 x® (1)

uniformly in T as well. This proves the Theorem.
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Appendix B

Penalty Function Methods

1. Introducticon

In this appendix we present a brief overview on penalty
methods and how they are used in solving very general
optimization problems. These methods are quite classical in
that one such method was presented as early as 1943 by
Courant [COl] who solved a difficult problem by solving a
related (but simpler) problem.

Penalty methods are basically procedures for approxi-
mating constrained optimization problems by unconstrained
problems. These approximations are accomplished by adding
to the objective function a term which prescribes a high cost
for violation of the constraints. In the usual implementation
of the scheme, the solution to the constrained optimization
problem is obtained only when the penalty parameter
apprecaches 1infinity. For example, consider the following

nonlinear programming problem:

Problem B1l: Min f(x)

where the functions f, h. '

; 'S are real wvalued continuously

differentiable functions on IR™.. A penalty function method of
solving this is to solve the following unconstrained problem

for K>0,

Problem Bl.: Min v

K (x)
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where we define v, : R®™ — IR by
v (%) & f(x) + K £ {h(x)}?

in this formulation K 1is called the penalty parameter
m

and the term Kz Ehi(x)}2 the penalty term. Obviously a
i=1

number of different forms of penalty term with correspond-
ingly different characteristics exist. These do however have
one common feature, namely that the larger the penalty
parameter K, the closer is the approximation.

For this reason it seems desirable, when applying this
method practically, to select K as large as 1is possible.
However this is not the complete story since when calculating
gradients (for obtaining search directions, etc.), K is
required to be fairly small so that the penalty term doces
not completely swamp out the original cost functional. A
common technique for evading this conflict is to solve a
sequence of unconstrained problems BlKj with Kj increasing
toe infinity. If this 1is done and a sequence of points
{x } i:O is obtained, it is proved in Luenberger [LU2] that
any limit point of this sequence does indeed solve the
original problem.

Inequality constraints such as g; (x) = 0, i=1,2,...,r
may be handled using a penalty term of the form
K E {gT(x)}? where g‘{(x)g max { g, (x),0 }.

i=1 * i

Connection with Geometric Methods

At first sight the penalty function method may seem a

somewhat crude method for solving constrained optimization
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problems, but it has been shown (see for example
Luenberger [LUL ]} to be closely connected with geometric
ideas and the «concept of dual problems. For example,
consider the following problem (which is clearly equivalent

to Problem Bl):

Problem B2: Min f(x)

m
[ Note that there 1is no x such that F,hz,l(x) < 0, 1i.e. the
i

constraint is not regular as defined in Luenberger [LUl] ]
Then define the following family of problems:
m

y(a) = inf {f(x) : ¢ h?

2(x) < a }
i=1 !

This 1is called the primal functional for Problem B2

and its relationship with a> 0 is of the form shown in Fig.l.

Fig 1



It is easy to see that x is nonincreasing with
increasing o and a = 0 is a boundary point. The solution
to Problem Bl is equal to the maximum intercept with the
vertical axis of all closed hyperplanes (which in this case
are just straight lines) that support x . This maximum
intercept is of course given by the Lagrange multipliers of
the problem and may be infinite.

To state this more mathematically we introduce the
dual functional for Problem B2 to be defined on the positive
real line as

n{c) = inf {f(x) + ¢
x i

Then the dual problem is defined as

max n(c)
cz 0

It 1is easy from this interpretation that provided

n(c*) is finite for some c* >0,

and hence the dual functional always serves as a lower

bound to the value of the primal problem (Luenberger [LU1l).

Hence by choosing a K>0 and minimising
m
f(x)+K = hzi(x) determines as shown in Fig 1 a supporting
i=1

hyperplane to x (defined by this K) and a value n, for the

K
dual functional. Provided y 1is ceontinuous it is obvious that

as K is increased nyg will increase monotonically toward

x(0). Since @ = 0 is a boundary point of the region of

oEMN



definition of x, a (perhaps vertical) support hyperplane

always exists.

Advantages and Disadvantages

The main advantage of using penalty methods is that
many difficult problems, incorporating constraints which
cannot be handled by any other method, can be transformed
into much simpler unconstrained ones. These can then be
solved using any one of a wvast array of efficient methods
which already exist and are widely available (e.g. Newton,
steepest descent, conjugate gradient, etc. see Polak [ P1]).
In the normal application of the method the penalty term is
constructed to have similar properties as the functions
defining the original problem, i.e. differentiability, etc. so
that normal gradient techniques can be applied for solving
the penalised problem. However for obtaining a solution to
the original problem requires solving a sequence of

problems such as

Min YK_(X) = f(x) + K, (x)

m
z
j I a1
for K]. going to infinity. This, as shown by several authors
e.g. Luenberger [LUl], Lootsma [ LO1], Ryan [ RY1}, leads
to certain difficulties which can be explained by consider-
ing the behaviour of vx as K gets large. A typical form of
penalty term is shown in Fig. 2 where it is obvious to note
that as K increases the penalty term has steeper slopes

outside the feasible region.
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Penalty

term
m
2
K. z,hi(x)
Increasing
K
[ Feasible region 1 <

Fig. 2

This implies that as K increases Y becomes a function
whose minima lies in a steep sided ‘'wvalley" with the
"valley" slopes getting steeper. It is this which causes the
above mentioned problems since the Hessian (the second
derivative of Yk W.r.t. x) becomes increasingly ill-
conditioned in the sense that its magnitude tends to infinity
as K—— =, This, as one might expect, causes difficulties
in obtaining solutions numerically and convergence, 1if it
occurs is likely to be slow.

These and other properties of penalty methods are
fully discussed in Ryan [RYl1l and the interested reader is

advised to consult it for full details.

4. The Exact Penalty Function Method

Because of the above mentioned difficulties a similar
methed, referred to as the Exact Penalty Function method,

nhas emerged which also adds a penalty term to the

78D



objective function, but it does not need K to be increased
to infinity for assuring equivalence.

The method can be explained by considering Problem
Bl again. If the m constraints are formulated into the

following equivalent single constraint,

m
£ Jhi(x)|] <O

i=1 t

m
then the penalty term KiE [h.(x)] can be used in defining

i

Yg({x). Then if the hi's have nonvanishing first derivatives
at the solution, then the primal functional will have a
finite slope at o« = 0, and hence a finite K will yield a
support hyperplane. This fact is attractive from a computa-
tional viewpoint since the sequence of unconstrained
problems of minimising v,(x) need only be solved upto some
finite K *, and therefore the Hessian is prevented from
becoming ill-conditioned.

However, a slight problem deces arise with this
method, namely that normal optimization techniques which
involve calculating gradients cannot be employed to solve
Tg(x) since the penalty term is non-differentiable. It turns
out (see Bertsekas [BERZ]) that, except for trivial cases,
this non-differentiability is a necessary evil if our penalty
method is to be exact.

Although ordinary gradient methods cannot be used to
solve Yp(x) there are modified procedures which are
applicable to the non-smooth preoblem in question. Some of
these are discussed in Pietzykowski [ PI1 ], Mifflin

[MI1] [ MI2] and the interested reader is referred there.



With reference to the above discussion we can deduce
that the exact penalty method is a very good procedure for
solving problems involving complex constraints numerically.
Indeed it is for this reason that we apply the method when
dealing with the constrained optimal control problems in
Chapters 4 and 5. The state constrained problem considered
in Chapter 5, in particular is a very good example of how
such a complicated problem can be handled using an exact
penalty function.

Although we have only discussed penalty function
methods for finite dimensional optimization, the extension to
infinite dimensional preoblems 1is fairly obvious and so we

omit it here, see for example Czap [ CZl], Polak [ P1].
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Appendix C

The Maximum F;rinciple for State Constrained Control

Problems with Delay

1. Introduction

In [N2] Neustadt introduces an extremal theory which
may be used to obtain necessary optimality conditions for a
broad class of problems. We use this theory here to derive
the Maximum Principle for the 5tate Constrained nonlinear
optimal control problem with delay (i.e. Problem P3 in
text). This theory relies heavily on replacing non-convex
sets by 'quasiconvex'' approximations and wusing 'linearized"
approximations for the nonlinear functions defining the
problem.

We will, for completeness, derive an abstiract Maximum
Principle for a broad <class of problems following the
methodology of Neustadt and then use ‘this theory to
obtain the Maximum Principle for the State Constrained
Control Problem with delay. These results have been proved
in Huang [HUl] for a more general delayed contrel problem
than the one considered by us - Huang considers k delayed
arguments instead of only one. We give our results here
mainly to obtain necessary conditions of optimality in a
form which is directly applicable to the problem in

question, i.e. Problem P3.

ar-



Concept of Extrem ality

Here we introduce the concept of an extremal and how
optimization problems can be reformulated as extremal
problems. Let éa be an arbitrary set and let ¢,, ¢, PRREL

be real-valued functions on (50 . Now consider the following

optimization problem:

Problem (OP) Min o,(e)
eg
s.t. ¢.{e)c 0 , i=1,2,...,s

1

Assume that this has eoeéa as its solution.
In order to state this in terms of extremals we need

to define the following:

1. An arbitrary set @, and a subset éaof @

2. A normed linear topological vector space g

3. An open, convex cone Z in Q

L. A function ¢: éa—*g

Definition 2.1

A set ZC g (linear space) is a convex cone if it is

not empty and if we have
aZ + BZ C Z , all a>0, 820
Some examples of convex cones are:
n

{ xe IRn:xi<0 all i} is an open convex cone in IR

{x€ C:x(t}<0 all t} 1is an open convex cone in C, where C

is the space of continuous functions t —— x(t) on a given

p]=¢~



time interval with sup norm.
We are now 1in a position to define the notion of

extremality:

Definition 2.2

An element e, € éu is called a (¢, Z)-extremal if

(i) (e ) €Z (i.e. the closure of Z )

9

(ii) the set {e:eeé‘),cb(e)ez } is empty

This can be highlighted by considering Problem (OP).
Since e, is the solution, we have if we setgz , ¢ as

follows,

g - RS+

Z = qy=(y vy, ... v9) vy e RS, yloo | i=0,1,2,...,s1,
i.e. the negative orthant in RS+
d(e) = (9,(e)-9,(e,), 9,(e), ¢,(e), , b (e))

then it is immediately seen that e, is also a (¢, Z )-extremal.

The Abstract Maximum Principle

Before we state the abstract Maximum Principle, we
present some motivation. Consider the optimization problem
(OP) with éaa closed, nonempty convex subset of IR¥, and
let us suppose that s i=0,1,...,s are convex and
everywhere defined on (g) Then the well known Kuhn-Tucker
Theorem (e.g. Pshenichniy [PSH1]) gives the following
necessary condition for an element to be optimal:

1If e, solves (OP) —=—> There exists a non-zero
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vector 1 = (1,,1,,...,1 ) € IR 5*! such that

[}

~M1 0

9. (e) for all e eéD

1,0,(e )+ I Lo.(e,) L1, ¢(e)+ i

i=1 i

I ™M
—

1

with 1110, i=1,2,...,s.

With stronger assumptions (e.g. Slater conditions) it

can also be assumed that 1,> 0, and in this case it may

0
be normalized to unity.
Now in terms of extremality it can easily be seen that

this translates into:

e is a (¢, Z )-extremal only if there exists a

)

non-zero h = (hu,h ..,hs) € le+1 such that

1

he [6(e) - #(e )] €0 for all e€dS

and h-y >0 for all y ez

(where "." denotes the normal Euclidean inner product).
Qur abstract Maximum Principle is nothing but an
extension of the Kuhn-Tucker Theorem when most of the
convexity assumptions do not hold. Also, to develop the
necessary extremal theory, we will use the same tools as
required in proving the Kuhn-Tucker theorem - namely the
separation principle for convex sets, after justifying
replacing the non-convex problem by a suitable convex
approximation.This will become quite apparent 1in the
following discussion. However, to be able to formulate such
a convex problem which approximates the original optimiza-

tion problem we need to make a few definitions.
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Definition 3.1

Let éo and % be subsets of a normed linear space

@/. Then ﬂ is a first order convex approximation to

éo at ec,e{)/ if:

(i) ,_Wis convex and contains 0
(ii) For every finite set {y,,y,,-- .,y“}C%, every n >0
there exists some ¢, >0 suwhthat for each ¢ € (0,¢ ]

there exists a continuous linear map

Yo ! €Oy LY, sy I (go with the following property

< n for all y eco {O,y,,...,yv}

This definition states that, given any simplex in

%containing 0, it can be mapped into (go--eD by a

"slight continuous distortion"

yl—-—b Y (y) _eﬂ - E (y)

followed by a "shrinking"

E {y)r——— ¢ £, {y) = YE(y} —-e,

Definition 3.2

Let ey ,gbe normed linear spaces. We say that the

functional w:@—»f is mildly differentiable at e, E{)/ , if

there exists a continucus linear function h:?/—pgsuch that
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[‘p(e°+ ey)—w(en)] h(x) (ing—norm)

———

£ e —0"
y—x ({n g—norm)

In this case h(x} is called the mild differential of
Y at e, .

Note:

Using the definitions of Frechet and Gateaux deriva-

tives (see Luenberger [LUl1]) we have that

Frechet Mild Gateaux
-

=

Differentiability Differentiability Differentiability

(at eoe@)

We now state our Abstract Maximum Principle.

The Abstract Maximum Principle

Theorem 4.1

Let the following be given:

(i) {)/, a normed linear space

(ii) Two subsets g,% C@ and %is a first order
convex approximation to éoat g,

(1ii) Q a normed linear space with Z C Q being an
op.en cenvex cone

(iv) | Ep':{y—— Z a continuous function with mild differen-
tial y — h{y)

(v) e € é’) is a (¢, Z )-extremal
(These are all as defined before for Problem (OP).)

Then, there exists a linear functional 1 Eg*

(the topological dual of g ), not equal to zero
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such that
(a) loh{y) < 0 for all y E%
(b) 1{z}) >0 for all z € 7
(c) logle,)=0

(where loh denotes composition of functions)

This theorem, as mentioned before, is an outgrowth of
the Kuhn-Tucker theorem of the last section, since when ¢ is
linear and éo is convex, the theorem implies the earlier
result with éo serving as its own convex approximation and
h coinciding with ¢ - ¢ (e, ).

The proof of Theorem 4.1 is given in Neustadt
[N2 ] and the interested reader is referred there,.

We will now apply the above extremal theory to derive
the Maximum Principle for the State Constrained Control

Problem with delay.

State Constrained Control Problem (SCCP) with Delay

For convenience we will restate the SCCP with delay
which is under consideration:
Let <t be a positive real number and T & [0,1] be

a compact interval. Then our problem is

Problem P3

Min  f 1{x(t),ult),t)dt
u

s.t. x(t) = f(x(t),x(t—t),g(t),t) for a.a.teT

x(t) = of(t) for all te&[-1,0]
g{x(t),t) <0 for every t €T
u €0
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where the notation and terminology is the same as in the
text., The assumptions which we make are also given in
Chapter 5.

Assume that Problem P3 has u*(t) € G as its optimal

control and x*(t) be the corresponding optimal trajectory.

We will need to reformulate Problem P3 inte a form to
which the extremal theory discussed above may be applied. To do
this we propose the following:

The dynamic constraint and the control constraints be
handled implicitly by setting éato be the composite space of (all
the admissable trajectories arising from admissable controls
ue€ 9) % (the admissible control set (E), while the state constraint
be dealt with explicitly by incorporating it in the inequality

constraint ¢(.)< 0 [c.f. Problem (OP)].

i.e. let

D = {xeL,Q{\ x{t) € B, for all teT
x(t} = f(x(t),x(t-1),ult),t) for a.a.teT
x(t) = ¢lt) for all t € [ -<,0]
ueEG }

where B, 1is as defined earlier in text and e,Q{is the class of

n-dimensional absolutely continuous functions. Then we define

& vy
6 & oxg

This we can embed in the composite space of all continuous
functions T — IR® with sup norm (written C(T; |R")) x the control

set G, so that we have @ as
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B - ct; R™ x G
Cgcan be set to be IRxC(T;|R} and let Z be defined by

Z = {£:e€lR, <0} x {(yeC(T;IR): y(t) <0 for all t }
[ It is trivial to show that Z is an open convex cone in g )
Let ¢ :@——* g be defined by
o0x,u) & (5 [10x%,u,10-1(x*,u%, 1)} dt, glx¥(t),0)).
Then it is quite obvious from Definition (2.2) that (x*,u*)
is a (¢, Z )-extremal.

Because of the continuity assumptions we have that
1
xi—{ £y 1(x,u,t)dt, {t—g(x(t),t)}):C(T; [R") —IRxC(T:IR)

is Frechet differentiable at x*, and ¢ is linear with respect to

the relaxed control u. Therefore the derivative w.r.t. u at u*

coincides with ¢-¢{u*}, i.e.

(x*,u*,t) z (t)+l{x*y ,t)-1(x*,u*,t)]dt,

Since Frechet differentiability implies mild differentiability
our abstract wsaximum Principle 1is applicable (with the above
choices for o, Z , éb,fy,g,etc.) provided we can find a suitable
first order convex approximation to éa at (x*,u*). As éb = DxG,
it is well known that for nonlinear systems D need not be convex
(examples can be easily constructed). G on the other hand is
convex and compact, (see for sample Warga [W31). Therefore to
find a first order convex approximation to (g), we can have G
serving as its own convex approximation and thus we only need

to find a first order convex approximation to D. This will
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shortly be constructed, but first we present a general solution
for a linear differential difference equation which will be needed

in the sequel.

5.1 Linear Differential - Difference Equation

Let T and 1t be as before and consider the following

linear differential difference equation

x(t) = A, (Ox(t)+A, (t)x(t-1) + plult),t) for a.a.t€T (5.1.1)

x(t)

¢(t) for all te[-7,0] {5.1.2)

where A, and A, are nxn matrix valued functions defined and
continuous on T and pluft),t) is a given n-vector valued
function of the control yu and time t&T. Let ¢(s,t) be the unique
matrix function defined for t € T, s € [0,=), which for each teT
is an absolitely cantinuous finctionof s [0,t | and which satisfies the

differential-difference equation

S8(st) | -¢(s,t)A, (s)-2(s+ 7, t)A, (s+T) for a.a.s€[0,t] (5.1.3)
45
and o(t,t) = [ (the identity matrix) (5.1.4)

and which for s>t is given by
¢(s,t) = 0 (5.1.5)

Equation {5.1.3) together with the boundary condition
(5.1.4) and relation (5.1.5) 1is the adjoint system to the
homogeneous part of (5.1.1) and ¢(s,t) is the state transition
matrix. Now using a very similar procedure as in the paper by

Huang (HUl] we can deduce the following result:
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Theorem 5.1

If all the above hypothesis hold, then the solution of

(5.1.1), with given initial condition (5.1.2), is given by

x(t) = ¢(0,t) 4{(0) + !_"T@(s+r,t)A2(s+'c)¢(s)ds

t

+J'0 ¢(s,t) plu(s),sl)ds for all t e T

5.2 First Order Convex Approximation

We will now find a first order convex approximation to D
defined above for the SCCP with delay. Let ¢(s,t) be the matrix

valued function defined above with

A

1]

(1) = £ GeR (), x* (1= 1), u* (1), 1)

A, (t) fy(x*(t),x*(t——T),g*(t),t)

1]

for all t €T, where fX is the derivative of f w.r.t. the first
argument (i.e. x(t)) and fy is the derivative w.r.t. its second
argument (i.e. x(t-t1)).

Also let

plv(t),t) = flx*(t),x*(t-1),y(t),t)-f(x*(t),x*(t-1),u*(1),t)

for all t&€T

Qﬂf(v,g*)

~

and ¢(t) = 0 for all te[-1,0].

Then the solution to the delay differential equation

x(t) = A (Ox(t) + A, (t)x{t-t)+ply(t),t) for a.a.teT is

1

u*, v u®,v . . . v ooou¥
z% '"Y.,} where 2z~ '~ is the first order estimate of x~ —x~ (as

proved in text).
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Therefore from Theorem 5.1 we have that for any YEQ'

227 ) = 5t oels,t) aflv,u*)ds

for all se€ T

Next we define Q to be the following subset of C(T; R™)

Q= (z~ "~t) ; for all t€T, v€G }

Then we have the following result:

Theorem 5.2

Q is a first order convex approximation to D at x¥.

Proof

(1) 0 € Q, since if v = u* & G then the solution zl"l*’l"l*(t}
is identically zero for all te&T,

(ii) Q is convex.

For any positive integer 1 let ‘E’]L

subset of lRl:

denote the following

1
1 ,
P ={a =( 0'1’0’2!-'-!0‘1): aiZO, 1=1,2:---51si£lai=1}
u‘-",y_.
Let Zi(t) = z ety , i=1,2,...,1 be elements of
Q, where gieg, i=1,2,...,1. Then since

1
z(t) = f o(s,t) af(v,u*)ds

we have for all t €T,
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{iii)

! ! u¥x,y
L e z,(t) = £ a z~ "%
i=1 b ! j=1 ' (t)
1 {
= L J5 o(s,t)a,af(v,,u*)ds
. i~
i=1
N 1
= Sy o(s,t)Af( £ a.v.,u*)ds
RS B A
i=1
1
since I o u* = u¥
. i< ~
i=l
1
Now I .V e€G since G is convex
i=1
1
Hence 1 o,z €Q and therefore Q is convex.
i=1

The remainder of the proof is to wverify that if
{Z ,,Z,,..., 21} is any finite subset of Q and if »n >0,
there exists some e, >0, such that for any ¢ € (0, €, 1,
there is a continuous map Ys tcol z zz,...,zl} — D
such that

[YE ( z)-x*(1) ]

H -z E < ﬂforaHZECO{O,ZL,-.-,Zl}

[

This is actually proved in Huang [ HUl] where weaker
assumptions are made and the number of delayed
arguments is k compared to only one in this thesis. The
proof is rather laborious but quite straightforward and
will not be presented here. The interested reader is

referred to Huang's paper for full details of the proof.
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Hence since we have just shown that Q is a first order

approximation to D we may define ﬂby

%= QxG, and then Mis a first order convex approxima-

tion to (gbat (x*,u*).

5.3 Maximum Principle for the SCCP with Delay

Let ¢, Z , éa,{y,g,%, § o (.) be as defined above.

Then we have from our Abstract Maximum principle the following:

Theorem 5.3

If {x*,u*) is an (¢, Z )-extremal for Problem P3 then there

*
exists a non-zero 1 EC(,Z such that

(1) Lose((x*,u*);(y,v)) <0 for all (y,v) & e%
(ii)  1(e) >0 for all o ¢ Z

(iii)  loae(x*,u*) = 0

Recalling that any bounded linear functional on CI{T;IR ]
has the representation (see for example Dunford and Schwartz

[DUl1] or Luenberger [LU1l])

X b—_— J'a1x(t)dh(t)

for some A(t) € NBV[T;IR], where NBV[T;IR] 1is the space of
functions of bounded wvariation, continuous from the right in
[0,1) with a(1)=0.

Since Q = [IRxC[T ;IR], we have as its dual gk is
IRxNBV [T; JR]1. Then 1 € Q* in Theorem 5.3 is of the form
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(r,,r{t)) where X €IR and » € NBV[T; IR |.

- Also since

1
D)= U4 [l (x*ux,t)z + allv,u®)]dt,

—~

(2]
h=d
-
,E.
ic
*
:—\
N
<

gx(x*,t)z(t)) where Al(v,u*) = l(x*,v,t)-l1(x*,u*,t) for all t.

Then it is immediate that the following holds:

Theorem 5.4

If (x*,u*) is an (¢, Z )-extremal for Problem P3, then

there exists a A, €IR , » €NBVIT;JR], not both zero such that

! ux,v
(i) A L[l (x*,u*,t) z~ ’~{t)+al(v,u*)1dt
x < ~72

e g, (x*(1),1) z YY ()dalt) < O

for allv €G
(by definition of gﬂ)
(ii) 21,20 and *» is non increasing

(i1i1) A is constant for t €1 €T where 1 is defined by:

Il = ({teT : gix*(t),t) < 01}

Since z90 ) = g t<1°(s,t) af(v,u*)ds for all te&T we

3 ~

have from (i} in Theorem 5.4 that

1 b3
Ao Sy lx(x*g*,t) ff@(s,t)af(y,g*)dsdt + xSy Al{y,u*)dt

1

+ 5y g (x¥,0) 1! 0 (s,)af (v, u%)ds dalt) < O

for allv €G
Interchanging order of double integrations we get

11 1
Ao o ISIX(X*,K_:}*,‘E)@(S,t)dtﬂf(y,g"‘)ds + Xg &y ﬂl(‘_{,u*)dt

~

1 1

+ fy fsgx(x*,tw(s,t)dx(t)af(g,g‘-'-‘)dsso

for all v €G

.1 < v Y




T

1 1
- * * *
Let % (s) =2,/ 1 {x*,u*, t)els,t}dt+ s g (x ,t) o(s,t)d alt)

Hence we have

for all s €T

1 1 1
Ly r gl dxxux,t)els,)dte 7o g (x*,t)e(s,t)da(t) } af(v,u*)ds

1
+ aos, Allv,u%)dt <0

Substituting for y(s) we have

1 1
o luT(s) Af (v,u*)ds+ 2,0, Al(yv,u*)dt <0

for all v&G

for allv €G

Recalling that Af(v,u*) = flx*,y*,v,s)-f{x*,y*,u*,s) all s€T

and Al{v,u*) = l(x*,v,s)-l({x*,u*,s) all seT

- ~—

Hence we have

1
LT

1
< fo[liJT

(s)f(x*(s),x*(s=1),v(s),s)+ r,l{x*(s),v{s},s)]ds

(s)f(x*(s),x*(s=7),u*(s),s)+ r,l{x*(s),u*(s),s}] ds

for ally €G

This is the Maximum principle for S5CCP with delay.

We now derive an expression for the costate function V¥ .

Since by definition we have

1
vy (s) = 7, L (x*,u*,t)els,t)dt+ S, g (x

S X

Also ¢(s,t) is the solution of

Sos,t) _ —#{s,t)A,(s)=d(s+1,t)A, (s+1)
§s
o(t,t) = 1 and o{s,t) = 0O

i.e. we have
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*,t)o(s,t)dx (1)

for all s €[ 0,t]

for s>t



d(s,t) = 1 + Ist[¢(c,t)Al(o)+¢(c+1,t)A2(d+r)]dc
Substituting this in equation for v we get

]
pT(s) = 5 adl (x¥,u%,1) (1+7 [0 (0, 1)A, (0)+ 000 +1,)A, (s47)] do)dt

1

I gx(x*,t) { 1+ .r; [o(o,t)A,;(0)+0 (0 +7,t}A ,{o+ 1)) do}dr(t)

Interchanging order of double integrations

1 1
yTs) = 10 ad (x*,u%,08 (o, 1)dt A, (0)do

1 1
1 To ke 1X(x*,g*,t)¢ (o+1,t)dt A, (c+1)de

1 1

+ e S gx(x*,t)dp(c,t)dl(t) A,(og)de

1 1

I 4, gx(x*,t)¢(c+1,t)d,\(t) A,(o+t)do

1 1
w® o+ *
+ I 1x(x ,u ,t)dt-r-.fsgx(x ,t)da (t)

<
—
iwn
—
I}

1 1 1
¥ w = .
I {Jrcmqlx(><-'<,g,t)<p(c:,t)c11;+{I g, (x 11 (o,t)da (t) 3

*» A, (o)do

1 1 1
I Aulx(x*,!fit)4’(cr+'r,t)dt+.r0 gx(x*,t)cb(cn,t) .

+dx(t)}r A,l0+1)do

1 1
v #* Eg
PRy Ix(x*,g ,t}dt+f5gx(x Jtida(t)
Now by definition

1 1
wT(c) = oAl (xx,ur,t)e(g,t)dt+rs g (x*,t)0(o,t)dx (1)
a X fod X

Hence we have



1
5oxl (x*ur,t)elor T, t)dee s g (x*,t) oo +1,thda(t)
1
= * x ¥
= f Ayl (x*,u*,t) o +T,t)dt+IG+Tgx(x ,2)0 (o +t,thda (t}

g+ T X

since ¢(g,t) =0 for o >t

= b or)
Hence using this in above we get

0T0s) = 7 T o)L+ e+ 0)A, 1) do

=

1 1 .
+ /g xnlx(x*,u",t)dt+.rsgx(x",t)d1(t) for s €{0,1-1]

1 1
+ ISAUIX(X*,g",t)dH J‘ng(x*,t)dx(t) for s € [1-1,1]

Combining all the above results, we have just proved the
following, which is the Maximum Principle for the State

Constrained Control Problem with delay:

Theorem 5.5

Under the above mentioned assumptions on Problem PJ3, and
if (x*,u*) is an optimal pair for P3, there exists a real number

A, and a » € NBV[T; IR ], not both zero such that

(1) 1,20 and » is nonincreasing

(11) A is constant for 1T (as defineci in Theorem 5.4)
1

(iii) Iy [wT(t)f(x*,y*,u*,tH ro Lix¥,u*,t) jdt

1
= max [, [‘JJT(t)f(x*,y"-‘,y,tH;\nl(x*,Y,t)]dt
Y €5
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n
where v :T — IR is the solution of

1bT(t) = It wT(s)fX(x*(s),x*(s—T),g*(s),s)ds

1
1 d:T(s+1)fy{x*(s+-r },x%(s),u*(s+t),s+t)ds
1 1
+1 A,,lx(x*(5),u*(s),s)ds+ftgx(x*(s),s)dk(s)

=

for all t €[0,1-1]

T ' T % x
v t) = 5ot (s)f {x*(s),x*(s-1),u*(s),s)ds
+I:Aulx(x*(s),g*(s),s)ds+f1tgx(x*(s),s)dl(s)

for all t €[1-+,1]

As in section B8 in Chapter 1, the Maximum Principle may

be stated in 'pointwise" form as

dJTf(x*,y*,g*,tH Aol{x*,u*,t)

= max HJTf(x*,y*,w,t)-r— Aol{x*,w,t) }

weQ
for a.a.t €T
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APPENDIX D

RELATIONS BETWEEN PROBLEMS P3 AND PSK

In this appendix we obtain necessary conditions for both

problems P3 and P3K, and in doing so we deduce certain
relations between the two problems. The two problems in

question are:

Problem P3

Min Iu'l(x(t),g(t),t)dt

2
s.t. x(t) = f{x(t),x(t-t),u(t),t) for a.a.t €T
x{t) = ¢(t) for all t € [-1,0]
glx(t),t) < 0 for every t € T
u €6

Problem PSK (for K > 0)

Min  5'"I(x(t),u(t),t)dt+ K max {g(x(t),t),0}
0<t<l

c

n
—t
oo
—~—
ot
—
I

f(x(t),x(t-r),y(t),t) for a.a.t €T

x{t) = ¢ (t) for all t € [-1,0]

Assume for the moment that the two problems are
equivalent and that (x*,u*) is an optimal pair for P3 and P3K.

We will assume that the hypotheses stated in Chapter 5
holds here as well. Then it is shown in Appendix C that the

Maximum Principle for Problem P3 is




1. There exists a real number », and a A(t) € NBV[T; [R] not

both zero such that

(1) A, <0 and x» is nonincreasing

(ii) A is constant for 1 €T where I is defined by
T4 ¢eT : glx*(1),t)<0)
6i) 6T (DFe*, vy, u%, 0+ 4, Lx*,u%,t)] de

= max [ wT(t)f(x*,y*,v,t)H(x*,v,t)] dt
veGi - -

where 9{t) : T =+ IR™ is the solution of

T T

vo(t) = It’ b (s)fx(x*(S),X*(s—r),g*(s),S) ds
+J't1 ﬂJT(s+r)fy(x*(s+r),x*(s),u"'*(s+-r),s+t)ds
+1 a1 (x*(s),u*(s),s)ds+ .rt‘gx(x*(s),s)dx(s)
for all t €[0,1-1)
T T e " %
(1) = st w T (8)f (x*{s},x*(s-1),u¥(s),s) ds
+00 A, L {x*(s),u*(s),s)ds+r} g (x*(s),s)dr(s)
for all te€fll-7,1]
P(1) =0

We now consider Problem PSK. Warga [ W4 ] has shown how
this can be reduced to a standard problem (‘E’SW below). For the
sake of completeness we describe this reduction, and describe the
Maximum Principle for the reduced problem here. To define

PSW we need to introduce the following:
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plt) = 1(x(t),}}(t),t) for a.a.t €T

and r(t) = max {gi{x(s),s),01} for t€T
O<s<l

Then we define P3w by

Problem PJ3
- W

Min p(1)+Kr(1)

s.t x(t) = f(x,y,u,t) for a.a.t €T
x{t) = o(t) for all t€[-1,0 ]
p(t) = l{x,u,t) for a.a t€T
p(0) =0
r(t) =0 for a.a t€T
r(0)20

glx,t)-r(t) £0 for every t €T

ueG

Let x*, p*(l), r*(1) be optimal for P3W and the optimal
control being u* € G. We will use the extremal theory stated in
Appendix C to derive the Maximum Principle for P3 . This is done

A\

as follows:

Set D & {xed: x(t) = flx,y,u,t) a.a t€T

for all t&€[-1,0]

~
—~
~—+
—
1}

-
—
—+
—

u€g |}
as in Appendix C and define P, R € R by

P = {p(l1) : p(l) = f'l(x,y,t)dt, x€D, weEG 1}

276




Using the same notation as in Appendix C we define

(g) QDxPxﬁ.
Embed éa in @QC(T; IR™Mx IR x IR

g is set to be IRxC[T; IR ] and define the open cone Z in

gby

Z 8 (g:t€|R,E<0 Ix{y&C[T;IR]:y(t)<0 all t }

Letting cb:{)/-*gbe defined by

6 (x,p,r) & (p(1)+Kr(1)~p*(1)-Kr*(1),g(x,t)-r(t))

e

it is easy to see that x*, p¥, r* is a (¢ ,Z)-extremal for
Problem P3_.
w

We have that

sp ((x*,p*,r*);(z,h,s)) = (h(1)+K.s—p*(l)-Kr*,gX(x*,t)z+s)

4

and Q 4 { z Y (t) ; for all t €T, v €G } is a first order

convex approximation to D at x* (as in Appendix C). Using a

similar method we can show that

x(x*,g*,t)z(t)+1(x*,g,t)]dt

z€Q, v €G }

is a first order convex approximation to P at x¥*. Then defining

gﬂby M% QxHxﬁ, all the conditions 1in Appendix C are

satisfied. Therefore we can deduce that the following is true for

the above choices of ¢, 2 ,éD ,g,@/,ﬂ, & =

kd
There exists a nonzero 1 Eg such that

(1} 1 ool (x¥*,p*,r*) ; (z,h,s)) <0

for- all (z,h,s) E,_%

(ii) 1(s)z0 for ail ¢ € Z
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(iii) 1 o ¢ (x*,p*,r*) = 0

*
Consider (i). Since g = IRxNBV[T; IR ] 1 is of the form

(1,, 2) and therefore (i) becomes

Ay (h(1)+Ks—p*(1)-Kr*)+ s o‘(gx(x*,t)us)dx ()0

for all z €Q, all h €H, all s €R

Since this holds for all (z,h,s) E%we must have

(a) A, h{1)<0 for all h(l)€H
(b) Ay Ks+ fitsda{t) <O for all s €R
(e) Iu‘gx(x*,t)zdk(t) <0 for all z eQ

From (b) we get a, K+ s,0da(t) <0

i.e. TV} < -»xK
Now r*=0 since r¥= max { g{x*,t),0 } and x* is the
O<t<l

solution, therefore g(x*,t}<0 for all t €T.

Then the above equation becomes

Ao (h(l)-p*(1))+ folgx(x*,t)zdx (t)<0

for all h €H, z €Q

By definition of H, and wusing the form of h(l) for all

h€H we get

u*,v
Mo 17 L (x*,u, )z T~ (t)+1(x*, Vv, 1) ]dt-p*(1) }

+rg (x%, 028 Y (t)dat) < 0

for all VEG

Now p*(1) = r,'l{x*,u*,t}dt (solution of PSW).

-~
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Letting A l(v,u*)=1(x*,v,t)-1(x*,u*,t)

-~

and 1x(g‘—’*) =1X(x"’*,g*,t) we get

o %
X J‘,,‘[lx(g*)zg ’Yv(t)+gl(~i,\.3*) 1dt+ J'm*gx(x“-‘-',t)zl*1 Y (1)dr(t) <0

for all vE€G

The rest of the proof for deriving the Maximum Principle
for P3w follows exactly along the lines for P3 shown in Appendix
C. Using this procedure we arrive at a Maximum Principle which
is the same as for Problem P3 but with one extra condition,
which is that T.V(ix) £ -1,K. From (ii) above we can deduce that
2,20 and for normal problems we can normalize Xy to -1,
therefore we get T.V(X)<K, i.e. the multiplier associated with the
state constraint has 1its variation bounded by K. Hence if K is
chosen so that K>T.V(x) where i is the multiplier in the
Maximum Principle for P3 we can deduce that the necessary

conditions for optimality for P3 and P3K are equivalent.
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